WO2014129467A1 - 蒸気タービンのバルブ制御装置及びそのバルブ制御方法 - Google Patents

蒸気タービンのバルブ制御装置及びそのバルブ制御方法 Download PDF

Info

Publication number
WO2014129467A1
WO2014129467A1 PCT/JP2014/053798 JP2014053798W WO2014129467A1 WO 2014129467 A1 WO2014129467 A1 WO 2014129467A1 JP 2014053798 W JP2014053798 W JP 2014053798W WO 2014129467 A1 WO2014129467 A1 WO 2014129467A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
valve
control
valves
bypass
Prior art date
Application number
PCT/JP2014/053798
Other languages
English (en)
French (fr)
Inventor
宣人 中田
青木 俊夫
政明 松本
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to EP14754322.7A priority Critical patent/EP2960443B1/en
Priority to US14/768,544 priority patent/US10037042B2/en
Publication of WO2014129467A1 publication Critical patent/WO2014129467A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/06Shutting-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • Embodiment of this invention is related with the valve control technique of a steam turbine.
  • the rotational speed of the turbine is maintained constant by maintaining a balance between the mechanical input from the turbine and the electrical output of the generator in a steady state.
  • Turbine high-speed valve control is known as a method for preventing this situation. This is because when a power system failure occurs, the steam control valve and the intercept valve that allow steam to flow into the turbine are fully fully closed, and the steam flow into the turbine is temporarily shut off, thereby rotating the turbine speed. It is a technique to suppress the rise of
  • Turbine high-speed valve control temporarily shuts off the steam that temporarily flows into the turbine in order to close all steam control valves and intercept valves quickly. For this reason, when returning to the steady state from the occurrence of an accident, the return of the mechanical torque output of the turbine due to steam is delayed, and there is a problem that the effective power supplied to the power system is greatly reduced.
  • Patent Document 1 adjusts a control value related to the opening degree of a steam control valve and an intercept valve, and narrows down the valve opening degree by a servo operation that receives this control value. For this reason, there is a problem that there is a time delay until the actual opening of the valve follows the control value, and there is a lack of quick response to an accident.
  • the present invention has been made in consideration of such circumstances, and in the event of a power system failure, a valve control device for a steam turbine that suppresses a decrease in active power and ensures control stability, and its An object is to provide a valve control method.
  • the steam turbine valve control device has an accident detection unit that detects the occurrence of an electric power system accident and a plurality of steam control valves that adjust the amount of steam flowing into the steam turbine. And a normal control circuit that continues normal pressure or speed control by the steam control valve that is not selected, and a first control unit that selects the steam control valve to be quickly closed. .
  • a valve control device for a steam turbine and a valve control method therefor that suppress a decrease in active power and ensure control stability when a power system failure occurs.
  • the block diagram which shows the boiling water nuclear power plant which concerns on this embodiment The block diagram which shows the normal control circuit applied to this embodiment.
  • FIG. 1 is a configuration diagram showing a boiling water nuclear power plant according to the present embodiment.
  • a nuclear fission reaction occurs in the reactor pressure vessel 16, and main steam is generated by the generated thermal energy.
  • the high-pressure turbine 18 inputs the generated main steam, converts the thermal energy of the steam into kinetic energy, and outputs high-pressure turbine exhaust.
  • a steam control valve 13 is provided on the input side of the high-pressure turbine 18 to control the amount of main steam flowing into the high-pressure turbine 18. In FIG. 1, four steam control valves 13 are configured, but the number of steam control valves 13 is not limited to that in FIG. 1.
  • the moisture separator / heater 17 removes the moisture of the steam contained in the high-pressure turbine exhaust exhausted from the high-pressure turbine 18, heats it, and inputs it to the low-pressure turbine 19.
  • the low-pressure turbine 19 inputs high-pressure turbine exhaust, converts its thermal energy into kinetic energy, and outputs low-pressure turbine exhaust.
  • An intercept valve 15 is provided on the input side of the low-pressure turbine 19 to control the steam inflow amount of the high-pressure turbine exhaust input from the moisture separation heater 17 to the low-pressure turbine 19.
  • the intercept valve 15 is comprised by six, the quantity of the intercept valve 15 is not limited to FIG.
  • the generator 20 is disposed coaxially with the high-pressure turbine 18 and the low-pressure turbine 19 and converts the kinetic energy of the turbine by steam into electric energy.
  • the low-pressure turbine exhaust output from the low-pressure turbine 19 is condensed by the condenser 21 and returned to the reactor pressure vessel 16 via the condensate pump 22 and the feed water pump 23.
  • a bypass valve 14 is provided on the output side of the reactor pressure vessel 16 to control the amount of surplus steam that flows from the reactor pressure vessel 16 to the condenser 21.
  • the bypass valve 14 is comprised by six, the quantity of the bypass valve 14 is not limited to FIG.
  • the valve control device 10 includes a normal control circuit 11 and a high speed valve control circuit 12.
  • the normal control circuit 11 inputs the reactor pressure value detected by the pressure detector 24 and the turbine rotation speed detected by the turbine rotation speed detector 25. And based on these detected values, the opening degree of the steam control valve 13 and the bypass valve 14 is adjusted, and the amount of steam flowing into each valve is controlled.
  • the normal control circuit 11 controls the reactor pressure or the turbine rotation speed at the rated operation or at the start / stop.
  • the high-speed valve control circuit 12 performs opening / closing control of the steam control valve 13 and the bypass valve 14 when a power system failure occurs.
  • FIG. 2 shows a specific configuration of the normal control circuit 11.
  • symbol is attached
  • the pressure detector 24 detects the pressure in the reactor pressure vessel 16 (FIG. 1) and outputs a detection signal to the deviation calculator 27.
  • the deviation calculator 27 subtracts the input detection signal and the pressure signal preset in the pressure setter 26 and outputs the result to the multiplier 28.
  • the multiplier 28 calculates the total steam flow rate 100 by multiplying the subtracted signal by a gain.
  • the total steam flow rate 100 indicates a steam flow rate required to flow out of the reactor pressure vessel 16 necessary to keep the pressure of the reactor pressure vessel 16 constant.
  • the turbine rotation speed detector 25 detects the rotation speed of the turbine and outputs a detection signal to the deviation calculator 30.
  • the deviation calculator 30 subtracts the input detection signal and the speed signal preset in the rotation speed setter 29 and outputs the result to the multiplier 31.
  • the multiplier 31 obtains a speed deviation signal by multiplying the subtracted signal by a gain.
  • the adder 33 adds the speed deviation signal and the load signal set by the load setting unit 32 to calculate a speed load control signal.
  • the maximum steam flow rate setting device 34 is provided to limit the total flow rate of steam flowing from the reactor pressure vessel 16 to the steam control valve 13 and the bypass valve 14.
  • the low value selector 35 is most determined from the total steam flow rate 100, the steam amount when the turbine is rotationally controlled by the speed represented by the speed load control signal, and the steam amount represented by the setting signal of the maximum steam flow setting device 34. Select a low value signal.
  • the selected signal is output to the steam control valve 13 (13a to 13d) as a steam control valve flow rate command 101.
  • Each of the four steam control valves 13a to 13d is provided with a flow rate-opening degree converter 36 and an opening speed limiter 37, and includes a servo valve 38.
  • the flow rate-opening degree converter 36 converts the steam control valve flow rate command 101 output from the low value selector 35 into an opening degree command value and outputs it to the opening speed limiter 37.
