WO2012090778A1 - 発電プラントの復水流量制御装置及び制御方法 - Google Patents

発電プラントの復水流量制御装置及び制御方法 Download PDF

Info

Publication number
WO2012090778A1
WO2012090778A1 PCT/JP2011/079454 JP2011079454W WO2012090778A1 WO 2012090778 A1 WO2012090778 A1 WO 2012090778A1 JP 2011079454 W JP2011079454 W JP 2011079454W WO 2012090778 A1 WO2012090778 A1 WO 2012090778A1
Authority
WO
WIPO (PCT)
Prior art keywords
water level
deaerator
water
flow rate
value
Prior art date
Application number
PCT/JP2011/079454
Other languages
English (en)
French (fr)
Inventor
井上 力夫
功一 武居
裕一郎 出口
堤 孝則
太田 裕二
観大 井上
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2012550858A priority Critical patent/JP5550746B2/ja
Priority to PL11852897T priority patent/PL2660511T3/pl
Priority to CN201180050898.8A priority patent/CN103180666B/zh
Priority to EP11852897.5A priority patent/EP2660511B1/en
Priority to US13/882,685 priority patent/US9709261B2/en
Priority to ES11852897T priority patent/ES2742025T3/es
Publication of WO2012090778A1 publication Critical patent/WO2012090778A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/44Use of steam for feed-water heating and another purpose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0374For regulating boiler feed water level

