WO2022214916A1 - 表示装置、表示装置の作製方法、表示モジュール、電子機器 - Google Patents

表示装置、表示装置の作製方法、表示モジュール、電子機器 Download PDF

Info

Publication number
WO2022214916A1
WO2022214916A1 PCT/IB2022/052921 IB2022052921W WO2022214916A1 WO 2022214916 A1 WO2022214916 A1 WO 2022214916A1 IB 2022052921 W IB2022052921 W IB 2022052921W WO 2022214916 A1 WO2022214916 A1 WO 2022214916A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
protective
display device
sacrificial
Prior art date
Application number
PCT/IB2022/052921
Other languages
English (en)
French (fr)
Inventor
山崎舜平
方堂涼太
神保安弘
岡崎健一
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2023512494A priority Critical patent/JPWO2022214916A1/ja
Priority to CN202280024269.6A priority patent/CN117099482A/zh
Priority to KR1020237036260A priority patent/KR20230166098A/ko
Priority to US18/283,511 priority patent/US20240179935A1/en
Publication of WO2022214916A1 publication Critical patent/WO2022214916A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • One embodiment of the present invention relates to a display device and a manufacturing method thereof.
  • One embodiment of the present invention relates to a display module and an electronic device.
  • one aspect of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention disclosed in this specification and the like include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices, input/output devices, and driving methods thereof. , or methods for producing them, can be mentioned as an example.
  • a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • Devices that require high-definition display panels include, for example, smart phones, tablet terminals, and notebook computers.
  • devices that require the highest definition include, for example, devices for virtual reality (VR) or augmented reality (AR).
  • VR virtual reality
  • AR augmented reality
  • Display devices that can be applied to display panels typically include liquid crystal display devices, light-emitting devices equipped with light-emitting elements such as organic EL (Electro Luminescence) elements or light-emitting diodes (LEDs), and Examples include electronic paper that performs display by a migration method.
  • liquid crystal display devices light-emitting devices equipped with light-emitting elements such as organic EL (Electro Luminescence) elements or light-emitting diodes (LEDs)
  • Examples include electronic paper that performs display by a migration method.
  • the basic structure of an organic EL device is to sandwich a layer containing a light-emitting organic compound between a pair of electrodes. By applying a voltage to this device, light can be obtained from the light-emitting organic compound.
  • a display device to which such an organic EL element is applied does not require a backlight, which is required in, for example, a liquid crystal display device, so that a thin, lightweight, high-contrast, and low power consumption display device can be realized.
  • Patent Document 1 describes an example of a display device using an organic EL element.
  • Patent Document 2 discloses a display device for VR using organic EL elements.
  • An object of one embodiment of the present invention is to provide a display device with high display quality.
  • An object of one embodiment of the present invention is to provide a highly reliable display device.
  • An object of one embodiment of the present invention is to provide a display device with low power consumption.
  • An object of one embodiment of the present invention is to provide a display device that can easily achieve high definition.
  • An object of one embodiment of the present invention is to provide an inexpensive display device.
  • An object of one embodiment of the present invention is to provide a display device having both high display quality and high definition.
  • An object of one embodiment of the present invention is to provide a high-contrast display device.
  • An object of one embodiment of the present invention is to provide a display device with a novel structure.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a display device with high display quality.
  • An object of one embodiment of the present invention is to provide a highly reliable method for manufacturing a display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a display device with low power consumption.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a display device that can easily achieve high definition.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a display device at low cost.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a display device having both high display quality and high definition.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a display device with high contrast.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a display device having a novel structure.
  • One embodiment of the present invention includes a first light-emitting element, a second light-emitting element adjacent to the first light-emitting element, a first protective layer, a second protective layer, and an insulating layer.
  • the first light emitting element has a first pixel electrode, a first EL layer, and a common electrode
  • the second light emitting element has a second pixel electrode and a second and a common electrode
  • the first EL layer is provided on the first pixel electrode
  • the second EL layer is provided on the second pixel electrode
  • the first EL layer is provided on the first pixel electrode.
  • the protective layer has regions overlapping with the side surface of the first pixel electrode, the side surface of the second pixel electrode, the side surface of the first EL layer, and the side surface of the second EL layer.
  • a display provided on a protective layer, a second protective layer provided on an insulating layer, and a common electrode provided on the first EL layer, the second EL layer, and the second protective layer It is a device.
  • the insulating layer may be provided between the first EL layer and the second EL layer.
  • the display device may have a third protective layer, and the third protective layer may have regions in contact with the side surfaces and the bottom surface of the first protective layer.
  • the first to third protective layers may have an inorganic material.
  • the first protective layer has a region in contact with the side surface and the bottom surface of the insulating layer
  • the second protective layer has a region in contact with the top surface of the insulating layer
  • the first protective layer , and the second protective layer may comprise a nitride.
  • the first protective layer and the second protective layer may contain at least one of silicon nitride, aluminum nitride, and hafnium nitride.
  • the insulating layer may have an organic material.
  • a common layer is provided between the first EL layer, the second EL layer, the second protective layer, and the common electrode, and the common layer is a hole injection layer, a hole It may have at least one of a transport layer, a hole-blocking layer, an electron-blocking layer, an electron-transporting layer, or an electron-injecting layer.
  • the distance between the side surface of the first EL layer and the side surface of the second EL layer may have a region of 1 ⁇ m or less.
  • the distance between the side surface of the first EL layer and the side surface of the second EL layer may have a region of 100 nm or less.
  • a display module including the display device of one embodiment of the present invention and at least one of a connector and an integrated circuit is also one embodiment of the present invention.
  • An electronic device including the display module of one embodiment of the present invention and at least one of a battery, a camera, a speaker, and a microphone is also one embodiment of the present invention.
  • a first pixel electrode and a second pixel electrode are formed over an insulating surface, and a first EL electrode is formed over the first pixel electrode and the second pixel electrode.
  • a film and a first sacrificial film are sequentially formed, and the first sacrificial film and the first EL film are processed to form a first sacrificial layer and a first sacrificial layer having a region overlapping with the first pixel electrode.
  • a first protective film covering at least the side surface of the first EL layer and the side surface and the upper surface of the first sacrificial layer; and processing the first protective film
  • a first protective layer having a region overlapping with the side surface of the first EL layer
  • a second EL film and a second sacrificial layer are formed over the first sacrificial layer and the second pixel electrode.
  • a second protective film covering at least the top surface of the first sacrificial layer, the top surface and side surfaces of the second sacrificial layer, the side surfaces of the first protective layer, and the side surfaces of the second EL layer; Then, an insulating film is formed over the second protective film, and the insulating film is processed to form an insulating layer between the first EL layer and the second EL layer.
  • a second protective layer is formed between the first protective layer and the insulating layer and between the second EL layer and the insulating layer, and the second protective layer is formed over the first sacrificial layer and the second protective layer.
  • a third protective film is formed on the sacrificial layer and the insulating layer, and the third protective film is processed to form a third protective layer on the insulating layer, the first sacrificial layer, and the second sacrificial layer are removed, and a common electrode is formed over the first EL layer, the second EL layer, and the third protective layer.
  • a fourth protective film is formed so as to have a region in contact with the first protective film, and after forming the second protective film, the second protective film is formed.
  • a fifth protective film may be formed so as to have a region in contact with the .
  • the first protective film and the second protective film are formed using an ALD method
  • the third to fifth protective films are formed using a sputtering method or a CVD method. good too.
  • the insulating film may be formed using a spin coating method, a spray method, a screen printing method, or a painting method.
  • the insulating film may be processed using a photolithographic method.
  • the first protective film, the second protective film, the fourth protective film, and the fifth protective film may be processed using a dry etching method.
  • a hole injection layer, a hole transport layer, a positive At least one of a hole-blocking layer, an electron-blocking layer, an electron-transporting layer, or an electron-injecting layer may be formed.
  • a display device with high display quality can be provided.
  • a highly reliable display device can be provided.
  • a display device with low power consumption can be provided.
  • a display device with high definition can be provided.
  • a display device having both high display quality and high definition can be provided.
  • an inexpensive display device can be provided.
  • a high-contrast display device can be provided.
  • a display device with a novel structure can be provided.
  • a method for manufacturing a display device with high display quality can be provided.
  • a highly reliable method for manufacturing a display device can be provided.
  • a method for manufacturing a display device with low power consumption can be provided.
  • a method for manufacturing a display device with which high definition can be easily achieved can be provided.
  • a method for manufacturing a display device having both high display quality and high definition can be provided.
  • a method for manufacturing a display device at low cost can be provided.
  • a method for manufacturing a display device with high contrast can be provided.
  • a method for manufacturing a display device with a novel structure can be provided.
  • FIG. 1 is a top view showing a configuration example of a display device.
  • 2A, 2B, 2C1, 2C2, and 2D are cross-sectional views showing configuration examples of the display device.
  • 3A and 3B are cross-sectional views showing configuration examples of the display device.
  • 4A to 4F are top views showing configuration examples of pixels.
  • 5A to 5E are top views showing configuration examples of pixels.
  • 6A to 6D are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 7A1, 7A2, 7B1, and 7B2 are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 8A to 8C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 9A1, 9A2, 9B1, and 9B2 are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 10A to 10C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 11A to 11C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 12A, 12B1, and 12B2 are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 13A and 13B are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 14A, 14B1, and 14B2 are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 15A, 15B1, and 15B2 are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 16A and 16B are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 17A to 17D are cross-sectional views showing configuration examples of display devices.
  • 18A to 18D are cross-sectional views showing configuration examples of display devices.
  • 19A to 19D are cross-sectional views showing configuration examples of display devices.
  • 20A to 20D are cross-sectional views showing configuration examples of display devices.
  • FIG. 21 is a perspective view showing a configuration example of a display device.
  • FIG. 22A is a cross-sectional view showing a configuration example of a display device.
  • 22B and 22C are cross-sectional views showing configuration examples of transistors.
  • FIG. 23 is a cross-sectional view showing a configuration example of a display device.
  • 24A and 24B are perspective views showing configuration examples of the display module.
  • FIG. 25 is a cross-sectional view showing a configuration example of a display device.
  • FIG. 26 is a cross-sectional view showing a configuration example of a display device.
  • FIG. 27 is a cross-sectional view showing a configuration example of a display device.
  • FIG. 28 is a cross-sectional view showing a configuration example of a display device.
  • 29A to 29F are diagrams showing configuration examples of light-emitting elements.
  • 30A and 30B are diagrams illustrating examples of electronic devices.
  • 31A to 31D are diagrams illustrating examples of electronic devices.
  • 32A to 32F are diagrams illustrating examples of electronic devices.
  • 33A to 33F are diagrams showing examples of electronic devices.
  • 34A to 34C are cross-sectional views showing configurations of samples according to Examples.
  • FIG. 34D is a diagram showing the structure of an EL layer.
  • 35A to 35E are cross-sectional views showing a method of manufacturing a sample according to an example.
  • 36A to 36D are cross-sectional views showing a method of manufacturing a sample according to an example.
  • 37A to 37E are cross-sectional views showing a method of manufacturing a sample according to an example.
  • FIG. 38 is a graph showing luminance-voltage characteristics of samples according to the example.
  • FIG. 39 is a graph showing the current efficiency-luminance characteristics of the sample according to the example.
  • FIG. 40 is a graph showing temporal changes in normalized luminance of samples according to the example.
  • film and “layer” can be interchanged depending on the case or situation.
  • conductive layer or “insulating layer” may be interchangeable with the terms “conductive film” or “insulating film.”
  • an EL layer refers to a layer provided between a pair of electrodes of a light-emitting element and containing at least a light-emitting substance (also referred to as a light-emitting layer) or a laminate including a light-emitting layer. .
  • a display panel which is one aspect of a display device, has a function of displaying (outputting) an image, for example, on a display surface. Therefore, the display panel is one aspect of the output device.
  • the substrate of the display panel is attached with a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), or an IC is attached to the substrate by COG (Chip On Glass) method.
  • a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package)
  • COG Chip On Glass
  • One embodiment of the present invention is a display device including a light-emitting element (also referred to as a light-emitting device).
  • the display device has at least two light emitting elements that emit light of different colors.
  • Each light-emitting element has a pair of electrodes and an EL layer therebetween.
  • Electroluminescent elements such as organic EL elements or inorganic EL elements can be used as the light emitting elements. Alternatively, light emitting diodes (LEDs) can be used.
  • the light-emitting element of one embodiment of the present invention is preferably an organic EL element (organic electroluminescent element).
  • Two or more light-emitting elements that emit different colors have EL layers each containing a different material.
  • a full-color display device can be realized by including three types of light-emitting elements that emit red (R), green (G), and blue (B) light.
  • an EL layer is processed into a fine pattern without using a shadow mask such as a metal mask.
  • a shadow mask such as a metal mask.
  • a device manufactured using a metal mask or FMM fine metal mask, high-definition metal mask
  • a device with an MM (metal mask) structure is sometimes referred to as a device with an MML (metal maskless) structure.
  • first light emitting element and second light emitting element are separately produced.
  • a first pixel electrode and a second pixel electrode are formed on a substrate.
  • a first EL film and a first sacrificial film are sequentially formed over the first pixel electrode and the second pixel electrode.
  • a resist mask is formed over the first sacrificial film.
  • the first sacrificial layer and the first EL film are processed using a resist mask, so that the first sacrificial layer and the first EL layer, which have a region overlapping with the first pixel electrode, are formed. form respectively.
  • the sacrificial film may be referred to as a mask film
  • the sacrificial layer may be referred to as a mask layer.
  • a first protective film is formed to cover the side surfaces of the first EL layer, the side surfaces and the top surface of the first sacrificial layer, and the side surfaces and the top surface of the second pixel electrode. Subsequently, by processing the first protective film, a first protective layer having a region overlapping with the side surface of the first EL layer is formed.
  • the first protective film can be processed using anisotropic etching such as dry etching.
  • a second EL film and a second sacrificial film are sequentially formed on the first sacrificial layer and the second pixel electrode.
  • a resist mask is formed over the second sacrificial film.
  • the second sacrificial layer and the second EL film are processed using a resist mask, so that the second sacrificial layer and the second EL layer, which have a region overlapping with the second pixel electrode, are formed. form respectively.
  • a second protective layer covering the top and side surfaces of the first sacrificial layer, the top and side surfaces of the second sacrificial layer, the side surfaces of the first protective layer, and the side surfaces of the second EL layer; form a film.
  • an insulating film is formed on the second protective film. Subsequently, an insulating layer is formed between the first EL layer and the second EL layer by processing the insulating film.
  • a photosensitive material can be used for the insulating film, and for example, a photosensitive resin can be used. In this case, an insulating layer can be formed between the first EL layer and the second EL layer by processing the insulating film by a photolithography method.
  • the second protective layer is formed between the first protective layer and the insulating layer, between the second EL layer and the insulating layer, and between the substrate and the insulating layer.
  • the second protective film can be processed using anisotropic etching such as dry etching, like the first protective film.
  • a third protective film is formed on the first sacrificial layer, the second sacrificial layer, and the insulating layer. Subsequently, a third protective layer is formed on the insulating layer by processing the third protective film.
  • first sacrificial layer and the second sacrificial layer are removed.
  • second sacrificial layer is formed over the first EL layer, the second EL layer, and the third protective layer.
  • two-color light-emitting elements can be manufactured separately. Specifically, a first light-emitting element having a first pixel electrode, a first EL layer, and a common electrode, and a second light-emitting element having a second pixel electrode, a second EL layer, and a common electrode element and can be produced separately.
  • the first protective layer by repeating the steps from forming the first EL film to forming the first protective layer, light emitting elements of three or more colors can be produced separately. Alternatively, a display device having light-emitting elements of four or more colors can be realized.
  • an insulating layer is provided between the first EL layer and the second EL layer.
  • the insulating layer can fill a gap between the first light-emitting element and the second light-emitting element. Therefore, since the unevenness of the surface on which the common electrode is provided can be reduced, cutting (discontinuity) of the common electrode can be suppressed.
  • the display device of one embodiment of the present invention can be a highly reliable display device.
  • the insulating layer may contain oxygen, water, or the like.
  • oxygen, water, or the like enters an EL layer, a light-emitting element having the EL layer may deteriorate. Therefore, in the display device of one embodiment of the present invention, a protective layer having a high barrier property against oxygen, water, and the like is provided so as to surround the insulating layer provided between the first EL layer and the second EL layer. This can prevent impurities such as oxygen and water from entering the EL layer. Therefore, the display device of one embodiment of the present invention can be a highly reliable display device.
  • the second protective layer is provided to cover the side and bottom surfaces of the insulating layer provided between the first EL layer and the second EL layer, and the second protective layer is provided to cover the top surface of the insulating layer.
  • 3 protective layers are provided. Accordingly, the insulating layer provided between the first EL layer and the second EL layer can be surrounded by the second protective layer and the third protective layer.
  • an inorganic insulating material such as an inorganic nitride film, can be used as the protective layer having a high barrier property against oxygen, water, and the like. At least one of silicon nitride, aluminum nitride, and hafnium nitride, for example, can be used as the inorganic nitride.
  • the first protective film and the second protective film can have a laminated structure of two or more layers.
  • the first protective film and the second protective film are formed by forming a first layer film by a method with high coverage and forming a second layer film by a method with low coverage. It can be a film having a two-layer laminated structure.
  • the first protective film and the second protective film are formed by forming a first layer film by ALD, and forming a second layer by sputtering or chemical vapor deposition (CVD).
  • a film having a two-layer structure formed by forming a film can be used.
  • the first protective layer and the second protective layer can be thickened while covering the steps. It is possible to suitably suppress the penetration of impurities such as Therefore, the display device of one embodiment of the present invention can be a highly reliable display device.
  • the impurities may penetrate into the EL layer and reduce the reliability of the display device. Therefore, removing the impurities adhering to the surface of the first EL layer after forming the first EL layer and before forming the first protective film covering the first EL layer reduces the reliability of the display device. It is preferable because it can improve the property. Similarly, it is preferable to remove impurities adhering to the surface of the second EL layer after forming the second EL layer and before forming the second protective film covering the second EL layer.
  • the substrate over which the first EL layer is formed is placed in an inert gas atmosphere, impurities adhering to the surface of the first EL layer can be removed.
  • impurities adhering to the surface of the second EL layer can be removed.
  • the inert gas for example, any one or more selected from group 18 elements (typically helium, neon, argon, xenon, krypton, etc.) and nitrogen can be used.
  • the EL layer comes into contact with air, impurities such as oxygen and water contained in the air may enter the EL layer.
  • impurities such as oxygen and water contained in the air may enter the EL layer.
  • the surface of the first EL layer is exposed until the first protective film is formed. Therefore, it is preferable to perform the steps from processing the first EL film to forming the first protective film in the same apparatus.
  • the first protective film covering the first EL layer is formed without exposing the first EL layer to the air. be able to.
  • the processing of the second EL film and the formation of the second protective film are preferably performed in the same apparatus.
  • impurities contained in the air can be prevented from entering the EL layer, and the reliability of the display device can be improved. Note that it is preferable to perform other steps in the same apparatus because the constituent elements of the display device can be prevented from being exposed to, for example, air during the manufacturing process of the display device, and the throughput in manufacturing the display device can be increased.
  • the distance between the adjacent EL layers is difficult to set to less than 10 ⁇ m by, for example, a formation method using a metal mask.
  • it can be narrowed down to 1 ⁇ m or less.
  • the gap can be narrowed to 500 nm or less, 200 nm or less, 100 nm or less, or even 50 nm or less.
  • the aperture ratio can be brought close to 100%.
  • the aperture ratio can be 50% or more, 60% or more, 70% or more, 80% or more, or even 90% or more, and less than 100%.
  • the pattern of the EL layer itself can also be made much smaller than when a metal mask is used.
  • the thickness varies between the center and the edge of the pattern, so the effective area that can be used as the light emitting region is smaller than the area of the entire pattern. .
  • the pattern is formed by processing a film formed to have a uniform thickness, the thickness can be made uniform within the pattern, and even if the pattern is fine, almost the entire area of the pattern can emit light. It can be used as a region. Therefore, according to the above manufacturing method, both high definition and high aperture ratio can be achieved.
  • a display device in which fine light-emitting elements are integrated can be realized, it is necessary to artificially increase the definition by applying a special pixel arrangement method such as a pentile method. There is no Therefore, a display device with a so-called stripe arrangement in which R, G, and B are arranged in one direction and a resolution of 500 ppi or more, 1000 ppi or more, or 2000 ppi or more, furthermore 3000 ppi or more, furthermore 5000 ppi or more is realized. be able to.
  • FIG. 1 shows a top view of a display device 100 of one embodiment of the present invention.
  • the display device 100 includes a plurality of light emitting elements 110R that emit red, a plurality of light emitting elements 110G that emit green, and a plurality of light emitting elements 110B that emit blue.
  • the light-emitting region of each light-emitting element is denoted by R, G, and B. As shown in FIG.
  • the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B may be collectively referred to as the light emitting element 110.
  • the light emitting element 110 indicates part or all of the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B. Similar descriptions are made for other elements.
  • the light emitting elements 110R, 110G, and 110B are arranged in a matrix.
  • the pixel 103 shown in FIG. 1 has a so-called stripe arrangement in which light emitting elements of the same color are arranged in one direction. Note that the arrangement method of the light emitting elements is not limited to this, and an arrangement method such as a delta arrangement or a zigzag arrangement may be applied, or a pentile arrangement may be used.
  • an EL element such as an organic EL element or an inorganic EL element as the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B.
  • FIG. 1 also shows the connection electrode 111C and the common electrode 115, and the common electrode 115 is indicated by a dashed line.
  • a potential to be supplied to the common electrode 115 (for example, an anode potential or a cathode potential) is applied to the connection electrode 111C.
  • the connection electrode 111C is provided outside the display area in which the light emitting elements 110R are arranged, for example.
  • the connection electrodes 111C can be provided along the periphery of the display area.
  • the connection electrode 111C may be provided along one side of the periphery of the display area, or may be provided along two or more sides of the periphery of the display area. That is, when the top surface shape of the display area is rectangular, the top surface shape of the connection electrode 111C can be strip-shaped, L-shaped, U-shaped (square bracket-shaped), frame-shaped, or the like.
  • FIG. 2A is a cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG.
  • FIG. 2B is a cross-sectional view corresponding to the dashed-dotted line B1-B2 in FIG.
  • FIG. 2C1 is a cross-sectional view corresponding to the dashed-dotted line C1-C2 in FIG.
  • FIG. 2A shows a cross-sectional configuration example of the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B. Further, FIG. 2B shows a cross-sectional configuration example of the light emitting element 110G.
  • the light-emitting element 110 is provided over the layer 101 including the transistor. Also, a layer 101 including transistors is provided on a substrate (not shown).
  • the layer 101 including transistors for example, a stacked structure in which a plurality of transistors are provided and an insulating layer is provided so as to cover these transistors can be applied.
  • the layer 101 including transistors may have recesses between adjacent light emitting elements 110 .
  • recesses may be provided in the insulating layer located on the outermost surface of the layer 101 including the transistor. Note that the layer 101 including a transistor may not have recesses between adjacent light emitting elements 110 in some cases.
  • pixel circuits for example, pixel circuits, scanning line driving circuits (gate drivers), signal line driving circuits (source drivers), and the like are preferably configured in the layer 101 including transistors.
  • an arithmetic circuit, a memory circuit, or the like may be configured.
  • the light emitting element 110R has a pixel electrode 111R and an EL layer 112R on the pixel electrode 111R.
  • the light emitting element 110G has a pixel electrode 111G and an EL layer 112G on the pixel electrode 111G.
  • the light emitting element 110B has a pixel electrode 111B and an EL layer 112B over the pixel electrode 111B.
  • the light-emitting elements 110R, 110G, and 110B have a common layer 114 over the EL layer 112R, the EL layer 112G, and the EL layer 112B, and a common electrode 115 over the common layer 114.
  • the common layer 114 and the common electrode 115 are provided as a continuous layer common to each light emitting element 110 .
  • the EL layer 112R, EL layer 112G, and EL layer 112B each have a light-emitting layer.
  • a light-emitting layer is a layer containing a light-emitting substance.
  • the emissive layer can have one or more emissive materials.
  • As the light-emitting substance a substance emitting light of blue, purple, blue-violet, green, yellow-green, yellow, orange, red, or the like is used as appropriate.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • the light-emitting layer of the EL layer 112R can have a red light-emitting material.
  • the light-emitting layer of the EL layer 112G can contain a green light-emitting substance.
  • the light-emitting layer of the EL layer 112B can contain a blue light-emitting substance.
  • Examples of light-emitting substances include fluorescent materials, phosphorescent materials, TADF materials, and quantum dot materials.
  • quantum dot material a colloidal quantum dot material, an alloy quantum dot material, a core-shell quantum dot material, a core quantum dot material, or the like can be used. Also, materials containing element groups of groups 12 and 16, 13 and 15, or 14 and 16 may be used. Quantum dot materials containing elements such as cadmium, selenium, zinc, sulfur, phosphorus, indium, tellurium, lead, gallium, arsenic, or aluminum may also be used.
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. mentioned.
  • Examples of phosphorescent materials include organometallic complexes (especially iridium complexes) having a 4H-triazole skeleton, 1H-triazole skeleton, imidazole skeleton, pyrimidine skeleton, pyrazine skeleton, or pyridine skeleton, and phenylpyridine derivatives having an electron-withdrawing group.
  • organometallic complexes especially iridium complexes
  • platinum complexes, rare earth metal complexes, and the like, which serve as ligands, can be mentioned.
  • the light-emitting layer may contain one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • One or both of a hole-transporting material and an electron-transporting material can be used as the one or more organic compounds.
  • Bipolar materials or TADF materials may also be used as one or more organic compounds.
  • the light-emitting layer preferably includes, for example, a phosphorescent material and a combination of a hole-transporting material and an electron-transporting material that easily form an exciplex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the absorption band on the lowest energy side of the light-emitting substance energy transfer becomes smooth and light emission can be efficiently obtained. With this configuration, high efficiency, low-voltage driving, and long life of the light-emitting element can be realized at the same time.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B include, as layers other than the light-emitting layer, a substance with a high hole-injection property, a substance with a high hole-transport property, a hole-blocking material, a substance with a high electron-transport property, and an electron layer.
  • a layer containing a highly injectable substance, an electron-blocking material, a bipolar substance (a substance with high electron-transport properties and hole-transport properties), or the like may be further included.
  • Either a low-molecular-weight compound or a high-molecular-weight compound can be used for the light-emitting element, and an inorganic compound may be included.
  • Each of the layers constituting the light-emitting element can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B are each one or more of a hole-injection layer, a hole-transport layer, a hole-blocking layer, an electron-blocking layer, an electron-transporting layer, and an electron-injecting layer. may have
  • Each of the EL layer 112R, EL layer 112G, and EL layer 112B preferably has a light emitting layer and a carrier transport layer on the light emitting layer.
  • a light emitting layer preferably has a light emitting layer and a carrier transport layer on the light emitting layer.
  • exposure of the light-emitting layer to the outermost surface can be suppressed during the manufacturing process of the display device 100, and damage to the light-emitting layer can be reduced. Thereby, the reliability of the light emitting element can be improved. Therefore, the display device 100 can be a highly reliable display device.
  • the hole-injecting layer is a layer that injects holes from the anode into the hole-transporting layer, and contains a material with high hole-injecting properties.
  • highly hole-injecting materials include aromatic amine compounds and composite materials containing a hole-transporting material and an acceptor material (electron-accepting material).
  • the hole-transporting layer is a layer that transports holes injected from the anode to the light-emitting layer by means of the hole-injecting layer.
  • a hole-transporting layer is a layer containing a hole-transporting material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these can also be used as long as the hole-transport property is higher than the electron-transport property.
  • hole-transporting materials include ⁇ -electron-rich heteroaromatic compounds (e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.), aromatic amines (compounds having an aromatic amine skeleton), and other hole-transporting materials. High material is preferred.
  • the electron-transporting layer is a layer that transports electrons injected from the cathode through the electron-injecting layer to the light-emitting layer.
  • the electron-transporting layer is a layer containing an electron-transporting material.
  • an electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable.
  • Examples of electron-transporting materials include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, and metal complexes having a thiazole skeleton, as well as oxadiazole derivatives, triazole derivatives, and imidazole derivatives.
  • oxazole derivatives thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, or other nitrogen-containing heteroaromatic compounds
  • a material having a high electron-transport property such as an electron-deficient heteroaromatic compound can be used. Note that substances other than these can be used as long as the electron-transport property is higher than the hole-transport property.
  • the electron injection layer is a layer that injects electrons from the cathode to the electron transport layer, and is a layer that contains a material with high electron injection properties.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used as materials with high electron injection properties.
  • a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used as a material with high electron-injecting properties.
  • the electron injection layer examples include lithium, cesium, ytterbium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF x , X is an arbitrary number), and 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2-pyridyl)phenoratritium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatritium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)pheno Alkali metals such as latolithium (abbreviation: LiPPP), lithium oxide (LiO x ), or cesium carbonate, alkaline earth metals, or compounds thereof can be used.
  • the electron injection layer may have a laminated structure of two or more layers. As the laminated structure, for example, lithium fluoride can be used for the first layer and ytterbium can be used for the second layer.
  • an electron-transporting material may be used as the electron injection layer.
  • a compound having a lone pair of electrons and an electron-deficient heteroaromatic ring can be used as the electron-transporting material.
  • a compound having at least one of a pyridine ring, a diazine ring (pyrimidine ring, pyrazine ring, and pyridazine ring), and a triazine ring can be used.
  • the lowest unoccupied molecular orbital (LUMO) of the organic compound having an unshared electron pair is preferably -3.6 eV or more and -2.3 eV or less.
  • CV cyclic voltammetry
  • photoelectron spectroscopy optical absorption spectroscopy
  • inverse photoelectron spectroscopy is used to determine the highest occupied molecular orbital (HOMO: Highest Occupied Molecular Orbital) level and LUMO level of an organic compound. can be estimated.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • HATNA diquinoxalino [2,3-a:2′,3′-c]phenazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1, 3,5-triazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1, 3,5-triazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1, 3,5-triazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3
  • the common layer 114 is preferably a layer having one or more of, for example, a hole injection layer, a hole transport layer, a hole block layer, an electron block layer, an electron transport layer, or an electron injection layer.
  • the common layer 114 may have an electron-injection layer or both an electron-injection layer and an electron-transport layer.
  • the common layer 114 includes a hole-injection layer or a hole-injection layer and a hole-transport layer. be able to.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B may not have an electron injection layer.
  • EL layer 112R, EL layer 112G, and EL layer 112B have a hole-injection layer, a hole-transport layer on the hole-injection layer, a light-emitting layer on the hole-transport layer, and an electron-transport layer on the light-emitting layer. and a layer.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B may not have a hole injection layer.
  • the common layer 114 is provided as a continuous layer common to each light emitting element 110 . Therefore, the common layer 114 does not need to be processed by etching, for example. Therefore, when the display device 100 includes the common layer 114, the manufacturing process of the display device 100 can be simplified, so that the manufacturing cost of the display device 100 can be reduced. Therefore, the display device 100 can be a low-cost display device.
  • the common layer 114 and the common electrode 115 can be formed continuously without interposing a process such as etching. Therefore, the interface between the common layer 114 and the common electrode 115 can be made a clean surface. Accordingly, the display device 100 can be a highly reliable display device. Note that the display device 100 may not have the common layer 114 . In this case, for example, in a light-emitting element in which the pixel electrode 111 is the anode and the common electrode is the cathode, the EL layer 112R, the EL layer 112G, and the EL layer 112B may have an electron-injection layer over the electron-transport layer. can.
  • a conductive layer that transmits visible light is used for one of the pixel electrode 111 and the common electrode 115, and a conductive layer that is reflective is used for the other.
  • a bottom emission type display device can be obtained.
  • a top emission display device can be obtained. Note that by making both the pixel electrode 111 and the common electrode 115 transparent, a dual-emission display device can be obtained.
  • the pixel electrode 111 is a conductive layer reflecting visible light
  • the pixel electrode 111 is made of silver, aluminum, titanium, tantalum, molybdenum, platinum, gold, titanium nitride, tantalum nitride, or the like. be able to.
  • an alloy can be used as the pixel electrode 111 .
  • an alloy containing silver can be used.
  • an alloy containing silver for example, an alloy containing silver, palladium, and copper can be used.
  • an alloy containing aluminum can be used.
  • two or more layers of these materials may be laminated for use.
  • the pixel electrode 111 can have a layered structure in which a conductive layer having a property of transmitting visible light is provided on a conductive layer having a property of reflecting visible light.
  • the conductive material having a property of transmitting visible light includes indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, indium tin oxide containing silicon, or indium containing silicon.
  • Conductive oxides such as zinc oxide can be used.
  • an oxide of a conductive material that is reflective to visible light may be used as the conductive material that is transparent to visible light.
  • an oxidation reaction with the pixel electrode 111 can be suppressed when the EL layer 112 is formed.
  • the pixel electrode 111 has a layered structure in which a conductive layer that transmits visible light is provided on a conductive layer that reflects visible light, so that the pixel electrode 111 can transmit visible light. can function as an optical adjustment layer.
  • the optical path length in the light-emitting element 110 corresponds to, for example, the sum of the thickness of the optical adjustment layer and the thickness of the layer provided below the layer containing the light-emitting compound in the EL layer 112 .
  • light of a specific wavelength can be intensified by using a microcavity structure (microresonator structure) to vary the optical path length.
  • a microcavity structure microresonator structure
  • the thickness of the EL layer 112 in each light emitting element 110 by varying the thickness of the EL layer 112 in each light emitting element 110, a microcavity structure can be realized.
  • the EL layer 112R of the light emitting element 110R that emits light with the longest wavelength is the thickest
  • the EL layer 112B of the light emitting element 110B that emits light with the shortest wavelength is the thinnest.
  • the thickness of each EL layer 112 is adjusted in consideration of the wavelength of light emitted from each light emitting element 110, the optical characteristics of the layers constituting the light emitting element 110, the electrical characteristics of the light emitting element 110, and the like. can do.
  • the conductive layer that reflects visible light it is preferable to use aluminum, silver, or the like, which has a high reflectance.
  • aluminum is suitable for manufacturing a high-definition display device because it is easily microfabricated.
  • a transparent conductive oxide material is preferably used for the conductive layer that transmits visible light.
  • a transparent oxide conductive material containing, for example, indium is provided in direct contact with aluminum, the aluminum may corrode in a later step. Therefore, in order to prevent corrosion, it is preferable to use, for example, aluminum for the layer that is not in contact with the transparent oxide conductive film containing indium.
  • the pixel electrode 111 can have a three-layer structure of a layer using aluminum, a layer using titanium oxide, and a layer using indium tin oxide containing silicon.
  • the pixel electrode 111 when forming the pixel electrode 111, it is preferable to continuously form an aluminum film and a titanium oxide film. If the aluminum film is formed and then exposed to the atmosphere before the titanium oxide film is formed, the aluminum film may be naturally oxidized due to the exposure to the atmosphere. By forming a titanium oxide film without exposing the aluminum film to the atmosphere after forming the aluminum film, oxidation of aluminum can be suppressed.
  • the film thickness of the other film can be made very thin.
  • a titanium film may be formed over an aluminum film, and then a titanium oxide film may be formed over the titanium film after exposure to the atmosphere.
  • the oxide film on the surface of the aluminum film may be removed by reverse sputtering.
  • the oxide film on the surface of the aluminum film may be removed by reverse sputtering, and then a titanium oxide film may be formed.
  • Examples of methods for forming a titanium oxide film include a reactive sputtering method using a titanium target and oxygen gas, and a sputtering method using a titanium oxide target and an inert gas (eg, argon gas).
  • a reactive sputtering method using a titanium target and oxygen gas and a sputtering method using a titanium oxide target and an inert gas (eg, argon gas).
  • oxygen gas when oxygen gas is used, the surface of the aluminum film may be exposed to the oxygen gas and oxidized. Therefore, the film formed on and in contact with the aluminum film is preferably formed without using oxygen gas. Therefore, the titanium oxide film is preferably formed by sputtering using a titanium oxide target and an inert gas (eg, argon gas).
  • the common electrode 115 can be a conductive layer that transmits visible light.
  • conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, and gallium-containing zinc oxide, or graphene can be used for common electrode 115 .
  • a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, or titanium, or an alloy material containing the metal material can be used for the common electrode 115.
  • a nitride of the metal material for example, titanium nitride
  • the common electrode 115 a nitride of the metal material (for example, titanium nitride) or the like may be used for the common electrode 115 .
  • a metal material or an alloy material (or a nitride thereof) is used, it is preferably thin enough to have translucency.
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a protective layer 131 having a region overlapping with the side surface of the EL layer 112R and a protective layer 131 having a region overlapping with the side surface of the EL layer 112G are provided between the EL layer 112R and the EL layer 112G.
  • a protective layer 131 is similarly provided between other EL layers 112 .
  • a protective layer 131 having a region overlapping with the side surface of the pixel electrode 111 can be provided.
  • the protective layer 131 is preferably a layer with high barrier properties against oxygen, water, and the like. Thus, impurities such as oxygen and water can be prevented from entering the EL layer 112 from the side surface. Therefore, deterioration of the light-emitting element 110 can be suppressed, and the display device 100 can be a highly reliable display device.
  • an inorganic insulating material can be used, for example, a layer containing an oxide or nitride such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, and hafnium oxide. can do.
  • the protective layer 131 preferably has a film type and thickness that do not have pinholes.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen.
  • the top surface of the protective layer 131 having a region overlapping with the side surface of the EL layer 112 is above the top surface of the EL layer 112, which is one embodiment of the present invention. is not limited to For example, the height of the top surface of the protective layer 131 that overlaps with the side surface of the EL layer 112 may be equal to the height of the top surface of the EL layer 112 . Alternatively, the top surface of the protective layer 131 , which has regions overlapping the side surfaces of the EL layer 112 , may be positioned below the top surface of the EL layer 112 .
  • the distance between the side surface of the EL layer 112 and the side surface of the adjacent EL layer 112 preferably has a region of 3 nm or more and 200 nm or less, more preferably 3 nm or more and 150 nm or less, and further preferably 5 nm.
  • the display device 100 can have a high aperture ratio and high reliability.
  • An insulating layer 132 is provided between adjacent light emitting elements 110 .
  • the insulating layer 132 is located between each EL layer 112 of the light emitting element 110 .
  • the insulating layer 132 is provided, for example, between two EL layers 112 each exhibiting a different color.
  • the insulating layer 132 is provided, for example, between two EL layers 112 exhibiting the same color.
  • the insulating layer 132 may be provided between two EL layers 112 exhibiting different colors and not provided between two EL layers 112 exhibiting the same color.
  • the insulating layer 132 may be positioned between the pixel electrodes 111 of the light emitting device 110 .
  • the insulating layer 132 is arranged between the EL layers 112 between adjacent pixels so as to have a mesh shape (which can also be called a lattice shape or a matrix shape) when viewed from above.
  • the display device 100 can have high display quality.
  • the insulating layer 132 between the pixel electrodes 111 it is possible to prevent the pixel electrodes 111 from coming into contact with each other. As a result, short-circuiting between the pixel electrodes 111 can be suppressed. Therefore, the display device 100 can be a highly reliable display device.
  • the display device 100 can be a highly reliable display device.
  • the insulating layer 132 may have a stripe shape when viewed from above. can.
  • the space required for forming the insulating layer 132 is smaller than when the insulating layer 132 has a lattice shape. Therefore, the aperture ratio of the display device 100 can be increased.
  • adjacent EL layers 112 of the same color may be processed into strips so as to be continuous in the column direction.
  • An insulating layer containing an organic material can be suitably used for the insulating layer 132 .
  • an acrylic resin, a polyimide resin, an epoxy resin, a polyamide resin, a polyimideamide resin, a siloxane resin, a benzocyclobutene-based resin, a phenolic resin, precursors of these resins, or the like can be used for the insulating layer 132 .
  • a photosensitive resin can be used as the insulating layer 132 .
  • a positive material or a negative material can be used for the photosensitive resin.
  • the insulating layer 132 can be produced only through the steps of exposure and development. Therefore, the manufacturing process of the display device 100 can be simplified, so that the manufacturing cost of the display device 100 can be reduced. Therefore, the display device 100 can be a low-cost display device.
  • the insulating layer 132 may contain oxygen, water, or the like. As described above, when oxygen, water, or the like enters the EL layer 112, the light-emitting element 110 may deteriorate.
  • the insulating layer 132 is provided so as to be in contact with the protective layer 131 .
  • the insulating layer 132 is provided so that the side surface and the bottom surface of the insulating layer 132 are in contact with the protective layer 131 . Accordingly, oxygen, water, or the like contained in the insulating layer 132 can be prevented from entering the EL layer 112, and the display device 100 can be a highly reliable display device.
  • the number of protective layers 131 positioned between the EL layer 112R and the insulating layer 132, the number of protective layers 131 positioned between the EL layer 112G and the insulating layer 132, and the EL layer 112B and the number of protective layers 131 located between the insulating layers 132 can be different from each other.
  • three protective layers 131 are provided between the EL layer 112R and the insulating layer 132, two protective layers 131 are provided between the EL layer 112G and the insulating layer 132, and the EL layer
  • An example in which one protective layer 131 is provided between 112B and the insulating layer 132 is shown.
  • the number of protective layers 131 provided between the pixel electrode 111R and the insulating layer 132, the number of the protective layers 131 provided between the pixel electrode 111G and the insulating layer 132, and the pixel electrode 111B 3 shows an example in which the number of protective layers 131 provided between the insulating layer 132 and the insulating layer 132 is three.
  • the number of layers of the protective layer 131 is not limited to the examples shown in FIGS. 2A and 2B, and can be changed as appropriate depending on the manufacturing method of the display device 100, for example, although the details will be described later.
  • the protective layer 131 positioned between the pixel electrode 111 and the protective layer 131 in contact with the insulating layer 132 may be omitted.
  • a protective layer 133 is provided on the insulating layer 132 .
  • the protective layer 133 is provided so as to have a region in contact with the top surface of the insulating layer 132 .
  • the protective layer 133 is provided, for example, between the insulating layer 132 and the common layer 114 .
  • Common layer 114 is provided on EL layer 112R, EL layer 112G, and EL layer 112B, and common electrode 115 is provided on common layer 114, as described above. Therefore, the common layer 114 and the common electrode 115 are provided over the EL layer 112R, the EL layer 112G, the EL layer 112B, and the protective layer 133.
  • the protective layer 133 can be provided so as to have a region overlapping with the upper surface of the protective layer 131 provided between the EL layer 112 and the insulating layer 132 . 2A and 2B, the end of the EL layer 112 and the end of the protective layer 133 are aligned, but the end of the EL layer 112 and the end of the protective layer 133 do not have to be aligned. .
  • the end portion of the protective layer 133 is located between the end portion of the protective layer 131 provided on the surface in contact with the EL layer 112 and the end portion of the protective layer 131 provided on the surface in contact with the insulating layer 132 . good too.
  • the protective layer 133 is preferably a layer with high barrier properties against oxygen, water, and the like. This can prevent impurities such as oxygen and water contained in the insulating layer 132 , which may include an organic insulating material such as resin, from entering the common layer 114 . Therefore, the display device 100 can be a highly reliable display device.
  • the insulating layer 132 is surrounded by the protective layers 131 and 133, which are layers with high barrier properties against oxygen, water, and the like. Accordingly, the display device 100 can be a highly reliable display device.
  • an inorganic insulating material such as nitride
  • the protective layer 133 may include at least one of silicon nitride, aluminum nitride, or hafnium nitride.
  • an oxide or an oxynitride can be used as the protective layer 133, for example, an oxide film or an oxynitride such as silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, hafnium oxide, and hafnium oxynitride.
  • Membranes can be used.
  • the protective layer 133 can be formed using, for example, a sputtering method, a CVD method, a vacuum deposition method, a pulsed laser deposition (PLD) method, or an atomic layer deposition (ALD) method. .
  • a protective layer 121 is provided on the common electrode 115 to cover the light emitting elements 110R, 110G, and 110B.
  • the protective layer 121 has a function of preventing impurities such as water from diffusing into each light emitting element 110 from above.
  • the protective layer 121 can have, for example, a single layer structure or a laminated structure including at least an inorganic insulating film.
  • inorganic insulating films include oxide films or nitride films such as silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, aluminum oxynitride films, and hafnium oxide films. be done.
  • a semiconductor material such as indium gallium oxide or indium gallium zinc oxide may be used for the protective layer 121 .
  • the protective layer 121 a laminated film of an inorganic insulating film and an organic insulating film can be used.
  • a structure in which an organic insulating film is sandwiched between a pair of inorganic insulating films is preferable.
  • the organic insulating film functions as a planarizing film. As a result, the upper surface of the organic insulating film can be flattened, so that the coverage of the inorganic insulating film thereon can be improved, and the barrier property can be enhanced.
  • the upper surface of the protective layer 121 is flat, when a structure (for example, a color filter, an electrode of a touch sensor, or a lens array) is provided above the protective layer 121, unevenness due to the underlying structure may occur. This is preferable because it can reduce the impact.
  • a structure for example, a color filter, an electrode of a touch sensor, or a lens array
  • FIG. 2C1 shows a cross section corresponding to the dashed-dotted line C1-C2 shown in FIG.
  • a region 130 where the connection electrode 111C and the common electrode 115 are electrically connected is provided in the cross section indicated by the dashed-dotted line C1-C2.
  • FIG. 2C1 shows an example in which the common layer 114 is provided between the connection electrode 111C and the common electrode 115, but a configuration in which the common layer 114 is not provided in the region 130 is also possible.
  • FIG. 2C2 shows a cross section corresponding to the dashed-dotted line C1-C2 shown in FIG. 1 when the common layer 114 is not provided in the region 130.
  • FIG. By adopting a structure in which the common layer 114 is not provided in the region 130, a structure in which the connection electrode 111C and the common electrode 115 are in contact with each other can be obtained, and the contact resistance can be further reduced.
  • the common electrode 115 is provided on the connection electrode 111C, and the protective layer 121 is provided to cover the common electrode 115 .
  • a protective layer 131 and an insulating layer 132 are provided in a region that does not overlap with the top surface of the connection electrode 111C, and a protective layer 133 is provided over the protective layer 131 and the insulating layer 132 .
  • a common layer 114 is provided on the connection electrode 111C, the protective layer 133, and the layer 101 including the transistor. Note that although FIGS.
  • 2C1 and 2C2 illustrate an example in which three protective layers 131 are provided on both sides of the connection electrode 111C, one embodiment of the present invention is not limited to this, and the details are described later. It can be changed as appropriate depending on the manufacturing method of the display device 100 .
  • FIG. 2D shows an enlarged view of the area surrounded by the dashed line in FIG. 2A.
  • insulating layer 132 may be concave.
  • the protective layer 131 can have a two-layer laminated structure, for example, a two-layer laminated structure of a protective layer 131a and a protective layer 131b as shown in FIG. 2D.
  • the side surface of the EL layer 112 can have a region in contact with the protective layer 131a.
  • the protective layer 131b has regions in contact with the side and bottom surfaces of the insulating layer 132, and the protective layer 131a is in contact with the side and bottom surfaces of the protective layer 131b. have an area.
  • the protective layer 131a is, for example, a layer formed by processing a film formed by a method with high coverage
  • the protective layer 131b is formed by processing a film formed by, for example, a method with low coverage. layer.
  • the protective layer 131a can be a layer formed by processing a film formed by an ALD method
  • the protective layer 131b can be formed by processing a film formed by a sputtering method or a CVD method. It can be a formed layer.
  • the protective layer 131 can be thickened while covering the steps. Therefore, entry of impurities such as oxygen and water into the EL layer 112 can be preferably suppressed. Therefore, the display device 100 can be a highly reliable display device.
  • an inorganic oxide or an inorganic nitride can be used as the protective layer 131a, and at least one of aluminum oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxynitride, hafnium oxide, and the like can be used. can contain one. Also, an inorganic nitride can be used as the protective layer 131b, and at least one of silicon nitride, aluminum nitride, and hafnium nitride can be included, for example.
  • the film thickness of the protective layer 131a is, for example, preferably 1 nm or more and 60 nm or less, more preferably 1 nm or more and 40 nm or less, and even more preferably 5 nm or more and 20 nm or less.
  • the film thickness of the protective layer 131b is, for example, preferably 60 nm or more and 300 nm or less, more preferably 60 nm or more and 150 nm or less, and even more preferably 80 nm or more and 120 nm or less.
  • the protective layer 131a and the protective layer 131b preferably have a film type and thickness that do not have pinholes.
  • Figures 3A and 3B show a modification of the configuration of Figure 2D.
  • the configurations shown in FIGS. 3A and 3B differ from the configuration shown in FIG. 2D, for example, in the shape of the insulating layer 132 .
  • the insulating layer 132 shown in FIG. 3A has a flat upper surface.
  • the insulating layer 132 shown in FIG. 3B has a region that overlaps with the top surface of the EL layer 112 .
  • a sacrificial layer 145 is provided between the upper surface of the EL layer 112 and the insulating layer 132 .
  • a sacrificial layer 145 is provided between the upper surface of the EL layer 112 and the protective layer 131 .
  • the sacrificial layer 145 can have a two-layer structure of a sacrificial layer 145a and a sacrificial layer 145b.
  • 3B shows, as the sacrificial layers 145, a sacrificial layer 145R provided between the upper surface of the EL layer 112R and the insulating layer 132, and a sacrificial layer 145G provided between the upper surface of the EL layer 112G and the insulating layer 132.
  • FIG. Details of the sacrificial layer 145 will be described later.
  • the edge of the protective layer 133 is aligned with the edge of the sacrificial layer 145 in FIG. 3B, the edge of the protective layer 133 may not be aligned with the edge of the sacrificial layer 145 .
  • the protective layer 133 may have a region in contact with the top surface of the EL layer 112 . That is, the protective layer 133 may cover the side surface of the sacrificial layer 145 .
  • the arrangement of sub-pixels includes, for example, a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, and a pentile arrangement.
  • top surface shapes of sub-pixels include triangles, quadrilaterals (including rectangles and squares), polygons such as pentagons, shapes with rounded corners, ellipses, and circles.
  • the top surface shape of the sub-pixel corresponds to the top surface shape of the light emitting region of the light emitting element.
  • the S-stripe arrangement is applied to the pixels 103 shown in FIG. 4A.
  • the pixel 103 shown in FIG. 4A is composed of three sub-pixels, sub-pixel 103a, sub-pixel 103b, and sub-pixel 103c.
  • the sub-pixel 103a may be the blue sub-pixel B
  • the sub-pixel 103b may be the red sub-pixel R
  • the sub-pixel 103c may be the green sub-pixel G.
  • the pixel 103 shown in FIG. 4B includes a sub-pixel 103a having a substantially trapezoidal top surface shape with rounded corners, a sub-pixel 103b having a substantially triangular top surface shape with rounded corners, and a substantially quadrangular, substantially hexagonal, or substantially rectangular shape with rounded corners. and a sub-pixel 103c having an octagonal top surface shape.
  • the sub-pixel 103a has a larger light-emitting area than the sub-pixel 103b.
  • the shape and size of each sub-pixel can be determined independently. For example, sub-pixels having more reliable light-emitting elements can be made smaller.
  • the sub-pixel 103a may be the green sub-pixel G
  • the sub-pixel 103b may be the red sub-pixel R
  • the sub-pixel 103c may be the blue sub-pixel B.
  • FIG. 4C shows an example in which a pixel 124a having sub-pixels 103a and 103b and a pixel 124b having sub-pixels 103b and 103c are alternately arranged.
  • the sub-pixel 103a may be the red sub-pixel R
  • the sub-pixel 103b may be the green sub-pixel G
  • the sub-pixel 103c may be the blue sub-pixel B.
  • Pixel 124a has two sub-pixels (sub-pixel 103a and sub-pixel 103b) in the upper row (first row) and one sub-pixel (sub-pixel 103c) in the lower row (second row).
  • Pixel 124b has one sub-pixel (sub-pixel 103c) in the upper row (first row) and two sub-pixels (sub-pixel 103a and sub-pixel 103b) in the lower row (second row).
  • the sub-pixel 103a may be the red sub-pixel R
  • the sub-pixel 103b may be the green sub-pixel G
  • the sub-pixel 103c may be the blue sub-pixel B.
  • FIG. 4D is an example in which each sub-pixel has a substantially square top surface shape with rounded corners
  • FIG. 4E is an example in which each sub-pixel has a circular top surface shape.
  • FIG. 4F is an example in which sub-pixels of each color are arranged in a zigzag pattern. Specifically, when viewed from above, the positions of the upper sides of two sub-pixels (for example, sub-pixel 103a and sub-pixel 103b or sub-pixel 103b and sub-pixel 103c) aligned in the column direction are shifted.
  • the sub-pixel 103a may be the red sub-pixel R
  • the sub-pixel 103b may be the green sub-pixel G
  • the sub-pixel 103c may be the blue sub-pixel B.
  • the top surface shape of the sub-pixel may be a polygonal shape with rounded corners, an elliptical shape, a circular shape, or the like.
  • the EL layer is processed into an island shape using a resist mask.
  • the resist film formed on the EL layer needs to be cured at a temperature lower than the heat resistance temperature of the EL layer. Therefore, depending on the heat resistance temperature of the EL layer material and the curing temperature of the resist material, curing of the resist film may be insufficient.
  • a resist film that is insufficiently hardened may take a shape away from the desired shape during processing.
  • the top surface shape of the EL layer may be a polygon with rounded corners, an ellipse, a circle, or the like. For example, when a resist mask having a square top surface is formed, a resist mask having a circular top surface is formed, and the EL layer may have a circular top surface.
  • a technique for correcting the mask pattern in advance so that the design pattern and the transfer pattern match.
  • OPC Optical Proximity Correction
  • a correction pattern is added to the figure corner portion on the mask pattern.
  • Example of manufacturing method An example of a method for manufacturing a display device of one embodiment of the present invention is described below with reference to drawings. Here, the display device 100 shown in the above configuration example will be described as an example.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) forming the display device can be formed using a sputtering method, a CVD method, a vacuum deposition method, a PLD method, an ALD method, or the like.
  • the CVD method includes a plasma enhanced CVD (PECVD) method, a thermal CVD method, or the like.
  • PECVD plasma enhanced CVD
  • thermal CVD method thermal CVD
  • MOCVD metal organic CVD
  • ALD method there is a PEALD method, a thermal ALD method, or the like.
  • thin films that make up the display device can be formed by spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, It can be formed by a method such as curtain coating or knife coating.
  • the thin film when processing the thin film that constitutes the display device, for example, a photolithography method can be used.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • an island-shaped thin film may be directly formed by a film formation method using a shielding mask such as a metal mask.
  • a photolithography method there are typically the following two methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching, for example, and removing the resist mask.
  • the other is a method of forming a photosensitive thin film, then performing exposure and development to process the thin film into a desired shape.
  • the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture of these.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • extreme ultraviolet (EUV: Extreme Ultra-Violet) light or X-rays may be used.
  • An electron beam can also be used instead of the light used for exposure.
  • the use of extreme ultraviolet light, X-rays, or electron beams is preferable because extremely fine processing is possible.
  • a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • a dry etching method, a wet etching method, a sandblasting method, or the like can be used to etch the thin film.
  • a layer 101 including a transistor is formed on a substrate (not shown).
  • the layer 101 including a transistor can have a stacked-layer structure in which an insulating layer is provided to cover the transistor, for example.
  • a substrate having heat resistance that can withstand at least the subsequent heat treatment can be used.
  • a substrate having heat resistance that can withstand at least the subsequent heat treatment can be used.
  • a substrate having heat resistance that can withstand at least the subsequent heat treatment can be used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, an organic resin substrate, or the like can be used.
  • a semiconductor substrate such as a single crystal semiconductor substrate, a polycrystalline semiconductor substrate, a compound semiconductor substrate made of silicon germanium or the like, or an SOI substrate made of silicon, silicon carbide, or the like can be used.
  • a conductive film to be the pixel electrode 111 is formed over the layer 101 including the transistor. Specifically, for example, a conductive film to be the pixel electrode 111 is formed over the insulating surface of the layer 101 including the transistor. Subsequently, part of the conductive film is etched and removed to form the pixel electrode 111R, the pixel electrode 111G, the pixel electrode 111B, and the connection electrode 111C over the layer 101 including the transistor (FIG. 6A).
  • a material for example, silver or aluminum
  • a material that has as high a reflectance as possible over the entire wavelength range of visible light.
  • an EL film 112Rf that will later become the EL layer 112R is formed on the pixel electrode 111R, the pixel electrode 111G, the pixel electrode 111B, and the layer 101 including the transistor.
  • the EL film 112Rf can be provided so as not to overlap with the connection electrode 111C.
  • the EL film 112Rf can be formed so as not to overlap the connection electrode 111C. Since the metal mask used at this time does not need to shield the pixel region of the display portion, there is no need to use a high-definition mask.
  • the EL film 112Rf has a film containing at least a luminescent compound. Alternatively, one or more of films functioning as a hole injection layer, a hole transport layer, a hole block layer, an electron block layer, an electron transport layer, or an electron injection layer may be stacked.
  • the EL film 112Rf can be formed, for example, by a vapor deposition method, a sputtering method, an inkjet method, or the like. Note that the method is not limited to this, and the film forming method described above can be used as appropriate.
  • a sacrificial film 144Ra is formed on the EL film 112Rf, the connection electrode 111C, and the layer 101 including the transistor, and a sacrificial film 144Rb is formed on the sacrificial film 144Ra. That is, a sacrificial film having a two-layer structure is formed over the EL film 112Rf, the connection electrode 111C, and the layer 101 including the transistor.
  • the sacrificial film may have a single layer structure, or may have a laminated structure of three or more layers. When the sacrificial film is formed in the subsequent steps, the sacrificial film has a two-layer laminated structure, but may have a single layer structure or a laminated structure of three or more layers.
  • a sputtering method for example, a CVD method, an ALD method, or a vacuum deposition method can be used.
  • a formation method that causes less damage to the EL layer is preferable, and the sacrificial film 144Ra directly formed on the EL film 112Rf is preferably formed using an ALD method or a vacuum deposition method.
  • an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film can be suitably used.
  • an oxide film can be used as the sacrificial film 144Ra.
  • an oxide film or an oxynitride film such as silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, hafnium oxide, or hafnium oxynitride can be used.
  • a nitride film for example, can also be used as the sacrificial film 144Ra.
  • nitrides such as silicon nitride, aluminum nitride, hafnium nitride, titanium nitride, tantalum nitride, tungsten nitride, gallium nitride, and germanium nitride can also be used.
  • Such an inorganic insulating material can be formed using a film formation method such as a sputtering method, a CVD method, or an ALD method. It is preferable to form
  • metal materials such as nickel, tungsten, chromium, molybdenum, cobalt, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or alloy materials containing such metal materials can be used.
  • a low melting point material such as aluminum or silver.
  • a metal oxide such as indium gallium zinc oxide (In--Ga--Zn oxide, also referred to as IGZO) can be used as the sacrificial film 144Ra.
  • indium oxide, indium zinc oxide (In—Zn oxide), indium tin oxide (In—Sn oxide), indium titanium oxide (In—Ti oxide), indium tin zinc oxide (In—Sn -Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide), or the like can be used.
  • indium tin oxide containing silicon can be used.
  • element M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , and one or more selected from magnesium).
  • M is preferably one or more selected from gallium, aluminum, and yttrium.
  • the material that can be used as the sacrificial film 144Ra mentioned above can be used.
  • one material can be selected for the sacrificial film 144Ra and the other can be selected for the sacrificial film 144Rb from the materials that can be used for the sacrificial film 144Ra listed above.
  • one or a plurality of materials are selected for the sacrificial film 144Ra from among the materials that can be used for the sacrificial film 144Ra, and materials other than those selected for the sacrificial film 144Ra are selected for the sacrificial film 144Rb.
  • One or more materials can be used.
  • the film formation temperature for film formation by the ALD method and the sputtering method is room temperature or higher and 120° C. or lower, preferably room temperature or higher and 100° C. or lower, so that the influence on the EL film 112Rf is minimized. It is preferable because it can be reduced.
  • the stress of the lamination structure is small.
  • the stress of the laminated structure is ⁇ 500 MPa or more and +500 MPa or less, more preferably ⁇ 200 MPa or more and +200 MPa or less, process troubles such as film peeling and peeling can be suppressed, which is preferable.
  • a film having high resistance to the etching process of each EL film such as the EL film 112Rf, that is, a film having a high etching selectivity can be used.
  • a film that can be removed by a wet etching method that causes less damage to each EL film as the sacrificial film 144Ra it is particularly preferable to use a film that can be removed by a wet etching method that causes less damage to each EL film as the sacrificial film 144Ra.
  • a material that can be dissolved in a chemically stable solvent may be used as the sacrificial film 144Ra.
  • a material that dissolves in water or alcohol can be suitably used for the sacrificial film 144Ra.
  • the sacrificial film 144Ra is dissolved in a solvent such as water or alcohol and applied by a wet film forming method, and then heat-treated to evaporate the solvent.
  • the solvent can be removed at a low temperature in a short time by performing heat treatment in a reduced pressure atmosphere, so that thermal damage to the EL film 112Rf can be reduced, which is preferable.
  • Wet film formation methods that can be used to form the sacrificial film 144Ra include spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, or There are knife courts, etc.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin can be used.
  • PVA polyvinyl alcohol
  • polyvinyl butyral polyvinylpyrrolidone
  • polyethylene glycol polyglycerin
  • pullulan polyethylene glycol
  • pullulan polyglycerin
  • pullulan water-soluble cellulose
  • alcohol-soluble polyamide resin water-soluble polyamide resin
  • a film having a large etching selectivity with respect to the sacrificial film 144Ra may be used for the sacrificial film 144Rb.
  • the sacrificial film 144Ra inorganic insulating materials such as aluminum oxide, hafnium oxide, and silicon oxide formed by the ALD method are used, and as the sacrificial film 144Rb, nickel, tungsten, chromium, molybdenum, cobalt, palladium, Metal materials such as titanium, aluminum, yttrium, zirconium, and tantalum, or alloy materials containing these metal materials are preferably used. In particular, it is preferable to use tungsten formed by a sputtering method as the sacrificial film 144Rb.
  • a metal oxide containing indium such as indium gallium zinc oxide (In—Ga—Zn oxide, also referred to as IGZO) formed by a sputtering method may be used.
  • an inorganic material may be used as the sacrificial film 144Rb.
  • an oxide film or a nitride film such as a silicon oxide film, a silicon oxynitride film, a silicon nitride oxide film, a silicon nitride film, an aluminum oxide film, an aluminum oxynitride film, or a hafnium oxide film can be used.
  • an organic film that can be used for the EL film 112Rf may be used as the sacrificial film 144Rb.
  • the same organic film as the EL film 112Rf can be used as the sacrificial film 144Rb.
  • the use of such an organic film is preferable because the EL film 112Rf and the deposition apparatus can be used in common.
  • the sacrificial film 144Rb can be removed at the same time when the EL film 112Rf is etched, the process can be simplified.
  • a resist mask 143a is formed on the sacrificial film 144Rb (FIG. 6B).
  • a resist material containing a photosensitive resin such as a positive resist material or a negative resist material can be used.
  • portions of the sacrificial films 144Rb and 144Ra that are not covered with the resist mask 143a are removed by etching to form island-shaped or strip-shaped sacrificial layers 145Rb and 145Ra (FIG. 6C).
  • the sacrificial layer 145Rb and the sacrificial layer 145Ra can be formed, for example, on the pixel electrode 111R and the connection electrode 111C.
  • a part of the sacrificial film 144Rb is removed by etching using the resist mask 143a, and after the sacrificial layer 145Rb is formed, the resist mask 143a is removed, and then the sacrificial film 144Ra is etched using the sacrificial layer 145Rb as a hard mask. is preferred.
  • a wet etching method or a dry etching method can be used for etching for forming the hard mask, and the use of the dry etching method can suppress pattern shrinkage.
  • the processing of the sacrificial films 144Ra and 144Rb and the removal of the resist mask 143a can be performed by wet etching or dry etching.
  • the sacrificial film 144Ra and the sacrificial film 144Rb can be processed by a dry etching method using a fluorine-containing gas.
  • the resist mask 143a can be removed by a dry etching method (also referred to as a plasma ashing method) using a gas containing oxygen (also referred to as an oxygen gas).
  • the resist mask 143a When etching the sacrificial film 144Ra using the sacrificial layer 145Rb as a hard mask, the resist mask 143a can be removed while the EL film 112Rf is covered with the sacrificial film 144Ra. For example, if the EL film 112Rf is exposed to oxygen, the electrical characteristics of the light emitting element 110R may be adversely affected. Therefore, when removing the resist mask 143a by a method using oxygen gas such as plasma ashing, it is preferable to etch the sacrificial film 144Ra using the sacrificial layer 145Rb as a hard mask.
  • the etching rate can be increased by using a dry etching method using oxygen gas for etching the EL film 112Rf. Therefore, etching can be performed under low-power conditions while maintaining a sufficiently high etching rate, so that damage due to etching can be reduced. Furthermore, problems such as adhesion of reaction products to the EL layer 112R generated during etching can be suppressed.
  • Etching gases that do not contain oxygen as a main component include, for example, CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , and group 18 elements. Helium, for example, can be used as the group 18 element. Further, a mixed gas of the above gas and a diluent gas that does not contain oxygen can be used as an etching gas. Etching of the EL film 112Rf is not limited to the above, and may be performed by a dry etching method using another gas or by a wet etching method.
  • the EL layer 112R is formed by etching the EL film 112Rf, if impurities adhere to the side surface of the EL layer 112R, the impurities may penetrate into the EL layer 112R in subsequent steps. This may reduce the reliability of the display device 100 . Therefore, it is preferable to remove impurities attached to the surface of the EL layer 112R after the EL layer 112R is formed, because the reliability of the display device 100 can be improved.
  • Impurities adhering to the surface of the EL layer 112R can be removed, for example, by irradiating the surface of the EL layer 112R with an inert gas.
  • the surface of the EL layer 112R is exposed immediately after the EL layer 112R is formed. Specifically, the side surface of the EL layer 112R is exposed. Therefore, if the substrate on which the EL layer 112R is formed is placed in an inert gas atmosphere after the EL layer 112R is formed, the impurities adhering to the EL layer 112R can be removed.
  • the inert gas for example, any one or more selected from group 18 elements (typically helium, neon, argon, xenon, krypton, etc.) and nitrogen can be used.
  • the top surface and side surfaces of the layer 101 including the transistor, the top surface and side surfaces of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B, the side surface of the EL layer 112R, the side surface of the sacrificial layer 145Ra, the side surface of the sacrificial layer 145Rb, and the side surface of the sacrificial layer 145Rb are formed.
  • a protective film 131Rf that will later become the protective layer 131R is formed so as to cover the upper surface (FIG. 7A1).
  • FIG. 7A2 shows an enlarged view of the area surrounded by the dashed line in FIG. 7A1.
  • the protective film 131Rf can have a two-layer laminated structure of a protective film 131Raf that will later become the protective layer 131Ra and a protective film 131Rbf that will later become the protective layer 131Rb.
  • the protective film 131Raf is formed, for example, by a method with high coverage
  • the protective film 131Rbf is formed, for example, by a method with low coverage.
  • the protective film 131Raf can be formed by the ALD method
  • the protective film 131Rbf can be formed by the sputtering method or the CVD method.
  • the protective film 131Rf can be thickened while covering the steps. Therefore, impurities such as oxygen and water can be prevented from entering the EL layer 112R. Therefore, the display device 100 can be a highly reliable display device.
  • An inorganic insulating material can be used as the protective film 131Rf.
  • an inorganic oxide or an inorganic nitride can be used as the protective film 131Raf. can contain one.
  • an inorganic nitride can be used as the protective film 131Rbf, and at least one of silicon nitride, aluminum nitride, and hafnium nitride can be included, for example.
  • the protective film 131Raf is preferably deposited to a thickness of 1 nm to 60 nm, more preferably 1 nm to 40 nm, and more preferably 5 nm to 20 nm. more preferably.
  • the protective film 131Rbf is preferably formed to have a film thickness of, for example, 60 nm or more and 300 nm or less, more preferably 60 nm or more and 150 nm or less, and 80 nm or more and 120 nm or less. It is more preferable to form a film. It is preferable that the protective film 131Raf and the protective film 131Rbf have a film type and thickness that do not have pinholes.
  • the EL layer 112R comes into contact with air or the like, impurities such as oxygen and water contained in the air may enter the inside of the EL layer 112R.
  • the surface of the EL layer 112R specifically, the side surface of the EL layer 112R is exposed until the protective film 131Rf is formed. Therefore, it is preferable to perform the steps from etching the EL film 112Rf to forming the protective film 131Rf in the same apparatus. Accordingly, after the EL film 112Rf is etched to form the EL layer 112R, the protective film 131Rf covering the EL layer 112R can be formed without exposing the EL layer 112R to the air.
  • the display device 100 can be a highly reliable display device. Note that when other steps are performed in the same apparatus, the constituent elements of the display device can be prevented from being exposed to, for example, air during the manufacturing process of the display device 100, and the throughput in manufacturing the display device 100 can be increased. preferable.
  • the protective layer 131R is formed by etching the protective film 131Rf (FIG. 7B1).
  • the protective layer 131R is formed so as to have a region overlapping with the side surface of the EL layer 112R.
  • the protective layer 131R is formed so as to have a region overlapping with the side surface of the pixel electrode 111R, the side surface of the pixel electrode 111G, the side surface of the pixel electrode 111B, the side surface of the sacrificial layer 145Ra, and the side surface of the sacrificial layer 145Rb.
  • the thickness of the protective film 131Rf is thin, for example, in a region overlapping with the side surface of the pixel electrode 111R, the side surface of the pixel electrode 111G, the side surface of the pixel electrode 111B, the side surface of the sacrificial layer 145Ra, or the side surface of the sacrificial layer 145Rb,
  • the protective layer 131R may not be formed.
  • the display device 100 can be a highly reliable display device.
  • the etching of the protective film 131Rf is preferably performed by anisotropic etching because the protective layer 131 can be suitably formed without patterning using, for example, photolithography.
  • anisotropic etching includes, for example, dry etching.
  • the protective film 131Rf When the protective film 131Rf is etched by a dry etching method, the protective film 131Rf can be etched using, for example, an etching gas that can be used when etching the sacrificial film 144Ra or the sacrificial film 144Rb.
  • FIG. 7B2 shows an enlarged view of the area surrounded by the dashed line in FIG. 7B1.
  • the protective layer 131R can have a two-layer laminated structure of a protective layer 131Ra and a protective layer 131Rb.
  • the surface states of the pixel electrodes 111G and 111B may change.
  • the surface of the pixel electrode 111G and the pixel electrode 111B may become hydrophilic.
  • the EL film 112Rf is etched using a gas containing oxygen to obtain a layer containing the indium tin oxide.