  • the opening speed limiter 37 sets an upper limit value for the opening speed of the steam control valve 13. When the opening degree of the four steam control valves 13a to 13d is rapidly adjusted at the same time, the hydraulic pressure supply of the servo valve 38 may be insufficient. For this reason, the opening speed limiter 37 adjusts the opening speed of each steam control valve 13 to prevent the hydraulic pressure supply of the servo valve 38 from decreasing.
  • the servo valve 38 receives the opening command value via the opening speed limiter 37, and adjusts the valve opening of the steam control valve 13 by changing the supply amount of the control oil according to this control amount. I do.
  • the deviation calculator 39 subtracts the total steam flow rate 100 and the steam control valve flow rate command 101 to calculate the bypass valve flow rate command 102.
  • Each of the six bypass valves 14a to 14f is provided with a flow rate-opening degree converter 40 and includes a servo valve 41.
  • the flow rate-opening degree converter 40 converts the bypass valve flow rate command 102 into an opening degree command value.
  • the servo valve 41 receives the opening command value from the flow rate-opening converter 40, and adjusts the valve opening of the bypass valve 14 by changing the supply amount of the control oil according to the control amount. Note that the flow rate-opening converter 40 adds setting parameters for sequentially operating the six servo valves 41 to the opening command value.
  • the control operation at the rated operation of the plant will be described.
  • the value of the load setting device 32 is set larger than the actual load, and the low value selector 35 selects the total steam flow rate 100.
  • the reactor pressure is controlled by adjusting the opening of the steam control valve 13.
  • the normal control circuit 11 adjusts the opening degree of the steam control valve 13 and the bypass valve 14 to control the normal reactor pressure or turbine rotation speed.
  • the opening degree correction unit 42 and the opening speed holding unit 43 will be described later.
  • FIG. 3 shows the configuration of the high-speed valve control circuit 12.
  • symbol is attached
  • the high-speed valve control circuit 12 includes an accident detection unit 44, a first selection unit 45, and a second selection unit 46.
  • the accident detection unit 44 detects the occurrence of a power system accident by, for example, a decrease in the total output voltage of the generator or a decrease in the output current, and information about the scale, location, and magnitude of the accident is first used as the accident detection signal 103.
  • the data is output to the selection unit 45.
  • the first selection unit 45 inputs the accident detection signal 103 and selects the steam control valve 13 to be quickly closed according to the scale, location, and size of the power system accident.
  • the 1st selection part 45 presets the quantity of the steam control valve 13 made to close rapidly according to the scale etc. of an electric power system accident. Then, the first selection unit 45 outputs a quick closing signal 104 to the selected steam control valve 13.
  • Each of the steam control valves 13a to 13d is provided with an off-delay timer 47, and includes a steam control valve solenoid valve 48.
  • the off-delay timer 47 is a timer that outputs a reset signal when a certain period of time elapses when the quick closing signal 104 is reset from the input state. Therefore, it does not operate when the sudden closing signal 104 is in the input state.
  • the solenoid valve 48 for steam control valve is an electromagnetic valve that is excited and rapidly closes the steam control valve 13 when the quick closing signal 104 is input. Therefore, the steam control valves 13a and 13b selected by the first selection unit 45 are suddenly closed when the steam control valve electromagnetic valve 48 is excited when the quick close signal 104 is input.
  • control oil that controls the selected steam control valves 13a and 13b is rapidly drained and disconnected from the control by the servo valve 38 (FIG. 2).
  • the first selection unit 45 outputs a selected steam control valve opening change command 105 to the normal control circuit 11.
  • This selected steam control valve opening change command 105 is input to the flow rate-opening converter 36 (FIG. 2) of the normal control circuit 11, and the opening of the steam control valves 13a, 13b that are suddenly closed is set to the actual control value. Forcibly change to 0% according to the opening.
  • the normal control circuit 11 controls the normal reactor pressure or turbine rotation speed by the steam control valves 13c and 13d that are not rapidly closed by the first selection unit 45 when a power system fault occurs.
  • the overspeed of the turbine can be suppressed by rapidly closing only the steam control valves 13a and 13b selected by the first selection unit 45. Further, by closing the steam control valves 13a and 13b by using the rapidly operating solenoid valve 48 for the steam control valve, it is possible to immediately cope with a power system failure.
  • the second selection unit 46 selects the bypass valve 14 to be opened rapidly based on the number of the steam control valves 13 that are rapidly closed.
  • FIG. 4 shows a configuration diagram of the second selection unit 46.
  • the second selection unit 46 includes an arithmetic circuit 51 and a bypass valve selection circuit 52.
  • the arithmetic circuit 51 inputs a steam control valve selection number 106 indicating the number of the steam control valves 13 that are rapidly closed from the first selection unit 45. Then, the number of bypass valves 14 having the same capacity corresponding to the steam control valve 13 to be quickly closed is calculated using the equation (1) in FIG.
  • the bypass valve selection circuit 52 inputs the number of bypass valves 14 to be opened rapidly, and selects the bypass valve 14 to be opened rapidly based on this number. Then, the bypass valve selection circuit 52 outputs the rapid opening signal 107 to the bypass valve 14.
  • Each of the six bypass valves 14a to 14f is provided with an off-delay timer 49, and includes a bypass valve electromagnetic valve 50.
  • the off-delay timer 49 is a timer that outputs a reset signal when a certain time elapses when the rapid opening signal 107 is reset from the input state. Therefore, it does not operate when the rapid opening signal 107 is in the input state.
  • the bypass valve electromagnetic valve 50 is an electromagnetic valve that is excited and rapidly opens the bypass valve 14 when the rapid opening signal 107 is input. Accordingly, the bypass valves 14a to 14c opened rapidly by the second selector 46 are opened rapidly when the bypass valve electromagnetic valve 50 is excited by the input of the rapid opening signal 107.
  • the second selection unit 46 outputs a selected bypass valve opening change command 108 to the normal control circuit 11.
  • the selected bypass valve opening change command 108 is input to the flow rate-opening converter 40 (FIG. 2) of the normal control circuit 11, and the opening of the selected bypass valves 14a to 14c is changed to the actual opening. At the same time, it is forcibly changed to 100%.
  • the normal control circuit 11 performs normal reactor pressure control using the bypass valves 14d to 14f that are not opened rapidly by the second selection unit 46 when a power system fault occurs.
  • the normal control circuit 11 can stably control the reactor pressure even when a power accident occurs by performing normal pressure control using the bypass valves 14d to 14f that are not selected by the second selection unit 46. it can.
  • the quick closing signal 104 output from the first selection unit 45 is reset.
  • the off-delay timer 47 corresponding to the steam control valves 13a and 13b that are suddenly closed sequentially outputs a reset signal to the solenoid valve 48 for steam control valve when a predetermined time elapses when the quick-close signal 104 is reset. .
  • the steam control valves 13a and 13b are sequentially shifted to the operation by the servo valve, so that the hydraulic pressure of the servo valve 38 can be prevented from being lowered.
  • the selected steam control valve opening change command 105 is similarly reset. For this reason, the opening degree command that has been forced to be 0% is returned to the opening degree command obtained by converting the steam control valve flow rate command 101 by the flow rate-opening degree converter 36 (FIG. 2).
  • the steam control valves 13a and 13b that have been suddenly closed open from the closed state in accordance with the opening command value.
  • the steam control valve 13 opens at an upper limit speed determined by the opening speed limiter 37.
  • the quick opening signal 107 output from the second selection unit 46 is also reset.
  • the off-delay timer 49 corresponding to the bypass valves 14a to 14c that are rapidly opened sequentially outputs reset signals to the bypass valve solenoid valve 50 when a predetermined time elapses due to the rapid opening signal 107 being reset.