Definitions

  • the present invention relates to a condensate flow rate control device and control method for a power plant that controls the condensate flow rate according to frequency fluctuations or required load changes.
  • FIG. 29 is a diagram showing a general thermal power plant.
  • the thermal power plant includes a boiler 10 that generates steam and a plurality of turbines 14, 16, and 18 that drive a generator 12 with the steam of the boiler 10.
  • the boiler 10 is supplied with feed water from a feed water pump 20 through a high-pressure feed water heater 22, and the boiler 10 heats the feed water to generate main steam.
  • the main steam is supplied to the high pressure turbine 14 via the governor valve 24.
  • the exhaust steam from the high-pressure turbine 14 is supplied to the reheater inside the boiler 10 as low-temperature reheat steam.
  • the high-temperature reheat steam reheated by the reheater is supplied to the intermediate pressure turbine 16, and the exhaust steam of the intermediate pressure turbine 16 is supplied to the low pressure turbine 18.
  • the exhaust heat steam from the low-pressure turbine 18 is introduced into the condenser 26.
  • the condensate generated by cooling the exhaust heat steam in the condenser 26 is supplied to the deaerator 32 through the low-pressure feed water heater 30 by the condensate pump 28.
  • Extracted steam from the intermediate pressure turbine 16 is supplied to the deaerator 32, and oxygen contained in the feed water is removed by the heat of the extracted steam.
  • the feed water discharged from the deaerator 32 is supplied to the boiler 10 via the feed water pump 20 and the high-pressure feed water heater 22.
  • the deaerator 32 has a deaerator water storage tank for storing the deaerated water supply, and a deaerator water level adjustment valve is provided on the condensate supply line from the condenser 26 to the deaerator 32. 34 is provided.
  • the water supply amount stored in the deaerator water storage tank is kept constant by the deaerator water level adjustment valve 34. Accordingly, during the stable operation, the deaerator 32 maintains a constant balance between the amount of condensate supplied to the deaerator 32, the amount of water supplied to the boiler 10, and the amount of air extracted from the intermediate pressure turbine 16. Yes.
  • Japanese Patent Laid-Open No. 2009-300038 discloses a configuration for performing governor valve opening control, fuel flow control, or feed water flow control based on a required load signal for a boiler.
  • frequency control by the governor is performed.
  • the required load command or frequency fluctuation is mainly controlled by steam flow control, steam pressure control, fuel flow control, air flow control, or governor valve opening control on the steam system side of the boiler. Corresponding output control was performed.
  • An object of the present invention is to provide a condensate flow rate control device and control method for a power plant.
  • a condensate flow rate control device for a power plant includes a boiler, a steam turbine into which steam generated in the boiler is introduced, a generator driven by the steam turbine, A condenser to which exhaust heat steam from the steam turbine is supplied, and a deaerator to which the condensate generated by the condenser is supplied via a deaerator water level adjustment valve, the steam In a condensate flow rate control device for a power plant, which is applied to a power plant comprising a deaerator into which bleed steam of a turbine is introduced and a feed water pump that feeds the water deaerated by the deaerator to the boiler, From the deaerator water level adjustment valve, the frequency fluctuation or the required load change is input and the input frequency fluctuation is suppressed, or the output value of the generator follows the input required load change. Degassing By adjusting the pressure of the condensate water channel extending until adjusting the extracted steam of the steam turbine
  • the steam turbine is controlled from the steam turbine by adjusting the pressure of the condensate flow path from the deaerator water level adjusting valve to the deaerator according to the frequency fluctuation or required load change.
  • the amount of extracted steam is controlled. For example, if the amount of extracted steam is decreased, the output of the generator can be increased, and if the amount of extracted steam is increased, the output of the generator can be decreased.
  • Such output control by changing the amount of extracted steam is more responsive than the output control in the steam system of the boiler. For this reason, by adding this configuration to the output control in the steam system of the boiler, the responsiveness can be greatly improved compared to the conventional case.
  • the output control in the steam system of the boiler includes fuel flow control, feed water flow control, air flow control, steam flow control, steam pressure control, governor valve opening control, and the like.
  • the energy of the equipment on the steam turbine side is temporarily extracted, and the followability to the target frequency setting or the required load setting is improved using this. For this reason, it is possible to suppress the frequency fluctuation or reduce the output deviation at the time of high load change.
  • the increase in the governor valve opening degree for controlling the generator output is reduced by reducing the output deviation at the time of high load change, the main steam pressure deviation can be reduced.
  • the power plant includes a low-pressure heater that is disposed in the condensate flow path and that is supplied with extracted steam from the steam turbine to heat the condensate.
  • a low-pressure heater that is disposed in the condensate flow path and that is supplied with extracted steam from the steam turbine to heat the condensate.
  • the temperature of the feed water supplied to the boiler can be efficiently increased by the low-pressure heater.
  • the amount of extracted steam supplied to the low-pressure heater is controlled by adjusting the pressure in the condensate flow path. For this reason, even if a low-pressure heater is used, the frequency fluctuation can be suppressed accurately, or the follow-up property of the power generation output with respect to the required load command can be improved.
  • the water level adjustment means adjusts the water level from the frequency fluctuation or the required load change based on a relationship between a preset frequency fluctuation or a required load change and a water level or a retained water amount of the deaerator.
  • a set value or a set value of the retained water amount is calculated, and the deaerator water level adjustment valve is opened so that the water level level or the retained water amount of the deaerator becomes the set value of the water level or the set value of the retained water amount.
  • a degree command is output.
  • the amount of extracted steam from the steam turbine is controlled by changing the set value of the water level or the set value of the retained water amount. According to this configuration, it is possible to control the amount of steam extracted from the steam turbine by adjusting the pressure in the condensate flow path with a simple configuration and with certainty. In this configuration, both the frequency fluctuation and the required load change may be used for calculating the setting value of the water level or the setting value of the retained water amount. Furthermore, the opening degree command of the deaerator water level adjusting valve may be an opening degree command value or a set of an opening degree upper limit value and a lower limit value.
  • the condensate flow rate control device of the power plant is configured such that when a predetermined return condition is satisfied, the set value of the water level, the set value of the retained water amount, or the opening of the deaerator water level adjustment valve Is further provided with return means for executing return control to return the value to the set value before the condensate flow rate control by the water level adjustment means.
  • This configuration makes it possible to return the set value of the water level, the set value of the retained water amount, or the opening degree of the deaerator water level adjustment valve with a simple configuration and with certainty. Therefore, it is prevented that the water level level of the deaerator falls below the lower limit value by the condensate flow rate control performed by the water level adjusting means. Further, as a result of the recovery of the water level of the deaerator, the water level adjustment means can repeatedly execute the condensate flow rate control.
  • the return means adjusts the water level level setting value, the retained water amount setting value, or the opening of the deaerator water level adjustment valve at a constant rate of change or stepwise. Return to the set value before condensate flow rate control by means. According to this configuration, it is possible to prevent an abrupt change in output due to the execution of the return control, so it is possible to prevent the operation of the power plant from becoming unstable, and it is possible to operate the power plant stably.
  • the return means calculates a deviation between the command final value of the required load and the output value of the generator in the required load change, and the deviation is equal to or less than a preset threshold as the return condition.
  • the return control is executed.
  • the deviation between the command final value of the required load and the power generation output value is monitored, and the return control is performed when the deviation falls below a preset threshold value. For this reason, since the return control is executed before the power generation output value reaches the command final value of the required load, it is possible to prevent excessive generation output.
  • the return means calculates a change rate of the output value of the generator, and executes the return control when the change rate becomes equal to or higher than a preset threshold as the return condition.
  • the rate of change of the power generation output value is monitored, and the return control is performed when the rate of change becomes equal to or higher than a preset threshold value. For this reason, since the return control is executed before the power generation output value reaches the command final value of the required load, it is possible to prevent excessive generation output.
  • a detection value of a water level or a retained water amount of the deaerator is input to the return means, and the return means uses the water level or the detected value of the retained water amount as the water level as the return condition.
  • the return control is executed when the set value of the retained water amount is reached. According to this structure, it can return to the setting value before a condensate flow control reliably with a simple structure.
  • the return means executes the return control as a return condition after a preset time has elapsed since the occurrence of the frequency fluctuation or the required load change. According to this configuration, it is possible to reliably return to the set value before the condensate flow rate control with simple control and stably.
  • the return means executes the return control as a return condition after a preset time has elapsed since a frequency or an output value of the generator has reached a target frequency setting or a required load setting.
  • the deaerator water level changed by the condensate flow control with respect to the above-described frequency fluctuation or required load change and the set time such that the output is sufficiently stabilized have passed, and then the deaerator water level is It can be returned to the set value.
  • disturbance due to output fluctuations when returning the deaerator water level can be suppressed, and the water level of the deaerator is controlled by condensate flow rate so that the output fluctuations can be reduced with simple control and stability. It becomes possible to return to the previous set value.
  • the water level adjustment means calculates a set value of the water level or a set value of the retained water amount based on a differential value of the frequency fluctuation range or a differential value of the required load change. According to this configuration, when the frequency fluctuation or the required load change changes sharply, it is possible to accurately prevent the generation output from excessively passing.
  • the water level adjustment means receives a detection value of the water level or retained water amount of the deaerator at the time of occurrence of the frequency fluctuation or the required load change, and the detected value of the water level or the retained water amount.
  • the water level adjustment means invalidates the condensate flow rate control or sets the water level level or the retained water amount. To adjust the condensate flow rate control. According to this configuration, the water level of the deaerator is prevented from falling below the lower limit value, and the power plant can be stably operated.
  • the condensate flow control device of the power plant displays at least one scheduled value of a frequency variation or a required load variation that is assumed to be input, and the planned value, the water level of the deaerator, or the amount of retained water.
  • the control allowable number calculation means for calculating the remaining number of times that the water level adjustment means can execute the condensate flow rate control, and a control Display means for displaying the remaining number of times calculated by the allowable number calculating means in association with the scheduled value.
  • the manager of the power plant can immediately determine whether or not the frequency fluctuation or the required load change can be dealt with by executing the condensate flow rate control by the water level adjustment means.
  • the condensate flow control device of the power plant further includes a switch that can be operated by an administrator and switches between enabling and disabling the condensate flow control by the water level adjustment means.
  • a switch that can be operated by an administrator and switches between enabling and disabling the condensate flow control by the water level adjustment means.
  • the condensate flow rate control by the water level adjustment means is invalidated. According to this configuration, it is possible to prohibit execution of condensate flow rate control by the water level adjustment means when the remaining number is 0, regardless of the judgment of the manager. For this reason, it is possible to prevent the condensate flow rate control from being erroneously performed, and it is possible to stably operate the power plant.
  • the power plant has supply water supply means for supplying make-up water to the deaerator according to a water level or a retained water amount of the deaerator, and the make-up water supply means stores the make-up water.
  • the heating means heats the makeup water using waste heat of the boiler or waste heat of another heating source. According to this structure, waste heat is used effectively and the thermal efficiency in the whole power plant improves.
  • the condensate flow rate control method for a power plant includes a boiler, a steam turbine into which steam generated in the boiler is introduced, a generator driven by the steam turbine, and an exhaust from the steam turbine.
  • the condensate flow rate control method for a power plant applied to a power plant comprising a deaerator and a feed water pump that feeds water deaerated by the deaerator to the boiler the frequency fluctuation or the required load change occurs.
  • the pressure from the steam turbine is adjusted by adjusting the pressure of the condensate flow path from the deaerator water level adjustment valve to the deaerator according to the frequency fluctuation or the required load change.
  • the amount of extracted steam is controlled.
  • the output control by changing the amount of extracted steam has higher responsiveness than the output control in the steam system of the boiler. For this reason, by adding this configuration to the output control in the steam system of the boiler, the responsiveness can be greatly improved as compared with the conventional case.
  • the condensate flow control method of the power plant it is possible to suppress frequency fluctuations or improve the follow-up performance of the power generation output with respect to the required load command. Further, since the extraction steam amount can be controlled without newly providing an extraction steam amount control valve, the condensate flow rate control device of this power plant is realized at low cost.
  • the responsiveness to the frequency fluctuation or the required load change is improved, and the frequency fluctuation can be accurately suppressed, or the power generation output followability to the required load command can be improved.
  • a condensate flow rate control device and control method for a plant are provided.
  • FIG. 1 is an overall configuration diagram of a power plant including a power plant control device according to a first embodiment of the present invention. It is a specific block diagram of the control apparatus which concerns on 1st Embodiment of this invention. It is a figure which shows the structural example of the water level adjustment means in the control apparatus which concerns on 1st Embodiment of this invention. It is a graph explaining the followable
  • (A) is a figure explaining the method of returning the setting value of the water level of a deaerator in steps
  • (B) is returning the setting value of the water level of a deaerator with a fixed rate of change. It is a figure explaining the method to make. It is a whole block diagram which shows the 1st modification of a power plant. It is a whole block diagram which shows the 2nd modification of a power plant. It is a whole block diagram which shows the 3rd modification of a power plant. It is a whole block diagram which shows the 4th modification of a power plant. It is a figure explaining the display function in 1st Embodiment of this invention.
  • (A) is a graph explaining the follow-up property of the power generation output with respect to the target load setting in the fourth embodiment
  • (B) is a graph explaining the time change of the output deviation in the fourth embodiment.
  • (A) is a graph explaining the followability of the power generation output with respect to the target load setting in the fifth embodiment
  • (B) is a graph explaining the time change of the output change rate in the fifth embodiment.
  • (A) is a graph explaining the follow-up property of the power generation output with respect to the target load setting in the sixth embodiment
  • (B) is the output change rate in the sixth embodiment and the time of the output deviation in the fourth embodiment. It is a graph explaining a change. It is a figure which shows the display content of the display means in the control apparatus which concerns on 7th Embodiment of this invention. It is a figure explaining a part of structure of the control permissible frequency calculation means which the control apparatus concerning 7th Embodiment of this invention has. It is a figure for demonstrating the calculation method which the control frequency
  • FIG. 1 is an overall configuration diagram of a power plant including a control device 36 according to the first embodiment of the present invention.
  • the power plant has a boiler 10, a high-pressure turbine 14, an intermediate-pressure turbine 16, and a low-pressure turbine 18 on the steam system side. Further, a condenser 26, a low-pressure feed water heater (low-pressure heater) 30, a deaerator 32, and a high-pressure feed water heater 22 are provided on the condensate system side.
  • the boiler 10 heats the feed water supplied from the high-pressure feed water heater 22 to generate main steam.
  • the main steam is introduced into the high-pressure turbine 14 through the governor valve 24.
  • the governor valve 24 mainly controls the output (power generation output) of the generator 12.
  • the exhaust steam exhausted by driving the high-pressure turbine 14 is supplied to the reheater inside the boiler 10 as low-temperature reheat steam.
  • the high-temperature reheat steam reheated by the reheater is supplied to the intermediate pressure turbine 16, and the exhaust steam of the intermediate pressure turbine 16 is supplied to the low pressure turbine 18.
  • the exhaust heat steam from the low-pressure turbine 18 is introduced into the condenser 26.
  • the condensate generated by cooling the exhaust heat steam in the condenser 26 is supplied to the deaerator 32 by the condensate pump 28 via the low-pressure feed water heater 30.
  • the flow rate of the condensate supplied to the deaerator 32 is adjusted by a deaerator water level adjustment valve 34 installed in the water supply line (condensate flow path) upstream of the deaerator 32.
  • the deaerator water level adjustment valve 34 is installed between the condensate pump 28 and the low-pressure feed water heater 30.
  • the deaerator 32 is supplied with the extraction steam of the intermediate pressure turbine 16 and removes oxygen contained in the feed water by the heat of the extraction steam.
  • the water supply from which oxygen has been removed is stored in a deaerator water storage tank of the deaerator 32.
  • the feed water pump 20 supplies the feed water stored in the deaerator water storage tank to the boiler 10 via the high pressure feed water heater 22.
  • the deaerator 32 is provided with a water level detector as water level detection means for detecting the water level of the feed water stored in the deaeration water storage tank (water level of the deaerator 32). ing. The detected value of the water level detected by the water level detector is input to the control device 36.
  • the high-pressure feed water heater 22 and the low-pressure feed water heater 30 heat the condensate or feed water flowing inside using steam.
  • the steam supplied to the high-pressure feed water heater 22 is extracted steam extracted from the middle stage of the high-pressure turbine 14.
  • the steam supplied to the low-pressure feed water heater 30 is extracted steam extracted from the middle stage of the low-pressure turbine 18.
  • the power plant having the above-described configuration includes a control device 36, and the control device 36 includes, for example, a computer including an arithmetic processing device, a storage device, an input / output device, and the like.
  • the control device 36 includes a steam system side control means 38 and a condensate system side control means 39.
  • the control device 36 according to the present embodiment only needs to include at least the condensate system side control means 39, and the condensate system side control means 39 is added to the existing steam system side control means 38. It may be.
  • the control device 36 having at least the condensate system side control means 39 is also referred to as a condensate flow rate control device.
  • FIG. 2 is a specific configuration diagram of the control device 36
  • FIG. 3 is a diagram illustrating a configuration example of the condensate system side control means 39 in the control device 36.
  • the frequency fluctuation or the required load change is input to the steam system side control means 38 and the condensate system side control means 39, respectively.
  • the frequency fluctuation or the required load change is calculated from the system frequency or the required load by a change amount calculation unit (not shown).
  • the steam system side control means 38 controls the generator on the steam system side by controlling parameters on the steam system side, such as fuel flow control, feed water flow control, air flow control, steam flow control, steam pressure control, or governor valve opening control. 12 output control is performed.
  • the steam system side control means 38 performs fuel flow rate control, feed water flow rate control, and air flow rate control.
  • L1 is a dead time for the fuel flow rate command
  • L2 is a dead time for the feed water flow rate command
  • L3 is a dead time for the air flow rate command
  • T1 is a delay for the fuel flow rate command
  • T2 is a combustion delay in the boiler
  • T3 is a feed water
  • a delay with respect to the flow rate command, T4, is a delay with respect to the air flow rate command.
