WO2013172022A1 - 周波数制御方法、周波数制御システム、周波数制御装置、及びプログラム - Google Patents

周波数制御方法、周波数制御システム、周波数制御装置、及びプログラム Download PDF

Info

Publication number
WO2013172022A1
WO2013172022A1 PCT/JP2013/003083 JP2013003083W WO2013172022A1 WO 2013172022 A1 WO2013172022 A1 WO 2013172022A1 JP 2013003083 W JP2013003083 W JP 2013003083W WO 2013172022 A1 WO2013172022 A1 WO 2013172022A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
frequency control
command
output
input
Prior art date
Application number
PCT/JP2013/003083
Other languages
English (en)
French (fr)
Inventor
渡辺 健一
ウェイ 張
ホーデイ スターンズ
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/131,277 priority Critical patent/US9575501B2/en
Priority to JP2013547434A priority patent/JP6112459B2/ja
Publication of WO2013172022A1 publication Critical patent/WO2013172022A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a frequency control method, a frequency control system, a frequency control device, and a program, and more particularly, to a frequency control method for determining a command value for controlling the frequency of a power system connected to a distributed power source.
  • the generator supplies power to the load via the transmission and distribution network.
  • all the generators are operating synchronously, and when the load in the power system exceeds the power from the generator, the frequency of the power system decreases, and conversely, the frequency increases. Therefore, each generator uses a governor (governor) to increase the output when the frequency decreases and decrease the output when the frequency increases (governor-free operation).
  • load frequency control that adjusts the output of the generator based on the output adjustment signal received from the central power supply command center is performed to control the load fluctuation that cannot be absorbed by the governor-free operation.
  • load frequency control Load Frequency Control
  • the response speed of the generator is slow, the problem is that the accuracy of following the output adjustment signal is low.
  • Patent Document 1 discloses a technique for performing load frequency control by utilizing the high-speed response of a distributed power source, mainly a storage battery, as a method for dealing with such a problem. As a result, the speed response of the load frequency control can be improved and the frequency stability can be improved.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a frequency control method, a frequency control system, a frequency control device, and a program that further enhance the responsiveness of load frequency control.
  • a frequency control method includes n (n is a natural number of 1 or more) first devices connected to a power system and m (m is 1 or more) different from the first devices.
  • a frequency control method for a power system in a frequency control system comprising: a plurality of devices including a natural number) second devices; and a frequency control device that manages power input and output by the plurality of devices via a communication network.
  • a command obtaining step for obtaining a frequency control command for keeping the fluctuation of the frequency of the power system within a predetermined range; and (i) obtaining information on power input / output by the m second devices, And (ii) each of the n first devices based on the frequency control command acquired in the command acquisition step and the power input and output by the acquired m second devices.
  • Entering and exiting A determination step for determining n first command values for controlling the power to be transmitted, and a transmission control step for individually transmitting each of the n first command values determined in the determination step to the corresponding first device And including.
  • a frequency control method even when the number of devices to be controlled increases, a frequency control method, a frequency control system, a frequency that can transmit a command value within a predetermined time and perform input / output adjustment control of each device A control device and a program can be obtained.
  • FIG. 1 is a conceptual diagram of a power system including a frequency control device according to the present embodiment.
  • FIG. 2 is an example of a functional block diagram of the frequency control device according to the present embodiment.
  • FIG. 3 is another example of a functional block diagram of the frequency control device according to the present embodiment.
  • FIG. 4 is a flowchart illustrating an example of a flow of processing performed by the frequency control device according to the present embodiment.
  • FIG. 5 is a conceptual diagram of a data flow transmitted and received by the processing of FIG.
  • FIG. 6A is an example of a flowchart of processing in which the frequency control device according to Embodiment 1 classifies a plurality of devices into a first device and a second device.
  • FIG. 1 is a conceptual diagram of a power system including a frequency control device according to the present embodiment.
  • FIG. 2 is an example of a functional block diagram of the frequency control device according to the present embodiment.
  • FIG. 3 is another example of a functional block diagram of the frequency control device according to
  • FIG. 6B is another example of a flowchart of processing in which the frequency control device according to Embodiment 1 classifies a plurality of devices into a first device and a second device.
  • FIG. 7 is a configuration diagram of a power system for simulation of frequency control processing performed by the frequency control device.
  • FIG. 8 is a diagram illustrating a load variation that is a premise of a frequency control simulation performed by the frequency control device.
  • FIG. 9 is a diagram illustrating an example of a simulation result of frequency control performed by the frequency control device, and the first distributed type based on the transition (solid line) of the input / output power included in the frequency control command and the first command value. It is a figure which shows transition (broken line) of the input / output of the electric power by a power supply.
  • FIG. 10 is a diagram illustrating an example of a simulation result of frequency control performed by the frequency control device, and is a diagram illustrating a transition of power input / output by the second distributed power source.
  • FIG. 11 is a diagram illustrating an example of a simulation result of frequency control performed by the frequency control device. Transition of input / output power included in the frequency control command (solid line), input / output of power by the first distributed power source, and It is a figure which shows transition (dashed line) of the sum of the input / output of the electric power by a 2nd distributed power supply.
  • FIG. 12 is a diagram illustrating an example of a simulation result of frequency control performed by the frequency control device.
  • FIG. 13 is a diagram illustrating an example of a combination of the first command value and the second command value.
  • the above-described conventional technology discloses a technique for calculating a required output change command amount based on the frequency condition of the power system, allocating the calculated output change command amount within the range of the capacity value of the storage battery, and transmitting to each storage battery. is doing.
  • a method for transmitting a command amount to a plurality of storage batteries within a predetermined time is not disclosed. Therefore, when the number of storage batteries to be controlled increases, it takes time to send a command to all storage batteries, and a new problem that input / output adjustment of all storage batteries cannot be completed within a predetermined time There is.
  • a frequency control method includes n (n is a natural number of 1 or more) first devices and the first devices connected to a power system.
  • Frequency control comprising a plurality of devices including m second (m is a natural number of 1 or more) units different from, and a frequency control device that manages power input and output by the plurality of devices via a communication network
  • a frequency control method for a power system in a system comprising: a command acquisition step for acquiring a frequency control command for keeping fluctuations in the frequency of the power system within a predetermined range; and (i) m second devices Obtaining information on power to be input and output, and (ii) based on the frequency control command acquired in the command acquisition step and the power to be input and output by the acquired m second devices, n
  • a determination step for determining n first command values for controlling the power input / output by each of the first devices, and the n first command values determined in the determination step corresponding to the first command values.
  • the command value can be transmitted within a predetermined time, and input / output adjustment control of each device can be performed.
  • one second command value for controlling power input / output by the m second devices is determined based on the frequency control command acquired in the command acquiring step.
  • the second command value determined in the determination step may be simultaneously transmitted to the m second devices.
  • the frequency control command includes a value of input / output power to be input / output to / from the power system, and each of the n first command values is a value of power to be input / output by the corresponding first device.
  • the frequency control command includes a value of input / output power to be input / output to / from the power system
  • each of the n first command values is an upper limit value of a frequency variation with respect to a predetermined reference frequency.
  • the lower limit value the offset power is input to the first device corresponding to the case where the frequency of the power system exceeds the upper limit value, and the first corresponding to the case where the frequency of the power system is lower than the lower limit value.
  • m units are output in accordance with the input / output power included in the frequency control command and the second command value.
  • the difference between the upper limit value and the lower limit value may be reduced as the absolute value of the power corresponding to the difference from the power input / output by the second device is larger.
  • the second command value includes an upper limit value and a lower limit value of a frequency fluctuation with respect to a predetermined reference frequency, and when the frequency of the power system exceeds the upper limit value, the second command value is supplied to m second devices.
  • m canceling powers are output to the second devices.
  • the difference between the upper limit value and the lower limit value may be reduced as the absolute value of the input output power is increased.
  • the second command value includes a value of cancellation power to be input / output when a predetermined reference frequency is deviated, and m units when the frequency of the power system exceeds the reference frequency.
  • the canceling power is input to the second device, and when the frequency of the power system is lower than the reference frequency, the canceling power is output to m second devices, and in the determination step,
  • the value of the offset power may be increased as the absolute value of the power to be input / output to / from the power system specified by the frequency control command is larger.
  • the frequency control command includes a value of input / output power to be input / output to / from the power system, and in the determination step, a sum of maximum powers that can be input / output by the n first devices is The plurality of devices are set to exceed the power corresponding to the difference between the input / output power included in the frequency control command and the power input / output by the m second devices according to the second command value.
  • the frequency control command is acquired at predetermined time intervals, and in the determination step, based on the frequency control command acquired at least initially in the command acquisition step, The second command value may be determined.
  • n devices that can transmit the first command value within a predetermined time are classified as the first device, and are classified as the first device.
  • the m devices that have not been used may be classified as the second device.
  • the plurality of devices include a plurality of storage batteries, and among the plurality of storage batteries, the storage battery that performs only one of charging and discharging is classified as a first device, and only the other of charging and discharging is included.
  • the storage battery to be operated may be classified as a second device.
  • the device capable of only one of power consumption and power output is classified as the first device, and both power consumption and power output are possible.
  • the device may be classified as the second device.
  • the frequency control command is acquired at predetermined time intervals, and in the determination step, each time the frequency control command is acquired in the command acquisition step, based on the frequency control command.
  • the n first command values corresponding to the n first devices may be determined.
  • the frequency control command may be acquired.
  • a frequency control system includes n (n is a natural number of 1 or more) first devices connected to a power system and m (m is 1 or more) different from the first devices.
  • a frequency control system comprising a plurality of devices including natural number) second devices and a frequency control device that manages power input and output by the plurality of devices via a communication network, the frequency control device comprising: A command acquisition unit that acquires a frequency control command for keeping the frequency fluctuation of the power system within a predetermined range; and (i) acquiring power input and output by the m second devices, and ( ii) Each of the n first devices inputs and outputs based on the frequency control command acquired by the command acquisition unit and the acquired power that is input and output by the m second devices.
  • N first command values for controlling power A determining unit for determining, and a transmission control unit for individually transmitting each of the n first command values determined by the determining unit to the corresponding first device, wherein the first device includes the frequency Power is input to and output from the power system according to the first command value acquired from the control device.
  • a distributed power source is managed by a server in a frequency control system that controls the frequency of a power system, and the first device (n is a natural number of 1 or more) and the first A distributed power source composed of a plurality of devices including m second devices (m is a natural number equal to or greater than 1), and power input and output by the m second devices,
  • the server uses n first command values for controlling the power input / output by each of the n first devices.
  • the determined power command value is received from the server, and power corresponding to the power command value received from the server is input / output to / from the power system.
  • a frequency control device In a frequency control system for controlling a frequency of a power system, a frequency control device according to an aspect of the present invention is different from n (n is a natural number of 1 or more) first devices and the first device m ( m is a natural number greater than or equal to 1) a frequency control device that manages the power input / output by a plurality of devices including a second device via a communication network, and changes the frequency of the power system within a predetermined range.
  • a program according to an embodiment of the present invention is different from n (n is a natural number of 1 or more) first devices connected to a power system and m (m is 1 or more).
  • a command acquisition step of acquiring a frequency control command for keeping the fluctuation of the frequency of the power system within a predetermined range which is a program for inputting / outputting power to / from a plurality of devices including the second device (I) acquiring power input / output by the m second devices, and (ii) the frequency control command acquired in the command acquisition step and the acquired m second devices.
  • FIG. 1 is a conceptual diagram of a power system including a frequency control device 201 according to the present embodiment.
  • the power system includes a substation 101, a power line 102, frequency detection points 103a, 103b, 103c, and 103d, distributed power sources 104a, 104b, 104c, and 104d, a communication line 105, Frequency control device 201.
  • the load is not shown in order to simplify the description.
  • the power line 102 connects the substation 101 and the distributed power sources 104a, 104b, 104c, and 104d.
  • the power line 102 supplies the power output from the substation 101 to the distributed power sources 104a, 104b, 104c, 104d and a load (not shown), and the power output from the distributed power sources 104a, 104b, 104c, 104d.
  • the “load” refers to any device that operates by consuming electric power, such as a refrigerator, a washing machine, and a television.
  • the frequency detection points 103a, 103b, 103c, and 103d are points where each of the distributed power sources 104a, 104b, 104c, and 104d detects the frequency of the power system.
  • the frequency detection points 103a, 103b, 103c, and 103d may be collectively referred to as “frequency detection points 103”.
  • the distributed power sources 104a, 104b, 104c, and 104d may be collectively referred to as “distributed power source 104”.
  • the distributed power source 104 is, for example, a distributed power generation system such as a solar power generation system or a fuel cell system, or a distributed electrical energy storage system such as a storage battery system.
  • the distributed power source 104 converts, for example, a power generation device such as a solar cell or a fuel cell, or a storage device such as a storage battery, and DC power generated by the power generation device or storage device into AC power (DC / AC conversion). With inverter.
  • the distributed power source 104 is a storage battery, but the present invention is not limited to this.
  • the distributed power supply 104 adjusts the frequency of the power system to be maintained within a predetermined range by inputting and outputting power to the power system.
  • the reference frequency of the power system is 50 Hz and the predetermined range in which the fluctuation is allowed is ⁇ 0.1 Hz.
  • a storage battery as an example of a device connected to the power system is charged with the power of the power system (input of power) and discharged (output of power) into the power system.
  • the communication line 105 is for transmitting and receiving data or information between the frequency control device 201 and the distributed power supply 104.
  • the Internet PLC (Power Line Communication), 950 MHz band wireless, and the like can be considered.
  • the frequency control device 201 may transmit / receive data or information to / from the substation 101 through the communication line 105. However, this is unnecessary when the function of the frequency control device 201 is included in the substation 101.
  • the frequency control device 201 is a control device for adjusting the frequency of the power system by controlling the power input / output of the distributed power source 104. With reference to FIG.2 and FIG.3, the frequency control apparatus 201 is demonstrated in detail.
  • FIG. 2 is a diagram illustrating functional blocks of the frequency control device 201 according to the present embodiment.
  • the frequency control device 201 includes a command acquisition unit 202, a determination unit 203, a transmission control unit 204, and a communication unit 205.
  • the command acquisition unit 202 receives a frequency control command from the central power supply command station or the system management device, and outputs it to the determination unit 203.
  • the command acquisition unit 202 does not receive a frequency control command from the central power supply command station or the system management device, but acquires it by periodically observing the frequency of the power system and generating the frequency control command itself. Is also possible. For example, it is obtained by observing the frequency of the power system and generating a frequency control command by performing the same calculation as the central power supply command station or the system management device.
  • the role of the central power supply command station or the system management device may be played by, for example, the substation 101, or may be played by equipment (not shown) upstream or downstream from the substation 101.
  • the frequency control command is issued by the central power supply command station or the system management device in order to keep the frequency fluctuation of the power system within a predetermined range.
  • the frequency control command includes input / output power that is a value of power to be further input / output to / from the power system.
  • input / output power + 5 kW refers to supplying 5 kW power (or reducing consumed power by 5 kW) to a power system to which, for example, 100 kW power is supplied. These are referred to as “outputting power to the power system”.
  • Input / output power ⁇ 5 kW refers to reducing the supplied power by 5 kW (or increasing the consumed power by 5 kW) to a power system to which, for example, 100 kW of power is supplied. These are referred to as “inputting power to the power system”.
  • the determination unit 203 uses a classification method to be described later to change the plurality of distributed power sources 104a, 104b, 104c, and 104d into a first distributed power source (first device) 104A and a second distributed power source (second device). 104B.
  • first device first device
  • second device second device
  • 104B second device
  • n distributed power supplies 104 (n is a natural number of 1 or more) classified as the first distributed power supply 104A, input / output of power to / from the power system is individually controlled by the frequency control device 201.
  • the m is a natural number of 1 or more
  • distributed power sources 104 classified as the second distributed power source 104B input / output of power to / from the power system is commonly controlled by the frequency control device 201.
  • the determining unit 203 individually sets n first command values for each of the n distributed power sources 104 classified as the first distributed power source 104A based on the frequency control command acquired by the command acquiring unit 202. To decide. Further, the determination unit 203 determines a common (one) second command value for the m distributed power sources 104 classified as the second distributed power source 104B. That is, a maximum of n first command values are determined, and only one second command value is determined.
  • the transmission control unit 204 individually transmits (unicasts) the n first command values determined by the determination unit 203 to the corresponding first distributed power supply 104A via the communication unit 205, and the determination unit 203
  • the determined second command value is broadcast (broadcast or multicast) to the m second distributed power sources 104B.
  • the communication unit 205 is a communication interface with the distributed power source 104 and transmits a first command value or a second command value to the distributed power source 104 via the communication line 105.
  • FIG. 3 is a diagram illustrating another example of functional blocks of the frequency control device 201 according to the present embodiment. Components similar to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in FIG. 3, the frequency control apparatus 201 may further include a power acquisition unit 301 in addition to the configuration of FIG. 2.
  • the power acquisition unit 301 acquires the value of power input / output to / from the power system by the second distributed power source 104B according to the second command value via the communication line 105, and transmits it to the determination unit 203.
  • the determination unit 203 for example, (first command value) ⁇ (frequency control command value) ⁇ (power value input / output by the second distributed power source according to the second command value)
  • a first command value is determined.
  • the sum of the power value input / output by the first distributed power source according to the first command value and the power value input / output by the second distributed power source according to the second command value is the frequency control command.
  • the first command value is determined so as to approach the value. Details will be described later.
  • FIG. 4 is a flowchart illustrating an example of a flow of processing performed by the frequency control device 201.
  • FIG. 5 is a conceptual diagram of a data flow transmitted and received by the processing of FIG.
  • the determination unit 203 of the frequency control device 201 classifies the plurality of distributed power sources 104a, 104b, 104c, and 104d connected to the power system into a first distributed power source and a second distributed power source ( S401).
  • a specific classification method will be described later with reference to FIGS. 6A and 6B.
  • the distributed power sources 104a and 104b are classified as the first distributed power source 104A, and the distributed power sources 104c and 104d are the first ones. 2 is assumed to be classified into the distributed power source 104B.
  • the command acquisition unit 202 of the frequency control device 201 monitors reception of the first frequency control command (S402).
  • a period from when the first frequency control command is acquired (Yes in S402) until the last frequency control command is acquired (Yes in S408) is defined as one frequency control process.
  • a description will be given on the assumption that a plurality of frequency control commands are repeatedly issued at predetermined time intervals in one frequency control process.
  • the method for specifying the “first frequency control command” and the “last frequency control command” is not particularly limited.
  • a flag indicating the first or last may be provided in the data, or one time Information specifying the number of frequency control commands transmitted in the frequency control processing or the execution period of one frequency control processing may be included in the first frequency control command.
  • the determination unit 203 of the frequency control device 201 performs the second operation based on the first frequency control command acquired by the command acquisition unit 202. Only one command value is determined (S403).
  • the transmission control unit 204 of the frequency control device 201 transmits the second command value determined by the determination unit 203 to the distributed power sources 104c and 104d classified as the second distributed power source 104B through the communication unit 205. (S404).
  • the second command value is a command value for causing the second distributed power source 104B to cancel power fluctuations that occur in the power system, and all the distributed power sources classified as the second distributed power source 104B. Commonly used for 104c and 104d.
  • the second command value according to the present embodiment includes information for specifying an upper limit value and a lower limit value of frequency fluctuation with respect to a predetermined reference frequency.
  • the upper limit value of the frequency fluctuation is 50.1 Hz
  • the lower limit value of the frequency fluctuation is 49.9 Hz.
  • the upper limit value and the lower limit value are not necessarily symmetric with respect to the reference frequency. That is, for example, the upper limit value may be 50.3 Hz and the lower limit value may be 49.9 Hz.
  • the determination unit 203 decreases the frequency fluctuation range (difference between the upper limit value and the lower limit value), and the absolute value of the input / output power.
  • the upper limit value and the lower limit value to be included in the second command value are determined so that the range of frequency fluctuation (difference between the upper limit value and the lower limit value) becomes larger as the value becomes smaller.
  • the determination unit 203 uses the provisional temporary second command value (described later) determined when the plurality of distributed power sources 104a, 104b, 104c, and 104d are classified in step S401, and the second command in step S403.
  • the second command value may be determined by determining the value. That is, when the determination unit 203 determines the second command value in this way, step S403 may be omitted.
  • the second command value is preferably determined so as to be a base input / output with respect to the input / output power included in the frequency control command.
  • the total power input / output by the second distributed power supply is preferably smaller than 5 kW.
  • the total power input / output from / to the second distributed power source is greater than 5 kW, for example 7 kW, the input / output power of the entire first distributed power source is ⁇ 2 kW, and extra charge / discharge occurs. .
  • the determination unit 203 uses the average value obtained from this normal distribution in step S403, and step S401.
  • the second command value is determined by comparing the predicted power input / output from the distributed power sources 104c and 104d classified as the second distributed power source based on the provisional second command value determined in step May be. For example, in step S403, the determination unit 203 may determine the second command value so that the input / output power value of the second distributed power supply falls within a range of 5% before and after the average value.
  • the frequency detection points 103c and 103d detect the frequency of the power system, respectively.
  • the distributed power sources 104c and 104d input (charge) a predetermined amount of offset power when the frequency of the power system exceeds the upper limit value.
  • the distributed power sources 104c and 104d output (discharge) a canceling power having a predetermined magnitude when the frequency of the power system falls below the lower limit value.
  • the second distributed power source 104 ⁇ / b> B varies the power (frequency) generated in the power system using the second command value acquired in step S ⁇ b> 404 during one frequency control process.
  • the above-described process for canceling out is autonomously continued. That is, the second command value need only be transmitted at least once during one frequency control process.
  • the second distributed power supply 104B controls the input / output of power based on the acquired second command value based on the information indicating the control start timing included in the acquired second command value. You may start at the timing.
  • the second command value can be transmitted in advance before the start of the frequency control process.
  • the magnitude of the canceling power input / output by the second distributed power supply 104B may be included in the second command value. That is, the input / output of the second distributed power supply 104B is (sign) ⁇ (cancellation power).
  • (sign) is negative (input) when the detected frequency deviates from the upper limit value, and is positive (output) when the detected frequency deviates from the lower limit value.
  • the magnitude of the canceling power input / output by the second distributed power supply 104B may be held by the second distributed power supply 104B at a predetermined value.
  • the second distributed power source 104B may adaptively determine the magnitude of the canceling power according to the frequency fluctuation magnitude of the power system. That is, the absolute value of the canceling power may be increased as the frequency greatly exceeds the upper limit value (or significantly lower than the lower limit value). For example, when the value deviates from the upper limit value, the input / output of the second distributed power supply 104B is ((upper limit value) ⁇ (detected frequency)) ⁇ K. Further, when the value deviates from the lower limit value, the input / output of the second distributed power supply 104B is ((lower limit value) ⁇ (detected frequency)) ⁇ K.
  • K represents a sensitivity coefficient for determining the output, and the unit is kW / Hz.
  • the power acquisition unit 301 of the frequency control device 201 acquires the total value of power input and output by the distributed power sources 104c and 104d classified as the second distributed power source 104B in accordance with the second command value (S405). .
  • the power acquisition unit 301 may actually measure the power on the power line 102 or may acquire the input / output power values from the distributed power sources 104 c and 104 d through the communication line 105.
  • the theoretical value of the power input / output by the second distributed power supply 104B may be determined based on the second command value determined by the determination unit 203. That is, the total value of power input / output by the second distributed power supply 104B according to the second command value is ⁇ ((upper limit value or lower limit value) ⁇ (frequency detected by the determination unit 203)) ⁇ K i .
  • K i is a sensitivity coefficient for determining the input / output of the second distributed power source 104B specified by the identifier i (i ⁇ m).
  • the power acquisition unit 301 can be omitted.
  • the determination unit 203 of the frequency control device 201 determines the first command value for each of the distributed power sources 104a and 104b classified as the first distributed power source 104A (S406). Specifically, the determination unit 203 corresponds to the difference between the input / output power included in the frequency control command and the total value of the power input / output by the second distributed power source 104B acquired by the power acquisition unit 301. The electric power is divided into a first command value for the distributed power source 104a and a first command value for the distributed power source 104b.
  • the total power included in the first command value is 3 kW. It becomes.
  • how to distribute 3 kW to the two first command values is not particularly limited. For example, 2 kW is assigned to the first command value of the distributed power source 104a and the first command value of the distributed power source 104b. 1 kW may be included, or 3 kW (in this case, the first command value for the distributed power source 104 b is 0 kW) may be included in the first command value of the distributed power source 104 a.
  • the transmission control unit 204 of the frequency control device 201 individually transmits each of the two first command values determined by the determination unit 203 to the corresponding first distributed power supply 104A through the communication unit 205 (S407).
  • the number of first command values determined in step S406 is the maximum number of first distributed power sources 104A. That is, in step S407, a first command value equal to or less than the number of first distributed power sources 104A is transmitted.
  • the first command value (0 kW) is not transmitted to the distributed power source 104b whose first command value is determined to be 0 kW
  • the number of the first command values transmitted is the first distributed type. Less than the number of power supplies 104A.
  • the command acquisition unit 202 of the frequency control device 201 monitors reception of the last frequency control command (S408).
  • the last frequency control command is not received (No in S408)
  • the first command value determination and transmission processing (S405 to S407) is executed again.
  • the last frequency control command is received (Yes in S408)
  • the current frequency control process is terminated, and the distributed power source 104a to 104d classification process (S401) is executed again in preparation for the next frequency control process. . If it is not necessary to frequently classify the distributed power sources 104a to 104d, step S401 can be skipped and re-executed from step S402.
  • an example of a case where the last frequency control command is not received is a case where a non-last frequency control command is received.
  • the first command value in this case is determined and transmitted every time the frequency control command is acquired, as shown in FIG.
  • another example in the case where the last frequency control command is not received is a case where a predetermined time has elapsed since the previous frequency control command was received (that is, the next frequency control command is not (When no frequency control command is received).
  • the first command value in this case is determined and transmitted a plurality of times for one frequency control command. That is, the first command value determination and transmission processing (S405 to S407) is executed once or more for one frequency control command.
  • FIG. 6A is a flowchart illustrating an example of a processing flow in which the frequency control device 201 classifies the plurality of distributed power sources 104a to 104d into the first distributed power source 104A and the second distributed power source 104B.
  • the determination unit 203 selects one of the distributed power sources 104a to 104d connected to the power system as a candidate for the first distributed power source 104A (S601).
  • the selection criteria are not particularly limited.
  • the selection criteria may be selected in ascending order of time required for transmission / reception of the first command value, or may be selected in descending order of power that can be input / output instantaneously (response speed is fast). Good.
  • the determination unit 203 individually transmits the first command value to the distributed power source 104 that has been classified as the first distributed power source 104A up to now and the distributed power source 104 that is newly selected in step S601. It is determined whether or not the total time required for this is within a predetermined time (S602).
  • the predetermined time is, for example, a frequency control command transmission interval. More preferably, the predetermined time may be a time obtained by subtracting the time (response time) required for stabilizing the power input / output from / to the first distributed power source 104A according to the first command value from the transmission interval of the frequency control command. . Further, the time defined by the system management device or the like may be set as the predetermined time.
  • the determination unit 203 classifies the distributed power source 104 selected in the immediately preceding step S601 as the first distributed power source (S603), and returns to step S601. On the other hand, if the transmission time does not fall within the predetermined time (No in S602), the process proceeds to step S604 without classifying the distributed power source 104 selected in the previous step S601 as the first distributed power source.
  • the time required to individually transmit the first command value to each of the two distributed power sources 104a and 104b falls within a predetermined time (Yes in S602), but each of the three distributed power sources 104a, 104b, and 104c If the time required to individually transmit the first command value does not fall within the predetermined time (No in S602), only the distributed power sources 104a and 104b are classified as the first distributed power source 104A, and the distributed power source 104c It is not classified into one distributed power source 104A.
  • the determination unit 203 classifies the distributed power source 104 that has not been classified into the first distributed power source 104A in Steps S601 to S603 into the second distributed power source 104B (S604).
  • the distributed power sources 104c and 104d are classified as the second distributed power source 104B.
  • 104 A of 1st distributed power supplies can be determined in the range which can transmit all the 1st command values within predetermined time.
  • the determination unit 203 determines the maximum power (deviation) that should be instantaneously input / output in the entire first distributed power supply 104A and the maximum value of the power that can be actually input / output by the distributed power supplies 104a and 104b. The comparison is made (S605).
  • the “deviation” is the maximum value of power to be input / output in the entire first distributed power supply 104A in order to keep the frequency of the power system within a predetermined range, and is, for example, an input included in the frequency control command. This corresponds to a value obtained by subtracting the maximum value (predicted value) of power input / output from / to the second distributed power supply 104B as a whole from the maximum value (predicted value) of the output power.
  • the determination unit 203 determines that the distributed power supply 104c classified as the second distributed power supply 104B, One of the 104d is selected as a candidate to be moved to the first distributed power supply 104A (S606).
  • the selection criteria are not particularly limited. For example, the selection criteria may be selected in ascending order of time required for transmission / reception of the first command value, or may be selected in descending order of power that can be input / output instantaneously (response speed is fast) Good. In this example, it is assumed that the distributed power source 104d is selected.
  • the determination unit 203 individually assigns the first command value to the distributed power sources 104a and 104b classified as the first distributed power source 104A in steps S601 to S603 and the distributed power source 104d selected in step S606. It is determined whether or not the time required for transmission is within a predetermined time (S607).
  • the determination unit 203 moves the distributed power source 104d selected in Step S606 to the first distributed power source 104A (S608).
  • the determination unit 203 does not move the distributed power source 104d to the first distributed power source 104A (that is, classifies it as the second distributed power source).
  • the frequency fluctuation range (difference between the upper limit value and the lower limit value) included in the provisional second command value is reduced (S609). That is, since it is easy to deviate from the frequency fluctuation range included in the provisional second command value, the electric power input / output by the second distributed power supply increases.
  • the determination unit 203 does not move the distributed power supply 104d to the first distributed power supply 104A (that is, remains in the state classified as the second distributed power supply), and cancels out the temporary second command value.
  • the power value may be increased.
  • the power corresponding to the difference between the input / output power and the power input / output by the second distributed power supply 104B according to the provisional second command value is the first distribution. This indicates that there is a possibility that the entire mold power source 104A cannot cover the power source. Therefore, when there is a margin in transmission time (Yes in S607), the number of distributed power supplies 104 classified as the first distributed power supply 104A is increased (S608). On the other hand, when there is no margin in the transmission time (No in S607), the frequency of the temporary second command value is increased in order to increase the power input / output by the second distributed power supply 104B (that is, to reduce the deviation). The range of fluctuation is reduced (S609).
  • the determination unit 203 repeatedly executes the processes of steps S606 to S609 until it is determined Yes in step S605. If the maximum power that can be instantaneously input / output across the first distributed power supply 104A exceeds the deviation (Yes in S605), the determination unit 203 ends the classification process of FIG. 6A.
  • steps S605 to S609 can be omitted.
  • priority is given to the determinations in steps S602 and S605, and if the priority in step S602 is high, steps S605 and after are omitted. That is, according to the classification method of FIG. 6A, at least the number of distributed power supplies 104 classified as the first distributed power supply 104A is limited to a range in which all the first command values can be transmitted within a predetermined time. Can do.
  • FIG. 6B is a flowchart illustrating another example of a processing flow in which the frequency control apparatus 201 classifies the plurality of distributed power sources 104a to 104d into the first distributed power source 104A and the second distributed power source 104B.
  • the flowchart shown in FIG. 6B shows that step S610 is executed instead of step S602, step S611 is executed instead of step S605 (a process corresponding to step S607), and step S612 is executed instead of step S607. It differs from the flowchart shown in FIG. 6A in that the processing corresponding to step S605 is executed.
  • the other processes are the same as those in FIG.
  • the plurality of distributed power sources 104a to 104d are connected to the first distributed power source 104a to 104d so that the sum of the maximum powers that can be instantaneously input / output by the first distributed power source 104A exceeds the deviation.
  • the distributed power supply 104A and the second distributed power supply 104B are classified. Also, steps S606, S608 to S609, and S611 to S612 in FIG. 6B can be omitted as in FIG. 6A.
  • FIG. 7 is a configuration diagram of a power system for simulation of frequency control processing performed by the frequency control device 201.
  • symbol is attached
  • FIG. 7 shows an example in which one distributed power source is allocated to each of the first distributed power source 901A and the second distributed power source 901B.
  • FIG. 8 is a diagram showing the load fluctuation that is the premise of the frequency control simulation performed by the frequency control device 201.
  • the horizontal axis represents time, and the vertical axis represents load fluctuation.
  • the load on the power system fluctuates violently with time.
  • the frequency of the power system fluctuates so as to have an opposite phase to the fluctuation of the load in FIG.
  • the system management device detects the fluctuation of the frequency (or power) and determines the input / output power to be included in the frequency control command.
  • the system management device transmits a frequency control command including input / output power of a positive value, and the load is negative. In this case (when the load falls below the center line in FIG. 8), a frequency control command including negative input / output power is transmitted.
  • the frequency control device 201 acquires a frequency control command from the system management device in order to control the frequency variation caused by the load variation shown in FIG. 8, and based on the acquired frequency control command, the first command value and the first 2 command values are determined, and the determined first command value and second command value are transmitted to the first distributed power source 901A and the second distributed power source 901B.
  • FIG. 9 is a diagram illustrating an example of a simulation result of the frequency control performed by the frequency control device 201.
  • the transition of the input / output power included in the frequency control command (solid line) and the first command value based on the first command value. 1 represents the transition of power input / output (broken line) by one distributed power source 901A.
  • the horizontal axis represents time. Note that the horizontal axis in FIG. 9 coincides with the horizontal axis in FIG.
  • the vertical axis represents the power value.
  • the center line indicates that the input / output power and the power input / output by the first distributed power source 901A are zero. If it exceeds the center line, the input / output power is positive, and the first distributed power source 901A has output power. When the value falls below the center line, the input / output power is negative, and the first distributed power source 901A has input power.
  • the power (broken line) input / output by the first distributed power source 901A fluctuates following the input / output power (solid line).
  • the absolute value of the power input / output by the first distributed power source 901A is slightly smaller than the input / output power.
  • FIG. 10 is a diagram showing an example of a simulation result of frequency control performed by the frequency control device 201, and shows a transition of power input / output by the second distributed power source 901B.
  • the horizontal axis represents time. Note that the horizontal axis of FIG. 10 coincides with the horizontal axis of FIG.
  • the vertical axis represents the power value.
  • the broken line represents the transition of power input / output by the second distributed power source 901B based on the second command value.
  • the center line indicates that power input / output by the second distributed power source 901B is 0.
  • the second distributed power source 901B outputs power, and when the power is lower than the center line, The second distributed power source 901B has input power.
  • FIG. 11 is a diagram illustrating an example of a simulation result of frequency control performed by the frequency control apparatus 201.
  • the horizontal axis represents time.
  • the horizontal axis of FIG. 11 corresponds with the horizontal axis of FIG.
  • the vertical axis represents the power value.
  • the center line represents that the sum of the input / output power and the input / output of the power by the first and second distributed power sources 901A and 901B is zero.
  • the input / output power is positive, and the sum of the power input / output by the first and second distributed power sources 901A and 901B is in the output direction.
  • the input / output power is negative, and the sum of the power input / output by the first and second distributed power sources 901A and 901B is in the input direction.
  • the schematic enlarged portion of the waveform in FIG. 11 corresponds to the enlarged portion in FIG. Comparing these, it can be seen that the absolute value of the sum of the input and output of power by the first and second distributed power sources 901A and 901B is closer to the input and output power. That is, it can be seen that the frequency control device 201 can cause the input / output of power from the distributed power source to follow the input / output power included in the frequency control command with high accuracy.
  • FIG. 12 is a diagram illustrating an example of a simulation result of the frequency control performed by the frequency control device 201, and represents a variation in the frequency of the power system after performing the above-described control.
  • the horizontal axis represents time. Note that the horizontal axis of FIG. 12 coincides with the horizontal axis of FIG.
  • the vertical axis represents frequency fluctuation.
  • the upper limit of the vertical axis in FIG. 12 represents the upper limit value of the frequency of the power system
  • the lower limit of the vertical axis of FIG. 12 represents the lower limit value of the frequency of the power system.
  • the solid line represents the transition of frequency variation.
  • the frequency control device 201 controls the input / output of power by the distributed power supply so as to maintain the frequency of the power system in a predetermined range. You can see that it is possible.
  • the above-described distributed power supply 104 uses 0 kW (no input / output) as a reference power, and discharges (outputs) power or charges (inputs) power according to the first command value or the second command value.
  • the power input / output to the power grid is adjusted.
  • the determination unit 203 classifies storage batteries that perform only one of charging and discharging among the plurality of distributed power supplies 104a to 104d as the first distributed power supply 104A, and sets the storage battery that performs only the other of charging and discharging to the first. It may be classified into two distributed power sources 104B.
  • a storage battery that only discharges discharges (inputs) power smaller than the reference discharge power, or discharges (outputs) power larger than the reference discharge power, thereby adjusting the power input / output to the power system. May be.
  • each storage battery does not repeat charging and discharging during one frequency control process, so that deterioration of the storage battery can be effectively suppressed.
  • which storage battery is dedicated to charging or discharging is not particularly limited. For example, the current storage amount of each storage battery is acquired, a storage battery with a small storage amount is dedicated to charging, and a storage battery with a large storage amount is dedicated to discharging. And it is sufficient.
  • the frequency control device 201 can control even a load such as a heater or an electric water heater, for example, instead of the distributed power source 104 of FIG.
  • the frequency control device 201 individually transmits a first command value corresponding to each of the first loads, and simultaneously transmits a second command value common to the second load, according to the first command value and the second command value.
  • the power consumption may be adjusted by the first load and the second load.
  • the frequency control apparatus 201 determines, for example, the first command value and the second command value centered on the reference value, using the reference value as the average power consumption, It is also possible to control to follow. That is, the load can adjust input / output of power to / from the power system by consuming (input) power larger than average power consumption or consuming (output) power smaller than average power consumption.
  • the power generation device uses, for example, the average generated power as the reference generated power and generates (inputs) power smaller than the reference generated power, or generates (outputs) power larger than the reference generated power. Power input / output can be adjusted.
  • the determination part 203 may classify
  • the determination unit 203 classifies a device (that is, a load or a power generation device) capable of only one of power consumption and power output (power generation) as a first device, and uses power consumption (charging) and power consumption.
  • a device capable of both output (discharge) that is, a storage battery) may be classified as the second device.
  • the frequency control apparatus 201 cancels the fluctuation
  • the present invention is not limited to this. Any one of cases 1 to 4 shown in FIG. 13 can be employed.
  • the first command value is the frequency command value (cases 3 and 4)
  • the first command value is the upper limit value and the lower limit value of the frequency fluctuation with respect to a predetermined reference frequency, similarly to the second command value described above.
  • the 1st apparatus which acquired this 1st command value detects the frequency of an electric power system, and when the frequency of an electric power system exceeds an upper limit, it inputs electric power (cancellation electric power) of predetermined magnitude, and electric power When the system frequency falls below the lower limit, a predetermined amount of power (cancellation power) is output.
  • the difference from the case where the second command value is the frequency command value is that the second command value is determined in common for a plurality of second devices, whereas the first command value is determined in common.
  • the value is a point determined individually for each first device.
  • the second command value is the power command value (cases 2 and 3)
  • the second command value includes information for specifying the offset power to be input / output when the frequency of the power system is out of the reference frequency.
  • the 2nd apparatus which acquired this 2nd command value detects the frequency of an electric power system, and when the frequency of an electric power system exceeds a reference frequency, offset power is inputted and the frequency of an electric power system falls below a reference frequency In this case, cancel power is output.
  • the determination unit 203 determines the second command value, and the determined second command value is transmitted to the m distributed power sources 104 classified as the second distributed power source 104B.
  • 205 is transmitting simultaneously, it is not restricted to this. That is, the frequency control device of the present disclosure is not limited to the determination unit 203 determining the second command value or the communication unit 205 transmitting the second command value to the second distributed power source 104B all at once.
  • the dashed arrows in FIGS. 2 and 3 mean that the communication unit 205 includes a case where the second command value is not transmitted to the second distributed power source 104B.
  • a plurality of distributed power sources 104 may store predetermined second command values as fixed values. That is, in this case, the plurality of distributed power sources 104 hold the second command value in advance, and the distributed power sources 104 classified as the second distributed power source 104B have power based on the second command values. You may input / output the electric power for canceling the fluctuation
  • the second command value is stored in advance in the distributed power source 104 as described above, it is preferable that the second command value is stored in all the distributed power sources 104, but not necessarily in all distributed types. It may not be stored in the power source 104.
  • the second distributed power source 104 is classified as the second distributed power source 104B. May be. Further, the second command value may be transmitted only to the distributed power source 104 in which the second command value is not stored in advance among the distributed power sources 104 classified as the second distributed power source 104B.
  • the plurality of distributed power sources 104 may determine the second command value based on a predetermined algorithm.
  • the determination method at this time is the same as the method in which the determination unit 203 determines the second command value as described above.
  • the determination unit 203 determines the first command value based on the power and frequency control command input / output by the second distributed power source 104B based on the second command value.
  • the “power input / output by the second distributed power source 104B based on the second command value” is a total value of the power input / output by the second distributed power source 104B acquired by the power acquisition unit 301.
  • the theoretical value of the power input / output by the second distributed power supply 104B may be a value determined based on the second command value.
  • the frequency control device 201 may hold a second command value as a predetermined fixed value, or the second command value may be determined based on a predetermined algorithm.
  • each of the above devices can be realized by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
  • a part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration).
  • the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, ROM, RAM, and the like. .
  • a computer program is stored in the ROM.
  • the system LSI achieves its functions by the microprocessor loading a computer program from the ROM to the RAM and performing operations such as operations in accordance with the loaded computer program.
  • Part or all of the constituent elements constituting each of the above devices may be configured from an IC card or a single module that can be attached to and detached from each device.
  • the IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present invention may be realized by the method described above. Further, these methods may be realized by a computer program realized by a computer, or may be realized by a digital signal consisting of a computer program.
  • the present invention also relates to a computer readable recording medium such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray (registered trademark)). ) Disc), or recorded in a semiconductor memory or the like. Moreover, you may implement
  • a computer program or a digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention is also a computer system including a microprocessor and a memory.
  • the memory stores a computer program, and the microprocessor may operate according to the computer program.
  • program or digital signal may be recorded on a recording medium and transferred, or the program or digital signal may be transferred via a network or the like, and may be implemented by another independent computer system.
  • the present invention can be applied to a frequency control device or the like that determines a command value for controlling the frequency of a power system connected to a distributed power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 本発明は、複数の分散型電源を備えるシステムにおいて使用される、電力系統の周波数制御の応答性を高めるようにした周波数制御方法である。 周波数制御方法は、電力系統の周波数変動を所定範囲に収めるための周波数制御指令を取得する指令取得ステップ(s402)と、m台の第2分散型電源が入出力する電力に関する情報を取得し(s405)、かつ、指令取得ステップにおいて取得された周波数制御指令と、取得したm台の第2分散型電源が入出力する電力とに基づいて、n台の第1分散型電源それぞれが入出力する電力を制御するn個の第1指令値を決定する決定ステップ(s406)と、決定ステップにおいて決定されたn個の第1指令値それぞれを対応する第1分散型電源に個別送信する送信制御ステップ(s407)と、を含む。

Description

周波数制御方法、周波数制御システム、周波数制御装置、及びプログラム
 本発明は、周波数制御方法、周波数制御システム、周波数制御装置、及びプログラムに関し、特に、分散型電源が連系された電力系統の周波数を制御するための指令値を決定する周波数制御方法に関する。
 電力系統において、発電機は送配電網を介して負荷に電力を供給している。このとき、すべての発電機は同期運転を行っており、電力系統内の負荷が発電機からの電力を上回ると電力系統の周波数は低下し、逆に下回ると周波数は上昇する。そのため、各発電機は調速機(ガバナ)を用いて、周波数が低下した場合は出力を増加し、周波数が上昇した場合には出力を減少するようにしている(ガバナフリー運転)。
 さらに、ガバナフリー運転では吸収しきれない負荷変動の制御には、中央給電指令所から受信した出力調整信号に基づいて発電機の出力を調整する負荷周波数制御(Load Frequency Control)が行われている。しかし、発電機の応答速度は遅いため、出力調整信号への追従精度が低いことが課題となっている。
 このような問題への対処法として、例えば特許文献1は、分散型電源、主に蓄電池の高速応答性を活かして負荷周波数制御を実施する技術を開示している。これにより、負荷周波数制御の速応性を高め、周波数の安定性を向上することができるとしている。
特開2003-284244号公報
 近年、負荷周波数制御の応答性をさらに高めることが求められている。
 本発明は、上記の事情に鑑みてなされたものであり、負荷周波数制御の応答性をさらに高めた周波数制御方法、周波数制御システム、周波数制御装置、及びプログラムを提供することを目的とする。
 本発明の一形態に係る周波数制御方法は、電力系統に接続された、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器と、通信ネットワークを介して前記複数の機器が入出力する電力を管理する周波数制御装置とを備える周波数制御システムにおける電力系統の周波数制御方法であって、前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令を取得する指令取得ステップと、(i)m台の前記第2の機器が入出力する電力に関する情報を取得し、かつ、(ii)前記指令取得ステップにおいて取得された前記周波数制御指令と、取得したm台の前記第2の機器が入出力する前記電力とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値を決定する決定ステップと、前記決定ステップにおいて決定されたn個の前記第1指令値それぞれを対応する前記第1の機器に個別送信する送信制御ステップと、を含む。
 本発明によれば、制御対象の機器の台数が多くなった場合でも、所定時間内に指令値を送信し、各機器の入出力調整制御を行うことができる周波数制御方法、周波数制御システム、周波数制御装置、及びプログラムを得ることができる。
図1は、本実施の形態に係る周波数制御装置を含む電力系統の概念図である。 図2は、本実施の形態に係る周波数制御装置の機能ブロック図の一例である。 図3は、本実施の形態に係る周波数制御装置の機能ブロック図の他の例である。 図4は、本実施の形態に係る周波数制御装置が行う処理の流れの一例を示すフローチャートである。 図5は、図4の処理によって送受信されるデータフローの概念図である。 図6Aは、実施の形態1に係る周波数制御装置が複数の機器を第1の機器と第2の機器とに分類する処理のフローチャートの一例である。 図6Bは、実施の形態1に係る周波数制御装置が複数の機器を第1の機器と第2の機器とに分類する処理のフローチャートの他の例である。 図7は、周波数制御装置が行う周波数制御処理のシミュレーション向け電力系統の構成図である。 図8は、周波数制御装置が行う周波数制御のシミュレーションの前提となる負荷変動を示す図である。 図9は、周波数制御装置が行う周波数制御のシミュレーション結果の一例を示す図であり、周波数制御指令に含まれる入出力電力の推移(実線)と、第1指令値に基づいた第1の分散型電源による電力の入出力の推移(破線)とを示す図である。 図10は、周波数制御装置が行う周波数制御のシミュレーション結果の一例を示す図であり、第2の分散型電源による電力の入出力の推移を示す図である。 図11は、周波数制御装置が行う周波数制御のシミュレーション結果の一例を示す図であり、周波数制御指令に含まれる入出力電力の推移(実線)と、第1の分散型電源による電力の入出力及び第2の分散型電源による電力の入出力の和の推移(破線)とを示す図である。 図12は、周波数制御装置が行う周波数制御のシミュレーション結果の一例を示す図である。 図13は、第1指令値及び第2指令値の組み合わせの例を示す図である。
 (本発明の基礎となった知見)
 上記の従来技術は、電力系統の周波数状況に基づいて必要な出力変更指令量を算出し、算出した出力変更指令量を蓄電池の能力値の範囲内で配分し、各蓄電池に送信する技術は開示している。しかしながら、所定時間内に複数の蓄電池に指令量を送信する方法は開示されていない。そのため、制御対象となる蓄電池の台数が増加した場合に、すべての蓄電池に指令を送信するのに時間がかかり、所定時間内に全ての蓄電池の入出力調整を完了することができないという新たな課題がある。
 このような課題を解決するために、本発明の一形態に係る周波数制御方法は、電力系統に接続された、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器と、通信ネットワークを介して前記複数の機器が入出力する電力を管理する周波数制御装置とを備える周波数制御システムにおける電力系統の周波数制御方法であって、前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令を取得する指令取得ステップと、(i)m台の前記第2の機器が入出力する電力に関する情報を取得し、かつ、(ii)前記指令取得ステップにおいて取得された前記周波数制御指令と、取得したm台の前記第2の機器が入出力する前記電力とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値を決定する決定ステップと、前記決定ステップにおいて決定されたn個の前記第1指令値それぞれを対応する前記第1の機器に個別送信する送信制御ステップと、を含む。
 上記構成によれば、制御対象の機器の台数が多くなった場合でも、所定時間内に指令値を送信し、各機器の入出力調整制御を行うことができる。
 一例として、前記決定ステップでは、さらに、前記指令取得ステップにおいて取得された前記周波数制御指令に基づいて、m台の前記第2の機器が入出力する電力を制御する1つの第2指令値を決定し、前記送信制御ステップでは、さらに、前記決定ステップにおいて決定された前記第2指令値をm台の前記第2の機器に一斉送信してもよい。
 一例として、前記周波数制御指令は、前記電力系統に入出力すべき入出力電力の値を含み、n個の前記第1指令値それぞれは、対応する前記第1の機器が入出力すべき電力の値を含み、前記決定ステップでは、前記周波数制御指令に含まれる前記入出力電力と、前記第2指令値に従ってm台の前記第2の機器が入出力する電力との差分に相当する電力を、n個の前記第1指令値に振り分けてもよい。
 他の例として、前記周波数制御指令は、前記電力系統に入出力すべき入出力電力の値を含み、n個の前記第1指令値それぞれは、予め定められた基準周波数に対する周波数変動の上限値及び下限値を含み、前記電力系統の周波数が前記上限値を上回る場合に対応する前記第1の機器に相殺電力を入力させ、前記電力系統の周波数が前記下限値を下回る場合に対応する前記第1の機器に相殺電力を出力させるものであり、前記決定ステップでは、n個の前記第1指令値それぞれについて、前記周波数制御指令に含まれる前記入出力電力と、前記第2指令値に従ってm台の前記第2の機器が入出力する電力との差分に相当する電力の絶対値が大きいほど、前記上限値及び前記下限値の差を小さくしてもよい。
 一例として、前記第2指令値は、予め定められた基準周波数に対する周波数変動の上限値及び下限値を含み、前記電力系統の周波数が前記上限値を上回る場合にm台の前記第2の機器に相殺電力を入力させ、前記電力系統の周波数が前記下限値を下回る場合にm台の前記第2の機器に相殺電力を出力させるものであり、前記決定ステップでは、前記周波数制御指令に含まれる前記入出力電力の絶対値が大きいほど、前記上限値及び前記下限値の差を小さくしてもよい。
 他の例として、前記第2指令値は、予め定められた基準周波数を外れた場合に入出力すべき相殺電力の値を含み、前記電力系統の周波数が前記基準周波数を上回る場合にm台の前記第2の機器に前記相殺電力を入力させ、前記電力系統の周波数が前記基準周波数を下回る場合にm台の前記第2の機器に前記相殺電力を出力させるものであり、前記決定ステップでは、前記周波数制御指令で特定される前記電力系統に入出力すべき電力の絶対値が大きいほど、前記相殺電力の値を大きくしてもよい。
 一例として、前記周波数制御指令は、前記電力系統に入出力すべき入出力電力の値を含み、前記決定ステップでは、n台の前記第1の機器が入出力可能な最大電力の総和が、前記周波数制御指令に含まれる前記入出力電力と、前記第2指令値に従ってm台の前記第2の機器が入出力する電力との差分に相当する電力を上回るように、前記複数の機器を前記第1の機器又は前記第2の機器に分類してもよい。
 他の例として、前記指令取得ステップでは、所定の時間間隔毎に前記周波数制御指令を取得し、前記決定ステップでは、前記指令取得ステップにおいて少なくとも最初に取得された前記周波数制御指令に基づいて、前記第2指令値を決定してもよい。
 一例として、前記決定ステップでは、前記複数の機器のうち、所定時間内に前記第1指令値を送信可能なn台の前記機器を前記第1の機器に分類し、前記第1の機器に分類されなかったm台の前記機器を前記第2の機器に分類してもよい。
 他の例として、前記複数の機器は、複数の蓄電池を含み、前記複数の蓄電池のうち、充電及び放電の一方のみをさせる前記蓄電池を第1の機器に分類し、充電及び放電の他方のみをさせる前記蓄電池を第2の機器に分類してもよい。
 他の例として、前記複数の機器のうち、電力の消費及び電力の出力の一方のみが可能な前記機器を前記第1の機器に分類し、電力の消費及び電力の出力の両方が可能な前記機器を前記第2の機器に分類してもよい。
 例えば、前記指令取得ステップでは、所定の時間間隔毎に前記周波数制御指令を取得し、前記決定ステップでは、前記指令取得ステップで前記周波数制御指令が取得されるたびに、当該周波数制御指令に基づいて、n台の前記第1の機器それぞれに対応するn個の前記第1指令値を決定してもよい。
 例えば、前記指令取得ステップでは、前記周波数制御指令を生成することにより取得してもよい。
 本発明の一形態に係る周波数制御システムは、電力系統に接続された、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器と、通信ネットワークを介して前記複数の機器が入出力する電力を管理する周波数制御装置とを備える周波数制御システムであって、前記周波数制御装置は、前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令を取得する指令取得部と、(i)m台の前記第2の機器が入出力する電力を取得し、かつ、(ii)前記指令取得部で取得された前記周波数制御指令と、取得したm台の前記第2の機器が入出力する前記電力とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値を決定する決定部と、前記決定部で決定されたn個の前記第1指令値それぞれを対応する前記第1の機器に個別送信する送信制御部とを備え、前記第1の機器は、前記周波数制御装置から取得した第1指令値に従って電力系統に電力を入出力する。
 また、上記周波数制御システムに用いられる分散型電源として実現してもよい。
 本発明の一形態に係る分散型電源は、電力系統の周波数を制御する周波数制御システムにおいて、サーバによって管理され、かつ、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器からなる分散型電源であって、m台の前記第2の機器が入出力する電力と、前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値として前記サーバにおいて決定された電力指令値を前記サーバから受信し、前記サーバから受信した前記電力指令値に対応する電力を前記電力系統に入出力する。
 本発明の一形態に係る周波数制御装置は、電力系統の周波数を制御する周波数制御システムにおいて、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器が入出力する電力を通信ネットワークを介して管理する周波数制御装置であって、前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令を取得する指令取得部と、(i)m台の前記第2の機器が入出力する電力を取得し、かつ、(ii)前記指令取得部で取得された前記周波数制御指令と、取得したm台の前記第2の機器が入出力する前記電力とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値を決定する決定部と前記決定部で決定されたn個の前記第1指令値それぞれを対応する前記第1の機器に個別送信する送信制御部とを含む。
 本発明の一形態に係るプログラムは、コンピュータに、電力系統に接続された、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器に電力を入出力させるプログラムであって、前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令を取得する指令取得ステップと、(i)m台の前記第2の機器が入出力する電力を取得し、かつ、(ii)前記指令取得ステップにおいて取得された前記周波数制御指令と、取得したm台の前記第2の機器が入出力する前記電力とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値を決定する決定ステップと、前記決定ステップにおいて決定されたn個の前記第1指令値それぞれを対応する前記第1の機器に個別送信する送信制御ステップとを、コンピュータに実行させる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例である。したがって、これらの各形態により、本発明が限定されるものではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (実施の形態)
 図1は、本実施の形態に係る周波数制御装置201を含む電力系統の概念図である。
 図1に示される様に、電力系統は、変電所101と、電力線102と、周波数検出点103a、103b、103c、103dと、分散型電源104a、104b、104c、104dと、通信線105と、周波数制御装置201とを含む。なお、図1においては、説明を簡易化するため負荷を図示していない。
 電力線102は、変電所101と分散型電源104a、104b、104c、104dとを接続する。そして、電力線102は、変電所101から出力される電力を分散型電源104a、104b、104c、104d及び図示しない負荷に供給すると共に、分散型電源104a、104b、104c、104dから出力される電力を図示しない負荷に供給する。なお、「負荷」とは、冷蔵庫、洗濯機、テレビ等の電力を消費して動作するあらゆる機器を指す。
 周波数検出点103a、103b、103c、103dは、分散型電源104a、104b、104c、104dそれぞれが電力系統の周波数を検出する点である。以下、周波数検出点103a、103b、103c、103dを総称して「周波数検出点103」と表記することがある。また、分散型電源104a、104b、104c、104dを総称して「分散型電源104」と表記することがある。
 分散型電源104は、例えば、太陽光発電システム又は燃料電池システム等の分散型発電システム、あるいは蓄電池システム等の分散型電気エネルギー貯蔵システムである。分散型電源104は、例えば、太陽電池又は燃料電池のような発電装置、あるいは蓄電池等の貯蔵装置と、発電装置または貯蔵装置により発電された直流電力を交流電力に変換(DC/AC変換)するパワーコンディショナとを有する。なお、本実施の形態では、分散型電源104として蓄電池を対象とするが、これに限定されるものではない。
 分散型電源104は、電力を電力系統へ入出力することにより、電力系統の周波数を所定の範囲内を維持するように調整を行う。ここで、電力系統の基準周波数を50Hzとし、変動を許容する所定の範囲を±0.1Hzとする例を用いて説明する。なお、電力系統に接続される機器の一例としての蓄電池は、電力系統の電力で充電(電力の入力)し、電力系統に電力を放電(電力の出力)する。
 通信線105は、周波数制御装置201と分散型電源104との間でデータ又は情報を送受信するためのものであり、例えば、インターネット、PLC(Power Line Communication)、950MHz帯無線等が考えられる。また、周波数制御装置201は、通信線105を通じて変電所101との間でもデータ又は情報を送受信してもよい。但し、周波数制御装置201の機能が変電所101に含まれている場合には不要である。
 周波数制御装置201は、分散型電源104の電力の入出力を制御することにより、電力系統の周波数を調整するための制御装置である。図2及び図3を参照して、周波数制御装置201について詳細に説明する。
 図2は、本実施の形態に係る周波数制御装置201の機能ブロックを示す図である。図2に示されるように、周波数制御装置201は、指令取得部202と、決定部203と、送信制御部204と、通信部205とを備える。
 指令取得部202は、中央給電指令所或いは系統管理装置から周波数制御指令を受信し、決定部203へ出力する。なお、指令取得部202は、中央給電指令所或いは系統管理装置から周波数制御指令を受信するのではなく、電力系統の周波数を定期的に観測し、自ら周波数制御指令を生成することにより取得することも可能である。例えば、電力系統の周波数を観測し、中央給電指令所或いは系統管理装置と同様の計算を行うことで、周波数制御指令を生成することにより取得する。なお、中央給電指令所或いは系統管理装置の役割は、例えば、変電所101が担ってもよいし、変電所101より上流又は下流の設備(図示省略)が担ってもよい。
 周波数制御指令は、電力系統の周波数の変動を所定の範囲に収めるために、中央給電指令所或いは系統管理装置によって発行されるものである。そして、周波数制御指令は、電力系統にさらに入出力すべき電力の値である入出力電力を含む。
 具体的には、入出力電力=+5kWとは、例えば100kWの電力が供給されている電力系統に、5kWの電力を供給する(或いは消費される電力を5kW減らす)ことを指す。これらを、「電力系統に電力を出力する」という。また、入出力電力=-5kWとは、例えば100kWの電力が供給されている電力系統に、供給される電力を5kW減らす(或いは消費される電力を5kW増やす)ことを指す。これらを、「電力系統に電力を入力する」という。
 決定部203は、後述する分類方法によって、複数の分散型電源104a、104b、104c、104dを第1の分散型電源(第1の機器)104Aと第2の分散型電源(第2の機器)104Bとに分類する。第1の分散型電源104Aに分類されるn(nは1以上の自然数)台の分散型電源104は、電力系統への電力の入出力が周波数制御装置201によって個別に制御される。一方、第2の分散型電源104Bに分類されるm(mは1以上の自然数)台の分散型電源104は、電力系統への電力の入出力が周波数制御装置201によって共通に制御される。
 また、決定部203は、指令取得部202が取得した周波数制御指令に基づいて、第1の分散型電源104Aに分類されたn台の分散型電源104それぞれに対するn個の第1指令値を個別に決定する。さらに、決定部203は、第2の分散型電源104Bに分類されたm台の分散型電源104に対して共通(1つ)の第2指令値を決定する。すなわち、第1指令値は最大でn個決定され、第2指令値はただ1つだけ決定される。
 送信制御部204は、通信部205を介して、決定部203が決定したn個の第1指令値をそれぞれ対応する第1の分散型電源104Aに個別送信(ユニキャスト)し、決定部203が決定した第2指令値をm台の第2の分散型電源104Bに一斉送信(ブロードキャスト又はマルチキャスト)する。
 通信部205は、分散型電源104との通信インタフェースであり、通信線105を介して分散型電源104に第1指令値又は第2指令値を送信する。
 図3は、本実施の形態に係る周波数制御装置201の機能ブロックの他の例を示す図である。なお、図2と同様の構成要素については同一の符号をつけ、詳細な説明は省略する。図3に示されるように、周波数制御装置201は、図2の構成に加えて、さらに電力取得部301を備えてもよい。
 電力取得部301は、第2指令値に従って第2の分散型電源104Bが電力系統に入出力する電力の値を、通信線105を介して取得し、決定部203に送信する。このとき、決定部203は、例えば、(第1指令値)≒(周波数制御指令の値)-(第2指令値に従って第2の分散型電源が入出力する電力の値)となるように、第1指令値を決定する。換言すれば、第1指令値に従って第1の分散型電源が入出力する電力の値と、第2指令値に従って第2の分散型電源が入出力する電力の値との和が周波数制御指令の値に近づくように、第1指令値を決定する。詳細は後述する。
 次に、図4及び図5を参照して、周波数制御装置201の動作を説明する。図4は、周波数制御装置201が行う処理の流れの一例を示すフローチャートである。図5は、図4の処理によって送受信されるデータフローの概念図である。
 まず、周波数制御装置201の決定部203は、電力系統に接続されている複数の分散型電源104a、104b、104c、104dを第1の分散型電源と第2の分散型電源とに分類する(S401)。具体的な分類方法は図6A及び図6B等を用いて後述するが、以下の説明では、分散型電源104a、104bが第1の分散型電源104Aに分類され、分散型電源104c、104dが第2の分散型電源104Bに分類されたことを前提とする。
 次に、周波数制御装置201の指令取得部202は、最初の周波数制御指令の受信を監視する(S402)。本実施の形態では、最初の周波数制御指令を取得(S402でYes)してから最後の周波数制御指令を取得(S408でYes)するまでを1回の周波数制御処理と定義する。そして、1回の周波数制御処理において、複数の周波数制御指令が、所定の時間間隔で繰り返し発行されることを前提として説明する。
 なお、「最初の周波数制御指令」及び「最後の周波数制御指令」の特定方法は特に限定されないが、例えば、最初又は最後であることを示すフラグをデータ中に設けてもよいし、1回の周波数制御処理で送信される周波数制御指令の数又は1回の周波数制御処理の実行期間を特定する情報が最初の周波数制御指令に含められていてもよい。
 最初の周波数制御指令が指令取得部202で取得された場合(S402でYes)、周波数制御装置201の決定部203は、指令取得部202で取得された最初の周波数制御指令に基づいて、第2指令値を1つだけ決定する(S403)。そして、周波数制御装置201の送信制御部204は、決定部203で決定された第2指令値を、通信部205を通じて第2の分散型電源104Bに分類された分散型電源104c、104dに一斉送信する(S404)。
 ここで、第2指令値は、電力系統に生じる電力の変動を第2の分散型電源104Bに相殺させるための指令値であり、第2の分散型電源104Bに分類された全ての分散型電源104c、104dに対して共通に用いられる。本実施の形態に係る第2指令値は、予め定められた基準周波数に対する周波数変動の上限値及び下限値を特定する情報を含む。
 例えば、基準周波数が50Hzであれば、周波数変動の上限値は50.1Hz、周波数変動の下限値は49.9Hzのようになる。但し、上限値及び下限値は、上記の基準周波数に対して必ずしも対称である必要はない。すなわち、例えば、上限値を50.3Hzとし、下限値を49.9Hzとしてもよい。
 決定部203は、例えば、最初に取得した周波数制御指令に含まれる入出力電力の絶対値が大きいほど、周波数変動の範囲(上限値及び下限値の差)が小さくなり、入出力電力の絶対値が小さいほど、周波数変動の範囲(上限値及び下限値の差)が大きくなるように、第2指令値に含める上限値及び下限値を決定する。
 また、決定部203は、ステップS401において複数の分散型電源104a、104b、104c、104dを分類したときに決定された暫定的な仮第2指令値(後述参照)を、ステップS403において第2指令値と決定することにより、第2指令値を決定してもよい。つまり、このようにして決定部203が第2指令値を決定する場合には、ステップS403はなくてもよい。
 なお、第2指令値は、周波数制御指令に含まれる入出力電力に対してベース入出力になるように決定するのがよい。例えば、周波数制御指令に含まれる入出力電力が5kWである場合に、第2の分散型電源が入出力する電力の合計が5kWよりも小さくなるのがよい。第2の分散型電源が入出力する電力の合計が5kWより大きくなる場合、例えば7kWとなる場合は、第1の分散型電源全体の入出力電力は-2kWとなり、余分な充放電が発生する。そこで、一般に周波数制御指令に含まれる入出力電力の絶対値の統計が正規分布に近くなることを利用して、決定部203は、ステップS403では、この正規分布から求められる平均値と、ステップS401で決定された仮第2指令値に基づいて第2の分散型電源に分類された分散型電源104c、104dから入出力されると予測される電力とを比較することにより第2指令値を決定してもよい。例えば、決定部203は、ステップS403において、第2の分散型電源の入出力電力値が平均値の前後5%以内の範囲に入るように、第2指令値を決定してもよい。
 そして、第2の分散型電源104Bに分類された分散型電源104c、104dは、第2指令値を取得すると、それぞれ周波数検出点103c、103dで電力系統の周波数を検出する。そして、分散型電源104c、104dは、電力系統の周波数が上限値を上回る場合に所定の大きさの相殺電力を入力(充電)する。一方、分散型電源104c、104dは、電力系統の周波数が下限値を下回る場合に所定の大きさの相殺電力を出力(放電)する。
 なお、第2の分散型電源104Bは、図5に示されるように、1回の周波数制御処理中において、ステップS404で取得した第2指令値を用いて電力系統に生じる電力(周波数)の変動を相殺するための上記の処理を自律的に継続する。すなわち、第2指令値は、1回の周波数制御処理中に少なくとも1回だけ送信されればよい。
 また、第2の分散型電源104Bは、取得した第2指令値に含まれる制御開始のタイミングを示す情報に基づいて、取得した第2指令値に基づく電力の入出力の制御を当該制御開始のタイミングで開始してもよい。これにより、第2指令値は、周波数制御処理の開始前に予め送信しておくことが可能である。
 また、第2の分散型電源104Bが入出力する相殺電力の大きさは、第2指令値に含められていてもよい。すなわち、第2の分散型電源104Bの入出力は、(符号)×(相殺電力)となる。ここで、(符号)とは、検出した周波数が上限値を逸脱している場合は負(入力)となり、検出した周波数が下限値を逸脱している場合は正(出力)となる。
 また、第2の分散型電源104Bが入出力する相殺電力の大きさは、予め定められた値を第2の分散型電源104Bが保持していてもよい。
 また、電力系統の周波数の変動大きさに応じて第2の分散型電源104Bが相殺電力の大きさを適応的に決定してもよい。すなわち、周波数が上限値を大きく上回る(又は下限値を大きく下回る)ほど、相殺電力の絶対値を大きくしてもよい。例えば、上限値を逸脱している場合、第2の分散型電源104Bの入出力は、((上限値)-(検出した周波数))×Kとなる。また、下限値を逸脱している場合、第2の分散型電源104Bの入出力は、((下限値)-(検出した周波数))×Kとなる。ここで、Kは、出力を決定するための感度係数を示し、単位はkW/Hzである。
 次に、周波数制御装置201の電力取得部301は、第2の分散型電源104Bに分類された分散型電源104c、104dが第2指令値に従って入出力する電力の合計値を取得する(S405)。なお、電力取得部301は、電力線102上の電力を実際に計測してもよいし、入出力した電力の値を、通信線105を通じて分散型電源104c、104dそれぞれから取得してもよい。
 または、ステップS405の処理に代えて、第2の分散型電源104Bが入出力する電力の理論値を、決定部203で決定された第2指令値に基づいて決定してもよい。すなわち、第2の分散型電源104Bが第2指令値に従って入出力する電力の合計値は、Σ((上限値あるいは下限値)-(決定部203で検出した周波数))×Kとなる。ここで、Kは、識別子i(i≦m)で特定される第2の分散型電源104Bの入出力を決定するための感度係数である。この場合、図2に示されるように、電力取得部301を省略することができる。
 次に、周波数制御装置201の決定部203は、第1の分散型電源104Aに分類された分散型電源104a、104bそれぞれに対して、第1指令値を決定する(S406)。具体的には、決定部203は、周波数制御指令に含まれる入出力電力と、電力取得部301で取得された第2の分散型電源104Bが入出力する電力の合計値との差分に相当する電力を、分散型電源104aに対する第1指令値と、分散型電源104bに対する第1指令値とに振り分ける。
 例えば、周波数制御指令に含まれる入出力電力が5kWであり、第2の分散型電源104Bが入出力した電力の合計値が2kWであったとすると、第1指令値に含められる電力の合計は3kWとなる。この例において、3kWを2つの第1指令値にどのように分配するかは特に限定されないが、例えば、分散型電源104aの第1指令値に2kWを、分散型電源104bの第1指令値に1kWを含めてもよいし、分散型電源104aの第1指令値に3kW(この場合、分散型電源104bに対する第1指令値は0kWとなる)を含めてもよい。
 次に、周波数制御装置201の送信制御部204は、決定部203で決定された2つの第1指令値それぞれを、通信部205を通じて対応する第1の分散型電源104Aに個別送信する(S407)。上述したように、ステップS406で決定される第1指令値の数は、最大で第1の分散型電源104Aの台数である。すなわち、ステップS407では、第1の分散型電源104Aの台数以下の第1指令値が送信されることになる。ここで、第1指令値が0kWと決定された分散型電源104bに第1指令値(0kW)を送信しないようにする場合は、送信される第1指令値の数は、第1の分散型電源104Aの台数未満となる。
 そして、第1指令値を取得した第1の分散型電源104Aに分類された分散型電源104a、104bは、それぞれの第1指令値に示される電力を電力系統に対して入出力する。これにより、図5に示されるように、入出力電力と第2の分散型電源104Bが入出力する電力との差を埋めることができる。
 次に、周波数制御装置201の指令取得部202は、最後の周波数制御指令の受信を監視する(S408)。最後の周波数制御指令を受信しない場合(S408でNo)、第1指令値の決定及び送信処理(S405~S407)を再び実行する。一方、最後の周波数制御指令を受信した場合(S408でYes)、今回の周波数制御処理を終了し、次回の周波数制御処理に備えて分散型電源104a~104dの分類処理(S401)を再び実行する。なお、分散型電源104a~104dの分類を頻繁に行う必要がない場合は、ステップS401をスキップし、ステップS402から再実行することも可能である。
 ここで、最後の周波数制御指令を受信しない場合(S408でNo)の一例は、最後でない周波数制御指令を受信した場合である。この場合の第1指令値は、図5に示されるように、周波数制御指令を取得するたびに決定され、送信される。また、最後の周波数制御指令を受信しない場合(S408でNo)の他の例は、前回の周波数制御指令を受信してから所定の時間経過した場合(すなわち、所定の時間経過しても次の周波数制御指令を受信しない場合)である。この場合の第1指令値は、1つの周波数制御指令に対して複数回決定され、送信される。すなわち、第1指令値の決定及び送信処理(S405~S407)は、1つの周波数制御指令に対して、1回以上実行される。
 図6Aは、周波数制御装置201が複数の分散型電源104a~104dを、第1の分散型電源104Aと第2の分散型電源104Bとに分類する処理の流れの一例を示すフローチャートである。
 まず、決定部203は、電力系統に接続されている分散型電源104a~104dのうちの1台を、第1の分散型電源104Aの候補として選択する(S601)。選択基準は特に限定されないが、例えば、第1指令値の送受信に要する時間の短い順に選択してもよいし、瞬間的に入出力可能な電力の大きい(応答速度が速い)順に選択してもよい。
 次に、決定部203は、現在までに第1の分散型電源104Aに分類された分散型電源104と、ステップS601で新たに選択された分散型電源104とに第1指令値を個別送信するのに必要な時間の合計値が所定時間に収まるか否かを判断する(S602)。なお、所定時間とは、例えば、周波数制御指令の送信間隔である。より望ましくは、周波数制御指令の送信間隔から第1指令値に従って第1の分散型電源104Aが入出力する電力が安定するのに要する時間(応答時間)を減じた時間を、所定時間としてもよい。また、系統管理装置等によって規定された時間を、所定時間としてもよい。
 送信時間が所定時間内に収まる場合(S602でYes)、決定部203は、直前のステップS601で選択した分散型電源104を第1の分散型電源に分類(S603)し、ステップS601に戻る。一方、送信時間が所定時間内に収まらない場合(S602でNo)、直前のステップS601で選択した分散型電源104を第1の分散型電源に分類せずに、ステップS604に進む。
 例えば、2台の分散型電源104a、104bそれぞれに第1指令値を個別送信するのに要する時間は所定時間に収まる(S602でYes)が、3台の分散型電源104a、104b、104cそれぞれに第1指令値を個別送信するのに要する時間は所定時間に収まらない(S602でNo)場合、分散型電源104a、104bのみが第1の分散型電源104Aに分類され、分散型電源104cは第1の分散型電源104Aに分類されない。
 次に、決定部203は、ステップS601~S603で第1の分散型電源104Aに分類されなかった分散型電源104を第2の分散型電源104Bに分類する(S604)。上記の例では、分散型電源104c、104dが第2の分散型電源104Bに分類される。これにより、所定時間内に全ての第1指令値を送信できる範囲で第1の分散型電源104Aを決定することができる。
 次に、決定部203は、第1の分散型電源104A全体で瞬間的に入出力すべき最大電力(偏差)と、分散型電源104a、104bが実際に入出力可能な電力の最大値とを比較する(S605)。
 なお、「偏差」とは、電力系統の周波数を所定の範囲に収めるために第1の分散型電源104A全体で入出力すべき電力の最大値であって、例えば、周波数制御指令に含まれる入出力電力の最大値(予測値)から第2の分散型電源104B全体で入出力する電力の最大値(予測値)を減じた値に相当する。
 第1の分散型電源104A全体で瞬間的に入出力可能な最大電力が偏差を下回る場合(S605でNo)、決定部203は、第2の分散型電源104Bに分類された分散型電源104c、104dのうちから1台を、第1の分散型電源104Aに移動させる候補として選択する(S606)。選択基準は特に限定されないが、例えば、第1指令値の送受信に要する時間の短い順に選択してもよいし、瞬間的に入出力可能な電力の大きい(応答速度が速い)順に選択してもよい。この例では、分散型電源104dが選択されたものとする。
 次に、決定部203は、ステップS601~S603で第1の分散型電源104Aに分類された分散型電源104a、104bと、ステップS606で選択された分散型電源104dとに第1指令値を個別送信するのに要する時間が所定時間内であるか否かを判断する(S607)。
 送信時間が所定時間内の場合(S607でYes)、決定部203は、ステップS606で選択された分散型電源104dを第1の分散型電源104Aに移動させる(S608)。一方、送信時間が所定時間内でない場合(S607でNo)、決定部203は、分散型電源104dを第1の分散型電源104Aに移動させずに(すなわち、第2の分散型電源に分類した状態のまま)、仮第2指令値に含まれる周波数変動の範囲(上限値及び下限値の差)を小さくする(S609)。すなわち、仮第2指令値に含まれる周波数変動範囲から逸脱しやすくなるため、第2の分散型電源の入出力する電力が大きくなる。または、決定部203は、分散型電源104dを第1の分散型電源104Aに移動させずに(すなわち、第2の分散型電源に分類した状態のまま)、仮第2指令値に含まれる相殺電力の値を大きくしてもよい。
 なお、ステップS605でNoと判断される場合とは、入出力電力と、仮第2指令値に従って第2の分散型電源104Bが入出力する電力との差分に相当する電力を、第1の分散型電源104A全体で賄えない可能性があることを示している。そのため、送信時間に余裕がある場合(S607でYes)には、第1の分散型電源104Aに分類される分散型電源104の台数を増やす(S608)。一方、送信時間に余裕が無い場合(S607でNo)には、第2の分散型電源104Bが入出力する電力を大きくする(すなわち、偏差を小さくする)ために、仮第2指令値の周波数変動の範囲を小さくする(S609)。
 上記の理由により、決定部203は、ステップS605でYesと判断されるまで、ステップS606~S609の処理を繰り返し実行する。そして、第1の分散型電源104A全体で瞬間的に入出力可能な最大電力が偏差を上回る場合(S605でYes)、決定部203は、図6Aの分類処理を終了する。
 但し、図6Aに示される分類方法において、ステップS605~S609の処理は省略することができる。例えば、ステップS602とステップS605の判定に優先度をつけて、ステップS602の優先度が高い場合には、ステップS605以降を省略する。すなわち、図6Aの分類方法によれば、少なくとも第1の分散型電源104Aに分類される分散型電源104の台数を、所定時間内に全ての第1指令値を送信できる範囲内に制限することができる。
 図6Bは、周波数制御装置201が複数の分散型電源104a~104dを、第1の分散型電源104Aと第2の分散型電源104Bとに分類する処理の流れの他の例を示すフローチャートである。図6Bに示されるフローチャートは、ステップS602に代えてステップS610を実行する点と、ステップS605に代えてステップS611(ステップS607に相当する処理)を実行する点と、ステップS607に代えてステップS612(ステップS605に相当する処理)を実行する点で、図6Aに示されるフローチャートと相違する。その他の処理は図6Aと共通するので、再度の説明は省略する。
 すなわち、図6Bに示される分類方法は、第1の分散型電源104Aが瞬間的に入出力可能な最大電力の総和が偏差を上回るように、複数の分散型電源104a~104dを、第1の分散型電源104Aと第2の分散型電源104Bとに分類する。また、図6BのステップS606、S608~S609、S611~S612は、図6Aの場合と同様に省略することができる。
 図7は、周波数制御装置201が行う周波数制御処理のシミュレーション向け電力系統の構成図である。なお、図1と同様の構成要素については同一の符号をつけ、詳細な説明は省略する。図7では、第1の分散型電源901A及び第2の分散型電源901Bに分散型電源が1台ずつ割り当てられている例を示している。
 図8は、周波数制御装置201が行う周波数制御のシミュレーションの前提となる負荷変動を示す図である。図8において、横軸は時間を、縦軸は負荷変動をそれぞれ表している。また、中心線は負荷変動が0(電力消費量=電力供給量)であることを表しており、負荷が中心線を上回る場合は負荷が増加(電力消費量>電力供給量)したことになり、下回る場合は負荷が減少(電力消費量<電力供給量)したことになる。
 図8に示されるように、電力系統の負荷は、時間の経過と共に激しく変動している。なお、電力系統の周波数は、図8の負荷の変動と逆位相になるように変動する。そして、系統管理装置は、この周波数(又は電力)の変動を検出し、周波数制御指令に含める入出力電力を決定する。具体的には、系統管理装置は、負荷が正の場合(負荷が図8の中心線を上回る場合)には正の値の入出力電力を含めた周波数制御指令を送信し、負荷が負の場合(負荷が図8の中心線を下回る場合)には負の値の入出力電力を含めた周波数制御指令を送信する。
 周波数制御装置201は、図8で示される負荷変動によって発生する周波数の変動を制御するために、系統管理装置から周波数制御指令を取得し、取得した周波数制御指令に基づいて第1指令値及び第2指令値を決定し、決定した第1指令値及び第2指令値を第1の分散型電源901A及び第2の分散型電源901Bに送信する。
 次に、図9は、周波数制御装置201が行う周波数制御のシミュレーション結果の一例を示す図であり、周波数制御指令に含まれる入出力電力の推移(実線)と、第1指令値に基づいた第1の分散型電源901Aによる電力の入出力の推移(破線)とを表している。
 図9において、横軸は時間を表している。なお、図9の横軸は図8の横軸と一致している。縦軸は電力の値を表している。中心線は入出力電力及び第1の分散型電源901Aによる電力の入出力が0であることを表している。中心線を上回る場合は、入出力電力が正であり、第1の分散型電源901Aが電力を出力したことになる。中心線を下回る場合は、入出力電力が負であり、第1の分散型電源901Aが電力を入力したことになる。
 図9を参照すると、第1の分散型電源901Aが入出力する電力(破線)は、入出力電力(実線)に追従して変動している。但し、波形の模式的な拡大箇所を参照すれば明らかなように、第1の分散型電源901Aが入出力する電力の絶対値は、入出力電力より若干小さい。
 次に、図10は、周波数制御装置201が行う周波数制御のシミュレーション結果の一例を示す図であり、第2の分散型電源901Bによる電力の入出力の推移を表している。
 図10において、横軸は時間を表している。なお、図10の横軸は図8の横軸と一致している。縦軸は電力の値を示している。図10において、破線は第2指令値に基づいた第2の分散型電源901Bによる電力の入出力の推移を表している。中心線は第2の分散型電源901Bによる電力の入出力が0であることを表しており、中心線を上回る場合は第2の分散型電源901Bが電力を出力したことになり、下回る場合は第2の分散型電源901Bが電力を入力したことになる。
 図11は、周波数制御装置201が行う周波数制御のシミュレーション結果の一例を示す図であり、周波数制御指令に含まれる入出力電力の推移(実線)と、第1の分散型電源901Aによる電力の入出力(図9の破線)及び第2の分散型電源901Bによる電力の入出力(図10の破線)の和の推移(破線)とを表している。
 図11において、横軸は時間を表している。なお、図11の横軸は図8の横軸と一致している。縦軸は電力の値を表している。中心線は、入出力電力及び第1及び第2の分散型電源901A、901Bによる電力の入出力の和が0であることを表している。中心線を上回る場合は、入出力電力が正であり、第1及び第2の分散型電源901A、901Bによる電力の入出力の和が出力方向であることを表している。一方、中心線を下回る場合は、入出力電力が負であり、第1及び第2の分散型電源901A、901Bによる電力の入出力の和が入力方向であることを表している。
 図11の波形の模式的な拡大箇所は、図9の拡大箇所に対応する。これらを比較すると、第1及び第2の分散型電源901A、901Bによる電力の入出力の和の絶対値が入出力電力により近づいていることが分かる。すなわち、周波数制御装置201は、分散型電源による電力の入出力を、周波数制御指令に含まれる入出力電力に高精度に追従させることが可能であることがわかる。
 図12は、周波数制御装置201が行う周波数制御のシミュレーション結果の一例を示す図であり、上記の制御を行った後の電力系統の周波数の変動を表している。図12において、横軸は時間を表している。なお、図12の横軸は図8の横軸と一致している。縦軸は周波数変動を表している。また、図12の縦軸の上限は電力系統の周波数の上限値を表しており、図12の縦軸の下限は電力系統の周波数の下限値を表している。図12において、実線は周波数の変動の推移を表している。
 図12より、周波数の変動は上限及び下限の範囲内で推移しており、周波数制御装置201は、電力系統の周波数を所定の範囲に維持するように、分散型電源による電力の入出力を制御することが可能であることがわかる。
 なお、本実施の形態では機器の具体例として二次電池(蓄電池)を中心に説明した。そして、上述の分散型電源104は、0kW(入出力なし)を基準電力とし、第1指令値又は第2指令値に従って、電力を放電(出力)したり、電力を充電(入力)することにより、電力系統への電力の入出力を調整している。
 しかしながら、本発明はこれに限定されない。例えば、決定部203は、複数の分散型電源104a~104dのうち、充電及び放電の一方のみをさせる蓄電池を第1の分散型電源104Aに分類し、充電及び放電の他方のみをさせる蓄電池を第2の分散型電源104Bに分類してもよい。
 そして、充電のみを行う蓄電池は、基準充電電力より大きい電力を充電(入力)する、或いは、基準充電電力より小さい電力を充電(出力)することにより、電力系統への電力の入出力を調整してもよい。同様に、放電のみを行う蓄電池は、基準放電電力より小さい電力を放電(入力)する、或いは、基準放電電力より大きい電力を放電(出力)することにより、電力系統への電力の入出力を調整してもよい。
 このように分類することにより、1回の周波数制御処理中に、各蓄電池が充放電を繰り返すことがなくなるので、蓄電池の劣化を効果的に抑制することができる。なお、どの蓄電池を充電専用又は放電専用とするかは特に限定されないが、例えば、各蓄電池の現在の蓄電量を取得し、蓄電量の少ない蓄電池を充電専用とし、蓄電量の多い蓄電池を放電専用とすればよい。
 また、周波数制御装置201は、図1の分散型電源104に代えて、例えば、ヒーター、電気温水器等の負荷であっても制御することが可能である。周波数制御装置201は、第1の負荷それぞれに対応する第1指令値を個別送信し、第2の負荷に共通の第2指令値を一斉送信して、第1指令値及び第2指令値に従って第1の負荷及び第2の負荷に消費電力を調整させればよい。
 但し、負荷は、電力を出力することができないため、周波数制御装置201は、例えば、基準値を平均消費電力とし、基準値を中心に第1指令値及び第2指令値を決定し、負荷に追従させるように制御することも可能である。すなわち、負荷は、平均消費電力より大きい電力を消費(入力)する、或いは、平均消費電力より小さい電力を消費(出力)することにより、電力系統への電力の入出力を調整することができる。
 さらに、図1の分散型電源104に代えて、燃料電池等の発電装置であっても電力系統の周波数制御に用いることができる。すなわち、発電装置は、例えば平均発電電力を基準発電電力とし、基準発電電力より小さい電力を発電(入力)する、或いは、基準発電電力より大きい電力を発電(出力)することにより、電力系統への電力の入出力を調整することができる。
 そして、決定部203は、上記のような様々な機器を、その特性に応じて分類してもよい。例えば、決定部203は、電力の消費及び電力の出力(発電)の一方のみが可能な機器(すなわち、負荷又は発電装置)を第1の機器に分類し、電力の消費(充電)及び電力の出力(放電)の両方が可能な機器(すなわち、蓄電池)を第2の機器に分類してもよい。
 そして、周波数制御装置201は、第2指令値に従って蓄電池(第2の機器)に充放電を行わせることにより、電力系統に生じる電力の変動を相殺する。また、周波数制御装置201は、入出力電力と第2の機器の入出力する電力との差分が正の場合に発電装置に発電(電力の出力)を行わせ、入出力電力と第2の機器の入出力する電力との差分が負の場合に負荷に電力を消費(電力の入力)させるように、第1指令値を送信してもよい。
 なお、上記の実施の形態では、第1指令値を電力指令値とし、第2指令値を周波数指令値とした例(図13のケース1)を説明したが、本発明はこれに限定されず、図13に示されるケース1~4のいずれかを採用することができる。
 なお、第1指令値を周波数指令値とする場合(ケース3、4)、第1指令値は、上述の第2指令値と同様に、予め定められた基準周波数に対する周波数変動の上限値及び下限値を特定する情報を含む。そして、この第1指令値を取得した第1の機器は、電力系統の周波数を検出し、電力系統の周波数が上限値を上回る場合に所定の大きさの電力(相殺電力)を入力し、電力系統の周波数が下限値を下回る場合に所定の大きさの電力(相殺電力)を出力する。ケース4において、第2の指令値を周波数指令値とする場合との相違点は、第2指令値が複数の第2の機器に対して共通に決定されるのに対して、第1の指令値は第1の機器それぞれに対して個別に決定される点である。
 また、第2指令値を電力指令値とする場合(ケース2、3)、第2指令値は、電力系統の周波数が基準周波数を外れた場合に入出力すべき相殺電力を特定する情報を含む。そして、この第2指令値を取得した第2の機器は、電力系統の周波数を検出し、電力系統の周波数が基準周波数を上回る場合に相殺電力を入力し、電力系統の周波数が基準周波数を下回る場合に相殺電力を出力する。
 なお、上記の実施の形態では、第2指令値を決定部203が決定し、決定された第2指令値を第2の分散型電源104Bに分類されたm台の分散型電源104に通信部205が一斉送信しているが、これに限らない。つまり、本開示の周波数制御装置は、決定部203が第2指令値を決定すること、または、通信部205が第2指令値を第2の分散型電源104Bに一斉送信することには限定されない。図2および図3の破線の矢印は、通信部205が第2指令値を第2の分散型電源104Bに送信しない場合も含むことを意味する。
 例えば、複数の分散型電源104が予め決定された第2指令値を固定値として記憶していてもよい。つまり、この場合には、複数の分散型電源104が第2指令値を予め保持しており、第2の分散型電源104Bに分類された分散型電源104が当該第2指令値に基づいて電力系統に生じる電力(周波数)の変動を相殺するための電力を入出力してもよい。なお、このように第2指令値が予め分散型電源104に記憶されている場合には、全ての分散型電源104に第2指令値が記憶されていることが好ましいが、必ずしも全ての分散型電源104に記憶されていなくてもよい。例えば、一部の分散型電源104のみに第2指令値が予め記憶されている場合には、当該一部の分散型電源104のみが第2の分散型電源104Bとして分類されるように分類してもよい。また、第2の分散型電源104Bとして分類された分散型電源104のうち、第2指令値が予め記憶されていない分散型電源104のみに第2指令値を送信するようにしてもよい。
 また、例えば、複数の分散型電源104が予め定められたアルゴリズムに基づいて第2指令値を決定してもよい。このときの決定方法は、上述したように決定部203が第2指令値を決定する方法と同様である。
 このとき、決定部203は、第1指令値を、第2指令値に基づいて第2の分散型電源104Bが入出力する電力および周波数制御指令に基づいて決定する。なお、「第2指令値に基づいて第2の分散型電源104Bが入出力する電力」は、電力取得部301により取得された第2の分散型電源104Bが入出力する電力の合計値であってもよいし、第2の分散型電源104Bが入出力する電力の理論値を第2指令値に基づいて決定した値であってもよい。後者の場合に、予め決定された固定値としての第2指令値を周波数制御装置201が保持していてもよいし、予め定められたアルゴリズムに基づいて第2指令値を決定してもよい。
 (その他の実施の形態)
 なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。
 (1)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムで実現され得る。RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
 (2)上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。ROMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、ROMからRAMにコンピュータプログラムをロードし、ロードしたコンピュータプログラムにしたがって演算等の動作することにより、システムLSIは、その機能を達成する。
 (3)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されてもよい。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールには、上記の超多機能LSIが含まれてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有してもよい。
 (4)本発明は、上記に示す方法で実現されてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムで実現してもよいし、コンピュータプログラムからなるデジタル信号で実現してもよい。
 また、本発明は、コンピュータプログラムまたはデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray(登録商標) Disc)、半導体メモリなどに記録したもので実現してもよい。また、これらの記録媒体に記録されているデジタル信号で実現してもよい。
 また、本発明は、コンピュータプログラムまたはデジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送してもよい。
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムにしたがって動作してもよい。
 また、プログラムまたはデジタル信号を記録媒体に記録して移送することにより、またはプログラムまたはデジタル信号をネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施してもよい。
 (5)上記実施の形態及び上記変形例をそれぞれ組み合わせてもよい。
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
 本発明は、分散型電源が連系された電力系統の周波数を制御するための指令値を決定する周波数制御装置等に適用できる。
101 変電所
102 電力線
103,103a,103b,103c,103d 周波数検出点
104,104a,104b,104c,104d 分散型電源
104A,901A 第1の分散型電源
104B,901B 第2の分散型電源
105 通信線
201 周波数制御装置
202 指令取得部
203 決定部
204 送信制御部
205 通信部
301 電力取得部

Claims (18)

  1.  電力系統に接続された、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器と、通信ネットワークを介して前記複数の機器が入出力する電力を管理する周波数制御装置とを備える周波数制御システムにおける電力系統の周波数制御方法であって、
     前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令を取得する指令取得ステップと、
     (i)m台の前記第2の機器が入出力する電力に関する情報を取得し、かつ、(ii)前記指令取得ステップにおいて取得された前記周波数制御指令と、取得したm台の前記第2の機器が入出力する前記電力とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値を決定する決定ステップと、
     前記決定ステップにおいて決定されたn個の前記第1指令値それぞれを対応する前記第1の機器に個別送信する送信制御ステップと、を含む
     周波数制御方法。
  2.  前記決定ステップでは、さらに、前記指令取得ステップにおいて取得された前記周波数制御指令に基づいて、m台の前記第2の機器が入出力する電力を制御する1つの第2指令値を決定し、
     前記送信制御ステップでは、さらに、前記決定ステップにおいて決定された前記第2指令値をm台の前記第2の機器に一斉送信する
     請求項1に記載の周波数制御方法。
  3.  前記周波数制御指令は、前記電力系統に入出力すべき入出力電力の値を含み、
     n個の前記第1指令値それぞれは、対応する前記第1の機器が入出力すべき電力の値を含み、
     前記決定ステップでは、前記周波数制御指令に含まれる前記入出力電力と、前記第2指令値に従ってm台の前記第2の機器が入出力する電力との差分に相当する電力を、n個の前記第1指令値に振り分ける
     請求項2に記載の周波数制御方法。
  4.  前記周波数制御指令は、前記電力系統に入出力すべき入出力電力の値を含み、
     n個の前記第1指令値それぞれは、予め定められた基準周波数に対する周波数変動の上限値及び下限値を含み、前記電力系統の周波数が前記上限値を上回る場合に対応する前記第1の機器に相殺電力を入力させ、前記電力系統の周波数が前記下限値を下回る場合に対応する前記第1の機器に相殺電力を出力させるものであり、
     前記決定ステップでは、n個の前記第1指令値それぞれについて、前記周波数制御指令に含まれる前記入出力電力と、前記第2指令値に従ってm台の前記第2の機器が入出力する電力との差分に相当する電力の絶対値が大きいほど、前記上限値及び前記下限値の差を小さくする
     請求項2に記載の周波数制御方法。
  5.  前記第2指令値は、予め定められた基準周波数に対する周波数変動の上限値及び下限値を含み、前記電力系統の周波数が前記上限値を上回る場合にm台の前記第2の機器に相殺電力を入力させ、前記電力系統の周波数が前記下限値を下回る場合にm台の前記第2の機器に相殺電力を出力させるものであり、
     前記決定ステップでは、前記周波数制御指令に含まれる前記入出力電力の絶対値が大きいほど、前記上限値及び前記下限値の差を小さくする
     請求項3又は4に記載の周波数制御方法。
  6.  前記第2指令値は、予め定められた基準周波数を外れた場合に入出力すべき相殺電力の値を含み、前記電力系統の周波数が前記基準周波数を上回る場合にm台の前記第2の機器に前記相殺電力を入力させ、前記電力系統の周波数が前記基準周波数を下回る場合にm台の前記第2の機器に前記相殺電力を出力させるものであり、
     前記決定ステップでは、前記周波数制御指令で特定される前記電力系統に入出力すべき電力の絶対値が大きいほど、前記相殺電力の値を大きくする
     請求項3又は4に記載の周波数制御方法。
  7.  前記周波数制御指令は、前記電力系統に入出力すべき入出力電力の値を含み、
     前記決定ステップでは、n台の前記第1の機器が入出力可能な最大電力の総和が、前記周波数制御指令に含まれる前記入出力電力と、前記第2指令値に従ってm台の前記第2の機器が入出力する電力との差分に相当する電力を上回るように、前記複数の機器を前記第1の機器又は前記第2の機器に分類する
     請求項2~6のいずれか1項に記載の周波数制御方法。
  8.  前記指令取得ステップでは、所定の時間間隔毎に前記周波数制御指令を取得し、
     前記決定ステップでは、前記指令取得ステップにおいて少なくとも最初に取得された前記周波数制御指令に基づいて、前記第2指令値を決定する
     請求項2~7のいずれか1項に記載の周波数制御方法。
  9.  前記決定ステップでは、前記複数の機器のうち、
     所定時間内に前記第1指令値を送信可能なn台の前記機器を前記第1の機器に分類し、
     前記第1の機器に分類されなかったm台の前記機器を前記第2の機器に分類する
     請求項1~8のいずれか1項に記載の周波数制御方法。
  10.  前記複数の機器は、複数の蓄電池を含み、
     前記複数の蓄電池のうち、
     充電及び放電の一方のみをさせる前記蓄電池を第1の機器に分類し、
     充電及び放電の他方のみをさせる前記蓄電池を第2の機器に分類する
     請求項1~8のいずれか1項に記載の周波数制御方法。
  11.  前記複数の機器のうち、
     電力の消費及び電力の出力の一方のみが可能な前記機器を前記第1の機器に分類し、
     電力の消費及び電力の出力の両方が可能な前記機器を前記第2の機器に分類する
     請求項1~8のいずれか1項に記載の周波数制御方法。
  12.  前記指令取得ステップでは、所定の時間間隔毎に前記周波数制御指令を取得し、
     前記決定ステップでは、前記指令取得ステップで前記周波数制御指令が取得されるたびに、当該周波数制御指令に基づいて、n台の前記第1の機器それぞれに対応するn個の前記第1指令値を決定する
     請求項1~11のいずれか1項に記載の周波数制御方法。
  13.  前記指令取得ステップでは、前記周波数制御指令を生成することにより取得する
     請求項1~12のいずれか1項に記載の周波数制御方法。
  14.  電力系統に接続された、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器と、通信ネットワークを介して前記複数の機器が入出力する電力を管理する周波数制御装置とを備える周波数制御システムであって、
     前記周波数制御装置は、
     前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令を取得する指令取得部と、
     (i)m台の前記第2の機器が入出力する電力を取得し、かつ、(ii)前記指令取得部で取得された前記周波数制御指令と、取得したm台の前記第2の機器が入出力する前記電力とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値を決定する決定部と、
     前記決定部で決定されたn個の前記第1指令値それぞれを対応する前記第1の機器に個別送信する送信制御部とを備え、
     前記第1の機器は、前記周波数制御装置から取得した第1指令値に従って電力系統に電力を入出力する
     周波数制御システム。
  15.  請求項14に記載の周波数制御システムに用いられる分散型電源。
  16.  電力系統の周波数を制御する周波数制御システムにおいて、サーバによって管理され、かつ、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器からなる分散型電源であって、
     m台の前記第2の機器が入出力する電力と、前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値として前記サーバにおいて決定された電力指令値を前記サーバから受信し、
     前記サーバから受信した前記電力指令値に対応する電力を前記電力系統に入出力する
     分散型電源。
  17.  電力系統の周波数を制御する周波数制御システムにおいて、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器が入出力する電力を通信ネットワークを介して管理する周波数制御装置であって、
     前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令を取得する指令取得部と、
     (i)m台の前記第2の機器が入出力する電力を取得し、かつ、(ii)前記指令取得部で取得された前記周波数制御指令と、取得したm台の前記第2の機器が入出力する前記電力とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値を決定する決定部と、
     前記決定部で決定されたn個の前記第1指令値それぞれを対応する前記第1の機器に個別送信する送信制御部とを含む
     周波数制御装置。
  18.  コンピュータに、電力系統に接続された、n(nは1以上の自然数)台の第1の機器および前記第1の機器とは異なるm(mは1以上の自然数)台の第2の機器を含む複数の機器に電力を入出力させるプログラムであって、
     前記電力系統の周波数の変動を所定の範囲に収めるための周波数制御指令を取得する指令取得ステップと、
     (i)m台の前記第2の機器が入出力する電力を取得し、かつ、(ii)前記指令取得ステップにおいて取得された前記周波数制御指令と、取得したm台の前記第2の機器が入出力する前記電力とに基づいて、n台の前記第1の機器それぞれが入出力する電力を制御するn個の第1指令値を決定する決定ステップと、
     前記決定ステップにおいて決定されたn個の前記第1指令値それぞれを対応する前記第1の機器に個別送信する送信制御ステップとを、コンピュータに実行させる
     プログラム。
PCT/JP2013/003083 2012-05-15 2013-05-15 周波数制御方法、周波数制御システム、周波数制御装置、及びプログラム WO2013172022A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/131,277 US9575501B2 (en) 2012-05-15 2013-05-15 Method of controlling frequency, frequency control system, frequency control apparatus, and program
JP2013547434A JP6112459B2 (ja) 2012-05-15 2013-05-15 周波数制御方法、周波数制御システム、周波数制御装置、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-111643 2012-05-15
JP2012111643 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013172022A1 true WO2013172022A1 (ja) 2013-11-21

Family

ID=49583450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003083 WO2013172022A1 (ja) 2012-05-15 2013-05-15 周波数制御方法、周波数制御システム、周波数制御装置、及びプログラム

Country Status (3)

Country Link
US (1) US9575501B2 (ja)
JP (1) JP6112459B2 (ja)
WO (1) WO2013172022A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207862A (ja) * 2013-02-08 2014-10-30 日本電気株式会社 電池制御装置、電池制御システム、蓄電装置、制御装置、電池制御方法、電池制御支援方法およびプログラム
WO2016017424A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 制御装置、機器制御装置、通知方法および記録媒体
WO2016017425A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 制御装置、蓄電装置、制御支援装置、制御方法、制御支援方法および記録媒体
WO2016017426A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 制御装置、機器制御装置、制御方法、通知受信方法、通知方法および記録媒体
JP2016063552A (ja) * 2014-09-12 2016-04-25 株式会社東芝 エネルギー管理装置、エネルギー管理方法、及びエネルギー管理プログラム
JP2016082741A (ja) * 2014-10-17 2016-05-16 株式会社日立製作所 電力系統制御システム、電力系統制御方法、および電力変換装置
JP6510741B1 (ja) * 2018-10-23 2019-05-08 三菱電機株式会社 系統システム、制御装置及び系統システムの制御方法
JP2019525718A (ja) * 2016-08-29 2019-09-05 アレリオン エナジー システムズ アクチエボラグAlelion Energy Systems AB 電力網に予備電力を提供するための方法およびシステム
JP7044191B1 (ja) 2021-07-09 2022-03-30 富士電機株式会社 分散型電源管理装置、分散型電源管理方法および分散型電源管理プログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016063739A1 (ja) * 2014-10-23 2017-08-03 日本電気株式会社 制御装置、蓄電装置、制御方法および記録媒体
US9742411B1 (en) 2015-08-24 2017-08-22 University Of South Florida Simultaneous economic dispatch and frequency regulation of power systems
US9946231B2 (en) * 2015-09-01 2018-04-17 The Florida International University Board Of Trustees Detection of and responses to time delays in networked control systems
JP7328103B2 (ja) 2019-09-26 2023-08-16 京セラ株式会社 電力管理サーバ及び電力管理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020916A (ja) * 2003-06-26 2005-01-20 Tm T & D Kk 周波数調整システム、方法及びプログラム
JP2007124797A (ja) * 2005-10-27 2007-05-17 Toshiba Corp 自立運転制御装置および制御方法
JP2007166860A (ja) * 2005-12-16 2007-06-28 Toshiba Corp 連系線潮流制御装置
JP2008193817A (ja) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738227B2 (ja) 2002-03-20 2006-01-25 関西電力株式会社 二次電池を用いたアンシラリーサービス提供方法およびシステム
JP2008141926A (ja) 2006-12-05 2008-06-19 Hitachi Ltd 家庭用電力蓄積装置、車載用電力蓄積装置、電力供給・蓄積システム及び蓄電制御方法
PL2660511T3 (pl) * 2010-12-27 2019-11-29 Mitsubishi Hitachi Power Sys Urządzenie do regulacji natężenia przepływu kondensatu dla elektrowni, oraz sposób regulacji
EP4071995A1 (en) * 2012-07-06 2022-10-12 GE Energy Power Conversion Technology Ltd. Power distribution systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020916A (ja) * 2003-06-26 2005-01-20 Tm T & D Kk 周波数調整システム、方法及びプログラム
JP2007124797A (ja) * 2005-10-27 2007-05-17 Toshiba Corp 自立運転制御装置および制御方法
JP2007166860A (ja) * 2005-12-16 2007-06-28 Toshiba Corp 連系線潮流制御装置
JP2008193817A (ja) * 2007-02-06 2008-08-21 Tokyo Institute Of Technology 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10079501B2 (en) 2013-02-08 2018-09-18 Nec Corporation Battery control device, battery control system, battery control method, and recording medium
JP2014207862A (ja) * 2013-02-08 2014-10-30 日本電気株式会社 電池制御装置、電池制御システム、蓄電装置、制御装置、電池制御方法、電池制御支援方法およびプログラム
US10784702B2 (en) 2013-02-08 2020-09-22 Nec Corporation Battery control device, battery control system, battery control method,and recording medium
JP2018130021A (ja) * 2013-02-08 2018-08-16 日本電気株式会社 電池制御装置、制御装置、電池制御システム、電池制御方法および電池制御支援方法
WO2016017424A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 制御装置、機器制御装置、通知方法および記録媒体
WO2016017425A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 制御装置、蓄電装置、制御支援装置、制御方法、制御支援方法および記録媒体
WO2016017426A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 制御装置、機器制御装置、制御方法、通知受信方法、通知方法および記録媒体
JPWO2016017425A1 (ja) * 2014-07-31 2017-05-18 日本電気株式会社 制御装置、蓄電装置、制御支援装置、制御方法、制御支援方法および記録媒体
JPWO2016017426A1 (ja) * 2014-07-31 2017-05-18 日本電気株式会社 制御装置、機器制御装置、制御方法、通知受信方法、通知方法および記録媒体
JPWO2016017424A1 (ja) * 2014-07-31 2017-05-18 日本電気株式会社 制御装置、機器制御装置、通知方法および記録媒体
JP2016063552A (ja) * 2014-09-12 2016-04-25 株式会社東芝 エネルギー管理装置、エネルギー管理方法、及びエネルギー管理プログラム
JP2016082741A (ja) * 2014-10-17 2016-05-16 株式会社日立製作所 電力系統制御システム、電力系統制御方法、および電力変換装置
JP2019525718A (ja) * 2016-08-29 2019-09-05 アレリオン エナジー システムズ アクチエボラグAlelion Energy Systems AB 電力網に予備電力を提供するための方法およびシステム
JP6510741B1 (ja) * 2018-10-23 2019-05-08 三菱電機株式会社 系統システム、制御装置及び系統システムの制御方法
WO2020084688A1 (ja) * 2018-10-23 2020-04-30 三菱電機株式会社 系統システム、制御装置及び系統システムの制御方法
JP7044191B1 (ja) 2021-07-09 2022-03-30 富士電機株式会社 分散型電源管理装置、分散型電源管理方法および分散型電源管理プログラム
JP2023010390A (ja) * 2021-07-09 2023-01-20 富士電機株式会社 分散型電源管理装置、分散型電源管理方法および分散型電源管理プログラム

Also Published As

Publication number Publication date
US20140222239A1 (en) 2014-08-07
US9575501B2 (en) 2017-02-21
JP6112459B2 (ja) 2017-04-12
JPWO2013172022A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6112459B2 (ja) 周波数制御方法、周波数制御システム、周波数制御装置、及びプログラム
US11164111B2 (en) Electric power management system for reducing large and rapid change in power received from electricity delivery system
JP5847927B2 (ja) 電圧制御装置、電圧制御方法、及び電力調整装置
JP6298465B2 (ja) 電力管理装置、電力管理システム、サーバ、電力管理方法、プログラム
US10421370B2 (en) Coordinated control method for a distribution network with DER and EV and control system thereof
KR101678926B1 (ko) 다중 에너지저장장치 시스템의 계통 주파수 제어 방법 및 그를 위한 시스템
KR101769776B1 (ko) 주파수 제어 시스템 및 방법
WO2011122681A1 (ja) 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
WO2016114147A1 (ja) 蓄電池制御システム、蓄電池制御方法、及び、記録媒体
US20200389029A1 (en) Power management system for customer connected to power network and having load apparatus and power storage apparatus
KR101566296B1 (ko) 전력계통에서의 주파수 제어 시스템
KR102378905B1 (ko) 에너지 저장 시스템
JPWO2017149618A1 (ja) 制御装置、発電制御装置、制御方法、システム、及び、プログラム
CN112310990A (zh) 一种基于荷电状态的直流微电网多储能系统均衡控制方法
US10074984B2 (en) Electric power control system
JP2016149839A (ja) 電力貯蔵装置の制御装置、風力発電システムおよび電力貯蔵装置の制御方法
JP6210419B2 (ja) 電力制御方法および電力制御装置
EP4318692A1 (en) Power generation system control method, control device, and power generation system
CN115864459A (zh) 结合鲁棒优化的构网型储能容量配置方法及装置
JP2017022807A (ja) 受電電力制御方法、受電電力制御装置および電気機器
JP7507388B1 (ja) 電力システムの運転方法、および電力システムの制御装置
WO2024095629A1 (ja) 電力システムの運転方法、および電力システムの制御装置
JP6650606B2 (ja) 逆潮流制御システム、蓄電装置および逆潮流制御方法
CN114884137B (zh) 一种功率控制方法、装置、电子设备及存储介质
JP2017011938A (ja) グリッド制御装置、グリッド制御システム及びグリッド制御プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013547434

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14131277

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790645

Country of ref document: EP

Kind code of ref document: A1