  • off-delay timer 49 starts outputting the reset signal to the bypass valve solenoid valve 50 in synchronization with the steam control valve solenoid valve 48 first receiving the reset signal of the sudden close signal 104. Is set to
  • the selected bypass valve opening change command 108 is similarly reset. For this reason, the opening degree command forcibly set to the opening degree 100% is returned to the opening degree command obtained by converting the bypass valve flow rate command 102 by the flow rate-opening degree converter 40 (FIG. 2).
  • bypass valves 14a to 14c that have been suddenly opened are closed from the open state according to the opening command value by the normal control circuit 11.
  • the bypass valves 14a to 14c that have been suddenly opened are closed from the open state in synchronism with the opening of the steam control valves 13a and 13b that have been suddenly closed from the closed state.
  • the balance of the amount of steam flowing into the turbine side is maintained. Thereby, the disturbance with respect to normal control can be prevented.
  • the opening degree correction unit 42 (FIG. 2) will be described.
  • the opening degree correction unit 42 is in an open state according to the valve opening degree of the steam control valves 13a and 13b that shift from the closed state to the open state when all the steam control valves 13 and the bypass valves 14 are returned to the normal control.
  • the valve opening of the bypass valves 14a to 14c that shift from the closed state to the closed state is corrected.
  • FIG. 5A shows a specific configuration of the opening degree correction unit 42.
  • the opening degree correction unit 42 includes a steam flow rate calculation circuit 53, an opening degree-flow rate converter 54, an adder 55, and a deviation calculator 56.
  • the steam flow calculation circuit 53 inputs the total steam flow 100 (FIG. 2) and the steam control valve selection number 106 (FIG. 3).
  • the steam flow rate to be flowed is controlled by the steam control valves 13a and 13b opened from the closed state and the bypass valves 14a to 14c closed from the opened state. calculate.
  • the calculated steam flow rate is output to the deviation calculator 56 as a reset steam flow rate signal 110.
  • the opening-flow rate converter 54 receives the suddenly closed steam control valve opening signal 109 related to the actual opening of the steam control valves 13a, 13b that are opened from the closed state, and converts them into a steam flow rate. .
  • the adder 55 adds these steam flow rates to calculate the steam flow rate actually flowing through the steam control valves 13a and 13b. This steam flow rate is output to the deviation calculator 56 as a rapid closing steam control valve flow rate signal 111.
  • the deviation calculator 56 subtracts the reset steam flow signal 110 and the quick closing steam control valve flow signal 111 to obtain a bypass valve flow command 112.
  • FIG. 5B is a graph showing each steam flow rate signal related to the opening degree correction unit 42 in time series. As indicated by the suddenly closed steam control valve flow signal 111, the steam control valves 13a and 13b that have been rapidly closed gradually increase the amount of steam that flows in as they open from the closed state.
  • the bypass valve flow rate command 112 gradually decreases in accordance with the rapidly closed steam control valve flow rate signal 111 in order to secure the reset steam flow rate signal 110 calculated from the total steam flow rate 100.
  • the opening correction unit 42 corrects the valve opening of the bypass valves 14a to 14c so as to match the amount of steam gradually flowing into the turbine side from the steam control valves 13a and 13b.
  • the disturbance to the reactor pressure is suppressed to a minimum by balancing the steam flow rate between the steam control valves 13a and 13b that are opened and the bypass valves 14a to 14c that are closed by the opening correction unit 42. However, it is possible to return to normal control.
  • FIG. 6 shows a timing chart of the opening operation of the steam control valve 13 and the bypass valve 14 at the time of a power system failure.
  • the rapid closing signal 104 and the rapid opening signal 107 are established (turned on) when a power system fault occurs, and are reset (turned off) when the accident is recovered (FIG. 6C).
  • bypass valves 14a to 14c are suddenly opened.
  • bypass valves 14c to 14f that are not rapidly opened maintain normal pressure control.
  • the bypass valves 14a to 14c are sequentially closed from the open state in synchronization with the steam control valve 13a that starts the opening operation first (FIG. 6E). ).
  • bypass valves 14a to 14c are closed by balancing the flow rate of the steam flowing into the steam control valves 13a and 13b that are opened by the operation of the opening degree correction unit 42 (FIG. 6E). ).
  • the opening speed holding unit 43 holds the valve opening degrees of the steam control valves 13a and 13b that shift from the closed state to the open state according to the valve opening degrees of the steam control valves 13c and 13d that are normally controlled.
  • FIG. 7 shows a specific configuration of the opening speed holding unit 43.
  • the opening speed holding unit 43 includes a change rate converter 57, a comparator 58, on-delay timers 59 and 62, a logical negation calculator 60, and a holding circuit 61.
  • the change rate converter 57 inputs the actual valve opening of the steam control valves 13c and 13d that are normally controlled without being suddenly closed as a normal steam control valve opening signal 113 when a power system fault occurs. . Then, the rate of change is calculated from these opening degree signals and output to the comparator 58.
  • the comparator 58 When the opening degree change rate of the steam control valves 13c and 13d is lower than a predetermined value, the comparator 58 outputs a establishment signal to the on-delay timer 59, assuming that the steam control valves 13c and 13d are operating in the closing direction. .
  • the on-delay timer 59 outputs a closing operation signal 114 to the holding circuit 61 when the establishment signal is input and continues for a predetermined time or longer.
  • the holding circuit 61 When the closing operation signal 114 is input, the holding circuit 61 outputs the opening degree holding signal 115 to the opening speed limiter 37 (FIG. 2) corresponding to the steam control valves 13 a and 13 b that are shifted from the closed state to the open state. To do.
  • the opening speed limiter 37 to which the opening degree holding signal 115 is input changes the opening speed upper limit value to zero. Thereby, the opening degree of the steam control valves 13a and 13b which are shifting from the closed state to the open state is maintained.
  • the establishment signal by the comparator 58 is turned off.
  • the establishment signal is output from the logical negation calculator 60 to the on-delay timer 62.
  • the on-delay timer 62 outputs a reset signal of the closing operation signal 114 to the holding circuit 61 when the establishment signal from the logical negation calculator 60 is input and continues for a predetermined time or longer.
  • the holding circuit 61 that has input the reset signal outputs a reset signal of the opening degree holding signal 115 to the opening speed limiter 37. Thereby, the setting of the opening speed upper limit value is reset, and the steam control valves 13a and 13b restart the opening operation.
  • FIG. 8 shows a timing chart of the opening operation of the steam control valve 13 and the bypass valve 14 related to the opening speed holding unit 43. A case where the turbine rotational speed increases after the power system accident is recovered and reset (FIG. 8A) will be examined.
  • the opening degree of the steam control valves 13a and 13b opened from the closed state is maintained by the operation of the opening speed holding unit 43.
  • the steam control valves 13c and 13d do not operate in the closing direction, the steam control valves 13a and 13b resume the opening operation (FIG. 8B).
  • bypass valves 14a, 14b, and 14c (not shown) that have been closed from the open state have their openings adjusted by the opening correction unit 42 when the opening of the steam control valves 13a and 13b is maintained. Hold. Then, the closing operation is restarted as the steam control valves 13a and 13b open.
  • the bypass valves 14d to 14f maintain normal control (FIG. 8C).
  • the first selection unit 45 for selecting the steam control valve 13 to be quickly closed and the bypass valve 14 to be rapidly opened are selected based on the number of the steam control valves 13 to be quickly closed.
  • the second selection unit 46 that performs when a power system failure occurs, it is possible to suppress a decrease in active power and to stably control the pressure of the reactor.