  • the steam system side control means 38 calculates a fuel flow rate command for suppressing frequency fluctuations or a fuel flow rate command corresponding to a required load change, and outputs it to a fuel flow rate adjustment means (not shown) of the boiler 10.
  • the fuel flow rate adjusting means of the boiler 10 supplies, for example, coal as fuel based on the fuel flow rate command.
  • the fuel flow rate adjusted by the fuel flow rate adjusting means of the boiler 10 includes a dead time L1 and a time constant T1 with respect to the fuel flow rate command as indicated by reference numeral 41.
  • the flow rate of steam generated in the boiler 10 further includes a time constant T2 with respect to the fuel flow rate as indicated by reference numeral 42.
  • the steam system side control means 38 calculates a feed water flow rate command for suppressing frequency fluctuations or a feed water flow rate command corresponding to a required load change, and supplies it to a feed water flow rate adjusting means (not shown) of the boiler 10. Output.
  • the feed water flow rate adjusted by the feed water flow rate adjusting means of the boiler 10 includes a dead time L2 and a time constant T3 with respect to the feed water flow rate command as indicated by reference numeral 43.
  • the steam system side control means 38 calculates an air flow rate command for suppressing frequency fluctuation or an air flow rate command corresponding to a required load change, and an air flow rate adjustment means (not shown) of the boiler 10. Output to.
  • the air flow rate adjusted by the air flow rate adjusting means of the boiler 10 includes a dead time L3 and a time constant T4 with respect to the air flow rate command as indicated by reference numeral 44.
  • the control device 36 has the condensate system side control means 39 described in detail below, and the control responsiveness is greatly improved by the condensate system side control means 39. Can do.
  • the condensate system side control means 39 controls the output of the generator 12 by controlling the pressure in the condensate flow path extending from the deaerator water level adjustment valve 34 to the deaerator 32. Specifically, output control is performed by condensate flow rate control (deaerator water level control) for controlling the condensate flow rate through the condensate flow path.
  • condensate flow rate control deaerator water level control
  • the condensate system side control means 39 has a water level adjustment means 40 for executing condensate flow rate control.
  • the water level adjustment means 40 sets the water level level from the frequency fluctuation or the required load change based on the relationship between the preset frequency fluctuation or the required load change and the water level of the deaerator water storage tank of the deaerator 32. Is calculated. Then, the water level adjustment means 40 outputs an opening degree command to the deaerator water level adjustment valve 34 so that the water level of the deaerator water storage tank becomes the set value of the water level.
  • the amount of extracted steam of the low-pressure turbine 18 is changed in a direction to suppress the frequency fluctuation with respect to the frequency fluctuation.
  • the water level is set such that the extracted steam amount of the low-pressure turbine 18 is changed in the direction in which the output value of the generator 12 follows the required load change with respect to the required load change.
  • the opening command of the deaerator water level adjustment valve 34 may be an opening command value, or an opening upper limit value that limits the opening of the deaerator water level adjustment valve 34 within a predetermined range, and It may be a set of lower limit values.
  • the condensate system side control means 39 serves as a water level adjustment means 40, a table function unit 51, a correction function unit 52, an adder 53, a deviation calculator 54, and a controller 55.
  • a function of the fluctuation range of the water level with respect to the frequency fluctuation range is set in advance. That is, the amount of fluctuation of the water level of the deaerator 32 corresponding to the frequency fluctuation width is set in the table function unit 51, and the fluctuation amount of the water level corresponding to the input frequency fluctuation width is output.
  • the fluctuation amount of the water level is set so as to change the extraction steam amount of the steam turbine in a direction to suppress the corresponding frequency fluctuation.
  • the correction function unit 52 corrects the fluctuation range of the input water level according to the deaerator 32.
  • the correction function unit 52 multiplies the fluctuation amount of the water level output from the table function unit 51 by an appropriate coefficient, for example, -1, and outputs the obtained product as the correction level of the water level.
  • the adder 53 receives the detected value of the water level when the frequency fluctuation range is input together with the correction amount of the water level output from the correction function unit 52.
  • the adder 53 calculates the sum of the correction amount of the water level and the detected value of the water level, and outputs the obtained sum as a new set value of the water level.
  • the adder 53 may be input with a set value of the water level at the time of occurrence of the frequency fluctuation, instead of the detected value of the water level.
  • the deviation calculator 54 receives the detected value (process value) of the current water level as well as the set value of the new water level output from the adder 53.
  • the deviation calculator 54 calculates the deviation between the set value of the new water level and the process value, and outputs the obtained deviation.
  • the controller 55 performs, for example, proportional control based on the input deviation. That is, an opening degree command is generated so that the deviation is reduced, and is output toward the deaerator water level adjustment valve 34.
  • the set value (initial value) of the water level until immediately before the frequency fluctuation range is input is set based on a predetermined function, for example, according to the static value of the required load immediately before the frequency fluctuation range is input. Has been. Accordingly, until just before the frequency fluctuation range is input, the opening degree command is generated and output toward the deaerator water level adjustment valve 34 so that the process value of the water level approaches the initial value of the water level. .
  • the condensate system side control means 39 includes a table function unit 56, a table function unit 57, a multiplier (accumulator) 58, a correction function unit 59, an adder 60, a deviation calculator 61, as the water level adjustment unit 40. And a controller 62.
  • a function of the fluctuation range of the water level with respect to the required load change range is set in advance. That is, the amount of fluctuation of the water level of the deaerator 32 corresponding to the required load change width is set in the table function unit 56, and the table function unit 56 sets the water level corresponding to the input required load change width. Outputs the fluctuation amount of.
  • the fluctuation level of the water level is set so as to change the amount of steam extracted from the steam turbine in the direction in which the output of the generator 12 follows the corresponding load change.
  • a function of an increase coefficient of the fluctuation amount of the water level with respect to the required load change rate is set in advance. That is, the table function unit 57 is set with an increase coefficient of the fluctuation amount of the water level corresponding to the required load change rate, and the table function unit 57 changes the water level level corresponding to the inputted required load change width. Outputs the quantity increase factor.
  • the additional coefficient of the fluctuation amount of the water level is set so as to increase as the required load change rate increases beyond a predetermined value.
  • the additional coefficient is in the range of 1 to 2, for example.
  • the multiplier 58 multiplies the input fluctuation amount of the water level by the fluctuation coefficient, and outputs the obtained product as the fluctuation amount of the water level.
  • the correction function unit 59 corrects the fluctuation range of the water level according to the deaerator 32.
  • the correction function unit 59 multiplies the fluctuation amount of the water level output from the multiplier 58 by an appropriate coefficient, for example, -1, and outputs the obtained product as the correction amount of the water level.
  • the adder 60 receives the detected value of the water level when the required load change width is input together with the correction amount of the water level output from the correction function unit 59.
  • the adder 60 calculates the sum of the correction amount of the water level and the detected value of the water level, and outputs the obtained sum as a new set value of the water level.
  • the adder 60 may receive a set value of the water level when the required load change occurs instead of the detected value of the water level.
  • the deviation calculator 61 receives the detected value (process value) of the current water level as well as the set value of the new water level output from the adder 60.
  • the deviation calculator 54 calculates the deviation between the set value of the new water level and the process value, and outputs the obtained deviation.
  • the controller 62 executes, for example, proportional control based on the input deviation. That is, an opening degree command is generated so that the deviation is reduced, and is output toward the deaerator water level adjustment valve 34.
  • the opening degree command is output based on the new set value of the water level when both the frequency fluctuation is input and the required load change is input. Only in one case, the opening degree command may be output based on the set value of the new water level.
  • the table function unit 57 When a required load change is input, only one of the required load change width and the required load change rate may be input.
  • the table function unit 57 may be omitted, and the fluctuation amount of the water level output from the table function unit 56 may be input to the correction controller 59 as it is.
  • the table function unit 56 may be omitted, and instead of the table function unit 57, another table function unit that outputs the fluctuation amount of the water level based on the input required load change rate may be used. Then, the fluctuation amount of the water level output from the other table function unit may be input to the correction controller 59 as it is.
  • the pressure in the condensate flow path extending from the deaerator water level adjustment valve 34 to the deaerator 32 is changed according to the frequency fluctuation or the required load change.
  • the amount of extracted steam supplied from the low-pressure turbine 18 to the low-pressure feed water heater 30 is changed to control the output of the generator 12. That is, by changing the water level of the deaerator 32, the amount of extracted steam supplied from the low pressure turbine 18 to the low pressure feed water heater 30 is changed to control the power generation output.
  • the output control by changing the amount of extracted steam has higher responsiveness than the output control in the steam system of the boiler 10, and by adding this configuration to the output control in the steam system of the boiler 10, it is more responsive than in the past. Can be greatly improved. Therefore, the followability of the power generation output with respect to the required load command can be improved.
  • the energy of the steam turbine equipment is temporarily extracted, and this is used to improve the followability to the target frequency setting or the required load setting. It is possible to reduce the output deviation at the time of high load change.
  • the increase in the opening degree of the governor valve 24 that controls the power generation output is reduced by reducing the output deviation when the load increases at a high load change rate, the main steam pressure deviation can be reduced.
  • the extraction steam amount can be controlled without providing a new extraction steam amount control valve between the low-pressure turbine 18 and the low-pressure feed water heater 30, so that the power plant is realized at low cost.
  • FIG. 4 is a graph for explaining output followability with respect to target load setting.
  • the conventional line in FIG. 4 shows the time variation of the power generation output when only the output control by the steam system side control means 38 is performed, and the line in the first embodiment shows the output control and recovery by the steam system side control means 38.
  • the time change of the power generation output in the case where both the output control by the water system side control means 39 is used is shown.
  • the followability can be increased with respect to the target load setting (target output).
  • the configuration of the first embodiment described above may include the following configuration.
  • the condensate system side control means 39 may further include a return means 63 (see FIG. 1).
  • the return means 63 returns the set value of the water level or the opening of the deaerator water level adjustment valve 34 to the set value (initial value) before adjustment by the water level adjustment means 40 when a predetermined return condition is satisfied.
  • the return condition is preferably that the detected value of the water level of the deaerator 32 reaches the set value of the water level.
  • the return means 63 at a time (t1) when the return condition is satisfied, stepwise as shown in FIG. 5A or at a constant rate of change as shown in FIG.
  • the opening degree of the deaerator water level adjustment valve 34 is returned to the initial value.
  • the return means 63 is a valve opening return means.
  • the return means 63 performs stepwise or as shown in FIG. 7A after a preset time ta has elapsed from the time t0 when the frequency fluctuation or required load change occurs. 7B, the set value of the water level of the deaerator 32 may be returned to the initial value at a constant rate of change.
  • the return means 63 is a water level setting return means.
  • the return means 63 is shown in FIG. 7A after a preset time tb has elapsed from the time t1 when the system frequency or the required load has reached the target frequency setting or the required load setting.
  • the set value of the water level of the deaerator may be returned to the initial value stepwise or at a constant rate of change as shown in FIG.
  • the return means 63 is a water level setting return means.
  • the power plant may have a make-up water supply means, and the make-up water supply means is configured to remove the deaerator 32 when the water level of the deaerator 32 decreases in the condensate system side control means 39. Supply water to At this time, it is preferable that the makeup water supply means replenishes the heated water supply.
  • the power plant has a makeup water supply means.
  • the makeup water supply means is a makeup water tank 64 that supplies makeup water to the deaerator 32, a makeup water pump 66, and a makeup that performs flow control of the makeup water.
  • a water flow rate control valve 68 and a makeup water heater 70 for heating the makeup water are provided.
  • An existing device can be used for the makeup water tank 64.
  • a desalinator tank can be used instead of the makeup water tank 64.
  • the makeup water flow control valve 68 may be an ON / OFF valve.
  • the boiler exhaust gas extracted from the exhaust gas outlet of the boiler 10 and the exhaust gas line to the chimney 72 is introduced into the makeup water heater 70, and the makeup water heater 70 heats the makeup water with the boiler exhaust gas.
  • the exhaust gas from the in-house boiler 74 may be used as in the second modification shown in FIG.
  • steam of the auxiliary steam system such as the auxiliary steam header 76 may be used, or the exhaust gas in the desulfurization system 78 may be used as in the fourth modification shown in FIG.
  • makeup water is supplied from the makeup water tank 64 to the deaerator 32 by the makeup water pump 66 when the water level in the deaerator 32 is lowered.
  • the supply amount of supply water set in advance by the supply water flow rate control valve 68 is supplied to the deaerator 32.
  • a threshold value for the water level in the deaerator 32 is set in advance, and the detected value of the water level detected by the water level detection means (not shown) of the deaerator 32 becomes equal to or lower than this threshold value. You may make it supply makeup water with a makeup water supply means.
  • the makeup water supply means for supplying makeup water to the deaerator 32 according to the water level level of the deaerator 32, the deaeration is performed by the water level control of the deaerator 32 with respect to frequency fluctuation or required load change. Even when the water level in the vessel 32 is lowered, the boiler 10 can be stably operated by supplying makeup water to the deaerator 32 by the makeup water supply means.
  • the condensate system side control means 39 in this embodiment may have the configuration shown in FIG. 12 in addition to the configuration described above.
  • the condensate system side control means 39 includes a control allowable frequency calculation means 80 and a display means 82.
  • the detection value of the water level detected by the water level detection means is input to the control allowable number calculation means 80.
  • the allowable control frequency calculation means 80 determines the allowable frequency of the deaerator water level control for the frequency fluctuation or the required load change (the remaining number) according to the estimated frequency fluctuation range or the expected value of the required load change and the detected value of the water level. Count).
  • the control allowable number calculation means 80 outputs the calculation result to the display means 82.
  • the display means 82 is constituted by a liquid crystal monitor or a cathode ray tube monitor, for example, and displays the calculation result of the control allowable number calculation means 80.
  • the display means 82 displays “Frequency fluctuation ⁇ . ⁇ Hz Remaining xx times available”. This display is indicated by ⁇ . ⁇ For frequency fluctuations in Hz, this means that the remaining xx times can be handled by deaerator water level control.
  • the display means 82 displays “required load change change width OO MHz change rate ⁇ % / min remaining xx times available”.
  • This display means that the required load change of change width ( ⁇ MHz) and change rate (change rate) ⁇ % / min can be handled by deaerator water level control up to the remaining xx times. To do. Thereby, it becomes possible to provide the plant worker (manager) with a material for determining whether or not to perform deaerator water level control. The plant operator can cause the control device 36 to execute the deaerator water level control by manually operating the switch, for example, according to the determination result.
  • FIG. 13 is a specific configuration diagram of the control device 36 according to the second embodiment of the present invention
  • FIG. 14 is a configuration example of the condensate system side control means 39 in the control device 36 according to the second embodiment of the present invention.
  • FIG. 1st Embodiment only a different structure from above-described 1st Embodiment is demonstrated.
  • the condensate system side control means 39 calculates the differential value of the frequency fluctuation range or the differential value of the required load change, and based on the differential value of the frequency fluctuation range or the differential value of the required load change, Calculate the new water level setting.
  • the condensate system side control means 39 includes a differentiator 84 for differentiating the frequency fluctuation range, and a table function unit 86 in which a function of the fluctuation amount of the water level with respect to the differential value of the frequency fluctuation range is preset.
  • the correction function unit 88 corrects the fluctuation amount of the water level according to the deaerator 32.
  • the fluctuation level of the water level is set so as to change the extraction steam quantity of the steam turbine in a direction to suppress the corresponding frequency fluctuation.
  • the frequency fluctuation range is input to the differentiator 84, and the differentiator 84 calculates and outputs a differential value of the frequency fluctuation range.
  • the differential value of the frequency fluctuation range is input to the table function unit 86, and the table function unit 86 calculates and outputs the fluctuation amount of the water level of the deaerator 32 based on the differential value of the frequency fluctuation range.
  • the fluctuation amount of the water level is input to the correction function unit 88.
  • the correction function unit 88 multiplies the fluctuation amount of the water level by an appropriate coefficient, for example, -1, and outputs the obtained product as the correction amount of the water level. .
  • an opening degree command is output toward the deaerator water level adjustment valve 34 as in the case of the first embodiment.
  • the condensate system side control means 39 includes a differentiator 90 for differentiating the required load change width, a table function device 92 in which a function of the fluctuation amount of the water level with respect to the differential value of the required load change width is set, A differentiator 94 for differentiating the required load change rate, a table function unit 96 in which a function of an increase coefficient of the fluctuation amount of the water level with respect to the differential value of the required load change rate is preset, and these table function units 92 and 96 And a correction function unit 100 that corrects the water level in accordance with the deaerator 32.
  • the fluctuation level of the water level is set so as to change the amount of steam extracted from the steam turbine in the direction in which the output of the generator 12 follows the corresponding load change.
  • the required load change width is input to the differentiator 90, and the differentiator 90 calculates and outputs a differential value of the required load change width.
  • the differential value of the required load change width is input to the table function unit 92, and the table function unit 92 calculates and outputs the fluctuation amount of the water level of the deaerator 32 based on the differential value of the required load change width.
  • the required load change rate is input to a differentiator 94, and the differentiator 94 calculates and outputs a differential value of the required load change rate.
  • the differential value of the required load change rate is input to the table function unit 96, and the table function unit 96 calculates an increase coefficient of the fluctuation amount of the water level of the deaerator 32 based on the differential value of the required load change rate, and outputs it. To do.
  • the fluctuation amount of the water level output from the table function unit 92 and the table function unit 96 and the increase coefficient of the fluctuation amount are input to the multiplier 98, and the multiplier 98 multiplies the fluctuation amount of the water level by the additional coefficient.
  • the product is output as the fluctuation level of the water level.
  • the fluctuation amount of the water level is input to the correction function device 100, and the correction function device 100 multiplies the fluctuation amount of the water level by the correction coefficient and outputs the obtained product as the correction amount of the water level.
  • an opening degree command is output toward the deaerator water level adjustment valve 34 as in the case of the first embodiment.
  • the opening degree command is output based on the new set value of the water level when both the frequency fluctuation is input and the required load change is input. Only in one case, the opening degree command may be output based on the set value of the new water level.
  • the table function unit 96 When a required load change is input, only one of the required load change width and the required load change rate may be input.
  • the table function unit 96 may be omitted, and the fluctuation amount of the water level output from the table function unit 92 may be input to the correction controller 100 as it is.
  • the table function unit 92 is omitted, and instead of the table function unit 96, another table function unit that outputs the fluctuation amount of the water level based on the input differential value of the required load change rate is used. Also good. Then, the fluctuation amount of the water level output from the other table function unit may be input to the correction controller 100 as it is.
  • control device 36 that executes the condensate flow rate control only when the frequency fluctuation or the required load change changes sharply.
  • FIG. 15 is a specific configuration diagram of the control device 36 according to the third embodiment of the present invention
  • FIG. 16 is a configuration example of the condensate system side control means 39 in the control device 36 according to the third embodiment of the present invention.
  • FIG. 15 is a specific configuration diagram of the control device 36 according to the third embodiment of the present invention
  • FIG. 16 is a configuration example of the condensate system side control means 39 in the control device 36 according to the third embodiment of the present invention.
  • FIG. In addition, about this 3rd Embodiment, only a different structure from above-mentioned 1st Embodiment and 2nd Embodiment is demonstrated.
  • the water level detection value of the deaerator 32 at the time t0 (see FIG. 6) when the frequency fluctuation or the required load change occurs is input to the condensate system control means 39.
  • the condensate system side control means 39 makes the condensate flow rate control invalid and does not execute when the input water level detection value is lower than a preset threshold value, or sets the water level. Condensate flow control is executed by further adjusting the value.
  • the condensate system-side control means 39 has a table function unit 102 in which a function of the fluctuation amount of the water level with respect to the required load change width is set in advance, and a function of an additional coefficient of the fluctuation amount of the water level with respect to the required load change rate.
  • Table function unit 104 that has been set, multiplier 106 that multiplies the output of table function unit 104 by the output of table function unit 102, and the amount of fluctuation in the water level relative to the detected value of the water level of the deaerator when a load change occurs
  • the table function unit 108 for which the discount coefficient is preset, the multiplier 110 that multiplies the output of the multiplier 106 by the output of the table function unit 108, and the output of the multiplier 110 is an appropriate coefficient according to the deaerator 32.
  • the required load change is input to the table function unit 102, and the table function unit 102 calculates and outputs the fluctuation amount of the water level of the deaerator 32 based on the required load change.
  • the required load change rate is input to the table function unit 104, and the table function unit 104 calculates and outputs an additional coefficient of the fluctuation amount of the water level based on the required load change rate.
  • the fluctuation amount of the water level and the increase coefficient of the fluctuation amount output from the table function unit 102 and the table function unit 104, respectively, are input to the multiplier 106, and the multiplier 106 multiplies the fluctuation amount of the water level level by the additional coefficient.
  • the obtained product is output as the fluctuation amount of the water level.
  • the detected value of the water level of the deaerator 32 when the load change occurs is input to the table function unit 108, and the table function unit 108 is based on the detected value of the water level of the deaerator 32 when the load change occurs.
  • the discount coefficient for the fluctuation level of the water level is, for example, in the range of 0 to 1, and 0 is assigned as a discount coefficient to the detection value below the threshold.
  • the discount coefficient gradually increases as the detected value increases.
  • the water level fluctuation amount output from the multiplier 106 and the discount coefficient of the water level fluctuation amount output from the table function unit 108 are input to the multiplier 110.
  • Multiplier 110 multiplies the fluctuation amount of the water level by a discount coefficient, and outputs the obtained product as the fluctuation amount of the water level.
  • the fluctuation amount of the water level output from the multiplier 110 is input to the correction function unit 112.
  • the correction function unit 112 multiplies the input fluctuation amount of the water level by, for example, ⁇ 1 as a coefficient, and uses the obtained product as the water level. Output as level correction.
  • an opening degree command is output toward the deaerator water level adjustment valve 34 as in the case of the first embodiment.
  • the water level of the deaerator 32 is prevented from falling below a threshold value, and the power plant can be stably operated.
  • the threshold value of the water level may be a lower limit value (warning level) of the water level, or may be a numerical value with a margin of the lower limit value.
  • FIG. 15 is a specific configuration diagram of the control device 36 according to the fourth embodiment of the present invention
  • FIG. 16 is a configuration example of the condensate system side control means 39 in the control device 36 according to the fourth embodiment of the present invention.
  • FIG. 15 is a specific configuration diagram of the control device 36 according to the fourth embodiment of the present invention
  • FIG. 16 is a configuration example of the condensate system side control means 39 in the control device 36 according to the fourth embodiment of the present invention.
  • FIG. In addition, about this 4th Embodiment, only a different structure from the above-mentioned 1st thru
  • the condensate system side control means 39 calculates the deviation (output deviation) between the command final value of the required load (power generation output final target value) and the power generation output value in the required load change, and as the return condition When the deviation falls below a preset threshold value, the return means 63 sets the opening command of the deaerator water level adjustment valve 34 and the set value of the water level of the deaerator 32 to the water level level adjustment means 40. Return to the setting value before adjustment. Therefore, as shown in FIG. 17, the condensate system side control means 39 of the fourth embodiment has a table function unit 114 and multipliers 116 and 118 as the return means 63 as compared with the first embodiment. It has further.
  • a water level return ON / OFF function for the power generation output deviation is set in advance.
  • 0 is assigned to the deviation below the threshold value
  • 1 is assigned to the deviation exceeding the threshold value, for example, 1 as ON.
  • the multiplier 116 receives the value indicating the water level return ON / OFF output from the table function unit 114 and the fluctuation level of the water level output from the correction function unit 52. Multiplier 116 multiplies the fluctuation amount of the water level by a value indicating ON / OFF of the water level return, and outputs the obtained product as a correction amount of the water level.
  • the multiplier 118 receives the value indicating the water level return ON / OFF output from the table function unit 114 and the fluctuation amount of the water level output from the correction function unit 59.
  • the multiplier 118 multiplies the amount of fluctuation of the water level by a value indicating ON / OFF of the water level return, and outputs the obtained product as a correction amount of the water level.
  • an output deviation between the required load command final value (power generation output final target value) and the power generation output value in the required load change is calculated, and the output deviation is input to the table function unit 114. If the input output deviation is less than or equal to the threshold value, the table function unit 114 outputs 0. For this reason, the correction amount of the water level becomes zero, and the opening command of the deaerator water level adjustment valve 34 and the set value of the water level of the deaerator 32 are returned to the set values before the adjustment by the water level adjustment means 40. .
  • the output deviation between the command final value of the required load and the power generation output value is monitored, and when the output deviation falls below a preset threshold, the water level is Since the setting value is returned to the setting value before adjustment, it is possible to prevent excessive generation output.
  • FIG. 18 is a graph showing the followability of the power generation output with respect to the target load setting when the water level is restored using the output deviation.
  • FIG. 18A shows the time change of the power generation output
  • FIG. 18B shows the time change of the output deviation together with the threshold value.
  • the line of the first embodiment in FIG. 18 shows the time change of the power generation output by the control device 36 of the first embodiment. In this case, the return means 63 that performs the return control based on the elapsed time is used. Yes.
  • the line of the fourth embodiment in FIG. 18 shows the time change of the power generation output by the control device 36 of the fourth embodiment. In this case, the return means 63 that performs the return control based on the output deviation is used. Yes.
  • the opening command of the deaerator water level adjustment valve 34 and the set value of the water level of the deaerator 32 are stepwise as shown in FIGS. 5 (A) and 7 (A).
  • it is preferable to return to the initial value at a constant rate of change as shown in FIG. As a result, it is possible to prevent the operation from becoming unstable due to a sudden change in output, and to operate the power plant stably.
  • FIG. 19 is a diagram showing a configuration example of the condensate system side control means 39 in the control device 36 according to the fifth embodiment of the present invention.
  • FIG. 19 is a diagram showing a configuration example of the condensate system side control means 39 in the control device 36 according to the fifth embodiment of the present invention.
  • about 5th Embodiment only a different structure from the above-mentioned 1st thru
  • the condensate system side control means 39 calculates the change rate (output change rate) of the power generation output, and when the change rate of the power generation output becomes equal to or higher than a preset threshold as the return condition.
  • the return means 63 returns the opening command of the deaerator water level adjustment valve 34 and the set value of the water level of the deaerator 32 to the set values before the adjustment by the water level adjustment means 40.
  • the condensate system-side control means 39 includes a table function unit 120 and multipliers 122 and 124 instead of the table function unit 114 and the multipliers 116 and 118 of the fourth embodiment.
  • a function of returning the water level to the output change rate is set in advance.
  • 1 is assigned as ON for the output change rate below the threshold, and 0 is assigned as OFF for the output change rate equal to or greater than the threshold.
  • the multiplier 122 receives a value indicating the water level return ON / OFF output from the table function unit 120 and the fluctuation level of the water level output from the correction function unit 52.
  • Multiplier 116 multiplies the fluctuation amount of the water level by a value indicating ON / OFF of the water level return, and outputs the obtained product as a correction amount of the water level.
  • the multiplier 124 receives the value indicating the water level return ON / OFF output from the table function unit 120 and the fluctuation level of the water level output from the correction function unit 59.
  • the multiplier 124 multiplies the amount of fluctuation of the water level by a value indicating ON / OFF of the water level, and outputs the obtained product as a correction amount of the water level.
  • the output change rate is calculated, and the output change rate is input to the table function unit 120. If the input output change rate is equal to or greater than the threshold, the table function unit 120 outputs 0. For this reason, the correction amount of the water level becomes zero, and the opening command of the deaerator water level adjustment valve 34 and the set value of the water level of the deaerator 32 are returned to the set values before the adjustment by the water level adjustment means 40. .
  • the output change rate is monitored, and the setting value of the water level is returned to the set value before adjustment when the output change rate becomes equal to or higher than a preset threshold value. Therefore, it is possible to prevent excessive generation output.
  • the condensate flow rate control can be applied only when the frequency fluctuation or the required load change changes sharply.
  • FIG. 20 is a graph showing the followability of the power generation output with respect to the target load setting when the water level is returned using the output change rate.
  • FIG. 20A shows the time change of the power generation output
  • FIG. 20B shows the time change of the output change rate together with the threshold value.
  • the line of the first embodiment in FIG. 20 shows the time change of the power generation output when the control device 36 of the first embodiment is used. In this case, the return means 63 that performs the return control based on the elapsed time. Is used.
  • the line of the fifth embodiment in FIG. 20 shows the time change of the power generation output when the control device 36 of the fifth embodiment is used. In this case, the return means for performing the return control based on the output change rate. 63 is used. As can be seen from FIG. 20, by returning the water level based on the output change rate, it is possible to prevent excessive generation output.
  • FIG. 21 is a diagram showing a configuration example of the condensate system side control means 39 in the control device 36 according to the sixth embodiment of the present invention. In the sixth embodiment, only the configuration different from the first to fifth embodiments will be described.
  • the sixth embodiment is a combination of the fourth embodiment and the fifth embodiment described above, and executes return control based on both the output deviation and the output change rate. Therefore, in the sixth embodiment, the output of the multiplier 116 is input to the multiplier 122, and the output of the multiplier 118 is input to the multiplier 124.
  • FIG. 22 is a graph showing the output followability with respect to the target load setting when the water level is restored using the output deviation and the output change rate.
  • FIG. 22A shows the time change of the power generation output
  • FIG. 22B shows the time change of the output deviation and the output change rate together with the threshold value.
  • the line of the fourth embodiment in FIG. 22 shows the time change of the power generation output by the control device 36 of the fourth embodiment.
  • the return means 63 that performs the return control based on the output deviation is used.
  • the line of the sixth embodiment in FIG. 22 shows the time change of the power generation output by the control device 36 of the sixth embodiment. In this case, the return means 63 that performs return control based on the output deviation and the output change rate. Is used.
  • the output change rate has reached the threshold before the output deviation. For this reason, in 6th Embodiment, return control is performed prior to 4th Embodiment, and the overshoot of a power generation output is prevented more reliably.
  • the allowable control frequency calculation means 80 calculates the remaining number of times that the condensate flow rate control can be performed for each of a plurality of scheduled values of frequency fluctuations or required load changes that are assumed to be input, and the display means 82. Displays the calculation result as shown in FIG. In addition, in FIG. 23, the setting value of the water level of the deaerator 32 when the condensate flow rate control is executed is also displayed. However, in the column for the set value of the water level, a calculation result in which the detected value of the water level is substituted for x is displayed.
  • FIG. 24 is a diagram showing a part of the configuration of the allowable control frequency calculation means 80
  • FIG. 25 is a diagram for explaining a calculation method of the remaining frequency.
  • the control permissible frequency calculation means 80 calculates the fluctuation level y of the water level based on the scheduled value of the frequency fluctuation or the required load change by the same configuration as the water level adjustment means 40.
  • the control allowable number calculation means 80 has a table function unit 126 in which a function of the maximum value z of the fluctuation level of the water level with respect to the fluctuation amount y of the water level is set.
  • the table function unit 126 is a fluctuation of the water level.
  • the maximum value z of the fluctuation amount of the corresponding water level is output. As shown in FIG. 24, the maximum value z is obtained by adding the overshoot generated by the condensate flow rate control to the fluctuation amount y of the water level.
  • control allowable number calculation means 80 has a remaining number calculator 128, and the remaining number calculator 128 receives the maximum value z of the fluctuation amount output from the table function unit 126 and the current water level x. .
  • the remaining number calculator 128 calculates (x ⁇ AL) / z, and outputs the calculated result as the remaining number by rounding down the decimal part.
  • AL is a warning water level as a lower limit value
  • the remaining number calculator 128 sets the remaining number of times so that the water level does not fall below the warning water level when the condensate flow rate control is executed.
  • the manager of the power plant immediately determines whether or not the frequency fluctuation or the required load change can be dealt with by executing the condensate flow rate control by the water level adjustment means 40. Can be judged. In particular, since the remaining number of times is displayed for each of a plurality of scheduled values of frequency fluctuations or required load changes, the power plant manager performs the condensate flow rate control for each magnitude of frequency fluctuations or required load changes. It is possible to immediately determine whether or not it is a response. Then, the manager of the power plant can cause the control device 36 to execute the deaerator water level control according to a desired scheduled value, for example, by manually operating the switch according to the determination result.
  • control device 36 of the seventh embodiment when the controllers 55 and 62 perform proportional control, even if the gain is large and the water level overshoot is large, the remaining number of times so that the water level does not fall below the warning water level. Therefore, the power plant can be stably operated.
  • the control device 36 further includes valid / invalid switching means 129 for validating or invalidating the condensate flow rate control as shown in FIG.
  • the valid / invalid switching means 129 is constituted by a switch such as a push button, for example, and the switch is operated by a manager of the power plant.
  • the administrator can permit the condensate flow control to be executed by setting the switch to be effective, and conversely, the condensate flow rate control can be prohibited by setting the switch to be invalid. .
  • the valid / invalid switching means 129 forcibly switches the setting of the switch to invalid and condensates even when the switch is valid when the remaining number of times of condensate flow rate control is zero. Prohibit execution of flow control. According to this configuration, when the remaining number of times is 0, execution of the condensate flow rate control is prohibited regardless of the switch setting. As a result, the condensate flow rate control is prevented from being erroneously performed, and the power plant can be stably operated.
  • the water level adjustment means 40 controls the water amount (retained water amount) stored in the deaerator water storage tank of the deaerator 32 instead of the water level of the deaerator 32 as a control target.
  • the point which performs condensate flow control differs from the 1st thru / or a 7th embodiment. Since the water level of the deaerator 32 and the retained water amount are correlated, if the water level is replaced with the retained water amount in the first to seventh embodiments, the condensate flow rate control is easily executed with the retained water amount as the control target. Can do.
  • FIG. 26 is a diagram showing a part of the configuration of the control allowable number calculation means 80 in the case where the condensate flow rate control is executed with the retained water amount as a control target
  • FIG. 27 is a diagram for explaining the calculation method of the remaining number FIG.
  • the control permissible frequency calculation means 80 calculates the fluctuation amount Y of the retained water amount based on the scheduled value of the frequency fluctuation or the required load change with the same configuration as the water level adjustment means 40.
  • the control allowable number calculation means 80 has a table function unit 130 in which a function of the maximum amount Z of the variation amount of the retained water amount with respect to the variation amount Y of the retained water amount is set.
  • the maximum value Z of the fluctuation amount of the corresponding retained water amount is output. As shown in FIG. 27, the maximum value Z is obtained by adding the overshoot generated by the condensate flow rate control to the fluctuation amount Y of the retained water amount.
  • control allowable number calculation means 80 has a remaining number calculator 132, and the remaining number calculator 132 receives the maximum fluctuation amount Z output from the table function unit 130 and the current retained water amount X. .
  • the remaining number calculator 128 calculates (X-AV) / Z, and rounds off the result after the decimal point and outputs the result as the remaining number.
  • AV is a warning water amount
  • the remaining number calculator 132 sets the remaining number of times so that the retained water amount does not fall below the warning water amount when the condensate flow rate control is executed.
  • the manager of the power plant immediately determines whether or not the frequency fluctuation or the required load change can be dealt with by executing the condensate flow rate control by the water level adjustment means 40. Can be judged. In particular, since the remaining number of times is displayed for each of a plurality of scheduled values of frequency fluctuations or required load changes, the power plant manager performs the condensate flow rate control for each magnitude of frequency fluctuations or required load changes. It is possible to immediately determine whether or not it is a response.
  • the present invention is not limited to the first to eighth embodiments described above, and can be modified without departing from the spirit of the invention.
  • the present invention includes a form obtained by changing the first to eighth embodiments and a form in which the components of the first to eighth embodiments are appropriately combined.
  • Boiler 12 Generator 14 High-pressure turbine (steam turbine) 16 Medium-pressure turbine (steam turbine) 18 Low-pressure turbine (steam turbine) 20 Water supply pump 22 High pressure feed water heater 24 Governor valve 26 Condenser 28 Condensate pump 30 Low pressure feed water heater (low pressure heater) 32 Deaerator 34 Deaerator water level adjustment valve 36 Control device (condensate flow rate control device) 38 Steam system side control means 39 Condensate system side control means 40 Water level adjustment means 64 Makeup water tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Physical Water Treatments (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

【課題】周波数変動又は要求負荷変化に対する応答性が改善され、周波数変動を的確に抑制でき、あるいは、要求負荷指令に対する発電出力の追従性を向上させることができる発電プラントの復水流量制御装置及び制御方法を提供する。 【解決手段】復水流量制御装置36が適用される発電プラントは、復水器26で生成された復水が脱気器水位調整弁34を介して供給される脱気器32であって、蒸気タービン18の抽気蒸気が導入される脱気器32を備える。復水流量制御装置36は、復水流量制御を実行する水位レベル調整手段40を有し、水位レベル調整手段40は、入力された周波数変動を抑制するように、又は、入力された要求負荷変化に発電機12の出力値が追従するように、脱気器水位調整弁34から脱気器32までの間を延びる復水流路の圧力を調整して蒸気タービン18の抽気蒸気量を調整する。

Description

発電プラントの復水流量制御装置及び制御方法
 本発明は、周波数変動又は要求負荷変化に応じて復水流量を制御する発電プラントの復水流量制御装置及び制御方法に関する。
 従来から、水蒸気で蒸気タービン発電機を駆動し、電力へ変換する発電プラントが多く用いられている。図29は一般的な火力発電プラントを示す図である。この火力発電プラントは、蒸気を発生するボイラ10と、ボイラ10の蒸気により発電機12を駆動する複数のタービン14、16、18とを有している。ボイラ10には給水ポンプ20から高圧給水加熱器22を介して給水が供給され、ボイラ10は給水を加熱して主蒸気を発生させる。
 主蒸気はガバナ弁24を介して高圧タービン14に供給される。高圧タービン14の排気蒸気は、低温再熱蒸気としてボイラ10内部の再熱器に供給される。再熱器によって再加熱された高温再熱蒸気は中圧タービン16に供給され、中圧タービン16の排気蒸気は低圧タービン18に供給される。低圧タービン18の排熱蒸気は復水器26に導入される。
 復水器26で排熱蒸気が冷却されて生成された復水は、復水ポンプ28により低圧給水加熱器30を介して脱気器32に供給される。脱気器32には中圧タービン16の抽気蒸気が供給されており、抽気蒸気の熱により給水に含まれる酸素が取り除かれる。脱気器32から排出される給水は、給水ポンプ20及び高圧給水加熱器22を介してボイラ10に供給される。
 ここで、脱気器32は、脱気した給水を貯留する脱気器貯水タンクを有しており、復水器26から脱気器32への復水供給ライン上に脱気器水位調整弁34が設けられている。脱気器貯水タンクに貯留される給水量は脱気器水位調整弁34により一定に保たれている。したがって、安定運転時には脱気器32において、該脱気器32に供給される復水量と、ボイラ10に供給する給水量と、中圧タービン16からの抽気量とが一定のバランスで維持されている。
 このような発電プラントでは、電力系統側からの要求負荷指令に応じて出力制御が行われている。例えば、特許文献1(特開2009-300038号公報)には、ボイラに対する要求負荷信号に基づいてガバナ弁の開度制御、燃料流量制御又は給水流量制御を行う構成が開示されている。また、電力系統や発電プラントにおける周波数変動が発生した場合には、ガバナによる周波数制御を実施していた。このように従来の発電プラントにおいては、主に、ボイラの蒸気系統側における蒸気流量制御、蒸気圧力制御、燃料流量制御、空気流量制御、あるいはガバナ弁開度制御等により要求負荷指令や周波数変動に対応する出力制御を行っていた。
 一方、近年は、上記したような大型の発電プラントに加えて、風力発電ファームや大規模太陽光発電所等の自然エネルギを利用した分散型電源の電力系統への導入が進んでいる。利用可能な自然エネルギの量は、例えば風力であれば風が止まる等の理由によって変動することから、分散型電源では出力変動が発生する。この出力変動に起因して、電力系統では細かな周波数変動が発生し、かかる周波数変動を安定化するような出力制御が発電プラントに求められている。この周波数変動を安定化するために、発電プラントでは従来ガバナ弁の開度制御による周波数制御を実施していた。
特開2009-300038号公報
 しかしながら、電力系統の周波数変動が大きい場合、従来のようにガバナ弁の開度制御による周波数制御のみでは変動を十分に抑制できず、ボイラの蒸気系統側の制御により変動を抑制させなければならなかった。ところが、特許文献1等に開示されるようなボイラの蒸気系統側の制御においては、例えば燃料流量指令に対する無駄時間と遅れ、ボイラにおける燃料としての石炭の燃焼遅れ等により制御の応答性が高くなく、急速な変動抑制は困難であった。特に、分散型電源による周波数変動は短時間周期で発生するため、周波数変動に対する出力制御の追従性を高く維持することは極めて困難であった。
 また、通常の負荷変化に対するボイラの蒸気系統側の制御においても、負荷変化率が大きい場合には指令に対する遅れが顕著となり、周波数変動の場合と同様に負荷変化に対する制御の追従性を高くすることは困難であった。
 したがって、本発明はかかる従来技術の問題に鑑み、周波数変動又は要求負荷変化に対する応答性が改善され、周波数変動を的確に抑制でき、あるいは、要求負荷指令に対する発電出力の追従性を向上させることができる発電プラントの復水流量制御装置及び制御方法を提供することを目的とする。
 上記の課題を解決するために、本発明に係る発電プラントの復水流量制御装置は、ボイラと、前記ボイラで発生した蒸気が導入される蒸気タービンと、前記蒸気タービンによって駆動される発電機と、前記蒸気タービンからの排熱蒸気が供給される復水器と、前記復水器で生成された復水が脱気器水位調整弁を介して供給される脱気器であって、前記蒸気タービンの抽気蒸気が導入される脱気器と、前記脱気器で脱気された給水を前記ボイラに給水する給水ポンプとを備える発電プラントに適用される発電プラントの復水流量制御装置において、周波数変動又は要求負荷変化が入力され、入力された周波数変動を抑制するように、又は、入力された要求負荷変化に前記発電機の出力値が追従するように、前記脱気器水位調整弁から前記脱気器までの間を延びる復水流路の圧力を調整して前記蒸気タービンの抽気蒸気量を調整する、復水流量制御を実行する水位レベル調整手段を有することを特徴とする。
 本発明に係る発電プラントの復水流量制御装置では、周波数変動又は要求負荷変化に応じて、脱気器水位調整弁から脱気器までの復水流路の圧力を調整することによって、蒸気タービンからの抽気蒸気量を制御している。例えば、抽気蒸気量を減少させれば、発電機の出力を増大させることができ、抽気蒸気量を増大させれば、発電機の出力を減少させることができる。このような抽気蒸気量を変化させることによる出力制御は、ボイラの蒸気系統における出力制御よりも応答性が高い。このため、ボイラの蒸気系統における出力制御に本構成を付加することで、従来に比べ応答性を大幅に改善することができる。
 よって、この発電プラントの復水流量制御装置によれば、周波数変動の抑制又は要求負荷指令に対する発電出力の追従性を向上させることができる。また、新たに抽気蒸気量制御弁を設けることなく抽気蒸気量の制御を行うことができるため、発電プラントが低コストで実現される。なお、ボイラの蒸気系統における出力制御とは、燃料流量制御、給水流量制御、空気流量制御、蒸気流量制御、蒸気圧力制御、あるいはガバナ弁開度制御等である。
 すなわち、この発電プラントの復水流量制御装置では、蒸気タービン側の機器がもつエネルギを一時的に取り出し、これを用いて目標周波数設定又は要求負荷設定に対する追従性を向上させるようにしている。このため、周波数変動の抑制、又は高負荷変化時における出力偏差の低減が可能となる。特に、高負荷変化時における出力偏差の低減により、発電機出力を制御するガバナ弁開度の上昇が小さくなるため、主蒸気圧力偏差を小さくすることが可能となる。
 好ましくは、前記発電プラントは、前記復水流路に配置される低圧加熱器であって、前記蒸気タービンから抽気蒸気が供給されて前記復水を加熱する低圧加熱器を備える。
 この構成によれば、低圧加熱器によって、ボイラに供給される給水の温度を効率的に高くすることができる。一方、この構成では、低圧加熱器に供給される抽気蒸気の量が、復水流路の圧力を調整することによって制御される。このため、低圧加熱器を用いたとしても、周波数変動を的確に抑制することができ、あるいは、要求負荷指令に対する発電出力の追従性を向上させることができる。
 好ましくは、前記水位レベル調整手段は、予め設定された周波数変動又は要求負荷変化と前記脱気器の水位レベル又は保有水量の関係に基づいて、前記周波数変動又は前記要求負荷変化から前記水位レベルの設定値又は前記保有水量の設定値を算出し、前記脱気器の水位レベル又は保有水量が該水位レベルの設定値又は該保有水量の設定値となるように前記脱気器水位調整弁に開度指令を出力する。
 この構成では、水位レベルの設定値又は保有水量の設定値を変更することによって、蒸気タービンからの抽気蒸気量を制御している。この構成によれば、簡単な構成で且つ確実に、復水流路の圧力を調整して蒸気タービンからの抽気蒸気量を制御することができる。
 なお、この構成において、水位レベルの設定値又は保有水量の設定値の算出には、周波数変動と要求負荷変化の両方を用いてもよい。さらに、脱気器水位調整弁の開度指令とは、開度指令値であってもよいし、開度上限値及び下限値の組であってもよい。
 好ましくは、発電プラントの復水流量制御装置は、所定の復帰条件が満たされた場合に、前記水位レベルの設定値、前記保有水量の設定値、又は、前記脱気器水位調整弁の開度を前記水位レベル調整手段による復水流量制御前の設定値に戻す復帰制御を実行する復帰手段を更に有する。
 この構成によれば、簡単な構成で且つ確実に、水位レベルの設定値、保有水量の設定値又は脱気器水位調整弁の開度を戻すことができる。従って、水位レベル調整手段が復水流量制御を実行することによって脱気器の水位レベルが下限値を下回ることが防止される。また、脱気器の水位レベルが回復する結果、水位レベル調整手段が復水流量制御を繰り返し実行することができる。
 好ましくは、前記復帰手段は、一定の変化率にて又は段階的に、前記水位レベルの設定値、前記保有水量の設定値、又は、前記脱気器水位調整弁の開度を前記水位レベル調整手段による復水流量制御前の設定値に戻す。
 この構成によれば、復帰制御の実行による急激な出力変化を防止できるので、発電プラントの運転の不安定化を防止でき、安定した発電プラントの運転が可能となる。
 好ましくは、前記復帰手段は、前記要求負荷変化における要求負荷の指令最終値と前記発電機の出力値との偏差を算出し、前記復帰条件として、該偏差が予め設定された閾値以下になった時点で、前記復帰制御を実行する。
 この構成では、要求負荷の指令最終値と発電出力値との偏差を監視しておき、該偏差が予め設定された閾値以下になった時点で、復帰制御が行われる。このため、発電出力値が要求負荷の指令最終値に到達する前に復帰制御が実行されるので、発電出力の行き過ぎを防止することができる。
 好ましくは、前記復帰手段は、前記発電機の出力値の変化率を算出し、前記復帰条件として、該変化率が予め設定された閾値以上になった時点で、前記復帰制御を実行する。
 この構成では、発電出力値の変化率を監視しておき、該変化率が予め設定された閾値以上になった時点で、復帰制御が行われる。このため、発電出力値が要求負荷の指令最終値に到達する前に復帰制御が実行されるので、発電出力の行き過ぎを防止することができる。
 好ましくは、前記復帰手段には、前記脱気器の水位レベル又は保有水量の検出値が入力され、前記復帰手段は、前記復帰条件として、前記水位レベル又は前記保有水量の検出値が前記水位レベル又は前記保有水量の設定値に到達した時点で、前記復帰制御を実行する。
 この構成によれば、簡単な構成で且つ確実に復水流量制御前の設定値に戻すことができる。
 好ましくは、前記復帰手段は、前記復帰条件として、前記周波数変動又は前記要求負荷変化の発生時点から予め設定された設定時間経過後に、前記復帰制御を実行する。
 この構成によれば、簡単な制御で且つ安定的に復水流量制御前の設定値に確実に戻すことができる。
 好ましくは、前記復帰手段は、前記復帰条件として、周波数又は前記発電機の出力値が目標周波数設定又は要求負荷設定に到達した時点から予め設定された設定時間経過後に、前記復帰制御を実行する。
 この構成では、上記の周波数変動又は要求負荷変化に対する復水流量制御によって変化した脱気器水位及び出力が十分安定するような設定時間を経過した後、脱気器の水位を復水流量制御前の設定値に戻すように出来る。この構成により、脱気器水位を戻す際の出力変動による外乱を抑えることができ、簡易な制御で且つ安定的に、また出力変動が少なくなるように、脱気器の水位を復水流量制御前の設定値に戻すことが可能となる。
 好ましくは、前記水位レベル調整手段は、前記周波数変動の幅の微分値又は前記要求負荷変化の微分値に基づいて前記水位レベルの設定値又は前記保有水量の設定値を算出する。
 この構成によれば、周波数変動又は要求負荷変化が急峻に変化するときに、発電出力の行き過ぎを的確に防止することができる。
 好ましくは、前記水位レベル調整手段には、前記周波数変動又は前記要求負荷変化の発生時点における前記脱気器の水位レベル又は保有水量の検出値が入力され、該水位レベルの検出値又は該保有水量の検出値が予め設定されている閾値よりも低い場合には、前記水位レベル調整手段は、前記復水流量制御を無効にするか、若しくは、前記水位レベルの設定値又は前記保有水量の設定値を調整して前記復水流量制御を実行する。
 この構成によれば、脱気器の水位が下限値を下回ることが防止され、発電プラントを安定運転することが可能である。
 好ましくは、発電プラントの復水流量制御装置は、入力が想定される周波数変動又は要求負荷変化の少なくとも1つの予定値を表示するとともに、該予定値、前記脱気器の水位レベル若しくは保有水量の検出値、及び、前記脱気器の水位レベル若しくは保有水量の下限値に基づいて、前記水位レベル調整手段が前記復水流量制御を実行可能な残り回数を演算する制御許容回数計算手段と、制御許容回数計算手段によって演算された残り回数を前記予定値と対応付けて表示する表示手段と、を更に有する。
 この構成によれば、発電プラントの管理者は、周波数変動又は要求負荷変化に対し、水位レベル調整手段による復水流量制御の実行によって対応であるか否かを即座に判断することが出来る。
 好ましくは、発電プラントの復水流量制御装置は、管理者が操作可能であり、前記水位レベル調整手段による前記復水流量制御の有効と無効を切り替えるスイッチを更に有する。
 この構成によれば、管理者の判断に基づいて、水位レベル調整手段による復水流量制御の実行を許可又は禁止することができる。このため、管理者は、周波数変動又は要求負荷変化に対し柔軟に対応することができる。
 好ましくは、前記予定値に合致する前記周波数変動又は要求負荷変化が入力され、該予定値に基づいて演算された前記残り回数が0である場合に、前記管理者による前記スイッチの操作にかかわらず、前記水位レベル調整手段による前記復水流量制御が無効にされる。
 この構成によれば、管理者の判断に拘わらずに、残り回数が0である場合に水位レベル調整手段による復水流量制御の実行を禁止することができる。このため、復水流量制御が誤って実行されることが防止され、発電プラントを安定運転することが可能である。
 好ましくは、発電プラントは、前記脱気器の水位レベル又は保有水量に応じて前記脱気器に補給水を供給する補給水供給手段を有し、前記補給水供給手段は、前記補給水を貯留する補給水タンクと、前記補給水タンクから前記脱気器に供給する補給水供給量を調整する補給水供給量調整手段と、前記補給水を加熱する加熱手段とを含む。
 この構成によれば、発電プラントが補給水供給手段を有することにより、周波数変動又は要求負荷変化に対する復水流量制御によって脱気器内の水位レベルが下がってしまった場合であっても、補給水供給手段により脱気器に補給水を供給することによって水位レベルを回復させることができる。このため、この構成によれば、ボイラの安定運転が可能となる。
 好ましくは、前記加熱手段は、前記ボイラの廃熱若しくは他の加熱源の廃熱を用いて前記補給水を加熱する。
 この構成によれば、廃熱が有効に利用され、発電プラント全体における熱効率が向上する。
 また、本発明に係る発電プラントの復水流量制御方法は、ボイラと、前記ボイラで発生した蒸気が導入される蒸気タービンと、前記蒸気タービンによって駆動される発電機と、前記蒸気タービンからの排熱蒸気が供給される復水器と、前記復水器で生成された復水が脱気器水位調整弁を介して供給される脱気器であって、前記蒸気タービンの抽気蒸気が導入される脱気器と、前記脱気器で脱気された給水を前記ボイラに給水する給水ポンプとを備える発電プラントに適用される発電プラントの復水流量制御方法において、周波数変動又は要求負荷変化が入力され、入力された周波数変動を抑制するように、又は、入力された要求負荷変化に前記発電機の出力値が追従するように、前記脱気器水位調整弁から前記脱気器までの間の復水流路の圧力を調整して前記蒸気タービンの抽気蒸気量を調整する、復水流量制御を実行する、ことを特徴とする。
 本発明に係る発電プラントの復水流制御方法では、周波数変動又は要求負荷変化に応じて、脱気器水位調整弁から脱気器までの復水流路の圧力を調整することによって、蒸気タービンからの抽気蒸気量を制御している。抽気蒸気量を変化させることによる出力制御は、ボイラの蒸気系統における出力制御よりも応答性が高い。このため、ボイラの蒸気系統における出力制御に本構成を付加することで、従来に比べて応答性を大幅に改善することができる。
 よって、この発電プラントの復水流制御方法によれば、周波数変動の抑制又は要求負荷指令に対する発電出力の追従性を向上させることができる。また、新たに抽気蒸気量制御弁を設けることなく抽気蒸気量の制御を行うことができるため、この発電プラントの復水流量制御装置は、低コストで実現される。
 以上記載のように本発明によれば、周波数変動又は要求負荷変化に対する応答性が改善され、周波数変動を的確に抑制でき、あるいは、要求負荷指令に対する発電出力の追従性を向上させることができる発電プラントの復水流量制御装置及び制御方法が提供される。
本発明の第1実施形態に係る発電プラントの制御装置を備えた発電プラントの全体構成図である。 本発明の第1実施形態に係る制御装置の具体的な構成図である。 本発明の第1実施形態に係る制御装置における水位レベル調整手段の構成例を示す図である。 第1実施形態における目標負荷設定に対する発電出力の追従性を説明するグラフである。 (A)は、脱気器水位調整弁の開度を段階的に復帰させる方法を説明する図であり、(B)は、脱気器水位調整弁の開度を一定の変化率にて復帰させる方法を説明する図である。 復帰手段の時間設定を説明する図である。 (A)は、脱気器の水位レベルの設定値を段階的に復帰させる方法を説明する図であり、(B)は、脱気器の水位レベルの設定値を一定の変化率にて復帰させる方法を説明する図である。 発電プラントの第1変形例を示す全体構成図である。 発電プラントの第2変形例を示す全体構成図である。 発電プラントの第3変形例を示す全体構成図である。 発電プラントの第4変形例を示す全体構成図である。 本発明の第1実施形態における表示機能を説明する図である。 本発明の第2実施形態に係る制御装置の具体的な構成図である。 本発明の第2実施形態に係る制御装置における水位レベル調整手段の構成例を示す図である。 本発明の第3実施形態に係る制御装置の具体的な構成図である。 本発明の第3実施形態に係る制御装置における水位レベル調整手段の構成例を示す図である。 本発明の第4実施形態に係る制御装置における水位レベル調整手段及び復帰手段の構成例を示す図である。 (A)は、第4実施形態における、目標負荷設定に対する発電出力の追従性を説明するグラフであり、(B)は、第4実施形態における、出力偏差の時間変化を説明するグラフである。 本発明の第5実施形態に係る制御装置における水位レベル調整手段及び復帰手段の構成例を示す図である。 (A)は、第5実施形態における、目標負荷設定に対する発電出力の追従性を説明するグラフであり、(B)は、第5実施形態における、出力変化率の時間変化を説明するグラフである。 本発明の第6実施形態に係る制御装置における水位レベル調整手段及び復帰手段の構成例を示す図である。 (A)は、第6実施形態における、目標負荷設定に対する発電出力の追従性を説明するグラフであり、(B)は、第6実施形態における出力変化率及び第4実施形態における出力偏差の時間変化を説明するグラフである。 本発明の第7実施形態に係る制御装置における表示手段の表示内容を示す図である。 本発明の第7実施形態に係る制御装置が有する制御許容回数計算手段の構成の一部を説明する図である。 本発明の第7実施形態に係る制御装置が有する制御許容回数計算手段が実行する計算方法を説明するための図である。 本発明の第7実施形態に係る制御装置が有する復水流量制御有効/無効切替手段を説明するための図である。 本発明の第8実施形態に係る制御装置が有する制御許容回数計算手段の構成の一部を説明する図である。 本発明の第8実施形態に係る制御装置が有する制御許容回数計算手段が実行する計算方法を説明するための図である。 従来の発電プラントの全体構成図である。
 以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
(第1実施形態)
 まず最初に、本発明の実施形態が適用される発電プラントの構成を説明する。図1は本発明の第1実施形態に係る制御装置36を備えた発電プラントの全体構成図である。発電プラントは、蒸気系統側に、ボイラ10、高圧タービン14、中圧タービン16及び低圧タービン18を有している。また、復水系統側に、復水器26、低圧給水加熱器(低圧加熱器)30、脱気器32及び高圧給水加熱器22を有している。
 ボイラ10は、高圧給水加熱器22から供給される給水を加熱して主蒸気を発生する。主蒸気は、ガバナ弁24を介して高圧タービン14に導入される。ガバナ弁24は主として発電機12の出力(発電出力)を制御する。
 高圧タービン14を駆動して排気される排気蒸気は、低温再熱蒸気としてボイラ10内部の再熱器に供給される。再熱器によって再加熱された高温再熱蒸気は中圧タービン16に供給され、中圧タービン16の排気蒸気は低圧タービン18に供給される。低圧タービン18の排熱蒸気は復水器26に導入される。
 復水器26で排熱蒸気が冷却されて生成された復水は、復水ポンプ28により低圧給水加熱器30を介して脱気器32に供給される。脱気器32に供給される復水の流量は、該脱気器32の上流側の給水ライン(復水流路)に設置される脱気器水位調整弁34により調整される。
 一例として、脱気器水位調整弁34は復水ポンプ28と低圧給水加熱器30との間に設置されている。脱気器32には中圧タービン16の抽気蒸気が供給されており、抽気蒸気の熱により給水に含まれる酸素を取り除く。酸素が取り除かれた給水は、脱気器32の脱気器貯水タンクに貯留される。給水ポンプ20は、脱気器貯水タンクに貯留された給水を、高圧給水加熱器22を介してボイラ10に供給する。
 なお、図示しないけれども、脱気器32には、脱気貯水タンクに貯留された給水の水位レベル(脱気器32の水位レベル)を検出する水位レベル検出手段として、水位レベル検出器が設けられている。水位レベル検出器によって検出された水レベルの検出値は制御装置36に入力される。
 高圧給水加熱器22及び低圧給水加熱器30は、内部を流れる復水又は給水を蒸気を用いて加熱する。高圧給水加熱器22に供給される蒸気は、高圧タービン14の中段から抽気された抽気蒸気である。低圧給水加熱器30に供給される蒸気は、低圧タービン18の中段から抽気された抽気蒸気である。
 上記した構成を有する発電プラントは制御装置36を有し、制御装置36は、例えば、演算処理装置、記憶装置、及び、入出力装置等によって構成されるコンピュータからなる。制御装置36は、蒸気系統側制御手段38と、復水系統側制御手段39とを含んでいる。なお、本実施形態に係る制御装置36は、少なくとも復水系統側制御手段39を含んでいればよく、既存の蒸気系統側制御手段38に対して復水系統側制御手段39が付加される構成であってもよい。少なくとも復水系統側制御手段39を有する制御装置36を復水流量制御装置ともいう。
 図2及び図3を参照して、蒸気系統側制御手段38及び復水系統側制御手段39の具体的な構成について説明する。図2は、制御装置36の具体的な構成図で、図3は、制御装置36における復水系統側制御手段39の構成例を示す図である。
 図2において、蒸気系統側制御手段38及び復水系統側制御手段39にはそれぞれ周波数変動又は要求負荷変化が入力される。なお、周波数変動又は要求負荷変化は、不図示の変化量算出手段により系統周波数又は要求負荷から算出される。
 蒸気系統側制御手段38は、燃料流量制御、給水流量制御、空気流量制御、蒸気流量制御、蒸気圧力制御、あるいはガバナ弁開度制御等のように蒸気系統側のパラメータを制御することよって発電機12の出力制御を行う。
 図2に示す一例では、蒸気系統側制御手段38は、燃料流量制御、給水流量制御、及び、空気流量制御を行う。図2において、L1は燃料流量指令に対する無駄時間、L2は給水流量指令に対する無駄時間、L3は空気流量指令に対する無駄時間、T1は燃料流量指令に対する遅れ、T2はボイラでの燃焼遅れ、T3は給水流量指令に対する遅れ、T4は空気流量指令に対する遅れである。
 まず、蒸気系統側制御手段38は、周波数変動を抑制する燃料流量指令、又は要求負荷変化に対応した燃料流量指令を算出し、ボイラ10の燃料流量調整手段(不図示)へ出力する。ボイラ10の燃料流量調整手段は、この燃料流量指令に基づいて、例えば燃料としての石炭を供給する。
 なお、実際には、ボイラ10の燃料流量調整手段で調整される燃料流量は、符号41で示すように燃料流量指令に対して無駄時間L1および時定数T1を含む。また、ボイラ10で発生する蒸気流量は、符号42で示すように上記燃料流量に対してさらに時定数T2を含む。
 給水流量についても同様に、蒸気系統側制御手段38は、周波数変動を抑制する給水流量指令、又は要求負荷変化に対応した給水流量指令を算出し、ボイラ10の給水流量調整手段(不図示)に出力する。なお、実際には、ボイラ10の給水流量調整手段で調整される給水流量は、符号43で示すように給水流量指令に対して無駄時間L2および時定数T3を含む。
 さらに空気流量についても同様に、蒸気系統側制御手段38は、周波数変動を抑制する空気流量指令、又は要求負荷変化に対応した空気流量指令を算出し、ボイラ10の空気流量調整手段(不図示)に出力する。なお、実際には、ボイラ10の空気流量調整手段で調整される空気流量は、符号44で示すように空気流量指令に対して無駄時間L3および時定数T4を含む。
 このように、蒸気系統側制御手段38による制御においては、制御信号に対する応答遅れのために蒸気流量、給水流量または空気流量を精度よく調整することは困難であった。
 これに対して本実施形態では、制御装置36が以下に詳述する復水系統側制御手段39を有しており、この復水系統側制御手段39により制御の応答性を大幅に改善することができる。
 復水系統側制御手段39は、脱気器水位調整弁34から脱気器32まで延びる復水流路の圧力を制御することにより、発電機12の出力制御を行う。具体的には、復水流路を流れる復水流量を制御する復水流量制御(脱気器水位制御)により、出力制御を行う。
 復水系統側制御手段39は、復水流量制御を実行する水位レベル調整手段40を有する。水位レベル調整手段40は、予め設定された周波数変動又は要求負荷変化と脱気器32の脱気器貯水タンクの水位レベルとの関係に基づいて、周波数変動又は要求負荷変化から水位レベルの設定値を算出する。そして、水位レベル調整手段40は、脱気器貯水タンクの水位レベルが水位レベルの設定値となるように脱気器水位調整弁34に開度指令を出力する。
 予め設定された周波数変動又は要求負荷変化と脱気器32の水位レベルとの関係によれば、周波数変動に対しては、周波数変動を抑制する方向に低圧タービン18の抽気蒸気量を変化させるような水位レベルの設定値が対応付けられており、要求負荷変化に対しては、要求負荷変化に発電機12の出力値を追従させる方向に低圧タービン18の抽気蒸気量を変化させるような水位レベルの設定値が対応付けられている。
 なお、脱気器水位調整弁34の開度指令とは、開度指令値であってもよいし、脱気器水位調整弁34の開度を所定の範囲内に制限する開度上限値及び下限値の組であってもよい。
 一例として、図3に示すように、復水系統側制御手段39は、水位レベル調整手段40として、テーブル関数器51、補正関数器52、加算器53、偏差演算器54、及び、制御器55を有する。
 テーブル関数器51には、周波数変動幅に対する水位レベルの変動幅の関数が予め設定されている。すなわち、テーブル関数器51には、周波数変動幅に対応する脱気器32の水位レベルの変動量が設定されており、入力された周波数変動幅に対応する水位レベルの変動量を出力する。なお、テーブル関数器51において、水位レベルの変動量は、対応する周波数変動を抑制する方向に蒸気タービンの抽気蒸気量を変化させるように、設定されている。
 補正関数器52は、脱気器32に応じて、入力された水位レベルの変動幅を補正する。補正関数器52は、テーブル関数器51から出力される水位レベルの変動量に適当な係数、例えば-1を乗じ、得られた積を水位レベルの補正量として出力する。
 加算器53には、補正関数器52が出力した水位レベルの補正量と共に、周波数変動幅が入力された時の水位レベルの検出値が入力されている。加算器53は、水位レベルの補正量と水位レベルの検出値の和を演算し、得られた和を新しい水位レベルの設定値として出力する。
 なお、加算器53には、水位レベルの検出値に代えて、周波数変動発生時の水位レベルの設定値が入力されてもよい。
 偏差演算器54には、加算器53が出力した新しい水位レベルの設定値と共に、現在の水位レベルの検出値(プロセス値)が入力されている。偏差演算器54は、新しい水位レベルの設定値とプロセス値の偏差を演算し、得られた偏差を出力する。
 制御器55は、入力された偏差に基づいて、例えば比例制御を実行する。即ち、偏差が縮小するように開度指令を生成し、脱気器水位調整弁34に向けて出力する。
 なお、周波数変動幅が入力される直前までの水位レベルの設定値(初期値)は、例えば、周波数変動幅が入力される直前の要求負荷の静定値に応じて、所定の関数に基づいて設定されている。従って、周波数変動幅が入力される直前までは、水位レベルのプロセス値が水位レベルの初期値に近付くように、開度指令が生成され、脱気器水位調整弁34に向けて出力されている。
 また、復水系統側制御手段39は、水位レベル調整手段40として、テーブル関数器56、テーブル関数器57、乗算器(積算器)58、補正関数器59、加算器60、偏差演算器61、及び、制御器62を有する。
 テーブル関数器56には、要求負荷変化幅に対する水位レベルの変動幅の関数が予め設定されている。すなわち、テーブル関数器56には、要求負荷変化幅に対応する脱気器32の水位レベルの変動量が設定されており、テーブル関数器56は、入力された要求負荷変化幅に対応する水位レベルの変動量を出力する。なお、テーブル関数器56において、水位レベルの変動量は、対応する負荷変化に発電機12の出力が追従する方向に蒸気タービンの抽気蒸気量を変化させるように、設定されている。
 テーブル関数器57には、要求負荷変化レートに対する水位レベルの変動量の割増係数の関数が予め設定されている。すなわち、テーブル関数器57には、要求負荷変化レートに対応する水位レベルの変動量の割増係数が設定されており、テーブル関数器57は、入力された要求負荷変化幅に対応する水位レベルの変動量の割増係数を出力する。なお、テーブル関数器57において、水位レベルの変動量の割増係数は、要求負荷変化レートが所定値を超えて大きくなるほど、大きくなるように設定されている。割増係数は、例えば、1以上2以下の範囲内にある。
 乗算器58は、入力された水位レベルの変動量に変動量の割増係数を乗じ、得られた積を、水位レベルの変動量として出力する。
 補正関数器59は、脱気器32に応じて水位レベルの変動幅を補正する。補正関数器59は、乗算器58から出力される水位レベルの変動量に適当な係数、例えば-1を乗じ、得られた積を水位レベルの補正量として出力する。
 加算器60には、補正関数器59が出力した水位レベルの補正量と共に、要求負荷変化幅が入力された時の水位レベルの検出値が入力されている。加算器60は、水位レベルの補正量と水位レベルの検出値の和を演算し、得られた和を新しい水位レベルの設定値として出力する。
 なお、加算器60には、水位レベルの検出値に代えて、要求負荷変化発生時の水位レベルの設定値が入力されてもよい。
 偏差演算器61には、加算器60が出力した新しい水位レベルの設定値と共に、現在の水位レベルの検出値(プロセス値)が入力されている。偏差演算器54は、新しい水位レベルの設定値とプロセス値の偏差を演算し、得られた偏差を出力する。
 制御器62は、入力された偏差に基づいて、例えば比例制御を実行する。即ち、偏差が縮小するように開度指令を生成し、脱気器水位調整弁34に向けて出力する。
 なお、本実施形態では、周波数変動が入力された場合と、要求負荷変化が入力された場合の両方の場合に、新しい水位レベルの設定値に基づいて開度指令が出力されるが、何れか一方の場合のみ、新しい水位レベルの設定値に基づいて開度指令が出力されるようにしてもよい。
 また、要求負荷変化が入力される場合、要求負荷変化幅と要求負荷変化レートのうち一方のみが入力されてもよい。この場合、例えば、テーブル関数器57を省略し、テーブル関数器56が出力した水位レベルの変動量を、そのまま補正制御器59に入力してもよい。あるいは、テーブル関数器56を省略し、且つ、テーブル関数器57に代えて、入力された要求負荷変化レートに基づいて水位レベルの変動量を出力する別のテーブル関数器を使用してもよい。そして、この別のテーブル関数器が出力した水位レベルの変動量を、そのまま補正制御器59に入力してもよい。
 このように、上述した発電プラントの制御装置36では、周波数変動又は要求負荷変化に応じて、脱気器水位調整弁34から脱気器32までの間を延びる復水流路における圧力を変更することにより、低圧タービン18から低圧給水加熱器30に供給される抽気蒸気量を変化させて発電機12の出力を制御している。即ち、脱気器32の水位レベルを変更することにより、低圧タービン18から低圧給水加熱器30に供給される抽気蒸気量を変化させて発電出力を制御している。
 抽気蒸気量を変化させることによる出力制御は、ボイラ10の蒸気系統における出力制御よりも応答性が高く、ボイラ10の蒸気系統における出力制御に本構成を付加することで、従来に比べて応答性を大幅に改善することができる。よって要求負荷指令に対する発電出力の追従性を向上させることができる。
 また、本構成においては、蒸気タービン側の機器がもつエネルギを一時的に取り出し、これを用いて目標周波数設定又は要求負荷設定に対する追従性を向上させるようにしているため、周波数変動の抑制、又は高負荷変化時における出力偏差の低減が可能となる。特に、高負荷変化率の負荷上昇時における出力偏差の低減により、発電出力を制御するガバナ弁24の開度の上昇が小さくなるため、主蒸気圧力偏差を小さくすることが可能となる。また、低圧タービン18と低圧給水加熱器30の間に、新たに抽気蒸気量制御弁を設けることなく抽気蒸気量の制御を行うことができるため、発電プラントが低コストで実現される。
 図4は目標負荷設定に対する出力追従性を説明するグラフである。
 図4中の従来例の線は、蒸気系統側制御手段38による出力制御のみの場合における発電出力の時間変化を示し、第1実施形態の線は、蒸気系統側制御手段38による出力制御と復水系統側制御手段39による出力制御とを両方用いた場合における発電出力の時間変化を示している。図4のグラフに示すように、本実施形態によれば、目標負荷設定(目標出力)に対して追従性を高くすることが可能である。
 上記した第1実施形態の構成は、以下の構成を含んでいても良い。
 復水系統側制御手段39は、復帰手段63をさらに有していてもよい(図1参照)。復帰手段63は、所定の復帰条件が満たされたときに、水位レベルの設定値又は脱気器水位調整弁34の開度を水位レベル調整手段40による調整前の設定値(初期値)まで戻す、復帰制御を実行する。復帰条件は、好ましくは、脱気器32の水位レベルの検出値が、水位レベルの設定値に到達することである。
 また好ましくは、復帰手段63は、復帰条件が満たされた時点(t1)で、図5(A)に示すように段階的に、又は図5(B)に示すように一定の変化率で、脱気器水位調整弁34の開度を初期値に戻す。この場合、復帰手段63は弁開度復帰手段である。
 また、復帰手段63は、図6に示すように、周波数変動又は要求負荷変化の発生時点t0から予め設定された設定時間ta経過後に、図7(A)に示すように段階的に、又は図7(B)に示すように一定の変化率で、脱気器32の水位レベルの設定値を初期値に戻してもよい。この場合、復帰手段63は水位設定復帰手段である。
 更に、復帰手段63は、図6に示すように、系統周波数又は要求負荷が目標周波数設定又は要求負荷設定に到達した時点t1から予め設定された設定時間tb経過後に、図7(A)に示すように段階的に、又は図7(B)に示すように一定の変化率で脱気器の水位レベルの設定値を初期値に戻してもよい。この場合、復帰手段63は水位設定復帰手段である。
 さらにまた、発電プラントは補給水供給手段を有していてもよく、補給水供給手段は、復水系統側制御手段39において、脱気器32の水位レベルが低下する場合に、脱気器32に対して給水を補給する。このとき、補給水供給手段は、加熱された給水を補給することが好ましい。
 図8乃至図11を用いて本実施形態の制御装置36が適用できる発電プラントの変形例を説明する。これらの変形例は、発電プラントが補給水供給手段を有しているものである。
 図8に示す発電プラントの第1変形例においては、補給水供給手段は、脱気器32に補給水を供給する補給水タンク64と、補給水ポンプ66と、補給水の流量制御を行う補給水流量制御弁68と、補給水を加熱する補給水加熱器70とを有している。補給水タンク64は、既設の装置を用いることができる。また、補給水タンク64の代わりに、脱塩装置タンクを用いることもできる。補給水流量制御弁68は、ON/OFF弁であってもよい。
 補給水加熱器70には、ボイラ10の排ガス出口や煙突72への排ガスラインから抜き出したボイラ排ガスが導入され、補給水加熱器70は、ボイラ排ガスにより補給水を加熱する。
 補給水加熱器70で用いられる補給水の加熱源としては、ボイラ排ガスのほかに、図9に示す第2変形例のように所内ボイラ74の排ガスを用いてもよいし、図10に示す第3変形例のように、補助蒸気ヘッダ76等の補助蒸気系統の蒸気を用いてもよいし、図11に示す第4変形例のように脱硫系統78内の排ガスを用いてもよい。
 上記した構成を有する補給水供給手段においては、脱気器32内の水位レベルが下がったときに、補給水ポンプ66により補給水タンク64から脱気器32に補給水を供給する。このとき、補給水は、補給水流量制御弁68によって予め設定された供給量が脱気器32に供給されるようになっている。また、脱気器32内の水位に対する閾値を予め設定しておき、脱気器32の水位レベル検出手段(図示略)で検出される水位レベルの検出値が、この閾値以下となったときに補給水供給手段で補給水を供給するようにしてもよい。
 このように、脱気器32の水位レベルに応じて脱気器32に補給水を供給する補給水供給手段を有することにより、周波数変動又は要求負荷変化に対する脱気器32の水位制御によって脱気器32内の水位レベルが下がってしまった場合であっても、補給水供給手段により脱気器32に補給水を供給することによってボイラ10の安定運転が可能となる。
 さらにまた、本実施形態における復水系統側制御手段39は、上記した構成に加えて、図12に示す構成を有していてもよい。
 この復水系統側制御手段39は、制御許容回数計算手段80と、表示手段82とを有する。まず、制御許容回数計算手段80には、水位レベル検出手段によって検出された水位レベルの検出値が入力される。制御許容回数計算手段80は、入力が想定される周波数変動幅又は要求負荷変化の予定値と水位レベルの検出値に応じて、周波数変動又は要求負荷変化に対する脱気器水位制御の許容回数(残り回数)を計算する。そして、制御許容回数計算手段80は、計算結果を表示手段82に出力する。
 表示手段82は、例えば液晶モニタやブラウン管モニタによって構成され、制御許容回数計算手段80の計算結果を表示する。例えば、表示手段82には、「周波数変動 ○.○Hz 残り××回 対応可能」と表示される。
 この表示は、○.○Hzの周波数変動に対しては、残り××回まで、脱気器水位制御で対応可能であることを意味する。
 また別の例として、表示手段82には「要求負荷変化 変化幅○○MHz 変化率△△%/min 残り××回 対応可能」と表示される。この表示は、変化幅○○MHzで且つ変化率(変化レート)△△%/minの要求負荷変化に対しては、残り××回まで、脱気器水位制御で対応可能であることを意味する。
 これにより、プラント作業員(管理者)に対して、脱気器水位制御を実施するか否かの判断材料を提供することが可能となる。プラント作業員は、判断結果に応じて、例えばスイッチを手動で操作することにより、制御装置36に脱気器水位制御を実行させることができる。
(第2実施形態)
 次に、本発明の第2実施形態に係る制御装置について説明する。
 図13は本発明の第2実施形態に係る制御装置36の具体的な構成図で、図14は本発明の第2実施形態に係る制御装置36における復水系統側制御手段39の構成例を示す図である。なお、第2実施形態については、上記した第1実施形態と異なる構成のみ説明する。
 第2実施形態において、復水系統側制御手段39は、周波数変動幅の微分値又は要求負荷変化の微分値を算出し、周波数変動幅の微分値又は前記要求負荷変化の微分値に基づいて、新しい水位レベルの設定値を算出する。
 具体的には、復水系統側制御手段39は、周波数変動幅を微分する微分器84と、周波数変動幅の微分値に対する水位レベルの変動量の関数が予め設定されているテーブル関数器86と、脱気器32に応じて水位レベルの変動量を補正する補正関数器88とを有している。
 なお、テーブル関数器86において、水位レベルの変動量は、対応する周波数変動を抑制する方向に蒸気タービンの抽気蒸気量を変化させるように、設定されている。
 この構成において、周波数変動幅は微分器84に入力され、微分器84は、周波数変動幅の微分値を算出し、出力する。この周波数変動幅の微分値はテーブル関数器86に入力され、テーブル関数器86は、周波数変動幅の微分値に基づいて脱気器32の水位レベルの変動量を算出し、出力する。水位レベルの変動量は、補正関数器88に入力され、補正関数器88は、水位レベルの変動量に適当な係数、例えば-1を乗じ、得られた積を水位レベルの補正量として出力する。
 補正関数器88が水位レベルの補正量を出力すると、第1実施形態の場合と同様にして、開度指令が脱気器水位調整弁34に向けて出力される。
 また、復水系統側制御手段39は、要求負荷変化幅を微分する微分器90と、要求負荷変化幅の微分値に対する水位レベルの変動量の関数が予め設定されているテーブル関数器92と、要求負荷変化レートを微分する微分器94と、要求負荷変化レートの微分値に対する水位レベルの変動量の割増係数の関数が予め設定されているテーブル関数器96と、これらのテーブル関数器92、96の出力を乗算する乗算器98と、脱気器32に応じて水位レベルを補正する補正関数器100とを有している。
 なお、テーブル関数器92において、水位レベルの変動量は、対応する負荷変化に発電機12の出力が追従する方向に蒸気タービンの抽気蒸気量を変化させるように、設定されている。
 この構成において、要求負荷変化幅は微分器90に入力され、微分器90は、要求負荷変化幅の微分値を算出し、出力する。要求負荷変化幅の微分値はテーブル関数器92に入力され、テーブル関数器92は、要求負荷変化幅の微分値に基づいて脱気器32の水位レベルの変動量を算出し、出力する。
 一方、要求負荷変化レートは微分器94に入力され、微分器94は、要求負荷変化レートの微分値を算出し、出力する。要求負荷変化レートの微分値はテーブル関数器96に入力され、テーブル関数器96は、要求負荷変化レートの微分値に基づいて脱気器32の水位レベルの変動量の割増係数を算出し、出力する。
 テーブル関数器92及びテーブル関数器96から出力された水位レベルの変動量及び変動量の割増係数は乗算器98に入力され、乗算器98は、水位レベルの変動量に割増係数を乗じ、得られた積を水位レベルの変動量として出力する。水位レベルの変動量は補正関数器100に入力され、補正関数器100は、水位レベルの変動量に補正係数を乗じ、得られた積を水位レベルの補正量として出力する。
 補正関数器100が水位レベルの補正量を出力すると、第1実施形態の場合と同様にして、開度指令が脱気器水位調整弁34に向けて出力される。
 なお、本実施形態では、周波数変動が入力された場合と、要求負荷変化が入力された場合の両方の場合に、新しい水位レベルの設定値に基づいて開度指令が出力されるが、何れか一方の場合のみ、新しい水位レベルの設定値に基づいて開度指令が出力されるようにしてもよい。
 また、要求負荷変化が入力される場合、要求負荷変化幅と要求負荷変化レートのうち一方のみが入力されてもよい。この場合、例えば、テーブル関数器96を省略し、テーブル関数器92が出力した水位レベルの変動量を、そのまま補正制御器100に入力してもよい。あるいは、テーブル関数器92を省略し、且つ、テーブル関数器96に代えて、入力された要求負荷変化レートの微分値に基づいて水位レベルの変動量を出力する別のテーブル関数器を使用してもよい。そして、この別のテーブル関数器が出力した水位レベルの変動量を、そのまま補正制御器100に入力してもよい。
 本第2実施形態によれば、周波数変動又は要求負荷変化が急峻に変化するときにのみ復水流量制御を実行する制御装置36を実現できる。
(第3実施形態)
 次に、本発明の第3実施形態に係る制御装置36について説明する。
 図15は本発明の第3実施形態に係る制御装置36の具体的な構成図で、図16は本発明の第3実施形態に係る制御装置36における復水系統側制御手段39の構成例を示す図である。なお、本第3実施形態については、上記した第1実施形態、第2実施形態と異なる構成のみ説明する。
 第3実施形態において、復水系統側制御手段39には、周波数変動又は要求負荷変化の発生時点t0(図6参照)における脱気器32の水位レベル検出値が入力される。そして、復水系統側制御手段39は、入力された水位レベル検出値が、予め設定されている閾値よりも低い場合には復水流量制御を無効にして実行しないか、又は、水位レベルの設定値を更に調整して復水流量制御を実行する。
 一例として要求負荷変化を用いる場合につき説明する。
 復水系統側制御手段39は、要求負荷変化幅に対する水位レベルの変動量の関数が予め設定されているテーブル関数器102と、要求負荷変化レートに対する水位レベルの変動量の割増係数の関数が予め設定されているテーブル関数器104と、テーブル関数器102の出力にテーブル関数器104の出力を乗じる乗算器106と、負荷変化発生時の脱気器の水位レベルの検出値に対する水位レベルの変動量の割引係数が予め設定されているテーブル関数器108と、乗算器106の出力にテーブル関数器108の出力を乗じる乗算器110と、乗算器110の出力に脱気器32に応じて適当な係数を乗じる補正関数器112とを有している。
 この構成において、要求負荷変化はテーブル関数器102に入力され、テーブル関数器102は、要求負荷変化に基づいて脱気器32の水位レベルの変動量を算出し、出力する。一方、要求負荷変化レートはテーブル関数器104に入力され、テーブル関数器104は、要求負荷変化レートに基づいて水位レベルの変動量の割増係数を算出し、出力する。
 テーブル関数器102及びテーブル関数器104からそれぞれ出力された水位レベルの変動量及び変動量の割増係数は乗算器106に入力され、乗算器106は、水位レベルの変動量に割増係数を乗じ、得られた積を水位レベルの変動量として出力する。
 また、負荷変化発生時の脱気器32の水位レベルの検出値はテーブル関数器108に入力され、テーブル関数器108は、負荷変化発生時の脱気器32の水位レベルの検出値に基づいて、水位レベルの変動量の割引係数を算出し、出力する。
 水位レベルの変動量の割引係数は、例えば、0以上1以下の範囲内にあり、閾値以下の検出値に対しては割引係数として0が割り当てられている。そして、割引係数は、水位レベルの検出値が閾値を超えている場合、検出値の増大に連れて漸増している。
 乗算器106が出力した水位レベルの変動量とテーブル関数器108が出力した水位レベルの変動量の割引係数は、乗算器110に入力される。乗算器110は、水位レベルの変動量に割引係数を乗じ、得られた積を水位レベルの変動量として出力する。乗算器110が出力した水位レベルの変動量は、補正関数器112に入力され、補正関数器112は、入力された水位レベルの変動量に例えば係数として-1を乗じ、得られた積を水位レベルの補正量として出力する。
 補正関数器112が水位レベルの補正量を出力すると、第1実施形態の場合と同様にして、開度指令が脱気器水位調整弁34に向けて出力される。
 本第3実施形態によれば、脱気器32の水位レベルが閾値を下回ることが防止され、発電プラントを安定運転することが可能となる。
 なお、水位レベルの閾値は、水位レベルの下限値(警告レベル)であってもよいし、下限値に有る程度の余裕をもたせた数値であってもよい。
(第4実施形態)
 次に、本発明の第4実施形態に係る制御装置36について説明する。
 図15は本発明の第4実施形態に係る制御装置36の具体的な構成図で、図16は本発明の第4実施形態に係る制御装置36における復水系統側制御手段39の構成例を示す図である。なお、本第4実施形態については、上記した第1乃至第3実施形態と異なる構成のみ説明する。
 第4実施形態では、復水系統側制御手段39は、要求負荷変化における要求負荷の指令最終値(発電出力最終目標値)と発電出力値との偏差(出力偏差)を算出し、復帰条件として、該偏差が予め設定された閾値以下になった時点で、復帰手段63が、脱気器水位調整弁34の開度指令及び脱気器32の水位レベルの設定値を、水位レベル調整手段40による調整前の設定値まで戻す。
 そのために、図17に示したように、第4実施形態の復水系統側制御手段39は、第1実施形態と比較して、復帰手段63として、テーブル関数器114と、乗算器116,118とを更に有する。
 テーブル関数器114には、発電出力偏差に対する水位レベル復帰ON/OFFの関数が予め設定されている。テーブル関数器114においては、閾値以下の偏差には、OFFとして例えば0が割り当てられ、閾値を超える偏差には、ONとして例えば1が割り当てられる。
 乗算器116には、テーブル関数器114から出力された水位レベル復帰ON/OFFを示す値と、補正関数器52から出力された水位レベルの変動量が入力される。乗算器116は、水位レベルの変動量に水位レベル復帰ON/OFFを示す値を乗じて、得られた積を水位レベルの補正量として出力する。
 また、乗算器118には、テーブル関数器114から出力された水位レベル復帰ON/OFFを示す値と、補正関数器59から出力された水位レベルの変動量が入力される。乗算器118は、水位レベルの変動量に水位レベル復帰ON/OFFを示す値を乗じて、得られた積を水位レベルの補正量として出力する。
 第4実施形態では、要求負荷変化における要求負荷の指令最終値(発電出力最終目標値)と発電出力値との出力偏差が算出され、出力偏差がテーブル関数器114に入力される。入力された出力偏差が閾値以下である場合には、テーブル関数器114が0を出力する。このため、水位レベルの補正量が0になり、脱気器水位調整弁34の開度指令及び脱気器32の水位レベルの設定値が水位レベル調整手段40による調整前の設定値に戻される。
 第4実施形態の制御装置36によれば、要求負荷の指令最終値と発電出力値との出力偏差を監視しておき、該出力偏差が予め設定された閾値以下になった時点で水位レベルの設定値を調整前の設定値に戻す構成としているため、発電出力の行き過ぎを防止することができる。
 図18は、出力偏差を用いて水位レベルを復帰させたときの目標負荷設定に対する発電出力の追従性を示すグラフである。図18(A)は発電出力の時間変化を示し、(B)は閾値とともに、出力偏差の時間変化を示している。
 図18中の第1実施形態の線は、第1実施形態の制御装置36による発電出力の時間変化を示しており、この場合、経過時間に基づいて復帰制御を行う復帰手段63が用いられている。図18中の第4実施形態の線は、第4実施形態の制御装置36による発電出力の時間変化を示しており、この場合、出力偏差に基づいて復帰制御を行う復帰手段63が用いられている。
 図18からわかるように、第4実施形態の制御装置36によれば、出力偏差に基づいて水位レベルを復帰させることにより、発電出力の行き過ぎを防止することができる。
 なお、水位レベルの復帰過程においては、脱気器水位調整弁34の開度指令及び脱気器32の水位レベルの設定値を図5(A)及び図7(A)に示すように段階的に、又は図5(B)及び図7(B)に示すように一定の変化率で、初期値まで戻すことが好ましい。これにより、急激な出力変化による運転の不安定化を防止でき、安定した発電プラントの運転が可能となる。
(第5実施形態)
 次に、本発明の第5実施形態に係る制御装置36について説明する。
 図19は本発明の第5実施形態に係る制御装置36における復水系統側制御手段39の構成例を示す図である。なお、第5実施形態については、上記した第1乃至第4実施形態と異なる構成のみ説明する。
 第5実施形態では、復水系統側制御手段39は、発電出力の変化率(出力変化率)を算出し、復帰条件として、発電出力の変化率が予め設定された閾値以上になった時点で、復帰手段63が、脱気器水位調整弁34の開度指令及び脱気器32の水位レベルの設定値を、水位レベル調整手段40による調整前の設定値まで戻す。
 そのために、第5実施形態において、復水系統側制御手段39は、第4実施形態のテーブル関数器114及び乗算器116,118に代えて、テーブル関数器120及び乗算器122,124を有する。
 テーブル関数器120には、出力変化率に対する水位レベル復帰ON/OFFの関数が予め設定されている。テーブル関数器120においては、閾値未満の出力変化率には、ONとして例えば1が割り当てられ、閾値以上の出力変化率には、OFFとして例えば0が割り当てられる。
 乗算器122には、テーブル関数器120から出力された水位レベル復帰ON/OFFを示す値と、補正関数器52から出力された水位レベルの変動量が入力される。乗算器116は、水位レベルの変動量に水位レベル復帰ON/OFFを示す値を乗じて、得られた積を水位レベルの補正量として出力する。
 また乗算器124には、テーブル関数器120から出力された水位レベル復帰ON/OFFを示す値と、補正関数器59から出力された水位レベルの変動量が入力される。乗算器124は、水位レベルの変動量に水位レベル復帰ON/OFFを示す値を乗じて、得られた積を水位レベルの補正量として出力する。
 第5実施形態では、出力変化率が算出され、出力変化率がテーブル関数器120に入力される。入力された出力変化率が閾値以上である場合には、テーブル関数器120が0を出力する。このため、水位レベルの補正量が0になり、脱気器水位調整弁34の開度指令及び脱気器32の水位レベルの設定値が水位レベル調整手段40による調整前の設定値に戻される。
 第5実施形態の制御装置36によれば、出力変化率を監視しておき、出力変化率が予め設定された閾値以上になった時点で水位レベルの設定値を調整前の設定値に戻す構成としているため、発電出力の行き過ぎを防止することができる。
本第2実施形態によれば、周波数変動又は要求負荷変化が急峻に変化するときにのみ復水流量制御を適用する構成とすることができる。
 図20は、出力変化率を用いて水位レベルを復帰させたときの目標負荷設定に対する発電出力の追従性を示すグラフである。図20(A)は発電出力の時間変化を示し、(B)は閾値とともに、出力変化率の時間変化を示す。
図20中の第1実施形態の線は、第1実施形態の制御装置36を用いた場合の発電出力の時間変化を示しており、この場合、経過時間に基づいて復帰制御を行う復帰手段63が用いられている。図20中の第5実施形態の線は、第5実施形態の制御装置36を用いた場合の発電出力の時間変化を示しており、この場合、出力変化率に基づいて復帰制御を行う復帰手段63が用いられている。
 図20からわかるように、出力変化率に基づいて水位レベルを復帰させることにより、発電出力の行き過ぎを防止することができる。
(第6実施形態)
 次に、本発明の第6実施形態に係る制御装置36について説明する。
 図21は本発明の第6実施形態に係る制御装置36における復水系統側制御手段39の構成例を示す図である。なお、第6実施形態については、上記した第1乃至第5実施形態と異なる構成のみ説明する。
 図21に示すように、第6実施形態は、上記した第4実施形態と第5実施形態を組み合わせたものであり、出力偏差及び出力変化率の両方に基づいて、復帰制御を実行する。そのために、第6実施形態においては、乗算器116の出力が乗算器122に入力され、乗算器118の出力が乗算器124に入力される。
 図22は、出力偏差と出力変化率を用いて水位レベルを復帰させたときの目標負荷設定に対する出力追従性を示すグラフである。図22(A)は発電出力の時間変化を示し、(B)は閾値とともに、出力偏差及び出力変化率の時間変化を示す。
 図22中の第4実施形態の線は、第4実施形態の制御装置36による発電出力の時間変化を示しており、この場合、出力偏差に基づいて復帰制御を行う復帰手段63が用いられている。図22中の第6実施形態の線は、第6実施形態の制御装置36による発電出力の時間変化を示しており、この場合、出力偏差及び出力変化率に基づいて復帰制御を行う復帰手段63が用いられている。
 図22に示すように、第6実施形態では、出力偏差よりも先に、出力変化率が閾値に到達している。このため、第6実施形態では、第4実施形態よりも先に、復帰制御が実行され、より確実に発電出力の行き過ぎが防止されている。
(第7実施形態)
 次に、本発明の第7実施形態に係る制御装置36について説明する。なお、第7実施形態については、上記した第1乃至第6実施形態と異なる構成のみ説明する。
 第7実施形態では、制御許容回数計算手段80が、入力が想定される周波数変動又は要求負荷変化の複数の予定値毎に、復水流量制御を実行可能な残り回数を演算し、表示手段82が図23に示すように演算結果を表示する。
 なお、図23では、復水流量制御を実行した場合の脱気器32の水位レベルの設定値も表示されている。ただし、水位レベルの設定値の欄においては、xに水位レベルの検出値が代入された計算結果が表示される。
 図24は、制御許容回数計算手段80の構成の一部を示す図であり、図25は、残り回数の演算方法を説明するための図である。
 制御許容回数計算手段80は、水位レベル調整手段40と同様の構成によって、周波数変動又は要求負荷変化の予定値に基づいて、水位レベルの変動量yを演算する。そして、制御許容回数計算手段80は、水位レベルの変動量yに対する水位レベルの変動量の最大値zの関数が設定されたテーブル関数器126を有し、テーブル関数器126は、水位レベルの変動量yが入力されると、対応する水位レベルの変動量の最大値zを出力する。図24に示したように、最大値zは、水位レベルの変動量yに、復水流量制御によって生じるオーバーシュートを足し合わせたものある。
 更に、制御許容回数計算手段80は、残り回数演算器128を有し、残り回数演算器128には、テーブル関数器126が出力した変動量の最大値zと現在の水位レベルxが入力される。残り回数演算器128は、(x-AL)/zを演算し、演算した結果を小数点以下を切り捨てて残り回数として出力する。なお、ALは下限値としての警告水位であり、残り回数演算器128によれば、残り回数は、復水流量制御を実行したときに水位レベルが警告水位を下回らないように設定される。
 第7実施形態の制御装置36によれば、発電プラントの管理者は、周波数変動又は要求負荷変化に対し、水位レベル調整手段40による復水流量制御の実行によって対応であるか否かを即座に判断することが出来る。特に、周波数変動又は要求負荷変化の複数の予定値毎に、残り回数が表示されるので、発電プラントの管理者は、周波数変動又は要求負荷変化の大きさ毎に、復水流量制御の実行によって対応であるか否かを即座に判断することができる。そして、発電プラントの管理者は、判断結果に応じて、例えばスイッチを手動で操作することにより、所望の予定値に応じた脱気器水位制御を制御装置36に実行させることができる。
 また、第7実施形態の制御装置36によれば、制御器55,62が比例制御する場合にゲインが大きく、水位のオーバーシュートが大きくても、水位レベルが警告水位を下回らないように残り回数が演算されるので、発電プラントを安定運転可能である。
 好ましくは、第7実施形態の制御装置36は、図26に示すように、復水流量制御を有効又は無効にする有効/無効切替手段129を更に有する。有効/無効切替手段129は、例えば押しボタン等のスイッチによって構成され、スイッチは、発電プラントの管理者によって操作される。管理者は、スイッチを有効に設定することで、復水流量制御の実行を許可することができ、逆に、スイッチを無効に設定することで、復水流量制御の実行を禁止することができる。
 そして好ましくは、有効/無効切替手段129は、復水流量制御の残り回数が0回である場合に、スイッチが有効に設定されていても、強制的にスイッチの設定を無効に切り替え、復水流量制御の実行を禁止する。
 この構成によれば、残り回数が0回である場合に、スイッチの設定にかかわらずに、復水流量制御の実行が禁止される。これによって、復水流量制御が誤って実行されることが防止され、発電プラントを安定運転することが可能である。
(第8実施形態)
 次に、本発明の第8実施形態に係る制御装置36について説明する。なお、第8実施形態については、上記した第1乃至第7実施形態と異なる構成のみ説明する。
 第8実施形態は、水位レベル調整手段40が、脱気器32の水位レベルに代えて、脱気器32の脱気器貯水タンクに貯留された給水の水量(保有水量)を制御対象として、復水流量制御を実行する点において、第1乃至第7実施形態と異なる。脱気器32の水位レベルと保有水量は相関があるため、第1乃至第7実施形態において水位レベルを保有水量に置換すれば、保有水量を制御対象として復水流量制御を容易に実行することができる。
 図26は、保有水量を制御対象として復水流量制御を実行する場合における、制御許容回数計算手段80の構成の一部を示す図であり、図27は、残り回数の演算方法を説明するための図である。
 制御許容回数計算手段80は、水位レベル調整手段40と同様の構成によって、周波数変動又は要求負荷変化の予定値に基づいて、保有水量の変動量Yを演算する。そして、制御許容回数計算手段80は、保有水量の変動量Yに対する保有水量の変動量の最大値Zの関数が設定されたテーブル関数器130を有し、テーブル関数器130は、保有水量の変動量Yが入力されると、対応する保有水量の変動量の最大値Zを出力する。図27に示したように、最大値Zは、保有水量の変動量Yに、復水流量制御によって生じるオーバーシュートを足し合わせたものある。
 更に、制御許容回数計算手段80は、残り回数演算器132を有し、残り回数演算器132には、テーブル関数器130が出力した変動量の最大値Zと現在の保有水量Xが入力される。残り回数演算器128は、(X-AV)/Zを演算し、演算した結果を小数点以下を切り捨てて残り回数として出力する。なお、AVは警告水量であり、残り回数演算器132によれば、残り回数は、復水流量制御を実行したときに保有水量が警告水量を下回らないように設定される。
 第8実施形態の制御装置36によれば、発電プラントの管理者は、周波数変動又は要求負荷変化に対し、水位レベル調整手段40による復水流量制御の実行によって対応であるか否かを即座に判断することが出来る。特に、周波数変動又は要求負荷変化の複数の予定値毎に、残り回数が表示されるので、発電プラントの管理者は、周波数変動又は要求負荷変化の大きさ毎に、復水流量制御の実行によって対応であるか否かを即座に判断することができる。
 本発明は上述した第1乃至第8実施形態に限定されることはなく、発明の趣旨を逸脱しない範囲で変更可能である。
 例えば、本発明は、第1乃至第8実施形態に変更を加えた形態や、第1乃至第8実施形態の構成要素を適宜組み合わせた形態も含む。
10  ボイラ
12  発電機
14  高圧タービン(蒸気タービン)
16  中圧タービン(蒸気タービン)
18  低圧タービン(蒸気タービン)
20  給水ポンプ
22  高圧給水加熱器
24  ガバナ弁
26  復水器
28  復水ポンプ
30  低圧給水加熱器(低圧加熱器)
32  脱気器
34  脱気器水位調整弁
36  制御装置(復水流量制御装置)
38  蒸気系統側制御手段
39  復水系統側制御手段
40  水位レベル調整手段
64  補給水タンク
 

Claims (18)

  1.  ボイラと、前記ボイラで発生した蒸気が導入される蒸気タービンと、前記蒸気タービンによって駆動される発電機と、前記蒸気タービンからの排熱蒸気が供給される復水器と、前記復水器で生成された復水が脱気器水位調整弁を介して供給される脱気器であって、前記蒸気タービンの抽気蒸気が導入される脱気器と、前記脱気器で脱気された給水を前記ボイラに給水する給水ポンプとを備える発電プラントに適用される発電プラントの復水流量制御装置において、
     周波数変動又は要求負荷変化が入力され、入力された周波数変動を抑制するように、又は、入力された要求負荷変化に前記発電機の出力値が追従するように、前記脱気器水位調整弁から前記脱気器までの間を延びる復水流路の圧力を調整して前記蒸気タービンの抽気蒸気量を調整する、復水流量制御を実行する水位レベル調整手段を有する、ことを特徴とする発電プラントの復水流量制御装置。
  2.  前記発電プラントは、前記復水流路に配置される低圧加熱器であって、前記蒸気タービンから抽気蒸気が供給されて前記復水を加熱する低圧加熱器を備えることを特徴とする請求項1に記載の発電プラントの復水流量制御装置。
  3.  前記水位レベル調整手段は、予め設定された周波数変動又は要求負荷変化と前記脱気器の水位レベル又は保有水量の関係に基づいて、前記周波数変動又は前記要求負荷変化から前記水位レベルの設定値又は前記保有水量の設定値を算出し、前記脱気器の水位レベル又は保有水量が該水位レベルの設定値又は該保有水量の設定値となるように前記脱気器水位調整弁に開度指令を出力する、ことを特徴とする請求項1又は2に記載の発電プラントの復水流量制御装置。
  4.  所定の復帰条件が満たされた場合に、前記水位レベルの設定値、前記保有水量の設定値、又は、前記脱気器水位調整弁の開度を前記水位レベル調整手段による復水流量制御前の設定値に戻す復帰制御を実行する復帰手段を更に有する、ことを特徴とする請求項3に記載の発電プラントの復水流量制御装置。
  5.  前記復帰手段は、一定の変化率にて又は段階的に、前記水位レベルの設定値、前記保有水量の設定値、又は、前記脱気器水位調整弁の開度を前記水位レベル調整手段による復水流量制御前の設定値に戻す、ことを特徴とする請求項4に記載の発電プラントの復水流量制御装置。
  6.  前記復帰手段は、前記要求負荷変化における要求負荷の指令最終値と前記発電機の出力値との偏差を算出し、前記復帰条件として、該偏差が予め設定された閾値以下になった時点で、前記復帰制御を実行することを特徴とする請求項4又は5に記載の発電プラントの復水流量制御装置。
  7.  前記復帰手段は、前記発電機の出力値の変化率を算出し、前記復帰条件として、該変化率が予め設定された閾値以上になった時点で、前記復帰制御を実行することを特徴とする請求項4乃至6の何れか一項に記載の発電プラントの復水流量制御装置。
  8.  前記復帰手段には、前記脱気器の水位レベル又は保有水量の検出値が入力され、
     前記復帰手段は、前記復帰条件として、前記水位レベル又は前記保有水量の検出値が前記水位レベル又は前記保有水量の設定値に到達した時点で、前記復帰制御を実行することを特徴とする請求項4又は5に記載の発電プラントの復水流量制御装置。
  9.  前記復帰手段は、前記復帰条件として、前記周波数変動又は前記要求負荷変化の発生時点から予め設定された設定時間経過後に、前記復帰制御を実行することを特徴とする請求項4又は5に記載の発電プラントの復水流量制御装置。
  10.  前記復帰手段は、前記復帰条件として、周波数又は前記発電機の出力値が目標周波数設定又は要求負荷設定に到達した時点から予め設定された設定時間経過後に、前記復帰制御を実行することを特徴とする請求項4又は5に記載の発電プラントの復水流量制御装置。
  11.  前記水位レベル調整手段は、前記周波数変動の幅の微分値又は前記要求負荷変化の微分値に基づいて前記水位レベルの設定値又は前記保有水量の設定値を算出することを特徴とする請求項3乃至10の何れか一項に記載の発電プラントの復水流量制御装置。
  12.  前記水位レベル調整手段には、前記周波数変動又は前記要求負荷変化の発生時点における前記脱気器の水位レベル又は保有水量の検出値が入力され、該水位レベルの検出値又は該保有水量の検出値が予め設定されている閾値よりも低い場合には、前記水位レベル調整手段は、前記復水流量制御を無効にするか、若しくは、前記水位レベルの設定値又は前記保有水量の設定値を調整して前記復水流量制御を実行することを特徴とする請求項3乃至11の何れか一項に記載の発電プラントの復水流量制御装置。
  13.  入力が想定される周波数変動又は要求負荷変化の少なくとも1つの予定値を表示するとともに、該予定値、前記脱気器の水位レベル若しくは保有水量の検出値、及び、前記脱気器の水位レベル若しくは保有水量の下限値に基づいて、前記水位レベル調整手段が前記復水流量制御を実行可能な残り回数を演算する制御許容回数計算手段と、
     制御許容回数計算手段によって演算された残り回数を前記予定値と対応付けて表示する表示手段と、
    を更に有することを特徴とする請求項3乃至12の何れか一項に記載の発電プラントの復水流量制御装置。
  14.  管理者が操作可能であり、前記水位レベル調整手段による前記復水流量制御の有効と無効を切り替えるスイッチを更に有する、ことを特徴とする請求項13に記載の発電プラントの復水流量制御装置。
  15.  前記予定値に合致する前記周波数変動又は要求負荷変化が入力され、該予定値に基づいて演算された前記残り回数が0である場合に、前記管理者による前記スイッチの操作にかかわらず、前記水位レベル調整手段による前記復水流量制御が無効にされる、ことを特徴とする請求項14に記載の発電プラントの復水流量制御装置。
  16.  前記発電プラントは、前記脱気器の水位レベル又は保有水量に応じて前記脱気器に補給水を供給する補給水供給手段を備え、
     前記補給水供給手段は、前記補給水を貯留する補給水タンクと、前記補給水タンクから前記脱気器に供給する補給水供給量を調整する補給水供給量調整手段と、前記補給水を加熱する加熱手段とを含むことを特徴とする請求項1乃至15のいずれか一項に記載の発電プラントの復水流量制御装置。
  17.  前記加熱手段は、前記ボイラの廃熱若しくは他の加熱源の廃熱を用いて前記補給水を加熱することを特徴とする請求項16に記載の発電プラントの復水流量制御装置。
  18.  ボイラと、前記ボイラで発生した蒸気が導入される蒸気タービンと、前記蒸気タービンによって駆動される発電機と、前記蒸気タービンからの排熱蒸気が供給される復水器と、前記復水器で生成された復水が脱気器水位調整弁を介して供給される脱気器であって、前記蒸気タービンの抽気蒸気が導入される脱気器と、前記脱気器で脱気された給水を前記ボイラに給水する給水ポンプとを備える発電プラントに適用される発電プラントの復水流量制御方法において、
     周波数変動又は要求負荷変化が入力され、入力された周波数変動を抑制するように、又は、入力された要求負荷変化に前記発電機の出力値が追従するように、前記脱気器水位調整弁から前記脱気器までの間の復水流路の圧力を調整して前記蒸気タービンの抽気蒸気量を調整する、復水流量制御を実行する、ことを特徴とする発電プラントの復水流量制御方法。
PCT/JP2011/079454 2010-12-27 2011-12-20 発電プラントの復水流量制御装置及び制御方法 WO2012090778A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012550858A JP5550746B2 (ja) 2010-12-27 2011-12-20 発電プラントの復水流量制御装置及び制御方法
PL11852897T PL2660511T3 (pl) 2010-12-27 2011-12-20 Urządzenie do regulacji natężenia przepływu kondensatu dla elektrowni, oraz sposób regulacji
CN201180050898.8A CN103180666B (zh) 2010-12-27 2011-12-20 发电设备的凝结水流量控制装置以及控制方法
EP11852897.5A EP2660511B1 (en) 2010-12-27 2011-12-20 Condensate flow rate control device for power-plant, and control method
US13/882,685 US9709261B2 (en) 2010-12-27 2011-12-20 Condensate flow rate control device and condensate flow rate control method for power plant
ES11852897T ES2742025T3 (es) 2010-12-27 2011-12-20 Dispositivo de control de caudal de condensado para una central eléctrica y procedimiento de control

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010291358 2010-12-27
JP2010-291361 2010-12-27
JP2010291361 2010-12-27
JP2010-291358 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090778A1 true WO2012090778A1 (ja) 2012-07-05

Family

ID=46382889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079454 WO2012090778A1 (ja) 2010-12-27 2011-12-20 発電プラントの復水流量制御装置及び制御方法

Country Status (8)

Country Link
US (1) US9709261B2 (ja)
EP (1) EP2660511B1 (ja)
JP (1) JP5550746B2 (ja)
CN (1) CN103180666B (ja)
ES (1) ES2742025T3 (ja)
PL (1) PL2660511T3 (ja)
TW (1) TW201237329A (ja)
WO (1) WO2012090778A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148517A1 (ja) * 2013-03-22 2014-09-25 三菱重工業株式会社 蒸気タービンプラント
JP2015535319A (ja) * 2012-08-13 2015-12-10 ソ、ヨンホSEO, Young Ho 電気炉を利用した発電装置
US9890948B2 (en) 2013-07-05 2018-02-13 Siemens Aktiengesellschaft Method for preheating feed water in steam power plants, with process steam outcoupling
JP2020159352A (ja) * 2019-03-28 2020-10-01 三菱日立パワーシステムズ株式会社 発電プラント及び発電プラントの出力増加制御方法
WO2021020207A1 (ja) * 2019-07-26 2021-02-04 三菱日立パワーシステムズ株式会社 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法
WO2021166575A1 (ja) * 2020-02-20 2021-08-26 三菱パワー株式会社 電力調整システム及び発電プラント、並びに電力調整方法、並びに電力調整プログラム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172022A1 (ja) * 2012-05-15 2013-11-21 パナソニック株式会社 周波数制御方法、周波数制御システム、周波数制御装置、及びプログラム
JP6319998B2 (ja) * 2013-11-21 2018-05-09 三菱日立パワーシステムズ株式会社 蒸気タービンプラント起動制御装置
US9791146B2 (en) * 2014-01-27 2017-10-17 Ellis Young Processed vapor make-up process and system
US9157415B1 (en) * 2014-03-21 2015-10-13 General Electric Company System and method of controlling an electronic component of a wind turbine using contingency communications
US10118108B2 (en) 2014-04-22 2018-11-06 General Electric Company System and method of distillation process and turbine engine intercooler
US10024195B2 (en) * 2015-02-19 2018-07-17 General Electric Company System and method for heating make-up working fluid of a steam system with engine fluid waste heat
US10487695B2 (en) 2015-10-23 2019-11-26 General Electric Company System and method of interfacing intercooled gas turbine engine with distillation process
JP6739998B2 (ja) * 2016-05-20 2020-08-12 三菱日立パワーシステムズ株式会社 蒸気タービンプラント
US10465562B2 (en) * 2016-11-01 2019-11-05 General Electric Technology Gmbh System and method for providing supercritical steam
CN106679747B (zh) * 2016-12-20 2018-09-21 河北省电力建设调整试验所 一种汽轮发电机组锅炉进口给水流量的在线校验方法
JP7003000B2 (ja) * 2017-07-21 2022-01-20 株式会社東芝 プラント制御装置、プラント制御方法、および発電プラント
CN109869708B (zh) * 2017-12-01 2023-12-15 中国电力工程顾问集团华东电力设计院有限公司 外置蒸汽冷却器回热系统的控制方法及其装置
JP7161855B2 (ja) * 2018-03-06 2022-10-27 三菱重工業株式会社 脱硫装置の運転監視システム
JP7093319B2 (ja) * 2019-02-21 2022-06-29 三菱重工業株式会社 汽力プラントの復水給水系統及び汽力プラント復水給水系統の運転方法
CN113819070A (zh) * 2020-10-30 2021-12-21 湖北华电江陵发电有限公司 一种汽轮机组凝结水泵变频优化节能方法及系统
CN112879161B (zh) * 2021-01-29 2022-08-09 华北电力大学 一种温控加热型太阳能燃气联合循环发电系统及其方法
CN114087888B (zh) * 2021-11-29 2024-01-12 江南造船(集团)有限责任公司 冷凝器双恒定运行控制方法、系统及二回路系统
CN115324675B (zh) * 2022-07-25 2024-06-14 广西电网有限责任公司电力科学研究院 火电机组基于变频凝结水泵调节电网频率的控制方法
CN115324674B (zh) * 2022-07-25 2024-06-14 广西电网有限责任公司电力科学研究院 一种火电机组变频凝结水泵参与电网频率调节的系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710601U (ja) * 1980-06-13 1982-01-20
JPH04252807A (ja) * 1991-01-25 1992-09-08 Mazda Motor Corp 蒸気タービン発電装置
JP2009300038A (ja) 2008-06-16 2009-12-24 Babcock Hitachi Kk ボイラ制御装置ならびにボイラ制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953966A (en) * 1974-08-08 1976-05-04 Westinghouse Electric Corporation Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation
JPS5124438A (en) * 1974-08-09 1976-02-27 Hitachi Ltd Karyokuburantono kyusokufukaseigensochi
DE3105355A1 (de) * 1980-02-16 1982-02-18 Hitachi, Ltd., Tokyo Verfahren und einrichtung zur druckregelung in einem in der speisewasserleitung eines dampfkraftwerks angeordneten entgaser
US4345438A (en) * 1980-09-02 1982-08-24 General Electric Company Deaerator level control
JP2703884B2 (ja) * 1985-12-27 1998-01-26 日本電気株式会社 データ書込み制御方式
US4955200A (en) 1989-05-17 1990-09-11 Westinghouse Electric Corp. Reheater piping and drain cooler system
JP2001027104A (ja) 1999-07-16 2001-01-30 Kawasaki Steel Corp 復水蒸気タービンの復水流量制御方法
JP2007093129A (ja) 2005-09-29 2007-04-12 Toshiba Corp 発電プラントの脱気器水位制御装置およびその方法並びに発電プラント
CN101566079B (zh) 2009-05-15 2012-03-21 双良节能系统股份有限公司 利用汽轮机乏汽热量来加热供热热水的凝汽系统
EP2351914B1 (en) * 2010-01-11 2016-03-30 Alstom Technology Ltd Power plant and method of operating a power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710601U (ja) * 1980-06-13 1982-01-20
JPH04252807A (ja) * 1991-01-25 1992-09-08 Mazda Motor Corp 蒸気タービン発電装置
JP2009300038A (ja) 2008-06-16 2009-12-24 Babcock Hitachi Kk ボイラ制御装置ならびにボイラ制御方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535319A (ja) * 2012-08-13 2015-12-10 ソ、ヨンホSEO, Young Ho 電気炉を利用した発電装置
WO2014148517A1 (ja) * 2013-03-22 2014-09-25 三菱重工業株式会社 蒸気タービンプラント
JP2014185532A (ja) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd 蒸気タービンプラント
KR20150119339A (ko) * 2013-03-22 2015-10-23 미츠비시 쥬고교 가부시키가이샤 증기 터빈 플랜트
KR101718647B1 (ko) * 2013-03-22 2017-03-21 미츠비시 쥬고교 가부시키가이샤 증기 터빈 플랜트
US9726048B2 (en) 2013-03-22 2017-08-08 Mitsubishi Heavy Industries, Ltd. Steam turbine plant
US9890948B2 (en) 2013-07-05 2018-02-13 Siemens Aktiengesellschaft Method for preheating feed water in steam power plants, with process steam outcoupling
EP2986910B1 (de) * 2013-07-05 2019-06-19 Siemens Aktiengesellschaft System und prozess zur vorwärmung von zusatzwasser in dampfkraftwerken mit prozessdampfauskopplung
JP2020159352A (ja) * 2019-03-28 2020-10-01 三菱日立パワーシステムズ株式会社 発電プラント及び発電プラントの出力増加制御方法
JP7164478B2 (ja) 2019-03-28 2022-11-01 三菱重工業株式会社 発電プラント及び発電プラントの出力増加制御方法
WO2021020207A1 (ja) * 2019-07-26 2021-02-04 三菱日立パワーシステムズ株式会社 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法
JP2021021361A (ja) * 2019-07-26 2021-02-18 三菱パワー株式会社 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法
WO2021166575A1 (ja) * 2020-02-20 2021-08-26 三菱パワー株式会社 電力調整システム及び発電プラント、並びに電力調整方法、並びに電力調整プログラム

Also Published As

Publication number Publication date
PL2660511T3 (pl) 2019-11-29
JPWO2012090778A1 (ja) 2014-06-05
EP2660511A4 (en) 2018-02-28
EP2660511B1 (en) 2019-05-15
US20130263928A1 (en) 2013-10-10
JP5550746B2 (ja) 2014-07-16
ES2742025T3 (es) 2020-02-12
CN103180666B (zh) 2015-08-26
TW201237329A (en) 2012-09-16
EP2660511A1 (en) 2013-11-06
CN103180666A (zh) 2013-06-26
US9709261B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
JP5550746B2 (ja) 発電プラントの復水流量制御装置及び制御方法
JP5030384B2 (ja) ドラム型ボイラのドラム水位制御方法及び装置
CN103791485B (zh) 一种火电机组给水系统优化控制方法
EP2390565B1 (en) Heat Recovery Steam Generation System and Method for Controlling a Water Level of a Drum in a Heat Recovery Steam Generation System for a Combined Cycle Power Plant
CN102374519B (zh) 蒸汽温度的动态矩阵控制的动态整定
JP5970368B2 (ja) ボイラ制御装置
US8887747B2 (en) System and method for drum level control
CN105180139A (zh) 锅炉主蒸汽温度控制系统以及方法
EP3263985B1 (en) System and method for drum level control with transient compensation
JP2010121890A (ja) タンク水位制御システム
JP5772644B2 (ja) 蒸気圧力制御方法
WO2014129467A1 (ja) 蒸気タービンのバルブ制御装置及びそのバルブ制御方法
JP6684453B2 (ja) 蒸気タービン発電機の抽気制御方法及びその制御装置
CN104685426B (zh) 用于热电厂中的控制和故障分析的优化的方法
Haines et al. Enhancing dynamic response of power plant with post combustion capture using “Stripper stop”
JP2013174223A (ja) 蒸気タービンの調速制御装置、その制御方法、および蒸気タービン
JP5736330B2 (ja) 蒸気圧力制御方法
JP2012159024A (ja) 蒸気タービン復水器の水位レベル制御方法
JPH11223302A (ja) 発電プラント自動制御装置及び方法
CN110645560B (zh) 一种防止核电站给水泵汽蚀的方法及系统
JP6775070B1 (ja) 発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法
JP5172236B2 (ja) 水力発電所の出力制御方法及び装置
CN117728441A (zh) 一种孤网模式下高频快切负荷频率稳定控制方法
JP5322871B2 (ja) ドラム形ボイラ水位制御装置及びドラム形ボイラ水位制御方法
CN117375006A (zh) 含多容量机组及多段抽汽供热热电厂热电负荷分配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550858

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011852897

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13882685

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE