WO2012090771A1 - 蒸着膜の形成方法及び表示装置の製造方法 - Google Patents

蒸着膜の形成方法及び表示装置の製造方法 Download PDF

Info

Publication number
WO2012090771A1
WO2012090771A1 PCT/JP2011/079441 JP2011079441W WO2012090771A1 WO 2012090771 A1 WO2012090771 A1 WO 2012090771A1 JP 2011079441 W JP2011079441 W JP 2011079441W WO 2012090771 A1 WO2012090771 A1 WO 2012090771A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
vapor deposition
forming
electrode
substrate
Prior art date
Application number
PCT/JP2011/079441
Other languages
English (en)
French (fr)
Inventor
通 園田
伸一 川戸
井上 智
智志 橋本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2012550851A priority Critical patent/JP5384752B2/ja
Priority to US13/976,437 priority patent/US8906718B2/en
Priority to CN201180062835.4A priority patent/CN103283306B/zh
Publication of WO2012090771A1 publication Critical patent/WO2012090771A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the present invention relates to a method for forming a vapor deposition film patterned into a predetermined shape and a method for manufacturing a display device including the vapor deposition film patterned into the predetermined shape.
  • flat panel displays have been used in various products and fields, and further flat panel displays are required to have larger sizes, higher image quality, and lower power consumption.
  • an organic EL display device including an organic EL element using electroluminescence (hereinafter referred to as “EL”) of an organic material is an all-solid-state type, low voltage drive, and high-speed response.
  • EL organic EL display device
  • the organic EL display device has a configuration in which, for example, an organic EL element electrically connected to a TFT is provided on a substrate made of a glass substrate or the like provided with a TFT (thin film transistor).
  • organic EL elements including light emitting layers of red (R), green (G), and blue (B) are arranged and formed on a substrate as sub-pixels. Color images are displayed by selectively emitting light from these organic EL elements with a desired luminance using TFTs.
  • an organic EL display device it is necessary to form a light emitting layer made of an organic light emitting material that emits light of each color in a predetermined pattern for each organic EL element.
  • a vacuum deposition method for example, an ink jet method, a laser transfer method and the like are known.
  • a vacuum deposition method for example, in a low molecular organic EL display (OLED), a vacuum deposition method is often used.
  • a mask also referred to as a shadow mask in which openings of a predetermined pattern are formed is used, and the deposition surface of the substrate on which the mask is closely fixed is opposed to the deposition source.
  • the vapor deposition particles (film forming material) from the vapor deposition source are vapor-deposited on the surface to be vapor-deposited through the opening of the mask, thereby forming a thin film having a predetermined pattern.
  • Vapor deposition is performed for each color of the light emitting layer, and this is called “separate vapor deposition”.
  • Patent Document 1 and Patent Document 2 describe a method in which the mask is moved little by little with respect to the substrate and the light emitting layers of the respective colors are separately deposited.
  • a mask having the same size as the substrate is used, and the mask is fixed so as to cover the deposition surface of the substrate during vapor deposition.
  • the vapor deposition apparatus and its associated apparatus are similarly enlarged and complicated, so that the apparatus design becomes difficult and the installation cost becomes high.
  • JP-A-8-227276 (published September 3, 1996) JP 2000-188179 A (published July 4, 2000)
  • FIGS. 13 and 14 a separate deposition method using a shadow mask 102 smaller than the substrate 101 has been proposed.
  • the shadow mask 102 having the opening 102a, the nozzle 103 having the nozzle opening 103a (injection port), and the vapor deposition material supply source 104 connected to the nozzle 103 are integrated.
  • a mask unit 105 is used.
  • the deposition surface 101a of the substrate 101 and the shadow mask 102 are arranged to face each other, and the gap G between the deposition surface 101a and the shadow mask 102 is fixed while being fixed.
  • a deposition film having a stripe pattern can be formed on the deposition surface 101 a of the substrate 101.
  • the substrate 101 is fixed, and vapor deposition is performed while scanning the mask unit 105 in the horizontal direction in the figure with respect to the fixed substrate 101.
  • a vapor deposition film having a stripe pattern can be formed on the vapor deposition surface 101 a of the substrate 101.
  • FIG. 15 is a diagram illustrating a deposition surface 101a of the substrate 101.
  • the large-sized substrate 101 includes a deposition region R1 in which a deposition film (for example, a light emitting layer) needs to be formed in each organic EL display device.
  • a vapor deposition unnecessary region R2 serving as a terminal portion that does not require the formation of a vapor deposition film (for example, a light emitting layer).
  • the vapor deposition film 106 having a stripe pattern is formed not only in the vapor deposition region R1 but also in the vapor deposition unnecessary region R2.
  • the shadow mask 102 is a vapor deposition OFF line, i.e., a shadow mask.
  • the right tip of 102 reaches the left tip of the vapor deposition unnecessary region R2, it can be considered that vapor deposition particles ejected from the nozzle opening of the nozzle provided in the mask unit are not ejected.
  • the vapor deposition film 106 it is possible to prevent the vapor deposition film 106 from being formed in the vapor deposition unnecessary region R2, but in the vapor deposition region R1, the region where the shadow mask 102 still remains is substantially reduced in vapor deposition time. In other words, the vapor deposition amount decreases in a region where the film thickness of the vapor deposition film decreases.
  • the vapor deposition film 106 having a uniform film thickness in the vapor deposition region R1 in order to form the vapor deposition film 106 having a uniform film thickness in the vapor deposition region R1, as shown in FIG.
  • the vapor deposition film 106 having a stripe pattern is formed not only in R1, but also in the vapor deposition unnecessary region R2.
  • FIG. 17 is a diagram for explaining problems that may occur due to the vapor deposition film 106 formed in the vapor deposition unnecessary region R2.
  • FIG. 17 is a figure which shows schematic structure of the organic electroluminescence display 113 provided with the vapor deposition film
  • FIG. 17B is a plan view showing the terminal portion 107 a of the organic EL display device 113.
  • the vapor deposition film 106 having a stripe pattern is formed not only in the vapor deposition region R1 but also in the vapor deposition unnecessary region R2. ing.
  • the vapor deposition film 106 is also formed on the terminal portion 107a of the wiring 107 which is the vapor deposition unnecessary region R2.
  • the external circuit and the terminal portion 107a of the wiring 107 formed in the vapor deposition unnecessary region R2 are electrically connected to the flexible cable 112 via an anisotropic conductive film (ACF) 111.
  • ACF anisotropic conductive film
  • the vapor deposition film 106 is a high-resistance film such as an organic vapor deposition film such as a light-emitting layer, electrical conduction failure occurs.
  • the vapor deposition film 106 is a low-resistance film such as a metal film. In this case, current leakage occurs.
  • the sealing resin 109 is formed in a frame shape in the vapor deposition unnecessary region R2 at the four side ends of the vapor deposition region R1, and the substrate 101 and the sealing substrate 110 are bonded to each other through the sealing resin 109. Yes.
  • an anode (not shown), a hole injection layer / hole transport layer (not shown), a vapor deposition film 106 as a light emitting layer, an electron transport layer (not shown), an electron injection layer (not shown), and a cathode 108 are sequentially arranged. It is possible to prevent the organic EL element laminated on the substrate from being deteriorated by moisture or oxygen in the atmosphere.
  • the vapor deposition film 106 on the terminal portion 107a in the vapor deposition unnecessary region R2 is after the substrate 101 and the sealing substrate 110 are bonded to each other, and the substrate 101 is attached to each organic EL display device 113. After being divided so as to become, it is generally wiped off using an organic solvent.
  • the organic solvent damages the sealing resin 109, and the sealing resin 109 is damaged by the organic solvent.
  • moisture and oxygen in the atmosphere easily penetrate from the damaged part.
  • an organic EL display device manufactured by a manufacturing method including such a wiping process has a low yield and it is difficult to ensure reliability.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for forming a deposited film capable of high-definition patterning and a method for manufacturing a display device with improved yield and reliability.
  • a method for forming a vapor deposition film according to the present invention is a method for forming a vapor deposition film having a predetermined shape on a substrate, on the surface on which the vapor deposition film is formed on the substrate.
  • the method after forming a pattern film having a predetermined shape that has an opening and can be peeled off on the surface of the substrate on which the vapor deposition film is formed, it is relatively easy on the opening and the pattern film.
  • Forming a plurality of linear vapor deposition films having a predetermined interval from each other, and peeling the pattern film to form the linear vapor deposition film having a predetermined shape It can be formed as a high-definition pattern.
  • a method of manufacturing a display device includes a step of forming a plurality of active elements on a substrate, and an electrical connection to each of the active elements, and on the substrate.
  • An opening of a possible pattern film is formed, and the pattern film is formed in at least a part of a non-display area that is a peripheral area of the display area, and the matrix shape is formed on the opening and the pattern film.
  • the method for forming a vapor deposition film of the present invention includes a step of forming a pattern film having a predetermined shape that has an opening and can be peeled on the surface of the substrate on which the vapor deposition film is formed, and the opening. And forming a plurality of linear vapor deposition films having a predetermined interval along one direction on the substrate surface on the pattern film, and peeling the pattern film to form the vapor deposition. Forming a film into a predetermined shape.
  • an opening of a peelable pattern film is formed in the display region.
  • the pattern film is formed in at least a part of the non-display area that is the peripheral area of the display area, and the row direction of the first electrode formed in the matrix form on the opening and the pattern film Alternatively, a plurality of linear light emitting layers having a predetermined distance from each other are formed along the column direction, and after the step of forming at least the light emitting layer in the organic layer, or the second electrode is formed. After the step of performing, the pattern film is peeled off to form at least the light emitting layer in a predetermined shape.
  • FIG. 1 It is a figure which shows the pattern shape and light emitting layer of the photosensitive dry film which were formed in the board
  • FIG. 1 shows each process of the manufacturing method of the organic electroluminescence display of other one embodiment of this invention. It is a figure which shows schematic structure of the organic electroluminescence display manufactured by the manufacturing method of the organic electroluminescence display of one embodiment of this invention.
  • the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are not masked with a shadow mask, and a second mask is used. It is a figure which shows an example of the method of electrically connecting a 2nd electrode and external wiring in the case of forming in the same shape as this electrode.
  • a method for forming an organic EL display device will be described as an example in which a method for forming a vapor deposition film capable of high-definition patterning is used.
  • the present invention is not limited to this.
  • the method for forming a deposited film according to the present invention can be applied to all fields where a deposited film patterned with high definition is required.
  • the deposited film formed using the deposited film forming method of the present invention is an organic film.
  • the present invention is not limited to this, and the vapor deposition film forming method of the present invention can of course be used for forming an inorganic film.
  • FIG. 12 is a diagram showing a schematic configuration of the organic EL display device 1, and FIG. 12A shows a cross section of the organic EL element 10 constituting the display region of the organic EL display device 1.
  • An interlayer insulating film 4, a first electrode 5 and an edge cover 6 are formed on a substrate 3 on which a thin film transistor 2 (hereinafter referred to as “TFT”) is formed.
  • TFT thin film transistor
  • non-alkali glass or plastic can be used as the substrate 3.
  • non-alkali glass having a thickness of 0.7 mm is used.
  • the interlayer insulating film 4 and the edge cover 6 a known photosensitive resin can be used.
  • the photosensitive resin include an acrylic resin and a polyimide resin.
  • a photosensitive acrylic resin is used as the interlayer insulating film 4 and the edge cover 6.
  • the first electrode 5 is formed in a pattern corresponding to each pixel by photolithography and etching after an electrode material is formed by sputtering or the like.
  • the first electrode 5 various conductive materials can be used, but in the case of a bottom emission type organic EL element that emits light to the substrate side, it needs to be transparent or translucent. On the other hand, in the case of a top emission type organic EL element that emits light from the side opposite to the substrate, the second electrode 9 needs to be transparent or translucent.
  • the TFT 2 is manufactured by a known method, and in the present embodiment, the manufacture of an active matrix type organic EL display device in which the TFT 2 is formed in each pixel will be described.
  • the present invention is also applicable to this organic EL display device.
  • the edge cover 6 covers the end portion of the first electrode 5 in order to prevent the organic EL layer from becoming thin at the end portion of the first electrode 5 and short-circuiting with the second electrode 9.
  • the first electrode 5 is exposed at a portion without the edge cover 6. This exposed portion becomes a light emitting portion of each pixel.
  • each organic EL layer is formed on the first electrode 5.
  • the organic EL layer include a hole injection layer and a hole transport layer 7, a light emitting layer 8R, 8G, and 8B, an electron transport layer and an electron that are formed in the same shape as the second electrode 9 (not shown).
  • An injection layer etc. are mentioned.
  • a carrier blocking layer for blocking the flow of carriers such as holes and electrons may be inserted as necessary.
  • one layer may have a plurality of functions.
  • a single layer that serves as both a hole injection layer and a hole transport layer, such as a hole injection layer and a hole transport layer 7, may be provided. It may be formed.
  • the first electrode 5 is an anode, and from the first electrode 5 side, a hole injection layer and a hole transport layer 7, a light emitting layer 8R, 8G, and 8B, an electron transport layer (not shown), An electron injection layer (not shown) and the second electrode 9 were stacked in this order as a cathode.
  • ITO indium-tin oxide
  • the materials of the organic EL layer known materials can be used.
  • the light emitting layers 8R, 8G, and 8B a single material is used, or a certain material is used as a host material and another material is used as a guest.
  • a mixed type mixed as a material or dopant is used.
  • Examples of the material for the hole injection layer and the hole transport layer 7 include anthracene, azatriphenylene, fluorenone, hydrazone, stilbene, triphenylene, benzine, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, and oxazole. , Polyarylalkanes, phenylenediamines, arylamines, and derivatives thereof, thiophene compounds, polysilane compounds, vinylcarbazole compounds, aniline compounds, and other heterocyclic conjugated monomers, oligomers, or polymers Can do.
  • materials having high light emission efficiency such as low molecular fluorescent dyes and metal complexes are used.
  • the electron transport layer and the electron injection layer for example, tris (8-quinolinolato) aluminum complex, oxadiazole derivative, triazole derivative, phenylquinoxaline derivative, silole derivative, and the like can be used.
  • 12B includes a first electrode 5, a hole injection layer and a hole transport layer 7, light emitting layers 8R, 8G, and 8B, an electron transport layer, an electron injection layer, and a second electrode 9. It is a figure which shows a mode that the organic EL element 10 was sealed.
  • the organic EL elements 10 are not deteriorated by moisture or oxygen in the atmosphere.
  • the sealing resin 11 is formed in a frame shape, and the substrate 3 and the sealing substrate 12 are bonded together via the sealing resin 11.
  • a glass substrate is used as the sealing substrate 12, and the substrate 3 and the sealing substrate 12 are bonded to each other through a frame-shaped sealing resin 11 having adhesiveness.
  • the organic EL element 10 is sealed, but the sealing method of the organic EL element 10 is not limited to this, and for example, the upper surface of the organic EL element 10 is difficult to transmit moisture and oxygen.
  • a dense sealing film is formed by a CVD method or the like, and an adhesive is applied to the entire side surface of the organic EL element 10 and bonded to a sealing substrate, or frit glass (powder glass) is formed in a frame shape Alternatively, the organic EL element 10 may be sealed.
  • the above sealing method may be used in combination.
  • FIG. 3 is a diagram showing a schematic manufacturing process of the organic EL display device 1.
  • a substrate 3 having a TFT and a first electrode electrically connected to the TFT is manufactured by a known method (S1).
  • a photoresist 13 is formed so as to cover the deposition unnecessary region R2 where the terminal portion and the like are formed on the substrate 3 (S2).
  • FIG. 1 is a view showing a state in which a photoresist 13 is formed by patterning on a substrate 3.
  • the photoresist 13 is not formed inside the sealing resin 11 formed in a frame shape, but only formed outside the sealing resin 11 formed in a frame shape.
  • the photoresist 13 is formed only outside the sealing region of each organic EL panel on the substrate 3, and the photoresist 13 is not formed in the display region R1 (light emitting region) and the sealing region.
  • a positive photoresist 13 is used as a pattern film that can be peeled off in a later process, and a coating process, a pre-bake process, an exposure process, a development process, and a post-bake process are performed, and the shape shown in FIG. A photoresist 13 was patterned.
  • the photoresist 13 a general-purpose one can be used, but it is preferable to use a photoresist that has a small amount of water absorption and little degassing in a vacuum.
  • the gas desorbed from the photoresist 13 may damage the film constituting the organic EL element during the manufacturing process of the organic EL element. There is.
  • the photoresist 13 is formed of a low-absorbing material or a heat-resistant material in which moisture and decomposition products are not generated in a subsequent process.
  • examples of the heat-resistant material include organic-inorganic hybrid materials, but are not limited thereto.
  • the first electrode surface is subjected to plasma treatment or UV treatment before forming the organic layer including at least the light emitting layer. I do.
  • a shadow mask having an opening having a predetermined shape is closely fixed on the photoresist 13 on the substrate 3, and a hole injection layer and a hole transport layer are formed on the entire surface by a conventional vacuum deposition method (S3).
  • the hole injection layer and the hole transport layer are formed using the shadow mask, but the hole injection layer and the hole transport layer are formed using the photoresist 13 in combination. You can also.
  • the second electrode connection portion R3 is an opening of the photoresist 13, when the hole injection layer and the hole transport layer are formed using only the photoresist 13 as a mask, the second electrode A hole injection layer and a hole transport layer are also formed on the connection portion R3. In that case, since an organic film is interposed between the second electrode connection portion R3 and the second electrode, there is a risk of causing a contact failure.
  • a hole injection layer and a hole transport layer having a predetermined shape can be formed by using a shadow mask for shielding the portion of the second electrode connection portion R3 and using the photoresist 13 as a mask for the other portions.
  • the hole injection layer and the hole transport layer may be vapor-deposited all over the surface of the plurality of organic EL elements, there is no need to perform high-precision patterning, and the display region R1 is open in the entire surface.
  • a mask may be used. An open mask can be applied to vapor deposition on a large substrate because the frame for holding the mask is not so large and the weight does not increase.
  • a shadow mask 102 smaller than the substrate 101 as shown in FIG. 13 is used, a shadow mask 102 having an opening 102a, a nozzle 103 having a nozzle opening (ejecting port) 103a, and a nozzle 103.
  • the vapor deposition material supply source 104 connected to the substrate performs vapor deposition while scanning the substrate 101 in the left-right direction in the drawing with respect to the integrated mask unit 105, and as shown in FIG.
  • the light emitting layers 8R, 8G, and 8B having a stripe pattern extending in the horizontal direction inside were formed (S4).
  • the present invention is not limited to this.
  • the unit 105 may be scanned, and further, the substrate 101 and the mask unit 105 may be scanned in opposite directions.
  • the length in the longitudinal direction of the shadow mask 102 for each color that is open only in the portion corresponding to the sub-pixels of each color R, G, and B is the vertical length of the display region R1 shown in FIG.
  • the substrate 3 is scanned in the right direction in the drawing with respect to the mask unit 105.
  • the substrate 3 is moved upward in the drawing with respect to the mask unit 105 and the alignment is adjusted. Scanning is performed in the left direction in the figure.
  • the shape of the shadow mask 102 is not limited to this, and can be appropriately set as long as the shadow mask 102 is not bent or stretched by its own weight. Moreover, it can also vapor-deposit collectively with respect to the display area
  • the light emitting layer 8R When the light emitting layer 8R is vapor-deposited, R (red) vapor-deposited particles are ejected from the vapor deposition material supply source 104, and the above scanning is performed by the shadow mask 102 having an opening corresponding only to the R sub-pixel. By performing vapor deposition by the above, the light emitting layer 8R is formed in each R sub-pixel.
  • a light-emitting layer was formed in a portion corresponding to each sub-pixel using the same method.
  • the light emitting layers 8R, 8G, and 8B are formed by a separate coating vapor deposition method.
  • the substrate 101 is scanned and deposited on the mask unit 105, but as shown in FIG. 14, the mask unit 105 is scanned and deposited on the substrate 101. May be performed.
  • a stripe pattern is formed on the vapor deposition surface 101a of the substrate 101 with a gap G between the vapor deposition surface 101a of the substrate 101 and the shadow mask 102 being a predetermined interval.
  • the light emitting layers 8R, 8G, and 8B are formed, the light emitting layers 8R, 8G, and 8B having a stripe pattern can be formed in a state where the deposition surface 101a of the substrate 101 and the shadow mask 102 are in close contact with each other. .
  • a vapor deposition apparatus as shown in FIG. 13 is used to form the light emitting layers 8R, 8G, and 8B having a stripe pattern, but the film thickness is uniform and the stripe shape is fine. If the pattern of this can be formed, it will not specifically limit to the kind of vapor deposition apparatus to be used.
  • a shadow mask having an opening having a predetermined shape is closely fixed on the photoresist 13 on the substrate 3, and an electron transport layer and an electron injection layer are sequentially formed on the entire surface by a conventional vacuum deposition method (S5, S6). .
  • second electrodes are sequentially formed on the entire surface by a conventional vacuum deposition method (S7).
  • the second electrode connection portion R3 formed on the substrate 3 formed in the portion is electrically connected to the wiring on the substrate 3.
  • the electron transport layer and the electron injection layer are formed using a shadow mask.
  • the photoresist 13 is also used. It can be used together as part of the mask.
  • the first electrode, the hole injection layer and the hole transport layer, the light emitting layers 8R, 8G, and 8B, the electron transport layer, the electron injection layer, and the second electrode are formed on the substrate 3 on which the deposition has been completed. Sealing of the sealing region including the display region R1 is performed so that the organic EL element including the above is not deteriorated by moisture or oxygen in the atmosphere (S8).
  • a sealing resin 11 is formed in a frame shape at the four side ends of the sealing region including the display region R ⁇ b> 1, and the substrate 3 is sealed with the sealing resin 11 interposed therebetween.
  • a substrate (not shown) is bonded together.
  • the photoresist 13 is peeled off (S9).
  • a laminated film (a hole injection layer and a hole transport layer, a light emitting layer 8R ⁇ 8G ⁇ 8B, an electron transport layer, an electron injection layer, a second layer laminated on the surface of the photoresist 13 is removed. Electrode) can also be peeled off.
  • the photoresist 13 can be peeled off from the substrate 3 by using the photoresist 13 that is peeled off with an aqueous stripping solution and stripping and cleaning the sealed substrate 3 with the above stripping solution.
  • FIG. 2 shows the substrate 3 after the photoresist 13 has been peeled off.
  • the hole injection layer and the hole transport layer, the light emitting layers 8R, 8G, and 8B, the electron transport layer, the electron injection layer, and the second electrode are not stacked in the deposition unnecessary region R2.
  • the substrate 3 is divided for each organic EL panel (S10), and connected to an external circuit (drive circuit) using the terminal portion formed in the vapor deposition unnecessary region R2 (S11).
  • the organic EL display device 1 is manufactured, and a desired display is performed by causing a current to flow from the driving circuit formed outside to the organic EL element provided for each sub-pixel to emit light. Can be done.
  • FIG. 4 is a diagram showing a schematic manufacturing process of an organic EL display device using a conventional scanning-type separate vapor deposition method that does not include a pattern film that can be peeled off in a later process.
  • a substrate including a TFT and a first electrode electrically connected to the TFT is manufactured by a known method (S101).
  • a hole injection layer and a hole transport layer are formed on the entire surface by a vacuum deposition method on the substrate using only a normal open mask (S102).
  • the photoresist 13 Since the photoresist 13 is not provided in the manufacturing process of the organic EL display device using the conventional scanning-type coating vapor deposition method shown in FIG. 4, the photoresist 13 cannot be used as a mask in general. Therefore, it is necessary to deposit only with an open mask.
  • the photoresist 13 can be used in combination as a mask, so that the contact area of the open mask is reduced by reducing the contact area of the open mask. Since the damage to the pattern on the substrate can be reduced and the photoresist 13 covers the deposition unnecessary region R2 where the terminal portion is formed and also serves as a protective film for the terminal portion, the direct contact between the open mask and the terminal portion is possible. Therefore, it is possible to prevent damage to the terminal portion due to the open mask and improve the yield of the organic EL display device.
  • the photoresist 13 covers the vapor deposition unnecessary region R2 in which the terminal portion is formed, it is possible to prevent foreign matter from getting on the terminal portion and the like, and to improve the reliability of the organic EL display device. .
  • the photoresist 13 that covers the vapor deposition unnecessary region R2 is not provided, and thus has a stripe pattern.
  • the light emitting layer is also deposited in the deposition unnecessary region R2, and as a result, the light emitting layer is directly deposited on the terminal portion.
  • an electron transport layer, an electron injection layer, and a second electrode are sequentially formed on the entire surface by a conventional vacuum deposition method using only a normal open mask (S104). , S105, S106).
  • the photoresist 13 In the step of forming the electron transport layer and the electron injection layer, since the photoresist 13 is not provided, the photoresist 13 cannot be used as a mask, and the hole injection layer and the hole transport layer are formed on the substrate. Problems similar to those already described in the part of the step (S102) of forming the entire surface by the vacuum deposition method occur in the same way.
  • the photoresist 13 cannot be used as a mask, and it is necessary to use a normal open mask. For this reason, not only the same problems as the formation of the electron transport layer and the electron injection layer occur, but also facilities for using an open mask are required.
  • the organic EL element sealing process (S107) and the process of dividing the substrate for each organic EL panel (S108) are performed.
  • a wiping step (S109) of the light emitting layer formed in the vapor deposition unnecessary region R2 with an organic solvent is performed.
  • the wiping step it is necessary to wipe off the deposited light emitting layer directly from the deposition unnecessary region R2 using an organic solvent, but it is not easy to completely remove the deposited light emitting layer, and the residue The problem that is likely to remain.
  • the photoresist 13 is used. Therefore, the existing photoresist peeling technique is used to remove the residue-free photoresist and remove the peeling liquid. It is possible to suppress the damage to the sealing resin due to the removal of the overlying foreign matter by the freedom and the freedom of selection of the photoresist and the stripping solution, which may occur when the photoresist 13 as described above is not provided. The problem can be avoided.
  • FIG. 5A and FIG. 5B show three types of sub-pixels each having an organic EL element having a light emitting layer of each color of red (R), green (G), and blue (B). Are arranged so as to be adjacent to each other in the vertical direction, and form one pixel of the organic EL display device, and the photoresist 13 is formed in the region where the light emitting layers 8R, 8G, and 8B are formed in the vapor deposition unnecessary region R2.
  • R red
  • G green
  • B blue
  • the vapor deposition unnecessary region R2 in which the light emitting layers 8R, 8G, and 8B having the stripe pattern are not formed is not necessarily covered with the photoresist 13, and therefore the photoresist 13 is formed as shown in FIG.
  • the photoresist 13 may be formed in a stripe shape extending in the vertical direction in the figure as shown in (a) or in an island shape as shown in (b) in FIG.
  • the photoresist 13 is formed on the light emitting layer 8R.
  • the photoresist 13 is provided in a pattern as shown in FIG. 1, such as being unable to be used as a mask during the deposition of organic films other than 8G and 8B, the obtained effect is reduced.
  • the light emitting layers 8R, 8G, and 8B having the above can be subjected to high-definition patterning.
  • the amount of use of the photoresist 13 can be reduced, so that the material cost can be reduced.
  • the amount of degassing from the photoresist 13 can be reduced, and the adverse effect on the organic EL element can be further reduced.
  • the pattern shape of the photoresist 13 shown in FIGS. 5A and 5B is an example, and the number, arrangement, model, size, and the like of the organic EL panels in the substrate surface are shown. In consideration of this, the pattern shape of the photoresist 13 may be determined as appropriate.
  • (c) in FIG. 5 and (d) in FIG. 5 include three types of sub-pixels each having an organic EL element having a light emitting layer of each color of red (R), green (G), and blue (B).
  • the light-emitting layers 8R, 8G, and 8B are formed on the photoresist 13 in the evaporation unnecessary region R2. It is a figure which shows the example currently formed in the area
  • the vapor deposition unnecessary region R2 in which the light emitting layers 8R, 8G, and 8B having the stripe pattern are not formed is not necessarily covered with the photoresist 13, and therefore the photoresist 13 is formed as shown in FIG. It may be formed in a stripe shape extending in the left-right direction in the figure as shown in (c) or an island shape as shown in (d) in FIG.
  • the photoresist 13 has not been formed in the sealing region including the display region R1, but in this embodiment, the display region R1 is included if there is no problem in the characteristics of the organic EL display device. Photoresist 13 as a convex portion may be formed in the sealing region.
  • the sealing substrate collides with the organic EL element, and the organic EL element It can function as a pillar that prevents damage.
  • the present invention is not limited to this.
  • the substrate 101 may be slid and evaporated while the deposition surface 101a of the substrate 101 and the shadow mask 102 are in close contact with each other.
  • the photoresist 13 can prevent the deposition surface 101a of the substrate 101 from being damaged by the adhesion between the deposition surface 101a of the substrate 101 and the shadow mask 102.
  • the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are deposited using a shadow mask (open mask). Or it can also form using the vapor deposition method like FIG. In that case, a mask that forms an opening on the entire surface of the display region R1 may be used instead of the mask that is patterned in a stripe shape.
  • the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are deposited using an open mask, but the other electrode that connects the second electrode to the wiring of the substrate 3 is used. If there is a means, the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer can be formed in the same manner as the second electrode without using an open mask.
  • FIG. 18 shows a case where the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are formed in the same shape as the second electrode using a photoresist as a mask without using a shadow mask (open mask). It is a figure which shows an example of the method of electrically connecting the 2nd electrode and external wiring in FIG.
  • the convex portion 15 shown in the figure is formed using the photoresist 13, but the present invention is not limited to this, and the edge cover shown in FIG. 6 may be used.
  • the convex 15, the photoresist 13, and the layer forming the edge cover 6 may be the same layer.
  • a hole injection layer and a hole transport layer 7 As shown in the figure, on the convex portion 15, there are a hole injection layer and a hole transport layer 7, an electron transport layer (not shown), an electron injection layer (not shown), and a second electrode 9. Is formed.
  • a wiring / second electrode connection portion R3 made of a conductive material is formed on the surface of the sealing substrate 12 facing the substrate 3, and the wiring / second electrode connection portion R3 is formed in the display region R1. It is electrically connected to the second electrode 9 and is drawn out of a sealing region surrounded by a sealing resin 11 formed in a frame shape by wiring.
  • the wiring and second electrode connection portion R3 is connected to the wiring 107 of the substrate 3 by the conductive film 111.
  • the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are not used as shadow masks (open masks), and a photoresist is used as a mask. Even when formed in the same shape, the second electrode can be connected to an external circuit.
  • the organic layer other than the light emitting layer and the second electrode can be formed in a predetermined shape without a mask.
  • the manufacturing process of the organic EL display device 1c shown in FIG. 18 it is possible not only to prevent the pattern on the substrate from being damaged by the contact of the vapor deposition mask, but also to use the photoresist 13 as the vapor deposition mask.
  • the device tact time can be improved and the equipment cost can be reduced by reducing the mounting time of the device. As a result, the cost of the organic EL display device 1c can be reduced.
  • the vapor deposition mask never contacts in the manufacturing process of the organic EL element. Therefore, there is no fear of pattern damage on the substrate due to contact with the vapor deposition mask, and the yield of the organic EL display device 1c can be further improved.
  • Embodiment 2 Next, a second embodiment of the present invention will be described based on FIGS.
  • a sealing film is formed using the photoresist 13 as a mask, and then the photoresist 13 is peeled off.
  • the point which seals an organic EL element using a stop board is different from Embodiment 1, and it is as having demonstrated in Embodiment 1 about the other structure.
  • members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 8 is a diagram showing a schematic manufacturing process of the organic EL display device 1a.
  • FIG. 6 is a diagram showing the pattern shape of the photoresist 13 and the light emitting layers 8R, 8G, and 8B formed on the substrate 3a provided with the organic EL display device 1a.
  • a dense sealing film (not shown) that is difficult to transmit moisture and oxygen is formed on the second electrode, which is the upper surface of the organic EL element, by a CVD method or the like.
  • a sealing resin or frit glass (powder glass) was formed in a frame shape on the side surface of the organic EL element, and the organic EL element was sealed (S8).
  • the light emitting layers 8R, 8G, and 8B, the second electrode, and the sealing film are formed using the photoresist 13 as a mask.
  • the present invention is not limited to this.
  • the organic layers other than the light emitting layers 8R, 8G, and 8B can be formed by using only the photoresist 13 or using the photoresist 13 and an open mask in combination.
  • the photoresist 13 is peeled off (S9). At this time, since the organic EL element is protected by the sealing film or the like as described above, the organic EL element is not damaged in the peeling process.
  • the first electrode, the hole injection layer and the hole transport layer, the light emitting layers 8R, 8G, and 8B, the electron transport layer, the electron injection layer, and the second electrode were provided for the substrate 3a after the vapor deposition.
  • the sealing region including the display region R1 is sealed so that the organic EL element is not deteriorated by moisture or oxygen in the atmosphere (S10).
  • a sealing resin 11 is formed in a frame shape at the four side ends of the sealing region including the display region R1, and the substrate 3a is sealed with the sealing resin 11 interposed therebetween.
  • a substrate (not shown) is bonded together.
  • the substrate 3a is divided for each organic EL panel (S11), and connected to an external circuit (drive circuit) using the terminal portion formed in the vapor deposition unnecessary region R2 (S12), and the organic EL display device Complete 1a.
  • the photoresist 13 can be used as a vapor deposition mask, it is possible to improve the apparatus tact by reducing the time for mounting the vapor deposition mask and to reduce the equipment cost. As a result, the cost of the organic EL display device 1a can be reduced. .
  • damage to the surface of the organic EL panel can be reduced by reducing the number of mask adhesions to the substrate 3a, leading to an improvement in the yield of the organic EL display device 1a.
  • the second electrode and the sealing film are formed by a vapor deposition method; however, the present invention is not limited to this, and other film formation methods such as a sputtering method are used. You can also
  • the step of forming the sealing film may be omitted.
  • the outer edge of the sealing region which is the region surrounded by the sealing resin 11, is also included in the vapor deposition unnecessary region R2, and is protected by the photoresist 13 (see FIG. 6).
  • the organic EL element is sealed in a frame shape with the sealing resin 11 or frit glass (powder glass), or when the sealing substrate and the TFT substrate are bonded and sealed with the sealing resin 11,
  • the deposited film is not interposed (interposed) between the substrates at the outer edge of the sealing region.
  • a photosensitive dry film 14 is used instead of the photoresist 13 as a pattern film, and the second electrode is formed after the dry film 14 peeling step. It is different from Form 1.
  • the organic layers other than the light emitting layers 8R, 8G, and 8B are different from the first embodiment in that the dry film 14 is formed as a mask without using the vapor deposition mask.
  • the photosensitive dry film 14 covers the frame-shaped region where the sealing resin is applied, and only the display region R1 is open, which is different from the first embodiment.
  • FIG. 11 is a diagram showing a schematic manufacturing process of the organic EL display device 1b.
  • a photosensitive dry film 14 is formed as a pattern film instead of the photoresist 13, and the photosensitive dry film 14 is used as a mask to form a deposited film.
  • 3 is the same as the steps S1, S2, and S4 already described with reference to FIG. 3 in the first embodiment, and thus the description thereof is omitted.
  • the processes of S3, S5 and S6 are similar to the process of S7 of FIG. 3 in the first embodiment. That is, the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are formed using the dry film 14 having only the display region R1 opened as a mask. Since the dry film 14 covers the second electrode connection portion R3, the organic layer is not formed thereon.
  • FIG. 9 is a diagram showing the pattern shape of the photosensitive dry film 14 formed on the substrate 3b and the light emitting layers 8R, 8G, and 8B.
  • the photosensitive dry film 14 is formed to have an opening in the display region R1.
  • a negative photosensitive dry film 14 is used, and this photosensitive dry film 14 is in a film form and is mechanically peeled off in the state of the film after patterning. Can be done.
  • the photosensitive dry film 14 is peeled off before forming the second electrode (S7).
  • the second electrode is used by using a normal open mask (a shadow mask having an opening in a region including the display region R1 and the second electrode connection portion R3). Is deposited (S8).
  • the first electrode, the hole injection layer and the hole transport layer, the light emitting layers 8R, 8G, and 8B, the electron transport layer, the electron injection layer, and the second electrode are formed on the substrate 3b that has been deposited. Sealing of the sealing region including the display region R1 is performed so that the organic EL element including the above is not deteriorated by moisture or oxygen in the atmosphere (S9).
  • FIG. 10 is a view showing the substrate 3b after the photosensitive dry film 14 is peeled off and the second electrode is deposited and the sealing region including the display region R1 is sealed.
  • sealing resin 11 is formed in a frame shape at the four side end portions of the sealing region including display region R1, and substrate 3b and sealing substrate (not yet) are interposed via sealing resin 11. Are attached to each other.
  • the substrate 3b is divided for each organic EL panel (S10) and connected to an external circuit (drive circuit) using the terminal portion formed in the vapor deposition unnecessary region R2 (S11), and the organic EL display device Complete 1b.
  • the photosensitive dry film 14 can be used as a vapor deposition mask for an organic film including the light emitting layers 8R, 8G, and 8B, it is possible to improve the apparatus tact and reduce the equipment cost by reducing the deposition time of the vapor deposition mask. As a result, the cost of the organic EL display device 1b can be reduced.
  • the outer edge of the sealing region that is the region surrounded by the sealing resin 11 is also included in the vapor deposition unnecessary region R2 and is protected by the photosensitive dry film 14. (See FIGS. 9 and 10).
  • the organic EL element is sealed in a frame shape with the sealing resin 11 or frit glass (powder glass), or when the sealing substrate and the TFT substrate are bonded and sealed with the sealing resin 11,
  • the deposited film is not interposed (interposed) between the substrates at the outer edge of the sealing region.
  • the method for forming a vapor deposition film of the present invention is a first method different from the above vapor deposition film using the pattern film as a mask before or / and after the step of forming the vapor deposition film on the opening and the pattern film.
  • a step of forming a film is included, and the pattern film is preferably peeled after the step of forming the first film.
  • the maskless vapor deposition can be performed, and the apparatus tact can be reduced by reducing the mounting time of the vapor deposition mask. Can be improved and the equipment cost can be reduced.
  • damage to the surface of the substrate can be reduced by reducing the number of adhesions of the vapor deposition mask.
  • the vapor deposition film forming method of the present invention is different from the above vapor deposition film by using a mask having a through-hole before or / and after the step of forming the vapor deposition film on the opening and the pattern film.
  • the step of forming a second film is included, and the pattern film is preferably peeled off after the step of forming the second film.
  • the mask having a through hole and the substrate are brought into close contact with each other through the pattern film, so that the pattern film serves as a protective film for the substrate and reduces damage to the surface of the substrate. be able to.
  • the pattern film is preferably formed by exposing and developing a photosensitive material.
  • the pattern film can be patterned relatively easily and can be peeled off using a stripping solution.
  • the pattern film is preferably a film-like peelable dry film.
  • the pattern film can be peeled off in a film form without using a stripping solution, adverse effects that can occur when using the stripping solution can be suppressed.
  • the pattern film is formed of a heat-resistant material that does not cause decomposition products in a subsequent process of forming the pattern film.
  • the influence of the pattern film in the subsequent process can be suppressed.
  • a vapor deposition mask having a through hole and a smaller area than the substrate, and a vapor deposition material supply source
  • the vapor deposition mask in the mask unit to which is fixed is maintained at a certain distance from the substrate, and at least one of the mask unit and the substrate is scanned with respect to the other, and the vapor deposition film Is preferably formed.
  • the vapor deposition mask in the mask unit and the substrate may be in close contact with each other.
  • the substrate and the vapor deposition mask are in close contact with each other via the pattern film, damage to the substrate by the vapor deposition mask can be prevented by the pattern film.
  • the method for producing a display device of the present invention includes a step of forming at least one layer in the organic layer including the metal layer and a layer other than the light emitting layer, using the pattern film as a mask. Preferably it is.
  • the pattern film is used as a mask in the step of forming at least one layer selected from the organic layer, the layer other than the light emitting layer, the metal layer, and the inorganic layer. Therefore, in the process of forming these films, it is possible to perform vapor deposition without using a mask, and it is possible to improve the apparatus tact and reduce the equipment cost by reducing the mask mounting time.
  • the damage to the surface of the substrate can be reduced by reducing the number of adhesion of the mask.
  • the yield and reliability can be improved, and the manufacturing cost can be suppressed.
  • the manufacturing method of the display device of the present invention includes a step of forming at least one layer in the organic layer including a layer other than the light-emitting layer and an inorganic layer including a metal layer using a mask having a through-hole. It is preferable that
  • the mask having a through hole and the substrate are brought into close contact with each other through the pattern film, so that the pattern film serves as a protective film for the substrate and reduces damage to the surface of the substrate. Therefore, a method for manufacturing a display device with improved yield and reliability can be realized.
  • the pattern film is peeled off after the step of forming the second electrode.
  • the pattern film is used as a mask.
  • the second electrode is preferably formed.
  • the step of forming the second electrode can be performed without a mask, and the device tact can be reduced by reducing the wearing time of the mask. Can be improved and the equipment cost can be reduced.
  • damage to the surface of the substrate can be reduced by reducing the number of adhesions of the vapor deposition mask.
  • the second electrode is preferably formed using a mask having a through hole.
  • the second electrode is formed using a mask having a through hole, the organic layer is not interposed between the connection portion of the wiring and the second electrode.
  • the shape of the second electrode can be formed.
  • the manufacturing method of the display device of the present invention includes a step of sealing the first electrode, the organic layer, and the second electrode with a sealing member, and the step of peeling the pattern film includes It is preferably performed after the step of sealing with the sealing member.
  • the pattern film is peeled in a state where the first electrode, the organic layer, and the second electrode are sealed with a sealing member, adverse effects due to the stripping solution are suppressed. be able to.
  • the method for manufacturing a display device of the present invention includes a step of forming a sealing film that seals the first electrode, the organic layer, and the second electrode, using the pattern film as a mask.
  • the step of forming the sealing film is performed before peeling the pattern film, and after peeling the pattern film, the first electrode, the organic layer, the second electrode, It is preferable to perform a step of sealing the sealing film with a sealing member.
  • the pattern film is peeled in a state where the first electrode, the organic layer, and the second electrode are sealed with a sealing film, adverse effects due to the stripping solution are suppressed. be able to.
  • the sealing film is sealed separately from the sealing film, the reliability can be improved.
  • the pattern film is preferably formed by exposing and developing a photosensitive material.
  • the pattern film can be patterned relatively easily and can be peeled off using a stripping solution.
  • the pattern film is a film-like peelable dry film formed by exposing and developing a photosensitive material, the first electrode;
  • the pattern film is preferably peeled off before the step of sealing the organic layer and the second electrode with a sealing member.
  • the pattern film can be peeled off without using a stripping solution, the pattern film can be peeled before the step of sealing with the sealing member.
  • the pattern film is formed of a heat-resistant material that does not cause decomposition products in a subsequent process of forming the pattern film.
  • the influence of the decomposition product of the pattern film in the subsequent process can be suppressed.
  • the convex portion formed by the method prevents the organic layer, the second electrode, and the like from coming into contact with the sealing member and being damaged, for example, by pressing the sealing member. be able to.
  • the second electrode is provided on the convex portion.
  • the step of forming the convex portion is the same step as the step of forming the pattern film.
  • the convex portion is formed in the step of forming the pattern film, a separate step for providing the convex portion is not necessary.
  • the step of forming the pattern film may be the same step as the step of forming the edge cover formed so as to cover the end portion of the first electrode. preferable.
  • the pattern film is formed in the step of forming the edge cover, there is no need for a separate process for providing the pattern film.
  • a plurality of electrodes having a predetermined distance from each other along a row direction or a column direction of the first electrode formed in the matrix on the opening and the pattern film.
  • the vapor deposition mask in the mask unit and the substrate may be in close contact with each other.
  • the substrate and the vapor deposition mask are in close contact with each other via the pattern film, damage to the substrate by the vapor deposition mask can be prevented by the pattern film.
  • the pattern film is formed also in a region where the sealing member is formed in a non-display region which is a peripheral region of the display region.
  • the vapor deposition film is not interposed (interposed) between the substrates in the region where the sealing member is formed, the adhesion of the sealing member can be improved and the pores can be prevented. Since the performance can be sufficiently exhibited, the reliability of the organic EL display device can be further improved.
  • the present invention can be suitably used in, for example, a manufacturing process of an organic EL display device.
  • Organic EL display device (display device) 2 TFT (active element) 3, 3a, 3b Substrate 5 First electrode 7 Hole injection layer and hole transport layer (organic layer) 8R, 8G, 8B Light emitting layer 9 Second electrode 10 Organic EL element 11 Sealing resin (sealing member) 12 Sealing substrate (sealing member) 13 Photoresist (pattern film) 14 Photosensitive dry film (pattern film) 15 Convex part R1 Display area R2 Vapor deposition unnecessary area (non-display area) R3 Second electrode connection part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

基板(3)において蒸着膜が形成される面に、フォトレジスト(13)を、表示領域(R1)を含む封止樹脂(11)が枠状に形成される封止領域内において、開口部を有するように形成し、その後、ストライプ状のパターンを有する発光層(8R・8G・8B)を形成し、その後にフォトレジスト(13)を剥離液で除去し、高精細にパターニングされた発光層(8R・8G・8B)を形成する。

Description

蒸着膜の形成方法及び表示装置の製造方法
 本発明は、所定形状にパターニングされた蒸着膜の形成方法および上記所定形状にパターニングされた蒸着膜を備えた表示装置の製造方法に関するものである。
 近年、様々な商品や分野でフラットパネルディスプレイが活用されており、フラットパネルディスプレイのさらなる大型化、高画質化、低消費電力化が求められている。
 そのような状況下において、有機材料の電界発光(Electroluminescence;以下、「EL」と記す)を利用した有機EL素子を備えた有機EL表示装置は、全固体型で、低電圧駆動、高速応答性、自発光性、広視野角特性等の点で優れたフラットパネルディスプレイとして、高い注目を浴びている。
 有機EL表示装置は、例えば、TFT(薄膜トランジスタ)が設けられたガラス基板等からなる基板上に、TFTに電気的に接続された有機EL素子が設けられた構成を有している。
 例えば、フルカラーの有機EL表示装置では、一般的に、赤(R)、緑(G)、青(B)の各色の発光層を備えた有機EL素子がサブ画素として基板上に配列形成され、TFTを用いて、これら有機EL素子を選択的に所望の輝度で発光させることによりカラー画像表示を行うようになっている。
 したがって、有機EL表示装置を製造するためには、各色に発光する有機発光材料からなる発光層を有機EL素子毎に所定パターンで形成する必要がある。
 このような発光層を所定パターンで形成する方法としては、例えば、真空蒸着法、インクジェット法、レーザ転写法などが知られている。そして、例えば、低分子型有機EL表示装置(OLED)では、真空蒸着法が用いられることが多い。
 真空蒸着法では、所定パターンの開口が形成されたマスク(シャドウマスクとも称される)が使用され、マスクが密着固定された基板の被蒸着面を蒸着源に対向させる。
 そして、蒸着源からの蒸着粒子(成膜材料)を、マスクの開口を通して被蒸着面に蒸着させることにより、所定パターンの薄膜が形成される。蒸着は発光層の色毎に行われ、これを「塗り分け蒸着」という。
 特許文献1および特許文献2には、基板に対してマスクを少しずつ移動させて各色の発光層の塗り分け蒸着を行う方法が記載されている。
 このような従来の塗り分け蒸着法においては、基板と同等の大きさのマスクが使用され、蒸着時にはマスクは基板の被蒸着面を覆うように固定されるようになっている。
 したがって、従来の塗り分け蒸着法においては、基板が大きくなればそれに伴ってマスクも大型化する必要がある。
 しかしながら、マスクを大きくすると、マスクの自重撓みや伸びにより、基板とマスクとの間に隙間が生じ易くなるとともに、その隙間の大きさは、基板の被蒸着面の位置によってそれぞれ異なる。
 よって、従来の塗り分け蒸着法を用いては、高精度なパターニングを行うのが難しく、蒸着位置のズレや混色が発生してしまうという問題があった。
 また、従来の塗り分け蒸着法においては、マスクを大きくすると、マスクなどを保持するフレームなども巨大になってしまい、その重量も増加するため、取り扱いが困難になり、生産性や安全性に支障をきたす恐れがある。
 そして、従来の塗り分け蒸着法においては、蒸着装置やそれに付随する装置も同様に巨大化、複雑化するため、装置設計が困難になり、設置コストも高額になってしまう。
 以上のように、従来の塗り分け蒸着法では、大型基板へ高精細にパターニングされた蒸着膜を形成するのが困難であり、例えば、60インチサイズを超えるようなマスクが用いられる大型基板に対しては量産レベルで塗り分け蒸着が実現できていないのが現状である。
特開平8-227276号公報(1996年9月3日公開) 特開2000-188179号公報(2000年7月4日公開)
 そこで、図13および図14に図示されているように、基板101よりも小さなシャドウマスク102を用いる塗り分け蒸着法が提案されている。
 この塗り分け蒸着法においては、開口部102aを有するシャドウマスク102と、ノズル開口部103a(射出口)を有するノズル103と、ノズル103に接続された蒸着材料供給源104とが、一体化されたマスクユニット105を用いるようになっている。
 そして、図13に図示されているように、基板101の被蒸着面101aとシャドウマスク102とを対向配置させるとともに、被蒸着面101aとシャドウマスク102との隙間Gを一定に保ちながら、固定されているマスクユニット105に対して、基板101を図中の左右方向に走査しながら蒸着することで、基板101の被蒸着面101aに、ストライプ状のパターンを有する蒸着膜を形成することができる。
 一方、上記塗り分け蒸着法においては、図14に図示されているように、基板101を固定させ、固定されている基板101に対して、マスクユニット105を図中の左右方向に走査しながら蒸着することで、基板101の被蒸着面101aに、ストライプ状のパターンを有する蒸着膜を形成することもできる。
 このような走査方式の塗り分け蒸着法においては、従来の塗り分け蒸着法のように基板と同等の大きさのマスクを用いる必要がないので、マスクサイズが大きくなることによって生じ得る上述したような問題は改善することができる。
 しかしながら、このような基板101よりも小さなシャドウマスク102を用いる走査方式の塗り分け蒸着法においては、以下のような問題が新たに生じる。
 図15は、基板101の被蒸着面101aを示す図であり、大型の基板101には、各有機EL表示装置において、蒸着膜(例えば、発光層など)の形成が必要となる蒸着領域R1と、蒸着膜(例えば、発光層など)の形成が必要でない端子部などとなる蒸着不要領域R2と、がそれぞれ存在する。
 本来であれば、蒸着不要領域R2には、蒸着膜(例えば、発光層など)を形成する必要はないが、図13および図14に図示した走査方式の塗り分け蒸着法においては、図15に図示されているように、蒸着領域R1のみでなく、蒸着不要領域R2にもストライプ状のパターンを有する蒸着膜106が形成されることとなる。
 以下、図16に基づいて、ストライプ状のパターンを有する蒸着膜106が蒸着不要領域R2にも形成されてしまう理由について説明する。
 図16に図示されているように、走査方式の塗り分け蒸着法において、蒸着不要領域R2に蒸着膜106が形成されないようにするためには、シャドウマスク102が、蒸着OFFライン、すなわち、シャドウマスク102の右先端が蒸着不要領域R2の左先端に達した際に、マスクユニットに備えられたノズルのノズル開口部から射出される蒸着粒子を射出されないようにすることが考えられる。
 しかし、このようにすると、蒸着不要領域R2に蒸着膜106が形成されないようにすることはできるが、蒸着領域R1において、シャドウマスク102が未だ残っている領域は、実質的に蒸着時間が短くなり、蒸着膜の膜厚が低下する蒸着量減少領域となってしまう。
 したがって、このような走査方式の塗り分け蒸着法においては、蒸着領域R1に均一な膜厚を有する蒸着膜106を形成するためには、図15に図示されているように、仕方なく、蒸着領域R1のみでなく、蒸着不要領域R2にもストライプ状のパターンを有する蒸着膜106を形成していた。
 図17は、蒸着不要領域R2に形成された蒸着膜106によって、生じ得る問題点を説明するための図である。
 図17の(a)は、発光層として、走査方式の塗り分け蒸着法で形成した蒸着膜106を備えた有機EL表示装置113の概略構成を示す図である。
 図17の(b)は、有機EL表示装置113の端子部107aを示す平面図である。
 図17の(a)に図示されている有機EL表示装置113に備えられた基板101においては、蒸着領域R1のみでなく、蒸着不要領域R2にもストライプ状のパターンを有する蒸着膜106が形成されている。
 すなわち、図17の(b)に図示されているように、蒸着不要領域R2である配線107の端子部107aにも蒸着膜106が形成されている。
 そして、外部回路と、蒸着不要領域R2に形成されている配線107の端子部107aとは、異方性導電膜(ACF:Anisotropic Conductive Film)111を介して、フレキシブルケーブル112に電気的に接続されることとなるが、図17の(a)に図示されているように、端子部107a上に蒸着膜106が形成されていると、電気的導通不良または電流リークを引き起こす原因となる。
 すなわち、蒸着膜106が、発光層などの有機蒸着膜のように高抵抗の膜である場合には、電気的導通不良となり、一方、蒸着膜106が金属膜のように低抵抗の膜である場合には、電流リークが生じることとなる。
 また、蒸着領域R1の4辺端部の蒸着不要領域R2には、封止樹脂109が枠状に形成され、封止樹脂109を介して、基板101と封止基板110とは貼り合わせられている。
 したがって、陽極(未図示)、正孔注入層兼正孔輸送層(未図示)、発光層としての蒸着膜106、電子輸送層(未図示)、電子注入層(未図示)、そして陰極108が順番に積層されてなる有機EL素子が大気中の水分や酸素にて劣化しないようにすることができる。
 基板101と封止基板110とが貼り合わせられる前に、有機溶剤を用いて、蒸着不要領域R2における端子部107a上の蒸着膜106を拭き取ることも考えられるが、有機EL素子が有機溶剤や大気中の水分や酸素にて劣化されてしまうため、端子部107a上の蒸着膜106は、基板101と封止基板110とが貼り合わせられた後であって、基板101が各有機EL表示装置113となるように分断された後に、有機溶剤を用いて拭き取られるのが一般的である。
 しかしながら、端子部107a上の蒸着膜106を、基板101と封止基板110とが貼り合わせられた後に、有機溶剤を用いて拭き取る場合には、以下のような問題が生じる。
 上記拭き取り工程においては、拭き取りが不十分で残渣が残りやすいとともに、拭き取りの際に新たな上乗り異物が生じやすいので、外部回路との接続不良が生じやすくなってしまうという問題がある。
 また、基板101と封止基板110との貼り合わせを、封止樹脂109を介して、行っている場合、有機溶剤が封止樹脂109に損傷を与え、封止樹脂109において、上記有機溶剤によって損傷を受けた箇所からは、大気中の水分や酸素が浸透しやすくなってしまうという問題もある。
 したがって、例えば、このような拭き取り工程を含む製造方法によって製造された有機EL表示装置は、歩留まりが低く、信頼性を確保するのも困難であった。
 本発明は、上記の問題点に鑑みてなされたものであり、高精細なパターニングが可能な蒸着膜の形成方法と、歩留まりや信頼性の向上された表示装置の製造方法を提供することを目的とする。
 本発明の蒸着膜の形成方法は、上記の課題を解決するために、基板に所定形状の蒸着膜を形成する蒸着膜の形成方法であって、上記基板において上記蒸着膜が形成される面に、開口部を有するとともに剥離可能な所定形状のパターン膜を形成する工程と、上記開口部および上記パターン膜上に、上記基板面上のある一つの方向に沿って、互いに所定間隔を有する複数の直線状の上記蒸着膜を形成する工程と、上記パターン膜を剥離することによって、上記蒸着膜を所定形状に形成する工程と、を有することを特徴としている。
 上記方法によれば、上記基板において上記蒸着膜が形成される面に、開口部を有するとともに剥離可能な所定形状のパターン膜を形成した後に、上記開口部および上記パターン膜上に、比較的容易に高精細な蒸着膜を形成できるパターン形状である、互いに所定間隔を有する複数の直線状の上記蒸着膜を形成し、上記パターン膜を剥離することによって、上記直線状の蒸着膜を所定形状の高精細なパターンとして形成できる。
 したがって、上記方法によれば、高精細なパターニングが可能となる。
 本発明の表示装置の製造方法は、上記の課題を解決するために、基板上に複数のアクティブ素子を形成する工程と、上記各々のアクティブ素子に電気的に接続され、かつ、上記基板上の表示領域にマトリクス状に第1の電極を形成する工程と、上記第1の電極上に、少なくとも発光層を含む有機層を形成する工程と、少なくとも上記有機層上に、上記第1の電極とは逆の極性を有する第2の電極を形成する工程と、を有する表示装置の製造方法であって、上記有機層中、少なくとも上記発光層を形成する工程においては、上記表示領域には、剥離可能なパターン膜の開口部が形成され、上記表示領域の周辺領域である非表示領域の少なくとも一部には、上記パターン膜が形成され、上記開口部および上記パターン膜上に、上記マトリクス状に形成された第1の電極の行方向または、列方向に沿って、互いに所定間隔を有する複数の直線状の少なくとも上記発光層が形成され、上記有機層中、少なくとも上記発光層を形成する工程の後または、上記第2の電極を形成する工程の後に、上記パターン膜を剥離することによって、少なくとも上記発光層を所定形状に形成することを特徴としている。
 上記方法によれば、歩留まりや信頼性の向上された表示装置の製造方法を実現することができる。
 本発明の蒸着膜の形成方法は、以上のように、上記基板において上記蒸着膜が形成される面に、開口部を有するとともに剥離可能な所定形状のパターン膜を形成する工程と、上記開口部および上記パターン膜上に、上記基板面上のある一つの方向に沿って、互いに所定間隔を有する複数の直線状の上記蒸着膜を形成する工程と、上記パターン膜を剥離することによって、上記蒸着膜を所定形状に形成する工程と、を有する方法である。
 また、本発明の表示装置の製造方法は、以上のように、上記有機層中、少なくとも上記発光層を形成する工程においては、上記表示領域には、剥離可能なパターン膜の開口部が形成され、上記表示領域の周辺領域である非表示領域の少なくとも一部には、上記パターン膜が形成され、上記開口部および上記パターン膜上に、上記マトリクス状に形成された第1の電極の行方向または、列方向に沿って、互いに所定間隔を有する複数の直線状の少なくとも上記発光層が形成され、上記有機層中、少なくとも上記発光層を形成する工程の後または、上記第2の電極を形成する工程の後に、上記パターン膜を剥離することによって、少なくとも上記発光層を所定形状に形成する方法である。
 それゆえ、高精細なパターニングが可能な蒸着膜の形成方法と、歩留まりや信頼性の向上された表示装置の製造方法を実現できる。
本発明の一実施の形態の有機EL表示装置の製造方法において、基板上にフォトレジストをパターニング形成した様子を示す図である。 本発明の一実施の形態の有機EL表示装置の製造方法において、フォトレジストが剥離された後の基板を示す図である。 本発明の一実施の形態の有機EL表示装置の製造方法の各工程を示す図である。 従来の走査方式の塗り分け蒸着法を用いた有機EL表示装置の概略的な製造工程を示す図である。 本発明の一実施の形態の有機EL表示装置の製造方法において、用いることができるフォトレジストのパターン形状の一例を示す図である。 本発明の他の一実施の形態の有機EL表示装置の製造方法において、基板に形成されたフォトレジストのパターン形状と発光層とを示す図である。 本発明の他の一実施の形態の有機EL表示装置の製造方法において、フォトレジストを剥離する工程と、封止領域の封止工程までを行った後の基板を示す図である。 本発明の他の一実施の形態の有機EL表示装置の製造方法の各工程を示す図である。 本発明のさらに他の一実施の形態の有機EL表示装置の製造方法において、基板に形成された感光性のドライフィルムのパターン形状と発光層とを示す図である。 本発明のさらに他の一実施の形態の有機EL表示装置の製造方法において、感光性のドライフィルムを剥離する工程と、第2の電極の蒸着および封止領域の封止工程までを行った後の基板を示す図である。 本発明のさらに他の一実施の形態の有機EL表示装置の製造方法の各工程を示す図である。 本発明の一実施の形態の有機EL表示装置の製造方法によって製造された有機EL表示装置の概略構成を示す図である。 本発明の一実施の形態の有機EL表示装置の製造方法に用いることができる蒸着装置の一例を示す図である。 本発明の一実施の形態の有機EL表示装置の製造方法に用いることができる蒸着装置の一例を示す図である。 図13または図14に示す蒸着装置によって、基板に形成された蒸着膜の様子を示す図である。 ストライプ状のパターンを有する蒸着膜が蒸着不要領域にも形成されてしまう理由について説明するための図である。 蒸着不要領域に形成された蒸着膜によって、生じ得る問題点を説明するための図である。 本発明の一実施の形態の有機EL表示装置の製造方法において、正孔注入層、正孔輸送層、電子輸送層および電子注入層をシャドウマスクを用いずに、フォトレジストをマスクとし、第2の電極と同一形状に形成した場合における、第2の電極と外部配線とを電気的に接続する方法の一例を示す図である。
 以下、図面に基づいて本発明の実施の形態について詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などはあくまで一実施形態に過ぎず、これらによってこの発明の範囲が限定解釈されるべきではない。
 なお、以下の実施の形態においては、高精細なパターニングが可能な蒸着膜の形成方法が用いられる一例として、有機EL表示装置の製造方法を挙げて説明するが、これに限定されることはなく、本発明の蒸着膜の形成方法は、高精細にパターニングされた蒸着膜が要求されるあらゆる分野に適用することができる。
 また、以下の実施の形態においては、有機EL表示装置の製造方法を一例に挙げて説明しているため、本発明の蒸着膜の形成方法を用いて形成される蒸着膜は、有機膜の場合となっているが、これに限定されることはなく、本発明の蒸着膜の形成方法は、無機膜の形成にも用いることができるのは勿論である。
 〔実施の形態1〕
 図12は、有機EL表示装置1の概略構成を示す図であり、図12の(a)は、有機EL表示装置1の表示領域を構成する有機EL素子10の断面を示したものである。
 薄膜トランジスタ2(以下、「TFT」と記す)が形成された基板3上に、層間絶縁膜4、第1の電極5およびエッジカバー6が形成されている。
 基板3としては、例えば、無アルカリガラスやプラスチックなどを用いることができるが、本実施の形態においては、板厚0.7mmの無アルカリガラスを使用した。
 そして、層間絶縁膜4およびエッジカバー6としては、既知の感光性樹脂を用いることができ、上記感光性樹脂としては、例えば、アクリル樹脂やポリイミド樹脂などが挙げられる。
 なお、本実施の形態においては、層間絶縁膜4およびエッジカバー6として、感光性アクリル樹脂を用いた。
 また、第1の電極5は、電極材料をスパッタ法などで形成した後、フォトリソグラフィ技術およびエッチングにより個々の画素に対応してパターン形成されている。
 第1の電極5としては、様々な導電性材料を用いることができるが、基板側に光を放射するボトムエミッション型有機EL素子の場合、透明または半透明の必要がある。一方、基板とは反対側から光を放射するトップエミッション型有機EL素子の場合には、第2の電極9が透明または半透明の必要がある。
 また、TFT2は既知の方法にて作製され、本実施の形態においては、TFT2を各画素に形成したアクティブマトリックス型の有機EL表示装置の製造について述べるが、これに限らずTFT2のないパッシブマトリックス型の有機EL表示装置についても、本発明は適用可能である。
 エッジカバー6は、第1の電極5の端部で有機EL層が薄くなり、第2の電極9との間で短絡するのを防止するために、第1の電極5の端部を覆うように形成されており、エッジカバー6のない部分で第1の電極5が露出している。この露出部分が各画素の発光部となる。
 図示されているように、第1の電極5上に各有機EL層を形成する。有機EL層としては、例えば、正孔注入層および正孔輸送層7、発光層8R・8G・8B、図示してないが、第2の電極9と同形状に形成される電子輸送層および電子注入層などが挙げられる。
 そして、図示してないが、必要に応じて正孔、電子といったキャリアの流れをせき止めるキャリアブロッキング層が挿入されていてもよい。
 また、一つの層が複数の機能を有していてもよく、例えば、正孔注入層および正孔輸送層7のように、正孔注入層と正孔輸送層とを兼ねた一つの層を形成してもよい。
 本実施の形態においては、第1の電極5を陽極とし、第1の電極5側より正孔注入層および正孔輸送層7、発光層8R・8G・8B、電子輸送層(未図示)、電子注入層(未図示)、そして第2の電極9を陰極とした順番で積層した。
 なお、第1の電極5を陰極とする場合には、上記積層順は反転する。
 また、本実施の形態においては、ボトムエミッション型有機EL素子とするため、第1の電極5として、ITO(インジウム-スズ酸化物)を用いた。
 そして、有機EL層の各材料としては、既知の材料を用いることができ、発光層8R・8G・8Bとしては単一材料を用いたもの、あるいはある材料をホスト材料とし、他の材料をゲスト材料またはドーパントとして混ぜ込んだ混合型が用いられる。
 以下、各有機EL層の材料として用いることができる具体例を示す。
 正孔注入層および正孔輸送層7の材料としては、例えば、アントラセン、アザトリフェニレン、フルオレノン、ヒドラゾン、スチルベン、トリフェニレン、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリアゾール、イミダゾール、オキサジアゾール、オキザゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、およびこれらの誘導体、チオフェン系化合物、ポリシラン系化合物、ビニルカルバゾール系化合物、アニリン系化合物などの複素環式共役系のモノマー、オリゴマー、またはポリマーなどを用いることができる。
 そして、発光層8R・8G・8Bの材料としては、低分子蛍光色素、金属錯体などの発光効率が高い材料が用いられる。例えば、アントラセン、ナフタレン、インデン、フェナントレン、ピレン、ナフタセン、トリフェニレン、ペリレン、ピセン、フルオランテン、アセフェナントリレン、ペンタフェン、ペンタセン、コロネン、ブタジエン、クマリン、アクリジン、スチルベン、およびこれらの誘導体、トリス(8-キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体、ジトルイルビニルビフェニル、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾールなどが挙げられる。
 電子輸送層や電子注入層の材料としては、例えば、トリス(8-キノリノラト)アルミニウム錯体、オキサジアゾール誘導体、トリアゾール誘導体、フェニルキノキサリン誘導体、シロール誘導体などを用いることができる。
 そして、図12の(b)は、第1の電極5、正孔注入層および正孔輸送層7、発光層8R・8G・8B、電子輸送層、電子注入層、第2の電極9を備えた有機EL素子10が、封止されている様子を示す図である。
 図示されているように、有機EL素子10が大気中の水分や酸素にて劣化しないように、複数の有機EL素子10が設けられた有機EL表示装置1の表示領域の4辺端部には、封止樹脂11が枠状に形成され、封止樹脂11を介して、基板3と封止基板12とが貼り合わせられている。
 なお、本実施の形態においては、封止基板12として、ガラス基板を用いており、接着性を有する枠状の封止樹脂11を介して、基板3と封止基板12とを貼り合わせることによって、有機EL素子10の封止を行っているが、有機EL素子10の封止方法はこれに限定されることはなく、例えば、有機EL素子10の上面には、水分や酸素の透過しにくい緻密な封止膜をCVD法などで形成し、有機EL素子10の側面には、全面に接着剤を塗布して封止基板と貼り合わせたり、あるいはフリットガラス(粉末ガラス)を枠状に形成したりして、有機EL素子10の封止を行ってもよい。
 さらには、必要に応じて上記封止方法を併用してもよい。
 図3は、有機EL表示装置1の概略的な製造工程を示す図である。
 先ず、既知の方法で、TFTおよび上記TFTと電気的に接続された第1の電極を備えた基板3を作製する(S1)。
 そして、基板3上において端子部などが形成されている蒸着不要領域R2を覆うように、フォトレジスト13を形成する(S2)。
 図1は、基板3上にフォトレジスト13をパターニング形成した様子を示す図である。
 図示されているように、フォトレジスト13は、枠状に形成される封止樹脂11の内側には、形成されず、枠状に形成される封止樹脂11の外側のみに形成されている。
 すなわち、基板3上の各有機ELパネルの封止領域外のみにフォトレジスト13が形成され、表示領域R1(発光領域)および封止領域内には、フォトレジスト13が形成されないようにしてある。
 本実施の形態においては、後工程において剥離可能なパターン膜としてポジ型のフォトレジスト13を用いており、塗布工程、プリベーク工程、露光工程、現像工程およびポストベーク工程を行い、図1に示す形状にフォトレジスト13をパターニングした。
 フォトレジスト13は、汎用のものを用いることができるが、吸水量が少なく、真空中での脱ガスが少ないものを用いることが好ましい。
 吸水量が多いと、有機EL素子の作製工程中に、フォトレジスト13から脱離した水分が有機EL素子を構成する膜に損傷を与えてしまう恐れがある。
 また、真空中での脱ガス量が多い場合においても、同様に、有機EL素子の作製工程中に、フォトレジスト13から脱離したガスが有機EL素子を構成する膜に損傷を与えてしまう恐れがある。
 したがって、フォトレジスト13は、後工程において、水分や分解物が生じない低吸収性の材料や耐熱性材料で形成されていることが好ましい。
 なお、上記耐熱性材料としては、有機無機ハイブリット系の材料を例に挙げることができるがこれに限定されることはない。
 また、有機EL素子の作製工程においては、第1の電極の表面を洗浄する目的として、一般的に、少なくとも発光層を含む有機層を形成する前に第1の電極表面をプラズマ処理やUV処理を行う。
 したがって、これらの処理において、フォトレジスト13が劣化し、発生した分解物が有機EL素子に影響を与えないように、これらの処理に対して、高耐性を有するフォトレジスト13を用いることが好ましい。
 そして、基板3の上のフォトレジスト13上に所定形状の開口部を有するシャドウマスクを密着固定させ、正孔注入層および正孔輸送層を従来の真空蒸着法により全面に形成する(S3)。
 本実施の形態においては、シャドウマスクを用いて、正孔注入層および正孔輸送層を形成しているが、フォトレジスト13も併用して、正孔注入層および正孔輸送層を形成することもできる。
 すなわち、図1において、第2の電極接続部R3はフォトレジスト13の開口部となっているため、フォトレジスト13のみをマスクとして正孔注入層および正孔輸送層を形成すると、第2の電極接続部R3上にも正孔注入層および正孔輸送層が形成される。その場合、第2の電極接続部R3と第2の電極との間に有機膜が介在してしまうため、接触不良を起こす恐れがある。
 したがって、第2の電極接続部R3の部分を遮蔽するシャドウマスクを用い、その他の部分はフォトレジスト13をマスクとすることで、所定の形状の正孔注入層および正孔輸送層を形成できる。
 なお、正孔注入層および正孔輸送層は複数の有機EL素子全面に一括して蒸着すればよいため、高精度なパターニングを行う必要がなく、表示領域R1が全面的に開口しているオープンマスクを用いればよい。オープンマスクであれば、マスクを保持するフレームをあまり大きくせず、重量が大きくならないので、大型基板への蒸着にも適用できる。
 次に、図13に図示されているような基板101よりも小さなシャドウマスク102を用いるとともに、開口部102aを有するシャドウマスク102と、ノズル開口部(射出口)103aを有するノズル103と、ノズル103に接続された蒸着材料供給源104とが、一体化されたマスクユニット105に対して、基板101を図中の左右方向に走査しながら蒸着を行い、図1に図示されているように、図中の左右方向に伸びるストライプ状のパターンを有する発光層8R・8G・8Bを形成した(S4)。
 なお、本実施の形態においては、マスクユニット105に対して、基板101を走査する場合について説明しているが、これに限定されることはなく、図14のように基板101に対して、マスクユニット105が走査されてもよく、さらには、基板101とマスクユニット105とがそれぞれ反対方向に走査されてもよい。
 本実施の形態においては、各色R・G・Bのサブ画素に対応する部分のみ開口している各色用のシャドウマスク102の長手方向の長さは、図1に示す表示領域R1の上下方向の長さに設定されており、図1の上端の表示領域R1に発光層8R・8G・8Bを形成する際には、基板3は、マスクユニット105に対して、図中右方向に走査され、そして、図1の下端の表示領域R1に発光層8R・8G・8Bを形成する際には、基板3は、マスクユニット105に対して、図中上方向に移動され、アライメント調整された後に、図中左方向に走査されることとなる。
 なお、シャドウマスク102の形状は、これに限定されず、シャドウマスク102の自重撓みや伸びが生じない程度であれば、適宜設定することができる。また、図1の上端と下端の表示領域R1に対して、一括して蒸着することもできる。
 そして、発光層8Rの蒸着の際には、蒸着材料供給源104よりR(赤)の蒸着粒子を射出させ、Rのサブ画素に対応する部分のみ開口しているシャドウマスク102にて上記の走査による蒸着を行うことで、それぞれのRのサブ画素に発光層8Rが形成される。
 発光層8Gおよび発光層8Bについても同様の方法を用いて、それぞれのサブ画素に対応する部分に発光層を形成した。
 すなわち、本実施の形態においては、走査方式の塗り分け蒸着法によって、発光層8R・8G・8Bが形成されている。
 したがって、図1に図示されているように、フォトレジスト13が形成されてない表示領域R1(発光領域)および封止領域内においては、正孔注入層および正孔輸送層上にストライプ状のパターンを有する発光層8R・8G・8Bが形成され、一方、フォトレジスト13が形成されている蒸着不要領域R2においては、フォトレジスト13上に形成された正孔注入層および正孔輸送層上にストライプ状のパターンを有する発光層8R・8G・8Bが形成されることとなる。
 本実施の形態においては、図13のように、マスクユニット105に対して、基板101を走査し蒸着を行ったが、図14のように、基板101に対して、マスクユニット105を走査し蒸着を行ってもよい。
 また、本実施の形態においては、図13のように、基板101の被蒸着面101aとシャドウマスク102との隙間Gを所定間隔あけて、基板101の被蒸着面101aに、ストライプ状のパターンを有する発光層8R・8G・8Bを形成したが、基板101の被蒸着面101aとシャドウマスク102とが密着された状態でストライプ状のパターンを有する発光層8R・8G・8Bを形成することもできる。
 そして、本実施の形態においては、ストライプ状のパターンを有する発光層8R・8G・8Bを形成するため、図13に示すような蒸着装置を用いたが、膜厚が均一で、精細なストライプ状のパターンを形成できるのであれば、用いる蒸着装置の種類には、特に限定されない。
 その後、基板3の上のフォトレジスト13上に所定形状の開口部を有するシャドウマスクを密着固定させ、電子輸送層、電子注入層を従来の真空蒸着法により順次全面に形成する(S5、S6)。
 その後、基板3の上のフォトレジスト13をマスクとして、第2の電極を従来の真空蒸着法により順次全面に形成する(S7)。
 そして、図1に図示されているように、表示領域R1を含む封止領域内およびフォトレジスト13が形成されている領域の全面に形成される上記第2の電極において、表示領域R1の上下端部分に形成される基板3上に形成された第2の電極の接続部R3によって基板3上の配線と電気的に接続される。
 本実施の形態においては、シャドウマスクを用いて、電子輸送層、電子注入層を形成しているが、正孔注入層および正孔輸送層の形成の際に述べたように、フォトレジスト13もマスクの一部として併用することができる。
 以上のように、蒸着が完了した基板3に対して、第1の電極、正孔注入層および正孔輸送層、発光層8R・8G・8B、電子輸送層、電子注入層、第2の電極を備えた有機EL素子が大気中の水分や酸素にて劣化しないよう、表示領域R1を含む封止領域の封止を行う(S8)。
 図1に図示されているように、表示領域R1を含む封止領域の4辺端部には、封止樹脂11が枠状に形成され、封止樹脂11を介して、基板3と封止基板(未図示)とが貼り合わせられている。
 そして、フォトレジスト13の剥離を行う(S9)。フォトレジスト13を剥離することで、フォトレジスト13の表面に積層された積層膜(正孔注入層および正孔輸送層、発光層8R・8G・8B、電子輸送層、電子注入層、第2の電極)も共に剥離することができる。
 なお、フォトレジスト13の剥離方法としては、既存の技術を用いればよい。例えば、水系の剥離液にて剥離するようなフォトレジスト13を用い、封止された基板3を上記剥離液にて剥離洗浄することによって、フォトレジスト13を基板3上から剥離することができる。
 図2は、フォトレジスト13が剥離された後の基板3を示す図である。
 図示されているように、蒸着不要領域R2には、正孔注入層および正孔輸送層、発光層8R・8G・8B、電子輸送層、電子注入層、第2の電極は積層されておらず、第1の電極が形成されている表示領域R1を含む封止領域にのみ、正孔注入層および正孔輸送層、発光層8R・8G・8B、電子輸送層、電子注入層、第2の電極が積層されている。
 その後、各有機ELパネル毎に基板3を分断し(S10)、蒸着不要領域R2に形成されている端子部を用いて外部回路(駆動回路)との接続を行い(S11)、有機EL表示装置1を完成させる。
 以上のような工程により、有機EL表示装置1が作製され、外部に形成された駆動回路から、個々のサブ画素毎に備えられた有機EL素子に電流を流し発光させることで、所望の表示を行うことができるようになっている。
 以下では、後工程において剥離可能なパターン膜を備えてない、従来の走査方式の塗り分け蒸着法を用いた有機EL表示装置の製造工程との比較を行いながら、後工程において剥離可能なパターン膜であるフォトレジスト13を備えることによって生じ得るメリットについて詳しく説明する。
 図4は、後工程において剥離可能なパターン膜を備えてない、従来の走査方式の塗り分け蒸着法を用いた有機EL表示装置の概略的な製造工程を示す図である。
 図示されているように、先ず、既知の方法で、TFTおよび上記TFTと電気的に接続された第1の電極を備えた基板を作製する(S101)。
 そして、フォトレジスト13が備えられてないため、通常のオープンマスクのみを用いて、基板上に正孔注入層および正孔輸送層を真空蒸着法により全面に形成する(S102)。
 図4に示す従来の走査方式の塗り分け蒸着法を用いた有機EL表示装置の製造工程においては、フォトレジスト13が備えられてないため、フォトレジスト13をマスクとして併用することができず、通常のオープンマスクのみで蒸着する必要が生じる。
 したがって、本発明の有機EL表示装置1の製造工程においては、蒸着マスク(オープンマスク)の簡略化およびそれに伴う装着時間の削減による装置タクトタイムの向上(生産性の向上)および設備コストの低減を図ることができ、有機EL表示装置の製造コストの削減を実現できる。
 さらには、図3に示す本発明の有機EL表示装置1の製造工程においては、フォトレジスト13をマスクとして併用して用いることができるので、オープンマスクの密着面積の低減により、オープンマスクの接触による基板上パターンの損傷の低減を図れるとともに、フォトレジスト13が、端子部が形成される蒸着不要領域R2を覆い、端子部の保護膜としての役割もするため、オープンマスクと端子部との直接的な接触をさけることができるので、上記オープンマスクによる端子部への損傷を防止することができ、有機EL表示装置の歩留まりの向上を実現できる。
 さらには、フォトレジスト13が、端子部が形成される蒸着不要領域R2を覆っているので、端子部などへの異物の上乗りを防止でき、有機EL表示装置の信頼性を向上させることができる。
 それから、図13に図示されているような蒸着装置を用いて、本発明の有機EL表示装置1の製造工程と同様に、ストライプ状のパターンを有する発光層を形成した(S103)。
 しかしながら、図4に示す従来の走査方式の塗り分け蒸着法を用いた有機EL表示装置の製造工程においては、蒸着不要領域R2を覆うフォトレジスト13が設けられてないため、ストライプ状のパターンを有する発光層は、蒸着不要領域R2にも蒸着されてしまい、結果として端子部上に発光層が直接蒸着されることとなる。
 したがって、詳しくは後述するが、有機溶剤による蒸着不要領域R2に形成された発光層の拭き取り工程(S109)が別途必要となるため、有機EL表示装置の生産性および歩留まりの低下を招いてしまう。
 そして、フォトレジスト13が備えられてないため、通常のオープンマスクのみを用いて、基板上に電子輸送層、電子注入層および第2の電極を従来の真空蒸着法により順次全面に形成する(S104、S105、S106)。
 上記電子輸送層および電子注入層の形成工程においては、フォトレジスト13が備えられてないため、フォトレジスト13をマスクとして併用することができず、基板上に正孔注入層および正孔輸送層を真空蒸着法により全面に形成する工程(S102)の箇所で既に説明しているような問題が同様に生じる。
 さらに、第2の電極の形成工程においては、フォトレジスト13をマスクとして用いることができず、通常のオープンマスクを用いる必要がある。そのため、上記電子輸送層および電子注入層の形成と同様の問題が生じるばかりか、オープンマスクの使用に伴う設備が必要となる。
 その後、図3に示す本発明の有機EL表示装置1の製造工程と同様に、有機EL素子の封止工程(S107)および各有機ELパネル毎に基板を分断する工程(S108)を行う。
 それから、有機溶剤による蒸着不要領域R2に形成された発光層の拭き取り工程(S109)を行う。
 図3に示す本発明の有機EL表示装置1の製造工程においては、フォトレジスト13を剥離により容易に除去できるので、このような拭き取り工程は不要となるが、図4に示す従来の走査方式の塗り分け蒸着法を用いた有機EL表示装置の製造工程においては、この拭き取り工程が必須の工程であり、その工程中に以下のような問題を引き起こす恐れがある。
 先ず、上記拭き取り工程においては、有機溶剤を用いて、蒸着された発光層を直接蒸着不要領域R2から拭き取らなければならないが、蒸着された発光層を完全に除去することは容易ではなく、残渣が残りやすいという問題が生じる。
 また、上記拭き取り工程においては、新たな上乗り異物が発生しやすく、端子部などが形成された蒸着不要領域R2に、これらの異物が存在する場合、端子部を外部回路と接続する際に、電気的な不良を引き起こしてしまい、有機EL表示装置の歩留まりの低下を招いてしまう。
 さらには、封止樹脂などを用いて、封止基板と基板とを貼り合わせているような場合には、上記有機溶剤が封止樹脂に損傷を与え、有機EL表示装置の信頼性を低下させてしまうという問題もある。
 既に上述した図3に示す本発明の有機EL表示装置1の製造工程においては、フォトレジスト13を用いているため、既存のフォトレジストの剥離技術を用いて残渣のないフォトレジストの除去、剥離液による上乗り異物の除去、フォトレジストおよび剥離液の選択の自由性による封止樹脂への損傷の抑制を実現することができるので、上述したようなフォトレジスト13が備えられてない場合に生じ得る問題を回避することができる。
 その後、拭き取りを行った端子部を用いて外部回路(駆動回路)との接続を行い(S110)、有機EL表示装置を完成させる。
 以下、図5の(a)から(d)に基づいて、本発明の有機EL表示装置1の製造工程において、用いることができるフォトレジスト13の他のパターンの一例について説明する。
 図5の(a)および図5の(b)は、赤(R)、緑(G)、青(B)の各色の発光層を備えた有機EL素子を有する3種類のサブ画素が図中の上下方向において隣接するように配置されて、有機EL表示装置の1画素を形成する場合であって、フォトレジスト13が蒸着不要領域R2における発光層8R・8G・8Bが形成されている領域には、少なくとも形成されている一例を示す図である。
 図示されているように、ストライプ状のパターンを有する発光層8R・8G・8Bが形成されてない蒸着不要領域R2に関しては、フォトレジスト13で覆う必要性は必ずしもないので、フォトレジスト13を図5の(a)のように図中上下方向に伸びるストライプ状や図5の(b)のように島状に形成してもよい。
 図5の(a)および図5の(b)に図示されているように、フォトレジスト13で被覆されていない蒸着不要領域R2が存在する場合においては、例えば、フォトレジスト13を発光層8R・8G・8B以外の有機膜の蒸着時にマスクとして用いることができないなど、フォトレジスト13を図1に示すようなパターンに設けた場合と比較すると、その得られる効果は少なくなるが、ストライプ状のパターンを有する発光層8R・8G・8Bについては、高精細なパターニングを行うことができる。
 そして、フォトレジスト13のパターンを図5の(a)および図5の(b)のように形成することにより、フォトレジスト13の使用量を減らすことができるので、材料費の削減を図ることができるとともに、フォトレジスト13からの脱ガスの量を減らすことができ、有機EL素子への悪影響もより減らすことができる。
 なお、図5の(a)および図5の(b)に示したフォトレジスト13のパターン形状は、一例であり、基板面内の有機ELパネルの数、その配置、機種およびその大きさなどを考慮して、適宜フォトレジスト13のパターン形状を決めればよい。
 一方、図5の(c)および図5の(d)は、赤(R)、緑(G)、青(B)の各色の発光層を備えた有機EL素子を有する3種類のサブ画素が図中の左右方向において隣接するように配置されて、有機EL表示装置の1画素を形成する場合であって、フォトレジスト13が蒸着不要領域R2における発光層8R・8G・8Bが形成されている領域には、少なくとも形成されている一例を示す図である。
 図示されているように、ストライプ状のパターンを有する発光層8R・8G・8Bが形成されてない蒸着不要領域R2に関しては、フォトレジスト13で覆う必要性は必ずしもないので、フォトレジスト13を図5の(c)のように図中左右方向に伸びるストライプ状や図5の(d)のように島状に形成してもよい。
 なお、これまでは、フォトレジスト13を表示領域R1を含む封止領域内に形成してないが、本実施の形態においては、有機EL表示装置の特性上問題がなければ、表示領域R1を含む封止領域内に凸部としてのフォトレジスト13を形成してもよい。
 具体的には、例えば、表示領域R1(発光領域)の各画素の間に凸部としてのフォトレジスト13のパターンを形成することで、封止基板が有機EL素子に衝突して、有機EL素子が損傷するのを防止する柱として機能させることができる。
 また、本実施の形態においては、図13に図示されているように、基板101の被蒸着面101aとシャドウマスク102との隙間Gを一定に保ちながら、固定されているマスクユニット105に対して、基板101を図中の左右方向に走査しながら蒸着することで、基板101の被蒸着面101aに、ストライプ状のパターンを有する発光層8R・8G・8Bを形成したが、これに限定されることはなく、基板101の被蒸着面101aとシャドウマスク102とを密着させながら、基板101を滑らせ蒸着させてもよい。
 そして、このような場合においては、基板101の被蒸着面101aとシャドウマスク102との密着によって、生じ得る基板101の被蒸着面101aの損傷をフォトレジスト13により防止することができる。
 また、本実施の形態においては、正孔注入層および正孔輸送層、電子輸送層、電子注入層をシャドウマスク(オープンマスク)を用いて蒸着したが、上述した発光層のように、図13または図14のような蒸着方法を用いて形成することもできる。その場合、ストライプ状にパターニングするマスクの代わりに、表示領域R1の全面に開口部を形成するようなマスクを用いればよい。
 また、本実施の形態においては、正孔注入層および正孔輸送層、電子輸送層、電子注入層をオープンマスクを用いて蒸着したが、第2の電極を基板3の配線に接続するその他の手段があれば、オープンマスクを用いず、第2の電極と同じようにして正孔注入層および正孔輸送層、電子輸送層、電子注入層を形成することもできる。
 図18は、正孔注入層、正孔輸送層、電子輸送層および電子注入層をシャドウマスク(オープンマスク)を用いずに、フォトレジストをマスクとし、第2の電極と同一形状に形成した場合における、第2の電極と外部配線とを電気的に接続する方法の一例を示す図である。
 本実施の形態においては、図示されている凸部15は、フォトレジスト13を用いて形成しているが、これに限定されることはなく、図12の(a)に図示されているエッジカバー6を形成する層を用いて形成してもよい。
 また、凸部15とフォトレジスト13とエッジカバー6を形成する層とは、同一層であってもよい。
 そして、図示されているように、凸部15上には、正孔注入層および正孔輸送層7、電子輸送層(未図示)、電子注入層(未図示)、および第2の電極9が形成されている。
 封止基板12の基板3と対向する面には、導電性材料からなる配線兼第2の電極接続部R3が形成されており、配線兼第2の電極接続部R3は、表示領域R1内で第2の電極9と電気的に接続され、配線にて枠状に形成された封止樹脂11によって取り囲まれた封止領域外に引き出されている。
 そして、配線兼第2の電極接続部R3は、導電膜111によって、基板3の配線107に接続されている。
 以上のような構造を用いることにより、正孔注入層、正孔輸送層、電子輸送層および電子注入層をシャドウマスク(オープンマスク)を用いずに、フォトレジストをマスクとし、第2の電極と同一形状に形成した場合においても、第2の電極を外部回路に接続することができる。
 したがって、発光層以外の有機層および第2の電極を、マスクレスで所定形状に形成することが可能となる。
 図18に示す有機EL表示装置1cの製造工程においては、蒸着マスクの接触による基板上のパターンの損傷を防止することができるばかりか、フォトレジスト13を蒸着マスクとして用いることができるので、蒸着マスクの装着時間の削減による装置タクトの向上、設備コストの低減が可能であり、結果として、有機EL表示装置1cのコスト削減が図れる。
 さらに、図13または図14のように基板と蒸着マスクとの間に隙間Gを保ちながら発光層を形成すれば、有機EL素子の製造工程において、蒸着マスクが一度も接触することがない。したがって、蒸着マスクの接触による基板上のパターン損傷の恐れが全くなくなり、有機EL表示装置1cの歩留まりをより向上することができる。
 〔実施の形態2〕
 次に、図6から図8に基づいて、本発明の第2の実施形態について説明する。本実施の形態においては、発光層8R・8G・8Bを含む有機層の形成工程後に、フォトレジスト13をマスクとして、封止膜を形成し、その後、フォトレジスト13の剥離を行った後に、封止基板を用いて、有機EL素子の封止を行っている点において、実施の形態1とは異なっており、その他の構成については実施の形態1において説明したとおりである。説明の便宜上、上記の実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図8は、有機EL表示装置1aの概略的な製造工程を示す図である。
 図8におけるS1からS7までの工程は、実施の形態1における図3で既に説明したS1からS7までの工程と同じであるため、その説明は省略する。
 図6は、有機EL表示装置1aを備えた基板3aに形成されたフォトレジスト13のパターン形状と発光層8R・8G・8Bとを示す図である。
 そして、図6に示すようなフォトレジスト13をマスクとして、有機EL素子の上面である第2の電極上に、水分や酸素の透過しにくい緻密な封止膜(未図示)をCVD法などで形成し、有機EL素子の側面には、封止樹脂やフリットガラス(粉末ガラス)を枠状に形成し、有機EL素子の封止を行った(S8)。
 なお、本実施の形態においては、発光層8R・8G・8B、第2の電極の形成および封止膜の形成をフォトレジスト13をマスクとして用いて形成したが、これに限定されることはなく、実施の形態1で述べたように、発光層8R・8G・8B以外の有機層に対しても、フォトレジスト13のみ、あるいはフォトレジスト13とオープンマスクを併用して形成することもできる。
 その後、フォトレジスト13を剥離する(S9)。なお、この際、上述したように有機EL素子は封止膜などで保護されているため、有機EL素子は剥離工程にて損傷をされない。
 それから、蒸着が完了した基板3aに対して、第1の電極、正孔注入層および正孔輸送層、発光層8R・8G・8B、電子輸送層、電子注入層、第2の電極を備えた有機EL素子が大気中の水分や酸素にて劣化しないよう、表示領域R1を含む封止領域の封止を行う(S10)。
 図7に図示されているように、表示領域R1を含む封止領域の4辺端部には、封止樹脂11が枠状に形成され、封止樹脂11を介して、基板3aと封止基板(未図示)とが貼り合わせられている。
 そして、各有機ELパネル毎に基板3aを分断し(S11)、蒸着不要領域R2に形成されている端子部を用いて外部回路(駆動回路)との接続を行い(S12)、有機EL表示装置1aを完成させる。
 以上のようにして作製した有機EL表示装置1aにおいては、蒸着不要領域R2に蒸着膜が形成されない。したがって、実施の形態1と同じように、簡便に蒸着不要領域R2への蒸着膜の形成問題が解決される。
 さらに、フォトレジスト13を蒸着マスクとして用いることができるので、蒸着マスクの装着時間の削減による装置タクトの向上、設備コストの低減が可能であり、結果として、有機EL表示装置1aのコスト削減が図れる。
 同時に、基板3aへのマスク密着回数の低減により、有機ELパネルの表面への損傷を低減することができ、有機EL表示装置1aの歩留まり向上に繋がる。
 なお、本実施の形態においては、第2の電極や封止膜の形成は、蒸着法で形成しているが、これに限定されることはなく、スパッタ法などの他の成膜法を用いることもできる。
 また、第2の電極の形成だけで、フォトレジスト13の剥離工程において、有機EL素子を保護できるのであれば、封止膜の形成工程を省いてもよい。
 また、図7において、封止樹脂11で囲まれる領域である封止領域の外縁も蒸着不要領域R2に含まれており、フォトレジスト13で保護されている(図6参照)。
 したがって、封止樹脂11やフリットガラス(粉末ガラス)により枠状に有機EL素子を封止する場合や、封止樹脂11にて封止基板とTFT基板とを貼り合せて封止する場合に、封止領域の外縁で蒸着膜が基板間に介在する(挟まれる)ことがない。
 よって、封止樹脂11やフリットガラスの密着性向上や空孔を防ぐことができ、封止性能を十分に発揮させることができるため、有機EL表示装置1aの信頼性をより向上させることができる。
 〔実施の形態3〕
 次に、図9から図11に基づいて、本発明の第3の実施形態について説明する。本実施の形態においては、パターン膜としてフォトレジスト13の代わりに感光性のドライフィルム14が用いられるとともに、このドライフィルム14の剥離工程後に、第2の電極が形成されるという点において、実施の形態1とは異なっている。
 また、発光層8R・8G・8B以外の有機層についても、蒸着マスクを用いず、ドライフィルム14をマスクとして形成する点において、実施の形態1とは異なっている。
 また、感光性のドライフィルム14が封止樹脂を塗布する枠状の領域まで覆っており、表示領域R1のみが開口している点で、実施の形態1とは異なっている。
 その他の構成については実施の形態1において説明したとおりである。説明の便宜上、上記の実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図11は、有機EL表示装置1bの概略的な製造工程を示す図である。
 図11におけるS1、S2およびS4の工程においては、パターン膜としてフォトレジスト13の代わりに感光性のドライフィルム14が形成される点と、この感光性のドライフィルム14をマスクとして用いて、蒸着膜を形成している点以外は、実施の形態1における図3で既に説明したS1、S2およびS4の工程と同じであるため、その説明は省略する。
 そして、S3、S5およびS6の工程は、実施の形態1における図3のS7の工程と類似する。すなわち、表示領域R1のみが開口したドライフィルム14をマスクとして正孔注入層および正孔輸送層、電子輸送層、および電子注入層が形成される。このドライフィルム14は第2の電極接続部R3を覆っているため、その上には、上記有機層は形成されない。
 図9は、基板3bに形成された感光性のドライフィルム14のパターン形状と発光層8R・8G・8Bとを示す図である。
 図示されているように、感光性のドライフィルム14は、表示領域R1において、開口部を有するように形成されている。
 なお、本実施の形態においては、ネガ型の感光性のドライフィルム14を用いており、この感光性のドライフィルム14はフィルム状であり、パターニング形成後、フィルムの状態で機械的に剥離することができるようになっている。
 したがって、このような剥離工程においては、剥離液が用いられないため、有機EL素子を封止した状態でなくても、有機EL素子を構成する蒸着膜が損傷されることはない。
 そして、本実施の形態の有機EL表示装置1bの製造工程においては、図11に図示されているように、第2の電極を形成する前に感光性のドライフィルム14を剥離する(S7)。
 その後、感光性のドライフィルム14が剥離されているため、通常のオープンマスク(表示領域R1および第2の電極接続部R3を含む領域に開口部を有するシャドウマスク)を用いて、第2の電極を蒸着する(S8)。
 以上のように、蒸着が完了した基板3bに対して、第1の電極、正孔注入層および正孔輸送層、発光層8R・8G・8B、電子輸送層、電子注入層、第2の電極を備えた有機EL素子が大気中の水分や酸素にて劣化しないよう、表示領域R1を含む封止領域の封止を行う(S9)。
 図10は、感光性のドライフィルム14を剥離し、第2の電極の蒸着および表示領域R1を含む封止領域の封止までを行った後の基板3bを示す図である。
 図示されているように、表示領域R1を含む封止領域の4辺端部には、封止樹脂11が枠状に形成され、封止樹脂11を介して、基板3bと封止基板(未図示)とが貼り合わせられている。
 そして、各有機ELパネル毎に基板3bを分断し(S10)、蒸着不要領域R2に形成されている端子部を用いて外部回路(駆動回路)との接続を行い(S11)、有機EL表示装置1bを完成させる。
 以上のようにして作製した有機EL表示装置1bでは、蒸着不要領域R2に蒸着膜が形成されない。したがって、実施の形態1および2と同じく、簡便に蒸着不要領域R2への蒸着膜の形成問題が解決される。
 また、感光性のドライフィルム14を発光層8R・8G・8Bを含む有機膜の蒸着マスクとして用いることができるので、蒸着マスクの装着時間の削減による装置タクトの向上、設備コストの低減が可能であり、結果として、有機EL表示装置1bのコスト削減が図れる。
 同時に、マスク密着回数の低減により、有機ELパネルの表面への損傷を低減することができ、有機EL表示装置1bの歩留まりを向上させることができる。
 さらには、封止樹脂11で囲まれる領域である封止領域の外縁(封止樹脂を形成する枠状領域)も蒸着不要領域R2に含まれており、感光性のドライフィルム14で保護されている(図9および図10参照)。
 したがって、封止樹脂11やフリットガラス(粉末ガラス)により枠状に有機EL素子を封止する場合や、封止樹脂11にて封止基板とTFT基板とを貼り合せて封止する場合に、封止領域の外縁で蒸着膜が基板間に介在する(挟まれる)ことがない。
 よって、封止樹脂11やフリットガラスの密着性向上や空孔を防ぐことができ、封止性能を十分に発揮させることができるため、有機EL表示装置1bの信頼性をさらに向上させることができる。
 本発明の蒸着膜の形成方法は、上記開口部および上記パターン膜上に上記蒸着膜を形成する工程の前または/および後には、上記パターン膜をマスクとして、上記蒸着膜とは異なる第1の膜を形成する工程が含まれており、上記パターン膜の剥離は、上記第1の膜を形成する工程の後に行われることが好ましい。
 上記方法によれば、上記パターン膜の形成後の工程においては、上記パターン膜を蒸着マスクとして用いることができるので、マスクレスで蒸着を行うことができ、蒸着マスクの装着時間の削減による装置タクトの向上、設備コストの低減が可能となる。
 同時に、蒸着マスクの密着回数の低減により、上記基板の表面への損傷を低減することができる。
 本発明の蒸着膜の形成方法は、上記開口部および上記パターン膜上に上記蒸着膜を形成する工程の前または/および後には、貫通孔を有するマスクを用いて、上記蒸着膜とは異なる第2の膜を形成する工程が含まれており、上記パターン膜の剥離は、上記第2の膜を形成する工程の後に行われることが好ましい。
 上記方法によれば、貫通孔を有するマスクと基板とは、上記パターン膜を介して密着されるため、上記パターン膜が基板の保護膜の役割をし、上記基板の表面への損傷を低減することができる。
 本発明の蒸着膜の形成方法においては、上記パターン膜は、感光性材料を露光および現像して形成されていることが好ましい。
 上記方法によれば、比較的容易に上記パターン膜をパターニングすることができるとともに、剥離液を用いて、剥離することができる。
 本発明の蒸着膜の形成方法においては、上記パターン膜は、フィルム状で剥離可能なドライフィルムであることが好ましい。
 上記方法によれば、剥離液を用いることなく、上記パターン膜をフィルム状で剥離できるので、剥離液を用いる場合に生じ得る悪影響を抑制することができる。
 本発明の蒸着膜の形成方法においては、上記パターン膜は、上記パターン膜を形成する工程の後工程において、分解物が生じない耐熱性材料で形成されていることが好ましい。
 上記方法によれば、後工程における上記パターン膜の影響を抑制することができる。
 本発明の蒸着膜の形成方法は、上記開口部および上記パターン膜上に上記蒸着膜を形成する工程においては、貫通孔を有するとともに、上記基板よりも面積が小さい蒸着マスクと、蒸着材料供給源から供給された蒸着粒子を上記蒸着マスクを介して、上記基板における上記パターン膜が形成された面に射出する射出口と、を備え、かつ、上記蒸着マスクと上記射出口との相対的な位置が固定されたマスクユニットにおける上記蒸着マスクは、上記基板とは、一定距離で維持されており、上記マスクユニットおよび上記基板の少なくとも何れかの一方は、他方に対して、走査され、上記蒸着膜が形成されることが好ましい。
 上記方法によれば、効率よく、高精細に互いに所定間隔を有する複数の直線状の上記蒸着膜を形成することができる。
 本発明の蒸着膜の形成方法においては、上記マスクユニットにおける上記蒸着マスクと、上記基板とは、密着されていてもよい。
 上記方法によれば、上記基板と上記蒸着マスクとは、上記パターン膜を介して密着されているため、上記蒸着マスクによる上記基板への損傷を上記パターン膜によって、防止することができる。
 本発明の表示装置の製造方法は、上記パターン膜をマスクとして、上記有機層中、上記発光層以外の層および金属層を含む無機層における少なくとも一つ以上の層を形成する工程が含まれていることが好ましい。
 上記方法によれば、上記有機層中、上記発光層以外の層、金属層および無機層の中から選択される少なくとも一つ以上の層を形成する工程において、上記パターン膜をマスクとして用いることができるので、これらの膜を形成する工程においては、マスクレスで蒸着を行うことができ、マスクの装着時間の削減による装置タクトの向上、設備コストの低減が可能となる。
 同時に、マスクの密着回数の低減により、上記基板の表面への損傷を低減することができる。
 したがって、上記方法によれば、歩留まりや信頼性の向上を図れるとともに、製造コストを抑制することができる。
 本発明の表示装置の製造方法は、貫通孔を有するマスクを用いて、上記有機層中、上記発光層以外の層および金属層を含む無機層における少なくとも一つ以上の層を形成する工程が含まれていることが好ましい。
 上記方法によれば、貫通孔を有するマスクと基板とは、上記パターン膜を介して密着されるため、上記パターン膜が基板の保護膜の役割をし、上記基板の表面への損傷を低減することができるので、歩留まりや信頼性の向上された表示装置の製造方法を実現できる。
 本発明の表示装置の製造方法においては、上記パターン膜の剥離は、上記第2の電極を形成する工程の後に行われ、上記第2の電極を形成する工程においては、上記パターン膜をマスクとして、上記第2の電極が形成されることが好ましい。
 上記パターン膜を上記第2の電極を形成する工程において、マスクとして用いることができるので、上記第2の電極を形成する工程をマスクレスで行うことができ、マスクの装着時間の削減による装置タクトの向上、設備コストの低減が可能となる。
 同時に、蒸着マスクの密着回数の低減により、上記基板の表面への損傷を低減することができる。
 本発明の表示装置の製造方法は、上記第2の電極を形成する工程においては、貫通孔を有するマスクを用いて、上記第2の電極が形成されることが好ましい。
 上記方法によれば、貫通孔を有するマスクを用いて、上記第2の電極を形成しているため、配線の接続部と上記第2の電極との間に有機層が介在しないように、上記第2の電極の形状を形成することができる。
 本発明の表示装置の製造方法は、上記第1の電極と、上記有機層と、上記第2の電極と、を封止部材で封止する工程を有し、上記パターン膜を剥離する工程は、上記封止部材で封止する工程の後に行われることが好ましい。
 上記方法によれば、上記第1の電極と、上記有機層と、上記第2の電極と、を封止部材で封止した状態で上記パターン膜を剥離するので、剥離液による悪影響を抑制することができる。
 本発明の表示装置の製造方法は、上記パターン膜をマスクとして、上記第1の電極と、上記有機層と、上記第2の電極と、を封止する封止膜を形成する工程を有し、上記封止膜を形成する工程は、上記パターン膜を剥離する前に行われ、上記パターン膜を剥離した後には、上記第1の電極と、上記有機層と、上記第2の電極と、上記封止膜と、を封止部材で封止する工程を行うことが好ましい。
 上記方法によれば、上記第1の電極と、上記有機層と、上記第2の電極と、を封止膜で封止した状態で上記パターン膜を剥離するので、剥離液による悪影響を抑制することができる。
 また、上記封止膜とは別途に、封止部材で封止もされているため、信頼性を向上させることができる。
 本発明の表示装置の製造方法おいては、上記パターン膜は、感光性材料を露光および現像して形成されていることが好ましい。
 上記方法によれば、比較的容易に上記パターン膜をパターニングすることができるとともに、剥離液を用いて、剥離することができる。
 本発明の表示装置の製造方法おいては、上記パターン膜が、感光性材料を露光および現像して形成されるフィルム状で剥離可能なドライフィルムである場合には、上記第1の電極と、上記有機層と、上記第2の電極と、を封止部材で封止する工程の前に、上記パターン膜を剥離することが好ましい。
 上記方法によれば、剥離液を用いずに、上記パターン膜を剥離できるので、上記封止部材で封止する工程の前に、上記パターン膜を剥離できる。
 本発明の表示装置の製造方法おいては、上記パターン膜は、上記パターン膜を形成する工程の後工程において、分解物が生じない耐熱性材料で形成されていることが好ましい。
 上記方法によれば、後工程における上記パターン膜の分解物の影響を抑制することができる。
 本発明の表示装置の製造方法は、上記第1の電極と、上記有機層と、上記第2の電極と、を封止部材で封止する工程の前に、上記表示領域の一部に、上記封止部材を支える凸部を形成する工程を有することが好ましい。
 上記方法によって形成された上記凸部によって、例えば、上記封止部材が押されたりして、上記有機層や上記第2の電極などが上記封止部材と接触して損傷するのを、防止することができる。
 本発明の表示装置の製造方法おいては、上記凸部上には、上記第2の電極が備えられていることが好ましい。
 上記第2の電極の形状と上記有機層中、上記発光層以外の層の形状とが、同じである場合、上記第2の電極の下部には、常に有機層が存在するため、外部からの配線と上記第2の電極との間には有機層が介在してしまうので、外部からの配線と上記第2の電極とを電気的に接続するのは困難であった。
 上記方法によれば、上記第2の電極の形状と上記有機層中、上記発光層以外の層の形状とが、同じであっても、例えば、上記凸部上に設けられた第2の電極を用いて、上記封止部材側に設けられた配線を介して、上記基板側に設けられた配線との電気的な接続が可能となる。
 本発明の表示装置の製造方法おいては、上記凸部を形成する工程は、上記パターン膜を形成する工程と同一工程であることが好ましい。
 上記方法によれば、上記凸部は、上記パターン膜を形成する工程で形成されるので、上記凸部を設けるための別途の工程が必要ない。
 本発明の表示装置の製造方法おいては、上記パターン膜を形成する工程は、上記第1の電極の端部を覆うように形成されているエッジカバーを形成する工程と同一工程であることが好ましい。
 上記方法によれば、上記パターン膜は、エッジカバーを形成する工程で形成されるので、上記パターン膜を設けるための別途の工程が必要ない。
 本発明の表示装置の製造方法おいては、上記開口部および上記パターン膜上に、上記マトリクス状に形成された第1の電極の行方向または、列方向に沿って、互いに所定間隔を有する複数の直線状の少なくとも上記発光層を形成する際には、貫通孔を有するとともに、上記基板よりも面積が小さい蒸着マスクと、蒸着材料供給源から供給された蒸着粒子を上記蒸着マスクを介して、上記基板における上記パターン膜が形成された面に射出する射出口と、を備え、かつ、上記蒸着マスクと上記射出口との相対的な位置が固定されたマスクユニットにおける上記蒸着マスクは、上記基板とは、一定距離で維持されており、上記マスクユニットおよび上記基板の少なくとも何れかの一方は、他方に対して、走査され、少なくとも上記発光層が形成されることが好ましい。
 上記方法によれば、効率よく、歩留まりや信頼性の向上された表示装置の製造方法を実現することができる。
 本発明の表示装置の製造方法おいては、上記マスクユニットにおける上記蒸着マスクと、上記基板とは、密着されていてもよい。
 上記方法によれば、上記基板と上記蒸着マスクとは、上記パターン膜を介して密着されているため、上記蒸着マスクによる上記基板への損傷を上記パターン膜によって、防止することができる。
 本発明の表示装置の製造方法おいては、上記表示領域の周辺領域である非表示領域において、上記封止部材が形成される領域にも上記パターン膜が形成されていることが好ましい。
 上記方法によれば、封止部材が形成される領域で蒸着膜が基板間に介在する(挟まれる)ことがないので、封止部材の密着性向上や空孔を防ぐことができ、封止性能を十分に発揮させることができるため、有機EL表示装置の信頼性をより向上させることができる。
 本発明は上記した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、例えば、有機EL表示装置の製造工程などに好適に用いることができる。
 1、1a、1b、1c    有機EL表示装置(表示装置)
 2             TFT(アクティブ素子)
 3、3a、3b       基板
 5             第1の電極
 7             正孔注入層および正孔輸送層(有機層)
 8R、8G、8B      発光層
 9             第2の電極
 10            有機EL素子
 11            封止樹脂(封止部材)
 12            封止基板(封止部材)
 13            フォトレジスト(パターン膜)
 14            感光性のドライフィルム(パターン膜)
 15            凸部
 R1            表示領域
 R2            蒸着不要領域(非表示領域)
 R3            第2の電極接続部

Claims (25)

  1.  基板に所定形状の蒸着膜を形成する蒸着膜の形成方法であって、
     上記基板において上記蒸着膜が形成される面に、開口部を有するとともに剥離可能な所定形状のパターン膜を形成する工程と、
     上記開口部および上記パターン膜上に、上記基板面上のある一つの方向に沿って、互いに所定間隔を有する複数の直線状の上記蒸着膜を形成する工程と、
     上記パターン膜を剥離することによって、上記蒸着膜を所定形状に形成する工程と、を有することを特徴とする蒸着膜の形成方法。
  2.  上記開口部および上記パターン膜上に上記蒸着膜を形成する工程の前または/および後には、上記パターン膜をマスクとして、上記蒸着膜とは異なる第1の膜を形成する工程が含まれており、
     上記パターン膜の剥離は、上記第1の膜を形成する工程の後に行われることを特徴とする請求項1に記載の蒸着膜の形成方法。
  3.  上記開口部および上記パターン膜上に上記蒸着膜を形成する工程の前または/および後には、貫通孔を有するマスクを用いて、上記蒸着膜とは異なる第2の膜を形成する工程が含まれており、
     上記パターン膜の剥離は、上記第2の膜を形成する工程の後に行われることを特徴とする請求項1に記載の蒸着膜の形成方法。
  4.  上記パターン膜は、感光性材料を露光および現像して形成されていることを特徴とする請求項1から3の何れか1項に記載の蒸着膜の形成方法。
  5.  上記パターン膜は、フィルム状で剥離可能なドライフィルムであることを特徴とする請求項4に記載の蒸着膜の形成方法。
  6.  上記パターン膜は、上記パターン膜を形成する工程の後工程において、分解物が生じない耐熱性材料で形成されていることを特徴とする請求項1から5の何れか1項に記載の蒸着膜の形成方法。
  7.  上記開口部および上記パターン膜上に上記蒸着膜を形成する工程においては、
     貫通孔を有するとともに、上記基板よりも面積が小さい蒸着マスクと、蒸着材料供給源から供給された蒸着粒子を上記蒸着マスクを介して、上記基板における上記パターン膜が形成された面に射出する射出口と、を備え、かつ、上記蒸着マスクと上記射出口との相対的な位置が固定されたマスクユニットにおける上記蒸着マスクは、上記基板とは、一定距離で維持されており、
     上記マスクユニットおよび上記基板の少なくとも何れかの一方は、他方に対して、走査され、上記蒸着膜が形成されることを特徴とする請求項1から6の何れか1項に記載の蒸着膜の形成方法。
  8.  上記マスクユニットにおける上記蒸着マスクと、上記基板とは、密着されていることを特徴とする請求項7に記載の蒸着膜の形成方法。
  9.  基板上に複数のアクティブ素子を形成する工程と、
     上記各々のアクティブ素子に電気的に接続され、かつ、上記基板上の表示領域にマトリクス状に第1の電極を形成する工程と、
     上記第1の電極上に、少なくとも発光層を含む有機層を形成する工程と、
     少なくとも上記有機層上に、上記第1の電極とは逆の極性を有する第2の電極を形成する工程と、を有する表示装置の製造方法であって、
     上記有機層中、少なくとも上記発光層を形成する工程においては、
     上記表示領域には、剥離可能なパターン膜の開口部が形成され、
     上記表示領域の周辺領域である非表示領域の少なくとも一部には、上記パターン膜が形成され、
     上記開口部および上記パターン膜上に、上記マトリクス状に形成された第1の電極の行方向または、列方向に沿って、互いに所定間隔を有する複数の直線状の少なくとも上記発光層が形成され、
     上記有機層中、少なくとも上記発光層を形成する工程の後または、上記第2の電極を形成する工程の後に、
     上記パターン膜を剥離することによって、少なくとも上記発光層を所定形状に形成することを特徴とする表示装置の製造方法。
  10.  上記パターン膜をマスクとして、上記有機層中、上記発光層以外の層および金属層を含む無機層における少なくとも一つ以上の層を形成する工程が含まれていることを特徴とする請求項9に記載の表示装置の製造方法。
  11.  貫通孔を有するマスクを用いて、上記有機層中、上記発光層以外の層および金属層を含む無機層における少なくとも一つ以上の層を形成する工程が含まれていることを特徴とする請求項9に記載の表示装置の製造方法。
  12.  上記パターン膜の剥離は、上記第2の電極を形成する工程の後に行われ、
     上記第2の電極を形成する工程においては、上記パターン膜をマスクとして、上記第2の電極が形成されることを特徴とする請求項10に記載の表示装置の製造方法。
  13.  上記第2の電極を形成する工程においては、貫通孔を有するマスクを用いて、上記第2の電極が形成されることを特徴とする請求項11に記載の表示装置の製造方法。
  14.  上記第1の電極と、上記有機層と、上記第2の電極と、を封止部材で封止する工程を有し、
     上記パターン膜を剥離する工程は、上記封止部材で封止する工程の後に行われることを特徴とする請求項9から13の何れか1項に記載の表示装置の製造方法。
  15.  上記パターン膜をマスクとして、上記第1の電極と、上記有機層と、上記第2の電極と、を封止する封止膜を形成する工程を有し、
     上記封止膜を形成する工程は、上記パターン膜を剥離する前に行われ、
     上記パターン膜を剥離した後には、上記第1の電極と、上記有機層と、上記第2の電極と、上記封止膜と、を封止部材で封止する工程を行うことを特徴とする請求項9から13の何れか1項に記載の表示装置の製造方法。
  16.  上記パターン膜は、感光性材料を露光および現像して形成されていることを特徴とする請求項9から15の何れか1項に記載の表示装置の製造方法。
  17.  上記パターン膜が、感光性材料を露光および現像して形成されるフィルム状で剥離可能なドライフィルムである場合には、
     上記第1の電極と、上記有機層と、上記第2の電極と、を封止部材で封止する工程の前に、上記パターン膜を剥離することを特徴とする請求項9から13の何れか1項に記載の表示装置の製造方法。
  18.  上記パターン膜は、上記パターン膜を形成する工程の後工程において、分解物が生じない耐熱性材料で形成されていることを特徴とする請求項9から17の何れか1項に記載の表示装置の製造方法。
  19.  上記第1の電極と、上記有機層と、上記第2の電極と、を封止部材で封止する工程の前に、上記表示領域の一部に、上記封止部材を支える凸部を形成する工程を有することを特徴とする請求項9から18の何れか1項に記載の表示装置の製造方法。
  20.  上記凸部上には、上記第2の電極が備えられていることを特徴とする請求項19に記載の表示装置の製造方法。
  21.  上記凸部を形成する工程は、上記パターン膜を形成する工程と同一工程であることを特徴とする請求項19または20に記載の表示装置の製造方法。
  22.  上記パターン膜を形成する工程は、上記第1の電極の端部を覆うように形成されているエッジカバーを形成する工程と同一工程であることを特徴とする請求項9から21の何れか1項に記載の表示装置の製造方法。
  23.  上記開口部および上記パターン膜上に、上記マトリクス状に形成された第1の電極の行方向または、列方向に沿って、互いに所定間隔を有する複数の直線状の少なくとも上記発光層を形成する際には、
     貫通孔を有するとともに、上記基板よりも面積が小さい蒸着マスクと、蒸着材料供給源から供給された蒸着粒子を上記蒸着マスクを介して、上記基板における上記パターン膜が形成された面に射出する射出口と、を備え、かつ、上記蒸着マスクと上記射出口との相対的な位置が固定されたマスクユニットにおける上記蒸着マスクは、上記基板とは、一定距離で維持されており、
     上記マスクユニットおよび上記基板の少なくとも何れかの一方は、他方に対して、走査され、少なくとも上記発光層が形成されることを特徴とする請求項9から22の何れか1項に記載の表示装置の製造方法。
  24.  上記マスクユニットにおける上記蒸着マスクと、上記基板とは、密着されていることを特徴とする請求項23に記載の表示装置の製造方法。
  25.  上記表示領域の周辺領域である非表示領域において、上記封止部材が形成される領域にも上記パターン膜が形成されていることを特徴とする請求項15または17に記載の表示装置の製造方法。
PCT/JP2011/079441 2010-12-27 2011-12-20 蒸着膜の形成方法及び表示装置の製造方法 WO2012090771A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012550851A JP5384752B2 (ja) 2010-12-27 2011-12-20 蒸着膜の形成方法及び表示装置の製造方法
US13/976,437 US8906718B2 (en) 2010-12-27 2011-12-20 Method for forming vapor deposition film, and method for producing display device
CN201180062835.4A CN103283306B (zh) 2010-12-27 2011-12-20 蒸镀膜的形成方法和显示装置的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010291201 2010-12-27
JP2010-291201 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090771A1 true WO2012090771A1 (ja) 2012-07-05

Family

ID=46382882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079441 WO2012090771A1 (ja) 2010-12-27 2011-12-20 蒸着膜の形成方法及び表示装置の製造方法

Country Status (4)

Country Link
US (1) US8906718B2 (ja)
JP (1) JP5384752B2 (ja)
CN (1) CN103283306B (ja)
WO (1) WO2012090771A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034499A1 (ja) * 2012-09-03 2014-03-06 東京エレクトロン株式会社 蒸着装置、蒸着方法、有機elディスプレイ、および有機el照明装置
CN110945674A (zh) * 2017-06-15 2020-03-31 高丽大学校世宗产学协力团 伸缩性基板结构体及其制作方法、伸缩性显示器及其制作方法以及伸缩性显示器使用方法
WO2020065964A1 (ja) * 2018-09-28 2020-04-02 シャープ株式会社 表示装置および表示装置の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069806A (ja) * 2013-09-27 2015-04-13 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置の製造方法
US10326076B2 (en) 2015-04-13 2019-06-18 Boe Technology Group Co., Ltd. Method of manufacturing display substrate, display substrate and display device
CN104779200B (zh) * 2015-04-13 2016-09-07 京东方科技集团股份有限公司 显示基板的制备方法、显示基板半成品以及显示装置
KR20180089606A (ko) * 2017-01-31 2018-08-09 삼성디스플레이 주식회사 마스크 어셈블리의 제조 방법
CN109524350B (zh) * 2018-11-23 2021-05-18 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
WO2021138872A1 (zh) * 2020-01-09 2021-07-15 苏州晶湛半导体有限公司 半导体结构及其衬底、半导体结构及其衬底的制作方法
JP2022115080A (ja) 2021-01-27 2022-08-08 株式会社半導体エネルギー研究所 表示装置
WO2022180480A1 (ja) 2021-02-25 2022-09-01 株式会社半導体エネルギー研究所 半導体装置、及び電子機器
US11815689B2 (en) 2021-04-30 2023-11-14 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US11699391B2 (en) 2021-05-13 2023-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display apparatus, and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261486A (ja) * 1997-03-19 1998-09-29 Idemitsu Kosan Co Ltd 有機el発光装置の製造方法
JP2001118679A (ja) * 1999-10-18 2001-04-27 Toyota Motor Corp 有機el素子の製造方法
JP2002367774A (ja) * 2001-06-04 2002-12-20 Sony Corp 薄膜パターン形成方法および薄膜パターン形成装置
JP2004146369A (ja) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd 製造装置および発光装置の作製方法
JP2006317762A (ja) * 2005-05-13 2006-11-24 Kyodo Printing Co Ltd 表示装置用素子基板及びその製造方法
JP2010108706A (ja) * 2008-10-29 2010-05-13 Seiko Epson Corp エレクトロルミネッセンス装置の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420365A (en) 1983-03-14 1983-12-13 Fairchild Camera And Instrument Corporation Formation of patterned film over semiconductor structure
US6378199B1 (en) 1994-05-13 2002-04-30 Dai Nippon Printing Co., Ltd. Multi-layer printed-wiring board process for producing
JP3401356B2 (ja) 1995-02-21 2003-04-28 パイオニア株式会社 有機エレクトロルミネッセンスディスプレイパネルとその製造方法
JPH10102237A (ja) 1996-09-25 1998-04-21 Casio Comput Co Ltd 電極形成方法
JP4253883B2 (ja) 1998-11-24 2009-04-15 カシオ計算機株式会社 発光素子の製造方法
JP3019095B1 (ja) 1998-12-22 2000-03-13 日本電気株式会社 有機薄膜elデバイスの製造方法
SE523918C2 (sv) * 1999-01-25 2004-06-01 Appliedsensor Sweden Ab Förfarande för framställning av integrerade sensorgrupper på ett gemensamt substrat samt en mask för användning vid förfarandet
US6689674B2 (en) * 2002-05-07 2004-02-10 Motorola, Inc. Method for selective chemical vapor deposition of nanotubes
JP4355796B2 (ja) 2003-08-29 2009-11-04 国立大学法人京都大学 有機半導体装置およびその製造方法
US7315426B2 (en) 2003-12-05 2008-01-01 University Of Pittsburgh Metallic nano-optic lenses and beam shaping devices
JP4545504B2 (ja) * 2004-07-15 2010-09-15 株式会社半導体エネルギー研究所 膜形成方法、発光装置の作製方法
JP4329740B2 (ja) * 2004-10-22 2009-09-09 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法、及び有機エレクトロルミネッセンス装置
JP4972728B2 (ja) * 2005-08-30 2012-07-11 日本電信電話株式会社 有機材料層形成方法
US8013516B2 (en) * 2008-01-23 2011-09-06 Global Oled Technology Llc LED device having improved power distribution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261486A (ja) * 1997-03-19 1998-09-29 Idemitsu Kosan Co Ltd 有機el発光装置の製造方法
JP2001118679A (ja) * 1999-10-18 2001-04-27 Toyota Motor Corp 有機el素子の製造方法
JP2002367774A (ja) * 2001-06-04 2002-12-20 Sony Corp 薄膜パターン形成方法および薄膜パターン形成装置
JP2004146369A (ja) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd 製造装置および発光装置の作製方法
JP2006317762A (ja) * 2005-05-13 2006-11-24 Kyodo Printing Co Ltd 表示装置用素子基板及びその製造方法
JP2010108706A (ja) * 2008-10-29 2010-05-13 Seiko Epson Corp エレクトロルミネッセンス装置の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034499A1 (ja) * 2012-09-03 2014-03-06 東京エレクトロン株式会社 蒸着装置、蒸着方法、有機elディスプレイ、および有機el照明装置
CN110945674A (zh) * 2017-06-15 2020-03-31 高丽大学校世宗产学协力团 伸缩性基板结构体及其制作方法、伸缩性显示器及其制作方法以及伸缩性显示器使用方法
CN110945674B (zh) * 2017-06-15 2023-11-28 高丽大学校世宗产学协力团 伸缩性基板结构体及其制作方法、伸缩性显示器及其制作方法以及伸缩性显示器使用方法
WO2020065964A1 (ja) * 2018-09-28 2020-04-02 シャープ株式会社 表示装置および表示装置の製造方法

Also Published As

Publication number Publication date
CN103283306A (zh) 2013-09-04
US8906718B2 (en) 2014-12-09
CN103283306B (zh) 2016-07-20
JPWO2012090771A1 (ja) 2014-06-05
JP5384752B2 (ja) 2014-01-08
US20130280839A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5384752B2 (ja) 蒸着膜の形成方法及び表示装置の製造方法
JP5384751B2 (ja) 蒸着膜の形成方法及び表示装置の製造方法
US9192959B2 (en) Mask frame assembly for thin film deposition
WO2019095452A1 (zh) Oled显示器及其制作方法
JP5298244B2 (ja) 蒸着装置
JP5384755B2 (ja) 被成膜基板、有機el表示装置
WO2011148750A1 (ja) 蒸着マスク及びこれを用いた有機el素子の製造方法と製造装置
JP5329718B2 (ja) 蒸着方法、蒸着膜および有機エレクトロルミネッセンス表示装置の製造方法
KR20110068175A (ko) 플렉서블 디스플레이용 기판, 이를 제조하는 방법, 및 이 기판제조방법을 이용한 유기 발광 디스플레이 장치의 제조 방법
KR20120116782A (ko) 유기발광다이오드 표시장치의 제조방법
WO2012090717A1 (ja) 蒸着装置、蒸着方法、及び有機el表示装置
US20080185959A1 (en) Organic el device, method for producing organic el device, and electronic apparatus
JP6087267B2 (ja) 蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法
JP5313406B2 (ja) 被成膜基板、有機el表示装置
US10622412B2 (en) Display panel
JP2010040510A (ja) 有機エレクトロルミネッセンス表示装置
WO2013047457A1 (ja) 表示装置の製造方法および表示装置
KR100768230B1 (ko) 유기 발광 표시소자
US8936958B2 (en) Method of manufacturing organic light emitting display apparatus
KR20110097743A (ko) 플렉서블 디스플레이용 기판을 제조하는 방법, 및 이 기판제조방법을 이용한 유기 발광 디스플레이 장치의 제조 방법
KR20050068454A (ko) 유기전계 발광소자
KR20100124938A (ko) 유기전계 발광소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550851

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13976437

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852418

Country of ref document: EP

Kind code of ref document: A1