Abstract

 電力系統事故が発生した際に、有効電力の低下を抑制し、かつ制御の安定性を確実にする蒸気タービンのバルブ制御装置を提供する。 蒸気タービンのバルブ制御装置は、電力系統事故の発生を検出する事故検出部44と、蒸気タービンに流入する蒸気量を調節する複数の蒸気加減弁13(13a~13d)のうち、検出された事故の規模に応じて、急閉させる蒸気加減弁13を選択する第一選択部45と、選択されていない蒸気加減弁13により、通常の圧力または速度制御を継続する通常制御回路11と、を備える。

Description

蒸気タービンのバルブ制御装置及びそのバルブ制御方法
 本発明の実施形態は、蒸気タービンのバルブ制御技術に関する。
 電力系統に接続されている火力プラントや原子力プラントにおいて、定常状態ではタービンからの機械入力と発電機の電気出力とのバランスが保たれることにより、タービンの回転速度は一定に維持されている。
 しかし、電力系統に事故が発生した場合、発電機の電気出力が急減するため、このバランスがくずれてタービンの回転速度が上昇し、一定限界以上になると安定運転ができなくなるおそれがある。
 この状況を防止する方法として、タービン高速バルブ制御が知られている。これは、電力系統事故が発生した際に、タービンに蒸気を流入させる蒸気加減弁やインターセプト弁を急速に全閉して、一時的にタービンへの蒸気流入を遮断することにより、タービンの回転速度の上昇を抑制する手法である。
 また、蒸気加減弁やインターセプト弁の弁開度を絞り込むことにより、タービンへの蒸気流入量を調整して、電力系統事故に対応する方法が開示されている(例えば、特許文献1参照)。
特開平10-252416号公報
 タービン高速バルブ制御は、全ての蒸気加減弁やインターセプト弁を急閉させるため、一時的にタービンへ流入する蒸気を完全に遮断する。このため、事故発生から定常状態に戻る際に、蒸気によるタービンの機械トルク出力の戻りが遅くなるため、電力系統に供給する有効電力が大きく低下してしまうという課題がある。
 特許文献1の技術は、蒸気加減弁やインターセプト弁の開度に係る制御値を調節して、この制御値を受けたサーボ動作によって、弁開度の絞り込みを行う。このため、弁の実際の開度が、制御値に追従するまでに、時間的な遅れがあり、事故に対する即応性に欠けるという課題がある。
 また、原子力プラントでは、原子炉圧力を安定に、かつ高精度で制御することが重要である。このため、事故発生時と復旧後のリセット時との際に、バルブ制御により生じる外乱を抑制し、原子炉圧力を継続して維持することができる安定的な制御方法が必要となる。
 本発明はこのような事情を考慮してなされたもので、電力系統事故が発生した際に、有効電力の低下を抑制し、かつ制御の安定性を確実にする蒸気タービンのバルブ制御装置及びそのバルブ制御方法を提供することを目的とする。
 本実施形態の蒸気タービンのバルブ制御装置は、電力系統事故の発生を検出する事故検出部と、蒸気タービンに流入する蒸気量を調節する複数の蒸気加減弁のうち、検出された事故の規模に応じて、急閉させる前記蒸気加減弁を選択する第一選択部と、選択されていない前記蒸気加減弁により、通常の圧力または速度制御を継続する通常制御回路と、を備えることを特徴とする。
 本発明により、電力系統事故が発生した際に、有効電力の低下を抑制し、かつ制御の安定性を確実にする蒸気タービンのバルブ制御装置及びそのバルブ制御方法が提供される。
本実施形態に係る沸騰水型原子力プラントを示す構成図。 本実施形態に適用される通常制御回路を示す構成図。 本実施形態に適用される高速バルブ制御回路を示す構成図。 本実施形態に適用される第二選択部を示す構成図。 (A)本実施形態に適用される開度補正部を示す構成図、(B)本実施形態に適用される開度補正部に係る各蒸気流量信号を、時系列で表したグラフ。 本実施形態に係る蒸気加減弁及びバイパス弁の開度動作等を示すタイミングチャート。 本実施形態に適用される開速度保持部を示す構成図。 本実施形態に適用される開速度保持部に係る蒸気加減弁及びバイパス弁の開度動作を示すタイミングチャート。
 以下、本発明の実施形態を添付図面に基づいて説明する。
 図1は、本実施形態に係る沸騰水型原子力プラントを示す構成図である。
 原子炉圧力容器16において核分裂反応を起こし、発生した熱エネルギーによって、主蒸気を発生させる。
 高圧タービン18は、発生した主蒸気を入力し、蒸気の持つ熱エネルギーを運動エネルギーに変換して、高圧タービン排気を出力する。高圧タービン18の入力側には、蒸気加減弁13を備え、高圧タービン18に入力する主蒸気の流入量制御を行う。なお、図1では、蒸気加減弁13を4つにより構成しているが、蒸気加減弁13の数量は図1に限定されない。
 湿分分離加熱器17は、高圧タービン18から排気される高圧タービン排気に含まれる蒸気の湿分を除去して加熱して、低圧タービン19に入力する。
 低圧タービン19は、高圧タービン排気を入力し、その熱エネルギーを運動エネルギーに変換して、低圧タービン排気を出力する。低圧タービン19の入力側には、インターセプト弁15を備え、湿分分離加熱器17から低圧タービン19に入力される高圧タービン排気の蒸気流入量の制御を行う。なお、図1では、インターセプト弁15を6つにより構成しているが、インターセプト弁15の数量は図1に限定されない。
 発電機20は、高圧タービン18及び低圧タービン19と同軸上に配置されて、蒸気によるタービンの運動エネルギーを、電気エネルギーに変換する。
 低圧タービン19から出力された低圧タービン排気は、復水器21で復水されて、復水ポンプ22及び給水ポンプ23を介して、原子炉圧力容器16に戻される。
 また、原子炉圧力容器16にて発生した蒸気量が、タービンに流入する蒸気量よりも多くなった際には、蒸気量の余剰分を復水器21に流入させて、直接原子炉圧力容器16に戻す。
 原子炉圧力容器16の出力側には、バイパス弁14を備え、原子炉圧力容器16から復水器21に入力する余剰蒸気の流入量を制御する。なお、図1では、バイパス弁14を6つにより構成しているが、バイパス弁14の数量は図1に限定されない。
 バルブ制御装置10は、通常制御回路11と、高速バルブ制御回路12と、から構成される。
 通常制御回路11は、圧力検出器24が検出した原子炉の圧力値及びタービン回転速度検出器25が検出したタービンの回転速度を入力する。そして、これらの検出値に基づいて蒸気加減弁13、バイパス弁14の開度を調節して、それぞれの弁に流入する蒸気量の制御を行う。
 これにより、通常制御回路11は、定格運転時や起動停止時における原子炉圧力またはタービン回転速度の制御を実施している。
 一方、高速バルブ制御回路12は、電力系統事故が発生した際に、蒸気加減弁13及びバイパス弁14の開閉制御を実施する。
 図2は、通常制御回路11の具体的な構成を示している。なお、図1と同様の構成については同一の符号を付している。
 圧力検出器24は、原子炉圧力容器16(図1)内の圧力を検出して、検出信号を偏差演算器27に出力する。
 そして、偏差演算器27は、入力された検出信号と圧力設定器26に予め設定された圧力信号とを減算して乗算器28に出力する。
 乗算器28は、この減算された信号にゲインを乗じることにより、全蒸気流量100を算出する。
 この全蒸気流量100は、原子炉圧力容器16の圧力を一定に保つために必要な、原子炉圧力容器16から流出させる蒸気流量を示す。
 タービン回転速度検出器25は、タービンの回転速度を検出して、検出信号を偏差演算器30に出力する。
 そして、偏差演算器30は、入力された検出信号と回転速度設定器29に予め設定された速度信号とを減算して乗算器31に出力する。
 乗算器31は、この減算された信号にゲインを乗じることにより、速度偏差信号を求める。
 そして、加算器33は、この速度度偏差信号と負荷設定器32で設定された負荷信号とを加算して、速度負荷制御信号を算出する。
 最大蒸気流量設定器34は、原子炉圧力容器16から蒸気加減弁13とバイパス弁14に流れる蒸気の総流量を制限するために設けられる。
 低値選択器35は、全蒸気流量100と、速度負荷制御信号が表す速度によってタービンが回転制御されたときの蒸気量と、最大蒸気流量設定器34の設定信号が表す蒸気量と、から最も低値の信号を選択する。そして、この選択した信号を蒸気加減弁13(13a~13d)に対して、蒸気加減弁流量指令101として出力する。
 4つの蒸気加減弁13a~13dは、それぞれ流量-開度変換器36及び開速度制限器37が設けられており、サーボ弁38を備えている。
 流量-開度変換器36は、低値選択器35から出力された蒸気加減弁流量指令101を開度指令値に変換して、開速度制限器37に出力する。
 開速度制限器37は、蒸気加減弁13の開速度における上限値を設定している。4つの蒸気加減弁13a~13dが同時に急速に開度調整された場合、サーボ弁38の油圧供給が不足するおそれがある。このため、開速度制限器37により、各蒸気加減弁13について開速度を調節して、サーボ弁38の油圧供給が低下することを防止している。
 そして、サーボ弁38は、開速度制限器37を介して開度指令値を入力し、この制御量に応じて制御油の供給量を変化させることで、蒸気加減弁13の弁開度の調節を行う。
 一方、偏差演算器39は、全蒸気流量100と蒸気加減弁流量指令101とを減算してバイパス弁流量指令102を算出する。
 6つのバイパス弁14a~14fは、それぞれ流量-開度変換器40が設けられており、サーボ弁41を備えている。
 流量-開度変換器40は、バイパス弁流量指令102を開度指令値に変換する。
 サーボ弁41は、流量-開度変換器40から開度指令値を入力し、この制御量に応じて制御油の供給量を変化させることで、バイパス弁14の弁開度の調節を行う。
 なお、流量-開度変換器40は、6つのサーボ弁41が、順次動作するための設定パラメータを、開度指令値に付加する。
 ここで、プラントの定格運転時における制御動作について説明する。
 定格運転時、負荷設定器32の値を実際の負荷よりも大きく設定し、低値選択器35にて、全蒸気流量100が選択されるようにする。そして、蒸気加減弁13の開度調整により原子炉圧力制御を行う。
 このとき、バイパス弁14は全閉状態となる。しかし、タービン回転速度が上昇して、低値選択器35にて、加算器33から出力される速度負荷制御信号が選択されると、蒸気加減弁13の開度が絞られて、タービン回転速度制御に移行する。
 このとき、蒸気加減弁13にて絞られた分の余剰蒸気は、原子炉圧力を一定に保つため、バイパス弁14を介して復水器21(図1)に流入させる。したがって、バイパス弁14により原子炉圧力制御を行われる。
 このようにして、通常制御回路11は、蒸気加減弁13、バイパス弁14の開度を調節して、通常の原子炉圧力またはタービン回転速度の制御を実施する。なお、開度補正部42、開速度保持部43については後述する。
 図3は、高速バルブ制御回路12の構成を示している。なお、図1と同様の構成については同一の符号を付している。
 高速バルブ制御回路12は、事故検出部44と、第一選択部45と、第二選択部46と、から構成される。
 事故検出部44は、電力系統事故の発生を、例えば発電機総出力電圧の低下や出力電流の低下によって検出して、事故の規模、場所、大きさについての情報を事故検出信号103として第一選択部45に出力する。
 第一選択部45は、事故検出信号103を入力して、電力系統事故の規模、場所、大きさに応じて、急閉させる蒸気加減弁13を選択する。なお、第一選択部45は、電力系統事故の規模等に応じて急閉させる蒸気加減弁13の数量を予め設定している。そして、第一選択部45は、選択された蒸気加減弁13に対して急閉信号104を出力する。
 これにより、電力系統事故の規模、影響が大きいほど、複数のうち多くの蒸気加減弁13を選択する構成とすることができる。
 ここでは、蒸気加減弁13a、13bが選択された場合を検討する。
 蒸気加減弁13a~13dは、それぞれオフディレイタイマ47が設けられており、蒸気加減弁用電磁弁48を備えている。
 オフディレイタイマ47は、急閉信号104が入力状態からリセットされた場合に、一定時間が経過するとリセット信号を出力するタイマである。したがって、急閉信号104が入力状態のときは動作しない。
 この蒸気加減弁用電磁弁48は、急閉信号104が入力された場合、励磁されて急速に蒸気加減弁13を閉弁する電磁弁である。
 したがって、第一選択部45により選択された蒸気加減弁13a、13bは、急閉信号104が入力されることにより、蒸気加減弁用電磁弁48が励磁されて急閉する。
 このとき、選択された蒸気加減弁13a、13bを制御している制御油が急速にドレンされて、サーボ弁38(図2)による制御から切り離される。
 また、第一選択部45は、選択蒸気加減弁開度変更指令105を通常制御回路11に出力する。
 この選択蒸気加減弁開度変更指令105は、通常制御回路11の流量-開度変換器36(図2)に入力されて、急閉された蒸気加減弁13a、13bの開度を、実際の開度にあわせて、強制的に0%に変更する。
 一方、通常制御回路11は、電力系統事故発生時において、第一選択部45により急閉されていない蒸気加減弁13c、13dにより、通常の原子炉圧力またはタービン回転速度の制御を実施する。
 したがって、電力系統事故が発生した際に、第一選択部45により選択された蒸気加減弁13a、13bのみを急閉させることにより、タービンのオーバースピードを抑制することができる。
 また、蒸気加減弁13a、13bの閉止を、急速に動作する蒸気加減弁用電磁弁48を用いて行うことにより、電力系統事故に対して即時対応することができる。
 さらに、選択されていない蒸気加減弁13c、13dにより、通常制御を実施することにより、発電機20(図1)との同期を維持しつつ、有効電力の低下を抑制することができる。
 第二選択部46は、急閉された蒸気加減弁13の数に基づいて急開させるバイパス弁14の選択を行う。
 図4は、第二選択部46の構成図を示している。
 第二選択部46は、演算回路51と、バイパス弁選択回路52と、から構成される。
 演算回路51は、急閉された蒸気加減弁13の数を示す蒸気加減弁選択個数106を、第一選択部45から入力する。そして、急閉させる蒸気加減弁13に対応して、同容量となるバイパス弁14の個数を、図4式(1)を用いて算出する。
 なお、設置された蒸気加減弁13とバイパス弁14の個数によっては、同容量にならない場合が考えられる。このときは、急閉させる蒸気加減弁13の容量を超えず、かつ最大となる個数を急開させるバイパス弁14の個数とする。
 これにより、急閉させる蒸気加減弁13と同容量または同程度となる、バイパス弁14を急開させることで、原子炉圧力の上昇を最小限にすることができる。
 バイパス弁選択回路52は、急開させるバイパス弁14の個数を入力して、この数に基づいて急開させるバイパス弁14を選択する。そして、バイパス弁選択回路52は、急開信号107をバイパス弁14に対して出力する。
 ここでは、6つのバイパス弁のうち、3つのバイパス弁14a~14cが選択された場合について検討する。
 図3に戻って説明を続ける。
 6つのバイパス弁14a~14fは、それぞれオフディレイタイマ49が設けられており、バイパス弁用電磁弁50を備えている。
 オフディレイタイマ49は、急開信号107が入力状態からリセットされた場合に、一定時間が経過するとリセット信号を出力するタイマである。したがって、急開信号107が入力状態のときは、動作しない。
 バイパス弁用電磁弁50は、急開信号107が入力された場合、励磁されて急速にバイパス弁14を開弁する電磁弁である。
 したがって、第二選択部46により急開されたバイパス弁14a~14cは、急開信号107が入力されることにより、バイパス弁用電磁弁50が励磁されて急開する。
 このとき、急開されたバイパス弁14a~14cを制御している制御油が急速にドレンされて、サーボ弁41(図2)による制御から切り離される。
 また、第二選択部46は、選択バイパス弁開度変更指令108を通常制御回路11に出力する。
 この選択バイパス弁開度変更指令108は、通常制御回路11の流量-開度変換器40(図2)に入力されて、選択されたバイパス弁14a~14cの開度を、実際の開度にあわせて、強制的に100%に変更する。
 一方、通常制御回路11は、電力系統事故発生時において、第二選択部46により急開されていないバイパス弁14d~14fにより、通常の原子炉圧力制御を実施する。
 なお、急閉する蒸気加減弁13と急開するバイパス弁14の容量が同容量とならない場合は、急開するバイパス弁14から復水器21(図1)に流入させる蒸気量が少なくなる。このとき、第二選択部46により急開されていないバイパス弁14d~14fにより、原子炉圧力制御を行う。
 したがって、通常制御回路11が、第二選択部46により選択されていないバイパス弁14d~14fにより通常の圧力制御を行うことにより、電力事故発生時においても原子炉圧力を安定的に制御することができる。
 次に、電力系統事故が復旧して、全ての蒸気加減弁13とバイパス弁14とによる通常制御に戻す場合について説明する。
 電力系統事故が復旧すると、第一選択部45から出力されていた急閉信号104がリセットされる。
 急閉されている蒸気加減弁13a、13bに対応するオフディレイタイマ47は、急閉信号104がリセットされることにより、一定時間が経過するとリセット信号を蒸気加減弁用電磁弁48に順次出力する。
 そして、急閉信号104がリセットされることにより、励磁されていた蒸気加減弁用電磁弁48は、無励磁となり開弁する。このとき、蒸気加減弁13a、13bは、サーボ弁38(図2)による制御に順次戻される。
 オフディレイタイマ47の動作により、蒸気加減弁13a、13bは、順次サーボ弁による動作に移行するため、サーボ弁38の油圧低下を防止することができる。
 また、選択蒸気加減弁開度変更指令105は、同様にリセットされる。このため、強制的に0%とされていた開度指令は、蒸気加減弁流量指令101を流量-開度変換器36(図2)により変換した開度指令に戻される。
 そして、急閉されていた蒸気加減弁13a、13bは、開度指令値に従って、閉状態から開動作していく。なお、蒸気加減弁13は、開速度制限器37にて定められた上限速度で開動作する。
 一方、急閉信号104のリセットにあわせて、第二選択部46から出力されていた急開信号107もリセットされる。
 急開されているバイパス弁14a~14cに対応するオフディレイタイマ49は、急開信号107がリセットされることにより、一定時間が経過するとリセット信号をバイパス弁用電磁弁50に順次出力する。
 また、オフディレイタイマ49は、蒸気加減弁用電磁弁48が急閉信号104のリセット信号を最初に受信するのに同期して、バイパス弁用電磁弁50へのリセット信号の出力を開始するように設定されている。
 そして、急開信号107がリセットされることにより、励磁されていたバイパス弁用電磁弁50は、無励磁となり閉弁する。このとき、バイパス弁14a~14cは、サーボ弁41(図2)による制御に順次戻される。
 また、選択バイパス弁開度変更指令108は、同様にリセットされる。このため、強制的に開度100%とされていた開度指令は、バイパス弁流量指令102を流量-開度変換器40(図2)により変換した開度指令に戻される。
 そして、急開されていたバイパス弁14a~14cは、通常制御回路11による開度指令値に従って、開状態から閉動作していく。
 開動作を開始する蒸気加減弁13と無関係にバイパス弁14が閉動作を開始した場合、タービン側に流入する蒸気量のバランスが崩れることにより、通常制御を継続している蒸気加減弁13c、13dとバイパス弁14d~14fの外乱となるおそれがある。
 オフディレイタイマ49の動作により、急閉されていた蒸気加減弁13a、13bが閉状態から開動作するのに同期して、急開されていたバイパス弁14a~14cを開状態から閉動作させることにより、タービン側に流入する蒸気量のバランスが保たれる。これにより、通常制御に対する外乱を防止することができる。
 続けて、開度補正部42(図2)について説明する。
 開度補正部42は、全ての蒸気加減弁13とバイパス弁14とを通常制御に戻す際に、閉状態から開状態に移行する蒸気加減弁13a、13bの弁開度に応じて、開状態から閉状態に移行するバイパス弁14a~14cの弁開度の補正を行う。
 図5(A)は、開度補正部42の具体的な構成を示している。
 開度補正部42は、蒸気流量演算回路53と、開度-流量変換器54と、加算器55と、偏差演算器56と、から構成される。
 蒸気流量演算回路53は、全蒸気流量100(図2)と蒸気加減弁選択個数106(図3)とを入力する。
 そして、図5(A)式(2)を用いて、閉状態から開動作している蒸気加減弁13a、13b及び開状態から閉動作しているバイパス弁14a~14cにより、流すべき蒸気流量を算出する。この算出した蒸気流量をリセット時蒸気流量信号110として、偏差演算器56に出力する。
 一方、開度-流量変換器54は、閉状態から開動作している蒸気加減弁13a、13bの実開度に係る急閉蒸気加減弁開度信号109を入力して、蒸気流量に変換する。
 加算器55は、これらの蒸気流量を加算して、実際に蒸気加減弁13a、13bにて流れている蒸気流量を算出する。この蒸気流量を急閉蒸気加減弁流量信号111として、偏差演算器56に出力する。
 偏差演算器56は、リセット時蒸気流量信号110と急閉蒸気加減弁流量信号111とを減算して、バイパス弁流量指令112を求める。
 そして、開状態から閉動作しているバイパス弁14a~14cの流量-開度変換器40(図2)に入力し、開度指令値に変換することにより、バイパス弁14a~14cの弁開度を補正する。
 図5(B)は、開度補正部42に係る各蒸気流量信号を、時系列で表したグラフである。
 急閉蒸気加減弁流量信号111が示すように、急閉されていた蒸気加減弁13a、13bは、閉状態から開動作するに従って、徐々に流入させる蒸気量を増加させていく。
 バイパス弁流量指令112は、全蒸気流量100から算出されるリセット時蒸気流量信号110を確保するため、急閉蒸気加減弁流量信号111にしたがって、徐々に減少して行く。
 したがって、蒸気加減弁13a、13bからタービン側に徐々に流入する蒸気量に合わせるように、開度補正部42はバイパス弁14a~14cの弁開度を補正する。
 電力系統事故が復旧して、バイパス弁14a~14cが、閉状態から開動作していく蒸気加減弁13a、13bと無関係に閉動作した場合、原子炉側で発生する蒸気量とタービン側に流入する蒸気量とのバランスが崩れるおそれがある。
 これは、通常制御を維持している蒸気加減弁13c、13d及びバイパス弁14d~14fに対して、大きな外乱となる。
 したがって、開度補正部42により、開動作する蒸気加減弁13a、13bと閉動作するバイパス弁14a~14cとで蒸気流量のバランスを取ることにより、原子炉圧力への外乱を最小限に抑制しながら、通常制御に復帰することができる。
 図6は、電力系統事故時における蒸気加減弁13及びバイパス弁14の開度動作等のタイミングチャートを示している。
 急閉信号104及び急開信号107は、電力系統事故が発生した際に成立(オン)して、事故が復旧するとリセット(オフ)される(図6(C))。
 電力系統事故が発生した際に、蒸気加減弁13a、13bは急閉される。一方、急閉されない蒸気加減弁13c、13dは、通常の圧力または速度制御を維持する。そして、事故が復旧してリセットされると、急閉されていた蒸気加減弁13a、13bは、順次閉状態から開動作をしていく(図6(D))。
 一方、電力系統事故が発生した際に、バイパス弁14a~14cは急開される。一方、急開されていないバイパス弁14c~14fは、通常の圧力制御を維持する。そして、事故が復旧してリセットされると、最初に開動作を開始する蒸気加減弁13aに同期して、バイパス弁14a~14cは順次開状態から閉動作をしていく(図6(E))。
 さらに、バイパス弁14a~14cは、開度補正部42の動作により、開動作していく蒸気加減弁13a、13bに流入する蒸気流量とバランスをとりながら閉動作していく(図6(E))。
 したがって、電力系統事故発生の際に、タービンの回転数を安定的に制御し(図6(A))、かつ原子炉圧力を安定的に維持することができる(図6(B))。また、電力系統事故発生時において、通常制御が行われるため、負荷を一定とすることができる(図6(F))。
 続けて、開速度保持部43(図2)について説明する。
 開速度保持部43は、通常制御されている蒸気加減弁13c、13dの弁開度に応じて、閉状態から開状態に移行する蒸気加減弁13a、13bの弁開度を保持する。
 図7は、開速度保持部43の具体的な構成を示している。
 開速度保持部43は、変化率変換器57と、比較器58と、オンディレイタイマ59、62と、論理否定演算器60と、保持回路61と、から構成される。
 変化率変換器57は、電力系統事故発生の際に、急閉されずに通常制御している蒸気加減弁13c、13dの実際の弁開度を、通常蒸気加減弁開度信号113として入力する。そして、これらの開度信号から変化率を算出して、比較器58に出力する。
 比較器58は、蒸気加減弁13c、13dの開度変化率が所定値より低い場合は、蒸気加減弁13c、13dが閉方向に動作しているとして、成立信号をオンディレイタイマ59に出力する。
 オンディレイタイマ59は、成立信号が入力されて、一定時間以上継続すると、閉動作信号114を保持回路61に出力する。
 保持回路61は、閉動作信号114が入力した場合、閉状態から開状態に移行している蒸気加減弁13a、13bに対応する開速度制限器37(図2)に開度保持信号115を出力する。
 開度保持信号115が入力された開速度制限器37は、開速度上限値を0に変更する。これにより、閉状態から開状態に移行している蒸気加減弁13a、13bの開度は保持される。
 そして、蒸気加減弁13c、13dの弁開度が、閉方向に動作しなくなると、比較器58による成立信号はオフされる。これにより、論理否定演算器60から成立信号がオンディレイタイマ62に出力される。
 オンディレイタイマ62は、論理否定演算器60からの成立信号が入力されて、一定時間以上継続すると、閉動作信号114のリセット信号を保持回路61に出力する。
 リセット信号を入力した保持回路61は、開速度制限器37に対して開度保持信号115のリセット信号を出力する。これにより、開速度上限値の設定はリセットされて、蒸気加減弁13a、13bは開動作を再開する。
 図8は、開速度保持部43に係る蒸気加減弁13及びバイパス弁14の開度動作等のタイミングチャートを示している。
 電力系統事故が復旧してリセットされた後に、タービンの回転速度が上昇した場合について検討する(図8(A))。
 タービンの回転速度が上昇すると、通常制御を維持している蒸気加減弁13c、13dは、タービンのオーバースピードを防止するため閉方向に動作する。
 このとき、開速度保持部43の動作により、閉状態から開動作している蒸気加減弁13a、13bの開度は保持される。そして、蒸気加減弁13c、13dが閉方向に動作しなくなると、蒸気加減弁13a、13bは開動作を再開する(図8(B))。
 一方、開状態から閉動作しているバイパス弁14a、14b、14c(図示省略)は、蒸気加減弁13a、13bの開度が保持されたとき、開度補正部42の動作により、開度を保持する。そして、蒸気加減弁13a、13bが開動作するのに従って、閉動作を再開する。なお、バイパス弁14d~14fは通常制御を維持する(図8(C))。
 通常制御している蒸気加減弁13c、13dが閉動作している場合において、急閉されていた蒸気加減弁13a、13bが無関係に開動作した場合は、タービン側に流入する蒸気流量のバランスがくずれて、通常制御されている蒸気加減弁13c、13dへの外乱となるおそれがある。
 開速度保持部43により、開動作している蒸気加減弁13a、13bの開度を保持することにより、通常制御している蒸気加減弁13c、13dへの外乱を抑制することができる。
 以上述べた蒸気タービンのバルブ制御装置10によれば、急閉させる蒸気加減弁13を選択する第一選択部45と急閉させる蒸気加減弁13の数に基づいて急開させるバイパス弁14を選択する第二選択部46とを有することにより、電力系統事故が発生した際に、有効電力の低下を抑制し、かつ原子炉の圧力を安定的に制御可能となる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。例えば、本実施形態では、沸騰水型原子力プラントにおける構成を示したが、本構成は火力プラントや加圧式型原子力プラントにおいても適用可能である。

Claims (6)

  1.  電力系統事故の発生を検出する事故検出部と、
     蒸気タービンに流入する蒸気量を調節する複数の蒸気加減弁のうち、検出された事故の規模に応じて、急閉させる前記蒸気加減弁を選択する第一選択部と、
     選択されていない前記蒸気加減弁により、通常の圧力または速度制御を継続する通常制御回路と、
    を備えることを特徴とする蒸気タービンのバルブ制御装置。
  2.  前記蒸気量の余剰分を迂回させるバイパス弁のうち、急閉された前記蒸気加減弁の数に基づいて急開させる前記バイパス弁を選択する第二選択部をさらに備え、
     前記通常制御回路は、
     選択されていない前記蒸気加減弁と前記バイパス弁とにより、通常の圧力または速度制御を継続することを特徴とする請求項1に記載の蒸気タービンのバルブ制御装置。
  3.  前記電力系統事故から復旧して、全ての前記蒸気加減弁と前記バイパス弁とを通常の制御に戻す際に、前記蒸気加減弁が閉状態から開状態に移行するのに同期して、前記バイパス弁を開状態から閉状態に移行することを特徴とする請求項2に記載の蒸気タービンのバルブ制御装置。
  4.  前記電力系統事故から復旧して、全ての前記蒸気加減弁と前記バイパス弁とを通常の制御に戻す際に、閉状態から開状態に移行する前記蒸気加減弁の弁開度に応じて、開状態から閉状態に移行する前記バイパス弁の弁開度を補正する開度補正部をさらに備えることを特徴とする請求項2に記載の蒸気タービンのバルブ制御装置。
  5.  前記電力系統事故から復旧して、全ての前記蒸気加減弁と前記バイパス弁とを通常の制御に戻す際に、選択されていない前記蒸気加減弁の弁開度に応じて、閉状態から開状態に移行している前記蒸気加減弁の弁開度を保持させる開速度保持部をさらに備えることを特徴とする請求項2に記載の蒸気タービンのバルブ制御装置。
  6.  電力系統事故の発生を検出するステップと、
     蒸気タービンに流入する蒸気量を調節する蒸気加減弁のうち、検出された事故の規模に基づいて急閉する前記蒸気加減弁を選択するステップと、
     選択されていない前記蒸気加減弁により、通常の圧力または速度制御を継続するステップと、
    を含むことを特徴とする蒸気タービンのバルブ制御方法。
PCT/JP2014/053798 2013-02-19 2014-02-18 蒸気タービンのバルブ制御装置及びそのバルブ制御方法 WO2014129467A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14754322.7A EP2960443B1 (en) 2013-02-19 2014-02-18 Valve control device for steam turbine and valve control method therefor
US14/768,544 US10037042B2 (en) 2013-02-19 2014-02-18 Valve control system and valve control method for steam turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-029694 2013-02-19
JP2013029694A JP6058419B2 (ja) 2013-02-19 2013-02-19 蒸気タービンのバルブ制御装置及びそのバルブ制御方法

Publications (1)

Publication Number Publication Date
WO2014129467A1 true WO2014129467A1 (ja) 2014-08-28

Family

ID=51391256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053798 WO2014129467A1 (ja) 2013-02-19 2014-02-18 蒸気タービンのバルブ制御装置及びそのバルブ制御方法

Country Status (4)

Country Link
US (1) US10037042B2 (ja)
EP (1) EP2960443B1 (ja)
JP (1) JP6058419B2 (ja)
WO (1) WO2014129467A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807343B (zh) * 2014-09-24 2016-12-07 北京龙源冷却技术有限公司 一种用于间接空冷系统疏水阀的控制系统
EP3301267A1 (de) * 2016-09-29 2018-04-04 Siemens Aktiengesellschaft Verfahren und vorrichtung zum betreiben eines turbosatzes
JP7110130B2 (ja) 2018-02-21 2022-08-01 株式会社東芝 発電プラントの蒸気加減弁の制御装置および発電プラントの蒸気加減弁の制御方法
CN109710996B (zh) * 2018-12-07 2022-12-30 中广核工程有限公司 核电厂阀门关闭控制方法、系统以及阀门活动性试验方法
US20230383672A1 (en) * 2022-05-26 2023-11-30 General Electric Company System and method for hydraulically actuating main and bypass valves of a steam turbine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314302A (ja) * 1987-06-17 1988-12-22 Hitachi Ltd 原子力発電所のタ−ビン制御装置
JPS6415404A (en) * 1987-07-08 1989-01-19 Hitachi Ltd Steam controller for steam turbine power plant
JPH07145704A (ja) * 1993-11-22 1995-06-06 Toshiba Corp タービン制御装置
JPH10252416A (ja) 1997-03-07 1998-09-22 Mitsubishi Electric Corp タービン高速バルブ制御方法
JP2005291113A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 火力発電プラントおよび運転方法
JP2012090422A (ja) * 2010-10-19 2012-05-10 Toshiba Corp 発電プラント及びその運転方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999787A (en) * 1972-04-17 1976-12-28 Fast Load Control Inc. Method of effecting fast turbine valving for improvement of power system stability
JPS5239097A (en) 1975-09-22 1977-03-26 Hitachi Ltd Control device for a turbine bypass of a nuclear energy turbine
US4120159A (en) * 1975-10-22 1978-10-17 Hitachi, Ltd. Steam turbine control system and method of controlling the ratio of steam flow between under full-arc admission mode and under partial-arc admission mode
US4088875A (en) * 1975-11-04 1978-05-09 Westinghouse Electric Corp. Optimum sequential valve position indication system for turbine power plant
US4095119A (en) * 1976-06-23 1978-06-13 Westinghouse Electric Corp. System for responding to a partial loss of load of a turbine power plant
US4357803A (en) * 1980-09-05 1982-11-09 General Electric Company Control system for bypass steam turbines
JPH108912A (ja) * 1996-06-26 1998-01-13 Mitsubishi Heavy Ind Ltd タービンバイパス弁制御装置
CN100439659C (zh) * 2007-06-11 2008-12-03 上海外高桥第三发电有限责任公司 发电机组旁路控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314302A (ja) * 1987-06-17 1988-12-22 Hitachi Ltd 原子力発電所のタ−ビン制御装置
JPS6415404A (en) * 1987-07-08 1989-01-19 Hitachi Ltd Steam controller for steam turbine power plant
JPH07145704A (ja) * 1993-11-22 1995-06-06 Toshiba Corp タービン制御装置
JPH10252416A (ja) 1997-03-07 1998-09-22 Mitsubishi Electric Corp タービン高速バルブ制御方法
JP2005291113A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 火力発電プラントおよび運転方法
JP2012090422A (ja) * 2010-10-19 2012-05-10 Toshiba Corp 発電プラント及びその運転方法

Also Published As

Publication number Publication date
JP2014159744A (ja) 2014-09-04
EP2960443B1 (en) 2020-03-25
US20150378369A1 (en) 2015-12-31
JP6058419B2 (ja) 2017-01-11
US10037042B2 (en) 2018-07-31
EP2960443A1 (en) 2015-12-30
EP2960443A4 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2014129467A1 (ja) 蒸気タービンのバルブ制御装置及びそのバルブ制御方法
JP2005226991A (ja) ドラム型ボイラのドラム水位制御方法及び装置
CN103791485A (zh) 一种火电机组给水系统优化控制方法
EP3263985B1 (en) System and method for drum level control with transient compensation
US20120183413A1 (en) Reactor Feedwater Pump Control System
EP3757355A1 (en) Control device for steam governing valve of power generation plant, and method for controlling steam governing valve of power generation plant
JP5677020B2 (ja) 発電プラント及びその運転方法
US11255224B2 (en) Method for the short-term adjustment of the output of a combined-cycle power plant steam turbine, for primary frequency control
JP2013148347A (ja) 給水制御装置および給水制御方法
JP4734184B2 (ja) 蒸気タービン制御装置および蒸気タービン制御方法
JP6400490B2 (ja) 原子炉出力調整装置及び方法
JP4230638B2 (ja) 原子力発電プラントの蒸気タービン制御装置
JP2013174223A (ja) 蒸気タービンの調速制御装置、その制御方法、および蒸気タービン
KR100584835B1 (ko) 원자력발전소 증기발생기의 급수제어시스템 및 그 제어방법
JP5143098B2 (ja) 蒸気タービン制御装置および蒸気タービン制御方法
JP3048482B2 (ja) タ−ビン制御装置
JP4560481B2 (ja) 蒸気タービンプラント
JP5306000B2 (ja) 給水制御装置および給水制御方法
JP4901774B2 (ja) 多重化蒸気タービン制御装置
JP5889386B2 (ja) ガスタービンの信頼性評価試験方法およびその装置
JP5639808B2 (ja) 原子炉給水制御装置
JP2018091224A (ja) 制御システム、蒸気タービン、発電プラント及び制御方法
JP2008075580A (ja) 低圧蒸気タービンシステムおよびその制御方法
JP2009014319A (ja) 給水制御装置および給水制御方法
JP2011117358A (ja) 火力プラント制御装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14768544

Country of ref document: US

Ref document number: 2014754322

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE