JP2022115080A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2022115080A
JP2022115080A JP2022005410A JP2022005410A JP2022115080A JP 2022115080 A JP2022115080 A JP 2022115080A JP 2022005410 A JP2022005410 A JP 2022005410A JP 2022005410 A JP2022005410 A JP 2022005410A JP 2022115080 A JP2022115080 A JP 2022115080A
Authority
JP
Japan
Prior art keywords
layer
film
light
region
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022005410A
Other languages
English (en)
Inventor
健一 岡崎
Kenichi Okazaki
晋吾 江口
Shingo Eguchi
広樹 安達
Hiroki Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2022115080A publication Critical patent/JP2022115080A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention

Abstract

【課題】表示品位の高い表示装置を提供する。信頼性の高い表示装置を提供する。消費電力の低い表示装置を提供する。高精細化が容易な表示装置を提供する。高い表示品位と、高い精細度を兼ね備える表示装置を提供する。コントラストの高い表示装置を提供する。【解決手段】第1の下部電極と、第1の下部電極上の第1のEL層と、第2の下部電極と、第2の下部電極上の第2のEL層と、第1のEL層上及び第2のEL層上の上部電極と、を有し、第1のEL層の下方に、第1の下部電極が設けられていない第1の領域を有し、第2のEL層の下方に、第2の下部電極が設けられていない第2の領域を有し、第1の領域において、第1の下部電極と接しないように上部電極が配置されており、第2の領域において、第2の下部電極と接しないように上部電極が配置されている表示装置である。【選択図】図1

Description

本発明の一態様は、表示装置に関する。本発明の一態様は、表示装置の作製方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
近年、ディスプレイパネルの高精細化が求められている。高精細なディスプレイパネルが要求される機器としては、例えばスマートフォン、タブレット端末、ノート型コンピュータなどがある。また、テレビジョン装置、モニター装置などの据え置き型のディスプレイ装置においても、高解像度化に伴う高精細化が求められている。さらに、最も高精細度が要求される機器としては、例えば、仮想現実(VR:Virtual Reality)、または拡張現実(AR:Augmented Reality)向けの機器がある。
また、ディスプレイパネルに適用可能な表示装置としては、代表的には液晶表示装置、有機EL(Electro Luminescence)素子、発光ダイオード(LED:Light Emitting Diode)等の発光素子を備える発光装置、電気泳動方式などにより表示を行う電子ペーパなどが挙げられる。
例えば、有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層を挟持したものである。この素子に電圧を印加することにより、発光性の有機化合物から発光を得ることができる。このような有機EL素子が適用された表示装置は、液晶表示装置等で必要であったバックライトが不要なため、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。例えば、有機EL素子を用いた表示装置の一例が、特許文献1に記載されている。
特許文献2には、有機ELデバイスを用いた、VR向けの表示装置が開示されている。
特開2002-324673号公報 国際公開第2018/087625号
本発明の一態様は、表示品位の高い表示装置を提供することを課題の一とする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一とする。本発明の一態様は、消費電力の低い表示装置を提供することを課題の一とする。本発明の一態様は、高精細化が容易な表示装置を提供することを課題の一とする。本発明の一態様は、高い表示品位と、高い精細度を兼ね備える表示装置を提供することを課題の一とする。本発明の一態様は、コントラストの高い表示装置を提供することを課題の一とする。
本発明の一態様は、新規な構成を有する表示装置、または表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、上述した表示装置を歩留まりよく製造する方法を提供することを課題の一とする。本発明の一態様は、先行技術の問題点の少なくとも一を軽減することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
本発明の一態様は、第1の下部電極と、第1の下部電極上の第1のEL層と、第2の下部電極と、第2の下部電極上の第2のEL層と、第1のEL層上及び第2のEL層上の上部電極と、を有し、第1のEL層の下方に、第1の下部電極が設けられていない第1の領域を有し、第2のEL層の下方に、第2の下部電極が設けられていない第2の領域を有し、第1の領域において、上部電極は第1の下部電極と接しないように配置されており、第2の領域において、上部電極は第2の下部電極と接しないように配置されている表示装置である。
また、本発明の一態様は、第1の下部電極と、第1の下部電極上の第1のEL層と、第2の下部電極と、第2の下部電極上の第2のEL層と、第1のEL層上及び第2のEL層上の上部電極と、を有し、上部電極は、第1のEL層の下方の第1の領域において、第1の下部電極と間隔を有するように配置されており、上部電極は、第2のEL層の下方の第2の領域において、第2の下部電極と間隔を有するように配置されている表示装置である。
また、本発明の一態様は、上部電極が、第1の領域において、第1のEL層と重なる領域を有する表示装置である。
また、本発明の一態様は、第1のEL層と上部電極との間、及び第2のEL層と上部電極との間に共通層を有する表示装置である。
また、本発明の一態様は、導電膜を形成する工程と、導電膜上にEL膜を形成する工程と、EL膜上に犠牲膜を形成する工程と、犠牲膜上に保護膜を形成する工程と、保護膜上にレジストを形成する工程と、レジストをマスクとしてEL層と犠牲層と保護層との積層を形成する工程と、積層をマスクとして下部電極を形成する工程と、保護層及び犠牲層を除去する工程と、EL層上に上部電極を形成する工程と、を有し、上部電極は、EL層の下方の領域において、下部電極と間隔を有するように配置されている表示装置の作製方法である。
なお、本発明の一態様は、表示機能を持たない発光装置でも良い。また、本発明の一態様は、センサなど光電変換素子を有する光電変換装置でも良い。
本発明の一態様によれば、表示品位の高い表示装置を提供できる。また、信頼性の高い表示装置を提供できる。また、消費電力の低い表示装置を提供できる。また、高精細化が容易な表示装置を提供できる。また、高い表示品位と、高い精細度を兼ね備える表示装置を提供できる。また、コントラストの高い表示装置を提供できる。
また、本発明の一態様によれば、新規な構成を有する表示装置、または表示装置の作製方法を提供できる。また、上述した表示装置を歩留まりよく製造する方法を提供できる。本発明の一態様によれば、先行技術の問題点の少なくとも一を軽減することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
図1(A)乃至図1(C)は、表示装置の構成例を示す図である。 図2は、表示装置の構成例を示す図である。 図3(A)乃至図3(F)は、表示装置の構成例を示す図である。 図4(A)乃至図4(C)は、表示装置の構成例を示す図である。 図5(A)乃至図5(C)は、表示装置の構成例を示す図である。 図6(A)乃至図6(D)は、表示装置の構成例を示す図である。 図7(A)乃至図7(E)は、表示装置の構成例を示す図である。 図8(A)乃至図8(F)は、表示装置の作製方法例を示す図である。 図9(A)乃至図9(C)は、表示装置の作製方法例を示す図である。 図10は、表示装置の構成例を示す図である。 図11は、表示装置の一例を示す斜視図である。 図12(A)は、表示装置の一例を示す断面図である。図12(B)及び図12(C)は、トランジスタの一例を示す断面図である。 図13は、表示装置の一例を示す断面図である。 図14は、表示装置の一例を示す断面図である。 図15(A)及び図15(B)は、表示モジュールの一例を示す斜視図である。 図16は、表示装置の一例を示す断面図である。 図17は、表示装置の一例を示す断面図である。 図18は、表示装置の一例を示す断面図である。 図19(A)乃至図19(D)は、発光素子の構成例を示す図である。 図20(A)及び図20(B)は、電子機器の一例を示す図である。 図21(A)乃至図21(D)は、電子機器の一例を示す図である。 図22(A)乃至図22(F)は、電子機器の一例を示す図である。 図23(A)乃至図23(F)は、電子機器の一例を示す図である。
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
なお、本明細書で説明する各図において、各構成要素の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」または「絶縁層」という用語は、「導電膜」または「絶縁膜」という用語に相互に交換することが可能な場合がある。
なお、本明細書において、EL層とは発光素子の一対の電極間に設けられ、少なくとも発光性の物質を含む層(発光層とも呼ぶ)、または発光層を含む積層体を示すものとする。
本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
本発明の一態様の発光素子は、正孔注入性の高い物質、正孔輸送性の高い物質、電子輸送性の高い物質、および電子注入性の高い物質、バイポーラ性の物質等を含む層を有してもよい。
なお、発光層、ならびに正孔注入性の高い物質、正孔輸送性の高い物質、電子輸送性の高い物質、および電子注入性の高い物質、バイポーラ性の物質等を含む層は、それぞれ量子ドットなどの無機化合物、または高分子化合物(オリゴマー、デンドリマー、ポリマー等)を有していてもよい。例えば、量子ドットを発光層に用いることで、発光材料として機能させることもできる。
なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。また、12族と16族、13族と15族、または14族と16族の元素グループを含む材料を用いてもよい。または、カドミウム、セレン、亜鉛、硫黄、リン、インジウム、テルル、鉛、ガリウム、ヒ素、アルミニウム等の元素を含む量子ドット材料を用いてもよい。
本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
なお、本明細書等において、各色の発光デバイス(ここでは青(B)、緑(G)、及び赤(R))で、発光層を作り分ける、または発光層を塗り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。また、本明細書等において、白色光を発することのできる発光デバイスを白色発光デバイスと呼ぶ場合がある。なお、白色発光デバイスは、着色層(たとえば、カラーフィルタ)と組み合わせることで、フルカラー表示の表示装置を実現することができる。
また、発光デバイスは、シングル構造と、タンデム構造とに大別することができる。シングル構造のデバイスは、一対の電極間に1つの発光ユニットを有し、当該発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、2以上の発光層の各々の発光が補色の関係となるような発光層を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する構成を得ることができる。また、発光層を3つ以上有する発光デバイスの場合も同様である。
タンデム構造のデバイスは、一対の電極間に2以上の複数の発光ユニットを有し、各発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、複数の発光ユニットの発光層からの光を合わせて白色発光が得られる構成とすればよい。なお、白色発光が得られる構成については、シングル構造の構成と同様である。なお、タンデム構造のデバイスにおいて、複数の発光ユニットの間には、電荷発生層などの中間層を設けると好適である。
また、上述の白色発光デバイス(シングル構造またはタンデム構造)と、SBS構造の発光デバイスと、を比較した場合、SBS構造の発光デバイスは、白色発光デバイスよりも消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造の発光デバイスを用いると好適である。一方で、白色発光デバイスは、製造プロセスがSBS構造の発光デバイスよりも簡単であるため、製造コストを低くすることができる、又は製造歩留まりを高くすることができるため、好適である。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置の構成例、及び表示装置の作製方法例について説明する。
本発明の一態様は、発光素子(発光デバイスともいう)を有する表示装置である。表示装置は、少なくとも異なる色の光を発する2つの発光素子を有する。発光素子は、それぞれ一対の電極と、その間にEL層を有する。発光素子として、有機EL素子、無機EL素子などの電界発光素子を用いることができる。その他、発光ダイオード(LED)を用いることができる。本発明の一態様の発光素子は、有機EL素子(有機電界発光素子)であることが好ましい。異なる色を発する2つ以上の発光素子は、それぞれ異なる材料を含むEL層を有する。例えば、それぞれ赤色(R)、緑色(G)、及び青色(B)の光を発する3種類の発光素子を有することで、フルカラーの表示装置を実現できる。
ここで、異なる色の発光素子間で、EL層を作り分ける場合、メタルマスクなどのシャドーマスクを用いた蒸着法により形成することが知られている。しかしながら、この方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の有機膜の形状及び位置に設計からのずれが生じるため、高精細化、及び高開口率化が困難である。また、蒸着においてメタルマスクに付着した材料に起因するゴミが発生する場合がある。このようなゴミは、発光素子のパターン不良を引き起こす懸念がある。また、ゴミに起因したショートが生じる可能性がある。また、メタルマスクに付着した材料のクリーニングの工程を要する。そのため、ペンタイル配列などの特殊な画素配列方式を適用することなどにより、疑似的に精細度(画素密度ともいう)を高める対策が取られていた。
本発明の一態様は、EL層をメタルマスクなどのシャドーマスクを用いることなく、微細なパターンに加工する。これにより、これまで実現が困難であった高い精細度と、大きな開口率を有する表示装置を実現できる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を実現できる。
ここでは、簡単のために、2色の発光素子のEL層を作り分ける場合について説明する。まず、画素電極(下部電極ともいう)となる導電膜と、第1のEL膜と、第1の犠牲膜とを積層して形成する。続いて、第1の犠牲膜上にレジストマスクを形成する。続いて、レジストマスクを用いて、第1の犠牲膜の一部、及び第1のEL膜の一部をエッチングし、第1のEL層、および第1のEL層上の第1の犠牲層を形成する。
続いて、第2のEL膜と、第2の犠牲膜とを積層して形成する。続いて、レジストマスクを用いて、第2の犠牲膜の一部、及び第2のEL膜の一部をエッチングし、第2のEL層、および第2のEL層上の第2の犠牲層を形成する。次に、第1の犠牲層および第2の犠牲層をマスクとして、画素電極の加工を行い、第1のEL層と重畳する第1の画素電極、および第2のEL層と重畳する第2の画素電極を形成する。このようにして、第1のEL層と第2のEL層を作り分けることができる。最後に、第1の犠牲層及び第2の犠牲層を除去し、共通電極(上部電極ともいう)を形成することで、二色の発光素子を作り分けることができる。
さらに、上記を繰り返すことで、3色以上の発光素子のEL層を作り分けることができ、3色、または4色以上の発光素子を有する表示装置を実現できる。
また、画素電極の端部がEL層の端部と概略揃う場合、および、画素電極の端部がEL層の端部より外側に位置する場合においては、EL層上に共通電極を形成する際に、共通電極と画素電極とが短絡(ショートともいう)する場合がある。
そこで、本発明の一態様に係る表示装置は、EL層の端部の下方に、画素電極が設けられていない領域を有し、当該領域において、画素電極と接しないように共通電極が配置される構造を採用する。このように、画素電極と共通電極とが電気的に接続されない構造とすることで、共通電極と画素電極の短絡を抑制することができる。
また、本発明の一態様は、レジストマスク(レジストまたはフォトレジストともいう)を用いて犠牲層を形成し、形成された犠牲層を用いてEL層および画素電極の加工を行うことができるため、画素電極の加工とEL層の加工において、異なるレジストマスクを用いずに発光素子を形成することができる。よって、画素電極とEL層の端部の位置のマージンを設けずとも発光素子を形成することができる。位置のマージンを小さくすることにより、発光領域を広くすることができるため、発光素子の開口率を高めることができる。また、位置のマージンを小さくすることにより、画素サイズの縮小が可能となり、表示装置の高精細化が可能となる。また、レジストマスクを用いる回数を減らすことができるため、工程を簡略化することができ、コストの低減および歩留まりの向上が可能となる。
異なる色のEL層が隣接する場合、隣接するEL層の間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法によれば、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで間隔を狭めることもできる。これにより、2つの発光素子間に存在しうる非発光領域の面積を大幅に縮小することができ、開口率を100%に近づけることが可能となる。例えば、開口率は、50%以上、60%以上、70%以上、80%以上、さらには90%以上であって、100%未満を実現することもできる。
さらに、EL層自体のパターンについても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、パターンの中央と端で厚さのばらつきが生じるため、パターン全体の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工することでパターンを形成するため、パターン内で厚さを均一にでき、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、上記作製方法によれば、高い精細度と高い開口率を兼ね備えることができる。
このように、上記作製方法によれば、微細な発光素子を集積した表示装置を実現することができるため、例えばペンタイル方式などの特殊な画素配列方式を適用することによって、疑似的に精細度を高める必要が無い。そのため、R、G、B画素をそれぞれ一方向に配列させた、いわゆるストライプ配置で、且つ、500ppi以上、1000ppi以上、または2000ppi以上、さらには3000ppi以上、さらには5000ppi以上の精細度の表示装置を実現することができる。
以下では、本発明の一態様の表示装置の、より具体的な構成例及び作製方法例について、図面を参照して説明する。
[表示装置の構成例1]
図1(A)に、本発明の一態様である表示装置100Aの上面概略図を示す。表示装置100Aは、赤色を呈する発光素子110R、緑色を呈する発光素子110G、及び青色を呈する発光素子110Bをそれぞれ複数有する。図1(A)では、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。
発光素子110R、発光素子110G、及び発光素子110Bは、それぞれマトリクス状に配列している。図1(A)は、一方向に同一の色の発光素子が配列する、いわゆるストライプ配列を示している。なお、発光素子の配列方法はこれに限られず、デルタ配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列を用いることもできる。
発光素子110R、発光素子110G、及び発光素子110Bとしては、OLED(Organic Light Emitting Diode)、またはQLED(Quantum-dot Light Emitting Diode)などのEL素子を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料)などが挙げられる。
図1(B)及び図2は、図1(A)中の一点鎖線A1-A2に対応する断面概略図の一例であり、異なる色の発光素子が隣接している構造を示している。また、図1(C)は、一点鎖線B1-B2に対応する断面概略図の一例であり、同じ色の発光素子が隣接している構造を示している。
発光素子110Rは、画素電極111R、EL層112R、及び共通電極113を有する。発光素子110Gは、画素電極111G、EL層112G、及び共通電極113を有する。発光素子110Bは、画素電極111B、EL層112B、及び共通電極113を有する。発光素子150Gは、画素電極151G、EL層152G、及び共通電極113を有する。
発光素子110Rは、画素電極111Rと共通電極113との間に、EL層112Rを有する。EL層112Rは、少なくとも赤色の波長域に強度を有する光を発する発光性の有機化合物を有する。発光素子110Gは、画素電極111Gと共通電極113との間に、EL層112Gを有する。EL層112Gは、少なくとも緑色の波長域に強度を有する光を発する発光性の有機化合物を有する。発光素子110Bは、画素電極111Bと共通電極113との間に、EL層112Bを有する。EL層112Bは、少なくとも青色の波長域に強度を有する光を発する発光性の有機化合物を有する。なお、発光素子150Gは、発光素子110Gと同様である。
EL層112R、EL層112G、及びEL層112Bは、それぞれ発光性の有機化合物を含む層(発光層)を有する。発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の化合物(ホスト材料、アシスト材料)を有していてもよい。ホスト材料、アシスト材料としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いることができる。ホスト材料、アシスト材料としては、励起錯体を形成する化合物を組み合わせて用いることが好ましい。効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。
発光素子には低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物(量子ドット材料等)を含んでいてもよい。
EL層112R、EL層112G、及びEL層112Bのそれぞれは、発光層のほかに、電子注入層、電子輸送層、正孔注入層、及び正孔輸送層のうち、一以上を有していてもよい。
画素電極111R、画素電極111G、及び画素電極111Bは、それぞれ発光素子毎に設けられている。また、共通電極113は、各発光素子に共通な一続きの層として設けられている。各画素電極と共通電極113のいずれか一方に可視光に対して透光性を有する導電膜を用い、他方に反射性を有する導電膜を用いる。各画素電極を透光性、共通電極113を反射性とすることで、下面射出型(ボトムエミッション型)の表示装置とすることができ、反対に各画素電極を反射性、共通電極113を透光性とすることで、上面射出型(トップエミッション型)の表示装置とすることができる。なお、各画素電極と共通電極113の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示装置とすることもできる。
また、本発明の一態様に係る表示装置は、図1(B)に示すように、基板101上に設けられた発光素子110Rにおいて、EL層112Rの下方に、画素電極111Rが設けられていない領域を有することが好ましい(具体例は図3等を参照)。また、当該領域において、共通電極113は、画素電極111Rと接しないよう配置することが好ましい。すなわち、当該領域において、共通電極113は、画素電極111Rと間隔を有するように配置することが好ましい。また、共通電極113は、当該領域において、EL層112Rと重なる領域を有することが好ましい。このような構造を採用することで、共通電極113と画素電極111Rとの短絡を防止することができる。
また、図1(B)において、EL層112Rの端部は、画素電極111Rの端部よりも端部方向(側面方向ともいう)に突出(延伸ともいう)している領域を有していても良い。また、EL層112Rの端部は、画素電極111Rの端部よりも端部方向において外側にある領域を有していても良い。また、画素電極111Rの端部は、EL層112Rの端部よりも後退していても良い。
また、図1(B)において、画素電極111Rの端部は、上面がEL層112Rと接していることが好ましい。
また、断面視において、画素電極111Rの端部は、EL層112Rの端部よりも内側に位置することが好ましい。また、上面視において、画素電極111Rは、EL層112Rよりも小さいことが好ましい。また、上面視において、画素電極111Rは、EL層112Rよりも、内側に配置された領域を有していることが好ましい。
また、基板101上には回路等(後述)を含む層が設けられていても良い。その場合、当該層を含めて基板101と呼ぶこともある。そして、基板101又は当該層は、絶縁表面を有することが好ましい。また、共通電極113は、基板101(例えば絶縁表面)と接する領域を有することが好ましい。
なお、上記では、発光素子110Rの一の端部について述べたが、発光素子110Rの他の端部、発光素子110Gの端部、発光素子110Bの端部、または発光素子150Gの端部に関しても同様の構造を採用することができる。
図2は、EL層112Rと共通電極113との間に、共通層114を配置した構造を示している。共通層114は、例えば電子輸送層又は電子注入層などであるが、これに限定されない。以下、図1(B)、図1(C)、図2に示した構造について、その詳細を説明する。
図3乃至図7は、発光素子110Rの一の端部近傍の拡大図の一例である。なお、ここでは説明を簡単にするため、発光素子110Rの一の端部近傍のみ示したが、発光素子110Rの他の端部、発光素子110Gの端部、発光素子110Bの端部、または発光素子150Gの端部に関しても同様の構造を採用することができる。
図3(A)は、EL層112Rの端部の下方に、画素電極111Rが設けられていない領域200を有する構造の一例を示している。この構造では、共通電極113がEL層112Rの下に入り込むように、共通電極113を配置することができる。すなわち、領域200において、EL層112Rと共通電極113は重なっている領域を有する。そして、領域200において、画素電極111Rと共通電極113との間には空隙(間隔、隙間ともいう)を有していることが好ましい。なお、領域200は、EL層112Rの鉛直下方だけでなく、斜め下方向に位置する領域も含むものとする。
図3(B)は、EL層112Rの端部がテーパー形状を有しており、そのテーパー形状に沿うように共通電極113が配置される構造の一例を示している。EL層112Rの端部は、下端部が上端部よりも突出する形状であることが好ましい。領域200において、EL層112Rと共通電極113とが重ならない領域を有することで、画素電極111Rと共通電極113との間隔を大きくすることができる。この構造により、画素電極111Rと共通電極113とが短絡する可能性を低減することができる。なお、EL層112Rの端部は、上端部が下端部よりも突出する構造であってもよい。
図3(C)は、画素電極111Rの端部がテーパー形状を有する構造を示している。画素電極111Rの端部は、上端部が下端部よりも突出する形状であることが好ましい。例えば、図3(C)のように、領域200の上部よりも下部において、共通電極113とEL層112Rとの重なりが大きい場合、領域200において、共通電極113を良好に埋め込むことができる。また、画素電極111Rの端部を、上端部が下端部よりも突出する形状とすることにより、領域200において共通電極113を良好に埋め込んだ場合においても、画素電極111Rと共通電極113とが短絡する可能性を低減することができる。ただし、画素電極111Rの端部は、下端部が上端部よりも突出する構造であっても良い。
図3(D)及び図3(E)は、EL層112Rの端部と、画素電極111Rの端部とが、ともにテーパー形状を有する構造を示している。図3(D)は、双方とも下端部が上端部よりも突出している形状を有し、図3(E)は、双方とも上端部が下端部よりも突出している形状を有している。
図3(F)は、EL層112Rの側面に、共通電極113と接しない領域を有する構造を示している。この場合、EL層112Rの側面において、EL層112Rと共通電極113との間は、隙間(間隔または空隙ともいう)を有していることが好ましい。
図4(A)は、画素電極111Rの端部において、上端部および下端部が、側面の中央部より突出している構造を示している。例えば、図4(A)のように、領域200の上部および下部よりも中央部において、共通電極113がEL層112Rの下に入り込んでいる場合、当該構造を採用することで、画素電極111Rと共通電極113とが短絡する可能性を低減することができる。また、領域200の上部および下部よりも中央部において、共通電極113とEL層112Rとの重なりが大きい場合も同様の効果を奏する。
図4(B)は、領域200において、基板101の表面(例えば絶縁表面)に凹部を形成しておき、その凹部の中に共通電極113を配置する構造を示している。当該凹部は、基板101の表面の一部をエッチングして薄くすることで設けることができる。例えば、図4(B)のように、領域200において、基板101の表面の一部がテーパー形状を有する場合、共通電極113とEL層112Rとが重なる領域は、EL層112Rの端部から上記テーパー形状の下端部と重なる領域までに留められる。そのため、当該構造を採用することで、画素電極111Rと共通電極113とが短絡する可能性を低減することができる。また、領域200において、EL層112Rと基板101との距離は、画素電極111Rの厚さよりも大きくしてもよい。
図4(C)は、領域200において、画素電極111Rと共通電極113との間に、絶縁性を有する領域131が設けられた構造をしめしている。絶縁性を有する領域131は、画素電極111Rの端部を絶縁化することで形成してもよく、画素電極111Rの端部に別途、絶縁物を設けることで形成しても良い。また、画素電極111Rの端部を絶縁物が覆うような構造としても良い。このような構造とすることで、画素電極111Rと共通電極113とが短絡する可能性を低減することができる。なお、絶縁性を有する領域131と共通電極113との間に隙間(間隔または空隙ともいう)を設けてもよい。また、絶縁性を有する領域131と画素電極111Rとの間に隙間(間隔または空隙ともいう)を設けても良い。
図5(A)は、画素電極111RとEL層112Rとの間の領域に、光学調整層115Rを設けた構造を示している。EL層112Rの端部は、画素電極111Rの端部及び光学調整層115Rの端部よりも端部方向に突出している領域を有することが好ましい。また、画素電極111RとEL層112Rとの間の領域には、光学調整層ではなく、他の機能を持った層を配置することもできる。なお、画素電極と光学調整層とを含む積層物を、画素電極と呼ぶ場合もある。
図5(B)は、光学調整層115Rの上端部が下端部より突出しており、画素電極111Rの下端部が上端部より突出している構造を示している。図5(B)は、図4(A)にて説明した構造を適用でき、また、図4(A)と同様の効果を奏する。なお、領域200について、図5(B)以降、図面の視認性を考慮し省略している場合もあるが、当該領域は、EL層112Rの下方に位置するものとする。
図5(C)は、図5(A)において、光学調整層115Rの端部よりも、EL層112Rの端部及び画素電極111Rの端部が突出している構造を示している。
図6(A)および図6(B)は、図5(A)において、光学調整層115Rの端部および画素電極111Rの端部がテーパー形状を有する構造を示している。光学調整層115Rのテーパー角と、画素電極111Rのテーパー角は同じであっても異なっていても良い。光学調整層115Rと画素電極111Rの材料が異なる場合、それぞれのテーパー角が異なる方が、形成しやすいため好ましい。図6(A)は、光学調整層115Rのテーパー角θ1が、画素電極111Rのテーパー角θ2より小さい場合を示す。また、図6(B)は、光学調整層115Rのテーパー角が、画素電極111Rのテーパー角より大きい場合を示す。なお、テーパー角は、断面図において、層の下辺と斜辺とのなす角を指している。
図6(C)は、共通電極113上に保護層121を配置した構造を示している。保護層121は、上方から各発光素子に水などの不純物が拡散することを防ぐ機能などを有する。
また、図6(D)は、画素電極111Rとして積層を適用した構造を示している。例えば、透光性を有する画素電極111R-1と、反射性を有する画素電極111R-2を積層させることができる。また、画素電極111R-1または画素電極111R-2がテーパー角を有する形状としてもよい。
図7には、図2に示した共通層114を配置した構造の具体例を示している。共通層114は、例えば電子輸送層又は電子注入層などである。
図7(A)は、EL層112Rと共通電極113との間に、共通層114を配置した構造を示している。また、共通層114は、EL層112Rの表面(上面ともいう)及び側面に重なって配置されている。すなわち、共通層114は、EL層112Rの上面及び側面において、EL層112Rと共通電極113との間に配置されている。また、共通層114は、領域200において、画素電極111R等と共通電極113の間に配置される。また、共通層114は、基板101に接するように配置されていてもよい。
図7(B)は、領域200において、画素電極111R等と共通電極113との間に共通層114を配置しない構造を示している。また、図7(C)は、共通層114が、EL層112Rの側面の一部と重なって配置された構造を示している。
図7(D)は、EL層112Rの上面と重なる共通層114の膜厚と、EL層112Rの側面と重なる共通層114の膜厚とが、異なる構造を示す。当該上面と重なる共通層114の膜厚を、当該側面と重なる共通層114の膜厚より大きくする方が、加工しやすい場合があり好ましい。また、図7(E)に示すように、当該側面と重なる共通層114は、下部(基板101に近い方)に、上部(基板101に遠い方)より膜厚が小さい領域を有していてもよい。
なお、図5乃至図7に示した構造は、図1乃至図3において説明に用いた表現を適宜使用して、説明することができる。同様に、本明細書において、各図面を説明する際に用いた表現を適宜使用して、他の図面の説明を行うことができる。
以上のとおり、各発光素子の端部は、様々な構造を適用することができる。また、各図面に示した構造は、それぞれ組み合わせて適用することができる。例えば、図5乃至図7の構造に、図4(B)の基板101の表面に凹部を設ける構造を適用してもよい。また、図7の光学調整層115Rの端部を、図6(A)又は図6(B)のようにテーパー形状としてもよい。このように、本明細書における様々な構造を適宜組み合わせることで、本発明の一態様の表示装置100Aは相乗的な効果を奏する。
[表示装置の作製方法例]
以下では、本発明の一態様の表示装置の作製方法の一例について、図面を参照して説明する。ここでは、上記構成例で示した表示装置100Aを例に挙げて説明する。図8(A)乃至図8(F)は、以下で例示する表示装置の作製方法の、各工程における断面概略図である。
なお、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、または熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
また、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。それ以外に、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra-Violet)光、またはX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
〔基板101の準備〕
基板101としては、少なくとも後の熱処理に耐えうる程度の耐熱性を有する基板を用いることが好ましい。基板101として、絶縁性基板を用いる場合には、ガラス基板、石英基板、サファイア基板、セラミック基板、有機樹脂基板などを用いることができる。また、シリコン、炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板などの半導体基板を用いることができる。
特に、基板101として、上記半導体基板または絶縁性基板上に、トランジスタなどの半導体素子を含む半導体回路が形成された基板を用いることが好ましい。当該半導体回路は、例えば画素回路、ゲート線駆動回路(ゲートドライバ)、ソース線駆動回路(ソースドライバ)などを構成していることが好ましい。また、上記に加えて演算回路、記憶回路などが構成されていてもよい。各種回路が形成された基板101の表面としては、絶縁表面であることが好ましい。
〔導電膜111fの形成〕
続いて、基板101上に、後に画素電極111(画素電極111R、画素電極111G、画素電極111B)となる導電膜111fを成膜する。
画素電極として可視光に対して反射性を有する導電膜を用いる場合、可視光の波長域全域で反射率ができるだけ高い材料(例えば銀またはアルミニウムなど)を適用することが好ましい。これにより、発光素子の光取り出し効率を高められるだけでなく、色再現性を高めることができる。また、複数の導電膜を設けても良く、例えば、透光性を有する導電膜上に、反射性を有する導電膜を積層させても良い。
〔EL膜112Rfの形成〕
続いて、導電膜111f上に、後にEL層112RとなるEL膜112Rfを成膜する。
EL膜112Rfは、少なくとも発光性の化合物を含む膜を有する。このほかに、電子注入層、電子輸送層、電荷発生層、正孔輸送層、または正孔注入層として機能する膜のうち、一以上が積層された構成としてもよい。EL膜112Rfは、例えば蒸着法、スパッタリング法、またはインクジェット法等により形成することができる。なおこれに限られず、上述した成膜方法を適宜用いることができる。
〔犠牲膜144aの形成〕
続いて、EL膜112Rfを覆って犠牲膜144aを形成する。
犠牲膜144aは、EL膜112Rfなどの各EL膜のエッチング処理に対する耐性の高い膜、すなわちエッチングの選択比の大きい膜を用いることが好ましい。また、犠牲膜144aは、後述する保護膜146aなどの保護膜とのエッチングの選択比の大きい膜を用いることが好ましい。さらに、犠牲膜144aは、各EL膜へのダメージの少ないウェットエッチング法により除去可能な膜を用いることが好ましい。
犠牲膜144aとしては、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜などの無機膜を用いることができる。
犠牲膜144aとしては、例えば金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、タンタルなどの金属材料、または該金属材料を含む合金材料を用いることができる。特に、アルミニウムまたは銀などの低融点材料を用いることが好ましい。
また、犠牲膜144aとしては、インジウムガリウム亜鉛酸化物(In-Ga-Zn酸化物、IGZOとも表記する)などの金属酸化物を用いることができる。さらに、酸化インジウム、インジウム亜鉛酸化物(In-Zn酸化物)、インジウムスズ酸化物(In-Sn酸化物)、インジウムチタン酸化物(In-Ti酸化物)、インジウムスズ亜鉛酸化物(In-Sn-Zn酸化物)、インジウムチタン亜鉛酸化物(In-Ti-Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In-Ga-Sn-Zn酸化物)などを用いることができる。またはシリコンを含むインジウムスズ酸化物などを用いることもできる。
なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)を用いた場合にも適用できる。特に、Mは、ガリウム、アルミニウム、またはイットリウムから選ばれた一種または複数種とすることが好ましい。
また、犠牲膜144aとしては、酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの無機絶縁材料を用いることができる。酸素を含む絶縁材料を用いることで、EL膜112Rfへのダメージを低減できるため好ましい。
なお、犠牲膜144aを形成しない構成とすることもできる。犠牲膜144aを形成しないことでプロセスを簡略化させることができる。
〔保護膜146aの形成〕
続いて、犠牲膜144a上に、保護膜146aを形成する。
保護膜146aは、後に犠牲膜144aをエッチングする際のハードマスクとして用いる膜である。また、後の保護膜146aの加工時には、犠牲膜144aが露出する。したがって、犠牲膜144aと保護膜146aとは、互いにエッチングの選択比の大きい膜の組み合わせを選択する。そのため、犠牲膜144aのエッチング条件、及び保護膜146aのエッチング条件に応じて、保護膜146aに用いることのできる膜を選択することが好ましい。
例えば、保護膜146aのエッチングに、フッ素を含むガス(フッ素系ガスともいう)を用いたドライエッチングを用いる場合には、シリコン、窒化シリコン、酸化シリコン、タングステン、チタン、モリブデン、タンタル、窒化タンタル、モリブデンとニオブを含む合金、またはモリブデンとタングステンを含む合金などを、保護膜146aに用いることができる。ここで、上記フッ素系ガスを用いたドライエッチングに対して、エッチングの選択比を大きくとれる(すなわち、エッチング速度を遅くできる)膜としては、IGZO、ITOなどの金属酸化物膜などがあり、これを犠牲膜144aに用いることができる。
なお、これに限られず、犠牲膜144aのエッチング条件、及び保護膜146aのエッチング条件に応じて、様々な材料の中から、保護膜146aの材料を選択することができる。例えば、上記犠牲膜144aに用いることのできる膜の中から、保護膜146aの材料を選択することもできる。
保護膜146aとしては、例えば窒化物膜を用いることができる。具体的には、窒化シリコン、窒化アルミニウム、窒化ハフニウム、窒化チタン、窒化タンタル、窒化タングステン、窒化ガリウム、窒化ゲルマニウムなどの窒化物を用いることができる。
また、保護膜146aとして、EL膜112Rfなどに用いることのできる有機膜を用いてもよい。例えば、EL膜112Rf、EL膜112Gf、またはEL膜112Bfに用いる有機膜と同じ膜を、保護膜146aに用いることができる。このような有機膜を保護膜146aに用いることで、EL膜112Rfなどと成膜装置を共通に用いることができるため、好ましい。
なお、保護膜146aを形成しない構成とすることもできる。保護膜146aを形成しないことでプロセスを簡略化させることができる。
〔レジストマスク143aの形成〕
続いて、保護膜146a上にレジストマスク143aを形成する(図8(A))。
レジストマスク143aとしては、ポジ型のレジスト材料、またはネガ型のレジスト材料など、感光性の樹脂を含むレジスト材料を用いることができる。
ここで、保護膜146aを有さずに、犠牲膜144a上にレジストマスク143aを形成する場合、犠牲膜144aにピンホールなどの欠陥が存在すると、レジスト材料の溶媒によって、EL膜112Rfが溶解してしまう恐れがある。また、犠牲膜144aを有さずに、EL膜112Rf上にレジストマスク143aを形成する場合も同様に、EL膜112Rfが溶解してしまう恐れがある。そのため、犠牲膜144aおよび保護膜146aを用いることで、このような不具合が生じることを防ぐことができる。
〔保護膜146aのエッチング〕
続いて、保護膜146aの、レジストマスク143aに覆われない一部をエッチングにより除去し、島状または帯状の保護層147aを形成する。
保護膜146aのエッチングの際、犠牲膜144aが当該エッチングにより除去されないように、選択比の高いエッチング条件を用いることが好ましい。保護膜146aのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチングを用いることで、保護膜146aの加工パターンが縮小することを抑制できる。
〔レジストマスク143aの除去〕
続いて、レジストマスク143aを除去する。
レジストマスク143aの除去は、ウェットエッチングまたはドライエッチングにより行うことができる。特に、酸素ガスをエッチングガスに用いたドライエッチング(プラズマアッシングともいう)により、レジストマスク143aを除去することが好ましい。
このとき、レジストマスク143aの除去は、EL膜112Rfが犠牲膜144aに覆われた状態で行われるため、当該除去がEL膜112Rfへ与える影響が抑制されている。特に、EL膜112Rfが酸素に触れると、電気特性に悪影響を及ぼす場合がある。そのため、プラズマアッシングなどの酸素ガスを用いたエッチングを行う場合に、EL膜112Rfが犠牲膜144aに覆われていると好適である。
〔犠牲膜144aのエッチング〕
続いて、保護層147aをマスクとして用いて、犠牲膜144aの保護層147aに覆われない一部をエッチングにより除去し、島状または帯状の犠牲層145aを形成する。
犠牲膜144aのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチング法を用いると、犠牲膜144aの加工パターンの縮小を抑制できるため好ましい。
〔EL膜112Rfのエッチング〕
続いて、犠牲層145aに覆われないEL膜112Rfの一部をエッチングにより除去し、島状または帯状のEL層112Rを形成する(図8(B))。
EL膜112Rfのエッチングには、酸素を主成分に含まないエッチングガスを用いたドライエッチングを用いることが好ましい。これにより、EL膜112Rfの変質を抑制し、信頼性の高い表示装置を実現できる。酸素を主成分に含まないエッチングガスとしては、例えばCF、C、SF、CHF、Cl、HO、BCl、またはHeなどの希ガスが挙げられる。また、上記ガスと、酸素を含まない希釈ガスとの混合ガスをエッチングガスに用いることができる。ここで、EL膜112Rfのエッチングにおいて、保護層147aを除去してもよい。
〔EL層112G、EL層112Bの形成〕
続いて、犠牲層145a、及び露出した導電膜111f上に、後にEL層112GとなるEL膜112Gfを成膜する。EL膜112Gfについては、EL膜112Rfの記載を参照することができる。
続いて、EL膜112Gf上に犠牲膜144bを成膜し、犠牲膜144b上に保護膜146bを成膜する。犠牲膜144bについては、犠牲膜144aの記載を参照することができる。保護膜146bについては、保護膜146aの記載を参照することができる。
続いて、保護膜146b上にレジストマスク143bを形成する(図8(C))。
続いて、レジストマスク143bを用いて保護膜146bをエッチングして保護層147bを形成する。その後、レジストマスク143bを除去する。
続いて、保護層147bをマスクとして、犠牲膜144b及びEL膜112Gfをそれぞれエッチングして犠牲層145b及びEL層112Gを形成する(図8(D))。
続いて、犠牲層145a、犠牲層145b、及び露出した導電膜111f上に、後にEL層112BとなるEL膜112Bfを成膜する。EL膜112Bfについては、EL膜112Rfの記載を参照することができる。
続いて、EL膜112Bf上に犠牲膜144cを成膜し、犠牲膜144c上に保護膜146cを成膜する。犠牲膜144cについては、犠牲膜144aの記載を参照することができる。保護膜146cについては、保護膜146aの記載を参照することができる。
続いて、保護膜146c上にレジストマスク143cを形成する(図8(E))。
続いて、レジストマスク143cを用いて保護膜146cをエッチングして保護層147cを形成する。その後、レジストマスク143cを除去する。
続いて、保護層147cをマスクとして、犠牲膜144c及びEL膜112Bfをそれぞれエッチングして犠牲層145c及びEL層112Bを形成する(図8(F))。
〔画素電極111R、画素電極111G、及び画素電極111Bの形成〕
続いて、導電膜111fにおいて、EL層112R、EL層112G、EL層112B、犠牲層145a、犠牲層145b、犠牲層145c、保護層147a、保護層147b、及び保護層147cに覆われない一部をエッチングし、画素電極111R、画素電極111G、及び画素電極111Bを形成する。
なお、このとき、画素電極111R、画素電極111G、及び画素電極111Bは、図1(B)に示すように、EL層端部の下方の領域(図3等の領域200)において、画素電極が形成されないようにエッチングされる(図9(A))。
導電膜111fのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができ、適宜条件を変えることで、図1(B)に示すような形状に加工することができる。具体的には、ウェットエッチングにより行うことで、形成される画素電極の端部をオーバーエッチング(サイドエッチングともいう)するように加工することができる。また、ドライエッチングにて行う場合、酸素を主成分に含まないエッチングガスを用いることにより、EL層112(EL層112R、EL層112G、EL層112B)へのダメージを低減することができる。これらの方法を適宜組み合わせて行うことで、所望の形状に加工することができる。
なお、導電膜111fのエッチングは、図8(A)の導電膜111fを形成した後、EL膜112Rfを形成する前に行ってもよい。その場合、上記のように導電膜111fをサイドエッチングする際に、EL層112へ与えられるダメージを低減できる可能性がある。
また、上記のように、画素電極111R、画素電極111G、及び画素電極111Bを形成した後、画素電極の側面を変質させることで、該側面に絶縁物を形成しても良い。例えば該側面を酸化させ、酸素を有する領域を形成しておく。そうすることで、図4(C)のように、領域200に絶縁性を有する領域を形成することができ、画素電極と共通電極113の接触を防ぐことができる。なお、画素電極の側面を変質させる以外の方法で、該側面に絶縁層を形成しても良い。
〔保護層147a乃至保護層147c及び犠牲層145a乃至犠牲層145cの除去〕
続いて、保護層147a、保護層147b、保護層147c、犠牲層145a、犠牲層145b、及び犠牲層145cを除去し、EL層112R、EL層112G、及びEL層112Bの上面を露出させる(図9(B))。
保護層147a、保護層147b、及び保護層147cは、ウェットエッチングまたはドライエッチングにより除去することができる。
犠牲層145a、犠牲層145b、及び犠牲層145cは、ウェットエッチングまたはドライエッチングにより除去することができる。このとき、EL層112R、EL層112G、及びEL層112Bにできるだけダメージを与えない方法を用いることが好ましい。特に、ウェットエッチング法を用いることが好ましい。例えば、水酸化テトラメチルアンモニウム水溶液(TMAH)、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いたウェットエッチングを用いることが好ましい。これらのウェットエッチングの条件を用いることにより例えば、絶縁層へ与えられるダメージを低減することができる。
このようにして、EL層112R、EL層112G、及びEL層112Bを作り分けることができる。
〔共通電極113の形成〕
続いて、EL層112R、EL層112G、及びEL層112Bを覆って、共通電極113を形成する(図9(C))。共通電極113は、例えばスパッタリング法または蒸着法などにより形成することができる。共通電極113の成膜条件、EL層の形状または膜厚、画素電極の形状または膜厚を適宜変更することで、図1(B)に示したような形状に共通電極113を形成することができる。
以上の工程により、図1(B)及び図1(C)に示すような、発光素子110R、発光素子110G、及び発光素子110Bを有する表示装置100Aを作製することができる。
[作製方法例の変形例]
以下では、上記作製方法例の変形例を示す。
〔保護層121の形成〕
図9(C)の共通電極113上に、保護層121を形成してもよい。図6(C)に、保護層121を形成した場合の詳細な構造を示す。保護層121は、上方から各発光素子に水などの不純物が拡散することを防ぐ機能を有する。
保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造または積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜または窒化物膜が挙げられる。または、保護層121としてインジウムガリウム酸化物、インジウムガリウム亜鉛酸化物などの半導体材料を用いてもよい。
また、保護層121として、無機絶縁膜と、有機絶縁膜の積層膜を用いることもできる。例えば、一対の無機絶縁膜の間に、有機絶縁膜を挟んだ構成とすることが好ましい。さらに有機絶縁膜が平坦化膜として機能することが好ましい。これにより、有機絶縁膜の上面を平坦なものとすることができるため、その上の無機絶縁膜の被覆性が向上し、バリア性を高めることができる。また、保護層121の上面が平坦となるため、保護層121の上方に構造物(例えばカラーフィルタ、タッチセンサの電極、またはレンズアレイなど)を設ける場合に、下方の構造に起因する凹凸形状の影響を軽減できるため好ましい。
保護層121の成膜には、スパッタリング法、PECVD法、またはALD法を用いることが好ましい。特にALD法は、段差被覆性に優れ、ピンホールなどの欠陥が生じにくいため、好ましい。また、有機絶縁膜の成膜には、インクジェット法を用いると、所望のエリアに均一な膜を形成できるため好ましい。
また、共通電極113と保護層121との間に、層(キャップ層または保護層ともいう)を設けてもよい。キャップ層は、各発光素子から発する光が全反射することを防止する機能を有する。キャップ層は、共通電極113より屈折率の高い材料を用いて形成することが好ましい。キャップ層は、有機物又は無機物を用いて形成することができる。また、キャップ層は、共通電極113よりも膜厚が大きいことが好ましい。また、キャップ層に、上方から各発光素子に水などの不純物が拡散することを防ぐ機能を持たせても良い。
〔共通層114の形成〕
図9(B)のEL層112R上、EL層112G上、およびEL層112B上に、共通層114を形成してもよい。図7に、共通層114を形成した場合の詳細な構造を示す。
共通層114は、共通電極113と同様、複数の発光素子にわたって設けられる。共通層114は、EL層112R、EL層112G、及びEL層112Bを覆って設けられている。共通層114を有する構成とすることで、作製工程を簡略化できるため、作製コストを低減できる。共通層114と共通電極113は、間にエッチングなどの工程を挟まずに連続して形成することができる。よって、共通層114と共通電極113の界面を清浄な面とすることができ、発光素子において、良好な特性を得ることができる。
共通層114は、EL層112R、EL層112G、及びEL層112Bの上面の一以上と接することが好ましい。
EL層112R、EL層112G、及びEL層112Bは例えば、少なくともそれぞれ、一の色を発光する発光材料を含む発光層を有していることが好ましい。また、共通層114は例えば、電子注入層、電子輸送層、正孔注入層、または正孔輸送層のうち、一以上を含む層とすることが好ましい。画素電極をアノード、共通電極をカソードとした発光素子においては、共通層114として、電子注入層を含む構成、または電子注入層と電子輸送層の2つを含む構成を、用いることができる。
共通層114は、例えば蒸着法、スパッタリング法、またはインクジェット法等により形成することができる。なおこれに限られず、上述した成膜方法を適宜用いることができる。成膜条件を調整することで、図7に示した構造を形成することが可能である。
〔光学調整層115Rの形成〕
図8(A)の導電膜111f上に、光学調整層115Rとなる膜を形成しても良い。その場合、図9(A)において、導電膜111fと、光学調整層115Rとなる膜と、をエッチングして、画素電極111Rと光学調整層115Rとの積層を形成すれば良い。図5乃至図7に、光学調整層115Rを形成した場合の詳細な構造を示す。
また、各発光素子において、光学調整層の膜厚を異ならせる場合、図8(A)、図8(C)、および図8(E)において、EL層112R等を形成する前に、光学調整層となる膜を所望の膜厚にて形成する。次いで、光学調整層となる膜を、EL層112R等と一緒にエッチングすればよい。その後、図9(A)において、導電膜111fと光学調整層とを一緒にサイドエッチングすることができる。
光学調整層115(光学調整層115R、光学調整層115G(図示しない)、及び光学調整層115B(図示しない))は、各発光素子において、マイクロキャビティ構造(微小共振器構造)の光路長を異ならせることにより、特定の波長の光を強めることができる。これにより、色純度が高められた表示装置を実現することができる。
例えば、光学調整層として可視光に対して透光性を有する層を用いて、発光素子毎に光路長を異ならせることができる。例えば、画素電極111とEL層112との間に光学調整層115を設ければよい。光学調整層115として例えば、可視光に対して透光性を有する、導電性材料を用いることができる。例えば、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛、シリコンを含むインジウム錫酸化物、シリコンを含むインジウム亜鉛酸化物などの導電性酸化物を用いることができる。
各光学調整層は、画素電極111R、画素電極111G、及び画素電極111Bを形成した後であって、EL膜112Rf等を形成する前に、形成することができる。各光学調整層の厚さを異ならせることにより、各発光素子において、光路長を異ならせることができる。各光学調整層は、それぞれ厚さの異なる導電膜を用いてもよいし、薄いものから順に、単層構造、2層構造、3層構造などとしてもよい。
なお、光学調整層115を設けない場合、各発光素子において、EL層112の厚さを異ならせることにより、マイクロキャビティ構造を実現することができる。例えば、最も波長の長い光を発する発光素子110RのEL層112Rを最も厚く、最も波長の短い光を発する発光素子110BのEL層112Bを最も薄い構成とすることができる。なお、これに限られず、各発光素子が発する光の波長、発光素子を構成する層の光学特性、及び発光素子の電気特性などを考慮して、各EL層の厚さを調整することができる。
あるいは、光学調整層115と、色毎に厚さが異なるEL層112と、を組み合わせて用いてもよい。その場合、光学調整層115は、各発光素子において同じ膜厚とすることができる。この組み合わせを適用した例を、以下に説明する。
[表示装置の構成例2]
図10は、表示装置の構成例の一例であり、光学調整層と、色毎に厚さが異なるEL層と、を適用した構造を示す。
図10に示す表示装置100Bにおいて、発光素子110Rは、画素電極111RとEL層112Rとの間に、光学調整層115Rを有する。また発光素子110Gは、画素電極111GとEL層112Gとの間に、光学調整層115Gを有する。また発光素子110Bは、画素電極111BとEL層112Bとの間に、光学調整層115Bを有する。光学調整層を有することで、光学距離を調整することができる。
また、それぞれの発光素子において、EL層112の厚さを異ならせた構造を採用している。こうすることで、色毎に光学距離を最適化することができ、各色において最適なマイクロキャビティ構造を実現することができる。ここでは、最も波長の長い光を発する発光素子110RのEL層112Rを最も厚く、最も波長の短い光を発する発光素子110BのEL層112Bを最も薄くする構造を示した。構成例2の作製方法例は上述した通りである。
本実施の形態で例示した構造、構成例、作製方法例、及びそれらに対応する図面等は、少なくともその一部を他の構造、構成例、作製方法例、または図面等と適宜組み合わせることができる。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置の構成例について説明する。
本実施の形態の表示装置は、高解像度の表示装置または大型の表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、スマートフォン、腕時計型端末、タブレット端末、携帯情報端末、音響再生装置の表示部に用いることができる。
[表示装置400A]
図11に、表示装置400Aの斜視図を示し、図12(A)に、表示装置400Aの断面図を示す。なお、表示装置としては、本明細書で開示する表示装置100A、表示装置100B、表示装置400A乃至表示装置400Eを適宜適用することができる。
表示装置400Aは、基板452と基板451とが貼り合わされた構成を有する。図11では、基板452を破線で明示している。
表示装置400Aは、表示部462、回路464(回路部ともいう)、配線465等を有する。図11では表示装置400AにIC(集積回路)473及びFPC472が実装されている例を示している。そのため、図11に示す構成は、表示装置400A、IC、及びFPCを有する表示モジュールということもできる。
回路464としては、例えば走査線駆動回路を用いることができる。
配線465は、表示部462及び回路464に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC472を介して外部から、またはIC473から配線465に入力される。
図11では、COG方式またはCOF(Chip On Film)方式等により、基板451にIC473が設けられている例を示す。IC473は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置400A乃至表示装置400C及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
図12(A)に、表示装置400Aの、FPC472を含む領域の一部、回路464の一部、表示部462の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図12(A)に示す表示装置400Aは、基板451と基板452の間に、トランジスタ201、トランジスタ205、赤色の光を発する発光素子430a、緑色の光を発する発光素子430b、及び、青色の光を発する発光素子430c等を有する。
発光素子430a、発光素子430b、及び発光素子430cには、実施の形態1等で例示した発光素子を適用することができる。具体的には、発光素子430a乃至発光素子430cにおけるEL層416a乃至EL層416cの端部の下方の領域において、画素電極411a乃至画素電極411cと接しないように、共通層114および共通電極113を配置することができる。また、共通電極113上には保護層121が設けられている。
ここで、表示装置の画素が、それぞれ異なる色を発する発光素子を有する副画素を3種類有する場合、当該3つの副画素としては、R、G、Bの3色の副画素、黄色(Y)、シアン(C)、マゼンタ(M)の3色の副画素などが挙げられる。また、当該副画素を4つ有する場合、当該4つの副画素としては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素などが挙げられる。
保護層121と基板452は接着層442を介して接着されている。発光素子の封止には、固体封止構造または中空封止構造などを適用できる。
中空封止構造の場合、基板452、接着層442、及び基板451に囲まれた領域443には、不活性ガス(窒素またはアルゴンなど)で充填された空間を有する。接着層442は、発光素子と重ねて設けられていてもよい。
また、固体封止構造の場合、領域443に接着層を設けてもよい。また、接着層442を設けない構造としてもよい。
また、本発明の一態様の表示装置は、共通電極113と基板452との間隔(距離ともいう)に関し、発光素子と重なる領域における第1の間隔より、発光素子と重ならない領域(2つの発光素子の間の領域ともいう)における第2の間隔を、大きくすることができる。
発光素子が発する光は、基板452側に射出される。基板452には、可視光に対する透過性が高い材料を用いることが好ましい。
また発光素子の下方にはトランジスタを有する回路が配置されている。以下詳細に説明する。
トランジスタ201及びトランジスタ205は、いずれも基板451上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
基板451上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、各トランジスタを覆って設けられる。絶縁層214は、各トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及び各トランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
各トランジスタを覆う絶縁層の少なくとも一層に、水及び水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、各トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置400Aの端部近傍に開口を有することが好ましい。これにより、表示装置400Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置400Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置400Aの端部に有機絶縁膜が露出しないようにしてもよい。
平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、これら樹脂の前駆体等が挙げられる。
図12(A)に示す領域228では、絶縁層214に開口が形成されており、当該開口を覆って保護層121が設けられている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部462に不純物が入り込むことを抑制できる。従って、表示装置400Aの信頼性を高めることができる。
トランジスタ201及びトランジスタ205は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
半導体層がIn-M-Zn酸化物の場合、当該In-M-Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn-M-Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
回路464が有するトランジスタと、表示部462が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路464が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部462が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
基板451の、基板452が重ならない領域には、接続部が設けられている。接続部では、配線465が導電層466及び接続層242を介してFPC472と電気的に接続されている。導電層466は、画素電極と同一の導電膜を加工して得られた導電膜と、光学調整層と同一の導電膜を加工して得られた導電膜と、の積層構造である例を示す。接続部の上面では、導電層466が露出している。これにより、接続部とFPC472とを接続層242を介して電気的に接続することができる。
基板452の基板451側の面には、遮光層417を設けることが好ましい。また、基板452の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、集光フィルム等が挙げられる。また、基板452の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
発光素子を覆う保護層121を設けることで、発光素子に水などの不純物が入り込むことを抑制し、発光素子の信頼性を高めることができる。
表示装置400Aの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層121とが互いに接することが好ましい。特に、絶縁層215が有する無機絶縁膜と保護層121が有する無機絶縁膜とが互いに接することが好ましい。これにより、絶縁層214が有機絶縁膜を有する場合であっても、当該有機絶縁膜を介して外部から表示部462に不純物が入り込むことを抑制することができる。従って、表示装置400Aの信頼性を高めることができる。
基板451及び基板452には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光素子からの光を取り出す側の基板には、該光を透過する材料を用いる。基板451及び基板452に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板451または基板452として偏光板を用いてもよい。
基板451及び基板452としては、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板451及び基板452の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、アクリルフィルム等が挙げられる。
また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
接着層442としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、タングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタンなどの金属材料、または、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、または、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層、及び、発光素子が有する導電層(画素電極または共通電極として機能する導電層)にも用いることができる。
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
なお、図7(B)乃至図7(E)の構造を適用した場合、回路464のトランジスタ201と共通層114とが重ならない構造にすることができる。
図12(B)及び図12(C)は、図12(A)とは異なるトランジスタの構成例を示している。
図12(B)において、トランジスタ202は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層231、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、導電層223とチャネル形成領域231iとの間に位置する。
導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はトランジスタ202のソースとして機能し、他方はドレインとして機能する。
図12(B)では、絶縁層225が半導体層231の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。さらに、トランジスタ202を覆う絶縁層218を設けてもよい。
一方、図12(C)に示すトランジスタ209では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、図12(C)に示す構造を作製できる。図12(C)では、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。さらに、トランジスタ209を覆う絶縁層218を設けてもよい。
[表示装置400B-1]
図13は、表示装置400B-1の構成例を示している。表示装置400B-1は、光学調整層415a乃至光学調整層415cと、色毎に厚さが異なるEL層416a乃至EL層416cを有する。具体的には、実施の形態1等で示した構造を適用することができる。
また、図13のように、絶縁層214に設けられた開口部において、画素電極411a上、画素電極411b上、画素電極411c上に、層414を設けてもよい。層414を設けることにより、光学調整層415a、光学調整層415b、光学調整層415c、EL層416a、EL層416b、及びEL層416cの被形成面の凹凸を低減し、被覆性を向上することができる。FPC472を有する領域においても層414を設けることができる。層414は絶縁層であることが好ましい。あるいは、層414は導電層であってもよい。なお、層414を、画素部に設け接続部には設けない構造としてもよく、また、接続部に設け画素部に設けない構造としてもよい。
また、図13では、領域443に接着層を設けた固体封止構造を示している。その他の構造は、図12等に示す構造を適宜適用することができる。
[表示装置400B-2]
図14は、表示装置400B-2の構成例を示している。表示装置400B-2は、基板453と絶縁層212が接着層455によって貼り合わされた構造を有している。
表示装置400B-2の作製方法としては、まず、絶縁層212、トランジスタ201及びトランジスタ205、発光素子430a乃至発光素子430c等が設けられた作製基板(図示しない)と、遮光層417が設けられた基板452と、を領域443において接着層によって貼り合わせる。そして、作製基板を剥離し露出した面と、基板453と、を接着層455によって貼り合わせることで、作製基板上に形成した各構成要素を、基板453上に転置する。基板453及び基板452は、それぞれ、可撓性を有することが好ましい。これにより、表示装置400B-2の可撓性を高めることができる。
本発明の一態様の表示装置400B-2は、各発光素子の間の領域、または駆動回路の上方の領域において、隔壁層を設けない構造を適用することができ、当該領域において折り曲げやすい構造とすることができる。これらの領域と、表示装置400B-2における折り曲げ可能な領域と、を重ねることが好ましい。その他の構造は、図12等に示す構造を適宜適用することができる。
本実施の形態で例示した構造、構成例、作製方法例、及びそれらに対応する図面等は、少なくともその一部を他の構造、構成例、作製方法例、または図面等と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、上記とは異なる表示装置の構成例について説明する。
本実施の形態の表示装置は、高精細な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、腕時計型、ブレスレット型などの情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器など、頭部に装着可能なウェアラブル機器の表示部に用いることができる。
[表示モジュール]
図15(A)に、表示モジュール280の斜視図を示す。表示モジュール280は、表示装置400Cと、FPC290と、を有する。なお、表示モジュール280が有する表示装置としては、本明細書で開示する表示装置100A、表示装置100B、表示装置400A乃至表示装置400Eを適宜適用することができる。
表示モジュール280は、基板291及び基板292を有する。表示モジュール280は、表示部281を有する。表示部281は、表示モジュール280における画像を表示する領域であり、後述する画素部284に設けられる各画素からの光を視認できる領域である。
図15(B)に、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部282と、回路部282上の画素回路部283と、画素回路部283上の画素部284と、が積層されている。また、基板291上の画素部284と重ならない部分に、FPC290と接続するための端子部285が設けられている。端子部285と回路部282とは、複数の配線により構成される配線部286により電気的に接続されている。
画素部284は、周期的に配列した複数の画素284aを有する。図15(B)の右側に、1つの画素284aの拡大図を示している。画素284aは、発光色がそれぞれ異なる発光素子430a、発光素子430b、発光素子430cを有する。複数の発光素子は、図15(B)に示すようにストライプ配列で配置することが好ましい。ストライプ配列を用いることにより、本発明の一態様の発光素子を高密度に画素回路上に配列することが出来るため、高精細な表示装置を提供できる。また、デルタ配列、ペンタイル配列など様々な配列方法を適用することができる。
画素回路部283は、周期的に配列した複数の画素回路283aを有する。
1つの画素回路283aは、1つの画素284aが有する3つの発光素子の発光を制御する回路である。1つの画素回路283aは、1つの発光素子の発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路283aは、1つの発光素子につき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースまたはドレインの一方にはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。
回路部282は、画素回路部283の各画素回路283aを駆動する回路を有する。例えば、ゲート線駆動回路、及び、ソース線駆動回路の一方または双方を有することが好ましい。このほか、演算回路、メモリ回路、電源回路等の少なくとも一つを有していてもよい。
FPC290は、外部から回路部282にビデオ信号または電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。
表示モジュール280は、画素部284の下側に画素回路部283及び回路部282の一方または双方が積層された構成とすることができるため、表示部281の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部281の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素284aを極めて高密度に配置することが可能で、表示部281の精細度を極めて高くすることができる。例えば、表示部281には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素284aが配置されることが好ましい。
このような表示モジュール280は、極めて高精細であることから、ヘッドマウントディスプレイなどのVR向け機器、またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール280の表示部を視認する構成の場合であっても、表示モジュール280は極めて高精細な表示部281を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール280はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計などの装着型の電子機器の表示部に好適に用いることができる。
[表示装置400C]
図16に示す表示装置400Cは、基板301、発光素子430a、発光素子430b、発光素子430c、容量240、及び、トランジスタ310を有する。
基板301は、図15(A)及び図15(B)における基板291に相当する。基板301から絶縁層255までの積層構造(層401)が、実施の形態1における基板101に相当する。
トランジスタ310は、基板301にチャネル形成領域を有するトランジスタである。基板301としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ310は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、及び、絶縁層314を有する。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層314は、導電層311の側面を覆って設けられ、絶縁層として機能する。
また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられている。
また、トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に容量240が設けられている。
容量240は、導電層241と、導電層245と、これらの間に位置する絶縁層243を有する。導電層241は容量240の一方の電極として機能し、導電層245は容量240の他方の電極として機能し、絶縁層243は容量240の誘電体として機能する。
導電層241は絶縁層261上に設けられ、絶縁層254に埋め込まれている。導電層241は、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられている。
容量240を覆って、絶縁層255が設けられ、絶縁層255上に発光素子430a、発光素子430b、発光素子430c等が設けられている。発光素子430a、発光素子430b、発光素子430c上には保護層121が設けられており、保護層121の上面には、樹脂層419によって基板420が貼り合わされている。基板420は、図15(A)における基板292に相当する。
発光素子の画素電極は、絶縁層255に埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、及び、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。
[表示装置400D]
図17に示す表示装置400Dは、主にトランジスタの構成が異なる点で、表示装置400Cと相違する。なお、表示装置400Cと同様の部分については説明を省略することがある。
トランジスタ320は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタである。
トランジスタ320は、半導体層321、絶縁層323、導電層324、一対の導電層325、絶縁層326、及び、導電層327を有する。
基板331は、図15(A)及び図15(B)における基板291に相当する。基板331から絶縁層255までの積層構造(層401)が、実施の形態1における基板101に相当する。基板331としては、絶縁性基板または半導体基板を用いることができる。
基板331上に、絶縁層332が設けられている。絶縁層332は、基板331側から水または水素などの不純物がトランジスタ320に拡散すること、及び半導体層321から基板331側に酸素が脱離することを防ぐバリア層として機能する。絶縁層332としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
絶縁層332上に導電層327が設けられ、導電層327を覆って絶縁層326が設けられている。導電層327は、トランジスタ320の第1のゲート電極として機能し、絶縁層326の一部は、第1のゲート絶縁層として機能する。絶縁層326の少なくとも半導体層321と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層326の上面は、平坦化されていることが好ましい。
半導体層321は、絶縁層326上に設けられる。半導体層321は、半導体特性を有する金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。半導体層321に好適に用いることのできる材料の詳細については後述する。
一対の導電層325は、半導体層321上に接して設けられ、トランジスタ320のソース電極及びドレイン電極として機能する。
また、一対の導電層325の上面及び側面、並びに半導体層321の側面等を覆って絶縁層328が設けられ、絶縁層328上に絶縁層264が設けられている。絶縁層328は、半導体層321に絶縁層264等から水または水素などの不純物が拡散すること、及び半導体層321から酸素が脱離することを防ぐバリア層として機能する。絶縁層328としては、上記絶縁層332と同様の絶縁膜を用いることができる。
絶縁層328及び絶縁層264に、半導体層321に達する開口が設けられている。当該開口の内部には、絶縁層264、絶縁層328、及び導電層325の側面、並びに半導体層321の上面に接する絶縁層323が設けられ、絶縁層323上には、当該開口を埋め込むように導電層324が設けられている。導電層324は、トランジスタ320の第2のゲート電極として機能し、絶縁層323は第2のゲート絶縁層として機能する。
導電層324の上面、絶縁層323の上面、及び絶縁層264の上面は、それぞれ高さが概略一致するように平坦化処理され、これらを覆って絶縁層329及び絶縁層265が設けられている。
絶縁層264及び絶縁層265は、層間絶縁層として機能する。絶縁層329は、トランジスタ320に絶縁層265等から水または水素などの不純物が拡散することを防ぐバリア層として機能する。絶縁層329としては、上記絶縁層328及び絶縁層332と同様の絶縁膜を用いることができる。
一対の導電層325の一方と電気的に接続するプラグ274は、絶縁層265、絶縁層329、及び絶縁層264に埋め込まれるように設けられている。ここで、プラグ274は、絶縁層265、絶縁層329、絶縁層264、及び絶縁層328のそれぞれの開口の側面、及び導電層325の上面の一部を覆う導電層274aと、導電層274aの上面に接する導電層274bとを有することが好ましい。このとき、導電層274aとして、水素及び酸素が拡散しにくい導電材料を用いることが好ましい。
表示装置400Dにおける、絶縁層254から基板420までの構成は、表示装置400Cと同様である。
[表示装置400E]
図18に示す表示装置400Eは、基板301にチャネルが形成されるトランジスタ310と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320とが積層された構成を有する。なお、表示装置400C、表示装置400Dと同様の部分については説明を省略することがある。
トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に導電層251が設けられている。また導電層251を覆って絶縁層262が設けられ、絶縁層262上に導電層252が設けられている。導電層251及び導電層252は、それぞれ配線として機能する。また、導電層252を覆って絶縁層263及び絶縁層332が設けられ、絶縁層332上にトランジスタ320が設けられている。また、トランジスタ320を覆って絶縁層265が設けられ、絶縁層265上に容量240が設けられている。容量240とトランジスタ320とは、プラグ274により電気的に接続されている。
トランジスタ320は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ310は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ310及びトランジスタ320は、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。
このような構成とすることで、発光素子の直下に画素回路だけでなく駆動回路等を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示装置を小型化することが可能となる。
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様である表示装置に用いることができる発光素子(発光デバイスともいう)について説明する。
<発光素子の構成例>
図19(A)に示すように、発光素子は、一対の電極(下部電極672、上部電極688)の間に、EL層686を有する。EL層686は、層4420、発光層4411、層4430などの複数の層で構成することができる。層4420は、例えば電子注入性の高い物質を含む層(電子注入層)および電子輸送性の高い物質を含む層(電子輸送層)などを有することができる。発光層4411は、例えば発光性の化合物を有する。層4430は、例えば正孔注入性の高い物質を含む層(正孔注入層)および正孔輸送性の高い物質を含む層(正孔輸送層)を有することができる。
一対の電極間に設けられた層4420、発光層4411および層4430を有する構成は単一の発光ユニットとして機能することができ、本明細書では図19(A)の構成をシングル構造と呼ぶ。
また、図19(B)は、図19(A)に示す発光素子が有するEL層686の変形例である。具体的には、図19(B)に示す発光素子は、下部電極672上の層4430-1と、層4430-1上の層4430-2と、層4430-2上の発光層4411と、発光層4411上の層4420-1と、層4420-1上の層4420-2と、層4420-2上の上部電極688と、を有する。例えば、下部電極672を陽極とし、上部電極688を陰極とした場合、層4430-1が正孔注入層として機能し、層4430-2が正孔輸送層として機能し、層4420-1が電子輸送層として機能し、層4420-2が電子注入層として機能する。または、下部電極672を陰極とし、上部電極688を陽極とした場合、層4430-1が電子注入層として機能し、層4430-2が電子輸送層として機能し、層4420-1が正孔輸送層として機能し、層4420-2が正孔注入層として機能する。このような層構造とすることで、発光層4411に効率よくキャリアを注入し、発光層4411内におけるキャリアの再結合の効率を高めることが可能となる。
なお、図19(C)に示すように層4420と層4430との間に複数の発光層(発光層4411、発光層4412、発光層4413)が設けられる構成もシングル構造のバリエーションである。
また、図19(D)に示すように、複数の発光ユニット(EL層686a、EL層686b)が中間層(電荷発生層)4440を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。なお、本明細書等においては、図19(D)に示すような構成をタンデム構造として呼称するが、これに限定されず、例えば、タンデム構造をスタック構造と呼んでもよい。なお、タンデム構造とすることで、高輝度発光が可能な発光素子とすることができる。
なお、図19(C)、及び図19(D)においても、図19(B)に示すように、層4420と、層4430とは、2層以上の層からなる積層構造としてもよい。
また、上述のシングル構造、及びタンデム構造と、SBS構造と、を比較した場合、SBS構造、タンデム構造、シングル構造の順で消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造を用いると好適である。一方で、シングル構造、及びタンデム構造は、製造プロセスがSBS構造よりも簡単であるため、製造コストを低くすることができる、または製造歩留まりを高くすることができるため、好適である。
発光素子の発光色は、EL層686を構成する材料によって、赤、緑、青、シアン、マゼンタ、黄または白などとすることができる。また、発光素子にマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。
白色の光を発する発光素子は、発光層に2種類以上の発光物質を含む構成とすることが好ましい。白色発光を得るには、2以上の発光物質の各々の発光が補色の関係となるような発光物質を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光素子全体として白色発光する発光素子を得ることができる。また、発光層を3つ以上有する発光素子の場合も同様である。
発光層には、R(赤)、G(緑)、B(青)、Y(黄)、O(橙)等の発光を示す発光物質を2以上含むことが好ましい。また、紫、青紫、黄緑、近赤外等の発光を示す発光物質を含んでもよい。または、発光物質を2以上有し、それぞれの発光物質の発光は、R、G、Bのうち2以上の色のスペクトル成分を含むことが好ましい。
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
また、金属酸化物は、スパッタリング法、MOCVD法などのCVD法、またはALD法などにより形成することができる。
<結晶構造の分類>
酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c-axis-aligned crystalline)、nc(nanocrystalline)、CAC(cloud-aligned composite)、単結晶(single crystal)、多結晶(poly crystal)等が挙げられる。
なお、膜または基板の結晶構造は、X線回折(XRD:X-Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing-Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法またはSeemann-Bohlin法ともいう。
例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状が左右対称でない場合、膜または基板は非晶質状態であるとは言えない。
また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC-OS、及びnc-OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a-like OS:amorphous-like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
ここで、上述のCAAC-OS、nc-OS、及びa-like OSの詳細について、説明を行う。
[CAAC-OS]
CAAC-OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC-OS膜の厚さ方向、CAAC-OS膜の被形成面の法線方向、またはCAAC-OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC-OSは、a-b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC-OSは、c軸配向し、a-b面方向には明らかな配向をしていない酸化物半導体である。
なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
また、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC-OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
CAAC-OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut-of-plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC-OSを構成する金属元素の種類、組成などにより変動する場合がある。
また、例えば、CAAC-OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC-OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC-OSが、a-b面方向において酸素原子の配列が稠密でないこと、または金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC-OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC-OSを構成するには、Znを有する構成が好ましい。例えば、In-Zn酸化物、及びIn-Ga-Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
CAAC-OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC-OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入または欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物または欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC-OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC-OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC-OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC-OSを用いると、製造工程の自由度を広げることが可能となる。
[nc-OS]
nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc-OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc-OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc-OSは、分析方法によっては、a-like OSまたは非晶質酸化物半導体と区別が付かない場合がある。例えば、nc-OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut-of-plane XRD測定では、結晶性を示すピークが検出されない。また、nc-OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc-OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a-like OS]
a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a-like OSは、鬆または低密度領域を有する。即ち、a-like OSは、nc-OS及びCAAC-OSと比べて、結晶性が低い。また、a-like OSは、nc-OS及びCAAC-OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
次に、上述のCAC-OSの詳細について、説明を行う。なお、CAC-OSは材料構成に関する。
[CAC-OS]
CAC-OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
さらに、CAC-OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC-OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In-Ga-Zn酸化物におけるCAC-OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In-Ga-Zn酸化物におけるCAC-OSにおいて、第1の領域は、[In]が、CAC-OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC-OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
また、In-Ga-Zn酸化物におけるCAC-OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC-OSは、金属元素が不均一に分布した構造を有していると推測される。
CAC-OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC-OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
また、例えば、In-Ga-Zn酸化物におけるCAC-OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することを確認できる。
ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)を実現できる。
一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
従って、CAC-OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC-OSに付与することができる。つまり、CAC-OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC-OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、低いリーク電流、及び良好なスイッチング動作を実現することができる。
また、CAC-OSを用いたトランジスタは、信頼性が高い。従って、CAC-OSは、表示装置をはじめとするさまざまな半導体装置に用いることが最適である。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a-like OS、CAC-OS、nc-OS、CAAC-OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm-3以下、好ましくは1×1015cm-3以下、さらに好ましくは1×1013cm-3以下、より好ましくは1×1011cm-3以下、さらに好ましくは1×1010cm-3未満であり、1×10-9cm-3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンまたは炭素の濃度と、酸化物半導体との界面近傍のシリコンまたは炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
本実施の形態では、本発明の一態様の電子機器について図20乃至図23を用いて説明する。
本実施の形態の電子機器は、本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化、高解像度化、大型化のそれぞれが容易である。したがって、本発明の一態様の表示装置は、様々な電子機器の表示部に用いることができる。
また、本発明の一態様の表示装置は、低いコストで作製できるため、電子機器の製造コストを低減することができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば腕時計型、ブレスレット型などの情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。また、ウェアラブル機器としては、代替現実(SR:Substitutional Reality)向け機器、及び、複合現実(MR:Mixed Reality)向け機器も挙げられる。
本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K2K(画素数3840×2160)、8K4K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K2K、8K4K、又はそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度または高い精細度を有する表示装置を用いることで、携帯型または家庭用途などのパーソナルユースの電子機器において、臨場感及び奥行き感などをより高めることが可能となる。
本実施の形態の電子機器は、家屋またはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。
本実施の形態の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像及び情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図20(A)に示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、光源6508等を有する。表示部6502はタッチパネル機能を備える。
表示部6502に、本発明の一態様の表示装置を適用することができる。
図20(B)は、筐体6501のマイク6506側の端部を含む断面概略図である。
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
表示パネル6511には本発明の一態様のフレキシブルディスプレイ(可撓性を有する表示装置)を適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
図21(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図21(A)に示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図21(B)に、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図21(C)及び図21(D)に、デジタルサイネージの一例を示す。
図21(C)に示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図21(D)は円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図21(C)及び図21(D)において、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図21(C)及び図21(D)に示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
図22(A)は、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。なお、カメラ8000は、レンズ8006と筐体8001とが一体となっていてもよい。
カメラ8000は、シャッターボタン8004を押す、またはタッチパネルとして機能する表示部8002をタッチすることにより撮像することができる。
筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
筐体8101は、カメラ8000のマウントと係合するマウントにより、カメラ8000に取り付けられている。ファインダー8100はカメラ8000から受信した映像等を表示部8102に表示させることができる。
ボタン8103は、電源ボタン等としての機能を有する。
カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。なお、ファインダーが内蔵されたカメラ8000であってもよい。
図22(B)は、ヘッドマウントディスプレイ8200の外観を示す図である。
ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリ8206が内蔵されている。
ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した映像情報を表示部8204に表示させることができる。また、本体8203はカメラを備え、使用者の眼球またはまぶたの動きの情報を入力手段として用いることができる。
また、装着部8201には、使用者に触れる位置に、使用者の眼球の動きに伴って流れる電流を検知可能な複数の電極が設けられ、視線を認識する機能を有していてもよい。また、当該電極に流れる電流により、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201は、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能、使用者の頭部の動きに合わせて表示部8204に表示する映像を変化させる機能などを有していてもよい。
表示部8204に、本発明の一態様の表示装置を適用することができる。
図22(C)乃至図22(E)は、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると、使用者が高い臨場感を感じることができるため好ましい。また、表示部8302の異なる領域に表示された別の画像を、レンズ8305を通して視認することで、視差を用いた3次元表示等を行うこともできる。なお、表示部8302を1つ設ける構成に限られず、表示部8302を2つ設け、使用者の片方の目につき1つの表示部を配置してもよい。
表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、極めて高い精細度を実現することも可能である。例えば、図22(E)のようにレンズ8305を用いて表示を拡大して視認される場合でも、使用者に画素が視認されにくい。つまり、表示部8302を用いて、使用者に現実感の高い映像を視認させることができる。
図22(F)は、ゴーグル型のヘッドマウントディスプレイ8400の外観を示す図である。ヘッドマウントディスプレイ8400は、一対の筐体8401と、装着部8402と、緩衝部材8403と、を有する。一対の筐体8401内には、それぞれ、表示部8404及びレンズ8405が設けられる。一対の表示部8404に互いに異なる画像を表示させることで、視差を用いた3次元表示を行うことができる。
表示部8404に、本発明の一態様の表示装置を適用することができる。
使用者は、レンズ8405を通して表示部8404を視認することができる。レンズ8405はピント調整機構を有し、使用者の視力に応じて位置を調整することができる。表示部8404は、正方形または横長の長方形であることが好ましい。これにより、臨場感を高めることができる。
装着部8402は、使用者の顔のサイズに応じて調整でき、かつ、ずれ落ちることのないよう、可塑性及び弾性を有することが好ましい。また、装着部8402の一部は、骨伝導イヤフォンとして機能する振動機構を有していることが好ましい。これにより、別途イヤフォン、スピーカなどの音響機器を必要とせず、装着しただけで映像と音声を楽しむことができる。なお、筐体8401内に、無線通信により音声データを出力する機能を有していてもよい。
装着部8402と緩衝部材8403は、使用者の顔(額、頬など)に接触する部分である。緩衝部材8403が使用者の顔と密着することにより、光漏れを防ぐことができ、より没入感を高めることができる。緩衝部材8403は、使用者がヘッドマウントディスプレイ8400を装着した際に使用者の顔に密着するよう、柔らかな素材を用いることが好ましい。例えばゴム、シリコーンゴム、ウレタン、スポンジなどの素材を用いることができる。また、スポンジ等の表面を布、革(天然皮革または合成皮革)、などで覆ったものを用いると、使用者の顔と緩衝部材8403との間に隙間が生じにくく光漏れを好適に防ぐことができる。また、このような素材を用いると、肌触りが良いことに加え、寒い季節などに装着した際に、使用者に冷たさを感じさせないため好ましい。緩衝部材8403または装着部8402などの、使用者の肌に触れる部材は、取り外し可能な構成とすると、クリーニングまたは交換が容易となるため好ましい。
図23(A)乃至図23(F)に示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
図23(A)乃至図23(F)に示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
表示部9001に、本発明の一態様の表示装置を適用することができる。
図23(A)乃至図23(F)に示す電子機器の詳細について、以下説明を行う。
図23(A)は、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図23(A)では3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メール、SNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
図23(B)は、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図23(C)は、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200を、例えば無線通信可能なヘッドセットと相互通信させることによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
図23(D)乃至図23(F)は、折り畳み可能な携帯情報端末9201を示す斜視図である。図23(D)は携帯情報端末9201を展開した状態、図23(F)は折り畳んだ状態、図23(E)は図23(D)と図23(F)の一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
100A 表示装置
100B 表示装置
101 基板
110B 発光素子
110G 発光素子
110R 発光素子
111 画素電極
111B 画素電極
111f 導電膜
111G 画素電極
111R 画素電極
111R-1 画素電極
111R-2 画素電極
112 EL層
112B EL層
112Bf EL膜
112G EL層
112Gf EL膜
112R EL層
112Rf EL膜
113 共通電極
114 共通層
115 光学調整層
115B 光学調整層
115G 光学調整層
115R 光学調整層
121 保護層
131 領域
143a レジストマスク
143b レジストマスク
143c レジストマスク
144a 犠牲膜
144b 犠牲膜
144c 犠牲膜
145a 犠牲層
145b 犠牲層
145c 犠牲層
146a 保護膜
146b 保護膜
146c 保護膜
147a 保護層
147b 保護層
147c 保護層
150G 発光素子
151G 画素電極
152G EL層
200 領域
201 トランジスタ
202 トランジスタ
205 トランジスタ
209 トランジスタ
211 絶縁層
212 絶縁層
213 絶縁層
214 絶縁層
215 絶縁層
218 絶縁層
221 導電層
222a 導電層
222b 導電層
223 導電層
225 絶縁層
228 領域
231 半導体層
231i チャネル形成領域
231n 低抵抗領域
240 容量
241 導電層
242 接続層
243 絶縁層
245 導電層
251 導電層
252 導電層
254 絶縁層
255 絶縁層
256 プラグ
261 絶縁層
262 絶縁層
263 絶縁層
264 絶縁層
265 絶縁層
271 プラグ
274 プラグ
274a 導電層
274b 導電層
280 表示モジュール
281 表示部
282 回路部
283 画素回路部
283a 画素回路
284 画素部
284a 画素
285 端子部
286 配線部
290 FPC
291 基板
292 基板
301 基板
310 トランジスタ
311 導電層
312 低抵抗領域
313 絶縁層
314 絶縁層
315 素子分離層
320 トランジスタ
321 半導体層
323 絶縁層
324 導電層
325 導電層
326 絶縁層
327 導電層
328 絶縁層
329 絶縁層
331 基板
332 絶縁層
400A 表示装置
400B-1 表示装置
400B-2 表示装置
400C 表示装置
400D 表示装置
400E 表示装置
401 層
411a 画素電極
411b 画素電極
411c 画素電極
414 層
415a 光学調整層
415b 光学調整層
415c 光学調整層
416a EL層
416b EL層
416c EL層
417 遮光層
419 樹脂層
420 基板
430a 発光素子
430b 発光素子
430c 発光素子
442 接着層
443 領域
451 基板
452 基板
453 基板
455 接着層
462 表示部
464 回路
465 配線
466 導電層
472 FPC
473 IC
672 下部電極
686 EL層
686a EL層
686b EL層
688 上部電極
4411 発光層
4412 発光層
4413 発光層
4420 層
4420-1 層
4420-2 層
4430 層
4430-1 層
4430-2 層
6500 電子機器
6501 筐体
6502 表示部
6503 電源ボタン
6504 ボタン
6505 スピーカ
6506 マイク
6507 カメラ
6508 光源
6510 保護部材
6511 表示パネル
6512 光学部材
6513 タッチセンサパネル
6515 FPC
6516 IC
6517 プリント基板
6518 バッテリ
7000 表示部
7100 テレビジョン装置
7101 筐体
7103 スタンド
7111 リモコン操作機
7200 ノート型パーソナルコンピュータ
7211 筐体
7212 キーボード
7213 ポインティングデバイス
7214 外部接続ポート
7300 デジタルサイネージ
7301 筐体
7303 スピーカ
7311 情報端末機
7400 デジタルサイネージ
7401 柱
7411 情報端末機
8000 カメラ
8001 筐体
8002 表示部
8003 操作ボタン
8004 シャッターボタン
8006 レンズ
8100 ファインダー
8101 筐体
8102 表示部
8103 ボタン
8200 ヘッドマウントディスプレイ
8201 装着部
8202 レンズ
8203 本体
8204 表示部
8205 ケーブル
8206 バッテリ
8300 ヘッドマウントディスプレイ
8301 筐体
8302 表示部
8304 固定具
8305 レンズ
8400 ヘッドマウントディスプレイ
8401 筐体
8402 装着部
8403 緩衝部材
8404 表示部
8405 レンズ
9000 筐体
9001 表示部
9003 スピーカ
9005 操作キー
9006 接続端子
9007 センサ
9008 マイクロフォン
9050 アイコン
9051 情報
9052 情報
9053 情報
9054 情報
9055 ヒンジ
9101 携帯情報端末
9102 携帯情報端末
9200 携帯情報端末
9201 携帯情報端末

Claims (5)

  1. 第1の下部電極と、
    前記第1の下部電極上の第1のEL層と、
    第2の下部電極と、
    前記第2の下部電極上の第2のEL層と、
    前記第1のEL層上及び前記第2のEL層上の上部電極と、
    を有し、
    前記第1のEL層の下方には、前記第1の下部電極が設けられていない第1の領域を有し、
    前記第2のEL層の下方には、前記第2の下部電極が設けられていない第2の領域を有し、
    前記第1の領域において、前記上部電極は前記第1の下部電極と接しないように配置されており、
    前記第2の領域において、前記上部電極は前記第2の下部電極と接しないように配置されている表示装置。
  2. 第1の下部電極と、
    前記第1の下部電極上の第1のEL層と、
    第2の下部電極と、
    前記第2の下部電極上の第2のEL層と、
    前記第1のEL層上及び前記第2のEL層上の上部電極と、
    を有し、
    前記上部電極は、前記第1のEL層の下方の第1の領域において、前記第1の下部電極と間隔を有するように配置されており、
    前記上部電極は、前記第2のEL層の下方の第2の領域において、前記第2の下部電極と間隔を有するように配置されている表示装置。
  3. 請求項1または請求項2において、
    前記上部電極は、前記第1の領域において、前記第1のEL層と重なる領域を有する表示装置。
  4. 請求項1乃至請求項3のいずれか一おいて、
    前記第1のEL層と前記上部電極との間、及び前記第2のEL層と前記上部電極との間に共通層を有する表示装置。
  5. 下部電極と、
    前記下部電極上のEL層と、
    前記EL層上の上部電極と、
    を有し、
    前記上部電極は、前記EL層の下方の領域において、前記下部電極と間隔を有するように配置されている表示装置。
JP2022005410A 2021-01-27 2022-01-18 表示装置 Pending JP2022115080A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021011450 2021-01-27
JP2021011450 2021-01-27

Publications (1)

Publication Number Publication Date
JP2022115080A true JP2022115080A (ja) 2022-08-08

Family

ID=82495078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022005410A Pending JP2022115080A (ja) 2021-01-27 2022-01-18 表示装置

Country Status (2)

Country Link
US (1) US11871600B2 (ja)
JP (1) JP2022115080A (ja)

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953985A (en) 1996-01-18 1999-09-21 Tohoku Ricoh Co., Ltd. Stencil printer
JP2000036385A (ja) 1998-07-21 2000-02-02 Sony Corp 有機elディスプレイの製造方法
JP2000113982A (ja) 1998-10-08 2000-04-21 Sony Corp 有機elディスプレイの製造方法
US6617186B2 (en) 2000-09-25 2003-09-09 Dai Nippon Printing Co., Ltd. Method for producing electroluminescent element
SG118118A1 (en) 2001-02-22 2006-01-27 Semiconductor Energy Lab Organic light emitting device and display using the same
JP4578032B2 (ja) 2001-08-22 2010-11-10 大日本印刷株式会社 エレクトロルミネッセント素子の製造方法
JP2008098106A (ja) 2006-10-16 2008-04-24 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JP2008147072A (ja) 2006-12-12 2008-06-26 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子の製造方法
US20080238297A1 (en) 2007-03-29 2008-10-02 Masuyuki Oota Organic el display and method of manufacturing the same
JP2008251270A (ja) 2007-03-29 2008-10-16 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
CN103283306B (zh) 2010-12-27 2016-07-20 夏普株式会社 蒸镀膜的形成方法和显示装置的制造方法
CN103270816B (zh) 2010-12-27 2016-05-18 夏普株式会社 蒸镀膜的形成方法和显示装置的制造方法
US8809879B2 (en) 2011-04-07 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and a method of manufacturing light-emitting device
KR101920374B1 (ko) 2011-04-27 2018-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 그 제작 방법
JP6016407B2 (ja) 2011-04-28 2016-10-26 キヤノン株式会社 有機el表示装置の製造方法
JP2013077494A (ja) 2011-09-30 2013-04-25 Canon Inc 発光装置の製造方法
JP6080438B2 (ja) 2011-09-30 2017-02-15 キヤノン株式会社 有機el装置の製造方法
JP2013084576A (ja) 2011-09-30 2013-05-09 Canon Inc 有機el表示装置の製造方法
JP2014011084A (ja) 2012-06-29 2014-01-20 Canon Inc 有機el装置の製造方法
US8999738B2 (en) 2012-06-29 2015-04-07 Canon Kabushiki Kaisha Method for manufacturing organic electroluminescent display apparatus
JP2014120218A (ja) 2012-12-13 2014-06-30 Canon Inc 有機el表示装置の製造方法
JP2014135251A (ja) 2013-01-11 2014-07-24 Canon Inc 有機el表示装置の製造方法
JP2014232568A (ja) 2013-05-28 2014-12-11 キヤノン株式会社 有機el装置
JP6234585B2 (ja) 2013-08-29 2017-11-22 富士フイルム株式会社 有機層をリソグラフィでパターニングするための方法
JP6242121B2 (ja) 2013-09-02 2017-12-06 株式会社ジャパンディスプレイ 発光素子表示装置及び発光素子表示装置の製造方法
JP6282428B2 (ja) 2013-09-09 2018-02-21 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置及びその製造方法
JP6114670B2 (ja) 2013-09-19 2017-04-12 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス表示装置の製造方法
JP2015115178A (ja) 2013-12-11 2015-06-22 株式会社ジャパンディスプレイ 有機el表示装置及び有機el表示装置の製造方法
KR102401987B1 (ko) 2014-08-01 2022-05-25 올싸거널 인코포레이티드 유기 전자 장치의 포토리소그래피 패터닝
JP2016197494A (ja) 2015-04-02 2016-11-24 株式会社ジャパンディスプレイ 有機el表示装置
JP6577224B2 (ja) 2015-04-23 2019-09-18 株式会社ジャパンディスプレイ 表示装置
KR102555053B1 (ko) 2015-06-29 2023-07-14 아이엠이씨 브이제트더블유 유기층의 고해상도 패턴화 방법
JP2017091946A (ja) 2015-11-16 2017-05-25 株式会社ジャパンディスプレイ 表示装置および表示装置の製造方法
DE112017005659T5 (de) 2016-11-10 2019-08-22 Semiconductor Energy Laboratory Co., Ltd. Anzeigevorrichtung und Betriebsverfahren der Anzeigevorrichtung
JP2019179696A (ja) 2018-03-30 2019-10-17 株式会社ジャパンディスプレイ 有機el表示装置および有機el表示装置の製造方法
FR3091035B1 (fr) 2018-12-19 2020-12-04 Commissariat Energie Atomique PROCEDE DE FABRICATION D’UN PIXEL D’UN MICRO-ECRAN A OLEDs
JP2020160305A (ja) 2019-03-27 2020-10-01 株式会社ジャパンディスプレイ フレキシブルパネル装置

Also Published As

Publication number Publication date
US11871600B2 (en) 2024-01-09
US20220238836A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2022167894A1 (ja) 表示装置
JP2022115080A (ja) 表示装置
WO2022153143A1 (ja) 表示装置
WO2022144666A1 (ja) 表示装置の作製方法
WO2022189908A1 (ja) 表示装置
WO2022162485A1 (ja) 表示装置
WO2022214904A1 (ja) 表示装置
WO2022175774A1 (ja) 表示装置および表示装置の作製方法
WO2022172115A1 (ja) 表示装置
WO2022224073A1 (ja) 表示装置、及び表示装置の作製方法
WO2022162491A1 (ja) 表示装置
WO2022224091A1 (ja) 表示装置
WO2022214916A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、電子機器
WO2022200916A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2022123382A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2022162501A1 (ja) 表示装置
WO2022162492A1 (ja) 表示装置
WO2022153118A1 (ja) 表示装置の作製方法
CN116848952A (zh) 显示装置
KR20230129020A (ko) 표시 장치 및 표시 장치의 제작 방법
CN117044397A (zh) 显示装置
CN116848948A (zh) 显示装置的制造方法