  • a layer may be hydrophilic.
  • the EL film formed so as to have a region in contact with the pixel electrode 111G and the EL film formed so as to have a region in contact with the pixel electrode 111B in later steps are hydrophobic, for example.
  • the adhesion between the hydrophilic surface and the hydrophobic surface is lower than the adhesion between the hydrophilic surfaces and the adhesion between the hydrophobic surfaces.
  • the adhesion with the EL film formed in the later process may be lowered. Therefore, the EL film may be peeled off at the interface with the pixel electrode 111G or at the interface with the pixel electrode 111B in a later process.
  • the EL film 112Rf is etched using a gas containing oxygen, the surface work function of the pixel electrode 111G and the pixel electrode 111B may change in addition to the change in the surface condition.
  • the display device 100 can be a highly reliable display device.
  • the yield in manufacturing the display device 100 can be increased, and the display device 100 can be inexpensive.
  • Hydrophobization treatment is preferably performed after the protective layer 131R is formed.
  • Hydrophobic treatment can be performed, for example, by modifying the pixel electrode 111G and the pixel electrode 111B with fluorine.
  • Fluorine modification can be performed, for example, by treatment with a fluorine-containing gas, heat treatment, plasma treatment in a fluorine-containing gas atmosphere, or the like.
  • the gas containing fluorine for example, fluorine gas can be used, and for example, fluorocarbon gas can be used.
  • fluorocarbon gas for example, carbon tetrafluoride (CF 4 ) gas, C 4 F 6 gas, C 2 F 6 gas, C 4 F 8 gas, or lower fluorocarbon gas such as C 5 F 8 can be used. .
  • gas containing fluorine for example, SF6 gas, NF3 gas , CHF3 gas , or the like can be used.
  • helium gas, argon gas, hydrogen gas, or the like can be added to these gases as appropriate.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B are subjected to plasma treatment in a gas atmosphere containing a Group 18 element such as argon, and then to treatment using a silylating agent.
  • the surface of the electrode 111G and the surface of the pixel electrode 111B can be made hydrophobic.
  • a silylating agent hexamethyldisilazane (HMDS), trimethylsilylimidazole (TMSI), or the like can be used.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B may be subjected to plasma treatment in a gas atmosphere containing a group 18 element such as argon, and then to treatment using a silane coupling agent.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B can be made hydrophobic.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B are subjected to plasma treatment in a gas atmosphere containing a group 18 element such as argon, so that the surface of the pixel electrode 111G and the surface of the pixel electrode 111B are treated with plasma.
  • a group 18 element such as argon
  • silane coupling by the silane coupling agent is likely to occur.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B were subjected to plasma treatment in a gas atmosphere containing a Group 18 element such as argon, and then a silylating agent or a silane coupling agent was used.
  • a silylating agent or a silane coupling agent was used.
  • the treatment using a silylating agent, silane coupling agent, or the like can be performed by applying the silylating agent, silane coupling agent, or the like, for example, using a spin coating method, a dipping method, or the like.
  • the treatment using a silylating agent, a silane coupling agent, or the like is performed by using a vapor phase method, for example, to form a film having a silylating agent on the pixel electrode 111G, the pixel electrode 111B, or the like, or a silane coupling agent.
  • the material containing the silylating agent or the material containing the silane coupling agent is volatilized so that the atmosphere contains the silylating agent, the silane coupling agent, or the like.
  • a substrate on which the pixel electrode 111G and the pixel electrode 111B are formed is placed in the atmosphere.
  • a film containing a silylating agent, a silane coupling agent, or the like can be formed on the pixel electrode 111G, the pixel electrode 111B, or the like, and the surface of the pixel electrode 111G or the pixel electrode 111B can be made hydrophobic.
  • an EL film 112Gf that will later become the EL layer 112G is formed on the sacrificial layer 145Rb, the protective layer 131R, the pixel electrode 111G, the pixel electrode 111B, and the layer 101 including the transistor.
  • the EL film 112Gf can be prevented from being in contact with the EL layer 112R.
  • the description of the formation of the EL film 112Rf can be referred to.
  • a sacrificial film 144Ga is formed on the EL film 112Gf, the sacrificial layer 145Rb, and the layer 101 including transistors, and a sacrificial film 144Gb is formed on the sacrificial film 144Ga.
  • a resist mask 143b is formed on the sacrificial film 144Gb (FIG. 8A).
  • the description of the formation of the sacrificial film 144Ra, the sacrificial film 144Rb, and the resist mask 143a can be referred to.
  • portions of the sacrificial films 144Gb and 144Ga that are not covered with the resist mask 143b are removed by etching to form island-shaped or strip-shaped sacrificial layers 145Gb and 145Ga.
  • the resist mask 143b is removed (FIG. 8B).
  • the sacrificial layer 145Gb and the sacrificial layer 145Ga can be formed on the pixel electrode 111G.
  • the description of the formation of the sacrificial layers 145Rb and 145Ra and the removal of the resist mask 143a can be referred to.
  • a part of the EL film 112Gf that is not covered with the sacrificial layer 145Ga is removed by etching to form an island-shaped or strip-shaped EL layer 112G (FIG. 8C).
  • the description of the formation of the EL layer 112R can be referred to.
  • a protective film 131Gf that will later become the protective layer 131G is formed so as to cover the side surface and the upper surface of (FIG. 9A1).
  • the description of the formation of the protective film 131Rf can be referred to.
  • the protective film 131Gf covering the EL layer 112G can be formed without exposing the EL layer 112G to the air. It is preferable because
  • FIG. 9A2 shows an enlarged view of the area surrounded by the dashed line in FIG. 9A1.
  • the protective film 131Gf can have a two-layer laminated structure of a protective film 131Gaf that will later become the protective layer 131Ga and a protective film 131Gbf that will later become the protective layer 131Gb.
  • the description of the protective film 131Raf and the protective film 131Rbf can be referred to, respectively.
  • the protective layer 131G is formed by etching the protective film 131Gf (FIG. 9B1).
  • the protective layer 131G is formed so as to have a region overlapping with the side surface of the EL layer 112G.
  • the protective layer 131G is formed so as to have a region overlapping with the side surface of the protective layer 131R, the side surface of the sacrificial layer 145Ga, and the side surface of the sacrificial layer 145Gb.
  • the protective layer 131G may not be formed in a region overlapping with the side surface of the protective layer 131R, the side surface of the sacrificial layer 145Ga, or the side surface of the sacrificial layer 145Gb.
  • the description of the formation of the protective layer 131R can be referred to.
  • FIG. 9B2 shows an enlarged view of the area surrounded by the dashed line in FIG. 9B1.
  • the protective layer 131G can have a two-layer laminated structure of a protective layer 131Ga and a protective layer 131Gb.
  • the descriptions for the protective layers 131Ra and 131Rb can be referred to, respectively.
  • an EL film 112Bf that will later become the EL layer 112B is formed on the sacrificial layer 145Rb, the sacrificial layer 145Gb, the protective layer 131R, the protective layer 131G, the pixel electrode 111B, and the layer 101 including the transistor.
  • the EL film 112Bf can be prevented from being in contact with the EL layer 112G.
  • the description of the formation of the EL film 112Rf can be referred to.
  • a sacrificial film 144Ba is formed on the EL film 112Bf, the sacrificial layer 145Rb, and the layer 101 including transistors, and a sacrificial film 144Bb is formed on the sacrificial film 144Ba.
  • a resist mask 143c is formed on the sacrificial film 144Bb (FIG. 10A).
  • the description of the formation of the sacrificial film 144Ra, the sacrificial film 144Rb, and the resist mask 143a can be referred to.
  • portions of the sacrificial films 144Bb and 144Ba that are not covered with the resist mask 143c are removed by etching to form island-shaped or strip-shaped sacrificial layers 145Bb and 145Ba.
  • the resist mask 143c is removed (FIG. 10B).
  • the sacrificial layer 145Bb and the sacrificial layer 145Ba can be formed on the pixel electrode 111B.
  • the description of the formation of the sacrificial layers 145Rb and 145Ra and the removal of the resist mask 143a can be referred to.
  • a portion of the EL film 112Bf that is not covered with the sacrificial layer 145Ba is removed by etching to form an island-shaped or band-shaped EL layer 112B (FIG. 10C).
  • the description of the formation of the EL layer 112R can be referred to.
  • impurities attached to the EL layer 112B can be removed.
  • a protective film 131Bf that will later become the protective layer 131B is formed so as to cover the side surface and the upper surface of (FIG. 11A).
  • the description of the formation of the protective film 131Rf can be referred to.
  • the protective film 131Bf covering the EL layer 112B is formed without exposing the EL layer 112B to the air. It is preferable because
  • FIG. 11B shows an enlarged view of the region 160a shown in FIG. 11A
  • FIG. 11C shows an enlarged view of the region 160b shown in FIG. 11A
  • Region 160a includes the region between EL layers 112R and 112G
  • region 160b includes the region between EL layers 112G and 112B.
  • the protective film 131Bf can have a two-layer laminated structure of a protective film 131Baf that will later become the protective layer 131Ba and a protective film 131Bbf that will later become the protective layer 131Bb.
  • the description of the protective film 131Raf and the protective film 131Rbf can be referred to.
  • an insulating film 132f which later becomes the insulating layer 132, is formed on the protective film 131Bf (FIG. 12A).
  • the insulating film 132f is formed so as to be in contact with the protective film 131Bf, specifically the protective film 131Bbf.
  • An insulating film containing an organic material is preferably used as the insulating film 132f, and resin is preferably used as the organic material.
  • a photosensitive resin can be used as the insulating film 132f.
  • a positive material or a negative material can be used for the photosensitive resin.
  • the insulating film 132f can be formed using a spin coating method, a spray method, a screen printing method, a painting method, or the like.
  • the insulating film 132f may have smooth unevenness reflecting the unevenness of the formation surface. Moreover, the insulating film 132f may be planarized.
  • an insulating layer 132 is formed (FIG. 12B1).
  • the insulating layer 132 can be formed without providing a resist mask or an etching mask such as a hard mask.
  • the photosensitive resin can be processed only by exposure and development steps, the insulating layer 132 can be formed without using dry etching, for example. Therefore, the process can be simplified. Further, damage to the EL layer 112 due to etching of the insulating film 132f can be reduced. Note that part of the upper portion of the insulating layer 132 may be further etched to adjust the height of the surface.
  • the insulating layer 132 may be formed by substantially uniformly etching the upper surface of the insulating film 132f. Such uniform etching and flattening is also called etchback.
  • the exposure and development process and the etchback process may be used in combination.
  • FIG. 12B2 shows an enlarged view of the area surrounded by the dashed line in FIG. 12B1.
  • the insulating layer 132 can be concave.
  • the height of the upper end portion of the insulating layer 132 can be, for example, equal to or lower than the height of the upper surface of the protective film 131Bbf.
  • FIGS. 13A and 13B show a modification of the configuration of FIG. 12B2.
  • the configurations shown in FIGS. 13A and 13B differ from the configuration shown in FIG. 12B2, for example, in the shape of the insulating layer 132.
  • FIG. 12B shows a modification of the configuration of FIG. 12B2.
  • the configurations shown in FIGS. 13A and 13B differ from the configuration shown in FIG. 12B2, for example, in the shape of the insulating layer 132.
  • the insulating layer 132 shown in FIG. 13A has a flat upper surface.
  • the example shown in FIG. 13A shows an example in which the height of the upper end portion of the insulating layer 132 is equal to the height of the upper surface of the protective film 131Bbf.
  • the insulating layer 132 shown in FIG. 13B has a region overlapping with the upper surface of the EL layer 112 via the protective film 131Bf, the sacrificial layer 145b, and the sacrificial layer 145a.
  • the insulating layer 132 can be made into the shape shown in FIG. 12B2 or FIG. 13A.
  • the protective layer 131B is formed by etching the protective film 131Bf (FIG. 14A).
  • the protective layer 131B is formed so as to have a region overlapping with the side surface of the EL layer 112B.
  • the protective layer 131B is formed so as to have a region in contact with the side surface of the insulating layer 132 and a region in contact with the bottom surface of the insulating layer 132 .
  • the description of the formation of the protective layer 131R can be referred to.
  • the sacrificial layer 145Rb, the sacrificial layer 145Gb, and the sacrificial layer 145Bb are removed using, for example, etching (FIG. 14B1). It is preferable to etch the sacrificial layer 145b under conditions with a high selectivity with respect to the sacrificial layer 145a. Note that the sacrificial layer 145b may not be removed.
  • FIG. 14B2 shows an enlarged view of the area surrounded by the dashed line in FIG. 14B1.
  • FIG. 14B2 shows an example in which part of the protective layer 131 is removed by removing the sacrificial layer 145b, and the top surface of the protective layer 131 having a region in contact with the side surface of the EL layer 112 is aligned with the top surface of the sacrificial layer 145a.
  • the top surface of the protective layer 131 which has regions in contact with the side surfaces of the EL layer 112, may be higher than the top surface of the sacrificial layer 145a.
  • a protective film 133f that will later become the protective layer 133 is formed so as to cover the upper surface of the insulating layer 132 and the upper surfaces of the sacrificial layers 145Ra, 145Ga, and 145Ba (FIG. 15A).
  • the protective film 133f can be formed using, for example, a sputtering method, a CVD method, a vacuum deposition method, a PLD method, or an ALD method.
  • an inorganic insulating material such as nitride
  • the protective film 133f may include at least one of silicon nitride, aluminum nitride, and hafnium nitride.
  • an oxide or an oxynitride can be used as the protective film 133f.
  • an oxide film or an oxynitride such as silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, hafnium oxide, and hafnium oxynitride Membranes can be used.
  • the protective film 133f is processed to form the protective layer 133 (FIG. 15B1).
  • the processing of the protective film 133f can be performed using, for example, a photolithography method. Specifically, first, a resist mask is formed over the protective film 133f. Next, a portion of the protective film 133f that is not covered with the resist mask is removed by etching. Through the above steps, the protective layer 133 can be formed.
  • FIG. 15B2 shows an enlarged view of the area surrounded by the dashed line in FIG. 15B1.
  • the edge of the protective layer 133 is aligned with the edge of the sacrificial layer 145a in FIG. 15B2, the edge of the protective layer 133 does not have to be aligned with the edge of the sacrificial layer 145a.
  • the protective layer 133 may have regions that overlap the sacrificial layer 145a.
  • the edge of the protective layer 133 may be positioned between the edge of the sacrificial layer 145 a and the edge of the insulating layer 132 .
  • the sacrificial layer 145Ra, the sacrificial layer 145Ga, and the sacrificial layer 145Ba are removed using, for example, etching (FIG. 16A).
  • the sacrificial layer 145Ra, the sacrificial layer 145Ga, and the sacrificial layer 145Ba are preferably removed by a method that does not damage the EL layer 112 as much as possible, such as wet etching.
  • part of the upper portion of the protective layer 133 and part of the upper portion of the protective layer 131 may be etched along with the removal of the sacrificial layer 145Ra, the sacrificial layer 145Ga, and the sacrificial layer 145Ba.
  • vacuum baking is performed to remove water and the like adsorbed on the surface of the EL layer 112R, the surface of the EL layer 112G, and the surface of the EL layer 112B.
  • the vacuum baking is preferably performed in a temperature range that does not alter the organic compounds contained in the EL layers 112R, 112G, and 112B. can be done with Note that when the amount of water adsorbed to the surface of the EL layer 112R, the surface of the EL layer 112G, the surface of the EL layer 112B, and the like is small and the reliability of the display device 100 is not affected, for example, the vacuum baking treatment is performed. You don't have to.
  • common layer 114 is formed over the EL layer 112, the protective layer 133, and the layer 101 including the transistor.
  • common layer 114 includes at least one of a hole injection layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron transport layer, or an electron injection layer, such as an electron injection layer. , or with a hole injection layer.
  • the common layer 114 can be formed, for example, by an evaporation method, a sputtering method, an inkjet method, or the like. Note that when the common layer 114 is not provided on the connection electrode 111C, a metal mask that shields the connection electrode 111C may be used in forming the common layer 114. FIG. Since the metal mask used at this time does not need to shield the pixel region of the display portion, there is no need to use a high-definition mask.
  • a common electrode 115 is formed on the common layer 114 .
  • the common electrode 115 can be formed by, for example, a sputtering method, a vacuum deposition method, or the like.
  • a protective layer 121 is formed on the common electrode 115 (FIG. 16B).
  • the protective layer 121 is preferably formed by a sputtering method, a CVD method, or an ALD method, for example.
  • an organic insulating film is used as the protective layer 121, it is preferable to form the protective layer 121 by using an inkjet method, for example, because a uniform film can be formed in a desired area.
  • the display device 100 can be manufactured through the above steps.
  • the EL layer is separately formed using, for example, a photolithography method and an etching method without using a shadow mask such as a metal mask.
  • the pattern of the EL layer can be a fine pattern. Therefore, by the method for manufacturing a display device of one embodiment of the present invention, a high-definition display device with a high aperture ratio can be manufactured. Further, a high-resolution display device and a large-sized display device can be manufactured.
  • the EL layers can be separately formed, a display device with extremely vivid, high-contrast, and high-quality display can be manufactured.
  • the side surface of the EL layer 112R is located inside the side surface of the pixel electrode 111R
  • the side surface of the EL layer 112G is located inside the side surface of the pixel electrode 111G
  • the EL layer 112G is located inside the side surface of the pixel electrode 111G.
  • the side surface of the layer 112B is positioned inside the side surface of the pixel electrode 111B, the structure of the display device of one embodiment of the present invention is not limited thereto.
  • 17A is a cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 1, FIG.
  • FIG. 17B is a cross-sectional view corresponding to the dashed-dotted line B1-B2 in FIG. 1
  • FIG. 17D is a cross-sectional view corresponding to the dashed-dotted line C1-C2
  • FIG. 17D is an enlarged view of the area surrounded by the dashed-dotted line in FIG. 17A.
  • 17A, 17B, 17C, and 17D are modifications of the configurations shown in FIGS.
  • FIG. 18A is a cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 1
  • FIG. 18B is a cross-sectional view corresponding to the dashed-dotted line B1-B2 in FIG. 1
  • FIG. 18D is a cross-sectional view corresponding to the dashed-dotted line C1-C2
  • FIG. 18D is an enlarged view of the area surrounded by the dashed-dotted line in FIG. 18A.
  • 18A, 18B, 18C, and 18D are modifications of the configurations shown in FIGS. 2A, 2B, 2C1, and 2D, in which the side surface of the EL layer 112R is located outside the side surface of the pixel electrode 111R.
  • the side surface of the EL layer 112G is located outside the side surface of the pixel electrode 111G and the side surface of the EL layer 112B is located outside the side surface of the pixel electrode 111B.
  • the EL layer 112 is provided so as to cover the side surface of the pixel electrode 111 .
  • FIG. 19A is a cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 1
  • FIG. 19B is a cross-sectional view corresponding to the dashed-dotted line B1-B2 in FIG. 1
  • FIG. 19D is a cross-sectional view corresponding to the dashed-dotted line C1-C2
  • FIG. 19D is an enlarged view of the area surrounded by the dashed-dotted line in FIG. 19A.
  • 19A, 19B, 19C, and 19D are modifications of the configurations shown in FIGS. 2A, 2B, 2C1, and 2D, differing in that the protective layer 133 is not provided.
  • the structure shown in FIGS. 19A to 19D may have a region where the insulating layer 132 and the common layer 114 are in contact with each other, for example.
  • the process of forming the protective layer 133 is not required, so that the manufacturing process of the display device 100 can be simplified. Therefore, the manufacturing cost of the display device 100 can be reduced, so that the display device 100 can be inexpensive.
  • FIG. 20A is a cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG.
  • FIG. 20B is a cross-sectional view corresponding to the dashed-dotted line B1-B2 in FIG.
  • FIG. 20C is a cross-sectional view corresponding to the dashed-dotted line C1-C2 in FIG.
  • FIG. 20D is an enlarged view of the area surrounded by the dashed line in FIG. 20A.
  • 20A, 20B, 20C, and 20D are modifications of the configurations shown in FIGS. 2A, 2B, 2C1, and 2D, except that the protective layer 133 has a region that overlaps the EL layer 112. .
  • the sacrificial layer 145Ra remains between the upper surface of the EL layer 112R and the protective layer 133
  • the sacrificial layer 145Ga remains between the upper surface of the EL layer 112G and the protective layer 133
  • a sacrificial layer 145Ba remains between the upper surface of the EL layer 112B and the protective layer 133.
  • the sacrificial layer 145Rb remains between the sacrificial layer 145Ra and the protective layer 133
  • the sacrificial layer 145Gb remains between the sacrificial layer 145Ga and the protective layer 133
  • the sacrificial layer 145Ba and the protective layer 145Ba remain.
  • a sacrificial layer 145Bb may remain between layers 133 .
  • the sacrificial layer 145Ra, the sacrificial layer 145Ga, and the sacrificial layer 145Ba do not remain, and the EL layers 112R, 112G, and 112B have regions in contact with the protective layer 133 in some cases.
  • the edge of the protective layer 133 is aligned with the edge of the sacrificial layer 145a, but the edge of the protective layer 133 should not be aligned with the edge of the sacrificial layer 145a.
  • the protective layer 133 may have a region in contact with the top surface of the EL layer 112 . That is, the protective layer 133 may cover the side surface of the sacrificial layer 145a.
  • the display device of this embodiment can be a high-resolution display device or a large-sized display device. Therefore, the display device of the present embodiment can be used, for example, as a television device, a desktop or notebook personal computer, a computer monitor, a digital signage, a large game machine such as a pachinko machine, or the like. In addition to equipment, it can be used for display parts of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, smartphones, wristwatch terminals, tablet terminals, personal digital assistants, and sound reproducing devices.
  • FIG. 21 shows a perspective view of the display device 100A
  • FIG. 22A shows a cross-sectional view of the display device 100A.
  • the display device 100A has a configuration in which a substrate 452 and a substrate 451 are bonded together.
  • the substrate 452 is clearly indicated by dashed lines.
  • the display device 100A has a display section 462, a circuit 464, wiring 465, and the like.
  • FIG. 21 shows an example in which an IC 473 and an FPC 472 are mounted on the display device 100A. Therefore, the configuration shown in FIG. 21 can also be said to be a display module including the display device 100A, an IC (integrated circuit), and an FPC. Note that the display device included in the display module is not limited to the display device 100A, and may be a display device 100B described later.
  • a scanning line driving circuit for example, can be used as the circuit 464 .
  • the wiring 465 has a function of supplying signals and power to the display section 462 and the circuit 464 .
  • the signal and power are input to the wiring 465 from the outside through the FPC 472 or from the IC 473 .
  • FIG. 21 shows an example in which an IC 473 is provided on a substrate 451 by a COG method or a COF (Chip On Film) method.
  • IC 473 for example, an IC having a scanning line driver circuit, a signal line driver circuit, or the like can be applied.
  • the display module including the display device 100A may be configured without an IC.
  • the IC may be mounted on the FPC by, for example, the COF method.
  • FIG. 22A shows an example of a cross-section of the display device 100A when a portion of the region including the FPC 472, a portion of the circuit 464, a portion of the display section 462, and a portion of the region including the edge are cut. .
  • the display device 100A illustrated in FIG. 22A includes a transistor 201 and a transistor 205, a light-emitting element 110R that emits red light, a light-emitting element 110G that emits green light, and a light-emitting element that emits blue light. 110B and the like.
  • the layered structure from the substrate 451 to the insulating layer 214 corresponds to the layer 101 including the transistor in Embodiment 1.
  • the light emitting elements exemplified in Embodiment 1 can be applied to the light emitting elements 110R, 110G, and 110B.
  • the three sub-pixels are R, G, and B sub-pixels, and yellow (Y). , cyan (C), and magenta (M).
  • the four sub-pixels include R, G, B, and white (W) sub-pixels, and R, G, B, and Y sub-pixels. mentioned.
  • the protective layer 121 and the substrate 452 are adhered via the adhesive layer 442 .
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to the sealing of the light emitting element.
  • the space 443 surrounded by the substrate 452, the adhesive layer 442, and the protective layer 121 is filled with an inert gas (such as nitrogen or argon) to apply a hollow sealing structure.
  • the adhesive layer 442 may be provided so as to overlap with the light emitting element.
  • a space 443 surrounded by the substrate 452 , the adhesive layer 442 , and the protective layer 121 may be filled with a resin different from that of the adhesive layer 442 . Note that the structure illustrated in Embodiment 1 can be applied to the protective layer 121 .
  • the conductive layers 418R and 418R are formed along the bottom and side surfaces of the openings. 418G and part of conductive layer 418B are formed.
  • the conductive layer 418R, the conductive layer 418G, and the conductive layer 418B are each connected to the conductive layer 222b included in the transistor 205.
  • Another portion of the conductive layer 418 R, the conductive layer 418 G, and the conductive layer 418 B is provided over the insulating layer 214 .
  • a pixel electrode 111R, a pixel electrode 111G, and a pixel electrode 111B are provided on the conductive layer 418R, the conductive layer 418G, and the conductive layer 418B.
  • a portion between the conductive layer 418R and the pixel electrode 111R, a portion between the conductive layer 418G and the pixel electrode 111G, and a portion between the conductive layer 418B and the pixel electrode 111B are An insulating layer 414 may be provided. Specifically, the insulating layer 414 can be provided in openings provided in the insulating layers 214, 215, and 213 and reaching the conductive layer 222b.
  • the pixel electrodes exemplified in Embodiment 1 can be applied to the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B.
  • the protective layer 131, the insulating layer 132, and a protective layer 133 is provided in the region on the insulating layer 214 between the light emitting element 110R and the light emitting element 110G and the region on the insulating layer 214 between the light emitting element 110G and the light emitting element 110B.
  • the structures exemplified in Embodiment 1 can be applied to the protective layer 131 , the insulating layer 132 , and the protective layer 133 .
  • the display device 100A is a top emission display device. Therefore, the light emitted by the light emitting element 110 is emitted to the substrate 452 side.
  • a material having high visible light transmittance is preferably used for the substrate 452 .
  • Both the transistor 201 and the transistor 205 are formed over the substrate 451 . These transistors can be made with the same material and the same process.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided on the substrate 451 in this order.
  • Part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • Part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • An insulating layer 215 is provided over the transistor.
  • An insulating layer 214 is provided over the transistor and functions as a planarization layer. Note that the number of gate insulating layers and the number of insulating layers covering a transistor are not limited, and each may have a single layer or two or more layers.
  • a material in which impurities such as water and hydrogen are difficult to diffuse for at least one insulating layer covering the transistor.
  • Inorganic insulating films are preferably used for the insulating layer 211, the insulating layer 213, and the insulating layer 215, respectively.
  • As the inorganic insulating film for example, a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon nitride oxide film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used.
  • two or more of the insulating films described above may be laminated and used.
  • the organic insulating film preferably has openings near the ends of the display device 100A. As a result, it is possible to prevent impurities from entering through the organic insulating film from the end of the display device 100A.
  • the organic insulating film may be formed so that the end portions of the organic insulating film are located inside the end portions of the display device 100A so that the organic insulating film is not exposed at the end portions of the display device 100A.
  • An organic insulating film is preferably used for the insulating layer 214 that functions as a planarization layer.
  • materials that can be used for the organic insulating film include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like.
  • openings are formed in the insulating layer 214, the protective layer 131 on the insulating layer 214, the insulating layer 132 on the protective layer 131, and the protective layer 133 on the insulating layer 132.
  • a protective layer 121 is formed to cover the opening.
  • the transistors 201 and 205 include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, a conductive layer 222a functioning as one of the source and the drain, a conductive layer 222b functioning as the other of the source and the drain, and a semiconductor. It has a layer 231, an insulating layer 213 functioning as a gate insulating layer, and a conductive layer 223 functioning as a gate.
  • the same hatching pattern is applied to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231 .
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231 .
  • the structure of the transistor included in the display device of this embodiment There is no particular limitation on the structure of the transistor included in the display device of this embodiment.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • a top-gate transistor structure or a bottom-gate transistor structure may be used.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistors 201 and 205 .
  • a transistor may be driven by connecting two gates and applying the same signal to them.
  • the threshold voltage of the transistor may be controlled by applying a potential for controlling the threshold voltage to one of the two gates and applying a potential for driving to the other.
  • the crystallinity of a semiconductor material used for a transistor is not particularly limited, and an amorphous semiconductor and a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystalline region) can be used. Either may be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • a semiconductor layer of a transistor preferably includes a metal oxide (also referred to as an oxide semiconductor).
  • the display device of this embodiment preferably uses a transistor including a metal oxide for a channel formation region (hereinafter also referred to as an OS transistor).
  • the semiconductor layer of the transistor may comprise silicon. Examples of silicon include amorphous silicon and crystalline silicon (low-temperature polysilicon, monocrystalline silicon, etc.).
  • the semiconductor layer includes, for example, indium and M (M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, one or more selected from hafnium, tantalum, tungsten, and magnesium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide also referred to as IGZO
  • IGZO oxide containing indium (In), gallium (Ga), and zinc (Zn)
  • IAZO oxide containing indium (In), aluminum (Al), and zinc (Zn)
  • IAGZO oxide containing indium (In), aluminum (Al), gallium (Ga), and zinc (Zn) may be used for the semiconductor layer.
  • the atomic ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic ratio of M.
  • the transistor included in the circuit 464 and the transistor included in the display portion 462 may have the same structure or different structures.
  • the plurality of transistors included in the circuit 464 may all have the same structure, or may have two or more types.
  • the plurality of transistors included in the display portion 462 may all have the same structure, or may have two or more types.
  • a connecting portion 204 is provided in a region of the substrate 451 where the substrate 452 does not overlap.
  • the wiring 465 is electrically connected to the FPC 472 through the conductive layers 468 , 461 and 242 .
  • the conductive layer 468 a conductive layer obtained by processing the same conductive film as the conductive layer 418 can be used.
  • the conductive layer 461 a conductive layer obtained by processing the same conductive film as the pixel electrode 111, or a laminated film of the same conductive film as the pixel electrode 111 and the same conductive film as the optical adjustment layer is processed.
  • a conductive layer can be used.
  • the conductive layer 461 is exposed on the upper surface of the connecting portion 204 .
  • the connecting portion 204 and the FPC 472 can be electrically connected via the connecting layer 242 .
  • the insulating layer 414 may be provided partly between the conductive layer 468 and the conductive layer 461 . Specifically, the insulating layer 414 can be provided in openings provided in the insulating layers 214 , 215 , and 213 .
  • a light shielding layer 417 is preferably provided on the surface of the substrate 452 on the substrate 451 side.
  • various optical members can be arranged outside the substrate 452 .
  • optical members include a polarizing plate, a retardation plate, a light diffusion layer (for example, a diffusion film), an antireflection layer, and a light collecting film.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, or a shock absorbing layer, etc. are arranged on the outside of the substrate 452.
  • the protective layer 121 that covers the light-emitting element 110 it is possible to prevent impurities such as water from entering the light-emitting element 110 and improve the reliability of the light-emitting element 110.
  • the insulating layer 215 and the protective layer 121 are in contact with each other through the opening of the insulating layer 214 in the region 228 near the edge of the display device 100A.
  • the inorganic insulating film included in the insulating layer 215 and the inorganic insulating film included in the protective layer 121 are in contact with each other. This can prevent impurities from entering the display section 462 from the outside through the organic insulating film. Therefore, the reliability of the display device 100A can be improved.
  • Glass, quartz, ceramic, sapphire, resin, metal, alloy, semiconductor, or the like can be used for the substrate 451 and substrate 452, respectively.
  • a material that transmits the light is used for the substrate on the side from which the light from the light emitting element 110 is extracted.
  • the flexibility of the display device can be increased.
  • a polarizing plate may be used as the substrate 451 or the substrate 452 .
  • polyester resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), polyacrylonitrile resin, acrylic resin, polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin, polyether Sulfone (PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofiber, or the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyacrylonitrile resin acrylic resin
  • polyimide resin polymethyl methacrylate resin
  • PC polycarbonate
  • PES polyether Sulfone
  • polyamide resin nylon, aramid, etc.
  • a substrate having high optical isotropy As the substrate of the display device, it is preferable to use a substrate having high optical isotropy as the substrate of the display device. It can be said that a substrate with high optical isotropy has small birefringence (small birefringence amount).
  • the absolute value of the retardation (retardation) value of the substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • Films with high optical isotropy include triacetyl cellulose (TAC, also called cellulose triacetate) films, cycloolefin polymer (COP) films, cycloolefin copolymer (COC) films, and acrylic films.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • the film when a film is used as the substrate, the film may absorb water, which may cause shape changes such as wrinkles in the display panel. Therefore, it is preferable to use a film having a low water absorption rate as the substrate. For example, it is preferable to use a film with a water absorption of 1% or less, more preferably 0.1% or less, and even more preferably 0.01% or less.
  • various curable adhesives such as a photocurable adhesive such as an ultraviolet curable adhesive, a reaction curable adhesive, a thermosetting adhesive, or an anaerobic adhesive can be used.
  • these adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, and EVA (ethylene vinyl acetate) resins.
  • a material with low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet may be used.
  • connection layer 242 an anisotropic conductive film (ACF), an anisotropic conductive paste (ACP), or the like can be used.
  • ACF anisotropic conductive film
  • ACP anisotropic conductive paste
  • materials that can be used for conductive layers such as various wirings and electrodes constituting display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, Examples include metals such as tantalum and tungsten, and alloys containing these metals as main components. A film containing these materials can be used as a single layer or as a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or alloy materials containing such metal materials can be used.
  • a nitride of the metal material for example, titanium nitride
  • it is preferably thin enough to have translucency.
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a laminated film of an alloy of silver and magnesium and indium tin oxide because the conductivity can be increased.
  • conductive layers such as various wirings and electrodes that constitute a display device, and conductive layers (conductive layers functioning as pixel electrodes or common electrodes) of light-emitting elements.
  • FIG. 22B is a cross-sectional view showing a configuration example of the transistor 209
  • FIG. 22C is a cross-sectional view showing a configuration example of the transistor 210.
  • FIG. The transistors 209 and 210 can be applied to the transistors 201 and 205 illustrated in FIG. 22A, for example.
  • the transistor 209 and the transistor 210 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231 having a channel formation region 231i and a pair of low-resistance regions 231n, and one of the pair of low-resistance regions 231n.
  • a conductive layer 222a connected to a pair of low-resistance regions 231n, a conductive layer 222b connected to the other of a pair of low-resistance regions 231n, an insulating layer 225 functioning as a gate insulating layer, a conductive layer 223 functioning as a gate, and an insulating layer 215 covering the conductive layer 223 have
  • the insulating layer 211 is located between the conductive layer 221 and the channel formation region 231i.
  • the insulating layer 225 is located between the conductive layer 223 and the channel formation region 231i.
  • an insulating layer 218 may be provided so as to cover the transistor 209 or the transistor 210 .
  • the conductive layers 222a and 222b are connected to the low resistance region 231n through openings provided in the insulating layers 215 and 225, respectively.
  • One of the conductive layers 222a and 222b functions as a source and the other functions as a drain.
  • FIG. 22B shows an example in which the insulating layer 225 covers the top surface and side surfaces of the semiconductor layer 231 .
  • the conductive layers 222a and 222b are connected to the low-resistance region 231n through openings provided in the insulating layers 225 and 215, respectively.
  • the insulating layer 225 overlaps the channel formation region 231i of the semiconductor layer 231 and does not overlap the low resistance region 231n.
  • the insulating layer 215 is provided to cover the insulating layer 225 and the conductive layer 223, and the conductive layers 222a and 222b are connected to the low resistance regions 231n through openings in the insulating layer 215, respectively.
  • a transistor including silicon in a semiconductor layer in which a channel is formed may be used for all transistors included in a pixel circuit that drives a light emitting element.
  • Silicon includes monocrystalline silicon, polycrystalline silicon, amorphous silicon, and the like.
  • a transistor hereinafter also referred to as an LTPS transistor
  • LTPS low temperature polysilicon
  • the LTPS transistor has high field effect mobility and good frequency characteristics.
  • circuits that need to be driven at high frequencies can be built on the same substrate as the display section.
  • source driver circuits for example, source driver circuits
  • At least one of the transistors included in the pixel circuit is preferably a transistor including a metal oxide as a semiconductor in which a channel is formed.
  • OS transistors have extremely high field effect mobility compared to amorphous silicon.
  • an OS transistor has extremely low source-drain leakage current (hereinafter also referred to as an off-state current) in an off state, and can retain charge accumulated in a capacitor connected in series with the transistor for a long time. is possible. Further, by using the OS transistor, power consumption of the display device can be reduced.
  • the off-current value of the OS transistor per 1 ⁇ m channel width at room temperature is 1 aA (1 ⁇ 10 ⁇ 18 A) or less, 1 zA (1 ⁇ 10 ⁇ 21 A) or less, or 1 yA (1 ⁇ 10 ⁇ 24 A).
  • the off current value of the Si transistor per 1 ⁇ m channel width at room temperature is 1 fA (1 ⁇ 10 ⁇ 15 A) or more and 1 pA (1 ⁇ 10 ⁇ 12 A) or less. Therefore, it can be said that the off-state current of the OS transistor is about ten digits lower than the off-state current of the Si transistor.
  • LTPS transistors for some of the transistors included in the pixel circuit and OS transistors for others, it is possible to realize a display device with low power consumption and high driving capability.
  • a structure in which an LTPS transistor and an OS transistor are combined is sometimes called an LTPO.
  • an OS transistor is used as a transistor that functions as a switch for controlling conduction/non-conduction between wirings, and an LTPS transistor is used as a transistor that controls current.
  • one of the transistors provided in the pixel circuit functions as a transistor for controlling the current flowing through the light emitting element and can be called a driving transistor.
  • One of the source and drain of the driving transistor is electrically connected to the pixel electrode of the light emitting element.
  • An LTPS transistor is preferably used as the driving transistor. This makes it possible to increase the current flowing through the light emitting element in the pixel circuit.
  • the other transistor provided in the pixel circuit functions as a switch for controlling selection and non-selection of pixels, and can be called a selection transistor.
  • the gate of the selection transistor is electrically connected to the gate line, and one of the source and the drain is electrically connected to the source line (signal line).
  • An OS transistor is preferably used as the selection transistor.
  • a display device with high aperture ratio, high definition, high display quality, and low power consumption can be realized.
  • the display device of one embodiment of the present invention includes an OS transistor and a light-emitting element with an MML (metal maskless) structure.
  • MML metal maskless
  • leakage current that can flow through the transistor and leakage current that can flow between adjacent light-emitting elements also referred to as lateral leakage current, side leakage current, or the like
  • an observer can observe any one or more of the sharpness of the image, the sharpness of the image, and the high contrast ratio.
  • black display also referred to as pure black display
  • FIG. 23 is a cross-sectional view showing a configuration example of the display device 100B.
  • the main difference between the display device 100B and the display device 100A is that the display device 100B is a bottom emission type display device. Note that the description of the same parts as those of the display device 100A will be omitted.
  • the light emitted by the light emitting element 110 is emitted to the substrate 451 side.
  • a material having high visible light transmittance is preferably used for the substrate 451 .
  • the material used for the substrate 452 does not matter whether it is light-transmitting or not.
  • a light-blocking layer 417 is preferably provided between the substrate 451 and the transistor 201 and between the substrate 451 and the transistor 205 .
  • 23 shows an example in which a light-blocking layer 417 is provided over a substrate 451, an insulating layer 253 is provided to cover the light-blocking layer 417, and the transistors 201, 205, and the like are provided over the insulating layer 253.
  • the insulating layer 253 a material similar to the material that can be used for the insulating layers 211, 213, and 215 can be used.
  • the display device of this embodiment can be a high-definition display device. Therefore, the display device of the present embodiment includes, for example, information terminals (wearable devices) such as wristwatch-type and bracelet-type devices, devices for VR such as head-mounted displays, devices for AR such as eyeglasses, and the like. It can be used for a display part of a wearable device that can be attached to a part.
  • information terminals wearable devices
  • VR head-mounted displays
  • AR such as eyeglasses
  • Display module_2 A perspective view of the display module 280 is shown in FIG. 24A.
  • the display module 280 has a display device 100C and an FPC 290 .
  • the display device included in the display module 280 is not limited to the display device 100C, and may be a display device 100D, a display device 100E, or a display device 100F, which will be described later.
  • the display module 280 has substrates 291 and 292 .
  • the display module 280 has a display section 281 .
  • the display unit 281 is an area for displaying an image in the display module 280, and is an area where light from each pixel provided in the pixel unit 284, which will be described later, can be visually recognized.
  • FIG. 24B shows a perspective view schematically showing the configuration on the substrate 291 side.
  • a circuit section 282 , a pixel circuit section 283 on the circuit section 282 , and a pixel section 284 on the pixel circuit section 283 are stacked on the substrate 291 .
  • a terminal portion 285 for connecting to the FPC 290 is provided on a portion of the substrate 291 that does not overlap with the pixel portion 284 .
  • the terminal portion 285 and the circuit portion 282 are electrically connected by a wiring portion 286 composed of a plurality of wirings.
  • the pixel unit 284 has a plurality of pixels 103 arranged periodically. An enlarged view of one pixel 103 is shown on the right side of FIG. 24B.
  • the pixel 103 includes a light-emitting element 110R, a light-emitting element 110G, and a light-emitting element 110B that emit light of different colors.
  • the plurality of light emitting elements 110 are preferably arranged in a stripe arrangement as shown in FIG. 24B. By using the stripe arrangement, the light-emitting elements of one embodiment of the present invention can be arranged at high density; thus, a high-definition display device can be provided. Also, various arrangement methods such as delta arrangement or pentile arrangement can be applied.
  • the pixel circuit section 283 has a plurality of periodically arranged pixel circuits 283a.
  • One pixel circuit 283 a is a circuit that controls light emission of three light emitting elements 110 included in one pixel 103 .
  • One pixel circuit 283a may have a structure in which three circuits for controlling light emission of one light emitting element 110 are provided.
  • the pixel circuit 283a can be configured to have at least one selection transistor, one current control transistor (driving transistor), and a capacitor for each light emitting element 110 .
  • a gate signal is inputted to the gate of the selection transistor, and a video signal is inputted to one of the source or drain of the selection transistor. This realizes an active matrix display device.
  • the circuit section 282 has a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 .
  • a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 it is preferable to have one or both of a scan line driver circuit and a signal line driver circuit.
  • at least one of an arithmetic circuit, a memory circuit, a power supply circuit, and the like may be included.
  • the FPC 290 functions as wiring for supplying a video signal, power supply potential, or the like to the circuit section 282 from the outside. Also, an IC may be mounted on the FPC 290 .
  • the aperture ratio (effective display area ratio) of the display portion 281 is extremely high. can be higher.
  • the aperture ratio of the display section 281 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, more preferably 60% or more and 95% or less.
  • the pixels 103 can be arranged at extremely high density, and the definition of the display portion 281 can be extremely high.
  • the pixels 103 may be arranged with a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and still more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less. preferable.
  • a display module 280 Since such a display module 280 has extremely high definition, it can be suitably used for VR devices such as head-mounted displays, or glasses-type AR devices. For example, even in the case of a configuration in which the display portion of the display module 280 is viewed through a lens, the display module 280 has an extremely high-definition display portion 281, so pixels cannot be viewed even if the display portion is enlarged with the lens. , a highly immersive display can be performed.
  • the display module 280 is not limited to this, and can be suitably used for electronic equipment having a relatively small display unit. For example, it can be suitably used for a display part of a wearable electronic device such as a wristwatch.
  • Display device 100C A display device 100C illustrated in FIG.
  • a transistor 310 is a transistor having a channel formation region in the substrate 301 .
  • the substrate 301 for example, a semiconductor substrate such as a single crystal silicon substrate can be used.
  • Transistor 310 includes a portion of substrate 301 , conductive layer 311 , low resistance region 312 , insulating layer 313 and insulating layer 314 .
  • the conductive layer 311 functions as a gate electrode.
  • An insulating layer 313 is located between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer.
  • the low resistance region 312 is a region in which the substrate 301 is doped with impurities and functions as a source or drain.
  • the insulating layer 314 is provided to cover the side surface of the conductive layer 311 .
  • a device isolation layer 315 is provided between two adjacent transistors 310 so as to be embedded in the substrate 301 .
  • An insulating layer 261 is provided to cover the transistor 310 , and a capacitor 240 is provided over the insulating layer 261 .
  • the capacitor 240 has a conductive layer 241, a conductive layer 245, and an insulating layer 243 positioned therebetween.
  • the conductive layer 241 functions as one electrode of the capacitor 240
  • the conductive layer 245 functions as the other electrode of the capacitor 240
  • the insulating layer 243 functions as the dielectric of the capacitor 240 .
  • the conductive layer 241 is provided on the insulating layer 261 and embedded in the insulating layer 254 .
  • Conductive layer 241 is electrically connected to one of the source or drain of transistor 310 by plug 271 embedded in insulating layer 261 .
  • An insulating layer 243 is provided over the conductive layer 241 .
  • the conductive layer 245 is provided in a region overlapping with the conductive layer 241 with the insulating layer 243 provided therebetween.
  • An insulating layer 255 is provided to cover the capacitor 240, and the light emitting elements 110R, 110G, 110B, and the like are provided on the insulating layer 255.
  • a protective layer 121 is provided over the light-emitting elements 110R, 110G, and 110B, and a substrate 420 is attached to the upper surface of the protective layer 121 with a resin layer 419 .
  • the substrate 301 corresponds to the substrate 291 in FIGS. 24A and 24B, and the substrate 420 corresponds to the substrate 292 in FIG. 24A.
  • a stacked structure from the substrate 301 to the insulating layer 255 corresponds to the layer 101 including the transistor in Embodiment 1.
  • the pixel electrode 111 of the light emitting element 110 is connected to the source or the source of the transistor 310 by the plug 256 embedded in the insulating layer 255 and the insulating layer 243, the conductive layer 241 embedded in the insulating layer 254, and the plug 271 embedded in the insulating layer 261. electrically connected to one of the drains;
  • Display device 100D A display device 100D shown in FIG. 26 is mainly different from the display device 100C in that the configuration of transistors is different. Note that the description of the same parts as those of the display device 100C may be omitted.
  • a transistor 320 is a transistor in which a metal oxide is applied to a semiconductor layer in which a channel is formed.
  • the transistor 320 includes a semiconductor layer 321, an insulating layer 323, a conductive layer 324, a pair of conductive layers 325, an insulating layer 326, and a conductive layer 327.
  • the substrate 331 corresponds to the substrate 291 in FIGS. 24A and 24B.
  • An insulating layer 332 is provided on the substrate 331 .
  • the insulating layer 332 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 331 into the transistor 320 and oxygen from the semiconductor layer 321 toward the insulating layer 332 side.
  • a film into which hydrogen or oxygen is less likely to diffuse than a silicon oxide film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, can be used.
  • a conductive layer 327 is provided over the insulating layer 332 , and an insulating layer 326 is provided to cover the conductive layer 327 .
  • the conductive layer 327 functions as a first gate electrode of the transistor 320, and part of the insulating layer 326 functions as a first gate insulating layer.
  • An oxide insulating film such as a silicon oxide film is preferably used for at least a portion of the insulating layer 326 that is in contact with the semiconductor layer 321 .
  • the upper surface of the insulating layer 326 is preferably planarized.
  • the semiconductor layer 321 is provided on the insulating layer 326 .
  • the semiconductor layer 321 preferably has a metal oxide film having semiconductor properties.
  • a pair of conductive layers 325 are provided on and in contact with the semiconductor layer 321 and function as a source electrode and a drain electrode.
  • An insulating layer 328 is provided to cover the top and side surfaces of the pair of conductive layers 325, the side surface of the semiconductor layer 321, and the like, and the insulating layer 264 is provided over the insulating layer 328.
  • the insulating layer 328 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the semiconductor layer 321 from the insulating layer 264 or the like and oxygen from leaving the semiconductor layer 321 .
  • an insulating film similar to the insulating layer 332 can be used as the insulating layer 328.
  • An opening reaching the semiconductor layer 321 is provided in the insulating layer 328 and the insulating layer 264 .
  • the insulating layer 323 and the conductive layer 324 are buried in contact with the side surfaces of the insulating layer 264 , the insulating layer 328 , and the conductive layer 325 and the top surface of the semiconductor layer 321 .
  • the conductive layer 324 functions as a second gate electrode, and the insulating layer 323 functions as a second gate insulating layer.
  • the upper surface of the conductive layer 324, the upper surface of the insulating layer 323, and the upper surface of the insulating layer 264 are planarized so that their heights are approximately the same, and the insulating layers 329 and 265 are provided to cover them.
  • the insulating layers 264 and 265 function as interlayer insulating layers.
  • the insulating layer 329 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the transistor 320 from the insulating layer 265 or the like.
  • an insulating film similar to the insulating layers 328 and 332 can be used.
  • a plug 274 electrically connected to one of the pair of conductive layers 325 is provided so as to be embedded in the insulating layers 265 , 329 , 264 and 328 .
  • the plug 274 includes a conductive layer 274a that covers the side surfaces of the openings of the insulating layers 265, the insulating layers 329, the insulating layers 264, and the insulating layer 328 and part of the top surface of the conductive layer 325, and the conductive layer 274a. It is preferable to have a conductive layer 274b in contact with the top surface. At this time, a conductive material into which hydrogen and oxygen are difficult to diffuse is preferably used for the conductive layer 274a.
  • the configuration from the insulating layer 254 to the substrate 420 in the display device 100D is similar to that of the display device 100C.
  • the layered structure from the substrate 331 to the insulating layer 255 corresponds to the layer 101 including the transistor in Embodiment 1.
  • a display device 100E shown in FIG. 27 has a structure in which a transistor 310A and a transistor 310B each having a channel formed in a semiconductor substrate are stacked.
  • the display device 100E has a configuration in which a substrate 301B provided with a transistor 310B, a capacitor 240, and each light emitting element 110 and a substrate 301A provided with a transistor 310A are bonded together.
  • the substrate 301A corresponds to the substrate 291 in FIGS. 24A and 24B
  • the substrate 420 corresponds to the substrate 292 in FIG. 24A
  • a stacked structure from the substrate 301A to the insulating layer 255 corresponds to the layer 101 including the transistor in Embodiment 1.
  • the display device 100E is provided with a plug 343 penetrating through the substrate 301B. Also, the plug 343 is electrically connected to a conductive layer 342 provided on the back surface of the substrate 301B (the surface on the substrate 301A side). On the other hand, the conductive layer 341 is provided on the insulating layer 261 on the substrate 301A.
  • the substrates 301A and 301B are electrically connected.
  • the same conductive material is preferably used for the conductive layers 341 and 342 .
  • a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal nitride film (titanium nitride film, molybdenum nitride film, or tungsten nitride film) containing the above elements as components membrane) and the like can be used.
  • copper is preferably used for the conductive layers 341 and 342 .
  • a Cu—Cu (copper-copper) direct bonding technique (a technique for achieving electrical continuity by connecting Cu (copper) pads) can be applied.
  • the conductive layer 341 and the conductive layer 342 may be bonded via a bump.
  • a display device 100F illustrated in FIG. 28 has a structure in which a transistor 310 in which a channel is formed over a substrate 301 and a transistor 320 including a metal oxide in a semiconductor layer in which the channel is formed are stacked.
  • the substrate 301 corresponds to the substrate 291 in FIGS. 24A and 24B, and the substrate 420 corresponds to the substrate 292 in FIG. 24A.
  • a stacked structure from the substrate 301 to the insulating layer 255 corresponds to the layer 101 including the transistor in Embodiment 1.
  • An insulating layer 261 is provided to cover the transistor 310 , and a conductive layer 251 is provided over the insulating layer 261 .
  • An insulating layer 262 is provided to cover the conductive layer 251 , and the conductive layer 252 is provided over the insulating layer 262 .
  • the conductive layers 251 and 252 each function as wirings.
  • An insulating layer 263 and an insulating layer 332 are provided to cover the conductive layer 252 , and the transistor 320 is provided over the insulating layer 332 .
  • An insulating layer 265 is provided to cover the transistor 320 , and the capacitor 240 is provided over the insulating layer 265 . Capacitor 240 and transistor 320 are electrically connected by plug 274 .
  • the transistor 320 can be used as a transistor forming a pixel circuit. Further, the transistor 310 can be used as a transistor that forms a pixel circuit or a transistor that forms a driver circuit (a scan line driver circuit or a signal line driver circuit) for driving the pixel circuit. Further, the transistors 310 and 320 can be used as transistors included in various circuits such as an arithmetic circuit and a memory circuit.
  • a pixel circuit not only a pixel circuit but also a driver circuit, for example, can be formed directly under the light-emitting element, so that the size of the display device can be reduced compared to the case where the driver circuit is provided around the display region. becomes possible.
  • the light emitting device has an EL layer 786 between a pair of electrodes (lower electrode 772, upper electrode 788).
  • EL layer 786 can be composed of multiple layers, such as layer 4420 , light-emitting layer 4411 , and layer 4430 .
  • the layer 4420 can have, for example, a layer containing a highly electron-injecting substance (electron-injecting layer), a layer containing a highly electron-transporting substance (electron-transporting layer), and the like.
  • the light-emitting layer 4411 contains, for example, a light-emitting compound.
  • the layer 4430 can have, for example, a layer containing a substance with high hole-injection properties (hole-injection layer) and a layer containing a substance with high hole-transport properties (hole-transport layer).
  • a structure having a layer 4420, a light-emitting layer 4411, and a layer 4430 provided between a pair of electrodes can function as a single light-emitting unit, and the structure of FIG. 29A is referred to as a single structure in this specification and the like.
  • FIG. 29B is a modification of the EL layer 786 included in the light emitting element shown in FIG. 29A.
  • the light-emitting element shown in FIG. It has a top layer 4420-1, a layer 4420-2 on layer 4420-1, and a top electrode 788 on layer 4420-2.
  • layer 4430-1 functions as a hole injection layer
  • layer 4430-2 functions as a hole transport layer
  • layer 4420-1 functions as an electron Functioning as a transport layer
  • layer 4420-2 functions as an electron injection layer.
  • layer 4430-1 functions as an electron-injecting layer
  • layer 4430-2 functions as an electron-transporting layer
  • layer 4420-1 functions as a hole-transporting layer.
  • a configuration in which a plurality of light-emitting layers (light-emitting layers 4411, 4412, and 4413) are provided between layers 4420 and 4430 as shown in FIGS. 29C and 29D is also a variation of the single structure. .
  • FIGS. 29E and 29F a structure in which a plurality of light-emitting units (EL layers 786a and 786b) are connected in series via an intermediate layer (charge-generating layer) 4440 is described in this specification and the like.
  • This is called a tandem structure.
  • the structures shown in FIGS. 29E and 29F are referred to as tandem structures, but are not limited to this, and for example, the tandem structures may be referred to as stack structures. Note that a light-emitting element capable of emitting light with high luminance can be obtained by adopting a tandem structure.
  • the light-emitting layer 4411, the light-emitting layer 4412, and the light-emitting layer 4413 may be made of a light-emitting substance that emits light of the same color, or may be the same light-emitting substance.
  • the light-emitting layers 4411, 4412, and 4413 may be formed using a light-emitting substance that emits blue light.
  • a color conversion layer may be provided as the layer 785 shown in FIG. 29D.
  • light-emitting substances that emit light of different colors may be used for the light-emitting layers 4411, 4412, and 4413, respectively.
  • white light emission can be obtained.
  • a color filter also referred to as a colored layer
  • a desired color of light can be obtained by passing the white light through the color filter.
  • the light-emitting layer 4411 and the light-emitting layer 4412 may be made of a light-emitting substance that emits light of the same color, or may be the same light-emitting substance.
  • light-emitting substances that emit light of different colors may be used for the light-emitting layers 4411 and 4412 .
  • white light emission can be obtained.
  • FIG. 29F shows an example in which an additional layer 785 is provided. As the layer 785, one or both of a color conversion layer and a color filter (colored layer) can be used.
  • the layer 4420 and the layer 4430 may have a laminated structure of two or more layers as shown in FIG. 29B.
  • each light-emitting element emits different colors for example, blue (B), green (G), and red (R)
  • SBS side-by-side
  • the emission color of the light-emitting element can be red, green, blue, cyan, magenta, yellow, white, or the like, depending on the material forming the EL layer 786 . Further, the color purity can be further enhanced by providing the light-emitting element with a microcavity structure.
  • a light-emitting element that emits white light preferably has a structure in which two or more kinds of light-emitting substances are contained in the light-emitting layer.
  • two or more light-emitting substances may be selected so that the light emission of each light-emitting substance has a complementary color relationship.
  • a light-emitting element that emits white light as a whole can be obtained.
  • the light-emitting layer preferably contains two or more light-emitting substances that emit light such as R (red), G (green), B (blue), Y (yellow), or O (orange).
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc.
  • aluminum, gallium, yttrium, tin, or the like is preferably contained.
  • one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, etc. may be contained. .
  • the metal oxide can be formed by sputtering, CVD such as MOCVD, or ALD.
  • Crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystal. (polycrystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • it can be evaluated using an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also called a thin film method or a Seemann-Bohlin method.
  • the shape of the peak of the XRD spectrum is almost bilaterally symmetrical.
  • the peak shape of the XRD spectrum is left-right asymmetric.
  • the asymmetric shape of the peaks in the XRD spectra clearly indicates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peaks in the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a nano beam electron diffraction pattern) observed by nano beam electron diffraction (NBED).
  • a diffraction pattern also referred to as a nano beam electron diffraction pattern
  • NBED nano beam electron diffraction
  • a halo is observed in the diffraction pattern of a quartz glass substrate, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. Therefore, it is presumed that the IGZO film deposited at room temperature is neither a crystalline state nor an amorphous state, but an intermediate state, and it cannot be concluded that it is in an amorphous state.
  • oxide semiconductors may be classified differently from the above when their structures are focused. For example, oxide semiconductors are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors. Examples of non-single-crystal oxide semiconductors include the above CAAC-OS and nc-OS. Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, amorphous-like oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the ab plane direction.
  • each of the plurality of crystal regions is composed of one or more minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystalline region is less than 10 nm.
  • the size of the crystal region may be about several tens of nanometers.
  • CAAC-OS contains indium (In) and oxygen.
  • a tendency to have a layered crystal structure also referred to as a layered structure in which a layer (hereinafter referred to as an In layer) and a layer containing the element M, zinc (Zn), and oxygen (hereinafter referred to as a (M, Zn) layer) are stacked.
  • the (M, Zn) layer may contain indium.
  • the In layer contains the element M.
  • the In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • a plurality of bright points are observed in the electron beam diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with respect to the spot of the incident electron beam that has passed through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is basically a hexagonal lattice, but the unit cell is not always a regular hexagon and may be a non-regular hexagon. Moreover, the distortion may have a lattice arrangement of pentagons, heptagons, or the like. Note that in CAAC-OS, no clear crystal grain boundary can be observed even near the strain. That is, it can be seen that the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because the CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction, and that the bond distance between atoms changes due to the substitution of metal atoms. It is considered to be for
  • a crystal structure in which clear grain boundaries are confirmed is called a polycrystal.
  • a grain boundary becomes a recombination center, traps carriers, and is highly likely to cause a decrease in on-state current of a transistor, a decrease in field-effect mobility, and the like. Therefore, a CAAC-OS in which no clear grain boundaries are observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor.
  • a structure containing Zn is preferable for forming a CAAC-OS.
  • In--Zn oxide and In--Ga--Zn oxide are preferable because they can suppress the generation of grain boundaries more than In oxide.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear crystal grain boundaries. Therefore, it can be said that the decrease in electron mobility due to grain boundaries is less likely to occur in CAAC-OS.
  • a CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS is also stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, the use of the CAAC-OS for the OS transistor can increase the degree of freedom in the manufacturing process.
  • nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has minute crystals.
  • the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also called a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • an nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
  • an nc-OS film is subjected to structural analysis using an XRD apparatus, out-of-plane XRD measurement using ⁇ /2 ⁇ scanning does not detect a peak indicating crystallinity.
  • an nc-OS film is subjected to electron beam diffraction (also referred to as selected area electron beam diffraction) using an electron beam with a probe diameter larger than that of nanocrystals (for example, 50 nm or more), a diffraction pattern such as a halo pattern is obtained. is observed.
  • an nc-OS film is subjected to electron diffraction (also referred to as nanobeam electron diffraction) using an electron beam with a probe diameter close to or smaller than the size of a nanocrystal (for example, 1 nm or more and 30 nm or less)
  • an electron beam diffraction pattern is obtained in which a plurality of spots are observed within a ring-shaped area centered on the direct spot.
  • An a-like OS is an oxide semiconductor having a structure between an nc-OS and an amorphous oxide semiconductor.
  • An a-like OS has void or low density regions. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS. In addition, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • one or more metal elements are unevenly distributed in the metal oxide, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In--Ga--Zn oxide are denoted by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region where [Ga] is greater than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region whose main component is indium oxide, indium zinc oxide, or the like.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • a clear boundary between the first region and the second region may not be observed.
  • the CAC-OS in the In—Ga—Zn oxide means a region containing Ga as a main component and a region containing In as a main component in a material structure containing In, Ga, Zn, and O. Each region is a mosaic, and refers to a configuration in which these regions exist randomly. Therefore, CAC-OS is presumed to have a structure in which metal elements are unevenly distributed.
  • the CAC-OS can be formed, for example, by sputtering under the condition that the substrate is not heated.
  • one or more selected from inert gas (typically argon), oxygen gas, and nitrogen gas may be used as the film formation gas. good.
  • the lower the flow rate ratio of the oxygen gas to the total flow rate of the film formation gas during film formation, the better. is preferably 0% or more and 10% or less.
  • an EDX mapping obtained using energy dispersive X-ray spectroscopy shows that a region containing In as a main component It can be confirmed that the (first region) and the region (second region) containing Ga as the main component are unevenly distributed and have a mixed structure.
  • the first region is a region with higher conductivity than the second region. That is, when carriers flow through the first region, conductivity as a metal oxide is developed. Therefore, a high field effect mobility ( ⁇ ) can be realized by distributing the first region in the form of a cloud in the metal oxide.
  • the second region is a region with higher insulation than the first region.
  • the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulation caused by the second region act complementarily to provide a switching function (on/off). functions) can be given to the CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have a variety of structures, each with different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • an oxide semiconductor with low carrier concentration is preferably used for a transistor.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm ⁇ 3 or less, preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ 10 13 cm ⁇ 3 or less, more preferably 1 ⁇ 10 11 cm ⁇ 3 or less. 3 or less, more preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor whose channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are multiplied by 2 ⁇ . 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms/cm 3 , preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less, More preferably, it is 5 ⁇ 10 17 atoms/cm 3 or less.
  • the oxide semiconductor reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to be normally on. Therefore, hydrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 1 ⁇ 10 19 atoms/cm 3 , more preferably less than 5 ⁇ 10 18 atoms/cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • An electronic device of this embodiment includes a display device of one embodiment of the present invention.
  • the display device of one embodiment of the present invention can easily have high definition, high resolution, and large size. Therefore, the display device of one embodiment of the present invention can be used for display portions of various electronic devices.
  • the display device of one embodiment of the present invention can be manufactured at low cost, the manufacturing cost of the electronic device can be reduced.
  • Electronic devices include, for example, televisions, desktop or notebook personal computers, computer monitors, digital signage, electronic devices with relatively large screens such as large game machines such as pachinko machines, and digital cameras. , digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, sound reproduction devices, and the like.
  • the display device of one embodiment of the present invention can have high definition, it can be suitably used for an electronic device having a relatively small display portion.
  • electronic devices include wristwatch-type or bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, and glasses-type AR devices that can be worn on the head. etc.
  • Wearable devices also include devices for SR and devices for MR.
  • a display device of one embodiment of the present invention includes HD (1280 ⁇ 720 pixels), FHD (1920 ⁇ 1080 pixels), WQHD (2560 ⁇ 1440 pixels), WQXGA (2560 ⁇ 1600 pixels), 4K2K (2560 ⁇ 1600 pixels), 3840 ⁇ 2160) or 8K4K (7680 ⁇ 4320 pixels).
  • the resolution it is preferable to set the resolution to 4K2K, 8K4K, or higher.
  • the pixel density (definition) of the display device of one embodiment of the present invention is preferably 300 ppi or more, more preferably 500 ppi or more, 1000 ppi or more, more preferably 2000 ppi or more, more preferably 3000 ppi or more, and 5000 ppi or more.
  • the electronic device of this embodiment can be incorporated along the inner wall or outer wall of a house or building, or along the curved surface of the interior or exterior of an automobile.
  • the electronic device of this embodiment may have an antenna.
  • An image, information, or the like can be displayed on the display portion by receiving a signal with the antenna.
  • the antenna may be used for contactless power transmission.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage , power, radiation, flow, humidity, gradient, vibration, odor, or infrared).
  • the electronic device of this embodiment can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display the date or time, a function to execute various software (programs), a wireless It can have a communication function, a function of reading a program or data recorded in a recording medium, and the like.
  • An electronic device 6500 shown in FIG. 30A is a mobile information terminal that can be used as a smartphone.
  • the electronic device 6500 has a housing 6501, a display unit 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • a display portion 6502 has a touch panel function.
  • the display device of one embodiment of the present invention can be applied to the display portion 6502 .
  • FIG. 30B is a cross-sectional view including the end of the housing 6501 on the microphone 6506 side.
  • a light-transmitting protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, and a printer are placed in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 with an adhesive layer (not shown).
  • a portion of the display panel 6511 is folded back in a region outside the display portion 6502, and the FPC 6515 is connected to the folded portion.
  • An IC6516 is mounted on the FPC6515.
  • the FPC 6515 is connected to terminals provided on the printed circuit board 6517 .
  • a flexible display (flexible display device) of one embodiment of the present invention can be applied to the display panel 6511 . Therefore, an extremely lightweight electronic device can be realized. In addition, since the display panel 6511 is extremely thin, the thickness of the electronic device can be reduced and the large-capacity battery 6518 can be mounted. In addition, by folding back part of the display panel 6511 and arranging a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
  • FIG. 31A An example of a television device is shown in FIG. 31A.
  • a television set 7100 has a display portion 7000 incorporated in a housing 7101 .
  • a configuration in which a housing 7101 is supported by a stand 7103 is shown.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • the operation of the television apparatus 7100 shown in FIG. 31A can be performed using operation switches provided in the housing 7101 and a separate remote control operation device 7111 .
  • the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger, for example.
  • the remote controller 7111 may have a display section for displaying information output from the remote controller 7111 .
  • a channel and a volume can be operated with operation keys or a touch panel included in the remote controller 7111 , and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts. Also, by connecting to a wired or wireless communication network via a modem, one-way (from the sender to the receiver) or two-way (between the sender and the receiver, or between the receivers, etc.) information communication is performed. is also possible.
  • FIG. 31B shows an example of a notebook personal computer.
  • a notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • the display portion 7000 is incorporated in the housing 7211 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • FIGS. 31C and 31D An example of digital signage is shown in FIGS. 31C and 31D.
  • a digital signage 7300 shown in FIG. 31C includes a housing 7301, a display unit 7000, speakers 7303, and the like. Furthermore, it can have an LED lamp, an operation key (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like.
  • FIG. 31D is a digital signage 7400 attached to a cylindrical post 7401.
  • FIG. A digital signage 7400 has a display section 7000 provided along the curved surface of a pillar 7401 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 in FIGS. 31C and 31D.
  • the wider the display unit 7000 the more information can be provided at once.
  • the wider the display unit 7000 the more conspicuous it is, and the more effective the advertisement can be, for example.
  • a touch panel By applying a touch panel to the display unit 7000, not only can images or moving images be displayed on the display unit 7000, but also the user can intuitively operate the display unit 7000, which is preferable. Further, when used for providing information such as route information or traffic information, usability can be enhanced by intuitive operation.
  • the digital signage 7300 or digital signage 7400 is preferably capable of cooperating with an information terminal device 7311 or information terminal device 7411 such as a smartphone possessed by the user through wireless communication.
  • advertisement information displayed on the display portion 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411 .
  • display on the display portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or 7411 as an operation means (controller). This allows an unspecified number of users to simultaneously participate in and enjoy the game.
  • FIG. 32A is a diagram showing the appearance of the camera 8000 with the finder 8100 attached.
  • a camera 8000 has a housing 8001, a display unit 8002, operation buttons 8003, a shutter button 8004, and the like.
  • a detachable lens 8006 is attached to the camera 8000 . Note that the camera 8000 may be integrated with the lens 8006 and the housing.
  • the camera 8000 can capture an image by pressing the shutter button 8004 or by touching the display unit 8002 that functions as a touch panel.
  • the housing 8001 has a mount with electrodes, and can be connected to the viewfinder 8100 as well as, for example, a strobe device.
  • the viewfinder 8100 has a housing 8101, a display section 8102, buttons 8103, and the like.
  • the housing 8101 is attached to the camera 8000 by mounts that engage the mounts of the camera 8000 .
  • the viewfinder 8100 can display an image received from the camera 8000 on the display portion 8102, for example.
  • the button 8103 has a function as, for example, a power button.
  • the display device of one embodiment of the present invention can be applied to the display portion 8002 of the camera 8000 and the display portion 8102 of the viewfinder 8100 .
  • the camera 8000 having a built-in finder may also be used.
  • FIG. 32B is a diagram showing the appearance of the head mounted display 8200.
  • FIG. 32B is a diagram showing the appearance of the head mounted display 8200.
  • the head mounted display 8200 has a mounting section 8201, a lens 8202, a main body 8203, a display section 8204, a cable 8205 and the like.
  • a battery 8206 is built in the mounting portion 8201 .
  • a cable 8205 supplies power from a battery 8206 to the main body 8203 .
  • the main body 8203 includes, for example, a wireless receiver, and can display received video information on the display portion 8204 .
  • the main body 8203 is equipped with a camera, and information on the movement of the user's eyeballs or eyelids can be used as input means.
  • the mounting portion 8201 can be provided with a plurality of electrodes capable of detecting the current that flows with the movement of the user's eyeballs at positions that touch the user. Accordingly, the head mounted display 8200 can have the function of recognizing the line of sight of the user. Moreover, the head-mounted display 8200 may have a function of monitoring the user's pulse based on the current flowing through the electrodes. Further, the mounting portion 8201 may be provided with various sensors such as a temperature sensor, a pressure sensor, or an acceleration sensor. In addition, the head mounted display 8200 has a function of displaying the biological information of the user on the display unit 8204, or a function of changing the image displayed on the display unit 8204 according to the movement of the user's head. good too.
  • the display device of one embodiment of the present invention can be applied to the display portion 8204 .
  • FIG. 32C to 32E are diagrams showing the appearance of the head mounted display 8300.
  • FIG. A head mounted display 8300 includes a housing 8301 , a display portion 8302 , a band-shaped fixture 8304 , and a pair of lenses 8305 .
  • the user can visually recognize the display on the display unit 8302 through the lens 8305 .
  • the display portion 8302 it is preferable to arrange the display portion 8302 in a curved manner because the user can feel a high presence.
  • three-dimensional display using parallax can be performed.
  • the configuration is not limited to the configuration in which one display portion 8302 is provided, and two display portions 8302 may be provided and one display portion may be arranged for one eye of the user.
  • the display device of one embodiment of the present invention can be applied to the display portion 8302 .
  • the display device of one embodiment of the present invention can also achieve extremely high definition. For example, even when the display is magnified using the lens 8305 as shown in FIG. 32E and visually recognized, the pixels are difficult for the user to visually recognize. In other words, the display portion 8302 can be used to allow the user to view highly realistic images.
  • FIG. 32F is a diagram showing the appearance of a goggle-type head-mounted display 8400.
  • the head mounted display 8400 has a pair of housings 8401, a mounting section 8402, and a cushioning member 8403.
  • a display portion 8404 and a lens 8405 are provided in the pair of housings 8401, respectively.
  • the user can visually recognize the display unit 8404 through the lens 8405.
  • the lens 8405 has a focus adjustment mechanism, and its position can be adjusted according to the user's visual acuity.
  • the display portion 8404 is preferably square or horizontally long rectangular. This makes it possible to enhance the sense of reality.
  • the mounting part 8402 preferably has plasticity and elasticity so that it can be adjusted according to the size of the user's face and does not slip off.
  • a part of the mounting portion 8402 preferably has a vibration mechanism that functions as a bone conduction earphone. As a result, it is possible to enjoy video and audio simply by wearing the device without the need for separate earphones, speakers, or other audio equipment.
  • the housing 8401 may have a function of outputting audio data by wireless communication.
  • the mounting part 8402 and the cushioning member 8403 are parts that come into contact with the user's face (forehead, cheeks, etc.). Since the cushioning member 8403 is in close contact with the user's face, it is possible to prevent light leakage and enhance the sense of immersion. It is preferable to use a soft material for the cushioning member 8403 so that the cushioning member 8403 comes into close contact with the user's face when the head mounted display 8400 is worn by the user. For example, materials such as rubber, silicone rubber, urethane, or sponge can be used.
  • the cushioning member 8403 and the mounting portion 8402 that come into contact with the user's skin are preferably detachable for easy cleaning or replacement.
  • the electronic device shown in FIGS. 33A to 33F includes a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), connection terminals 9006, sensors 9007 (force, displacement, position, speed , acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared rays measuring function), a microphone 9008, and the like.
  • the electronic devices shown in FIGS. 33A to 33F have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display the date or time, etc., a function to control processing by various software (programs) , a wireless communication function, and a function of reading and processing programs or data recorded on a recording medium.
  • a function to display various information (still images, moving images, text images, etc.) on the display unit a touch panel function, a calendar, a function to display the date or time, etc.
  • a function to control processing by various software (programs) a wireless communication function
  • a function of reading and processing programs or data recorded on a recording medium a recording medium.
  • the electronic device may have a plurality of display units.
  • the electronic device is provided with a camera, for example, and has a function of capturing still images or moving images and storing them in a recording medium (external or built into the camera), and a function of displaying the captured image on the display unit, etc. good.
  • the display device of one embodiment of the present invention can be applied to the display portion 9001 .
  • FIGS. 33A to 33F Details of the electronic devices shown in FIGS. 33A to 33F will be described below.
  • FIG. 33A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as a smart phone, for example.
  • the portable information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display text and image information on its multiple surfaces.
  • FIG. 33A shows an example in which three icons 9050 are displayed.
  • Information 9051 indicated by a dashed rectangle can also be displayed on another surface of the display portion 9001 . Examples of the information 9051 include notification of incoming e-mail, SNS, telephone call, e-mail, e.g., SNS title, sender name, date and time, remaining battery power, radio wave intensity, and the like.
  • an icon 9050 may be displayed at the position where the information 9051 is displayed.
  • FIG. 33B is a perspective view showing the mobile information terminal 9102.
  • the portable information terminal 9102 has a function of displaying information on three or more sides of the display portion 9001 .
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can confirm the information 9053 displayed at a position where the mobile information terminal 9102 can be viewed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in the chest pocket of the clothes.
  • the user can check the display without taking out the portable information terminal 9102 from the pocket, and can determine, for example, whether to receive a call.
  • FIG. 33C is a perspective view showing a wristwatch-type mobile information terminal 9200.
  • the mobile information terminal 9200 can be used as a smart watch (registered trademark), for example.
  • the display portion 9001 has a curved display surface, and display can be performed along the curved display surface. Hands-free communication is also possible by allowing the mobile information terminal 9200 to communicate with, for example, a headset capable of wireless communication.
  • the portable information terminal 9200 can perform mutual data transmission and charging with another information terminal through the connection terminal 9006 . Note that the charging operation may be performed by wireless power supply.
  • FIG. 33D to 33F are perspective views showing a foldable personal digital assistant 9201.
  • FIG. 33D is an unfolded state of the mobile information terminal 9201
  • FIG. 33F is a folded state
  • FIG. 33E is a perspective view of a state in the middle of changing from one of FIGS. 33D and 33F to the other.
  • the portable information terminal 9201 has excellent portability in the folded state, and has excellent display visibility due to a seamless wide display area in the unfolded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by hinges 9055 .
  • the display portion 9001 can be bent with a curvature radius of 0.1 mm or more and 150 mm or less.
  • a sample 200A shown in FIG. 34A has an insulating layer 101a, an insulating layer 101b on the insulating layer 101a, a light emitting element 110R on the insulating layer 101b, and a protective layer 121 on the light emitting element 110R.
  • the light emitting element 110R has a pixel electrode 111Ra on the insulating layer 101b, a pixel electrode 111Rb on the pixel electrode 111Ra and the insulating layer 101b, and an EL layer 112R on the pixel electrode 111Rb and the insulating layer 101b.
  • the sample 200A also has a protective layer 131Ra on the insulating layer 101b and a protective layer 131Rb on the protective layer 131Ra, which have regions in contact with the side surfaces of the EL layer 112R.
  • the sample 200A has a common layer 114 on the EL layer 112R, the protective layer 131Ra, the protective layer 131Rb, and the insulating layer 101b, and a common electrode 115 on the common layer 114.
  • FIG. A protective layer 121 is provided over the common electrode 115 .
  • the pixel electrode 111R shown in Embodiment 1 and the like is formed by the pixel electrode 111Ra and the pixel electrode 111Rb
  • the protective layer 131R shown in Embodiment 1 and the like is formed by the protective layer 131Ra and the protective layer 131Rb. It was assumed to be configured.
  • a sample 200B shown in FIG. 34B differs from the sample 200A in that it does not have a protective layer 131Ra and a protective layer 131Rb.
  • the sides of EL layer 112R are in contact with common layer 114;
  • a sample 200C shown in FIG. 34C includes an insulating layer 101a, an insulating layer 101b on the insulating layer 101a, a pixel electrode 111Ra on the insulating layer 101b, a pixel electrode 111Rb on the pixel electrode 111Ra, and an EL layer on the pixel electrode 111Rb.
  • Sample 200C differs from sample 200B in that it is not patterned.
  • FIG. 34D is a diagram showing the configuration of the EL layer 112R.
  • the EL layer 112 includes a hole injection layer 151, a hole transport layer 152 on the hole injection layer 151, a light emitting layer 153 on the hole transport layer 152, a hole blocking layer 154 on the light emitting layer 153, and an electron transport layer 155 on the hole blocking layer 154 .
  • the light emitting layer 153 has a function of emitting red light.
  • 35A to 35E and 36A to 36D are cross-sectional views in each step of the method of manufacturing the sample 200A in this example.
  • a resin layer was formed as the insulating layer 101a on the substrate (not shown) by spin coating.
  • a silicon nitride layer was formed as the insulating layer 101b on the insulating layer 101a using the CVD method.
  • an alloy film of silver, palladium, and copper was formed on the insulating layer 101b by a sputtering method so as to have a film thickness of 100 nm as a conductive film that later becomes the pixel electrode 111Ra. After that, part of the conductive film was removed by wet etching to form the pixel electrode 111Ra.
  • an indium tin oxide film containing silicon was formed as a conductive film, which later became the pixel electrode 111Rb, on the pixel electrode 111Ra and the insulating layer 101b using a sputtering method so as to have a thickness of 100 nm. After that, part of the conductive film was removed by wet etching to form the pixel electrode 111Rb. (Fig. 35A).
  • an EL film 112Rf which later becomes the EL layer 112R, was formed on the pixel electrode 111Rb and the insulating layer 101b by vapor deposition.
  • the structure of the EL film 112Rf is as shown in FIG.
  • the EL film 112Rf was formed so that the film thickness of the hole blocking layer 154 was 10 nm, and the film thickness of the electron transport layer 155 was 10 nm.
  • an aluminum oxide film was formed as a sacrificial film 144Ra to be the sacrificial layer 145Ra later on the EL film 112Rf using the ALD method so as to have a thickness of 30 nm.
  • an indium tin oxide film was formed as a sacrificial film 144Rb, which later becomes the sacrificial layer 145Rb, on the sacrificial film 144Ra using a sputtering method so as to have a film thickness of 50 nm.
  • portions of the sacrificial film 144Rb, the sacrificial film 144Ra, and the EL film 112Rf not covered with the resist mask 143 were removed by dry etching to form the sacrificial layer 145Rb, the sacrificial layer 145Ra, and the EL layer 112R. Also, the resist mask 143 was removed (FIG. 35C).
  • an aluminum oxide film was formed on the sacrificial layer 145Rb and the insulating layer 101b using the ALD method so as to have a film thickness of 15 nm as the protective film 131Raf that later becomes the protective layer 131Ra.
  • an EL film 112f was formed on the protective film 131Raf by vapor deposition (FIG. 35D).
  • the EL film 112f was removed by dry etching (FIG. 35E).
  • a silicon nitride film was formed as a protective film 131Rbf, which later becomes the protective layer 131Rb, on the protective film 131Raf using a sputtering method so as to have a film thickness of 90 nm (FIG. 36A).
  • the protective film 131Rbf was processed by dry etching to form a protective layer 131Rb.
  • the protective film 131Raf was processed by dry etching to form a protective layer 131Ra.
  • the sacrificial layer 145Rb and the sacrificial layer 145Ra were removed using wet etching (FIG. 36C).
  • a lithium fluoride film was formed to a thickness of 1 nm on the EL layer 112R, the protective layer 131Ra, the protective layer 131Rb, and the insulating layer 101b by an evaporation method.
  • An ytterbium film was formed on the lithium fluoride film by an evaporation method so as to have a thickness of 1 nm. That is, the common layer 114 has a laminated structure of a lithium fluoride film and an ytterbium film.
  • the common electrode 115 an alloy film having a silver/magnesium ratio of 10:1 was formed on the common layer 114 using a vapor deposition method so as to have a film thickness of 15 nm.
  • the light emitting element 110R was formed.
  • an indium gallium zinc oxide film was formed on the common electrode 115 using a sputtering method so as to have a film thickness of 70 nm (FIG. 36D).
  • Sample 200A was formed by the method shown above.
  • 37A to 37E are cross-sectional views in each step of the method of manufacturing the sample 200B in this example.
  • the EL film 112f was removed by dry etching (Fig. 37C). After that, the sacrificial layer 145Rb and the sacrificial layer 145Ra were removed (FIG. 37D). That is, unlike the sample 200A, the protective film 131Rbf was not formed.
  • Sample 200B was formed by the method shown above.
  • a resin layer was formed as an insulating layer 101a on a substrate (not shown) using a spin coating method.
  • a silicon nitride layer was formed on the insulating layer 101a using the CVD method.
  • an alloy film of silver, palladium, and copper was formed as the pixel electrode 111Ra on the insulating layer 101b using a sputtering method so as to have a film thickness of 100 nm.
  • an indium tin oxide film containing silicon was formed on the pixel electrode 111Ra using a sputtering method so as to have a thickness of 100 nm.
  • an EL layer 112R was formed on the pixel electrode 111Rb using a vapor deposition method.
  • the structure of the EL layer 112R is as shown in FIG. 34D. was the same as
  • sample 200C was formed by the method shown above. As described above, when forming the sample 200C, the formation of the sacrificial layer and the patterning of the EL film by the etching method were not performed. It can be said that the production of the sample 200C was carried out in a vacuum.
  • FIG. 38 is a graph showing luminance-voltage characteristics of samples 200A, 200B, and 200C.
  • FIG. 39 is a graph showing the current efficiency-luminance characteristics of Sample 200A, Sample 200B, and Sample 200C.
  • Table 1 shows the characteristics of the light emitting element 110R when the emission luminance is around 1000 cd/m 2 in each of the samples 200A, 200B, and 200C.
  • the sample 200B required a higher voltage to obtain the same luminance as compared to the samples 200A and 200C.
  • the sample 200A had the same brightness-voltage characteristics as the sample 200C, which was manufactured in a vacuum, even though the EL film 112Rf was processed by dry etching.
  • sample 200A and the sample 200B processed by dry etching of the EL film 112Rf had lower current efficiency on the low luminance side.
  • sample 200A suppressed a decrease in current efficiency compared to sample 200B.
  • the sample 200A Before the EL film 112f is formed and removed by dry etching, the sample 200A has a protective film 131Raf covering the side surface of the EL layer 112R, for example, as shown in FIG. 35C. It differs from the sample 200B in that it is provided. It was suggested that the provision of the protective film 131Raf can suppress deterioration in the characteristics of the light emitting element 110R due to the formation of the EL film 112f and the removal thereof by dry etching.
  • FIG. 40 is a graph showing temporal changes in normalized luminance of samples 200A, 200B, and 200C.
  • the normalized luminance indicates the relative luminance with reference to the luminance of the light-emitting element 110R at time 0, that is, when luminance measurement is started.
  • the normalized luminance shown in FIG. 40 was measured at room temperature by constant current measurement with the intrinsic luminance of the light emitting element 110R set to 7900 cd/m 2 .
  • a graph showing temporal changes in normalized luminance is referred to as a reliability curve.
  • the protective layer 131Ra and the protective layer 131Rb even if the EL film is processed by dry etching, it has the same driving voltage and reliability as a light-emitting element manufactured in a vacuum, and the protective layer A light-emitting element in which decrease in current efficiency is suppressed as compared with the case where 131Ra and the protective layer 131Rb are not provided was able to be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

表示品位、及び信頼性が高い表示装置を提供する。 第1の発光素子と、第1の発光素子と隣接して配置された第2の発光素子と、第1の保護層と、第2の保護層と、絶縁層と、を有する表示装置。第1の発光素子は、第1の画素電極と、第1のEL層と、共通電極と、を有し、第2の発光素子は、第2の画素電極と、第2のEL層と、共通電極と、を有する。第1のEL層は、第1の画素電極上に設けられ、第2のEL層は、第2の画素電極上に設けられる。第1の保護層は、第1の画素電極の側面、第2の画素電極の側面、第1のEL層の側面、及び第2のEL層の側面と重なる領域を有する。絶縁層は、第1の保護層上に設けられ、第2の保護層は、絶縁層上に設けられる。共通電極は、第1のEL層上、第2のEL層上、及び第2の保護層上に設けられる。

Description

表示装置、表示装置の作製方法、表示モジュール、電子機器
 本発明の一態様は、表示装置、及びその作製方法に関する。本発明の一態様は、表示モジュール、及び電子機器に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
 近年、ディスプレイパネルの高精細化が求められている。高精細なディスプレイパネルが要求される機器としては、例えばスマートフォン、タブレット端末、及びノート型コンピュータ等がある。また、テレビジョン装置、及びモニタ装置等の据え置き型のディスプレイ装置においても、高解像度化に伴う高精細化が求められている。さらに、最も高精細度が要求される機器としては、例えば、仮想現実(VR:Virtual Reality)、又は拡張現実(AR:Augmented Reality)向けの機器がある。
 また、ディスプレイパネルに適用可能な表示装置としては、代表的には液晶表示装置、有機EL(Electro Luminescence)素子又は発光ダイオード(LED:Light Emitting Diode)等の発光素子を備える発光装置、及び例えば電気泳動方式により表示を行う電子ペーパ等が挙げられる。
 例えば、有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層を挟持したものである。この素子に電圧を印加することにより、発光性の有機化合物から発光を得ることができる。このような有機EL素子が適用された表示装置は、例えば液晶表示装置で必要であったバックライトが不要なため、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。例えば、有機EL素子を用いた表示装置の一例が、特許文献1に記載されている。
 特許文献2には、有機EL素子を用いた、VR向けの表示装置が開示されている。
特開2002−324673号公報 国際公開第2018/087625号
 本発明の一態様は、表示品位の高い表示装置を提供することを課題の一とする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一とする。本発明の一態様は、消費電力の低い表示装置を提供することを課題の一とする。本発明の一態様は、高精細化が容易な表示装置を提供することを課題の一とする。本発明の一態様は、低価格な表示装置を提供することを課題の一とする。本発明の一態様は、高い表示品位と、高い精細度を兼ね備える表示装置を提供することを課題の一とする。本発明の一態様は、コントラストの高い表示装置を提供することを課題の一とする。本発明の一態様は、新規な構成を有する表示装置を提供することを課題の一とする。
 本発明の一態様は、表示品位の高い表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、信頼性の高い表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、消費電力の低い表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、高精細化が容易な表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、コストが低い表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、高い表示品位と、高い精細度を兼ね備える表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、コントラストの高い表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、新規な構成を有する表示装置の作製方法を提供することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項等の記載から抽出することが可能である。
 本発明の一態様は、第1の発光素子と、第1の発光素子と隣接して配置された第2の発光素子と、第1の保護層と、第2の保護層と、絶縁層と、を有し、第1の発光素子は、第1の画素電極と、第1のEL層と、共通電極と、を有し、第2の発光素子は、第2の画素電極と、第2のEL層と、共通電極と、を有し、第1のEL層は、第1の画素電極上に設けられ、第2のEL層は、第2の画素電極上に設けられ、第1の保護層は、第1の画素電極の側面、第2の画素電極の側面、第1のEL層の側面、及び第2のEL層の側面と重なる領域を有し、絶縁層は、第1の保護層上に設けられ、第2の保護層は、絶縁層上に設けられ、共通電極は、第1のEL層上、第2のEL層上、及び第2の保護層上に設けられる表示装置である。
 又は、上記態様において、絶縁層は、第1のEL層と第2のEL層の間に設けられてもよい。
 又は、上記態様において、表示装置は、第3の保護層を有し、第3の保護層は、第1の保護層の側面及び下面と接する領域を有してもよい。
 又は、上記態様において、第1乃至第3の保護層は、無機材料を有してもよい。
 又は、上記態様において、第1の保護層は、絶縁層の側面、及び下面と接する領域を有し、第2の保護層は、絶縁層の上面と接する領域を有し、第1の保護層、及び第2の保護層は、窒化物を有してもよい。
 又は、上記態様において、第1の保護層、及び第2の保護層は、窒化シリコン、窒化アルミニウム、又は窒化ハフニウムのうち少なくとも1つを有してもよい。
 又は、上記態様において、絶縁層は、有機材料を有してもよい。
 又は、上記態様において、第1のEL層、第2のEL層、及び第2の保護層と、共通電極と、の間に共通層が設けられ、共通層は、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、又は電子注入層の少なくとも一つを有してもよい。
 又は、上記態様において、第1のEL層の側面と、第2のEL層の側面との間隔は、1μm以下の領域を有してもよい。
 又は、上記態様において、第1のEL層の側面と、第2のEL層の側面との間隔は、100nm以下の領域を有してもよい。
 本発明の一態様の表示装置と、コネクタ及び集積回路のうち少なくとも一方と、を有する表示モジュールも、本発明の一態様である。
 本発明の一態様の表示モジュールと、バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有する電子機器も、本発明の一態様である。
 又は、本発明の一態様は、絶縁表面上に、第1の画素電極、及び第2の画素電極を形成し、第1の画素電極上、及び第2の画素電極上に、第1のEL膜、及び第1の犠牲膜を順に形成し、第1の犠牲膜、及び第1のEL膜を加工することにより、第1の画素電極と重なる領域を有する、第1の犠牲層及び第1のEL層をそれぞれ形成し、少なくとも第1のEL層の側面と、第1の犠牲層の側面及び上面と、を覆う、第1の保護膜を形成し、第1の保護膜を加工することにより、第1のEL層の側面と重なる領域を有する第1の保護層を形成し、第1の犠牲層上、及び第2の画素電極上に、第2のEL膜、及び第2の犠牲膜を順に形成し、第2の犠牲膜、及び第2のEL膜を加工することにより、第2の画素電極と重なる領域を有する、第2の犠牲層及び第2のEL層をそれぞれ形成し、少なくとも第1の犠牲層の上面と、第2の犠牲層の上面及び側面と、第1の保護層の側面と、第2のEL層の側面と、を覆う、第2の保護膜を形成し、第2の保護膜上に、絶縁膜を形成し、絶縁膜を加工することにより、第1のEL層と、第2のEL層と、の間に絶縁層を形成し、第2の保護膜を加工することにより、第1の保護層と絶縁層の間、及び第2のEL層と絶縁層の間に、第2の保護層を形成し、第1の犠牲層上、第2の犠牲層上、及び絶縁層上に、第3の保護膜を形成し、第3の保護膜を加工することにより、絶縁層上に第3の保護層を形成し、第1の犠牲層、及び第2の犠牲層を除去し、第1のEL層上、及び第2のEL層上、及び第3の保護層上に共通電極を形成する表示装置の作製方法である。
 又は、上記態様において、第1の保護膜の形成後に、第1の保護膜と接する領域を有するように第4の保護膜を形成し、第2の保護膜の形成後に、第2の保護膜と接する領域を有するように第5の保護膜を形成してもよい。
 又は、上記態様において、第1の保護膜、及び第2の保護膜は、ALD法を用いて形成し、第3乃至第5の保護膜は、スパッタリング法、又はCVD法を用いて形成してもよい。
 又は、上記態様において、絶縁膜は、スピンコート法、スプレー法、スクリーン印刷法、又はペイント法を用いて形成してもよい。
 又は、上記態様において、絶縁膜を、フォトリソグラフィ法を用いて加工してもよい。
 又は、上記態様において、第1の保護膜、第2の保護膜、第4の保護膜、及び第5の保護膜は、ドライエッチング法を用いて加工してもよい。
 又は、上記態様において、共通電極を形成する前に、第1のEL層上、及び第2のEL層上、及び絶縁層上に、共通層として、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、又は電子注入層の少なくとも一つを形成してもよい。
 本発明の一態様によれば、表示品位の高い表示装置を提供できる。本発明の一態様によれば、信頼性の高い表示装置を提供できる。本発明の一態様によれば、消費電力の低い表示装置を提供できる。本発明の一態様によれば、高精細化が容易な表示装置を提供できる。本発明の一態様によれば、高い表示品位と、高い精細度を兼ね備える表示装置を提供できる。本発明の一態様によれば、低価格な表示装置を提供できる。本発明の一態様によれば、コントラストの高い表示装置を提供できる。本発明の一態様によれば、新規な構成を有する表示装置を提供できる。
 本発明の一態様によれば、表示品位の高い表示装置の作製方法を提供できる。本発明の一態様によれば、信頼性の高い表示装置の作製方法を提供できる。本発明の一態様によれば、消費電力の低い表示装置の作製方法を提供できる。本発明の一態様によれば、高精細化が容易な表示装置の作製方法を提供できる。本発明の一態様によれば、高い表示品位と、高い精細度を兼ね備える表示装置の作製方法を提供できる。本発明の一態様によれば、コストが低い表示装置の作製方法を提供できる。本発明の一態様によれば、コントラストの高い表示装置の作製方法を提供できる。本発明の一態様によれば、新規な構成を有する表示装置の作製方法を提供できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項等の記載から抽出することが可能である。
図1は、表示装置の構成例を示す上面図である。
図2A、図2B、図2C1、図2C2、及び図2Dは、表示装置の構成例を示す断面図である。
図3A及び図3Bは、表示装置の構成例を示す断面図である。
図4A乃至図4Fは、画素の構成例を示す上面図である。
図5A乃至図5Eは、画素の構成例を示す上面図である。
図6A乃至図6Dは、表示装置の作製方法例を示す断面図である。
図7A1、図7A2、図7B1、及び図7B2は、表示装置の作製方法例を示す断面図である。
図8A乃至図8Cは、表示装置の作製方法例を示す断面図である。
図9A1、図9A2、図9B1、及び図9B2は、表示装置の作製方法例を示す断面図である。
図10A乃至図10Cは、表示装置の作製方法例を示す断面図である。
図11A乃至図11Cは、表示装置の作製方法例を示す断面図である。
図12A、図12B1、及び図12B2は、表示装置の作製方法例を示す断面図である。
図13A及び図13Bは、表示装置の作製方法例を示す断面図である。
図14A、図14B1、及び図14B2は、表示装置の作製方法例を示す断面図である。
図15A、図15B1、及び図15B2は、表示装置の作製方法例を示す断面図である。
図16A及び図16Bは、表示装置の作製方法例を示す断面図である。
図17A乃至図17Dは、表示装置の構成例を示す断面図である。
図18A乃至図18Dは、表示装置の構成例を示す断面図である。
図19A乃至図19Dは、表示装置の構成例を示す断面図である。
図20A乃至図20Dは、表示装置の構成例を示す断面図である。
図21は、表示装置の構成例を示す斜視図である。
図22Aは、表示装置の構成例を示す断面図である。図22B及び図22Cは、トランジスタの構成例を示す断面図である。
図23は、表示装置の構成例を示す断面図である。
図24A及び図24Bは、表示モジュールの構成例を示す斜視図である。
図25は、表示装置の構成例を示す断面図である。
図26は、表示装置の構成例を示す断面図である。
図27は、表示装置の構成例を示す断面図である。
図28は、表示装置の構成例を示す断面図である。
図29A乃至図29Fは、発光素子の構成例を示す図である。
図30A及び図30Bは、電子機器の一例を示す図である。
図31A乃至図31Dは、電子機器の一例を示す図である。
図32A乃至図32Fは、電子機器の一例を示す図である。
図33A乃至図33Fは、電子機器の一例を示す図である。
図34A乃至図34Cは、実施例に係るサンプルの構成を示す断面図である。図34Dは、EL層の構成を示す図である。
図35A乃至図35Eは、実施例に係るサンプルの作製方法を示す断面図である。
図36A乃至図36Dは、実施例に係るサンプルの作製方法を示す断面図である。
図37A乃至図37Eは、実施例に係るサンプルの作製方法を示す断面図である。
図38は、実施例に係るサンプルの輝度−電圧特性を示すグラフである。
図39は、実施例に係るサンプルの電流効率−輝度特性を示すグラフである。
図40は、実施例に係るサンプルの規格化輝度の経時変化を示すグラフである。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 なお、本明細書で説明する各図において、各構成要素の大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
 なお、本明細書等における「第1」、及び「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
 また、本明細書等において、「膜」という用語と、「層」という用語とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」又は「絶縁層」という用語は、「導電膜」又は「絶縁膜」という用語に相互に交換することが可能な場合がある。
 なお、本明細書等において、EL層とは発光素子の一対の電極間に設けられ、少なくとも発光性の物質を含む層(発光層ともいう)、又は発光層を含む積層体を示すものとする。
 本明細書等において、表示装置の一態様である表示パネルは表示面に例えば画像を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
 また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)若しくはTCP(Tape Carrier Package)等のコネクタが取り付けられたもの、又は基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、又は単に表示パネル等という場合がある。
(実施の形態1)
 本実施の形態では、本発明の一態様の表示装置の構成例、及び表示装置の作製方法例について説明する。
 本発明の一態様は、発光素子(発光デバイスともいう)を有する表示装置である。表示装置は、少なくとも異なる色の光を発する2つの発光素子を有する。発光素子は、それぞれ一対の電極と、その間にEL層を有する。発光素子として、有機EL素子、又は無機EL素子等の電界発光素子を用いることができる。その他、発光ダイオード(LED)を用いることができる。本発明の一態様の発光素子は、有機EL素子(有機電界発光素子)であることが好ましい。異なる色を発する2つ以上の発光素子は、それぞれ異なる材料を含むEL層を有する。例えば、それぞれ赤色(R)、緑色(G)、又は青色(B)の光を発する3種類の発光素子を有することで、フルカラーの表示装置を実現できる。
 ここで、異なる色の発光素子間でEL層を作り分ける場合、メタルマスク等のシャドーマスクを用いた蒸着法によりEL層を形成することが知られている。しかしながら、この方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び例えば蒸気の散乱による成膜される膜の輪郭の広がり等、様々な影響により、島状の有機膜の形状及び位置に設計からのずれが生じるため、高精細化、及び高開口率化が困難である。また、蒸着においてメタルマスクに付着した材料に起因するゴミが発生する場合がある。このようなゴミは、発光素子のパターン不良を引き起こす懸念がある。また、ゴミに起因したショートが生じる可能性がある。また、メタルマスクに付着した材料のクリーニングの工程を要する。そのため、例えばペンタイル配列等の特殊な画素配列方式を適用することにより、疑似的に精細度(画素密度ともいう)を高める対策が取られていた。
 本発明の一態様は、EL層をメタルマスク等のシャドーマスクを用いることなく、微細なパターンに加工する。これにより、これまで実現が困難であった高い精細度と、大きな開口率を有する表示装置を実現できる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を実現できる。
本明細書等において、メタルマスク、又はFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスという場合がある。また、本明細書等において、メタルマスク、又はFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスという場合がある。
 ここでは、簡単のために、2色の発光素子(第1の発光素子、及び第2の発光素子)を作り分ける場合について説明する。まず、基板上に、第1の画素電極、及び第2の画素電極を形成する。続いて、第1の画素電極上、及び第2の画素電極上に、第1のEL膜、及び第1の犠牲膜を順に形成する。続いて、第1の犠牲膜上にレジストマスクを形成する。続いて、レジストマスクを用いて、第1の犠牲膜、及び第1のEL膜を加工することにより、第1の画素電極と重なる領域を有する、第1の犠牲層及び第1のEL層をそれぞれ形成する。なお、本明細書等において、犠牲膜をマスク膜といい、犠牲層をマスク層といってもよい。
 続いて、第1のEL層の側面と、第1の犠牲層の側面及び上面と、第2の画素電極の側面及び上面と、を覆う、第1の保護膜を形成する。続いて、第1の保護膜を加工することにより、第1のEL層の側面と重なる領域を有する第1の保護層を形成する。第1の保護膜は、ドライエッチング法等、異方性エッチングを用いて加工することができる。
 続いて、第1の犠牲層上、及び第2の画素電極上に、第2のEL膜、及び第2の犠牲膜を順に形成する。続いて、第2の犠牲膜上にレジストマスクを形成する。続いて、レジストマスクを用いて、第2の犠牲膜、及び第2のEL膜を加工することにより、第2の画素電極と重なる領域を有する、第2の犠牲層及び第2のEL層をそれぞれ形成する。
 続いて、第1の犠牲層の上面及び側面と、第2の犠牲層の上面及び側面と、第1の保護層の側面と、第2のEL層の側面と、を覆う、第2の保護膜を形成する。
 続いて、第2の保護膜上に絶縁膜を形成する。続いて、絶縁膜を加工することにより、第1のEL層と第2のEL層の間に絶縁層を形成する。絶縁膜は、感光性材料を用いることができ、例えば感光性の樹脂を用いることができる。この場合、フォトリソグラフィ法を用いて絶縁膜を加工し、絶縁層を第1のEL層と第2のEL層の間に形成することができる。
 続いて、第2の保護膜を加工することにより、第1の保護層と絶縁層の間、第2のEL層と絶縁層の間、及び基板と絶縁層の間に、第2の保護層を形成する。第2の保護膜は、第1の保護膜と同様に、ドライエッチング法等、異方性エッチングを用いて加工することができる。
 続いて、第1の犠牲層上、第2の犠牲層上、及び絶縁層上に、第3の保護膜を形成する。続いて、第3の保護膜を加工することにより、絶縁層上に第3の保護層を形成する。
 続いて、第1の犠牲層、及び第2の犠牲層を除去する。最後に、第1のEL層上、第2のEL層上、及び第3の保護層上に共通電極を形成することで、二色の発光素子を作り分けることができる。具体的には、第1の画素電極、第1のEL層、及び共通電極を有する第1の発光素子と、第2の画素電極、第2のEL層、及び共通電極を有する第2の発光素子と、を作り分けることができる。
 さらに、第1の保護層の形成後に、第1のEL膜の形成から第1の保護層の形成までの工程を繰り返すことで、3色以上の発光素子を作り分けることができ、3色、又は4色以上の発光素子を有する表示装置を実現できる。
 上述のように、本発明の一態様の表示装置では、第1のEL層と第2のEL層の間に絶縁層が設けられる。当該絶縁層により、第1の発光素子と、第2の発光素子と、の間の空隙を埋めることができる。よって、共通電極を設ける面の凹凸を小さくすることができるため、共通電極の切断(段切れ)を抑制できる。以上より、本発明の一態様の表示装置を、信頼性が高い表示装置とすることができる。
 ここで、第1のEL層と第2のEL層の間に設けられる絶縁層として、感光性樹脂等の有機絶縁材料を用いる場合、当該絶縁層に酸素、又は水等が含まれる場合がある。酸素、又は水等がEL層に侵入すると、当該EL層を有する発光素子が劣化する場合がある。そこで、本発明の一態様の表示装置では、第1のEL層と第2のEL層の間に設けられる絶縁層を囲うように、酸素、及び水等に対するバリア性が高い保護層を設ける。これにより、EL層へ酸素、及び水等の不純物が侵入することを抑制できる。よって、本発明の一態様の表示装置を、信頼性が高い表示装置とすることができる。上述の例では、第1のEL層と第2のEL層の間に設けられる絶縁層の側面と下面を覆うように第2の保護層が設けられ、当該絶縁層の上面を覆うように第3の保護層が設けられる。これにより、第1のEL層と第2のEL層の間に設けられる絶縁層を、第2の保護層と第3の保護層により囲うことができる。酸素、及び水等に対するバリア性が高い保護層として、例えば無機絶縁材料を用いることができ、例えば無機窒化物膜を用いることができる。無機窒化物として、例えば窒化シリコン、窒化アルミニウム、及び窒化ハフニウムのうち少なくとも1つを用いることができる。
 上述の作製方法において、第1の保護膜、及び第2の保護膜は、2層以上の積層構造とすることができる。例えば、第1の保護膜、及び第2の保護膜は、被覆性の高い方法で1層目の膜を成膜し、被覆性の低い方法で2層目の膜を成膜することにより形成された、2層積層構造の膜とすることができる。例えば、第1の保護膜、及び第2の保護膜は、ALD法で1層目の膜を成膜し、スパッタリング法、又は化学気相堆積(CVD:Chemical Vapor Deposition)法で2層目の膜を成膜することにより形成された、2層積層構造の膜とすることができる。これにより、第1の保護層、及び第2の保護層は、段差を被覆しつつ膜厚を厚くすることができるため、第1のEL層、及び第2のEL層への酸素、及び水等の不純物の侵入を好適に抑制できる。したがって、本発明の一態様の表示装置を、信頼性が高い表示装置とすることができる。
 また、前述のように、EL層に不純物を侵入させないことが、表示装置の信頼性の観点から好ましい。ここで、EL層の表面に不純物が付着していると、当該不純物がEL層の内部へ侵入し、表示装置の信頼性が低下する場合がある。よって、第1のEL層の形成後、且つ第1のEL層を覆う第1の保護膜の形成前に、第1のEL層の表面に付着している不純物を除去すると、表示装置の信頼性を高めることができ好ましい。同様に、第2のEL層の形成後、且つ第2のEL層を覆う第2の保護膜の形成前に、第2のEL層の表面に付着している不純物を除去することが好ましい。例えば、第1のEL層が形成されている基板を不活性ガス雰囲気下におくと、第1のEL層の表面に付着している不純物を除去することができる。また、第2のEL層が形成されている基板を不活性ガス雰囲気下におくと、第2のEL層の表面に付着している不純物を除去することができる。不活性ガスとして、例えば18族元素(代表的には、ヘリウム、ネオン、アルゴン、キセノン、及びクリプトン等)、及び窒素の中から選ばれるいずれか一又は複数を用いることができる。
 また、EL層が例えば空気に触れると、空気中に含まれる酸素、及び水等の不純物が、EL層の内部に侵入する場合がある。ここで、第1のEL層の形成後は、第1の保護膜が形成されるまで第1のEL層の表面が露出する。よって、第1のEL膜の加工から第1の保護膜の成膜までの工程は、同一の装置内で行うことが好ましい。これにより、第1のEL膜を加工して第1のEL層を形成した後、第1のEL層を空気中に曝すことなく、第1のEL層を覆う第1の保護膜を形成することができる。同様に、第2のEL膜の加工と、第2の保護膜の成膜と、は同一の装置内で行うことが好ましい。以上により、空気中に含まれる不純物がEL層の内部に侵入することを抑制し、表示装置の信頼性を高めることができる。なお、他の工程も同一の装置内で行うと、表示装置の作製工程において表示装置の構成要素が例えば空気に触れることを抑制でき、また表示装置の作製におけるスループットを高めることができるため好ましい。
 異なる色のEL層が隣接する場合、隣接するEL層の間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法によれば、3μm以下、2μm以下、又は、1μm以下にまで狭めることができる。例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで間隔を狭めることもできる。これにより、2つの発光素子間に存在しうる非発光領域の面積を大幅に縮小することができ、開口率を100%に近づけることが可能となる。例えば、開口率は、50%以上、60%以上、70%以上、80%以上、さらには90%以上であって、100%未満を実現することもできる。
 さらに、EL層自体のパターンについても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、パターンの中央と端で厚さのばらつきが生じるため、パターン全体の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工することによりパターンを形成するため、パターン内で厚さを均一にでき、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、上記作製方法によれば、高い精細度と高い開口率を兼ね備えることができる。
 このように、上記作製方法によれば、微細な発光素子を集積した表示装置を実現することができるため、例えばペンタイル方式等の特殊な画素配列方式を適用して疑似的に精細度を高める必要が無い。よって、R、G、Bをそれぞれ一方向に配列させた、いわゆるストライプ配置で、且つ500ppi以上、1000ppi以上、又は2000ppi以上、さらには3000ppi以上、さらには5000ppi以上の精細度の表示装置を実現することができる。
 以下では、本発明の一態様の表示装置の、より具体的な構成例及び作製方法例について、図面を参照して説明する。
[構成例_1]
 図1に、本発明の一態様の表示装置100の上面図を示す。表示装置100は、赤色を呈する発光素子110R、緑色を呈する発光素子110G、及び青色を呈する発光素子110Bをそれぞれ複数有する。図1では、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。
 本明細書等において、例えば発光素子110R、発光素子110G、及び発光素子110Bをまとめて発光素子110と記載する場合がある。例えば、発光素子110という場合は、発光素子110R、発光素子110G、及び発光素子110Bの一部又は全てを示す。他の要素においても同様の記載をする。
 発光素子110R、発光素子110G、及び発光素子110Bは、それぞれマトリクス状に配列している。図1に示す画素103には、一方向に同一の色の発光素子が配列する、いわゆるストライプ配列を示している。なお、発光素子の配列方法はこれに限られず、デルタ配列、又はジグザグ配列等の配列方法を適用してもよいし、ペンタイル配列を用いることもできる。
 発光素子110R、発光素子110G、及び発光素子110Bとしては、有機EL素子、又は無機EL素子等のEL素子を用いることが好ましい。
 また図1には、接続電極111C、及び共通電極115を示しており、共通電極115は破線で示している。接続電極111Cには、共通電極115に供給するための電位(例えばアノード電位、又はカソード電位)が与えられる。接続電極111Cは、例えば発光素子110Rが配列する表示領域の外に設けられる。例えば、接続電極111Cは、表示領域の外周に沿って設けることができる。例えば、接続電極111Cは、表示領域の外周の一辺に沿って設けられていてもよいし、表示領域の外周の2辺以上に沿って設けられていてもよい。すなわち、表示領域の上面形状が長方形である場合には、接続電極111Cの上面形状は、帯状、L字状、コの字状(角括弧状)、又は枠状等とすることができる。
 図2Aは、図1中の一点鎖線A1−A2に対応する断面図である。図2Bは、図1中の一点鎖線B1−B2に対応する断面図である。図2C1は、図1中の一点鎖線C1−C2に対応する断面図である。
 図2Aには、発光素子110R、発光素子110G、及び発光素子110Bの断面構成例を示している。また、図2Bには、発光素子110Gの断面構成例を示している。発光素子110は、トランジスタを含む層101上に設けられる。また、トランジスタを含む層101は、基板(図示せず)上に設けられる。
 トランジスタを含む層101には、例えば複数のトランジスタが設けられ、これらのトランジスタを覆うように絶縁層が設けられた積層構造を適用することができる。ここで、図2A、及び図2B等に示すように、トランジスタを含む層101は、隣接する発光素子110の間に凹部を有してもよい。例えば、トランジスタを含む層101の最表面に位置する絶縁層に凹部が設けられてもよい。なお、トランジスタを含む層101は、隣接する発光素子110の間に凹部を有さない場合もある。
 トランジスタを含む層101には、例えば画素回路、走査線駆動回路(ゲートドライバ)、及び信号線駆動回路(ソースドライバ)等が構成されていることが好ましい。また、上記に加えて演算回路、又は記憶回路等が構成されていてもよい。
 発光素子110Rは、画素電極111Rと、画素電極111R上のEL層112Rと、を有する。発光素子110Gは、画素電極111Gと、画素電極111G上のEL層112Gと、を有する。発光素子110Bは、画素電極111Bと、画素電極111B上のEL層112Bと、を有する。また、発光素子110R、発光素子110G、及び発光素子110Bは、EL層112R上、EL層112G上、及びEL層112B上の共通層114と、共通層114上の共通電極115と、を有する。共通層114、及び共通電極115は、各発光素子110に共通な一続きの層として設けられる。
 EL層112R、EL層112G、及びEL層112Bは、それぞれ発光層を有する。発光層は、発光物質を含む層である。発光層は、1種又は複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、又は赤色等の発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。例えば、EL層112Rの発光層は、赤色を呈する発光物質を有することができる。また、EL層112Gの発光層は、緑色を呈する発光物質を有することができる。さらに、EL層112Bの発光層は、青色を呈する発光物質を有することができる。
 発光物質としては、蛍光材料、燐光材料、TADF材料、及び量子ドット材料等が挙げられる。
 なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、又はコア型量子ドット材料等を用いることができる。また、12族と16族、13族と15族、又は14族と16族の元素グループを含む材料を用いてもよい。また、カドミウム、セレン、亜鉛、硫黄、リン、インジウム、テルル、鉛、ガリウム、ヒ素、又はアルミニウム等の元素を含む量子ドット材料を用いてもよい。
 蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、及びナフタレン誘導体等が挙げられる。
 燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、又はピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、及び希土類金属錯体等が挙げられる。
 発光層は、発光物質(ゲスト材料)に加えて、1種又は複数種の有機化合物(ホスト材料、及びアシスト材料等)を有していてもよい。1種又は複数種の有機化合物としては、正孔輸送性材料及び電子輸送性材料の一方又は双方を用いることができる。また、1種又は複数種の有機化合物として、バイポーラ性材料、又はTADF材料を用いてもよい。
 発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光素子の高効率、低電圧駆動、及び長寿命を同時に実現できる。
 EL層112R、EL層112G、及びEL層112Bは、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、電子ブロック材料、又はバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
 発光素子には低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光素子を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、又は塗布法等の方法で形成することができる。
 例えば、EL層112R、EL層112G、及びEL層112Bは、それぞれ、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち一つ以上を有していてもよい。
 EL層112R、EL層112G、及びEL層112Bは、それぞれ、発光層と、発光層上のキャリア輸送層を有することが好ましい。これにより、表示装置100の作製工程中に、発光層が最表面に露出することを抑制し、発光層が受けるダメージを低減することができる。これにより、発光素子の信頼性を高めることができる。よって、表示装置100を信頼性が高い表示装置とすることができる。
 正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物、及び、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料等が挙げられる。
 正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、正孔の輸送性が電子の輸送性よりも高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、又はフラン誘導体等)、又は芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
 電子輸送層は、電子注入層によって陰極から注入された電子を、発光層に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、又はチアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、又はその他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。なお、電子の輸送性が正孔の輸送性よりも高い物質であれば、これら以外のものも用いることができる。
 電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
 電子注入層としては、例えば、リチウム、セシウム、イッテルビウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF、Xは任意数)、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、若しくは炭酸セシウム等のアルカリ金属、アルカリ土類金属、又はこれらの化合物を用いることができる。また、電子注入層としては、2以上の積層構造としてもよい。当該積層構造としては、例えば、1層目にフッ化リチウムを用い、2層目にイッテルビウムを設ける構成とすることができる。
 又は、電子注入層としては、電子輸送性材料を用いてもよい。例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を、電子輸送性材料に用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、及びピリダジン環)、及びトリアジン環のうち少なくとも一つを有する化合物を用いることができる。
 なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)が、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、又は逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:Highest Occupied Molecular Orbital)準位及びLUMO準位を見積もることができる。
 例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、又は2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移点(Tg)を備え、耐熱性に優れる。
 共通層114は例えば、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、又は電子注入層のうち、一以上を有する層とすることが好ましい。例えば、画素電極111をアノード、共通電極をカソードとする発光素子においては、共通層114として、電子注入層を有する構成、又は電子注入層と電子輸送層の2つを有する構成を用いることができる。また、画素電極111をカソード、共通電極をアノードとする発光素子においては、共通層114として、正孔注入層を有する構成、又は正孔注入層と正孔輸送層の2つを有する構成を用いることができる。ここで、例えば共通層114が電子注入層を有する場合は、EL層112R、EL層112G、及びEL層112Bは電子注入層を有さなくてもよい。例えば、EL層112R、EL層112G、及びEL層112Bは、正孔注入層と、正孔注入層上の正孔輸送層と、正孔輸送層上の発光層と、発光層上の電子輸送層と、を有する構成とすることができる。また、例えば共通層114が正孔注入層を有する場合は、EL層112R、EL層112G、及びEL層112Bは正孔注入層を有さなくてもよい。
 前述のように、共通層114は、各発光素子110に共通な一続きの層として設けられる。よって、共通層114は、例えばエッチングにより加工する必要が無い。したがって、表示装置100が共通層114を有する構成とすることで、表示装置100の作製工程を簡略化できるため、表示装置100の作製コストを低減できる。よって、表示装置100を、低価格な表示装置とすることができる。
 また、共通層114と共通電極115は、間にエッチング等の工程を挟まずに連続して形成することができる。よって、共通層114と共通電極115の界面を清浄な面とすることができる。これにより、表示装置100を信頼性が高い表示装置とすることができる。なお、表示装置100は共通層114を有さなくてもよい。この場合、例えば画素電極111をアノード、共通電極をカソードとする発光素子においては、EL層112R、EL層112G、及びEL層112Bは電子輸送層上に電子注入層が設けられる構成とすることができる。
 画素電極111と共通電極115のいずれか一方に可視光に対して透光性を有する導電層を用い、他方に反射性を有する導電層を用いる。画素電極111を透光性、共通電極115を反射性とすることで、下面射出型(ボトムエミッション型)の表示装置とすることができ、反対に画素電極111を反射性、共通電極115を透光性とすることで、上面射出型(トップエミッション型)の表示装置とすることができる。なお、画素電極111と共通電極115の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示装置とすることもできる。
 画素電極111を、可視光に対して反射性を有する導電層とする場合には、画素電極111として例えば銀、アルミニウム、チタン、タンタル、モリブデン、白金、金、窒化チタン、又は窒化タンタル等を用いることができる。また、画素電極111として合金を用いることができる。例えば、銀を含む合金を用いることができる。銀を含む合金として例えば、銀、パラジウム、及び銅を含む合金を用いることができる。また例えば、アルミニウムを含む合金を用いることができる。また、これらの材料を2層以上、積層して用いてもよい。
 また、画素電極111を、可視光に対して反射性を有する導電層上に、可視光に対して透光性を有する導電層を設ける積層構造とすることができる。可視光に対して透光性を有する導電性材料として、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛、シリコンを含むインジウム錫酸化物、又はシリコンを含むインジウム亜鉛酸化物等の導電性酸化物を用いることができる。また、可視光に対して反射性を有する導電性材料の酸化物を可視光に対して透光性を有する導電性材料として用いてもよく、当該酸化物は、例えば可視光に対して反射性を有する導電性材料の表面を酸化することにより形成することができる。具体的には例えば、酸化チタンを用いてもよい。酸化チタンは例えば、チタンの表面を酸化することに形成することができる。
 画素電極111の表面に酸化物を設けることにより、EL層112の形成の際に、例えば画素電極111との酸化反応を抑制できる。
 また、画素電極111を、可視光に対して反射性を有する導電層上に、可視光に対して透光性を有する導電層を設ける積層構造とすることにより、可視光に対して透光性を有する導電層を光学調整層として機能させることができる。
 画素電極111が光学調整層を有することにより、光路長を調整することができる。発光素子110における光路長は例えば、光学調整層の厚さと、EL層112において発光性の化合物を含む層より下層に設けられる層の厚さとの和に対応する。
 発光素子110において、マイクロキャビティ構造(微小共振器構造)を用いて光路長を異ならせることにより、特定の波長の光を強めることができる。これにより、色純度が高められた表示装置を実現することができる。
 例えば、各発光素子110において、EL層112の厚さを異ならせることにより、マイクロキャビティ構造を実現することができる。例えば、最も波長の長い光を発する発光素子110RのEL層112Rが最も厚く、最も波長の短い光を発する発光素子110BのEL層112Bが最も薄い構成とすることができる。なお、これに限られず、各発光素子110が発する光の波長、発光素子110を構成する層の光学特性、及び発光素子110の電気特性等を考慮して、各EL層112の厚さを調整することができる。
 可視光に対して反射性を有する導電層には、反射率が高いアルミニウム、又は銀等を用いることが好ましい。特に、アルミニウムは、微細加工がしやすいため、高精細な表示装置を作製する際に好適である。
 可視光に対して透光性を有する導電層には、透明酸化物導電材料を用いることが好ましい。しかし、例えばインジウムを含む透明酸化物導電材料をアルミニウムに直接接して設けると、アルミニウムが後の工程で腐食する恐れがある。そのため、腐食が生じないように、例えばアルミニウムを、インジウムを含む透明酸化物導電膜と接しない層に用いることが好ましい。例えば、画素電極111は、アルミニウムを用いる層と、酸化チタンを用いる層と、シリコンを含むインジウム錫酸化物を用いる層と、の3層積層構造とすることができる。
 ここで、画素電極111の形成の際は、アルミニウム膜と酸化チタン膜とを連続成膜することが好ましい。アルミニウム膜を成膜した後、大気開放してから、酸化チタン膜を成膜する場合、大気開放によりアルミニウム膜が自然酸化する恐れがある。アルミニウム膜を成膜した後、大気開放することなく酸化チタン膜を成膜することで、アルミニウムの酸化を抑制できる。
 なお、アルミニウム膜を形成した後、酸化チタン膜を形成するまでに大気開放が必要な場合は、大気開放する前に、アルミニウム膜上に他の膜を形成することが好ましい。これにより、大気開放によりアルミニウム膜が酸化されることを抑制できる。当該他の膜の膜厚は極めて薄くすることができる。例えば、アルミニウム膜上にチタン膜を形成し、その後、大気開放してから、チタン膜上に酸化チタン膜を形成してもよい。
 又は、アルミニウム膜の表面が酸化している懸念がある場合、逆スパッタ処理により、アルミニウム膜の表面の酸化膜を除去してもよい。例えば、アルミニウム膜を形成し、大気開放した後、逆スパッタ処理によりアルミニウム膜の表面の酸化膜を除去し、その後、酸化チタン膜を形成してもよい。
 酸化チタン膜を形成する方法としては、チタンターゲットと酸素ガスとを用いた反応性スパッタリング法、及び酸化チタンターゲットと不活性ガス(例えばアルゴンガス)を用いたスパッタリング法等が挙げられる。ここで、酸素ガスを用いる場合、アルミニウム膜の表面が酸素ガスに曝されて酸化する恐れがある。したがって、アルミニウム膜上に接して形成される膜は、酸素ガスを用いずに形成することが好ましい。そのため、酸化チタン膜は、酸化チタンターゲットと不活性ガス(例えばアルゴンガス)とを用いたスパッタリング法を用いて形成することが好ましい。
 共通電極115は、可視光に対して透光性を有する導電層とすることができる。例えば、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、及びガリウムを含む酸化亜鉛等の導電性酸化物、又はグラフェンを、共通電極115に用いることができる。又は、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、若しくはチタン等の金属材料、又は該金属材料を含む合金材料を共通電極115に用いることができる。又は、該金属材料の窒化物(例えば、窒化チタン)等を共通電極115に用いてもよい。なお、金属材料、又は合金材料(又はそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金と、インジウムスズ酸化物との積層膜を共通電極115に用いると、共通電極115の導電性を高めることができるため好ましい。
 ここで、例えばEL層112RとEL層112Gの間には、EL層112Rの側面と重なる領域を有する保護層131と、EL層112Gの側面と重なる領域を有する保護層131と、が設けられる。他のEL層112間にも同様に保護層131が設けられる。また、画素電極111の側面と重なる領域を有する保護層131を設けることができる。
 保護層131は、酸素、及び水等に対するバリア性が高い層とすることが好ましい。これにより、EL層112の側面から内部へ酸素、及び水等の不純物が侵入することを抑制できる。よって、発光素子110の劣化を抑制し、表示装置100を信頼性が高い表示装置とすることができる。
 保護層131として、無機絶縁材料を用いることができ、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、及び酸化ハフニウム等の酸化物又は窒化物を含む層とすることができる。なお、保護層131は、ピンホールがない膜種、及び膜厚とすることが好ましい。
 なお、本明細書等において、酸化窒化物とは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 図2A、及び図2Bでは、EL層112の側面と重なる領域を有する保護層131の最上面が、EL層112の上面より上に位置する例を示しているが、本発明の一態様はこれに限られない。例えば、EL層112の側面と重なる領域を有する保護層131の最上面の高さが、EL層112の上面の高さと等しくてもよい。又は、EL層112の側面と重なる領域を有する保護層131の最上面が、EL層112の上面より下に位置してもよい。
 ここで、隣接するEL層112の間隔を大きくすると、画素103の開口率が小さくなる場合がある。一方、隣接するEL層112の間隔を小さくすると、EL層112の側面を被覆するように保護層131が形成されず、保護層131によるバリア効果が小さくなることにより、EL層112の側面から内部へ不純物が侵入しやすくなる場合がある。そこで、EL層112の側面と、隣接するEL層112の側面との間隔は、3nm以上200nm以下の領域を有することが好ましく、さらには3nm以上150nm以下の領域を有することが好ましく、さらには5nm以上150nm以下の領域を有することが好ましく、さらには5nm以上100nm以下の領域を有することが好ましく、さらには10nm以上100nm以下の領域を有することが好ましく、さらには10nm以上50nm以下の領域を有することが好ましい。EL層112の側面と、隣接するEL層112の側面との間隔を前述の範囲とすることで、表示装置100を、高開口率且つ信頼性の高い表示装置とすることができる。
 隣接する発光素子110の間には、絶縁層132が設けられる。絶縁層132は、発光素子110が有するそれぞれのEL層112の間に位置する。絶縁層132は例えば、それぞれが異なる色を呈する2つのEL層112の間に設けられる。あるいは絶縁層132は例えば、同じ色を呈する2つのEL層112の間に設けられる。あるいは絶縁層132が、異なる色を呈する2つのEL層112の間に設けられ、同じ色を呈する2つのEL層112の間には設けられない構成としてもよい。また、絶縁層132は、発光素子110が有するそれぞれの画素電極111の間に位置することができる。
 また、絶縁層132は、上面視において網目状(格子状、又はマトリクス状ということもできる)の形状を有するように、隣接画素間のEL層112間に配置されている。
 異なる色を呈するEL層112の間に絶縁層132を設けることにより、EL層112R、EL層112G、及びEL層112Bが、互いに接することを抑制できる。これにより、隣接する2つのEL層112を介して電流が流れ、意図しない発光が生じることを抑制できる。よって、コントラストを高めることができ、表示装置100を表示品位の高い表示装置とすることができる。また、それぞれの画素電極111の間に絶縁層132を設けることにより、画素電極111同士が接することを抑制できる。これにより、画素電極111同士が短絡することを抑制できる。よって、表示装置100を信頼性が高い表示装置とすることができる。
 また、隣接する発光素子110間に絶縁層132を設けることで、EL層112が設けられる領域と、EL層112が設けられない領域と、に起因する段差を平坦化することができる。これにより、隣接する発光素子110間に絶縁層132が設けられず、例えば空隙が形成されている場合と比較して、共通電極115の被覆性を向上させることができる。よって、共通電極115に段切れが生じ、接続不良が発生することを抑制できる。また、段差によって共通電極115が局所的に薄膜化して電気抵抗が上昇することを抑制できる。以上より、表示装置100を信頼性が高い表示装置とすることができる。
 なお、隣接する同色の発光素子110間において絶縁層132を設けずに、異なる色の発光素子110間においてのみ絶縁層132を形成する場合、上面視においてストライプ形状を有する絶縁層132とすることができる。絶縁層132をストライプ形状とすることで、絶縁層132を格子状の形状を有する場合と比較して、絶縁層132を形成するために必要なスペースが小さくなる。よって、表示装置100の開口率を高めることができる。なお、絶縁層132をストライプ形状とする場合、隣接する同色のEL層112は列方向に地続きになるように帯状に加工されていてもよい。
 絶縁層132には、有機材料を有する絶縁層を好適に用いることができる。例えば、絶縁層132として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を用いることができる。また、絶縁層132として、感光性の樹脂を用いることができる。感光性の樹脂は、ポジ型の材料、又はネガ型の材料を用いることができる。
 絶縁層132として、感光性の樹脂を用いることにより、露光及び現像の工程のみで絶縁層132を作製することができる。よって、表示装置100の作製工程を簡略化できるため、表示装置100の作製コストを低減できる。したがって、表示装置100を、低価格な表示装置とすることができる。
 絶縁層132として有機材料を用いる場合、絶縁層132に酸素、又は水等が含まれる場合がある。前述のように、酸素、又は水等がEL層112に侵入すると、発光素子110が劣化する場合がある。ここで、表示装置100では、保護層131と接するように絶縁層132が設けられる。例えば、絶縁層132の側面及び下面が保護層131と接するように、絶縁層132が設けられる。これにより、絶縁層132に含まれる酸素、又は水等がEL層112に侵入することを抑制し、表示装置100を信頼性が高い表示装置とすることができる。
 図2Aに示すように、EL層112Rと絶縁層132の間に位置する保護層131の層数と、EL層112Gと絶縁層132の間に位置する保護層131の層数と、EL層112Bと絶縁層132の間に位置する保護層131の層数と、は互いに異ならせることができる。図2A、及び図2Bでは、EL層112Rと絶縁層132の間に3層の保護層131が設けられ、EL層112Gと絶縁層132の間に2層の保護層131が設けられ、EL層112Bと絶縁層132の間に1層の保護層131が設けられる例を示している。また、図2A、及び図2Bでは、画素電極111Rと絶縁層132の間に設けられる保護層131の数、画素電極111Gと絶縁層132の間に設けられる保護層131の数、及び画素電極111Bと絶縁層132の間に設けられる保護層131の数がいずれも3層である例を示している。なお、保護層131の層数は図2A、及び図2Bに示す例に限られず、詳細は後述するが、例えば表示装置100の作製方法により適宜異ならせることができる。また、画素電極111と、絶縁層132と接する保護層131と、の間に位置する保護層131がなくてもよい。
 絶縁層132上には、保護層133が設けられる。例えば、絶縁層132の上面と接する領域を有するように、保護層133が設けられる。保護層133は、例えば絶縁層132と共通層114の間に設けられる。前述のように、共通層114はEL層112R上、EL層112G上、及びEL層112B上に設けられ、共通電極115は共通層114上に設けられる。よって、共通層114、及び共通電極115は、EL層112R、EL層112G上、EL層112B上、及び保護層133上に設けられる。
 保護層133は、EL層112と、絶縁層132と、の間に設けられる保護層131の上面と重なる領域を有するように設けることができる。なお、図2A、及び図2Bでは、EL層112の端部と保護層133の端部が一致しているが、EL層112の端部と保護層133の端部は一致しなくてもよい。例えば、保護層133の端部が、EL層112と接する面に設けられる保護層131の端部と、絶縁層132と接する面に設けられる保護層131の端部と、の間に位置してもよい。
 保護層133は、酸素、及び水等に対するバリア性が高い層とすることが好ましい。これにより、例えば樹脂等の有機絶縁材料を有することができる絶縁層132に含まれる酸素、及び水等の不純物が、共通層114に侵入することを抑制できる。よって、表示装置100を信頼性が高い表示装置とすることができる。
 以上より、表示装置100では、絶縁層132が、酸素、及び水等に対するバリア性が高い層である、保護層131及び保護層133により囲われている。これにより、表示装置100を信頼性が高い表示装置とすることができる。
 保護層133として、無機絶縁材料を用いることができ、例えば窒化物を用いることができる。具体的には、保護層133は、窒化シリコン、窒化アルミニウム、又は窒化ハフニウムのうち少なくとも1つを含むことができる。また、保護層133として酸化物、又は酸化窒化物を用いることができ、例えば酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、及び酸化窒化ハフニウム等の酸化物膜又は酸窒化物膜を用いることができる。また、保護層133は、例えばスパッタリング法、CVD法、真空蒸着法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、又は原子層堆積(ALD:Atomic Layer Deposition)法を用いて形成することができる。
 共通電極115上には、発光素子110R、発光素子110G、及び発光素子110Bを覆って、保護層121が設けられる。保護層121は、上方から各発光素子110に水等の不純物が拡散することを防ぐ機能を有する。
 保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造又は積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、及び酸化ハフニウム膜等の酸化物膜又は窒化物膜が挙げられる。又は、保護層121としてインジウムガリウム酸化物、又はインジウムガリウム亜鉛酸化物等の半導体材料を用いてもよい。
 また、保護層121として、無機絶縁膜と、有機絶縁膜の積層膜を用いることもできる。例えば、一対の無機絶縁膜の間に、有機絶縁膜を挟んだ構成とすることが好ましい。さらに有機絶縁膜が平坦化膜として機能することが好ましい。これにより、有機絶縁膜の上面を平坦なものとすることができるため、その上の無機絶縁膜の被覆性が向上し、バリア性を高めることができる。また、保護層121の上面が平坦となるため、保護層121の上方に構造物(例えばカラーフィルタ、タッチセンサの電極、又はレンズアレイ等)を設ける場合に、下方の構造に起因する凹凸形状の影響を軽減できるため好ましい。
 図2C1に、図1に示す一点鎖線C1−C2に対応する断面を示す。一点鎖線C1−C2に示す断面においては、接続電極111Cと、共通電極115と、が電気的に接続する領域130が設けられる。なお、図2C1においては、接続電極111Cと共通電極115との間に共通層114が設けられる例を示すが、領域130において、共通層114を設けない構成としてもよい。図2C2には、領域130において共通層114を設けない場合の、図1に示す一点鎖線C1−C2に対応する断面を示す。領域130において共通層114を設けない構成とすることにより、接続電極111Cと共通電極115が接する構成とすることができ、接触抵抗をより低くすることができる。
 領域130において、接続電極111C上に共通電極115が設けられ、共通電極115を覆って保護層121が設けられる。また、接続電極111Cの上面と重ならない領域に保護層131、及び絶縁層132が設けられ、保護層131上、及び絶縁層132上に保護層133が設けられる。さらに、図2C1に示す例では、接続電極111C上、保護層133上、及びトランジスタを含む層101上に、共通層114が設けられる。なお、図2C1、及び図2C2では、接続電極111Cの両側に保護層131が3層ずつ設けられる例を示しているが、本発明の一態様はこれに限られず、詳細は後述するが、例えば表示装置100の作製方法により適宜異ならせることができる。
 図2Dに、図2Aにおいて一点鎖線で囲んだ領域の拡大図を示す。図2Dに示すように、絶縁層132は、凹形状とすることができる。
 また、保護層131は、2層積層構造とすることができ、例えば図2Dに示すように保護層131aと保護層131bの2層積層構造とすることができる。この場合、例えばEL層112の側面は、保護層131aと接する領域を有することができる。また、絶縁層132の側面及び下面と接する領域を有する保護層131において、保護層131bが絶縁層132の側面及び下面と接する領域を有し、保護層131aは保護層131bの側面及び下面と接する領域を有する。
 保護層131aは、例えば被覆性の高い方法で成膜された膜を加工して形成された層とし、保護層131bは、例えば被覆性の低い方法で成膜された膜を加工して形成された層とすることができる。例えば、保護層131aは、ALD法で成膜された膜を加工して形成された層とすることができ、保護層131bは、スパッタリング法、又はCVD法で成膜された膜を加工して形成された層とすることができる。これにより、保護層131は、段差を被覆しつつ膜厚を厚くすることができる。よって、EL層112への酸素、及び水等の不純物の侵入を好適に抑制できる。したがって、表示装置100を、信頼性が高い表示装置とすることができる。
 例えば、保護層131aとして、無機酸化物又は無機窒化物を用いることができ、例えば酸化アルミニウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化窒化アルミニウム、又は酸化ハフニウム等のうち少なくとも1つを含むことができる。また、保護層131bとして、無機窒化物を用いることができ、例えば窒化シリコン、窒化アルミニウム、又は窒化ハフニウムのうち少なくとも1つを含むことができる。
 保護層131aの膜厚は、例えば1nm以上60nm以下とすることが好ましく、1nm以上40nm以下とすることがより好ましく、5nm以上20nm以下とすることがさらに好ましい。また、保護層131bの膜厚は、例えば60nm以上300nm以下とすることが好ましく、60nm以上150nm以下とすることがより好ましく、80nm以上120nm以下とすることがさらに好ましい。なお、保護層131a、及び保護層131bは、ピンホールがない膜種、及び膜厚とすることが好ましい。
 図3A、及び図3Bは、図2Dの構成の変形例を示す。図3A、及び図3Bに示す構成は、例えば絶縁層132の形状が図2Dに示す構成と異なる。
 図3Aに示す絶縁層132は、上面を平坦としている。図3Bに示す絶縁層132は、EL層112の上面と重なる領域を有する。図3Bに示す構成において、EL層112の上面と絶縁層132の間には犠牲層145が設けられる。例えば、EL層112の上面と保護層131の間に犠牲層145が設けられる。ここで、犠牲層145は、犠牲層145aと犠牲層145bの2層積層構造とすることができる。図3Bでは、犠牲層145として、EL層112Rの上面と絶縁層132の間に設けられる犠牲層145R、及びEL層112Gの上面と絶縁層132の間に設けられる犠牲層145Gを示している。犠牲層145の詳細については後述する。
 図3Bでは、保護層133の端部が犠牲層145の端部と一致しているが、保護層133の端部は犠牲層145の端部と一致しなくてもよい。例えば、保護層133が、EL層112の上面と接する領域を有してもよい。つまり、保護層133が犠牲層145の側面を覆う構成としてもよい。
[画素のレイアウト]
 次に、図1とは異なる画素レイアウトについて説明する。副画素の配列に特に限定はなく、様々な方法を適用することができる。副画素の配列としては、例えば、ストライプ配列、Sストライプ配列、マトリクス配列、デルタ配列、ベイヤー配列、及びペンタイル配列等が挙げられる。
 また、副画素の上面形状としては、例えば、三角形、四角形(長方形、及び正方形を含む)、又は五角形等の多角形、これら多角形の角が丸い形状、楕円形、又は円形等が挙げられる。ここで、副画素の上面形状は、発光素子の発光領域の上面形状に相当する。
 図4Aに示す画素103には、Sストライプ配列が適用されている。図4Aに示す画素103は、副画素103a、副画素103b、及び副画素103cの、3つの副画素から構成される。例えば、図5Aに示すように、副画素103aを青色の副画素Bとし、副画素103bを赤色の副画素Rとし、副画素103cを緑色の副画素Gとしてもよい。
 図4Bに示す画素103は、角が丸い略台形の上面形状を有する副画素103aと、角が丸い略三角形の上面形状を有する副画素103bと、角が丸い略四角形、略六角形、又は略八角形の上面形状を有する副画素103cと、を有する。また、副画素103aは、副画素103bよりも発光面積が広い。このように、各副画素の形状及びサイズはそれぞれ独立に決定することができる。例えば、信頼性の高い発光素子を有する副画素ほど、サイズを小さくすることができる。例えば、図5Bに示すように、副画素103aを緑色の副画素Gとし、副画素103bを赤色の副画素Rとし、副画素103cを青色の副画素Bとしてもよい。
 図4Cに示す画素124a、及び画素124bには、ペンタイル配列が適用されている。図4Cでは、副画素103a及び副画素103bを有する画素124aと、副画素103b及び副画素103cを有する画素124bと、が交互に配置されている例を示す。例えば、図5Cに示すように、副画素103aを赤色の副画素Rとし、副画素103bを緑色の副画素Gとし、副画素103cを青色の副画素Bとしてもよい。
 図4D及び図4Eに示す画素124a、及び画素124bは、デルタ配列が適用されている。画素124aは上の行(1行目)に、2つの副画素(副画素103a、及び副画素103b)を有し、下の行(2行目)に、1つの副画素(副画素103c)を有する。画素124bは上の行(1行目)に、1つの副画素(副画素103c)を有し、下の行(2行目)に、2つの副画素(副画素103a、及び副画素103b)を有する。例えば、図5Dに示すように、副画素103aを赤色の副画素Rとし、副画素103bを緑色の副画素Gとし、副画素103cを青色の副画素Bとしてもよい。
 図4Dは、各副画素が、角が丸い略四角形の上面形状を有する例であり、図4Eは、各副画素が、円形の上面形状を有する例である。
 図4Fは、各色の副画素がジグザグに配置されている例である。具体的には、上面視において、列方向に並ぶ2つの副画素(例えば、副画素103aと副画素103b、又は、副画素103bと副画素103c)の上辺の位置がずれている。例えば、図5Eに示すように、副画素103aを赤色の副画素Rとし、副画素103bを緑色の副画素Gとし、副画素103cを青色の副画素Bとしてもよい。
 フォトリソグラフィ法では、加工するパターンが微細になるほど、光の回折の影響を無視できなくなるため、露光によりフォトマスクのパターンを転写する際に忠実性が損なわれ、レジストマスクを所望の形状に加工することが困難になる。そのため、フォトマスクのパターンが矩形であっても、角が丸まったパターンが形成されやすい。したがって、副画素の上面形状が、多角形の角が丸い形状、楕円形、又は円形等になることがある。
 さらに、本発明の一態様の表示装置の作製方法では、レジストマスクを用いてEL層を島状に加工する。EL層上に形成したレジスト膜は、EL層の耐熱温度よりも低い温度で硬化する必要がある。そのため、EL層の材料の耐熱温度及びレジスト材料の硬化温度によっては、レジスト膜の硬化が不十分になる場合がある。硬化が不十分なレジスト膜は、加工時に所望の形状から離れた形状をとることがある。その結果、EL層の上面形状が、多角形の角が丸い形状、楕円形、又は円形等になることがある。例えば、上面形状が正方形のレジストマスクを形成しようとした場合に、円形の上面形状のレジストマスクが形成され、EL層の上面形状が円形になることがある。
 なお、EL層の上面形状を所望の形状とするために、設計パターンと、転写パターンとが、一致するように、あらかじめマスクパターンを補正する技術(OPC(Optical Proximity Correction:光近接効果補正)技術)を用いてもよい。具体的には、OPC技術では、例えばマスクパターン上の図形コーナー部に補正用のパターンを追加する。
[作製方法例]
 以下では、本発明の一態様の表示装置の作製方法の一例について、図面を参照して説明する。ここでは、上記構成例で示した表示装置100を例に挙げて説明する。
 なお、表示装置を構成する薄膜(絶縁膜、半導体膜、及び導電膜等)は、スパッタリング法、CVD法、真空蒸着法、PLD法、又はALD法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、又は熱CVD法等がある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。さらに、ALD法としては、PEALD法、又は熱ALD法等がある。
 また、表示装置を構成する薄膜(絶縁膜、半導体膜、及び導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、又はナイフコート等の方法により形成することができる。
 また、表示装置を構成する薄膜を加工する際には、例えばフォトリソグラフィ法を用いることができる。それ以外に、ナノインプリント法、サンドブラスト法、又はリフトオフ法等により薄膜を加工してもよい。また、メタルマスク等の遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
 フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、例えばエッチングにより当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
 フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、又はこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、又はArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−Violet)光、又はX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線、又は電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビーム等のビームを走査することにより露光を行う場合には、フォトマスクは不要である。
 薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、又はサンドブラスト法等を用いることができる。
 表示装置100を作製するには、まず、基板(図示せず)上にトランジスタを含む層101を形成する。前述のように、トランジスタを含む層101は、例えばトランジスタを覆うように絶縁層が設けられた積層構造を適用することができる。
 基板としては、少なくとも後の熱処理に耐えうる程度の耐熱性を有する基板を用いることができる。基板として、絶縁性基板を用いる場合には、ガラス基板、石英基板、サファイア基板、セラミック基板、又は有機樹脂基板等を用いることができる。また、シリコン又は炭化シリコン等を材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、又はSOI基板等の半導体基板を用いることができる。
 続いて、トランジスタを含む層101上に、画素電極111となる導電膜を成膜する。具体的には、例えばトランジスタを含む層101の絶縁表面上に、画素電極111となる導電膜を成膜する。続いて、導電膜の一部をエッチングして除去し、トランジスタを含む層101上に画素電極111R、画素電極111G、画素電極111B、及び接続電極111Cを形成する(図6A)。
 画素電極として可視光に対して反射性を有する導電層を用いる場合、可視光の波長域全域での反射率ができるだけ高い材料(例えば銀又はアルミニウム等)を適用することが好ましい。これにより、発光素子の光取り出し効率を高められるだけでなく、色再現性を高めることができる。
 続いて、画素電極111R、画素電極111G、画素電極111B上、及びトランジスタを含む層101上に、後にEL層112RとなるEL膜112Rfを形成する。ここで、EL膜112Rfは、接続電極111Cとは重ならないように設けることができる。例えば、接続電極111Cが含まれる領域をメタルマスクで遮蔽してEL膜112Rfを形成することにより、EL膜112Rfを、接続電極111Cと重ならないように形成することができる。この際に用いるメタルマスクでは表示部の画素領域の遮蔽は行わなくてもよいため、高精細なマスクを用いる必要はない。
 EL膜112Rfは、少なくとも発光性の化合物を含む膜を有する。このほかに、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、又は電子注入層として機能する膜のうち、一以上が積層された構成としてもよい。EL膜112Rfは、例えば蒸着法、スパッタリング法、又はインクジェット法等により形成することができる。なおこれに限られず、上述した成膜方法を適宜用いることができる。
 続いて、EL膜112Rf上、接続電極111C上、及びトランジスタを含む層101上に犠牲膜144Raを形成し、犠牲膜144Ra上に犠牲膜144Rbを形成する。つまり、EL膜112Rf上、接続電極111C上、及びトランジスタを含む層101上に、2層積層構造の犠牲膜を形成する。なお、犠牲膜は1層としてもよいし、3層以上の積層構造としてもよい。以降の工程において犠牲膜を形成する場合も、2層積層構造の犠牲膜を形成するものとするが、1層としてもよいし、3層以上の積層構造としてもよい。
 犠牲膜144Ra及び犠牲膜144Rbの形成には、例えば、スパッタリング法、CVD法、ALD法、又は真空蒸着法を用いることができる。なお、EL層へのダメージが少ない形成方法が好ましく、EL膜112Rf上に直接形成する犠牲膜144Raは、ALD法、又は真空蒸着法を用いて形成すると好適である。
 犠牲膜144Raとして、金属膜、合金膜、金属酸化物膜、半導体膜、又は無機絶縁膜等の無機膜を好適に用いることができる。
 また、犠牲膜144Raとして、酸化物膜を用いることができる。代表的には、酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、及び酸化窒化ハフニウム等の酸化物膜又は酸窒化物膜を用いることができる。また、犠牲膜144Raとして、例えば窒化物膜を用いることもできる。具体的には、窒化シリコン、窒化アルミニウム、窒化ハフニウム、窒化チタン、窒化タンタル、窒化タングステン、窒化ガリウム、又は窒化ゲルマニウム等の窒化物を用いることもできる。このような無機絶縁材料は、スパッタリング法、CVD法、又はALD法等の成膜方法を用いて形成することができるが、EL膜112Rf上に直接形成する犠牲膜144Raは、特にALD法を用いて形成することが好ましい。
 また、犠牲膜144Raとして、例えばニッケル、タングステン、クロム、モリブデン、コバルト、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタル等の金属材料、又は該金属材料を含む合金材料を用いることができる。特に、アルミニウム又は銀等の低融点材料を用いることが好ましい。
 また、犠牲膜144Raとして、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも表記する)等の金属酸化物を用いることができる。さらに、酸化インジウム、インジウム亜鉛酸化物(In−Zn酸化物)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、又はインジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)等を用いることができる。又は例えばシリコンを含むインジウムスズ酸化物を用いることもできる。
 なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種又は複数種)を用いた場合にも適用できる。特に、Mは、ガリウム、アルミニウム、及びイットリウムから選ばれた一種又は複数種とすることが好ましい。
 犠牲膜144Rbとして、上記に挙げた犠牲膜144Raとして用いることができる材料を用いることができる。例えば、上記に挙げた犠牲膜144Raとして用いることができる材料から、犠牲膜144Raとして一を選択し、犠牲膜144Rbとして他の一を選択することができる。また、上記に挙げた犠牲膜144Raとして用いることができる材料のうち、犠牲膜144Raには一又は複数の材料を選択し、犠牲膜144Rbには、犠牲膜144Raとして選択された材料以外から選択された一又は複数の材料を用いることができる。
 具体的には、犠牲膜144Raとして、ALD法を用いて形成された酸化アルミニウムを用い、犠牲膜144Rbとして、スパッタリング法を用いて形成された窒化シリコンを用いると好適である。なお、当該構成の場合、ALD法、及びスパッタリング法で成膜する際の成膜温度としては、室温以上120℃以下、好ましくは室温以上100℃以下とすることで、EL膜112Rfに与える影響を低減することができるため好適である。また、犠牲膜144Raと、犠牲膜144Rbとの積層構造の場合、当該積層構造の応力が小さいほうが好ましい。具体的には、積層構造の応力が、−500MPa以上+500MPa以下、より好ましくは、−200MPa以上+200MPa以下とすると、膜剥がれ、及びピーリング等の工程トラブルを抑制できるため好適である。
 犠牲膜144Raは、EL膜112Rf等の各EL膜のエッチング処理に対する耐性の高い膜、すなわちエッチングの選択比の大きい膜を用いることができる。また、犠牲膜144Raは、各EL膜へのダメージの少ないウェットエッチング法により除去可能な膜を用いることが特に好ましい。
 また、犠牲膜144Raとして、化学的に安定な溶媒に溶解しうる材料を用いてもよい。特に、水又はアルコールに溶解する材料を、犠牲膜144Raに好適に用いることができる。犠牲膜144Raを成膜する際には、水又はアルコール等の溶媒に溶解させた状態で、湿式の成膜方法で塗布した後に、溶媒を蒸発させるための加熱処理を行うことが好ましい。このとき、減圧雰囲気下での加熱処理を行うことで、低温且つ短時間で溶媒を除去できるため、EL膜112Rfへの熱的なダメージを低減することができ、好ましい。
 犠牲膜144Raの形成に用いることのできる湿式の成膜方法としては、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、又はナイフコート等がある。
 犠牲膜144Raとしては、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、又はアルコール可溶性のポリアミド樹脂等の有機材料を用いることができる。
 犠牲膜144Rbには、犠牲膜144Raとのエッチング選択比の大きい膜を用いればよい。
 犠牲膜144Raとして、ALD法により形成した酸化アルミニウム、酸化ハフニウム、及び酸化シリコン等の無機絶縁材料を用い、犠牲膜144Rbとして、スパッタリング法により形成した、ニッケル、タングステン、クロム、モリブデン、コバルト、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタル等の金属材料、又は該金属材料を含む合金材料を用いることが好ましい。特に、犠牲膜144Rbとして、スパッタリング法により形成したタングステンを用いることが好ましい。また、犠牲膜144Rbとして、スパッタリング法により形成したインジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも表記する)等の、インジウムを含む金属酸化物を用いてもよい。さらに、犠牲膜144Rbとして、無機材料を用いてもよい。例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、又は酸化ハフニウム膜等の酸化物膜又は窒化物膜を用いることができる。
 また、犠牲膜144Rbとして、例えばEL膜112Rfに用いることのできる有機膜を用いてもよい。例えば、EL膜112Rfに用いる有機膜と同じ膜を、犠牲膜144Rbとして用いることができる。このような有機膜を用いることで、EL膜112Rfと成膜装置を共通に用いることができるため、好ましい。さらに、EL膜112Rfをエッチングする際に、犠牲膜144Rbを同時に除去できるため、工程を簡略化できる。
 続いて、犠牲膜144Rb上にレジストマスク143aを形成する(図6B)。レジストマスク143aは、ポジ型のレジスト材料、又はネガ型のレジスト材料等、感光性の樹脂を含むレジスト材料を用いることができる。
 続いて、犠牲膜144Rb及び犠牲膜144Raの、レジストマスク143aに覆われない一部をエッチングにより除去し、島状又は帯状の犠牲層145Rb及び犠牲層145Raを形成する(図6C)。図6Cに示すように、犠牲層145Rb及び犠牲層145Raは、例えば画素電極111R上と、接続電極111C上と、に形成することができる。
 ここで、レジストマスク143aを用いて犠牲膜144Rbの一部をエッチングにより除去し、犠牲層145Rbを形成した後にレジストマスク143aを除去し、その後に犠牲層145Rbをハードマスクとして犠牲膜144Raをエッチングすることが好ましい。この場合、犠牲膜144Rbのエッチングには、犠牲膜144Raとの選択比の高いエッチング条件を用いることが好ましい。ハードマスク形成のエッチングにはウェットエッチング法又はドライエッチング法を用いることができるが、ドライエッチング法を用いることで、パターンの縮小を抑制できる。
 犠牲膜144Raと犠牲膜144Rbの加工、及びレジストマスク143aの除去は、ウェットエッチング法又はドライエッチング法により行うことができる。例えば、犠牲膜144Ra、及び犠牲膜144Rbは、フッ素を含むガス用いたドライエッチング法により加工することができる。また、レジストマスク143aは、酸素を含むガス(酸素ガスともいう)を用いたドライエッチング法(プラズマアッシング法ともいう)により除去することができる。
 犠牲層145Rbをハードマスクとして犠牲膜144Raをエッチングする場合、EL膜112Rfが犠牲膜144Raに覆われた状態でレジストマスク143aの除去を行うことができる。例えば、EL膜112Rfが酸素に触れると、発光素子110Rの電気特性に悪影響を及ぼす場合がある。よって、プラズマアッシング等、酸素ガスを用いた方法でレジストマスク143aを除去する場合には、犠牲層145Rbをハードマスクとして犠牲膜144Raをエッチングすることが好ましい。
 続いて、犠牲層145Raに覆われないEL膜112Rfの一部をエッチングにより除去し、島状又は帯状のEL層112Rを形成する(図6D)。
 EL膜112Rfのエッチングに酸素ガスを用いたドライエッチング法を用いると、エッチング速度を高めることができる。そのため、エッチング速度を十分な速さに維持しつつ、低パワーの条件でのエッチングができるため、エッチングによるダメージを低減できる。さらに、例えばエッチング時に生じる反応生成物のEL層112Rへの付着等の不具合を抑制できる。
 一方、酸素を主成分に含まないエッチングガスを用いたドライエッチング法によりEL膜112Rfをエッチングすると、EL膜112Rfの変質を抑制し、表示装置100を信頼性の高い表示装置とすることができる。酸素を主成分に含まないエッチングガスとしては、例えばCF、C、SF、CHF、Cl、HO、BCl、及び18族元素が挙げられる。18族として、例えばヘリウムを用いることができる。また、上記ガスと、酸素を含まない希釈ガスとの混合ガスをエッチングガスに用いることができる。なお、EL膜112Rfのエッチングは上記に限られず、他のガスを用いたドライエッチング法により行ってもよいし、ウェットエッチング法により行ってもよい。
 EL膜112Rfのエッチングを行ってEL層112Rを形成した際に、EL層112Rの側面に不純物が付着していると、以降の工程において当該不純物がEL層112Rの内部へ侵入する場合がある。これにより、表示装置100の信頼性が低下する場合がある。よって、EL層112Rの形成後に、EL層112Rの表面に付着している不純物を除去すると、表示装置100の信頼性を高めることができ好ましい。
 EL層112Rの表面に付着している不純物の除去は、例えばEL層112Rの表面に不活性ガスを照射することで行うことができる。ここで、EL層112Rを形成した直後は、EL層112Rの表面が露出している。具体的には、EL層112Rの側面が露出している。よって、EL層112Rの形成後に、例えばEL層112Rが形成されている基板を不活性ガス雰囲気下におくと、EL層112Rに付着している不純物を除去することができる。不活性ガスとして、例えば18族元素(代表的には、ヘリウム、ネオン、アルゴン、キセノン、及びクリプトン等)、及び窒素の中から選ばれるいずれか一又は複数を用いることができる。
 続いて、トランジスタを含む層101の上面と、画素電極111R、画素電極111G、及び画素電極111Bの上面及び側面と、EL層112Rの側面と、犠牲層145Raの側面と、犠牲層145Rbの側面及び上面と、を覆うように、後に保護層131Rとなる保護膜131Rfを形成する(図7A1)。
 図7A2に、図7A1において一点鎖線で囲んだ領域の拡大図を示す。図7A2に示すように、保護膜131Rfは、後に保護層131Raとなる保護膜131Rafと、後に保護層131Rbとなる保護膜131Rbfと、の2層積層構造とすることができる。
 保護膜131Rafは、例えば被覆性の高い方法で成膜し、保護膜131Rbfは、例えば被覆性の低い方法で成膜することが好ましい。例えば、保護膜131RafはALD法で成膜し、保護膜131Rbfはスパッタリング法、又はCVD法で成膜することができる。これにより、保護膜131Rfは、段差を被覆しつつ膜厚を厚くすることができる。よって、EL層112Rへの酸素、及び水等の不純物の侵入を好適に抑制できる。したがって、表示装置100を、信頼性が高い表示装置とすることができる。
 保護膜131Rfとして、無機絶縁材料を用いることができる。例えば、保護膜131Rafとして、無機酸化物又は無機窒化物を用いることができ、例えば酸化アルミニウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化窒化アルミニウム、又は酸化ハフニウム等のうち少なくとも1つを含むことができる。また、保護膜131Rbfとして、無機窒化物を用いることができ、例えば窒化シリコン、窒化アルミニウム、又は窒化ハフニウムのうち少なくとも1つを含むことができる。
 保護膜131Rafは、例えば膜厚が1nm以上60nm以下となるように成膜することが好ましく、1nm以上40nm以下となるように成膜することがより好ましく、5nm以上20nm以下となるように成膜することがさらに好ましい。また、保護膜131Rbfは、例えば膜厚が60nm以上300nm以下となるように成膜することが好ましく、60nm以上150nm以下となるように成膜することがより好ましく、80nm以上120nm以下となるように成膜することがさらに好ましい。なお、保護膜131Raf、及び保護膜131Rbfは、ピンホールがない膜種、及び膜厚とすることが好ましい。
 ここで、EL層112Rが空気等に触れると、空気中に含まれる酸素、及び水等の不純物が、EL層112Rの内部に侵入する場合がある。EL層112Rの形成後は、保護膜131Rfが形成されるまで、EL層112Rの表面、具体的にはEL層112Rの側面が露出する。よって、EL膜112Rfのエッチングから保護膜131Rfの成膜までの工程は、同一の装置内で行うことが好ましい。これにより、EL膜112RfをエッチングしてEL層112Rを形成した後、EL層112Rを空気中に曝すことなく、EL層112Rを覆う保護膜131Rfを形成することができる。よって、空気中に含まれる不純物がEL層112Rの内部に侵入することを抑制し、表示装置100を信頼性が高い表示装置とすることができる。なお、他の工程も同一の装置内で行うと、表示装置100の作製工程において表示装置の構成要素が例えば空気に触れることを抑制でき、また表示装置100の作製におけるスループットを高めることができるため好ましい。
 続いて、保護膜131Rfをエッチングすることで、保護層131Rを形成する(図7B1)。保護層131Rは、EL層112Rの側面と重なる領域を有するように形成される。また、保護層131Rは、画素電極111Rの側面、画素電極111Gの側面、画素電極111Bの側面、犠牲層145Raの側面、及び犠牲層145Rbの側面と重なる領域を有するように形成される。なお、保護膜131Rfの膜厚が薄い場合等は、画素電極111Rの側面、画素電極111Gの側面、画素電極111Bの側面、犠牲層145Raの側面、又は犠牲層145Rbの側面等と重なる領域には保護層131Rが形成されない場合がある。
 EL層112Rの側面と重なる領域を有するように保護層131Rを形成することで、以降の工程において、EL層112Rの側面から内部へ酸素、及び水等の不純物が侵入することを抑制できる。よって、表示装置100を、信頼性の高い表示装置とすることができる。
 保護膜131Rfのエッチングは、異方性エッチングにより行うと、例えばフォトリソグラフィ法を用いたパターニングを行わなくても保護層131を好適に形成できるため好ましい。例えばフォトリソグラフィ法を用いたパターニングを行わずに保護層131を形成することにより、表示装置100の作製工程を簡略化できるため、表示装置100の作製コストを低くすることができる。よって、表示装置100を、低価格な表示装置とすることができる。前述のように、異方性エッチングとして例えばドライエッチング法が挙げられる。保護膜131Rfをドライエッチング法によりエッチングする場合、例えば、犠牲膜144Ra、又は犠牲膜144Rbをエッチングする際に用いることができるエッチングガスを用いて、保護膜131Rfをエッチングすることができる。
 図7B2に、図7B1において一点鎖線で囲んだ領域の拡大図を示す。図7B2に示すように、保護層131Rは、保護層131Raと保護層131Rbの2層積層構造とすることができる。
 ところで、図6C乃至図6Dに示した工程において、酸素を含むガスを用いてEL膜112Rfのエッチングを行うと、画素電極111G、及び画素電極111Bの表面状態が変化する場合がある。例えば、画素電極111G、及び画素電極111Bの表面が親水性となる場合がある。例えば、画素電極111G、及び画素電極111Bの上表面が、インジウム錫酸化物を含む層である場合、酸素を含むガスを用いてEL膜112Rfのエッチングを行うことにより、当該インジウム錫酸化物を含む層が親水性となる場合がある。ここで、後の工程で画素電極111Gと接する領域を有するように形成されるEL膜、及び画素電極111Bと接する領域を有するように形成されるEL膜は、例えば疎水性である。親水面と疎水面の密着性は、親水面同士の密着性、及び疎水面同士の密着性より低い。以上より、画素電極111G及び画素電極111Bの表面が親水性であると、後の工程で形成されるEL膜との密着性が低くなる場合がある。そのため、後の工程においてEL膜が、画素電極111Gとの界面、又は画素電極111Bとの界面で剥がれる場合がある。また、酸素を含むガスを用いてEL膜112Rfのエッチングを行うと、上記の表面状態の変化に加え、画素電極111G、及び画素電極111Bの表面の仕事関数が変化する場合がある。
 そこで、画素電極111Gの表面、及び画素電極111Bの表面に対して疎水化処理を行うことで、後の工程で形成されるEL膜の膜剥がれを抑制できる。よって、表示装置100を信頼性の高い表示装置とすることができる。また、表示装置100の作製における歩留まりを高め、表示装置100を低価格な表示装置とすることができる。疎水化処理は、保護層131Rの形成後に行うことが好ましい。
 疎水化処理は、例えば画素電極111G、及び画素電極111Bへのフッ素修飾により行うことができる。フッ素修飾は例えば、フッ素を含むガスによる処理又は加熱処理、又はフッ素を含むガス雰囲気中におけるプラズマ処理等により行うことができる。フッ素を含むガスとして、例えばフッ素ガスを用いることができ、例えばフルオロカーボンガスを用いることができる。フルオロカーボンガスとして、例えば四フッ化炭素(CF)ガス、Cガス、Cガス、Cガス、又はC等の低級フッ化炭素ガスを用いることができる。また、フッ素を含むガスとして、例えばSFガス、NFガス、又はCHFガス等を用いることができる。また、これらのガスに、ヘリウムガス、アルゴンガス、又は水素ガス等を適宜添加することができる。
 また、画素電極111Gの表面、及び画素電極111Bの表面に対して、アルゴン等の18族元素を含むガス雰囲気中におけるプラズマ処理を行った後、シリル化剤を用いた処理を行うことで、画素電極111Gの表面、及び画素電極111Bの表面を疎水化することができる。シリル化剤として、ヘキサメチルジシラザン(HMDS)、又はトリメチルシリルイミダゾール(TMSI)等を用いることができる。さらに、画素電極111Gの表面、及び画素電極111Bの表面に対して、アルゴン等の18族元素を含むガス雰囲気中におけるプラズマ処理を行った後、シランカップリング剤を用いた処理を行うことでも、画素電極111Gの表面、及び画素電極111Bの表面を疎水化することができる。
 画素電極111Gの表面、及び画素電極111Bの表面に対して、アルゴン等の18族元素を含むガス雰囲気中におけるプラズマ処理を行うことにより、画素電極111Gの表面、及び画素電極111Bの表面に対してダメージを与えることができる。これにより、HMDS等のシリル化剤に含まれるメチル基が、画素電極111Gの表面、及び画素電極111Bの表面に結合しやすくなる。また、シランカップリング剤によるシランカップリングが発生しやすくなる。以上により、画素電極111Gの表面、及び画素電極111Bの表面に対して、アルゴン等の18族元素を含むガス雰囲気中におけるプラズマ処理を行った後、シリル化剤、又はシランカップリング剤を用いた処理を行うことで、画素電極111Gの表面、及び画素電極111Bの表面を疎水化することができる。
 シリル化剤、又はシランカップリング剤等を用いた処理は、例えばスピンコート法、又はディップ法等を用いてシリル化剤、又はシランカップリング剤等を塗布することにより行うことができる。また、シリル化剤、又はシランカップリング剤等を用いた処理は、例えば気相法を用いて、画素電極111G上、及び画素電極111B上等にシリル化剤を有する膜、又はシランカップリング剤を有する膜等を形成することにより行うことができる。気相法では、まず、シリル化剤を有する材料、又はシランカップリング剤を有する材料等を揮発させることにより、シリル化剤、又はシランカップリング剤等を雰囲気中に含ませる。続いて、当該雰囲気中に、画素電極111G上、及び画素電極111B等が形成されている基板をおく。これにより、画素電極111G上、及び画素電極111B上等に、シリル化剤、又はシランカップリング剤等を有する膜を形成することができ、画素電極111Gの表面、及び画素電極111Bの表面を疎水化することができる。
 続いて、犠牲層145Rb上、保護層131R上、画素電極111G上、画素電極111B上、及びトランジスタを含む層101上に、後にEL層112GとなるEL膜112Gfを形成する。犠牲層145R、及び保護層131Rの形成後にEL膜112Gfを形成することにより、EL膜112GfがEL層112Rと接することを防ぐことができる。例えばEL膜112Gfの形成については、EL膜112Rfの形成の記載を参照することができる。
 次に、EL膜112Gf上、犠牲層145Rb上、及びトランジスタを含む層101上に犠牲膜144Gaを形成し、犠牲膜144Ga上に犠牲膜144Gbを形成する。その後、犠牲膜144Gb上にレジストマスク143bを形成する(図8A)。犠牲膜144Ga、犠牲膜144Gb、及びレジストマスク143bの形成等については、犠牲膜144Ra、犠牲膜144Rb、及びレジストマスク143aの形成等の記載をそれぞれ参照することができる。
 続いて、犠牲膜144Gb及び犠牲膜144Gaの、レジストマスク143bに覆われない一部をエッチングにより除去し、島状又は帯状の犠牲層145Gb及び犠牲層145Gaを形成する。また、レジストマスク143bを除去する(図8B)。ここでは、犠牲層145Gb及び犠牲層145Gaは、画素電極111G上に形成することができる。犠牲層145Gb及び犠牲層145Gaの形成、及びレジストマスク143bの除去等については、犠牲層145Rb及び犠牲層145Raの形成、及びレジストマスク143aの除去等の記載を参照することができる。
 続いて、犠牲層145Gaに覆われないEL膜112Gfの一部をエッチングにより除去し、島状又は帯状のEL層112Gを形成する(図8C)。例えばEL層112Gの形成については、EL層112Rの形成の記載を参照することができる。また、EL層112Rと同様に、EL層112Gの表面に付着している不純物も除去することが好ましい。例えば、EL層112Gの形成後に、EL層112Gが形成されている基板を不活性ガス雰囲気下におくと、EL層112Gに付着している不純物を除去することができる。
 続いて、トランジスタを含む層101の上面と、画素電極111Bの上面と、EL層112Gの側面と、保護層131Rの側面と、犠牲層145Rbの上面と、犠牲層145Gaの側面と、犠牲層145Gbの側面及び上面と、を覆うように、後に保護層131Gとなる保護膜131Gfを形成する(図9A1)。例えば保護膜131Gfの形成については、保護膜131Rfの形成の記載を参照することができる。ここで、EL膜112Gfのエッチングから保護膜131Gfの成膜までの工程を同一の装置内で行うと、EL層112Gを空気中に曝すことなく、EL層112Gを覆う保護膜131Gfを形成することができるため好ましい。
 図9A2に、図9A1において一点鎖線で囲んだ領域の拡大図を示す。図9A2に示すように、保護膜131Gfは、後に保護層131Gaとなる保護膜131Gafと、後に保護層131Gbとなる保護膜131Gbfと、の2層積層構造とすることができる。保護膜131Gaf、及び保護膜131Gbfについては、保護膜131Raf、及び保護膜131Rbfについての記載をそれぞれ参照することができる。
 続いて、保護膜131Gfをエッチングすることで、保護層131Gを形成する(図9B1)。保護層131Gは、EL層112Gの側面と重なる領域を有するように形成される。また、保護層131Gは、保護層131Rの側面、犠牲層145Gaの側面、及び犠牲層145Gbの側面と重なる領域を有するように形成される。なお、保護膜131Gfの膜厚が薄い場合等は、保護層131Rの側面、犠牲層145Gaの側面、又は犠牲層145Gbの側面等と重なる領域には保護層131Gが形成されない場合がある。例えば保護層131Gの形成については、保護層131Rの形成の記載を参照することができる。
 図9B2に、図9B1において一点鎖線で囲んだ領域の拡大図を示す。図9B2に示すように、保護層131Gは、保護層131Gaと保護層131Gbの2層積層構造とすることができる。保護層131Ga、及び保護層131Gbについては、保護層131Ra、及び保護層131Rbについての記載をそれぞれ参照することができる。
 続いて、犠牲層145Rb上、犠牲層145Gb上、保護層131R上、保護層131G上、画素電極111B上、及びトランジスタを含む層101上に、後にEL層112BとなるEL膜112Bfを形成する。犠牲層145G、及び保護層131Gの形成後にEL膜112Bfを形成することにより、EL膜112BfがEL層112Gと接することを防ぐことができる。例えばEL膜112Bfの形成については、EL膜112Rfの形成の記載を参照することができる。
 次に、EL膜112Bf上、犠牲層145Rb上、及びトランジスタを含む層101上に犠牲膜144Baを形成し、犠牲膜144Ba上に犠牲膜144Bbを形成する。その後、犠牲膜144Bb上にレジストマスク143cを形成する(図10A)。犠牲膜144Ba、犠牲膜144Bb、及びレジストマスク143cの形成等については、犠牲膜144Ra、犠牲膜144Rb、及びレジストマスク143aの形成等の記載をそれぞれ参照することができる。
 続いて、犠牲膜144Bb及び犠牲膜144Baの、レジストマスク143cに覆われない一部をエッチングにより除去し、島状又は帯状の犠牲層145Bb及び犠牲層145Baを形成する。また、レジストマスク143cを除去する(図10B)。ここでは、犠牲層145Bb及び犠牲層145Baは、画素電極111B上に形成することができる。犠牲層145Bb及び犠牲層145Baの形成、及びレジストマスク143cの除去等については、犠牲層145Rb及び犠牲層145Raの形成、及びレジストマスク143aの除去等の記載を参照することができる。
 続いて、犠牲層145Baに覆われないEL膜112Bfの一部をエッチングにより除去し、島状又は帯状のEL層112Bを形成する(図10C)。例えばEL層112Bの形成については、EL層112Rの形成の記載を参照することができる。また、EL層112R及びEL層112Gと同様に、EL層112Bの表面に付着している不純物も除去することが好ましい。例えば、EL層112Bの形成後に、EL層112Bが形成されている基板を不活性ガス雰囲気下におくと、EL層112Bに付着している不純物を除去することができる。
 続いて、トランジスタを含む層101の上面と、EL層112Bの側面と、保護層131Gの側面と、犠牲層145Rbの上面と、犠牲層145Gbの上面と、犠牲層145Baの側面と、犠牲層145Bbの側面及び上面と、を覆うように、後に保護層131Bとなる保護膜131Bfを形成する(図11A)。例えば保護膜131Bfの形成については、保護膜131Rfの形成の記載を参照することができる。ここで、EL膜112Bfのエッチングから保護膜131Bfの成膜までの工程を同一の装置内で行うと、EL層112Bを空気中に曝すことなく、EL層112Bを覆う保護膜131Bfを形成するごとができるため好ましい。
 図11Bに、図11Aに示す領域160aの拡大図を示し、図11Cに、図11Aに示す領域160bの拡大図を示す。領域160aは、EL層112RとEL層112Gの間の領域を含み、領域160bは、EL層112GとEL層112Bの間の領域を含む。図11B、及び図11Cに示すように、保護膜131Bfは、後に保護層131Baとなる保護膜131Bafと、後に保護層131Bbとなる保護膜131Bbfと、の2層積層構造とすることができる。保護膜131Baf、及び保護膜131Bbfについては、保護膜131Raf、及び保護膜131Rbfについての記載をそれぞれ参照することができる。
 続いて、保護膜131Bf上に、後に絶縁層132となる絶縁膜132fを形成する(図12A)。例えば、保護膜131Bf、具体的には保護膜131Bbfと接するように、絶縁膜132fを形成する。絶縁膜132fとして、有機材料を含む絶縁膜を適用することが好ましく、有機材料としては樹脂を用いることが好ましい。また、絶縁膜132fとして、感光性の樹脂を用いることができる。感光性の樹脂は、ポジ型の材料、又はネガ型の材料を用いることができる。
 絶縁膜132fとして感光性の樹脂を用いる場合、絶縁膜132fは、スピンコート法、スプレー法、スクリーン印刷法、又はペイント法等を用いて形成することができる。
 絶縁膜132fは、図12Aに示すように、被形成面の凹凸を反映した、なだらかな凹凸を有する場合がある。また、絶縁膜132fは、平坦化されている場合がある。
 続いて、絶縁層132を形成する(図12B1)。ここで、絶縁膜132fとして感光性の樹脂を用いることにより、レジストマスク、又はハードマスク等のエッチングマスクを設けることなく、絶縁層132を形成することができる。また、感光性の樹脂は露光及び現像の工程のみで加工が可能であるため、例えばドライエッチング法を用いることなく絶縁層132が形成できる。よって、工程の簡略化が可能となる。また、絶縁膜132fのエッチングによるEL層112のダメージを低減することができる。なお、さらに絶縁層132の上部の一部をエッチングし、表面の高さを調整してもよい。
 また、絶縁膜132fの上面に対し、略均一にエッチングを施すことにより、絶縁層132を形成してもよい。このように均一にエッチングして平坦化することをエッチバックともいう。
 絶縁層132の形成において、露光及び現像の工程と、エッチバック工程と、を組み合わせて用いてもよい。
 図12B2に、図12B1において一点鎖線で囲んだ領域の拡大図を示す。図12B2に示すように、絶縁層132は、凹形状とすることができる。ここで、絶縁層132の上端部の高さは、例えば保護膜131Bbfの上面の高さ以下とすることができる。
 図13A、及び図13Bに、図12B2の構成の変形例を示す。図13A、及び図13Bに示す構成は、例えば絶縁層132の形状が図12B2に示す構成と異なる。
 図13Aに示す絶縁層132は、上面を平坦としている。図13Aに示す例では、絶縁層132の上端部の高さが保護膜131Bbfの上面の高さと等しい例を示している。
 図13Bに示す絶縁層132は、保護膜131Bf、犠牲層145b、及び犠牲層145aを介してEL層112の上面と重なる領域を有する。ここで、図13Bに示す状態からさらに絶縁層132を加工することにより、絶縁層132を図12B2、又は図13Aに示す形状とすることができる。
 続いて、保護膜131Bfをエッチングすることで、保護層131Bを形成する(図14A)。保護層131Bは、EL層112Bの側面と重なる領域を有するように形成される。また、保護層131Bは、絶縁層132の側面と接する領域、及び絶縁層132の下面と接する領域を有するように形成される。例えば保護層131Bの形成については、保護層131Rの形成の記載を参照することができる。
 続いて、犠牲層145Rb、犠牲層145Gb、及び犠牲層145Bbを、例えばエッチングを用いて除去する(図14B1)。犠牲層145bのエッチングには、犠牲層145aとの選択比が高い条件を用いることが好ましい。なお、犠牲層145bの除去を行わなくてもよい。
 図14B2に、図14B1において一点鎖線で囲んだ領域の拡大図を示す。図14B2では、犠牲層145bの除去により保護層131の一部が除去され、EL層112の側面と接する領域を有する保護層131の最上面が犠牲層145aの上面と一致する例を示しているが、本発明の一態様はこれに限られない。例えば、EL層112の側面と接する領域を有する保護層131の最上面が、犠牲層145aの上面より高くてもよい。
 続いて、絶縁層132の上面と、犠牲層145Ra、犠牲層145Ga、及び犠牲層145Baの上面と、を覆うように、後に保護層133となる保護膜133fを形成する(図15A)。保護膜133fは、例えばスパッタリング法、CVD法、真空蒸着法、PLD法、又はALD法を用いて形成することができる。
 保護膜133fとして、無機絶縁材料を用いることができ、例えば窒化物を用いることができる。具体的には、保護膜133fは、窒化シリコン、窒化アルミニウム、又は窒化ハフニウムのうち少なくとも1つを含むことができる。また、保護膜133fとして酸化物、又は酸化窒化物を用いることができ、例えば酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、及び酸化窒化ハフニウム等の酸化物膜又は酸窒化物膜を用いることができる。
 続いて、保護膜133fを加工し、保護層133を形成する(図15B1)。保護膜133fの加工は、例えばフォトリソグラフィ法を用いて行うことができる。具体的には、まず保護膜133f上にレジストマスクを形成する。次に、保護膜133fの、レジストマスクに覆われない一部をエッチングにより除去する。以上により、保護層133を形成することができる。
 図15B2に、図15B1において一点鎖線で囲んだ領域の拡大図を示す。図15B2では、保護層133の端部が犠牲層145aの端部と一致しているが、保護層133の端部は犠牲層145aの端部と一致しなくてもよい。例えば、保護層133が、犠牲層145aと重なる領域を有してもよい。また、保護層133の端部が、犠牲層145aの端部と、絶縁層132の端部と、の間に位置してもよい。
 続いて、犠牲層145Ra、犠牲層145Ga、及び犠牲層145Baを、例えばエッチングを用いて除去する(図16A)。犠牲層145Ra、犠牲層145Ga、及び犠牲層145Baは、EL層112にできるだけダメージを与えない方法で除去することが好ましく、例えばウェットエッチング法を用いることが好ましい。なお、犠牲層145Ra、犠牲層145Ga、及び犠牲層145Baの除去に伴い、保護層133の上部の一部、及び保護層131の上部の一部がエッチングされる場合がある。
 続いて、真空ベーク処理を行い、EL層112Rの表面、EL層112Gの表面、及びEL層112Bの表面に吸着している水等を除去する。真空ベークは、EL層112R、EL層112G、及びEL層112B等に含まれる有機化合物を変質させない温度範囲で行うことが好ましく、例えば70℃以上120℃以下、より好ましくは80℃以上100℃以下で行うことができる。なお、EL層112Rの表面、EL層112Gの表面、及びEL層112Bの表面等に吸着している水等が少なく、例えば表示装置100の信頼性に与える影響が少ない場合は、真空ベーク処理を行わなくてもよい。
 続いて、EL層112上、保護層133上、及びトランジスタを含む層101上に、共通層114を形成する。前述のように、共通層114は、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、又は電子注入層のうち少なくとも1つを有し、例えば電子注入層、又は正孔注入層を有する。共通層114は、例えば蒸着法、スパッタリング法、又はインクジェット法等により形成することができる。なお、接続電極111C上に共通層114を設けない構成とする場合には、共通層114の形成において、接続電極111C上を遮蔽するメタルマスクを用いればよい。この際に用いるメタルマスクでは表示部の画素領域の遮蔽は行わなくてもよいため、高精細なマスクを用いる必要がない。
 続いて、共通層114上に共通電極115を形成する。共通電極115は、例えばスパッタリング法、又は真空蒸着法等により形成することができる。以上の工程により、発光素子110R、発光素子110G、及び発光素子110Bを作製することができる。
 続いて、共通電極115上に、保護層121を形成する(図16B)。保護層121として無機絶縁膜を用いる場合、例えばスパッタリング法、CVD法、又はALD法を用いて保護層121を形成することが好ましい。また、保護層121として有機絶縁膜を用いる場合、例えばインクジェット法を用いて保護層121を形成すると、所望のエリアに均一な膜を形成できるため好ましい。
 以上の工程により、表示装置100を作製することができる。
 以上のように、本発明の一態様の表示装置の作製方法では、メタルマスク等のシャドーマスクを用いず、例えばフォトリソグラフィ法とエッチング法を用いてEL層を作り分ける。これにより、EL層のパターンを微細なパターンとすることができる。よって、本発明の一態様の表示装置の作製方法により、高精細度且つ高開口率の表示装置を作製することができる。また、高解像度な表示装置を作製すること、及び大型な表示装置を作製することができる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を作製することができる。
[構成例_2]
 図2A、図2B、及び図2D等に示す構成では、EL層112Rの側面が画素電極111Rの側面より内側に位置し、EL層112Gの側面が画素電極111Gの側面より内側に位置し、EL層112Bの側面が画素電極111Bの側面より内側に位置するが、本発明の一態様の表示装置の構成はこれに限らない。図17Aは、図1中の一点鎖線A1−A2に対応する断面図であり、図17Bは、図1中の一点鎖線B1−B2に対応する断面図であり、図17Cは、図1中の一点鎖線C1−C2に対応する断面図であり、図17Dは、図17Aにおいて一点鎖線で囲んだ領域の拡大図である。図17A、図17B、図17C、及び図17Dは、図2A、図2B、図2C1、及び図2Dに示す構成の変形例であり、画素電極111Rの側面とEL層112Rの側面が一致し、画素電極111Gの側面とEL層112Gの側面が一致し、画素電極111Bの側面とEL層112Bの側面が一致する点が異なる。
 図18Aは、図1中の一点鎖線A1−A2に対応する断面図であり、図18Bは、図1中の一点鎖線B1−B2に対応する断面図であり、図18Cは、図1中の一点鎖線C1−C2に対応する断面図であり、図18Dは、図18Aにおいて一点鎖線で囲んだ領域の拡大図である。図18A、図18B、図18C、及び図18Dは、図2A、図2B、図2C1、及び図2Dに示す構成の変形例であり、EL層112Rの側面が画素電極111Rの側面より外側に位置し、EL層112Gの側面が画素電極111Gの側面より外側に位置し、EL層112Bの側面が画素電極111Bの側面より外側に位置する点が異なる。図18A、及び図18B等に示す構成では、EL層112は画素電極111の側面を覆うように設けられる。
 図19Aは、図1中の一点鎖線A1−A2に対応する断面図であり、図19Bは、図1中の一点鎖線B1−B2に対応する断面図であり、図19Cは、図1中の一点鎖線C1−C2に対応する断面図であり、図19Dは、図19Aにおいて一点鎖線で囲んだ領域の拡大図である。図19A、図19B、図19C、及び図19Dは、図2A、図2B、図2C1、及び図2Dに示す構成の変形例であり、保護層133が設けられない点が異なる。図19A乃至図19Dに示す構成では、例えば絶縁層132と共通層114が接する領域を有する構成とすることができる。
 保護層133を省略することにより、保護層133の形成工程を行わなくてよいため、表示装置100の作製工程を簡略化できる。よって、表示装置100の作製コストを低減できるため、表示装置100を低価格な表示装置とすることができる。
 図20Aは、図1中の一点鎖線A1−A2に対応する断面図である。図20Bは、図1中の一点鎖線B1−B2に対応する断面図である。図20Cは、図1中の一点鎖線C1−C2に対応する断面図である。図20Dは、図20Aにおいて一点鎖線で囲んだ領域の拡大図である。図20A、図20B、図20C、及び図20Dは、図2A、図2B、図2C1、及び図2Dに示す構成の変形例であり、保護層133がEL層112と重なる領域を有する点が異なる。
 図20A乃至図20Dに示す構成において、EL層112Rの上面と保護層133の間には犠牲層145Raが残存し、EL層112Gの上面と保護層133の間には犠牲層145Gaが残存し、EL層112Bの上面と保護層133の間には犠牲層145Baが残存する。なお、表示装置100の作製工程によっては、犠牲層145Raと保護層133の間に犠牲層145Rbが残存し、犠牲層145Gaと保護層133の間に犠牲層145Gbが残存し、犠牲層145Baと保護層133の間に犠牲層145Bbが残存する場合がある。また、犠牲層145Ra、犠牲層145Ga、及び犠牲層145Baが残存せず、EL層112R、EL層112G、及びEL層112Bが保護層133と接する領域を有する場合がある。さらに、図20A乃至図20Dに示す構成において、保護層133の端部が犠牲層145aの端部と一致しているが、保護層133の端部は犠牲層145aの端部と一致しなくてもよい。例えば、保護層133が、EL層112の上面と接する領域を有してもよい。つまり、保護層133が犠牲層145aの側面を覆う構成としてもよい。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、又は図面等と適宜組み合わせることができる。
(実施の形態2)
 本実施の形態では、本発明の一態様の表示装置の構成例について説明する。
 本実施の形態の表示装置は、高解像度な表示装置又は大型な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型若しくはノート型のパーソナルコンピュータ、コンピュータ用のモニタ、デジタルサイネージ、パチンコ機等の大型ゲーム機等の比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、スマートフォン、腕時計型端末、タブレット端末、携帯情報端末、及び音響再生装置の表示部に用いることができる。
[表示モジュール_1]
 図21に、表示装置100Aの斜視図を示し、図22Aに、表示装置100Aの断面図を示す。
 表示装置100Aは、基板452と基板451とが貼り合わされた構成を有する。図21では、基板452を破線で明示している。
 表示装置100Aは、表示部462、回路464、及び配線465等を有する。図21では表示装置100AにIC473及びFPC472が実装されている例を示している。そのため、図21に示す構成は、表示装置100A、IC(集積回路)、及びFPCを有する表示モジュールということもできる。なお、当該表示モジュールが有する表示装置は表示装置100Aに限られず、後述する表示装置100Bであってもよい。
 回路464としては、例えば走査線駆動回路を用いることができる。
 配線465は、表示部462及び回路464に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC472を介して外部から、又はIC473から配線465に入力される。
 図21では、COG方式又はCOF(Chip On Film)方式等により、基板451にIC473が設けられる例を示す。IC473は、例えば走査線駆動回路又は信号線駆動回路等を有するICを適用できる。なお、表示装置100Aを有する表示モジュールは、ICを設けない構成としてもよい。また、ICを、例えばCOF方式により、FPCに実装してもよい。
[表示装置100A]
 図22Aに、表示装置100Aの、FPC472を含む領域の一部、回路464の一部、表示部462の一部、及び端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
 図22Aに示す表示装置100Aは、基板451と基板452の間に、トランジスタ201、トランジスタ205、赤色の光を発する発光素子110R、緑色の光を発する発光素子110G、及び青色の光を発する発光素子110B等を有する。ここで、表示装置100Aにおいて、基板451から絶縁層214までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
 発光素子110R、発光素子110G、及び発光素子110Bには、実施の形態1で例示した発光素子を適用することができる。
 ここで、表示装置の画素が、互いに異なる色を発する発光素子を有する副画素を3種類有する場合、当該3つの副画素としては、R、G、Bの3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素等が挙げられる。当該副画素を4つ有する場合、当該4つの副画素としては、R、G、B、白色(W)の4色の副画素、及びR、G、B、Yの4色の副画素等が挙げられる。
 保護層121と基板452は接着層442を介して接着されている。発光素子の封止には、固体封止構造又は中空封止構造等が適用できる。図22Aでは、基板452、接着層442、及び保護層121に囲まれた空間443が、不活性ガス(窒素又はアルゴン等)で充填されており、中空封止構造が適用されている。接着層442は、発光素子と重ねて設けられていてもよい。また、基板452、接着層442、及び保護層121に囲まれた空間443を、接着層442とは異なる樹脂で充填してもよい。なお、保護層121には、実施の形態1で例示した構成を適用することができる。
 トランジスタ205が有する導電層222bの上面が露出するように絶縁層214、絶縁層215、及び絶縁層213に設けられる開口部において、該開口部の底面及び側面に沿うように導電層418R、導電層418G、及び導電層418Bの一部が形成される。導電層418R、導電層418G、及び導電層418Bは、それぞれ、トランジスタ205が有する導電層222bと接続される。また、導電層418R、導電層418G、及び導電層418Bの別の一部は、絶縁層214上に設けられる。
 導電層418R、導電層418G、及び導電層418B上には、画素電極111R、画素電極111G、及び画素電極111Bが設けられる。
 また図22Aに示すように、導電層418Rと画素電極111Rの間の一部、導電層418Gと画素電極111Gの間の一部、及び導電層418Bと画素電極111Bの間の一部には、絶縁層414が設けられてもよい。具体的には、絶縁層214、絶縁層215、及び絶縁層213に設けられる、導電層222bに達する開口部に絶縁層414を設けることができる。
 画素電極111R、画素電極111G、及び画素電極111Bには、実施の形態1で例示した画素電極を適用することができる。
 発光素子110Rと発光素子110Gの間であり、絶縁層214上の領域、及び発光素子110Gと発光素子110Bの間であり、絶縁層214上の領域にはそれぞれ、保護層131、絶縁層132、及び保護層133が設けられる。保護層131、絶縁層132、及び保護層133には、実施の形態1で例示した構成を適用することができる。
 表示装置100Aは、トップエミッション型の表示装置である。よって、発光素子110が発する光は、基板452側に射出される。基板452には、可視光に対する透過性が高い材料を用いることが好ましい。
 トランジスタ201及びトランジスタ205は、いずれも基板451上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
 基板451上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられる。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
 トランジスタを覆う絶縁層の少なくとも一層に、水及び水素等の不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
 絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、及び窒化アルミニウム膜等を用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
 ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置100Aの端部近傍に開口を有することが好ましい。これにより、表示装置100Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制できる。又は、有機絶縁膜の端部が表示装置100Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置100Aの端部に有機絶縁膜が露出しないようにしてもよい。
 平坦化層として機能する絶縁層214には、有機絶縁膜を用いることが好ましい。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
 図22Aに示す領域228では、絶縁層214、絶縁層214上の保護層131、保護層131上の絶縁層132、及び絶縁層132上の保護層133に、開口が形成されている。開口を覆うように保護層121が形成される。保護層121として無機層を用いることにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部462に不純物が入り込むことを抑制できる。したがって、表示装置100Aの信頼性を高めることができる。
 トランジスタ201及びトランジスタ205は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインの一方として機能する導電層222a、ソース及びドレインの他方として機能する導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
 本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、又は逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型又はボトムゲート型のいずれのトランジスタ構造としてもよい。又は、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
 トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。又は、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
 トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、及び結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
 トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタともいう)を用いることが好ましい。又は、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、及び結晶性のシリコン(低温ポリシリコン、及び単結晶シリコン等)等が挙げられる。
 半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種又は複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種又は複数種であることが好ましい。
 特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。又は、半導体層としては、インジウム(In)、アルミニウム(Al)、及び亜鉛(Zn)を含む酸化物(IAZOとも記す)を用いてもよい。又は、半導体層としては、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IAGZO)を用いてもよい。
 半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1又はその近傍の組成、In:M:Zn=1:1:1.2又はその近傍の組成、In:M:Zn=2:1:3又はその近傍の組成、In:M:Zn=3:1:2又はその近傍の組成、In:M:Zn=4:2:3又はその近傍の組成、In:M:Zn=4:2:4.1又はその近傍の組成、In:M:Zn=5:1:3又はその近傍の組成、In:M:Zn=5:1:6又はその近傍の組成、In:M:Zn=5:1:7又はその近傍の組成、In:M:Zn=5:1:8又はその近傍の組成、In:M:Zn=6:1:6又はその近傍の組成、In:M:Zn=5:2:5又はその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
 例えば、原子数比がIn:Ga:Zn=4:2:3又はその近傍の組成と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6又はその近傍の組成と記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1又はその近傍の組成と記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
 回路464が有するトランジスタと、表示部462が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路464が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部462が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
 基板451の、基板452が重ならない領域には、接続部204が設けられる。接続部204では、配線465が導電層468、導電層461、及び接続層242を介してFPC472と電気的に接続される。導電層468として、導電層418と同一の導電膜を加工して得られた導電層を用いることができる。導電層461として、画素電極111と同一の導電膜を加工して得られた導電層、又は画素電極111と同一の導電膜と光学調整層と同一の導電膜の積層膜を加工して得られた導電層を用いることができる。接続部204の上面では、導電層461が露出している。これにより、接続部204とFPC472とを接続層242を介して電気的に接続することができる。なお、導電層468と導電層461の間の一部には、絶縁層414が設けられてもよい。具体的には、絶縁層214、絶縁層215、及び絶縁層213に設けられた開口部に、絶縁層414を設けることができる。
 基板452の基板451側の面には、遮光層417を設けることが好ましい。また、基板452の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(例えば拡散フィルム)、反射防止層、及び集光フィルム等が挙げられる。また、基板452の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、又は衝撃吸収層等を配置してもよい。
 発光素子110を覆う保護層121を設けることで、発光素子110に水等の不純物が入り込むことを抑制し、発光素子110の信頼性を高めることができる。
 表示装置100Aの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層121とが互いに接することが好ましい。特に、絶縁層215が有する無機絶縁膜と保護層121が有する無機絶縁膜とが互いに接することが好ましい。これにより、有機絶縁膜を介して外部から表示部462に不純物が入り込むことを抑制できる。したがって、表示装置100Aの信頼性を高めることができる。
 基板451及び基板452には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、又は半導体等を用いることができる。発光素子110からの光を取り出す側の基板には、該光を透過する材料を用いる。基板451及び基板452に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板451又は基板452として偏光板を用いてもよい。
 基板451及び基板452としては、それぞれ、ポリエチレンテレフタレート(PET)若しくはポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、又はABS樹脂、セルロースナノファイバー等を用いることができる。基板451及び基板452の一方又は双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
 なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい)ともいえる。
 光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
 光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
 また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生する等の形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
 接着層442としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、又は嫌気型接着剤等の各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、及びEVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、例えば接着シートを用いてもよい。
 接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、又は異方性導電ペースト(ACP:Anisotropic Conductive Paste)等を用いることができる。
 トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極等の導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステン等の金属、並びに、当該金属を主成分とする合金等が挙げられる。これらの材料を含む膜を単層で、又は積層構造として用いることができる。
 また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、若しくはガリウムを含む酸化亜鉛等の導電性酸化物、又はグラフェンを用いることができる。又は、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタン等の金属材料、又は、該金属材料を含む合金材料を用いることができる。又は、該金属材料の窒化物(例えば、窒化チタン)等を用いてもよい。なお、金属材料、又は、合金材料(又はそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜を用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極等の導電層、及び発光素子が有する導電層(画素電極又は共通電極として機能する導電層)にも用いることができる。
 各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂又はエポキシ樹脂等の樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、又は酸化アルミニウム等の無機絶縁材料が挙げられる。
 図22Bは、トランジスタ209の構成例を示す断面図であり、図22Cは、トランジスタ210の構成例を示す断面図である。トランジスタ209、及びトランジスタ210は、例えば図22Aに示すトランジスタ201、及びトランジスタ205に適用することができる。
 トランジスタ209及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層231、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、導電層223とチャネル形成領域231iとの間に位置する。また、トランジスタ209、又はトランジスタ210を覆うように絶縁層218を設けてもよい。
 導電層222a及び導電層222bは、それぞれ、絶縁層215及び絶縁層225に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
 図22Bでは、絶縁層225が半導体層231の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。
 一方、図22Cに示すトランジスタ210では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することにより、図22Cに示す構造を作製できる。図22Cでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続される。
 また、発光素子を駆動する画素回路に含まれるトランジスタの全てに、チャネルが形成される半導体層にシリコンを有するトランジスタ(以下、Siトランジスタともいう)を用いてもよい。シリコンとしては、単結晶シリコン、多結晶シリコン、及び非晶質シリコン等が挙げられる。特に、Siトランジスタとして、半導体層に低温ポリシリコン(LTPS(Low Temperature Poly Silicon))を有するトランジスタ(以下、LTPSトランジスタともいう)を好適に用いることができる。LTPSトランジスタは、電界効果移動度が高く、周波数特性が良好である。
 LTPSトランジスタ等のシリコンを用いたトランジスタを用いることで、高周波数で駆動する必要のある回路(例えばソースドライバ回路)を表示部と同一基板上に作り込むことができる。これにより、表示装置に実装される外部回路を簡略化でき、部品コスト、及び実装コストを削減することができる。
 また、画素回路に含まれるトランジスタの少なくとも一に、チャネルが形成される半導体に金属酸化物を有するトランジスタを用いることが好ましい。OSトランジスタは、非晶質シリコンと比較して電界効果移動度が極めて高い。また、OSトランジスタは、オフ状態におけるソース−ドレイン間のリーク電流(以下、オフ電流ともいう)が著しく小さく、当該トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。また、OSトランジスタを適用することで、表示装置の消費電力を低減することができる。
 また、室温下における、チャネル幅1μmあたりのOSトランジスタのオフ電流値は、1aA(1×10−18A)以下、1zA(1×10−21A)以下、又は1yA(1×10−24A)以下とすることができる。なお、室温下における、チャネル幅1μmあたりのSiトランジスタのオフ電流値は、1fA(1×10−15A)以上1pA(1×10−12A)以下である。したがって、OSトランジスタのオフ電流は、Siトランジスタのオフ電流よりも10桁程度低いともいえる。
 画素回路に含まれるトランジスタの一部に、LTPSトランジスタを用い、他の一部にOSトランジスタを用いることで、消費電力が低く、駆動能力の高い表示装置を実現することができる。また、LTPSトランジスタと、OSトランジスタとを、組み合わせる構成をLTPOという場合がある。なお、より好適な例としては、配線間の導通、非導通を制御するためのスイッチとして機能するトランジスタにOSトランジスタを適用し、電流を制御するトランジスタにLTPSトランジスタを適用する構成が挙げられる。
 例えば、画素回路に設けられるトランジスタの一は、発光素子に流れる電流を制御するためのトランジスタとして機能し、駆動トランジスタということができる。駆動トランジスタのソース及びドレインの一方は、発光素子の画素電極と電気的に接続される。当該駆動トランジスタには、LTPSトランジスタを用いることが好ましい。これにより、画素回路において発光素子に流れる電流を大きくできる。
 一方、画素回路に設けられるトランジスタの他の一は、画素の選択、非選択を制御するためのスイッチとして機能し、選択トランジスタということができる。選択トランジスタのゲートはゲート線と電気的に接続され、ソース及びドレインの一方は、ソース線(信号線)と電気的に接続される。選択トランジスタには、OSトランジスタを適用することが好ましい。これにより、フレーム周波数を著しく小さく(例えば1fps以下)しても、画素の階調を維持することができるため、静止画を表示する際にドライバを停止することで、消費電力を低減することができる。
 このように本発明の一態様は、高い開口率と、高い精細度と、高い表示品位と、低い消費電力と、を兼ね備えた表示装置を実現することができる。
 なお、本発明の一態様の表示装置は、OSトランジスタを有し、且つMML(メタルマスクレス)構造の発光素子を有する構成である。当該構成とすることで、トランジスタに流れうるリーク電流、及び隣接する発光素子間に流れうるリーク電流(横リーク電流、又はサイドリーク電流等ともいう)を、極めて低くすることができる。また、上記構成とすることで、表示装置に画像を表示した場合に、観察者が画像のきれ、画像のするどさ、及び高いコントラスト比のいずれか一又は複数を観測できる。なお、トランジスタに流れうるリーク電流、及び発光素子間の横リーク電流が極めて低い構成とすることで、例えば黒表示時に生じうる光漏れが限りなく少ない表示(真黒表示ともいう)とすることができる。
[表示装置100B]
 図23は、表示装置100Bの構成例を示す断面図である。表示装置100Bは、ボトムエミッション型の表示装置である点が、表示装置100Aと主に相違する。なお、表示装置100Aと同様の部分については説明を省略する。
 表示装置100Bにおいて、発光素子110が発する光は、基板451側に射出される。基板451には、可視光に対する透過性が高い材料を用いることが好ましい。一方、基板452に用いる材料の透光性は問わない。
 基板451とトランジスタ201との間、及び基板451とトランジスタ205との間には、遮光層417を設けることが好ましい。図23では、基板451上に遮光層417が設けられ、遮光層417を覆うように絶縁層253が設けられ、絶縁層253上にトランジスタ201、及びトランジスタ205等が設けられる例を示す。絶縁層253として、絶縁層211、絶縁層213、及び絶縁層215に用いることができる材料と同様の材料を用いることができる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、又は図面等と適宜組み合わせることができる。
(実施の形態3)
 本実施の形態では、上記実施の形態とは異なる表示装置の構成例について説明する。
 本実施の形態の表示装置は、高精細な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、腕時計型、及びブレスレット型等の情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイ等のVR向け機器、メガネ型のAR向け機器等、及び頭部に装着可能なウェアラブル機器の表示部に用いることができる。
[表示モジュール_2]
 図24Aに、表示モジュール280の斜視図を示す。表示モジュール280は、表示装置100Cと、FPC290と、を有する。なお、表示モジュール280が有する表示装置は表示装置100Cに限られず、後述する表示装置100D、表示装置100E、又は表示装置100Fであってもよい。
 表示モジュール280は、基板291及び基板292を有する。表示モジュール280は、表示部281を有する。表示部281は、表示モジュール280における画像を表示する領域であり、後述する画素部284に設けられる各画素からの光を視認できる領域である。
 図24Bに、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部282と、回路部282上の画素回路部283と、画素回路部283上の画素部284と、が積層されている。また、基板291上の画素部284と重ならない部分に、FPC290と接続するための端子部285が設けられる。端子部285と回路部282とは、複数の配線により構成される配線部286により電気的に接続される。
 画素部284は、周期的に配列した複数の画素103を有する。図24Bの右側に、1つの画素103の拡大図を示している。画素103は、発光色が互いに異なる発光素子110R、発光素子110G、及び発光素子110Bを有する。複数の発光素子110は、図24Bに示すようにストライプ配列で配置することが好ましい。ストライプ配列を用いることにより、本発明の一態様の発光素子を高密度に配列することができるため、高精細な表示装置を提供できる。また、デルタ配列、又はペンタイル配列等、様々な配列方法を適用することができる。
 画素回路部283は、周期的に配列した複数の画素回路283aを有する。
 1つの画素回路283aは、1つの画素103が有する3つの発光素子110の発光を制御する回路である。1つの画素回路283aは、1つの発光素子110の発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路283aは、1つの発光素子110につき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソース又はドレインの一方にはビデオ信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。
 回路部282は、画素回路部283の各画素回路283aを駆動する回路を有する。例えば、走査線駆動回路、及び信号線駆動回路の一方又は双方を有することが好ましい。このほか、演算回路、メモリ回路、及び電源回路等のうち少なくとも一つを有していてもよい。
 FPC290は、外部から回路部282にビデオ信号又は電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。
 表示モジュール280は、画素部284の下側に画素回路部283及び回路部282の一方又は双方が積層された構成とすることができるため、表示部281の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部281の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素103を極めて高密度に配置することが可能で、表示部281の精細度を極めて高くすることができる。例えば、表示部281には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、又は30000ppi以下の精細度で、画素103が配置されることが好ましい。
 このような表示モジュール280は、極めて高精細であることから、ヘッドマウントディスプレイ等のVR向け機器、又はメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール280の表示部を視認する構成の場合であっても、表示モジュール280は極めて高精細な表示部281を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール280はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計等の装着型の電子機器の表示部に好適に用いることができる。
[表示装置100C]
 図25に示す表示装置100Cは、基板301、発光素子110R、発光素子110G、発光素子110B、容量240、及びトランジスタ310を有する。
 トランジスタ310は、基板301にチャネル形成領域を有するトランジスタである。基板301としては、例えば単結晶シリコン基板等の半導体基板を用いることができる。トランジスタ310は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、及び絶縁層314を有する。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソース又はドレインとして機能する。絶縁層314は、導電層311の側面を覆って設けられる。
 また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられる。
 また、トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に容量240が設けられる。
 容量240は、導電層241と、導電層245と、これらの間に位置する絶縁層243を有する。導電層241は容量240の一方の電極として機能し、導電層245は容量240の他方の電極として機能し、絶縁層243は容量240の誘電体として機能する。
 導電層241は絶縁層261上に設けられ、絶縁層254に埋め込まれている。導電層241は、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソース又はドレインの一方と電気的に接続される。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられる。
 容量240を覆って、絶縁層255が設けられ、絶縁層255上に発光素子110R、発光素子110G、及び発光素子110B等が設けられる。発光素子110R、発光素子110G、及び発光素子110B上には保護層121が設けられており、保護層121の上面には、樹脂層419によって基板420が貼り合わされている。
 基板301は、図24A及び図24Bにおける基板291に相当し、基板420は、図24Aにおける基板292に相当する。また、基板301から絶縁層255までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
 発光素子110の画素電極111は、絶縁層255及び絶縁層243に埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、及び絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソース又はドレインの一方と電気的に接続される。
[表示装置100D]
 図26に示す表示装置100Dは、トランジスタの構成が異なる点で、表示装置100Cと主に相違する。なお、表示装置100Cと同様の部分については説明を省略することがある。
 トランジスタ320は、チャネルが形成される半導体層に、金属酸化物が適用されたトランジスタである。
 トランジスタ320は、半導体層321、絶縁層323、導電層324、一対の導電層325、絶縁層326、及び導電層327を有する。
 基板331は、図24A及び図24Bにおける基板291に相当する。基板331としては、絶縁性基板又は半導体基板を用いることができる。
 基板331上に、絶縁層332が設けられる。絶縁層332は、基板331から水又は水素等の不純物がトランジスタ320に拡散すること、及び半導体層321から絶縁層332側に酸素が脱離することを防ぐバリア層として機能する。絶縁層332としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、又は窒化シリコン膜等の、酸化シリコン膜よりも水素又は酸素が拡散しにくい膜を用いることができる。
 絶縁層332上に導電層327が設けられ、導電層327を覆って絶縁層326が設けられる。導電層327は、トランジスタ320の第1のゲート電極として機能し、絶縁層326の一部は、第1のゲート絶縁層として機能する。絶縁層326の少なくとも半導体層321と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層326の上面は、平坦化されていることが好ましい。
 半導体層321は、絶縁層326上に設けられる。半導体層321は、半導体特性を有する金属酸化物膜を有することが好ましい。
 一対の導電層325は、半導体層321上に接して設けられ、ソース電極及びドレイン電極として機能する。
 また、一対の導電層325の上面及び側面、並びに半導体層321の側面等を覆って絶縁層328が設けられ、絶縁層328上に絶縁層264が設けられる。絶縁層328は、半導体層321に絶縁層264等から水又は水素等の不純物が拡散すること、及び半導体層321から酸素が脱離することを防ぐバリア層として機能する。絶縁層328としては、上記絶縁層332と同様の絶縁膜を用いることができる。
 絶縁層328及び絶縁層264に、半導体層321に達する開口が設けられる。当該開口の内部において、絶縁層264、絶縁層328、及び導電層325の側面、並びに半導体層321の上面に接する絶縁層323と、導電層324とが埋め込まれている。導電層324は、第2のゲート電極として機能し、絶縁層323は第2のゲート絶縁層として機能する。
 導電層324の上面、絶縁層323の上面、及び絶縁層264の上面は、それぞれ高さが概略一致するように平坦化処理され、これらを覆って絶縁層329及び絶縁層265が設けられる。
 絶縁層264及び絶縁層265は、層間絶縁層として機能する。絶縁層329は、トランジスタ320に絶縁層265等から水又は水素等の不純物が拡散することを防ぐバリア層として機能する。絶縁層329としては、上記絶縁層328及び絶縁層332と同様の絶縁膜を用いることができる。
 一対の導電層325の一方と電気的に接続するプラグ274は、絶縁層265、絶縁層329、絶縁層264、及び絶縁層328に埋め込まれるように設けられる。ここで、プラグ274は、絶縁層265、絶縁層329、絶縁層264、及び絶縁層328のそれぞれの開口の側面、及び導電層325の上面の一部を覆う導電層274aと、導電層274aの上面に接する導電層274bとを有することが好ましい。このとき、導電層274aとして、水素及び酸素が拡散しにくい導電材料を用いることが好ましい。
 表示装置100Dにおける、絶縁層254から基板420までの構成は、表示装置100Cと同様である。表示装置100Dにおいて、基板331から絶縁層255までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
[表示装置100E]
 図27に示す表示装置100Eは、それぞれ半導体基板にチャネルが形成されるトランジスタ310Aと、トランジスタ310Bとが積層された構成を有する。
 表示装置100Eは、トランジスタ310B、容量240、及び各発光素子110が設けられた基板301Bと、トランジスタ310Aが設けられた基板301Aとが、貼り合された構成を有する。
 表示装置100Eにおいて、基板301Aは、図24A及び図24Bにおける基板291に相当し、基板420は、図24Aにおける基板292に相当する。また、基板301Aから絶縁層255までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
 表示装置100Eには、基板301Bを貫通するプラグ343が設けられる。また、プラグ343は、基板301Bの裏面(基板301A側の表面)に設けられる導電層342と電気的に接続される。一方、基板301Aには、絶縁層261上に導電層341が設けられる。
 導電層341と、導電層342とが接合されることで、基板301Aと基板301Bとが電気的に接続される。
 導電層341及び導電層342としては、同じ導電性材料を用いることが好ましい。例えば、Al、Cr、Cu、Ta、Ti、Mo、及びWから選ばれた元素を含む金属膜、又は上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、又は窒化タングステン膜)等を用いることができる。特に、導電層341及び導電層342に、銅を用いることが好ましい。これにより、Cu−Cu(カッパー・カッパー)直接接合技術(Cu(銅)のパッド同士を接続することで電気的導通を図る技術)を適用することができる。なお、導電層341と導電層342とは、バンプを介して接合されてもよい。
[表示装置100F]
 図28に示す表示装置100Fは、基板301にチャネルが形成されるトランジスタ310と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320とが積層された構成を有する。
 表示装置100Fにおいて、基板301は、図24A及び図24Bにおける基板291に相当し、基板420は、図24Aにおける基板292に相当する。また、基板301から絶縁層255までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
 トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に導電層251が設けられる。また導電層251を覆って絶縁層262が設けられ、絶縁層262上に導電層252が設けられる。導電層251及び導電層252は、それぞれ配線として機能する。また、導電層252を覆って絶縁層263及び絶縁層332が設けられ、絶縁層332上にトランジスタ320が設けられる。また、トランジスタ320を覆って絶縁層265が設けられ、絶縁層265上に容量240が設けられる。容量240とトランジスタ320とは、プラグ274により電気的に接続される。
 トランジスタ320は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ310は、画素回路を構成するトランジスタ、又は当該画素回路を駆動するための駆動回路(走査線駆動回路、又は信号線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ310及びトランジスタ320は、演算回路又は記憶回路等の各種回路を構成するトランジスタとして用いることができる。
 このような構成とすることで、発光素子の直下に画素回路だけでなく例えば駆動回路を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示装置を小型化することが可能となる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、又は図面等と適宜組み合わせることができる。
(実施の形態4)
 本実施の形態では、本発明の一態様である表示装置に用いることができる発光素子について説明する。
<発光素子の構成例>
 図29Aに示すように、発光素子は、一対の電極(下部電極772、上部電極788)の間に、EL層786を有する。EL層786は、層4420、発光層4411、及び層4430等の複数の層で構成することができる。層4420は、例えば電子注入性の高い物質を含む層(電子注入層)及び電子輸送性の高い物質を含む層(電子輸送層)等を有することができる。発光層4411は、例えば発光性の化合物を有する。層4430は、例えば正孔注入性の高い物質を含む層(正孔注入層)及び正孔輸送性の高い物質を含む層(正孔輸送層)を有することができる。
 一対の電極間に設けられた層4420、発光層4411、及び層4430を有する構成は単一の発光ユニットとして機能することができ、本明細書等では図29Aの構成をシングル構造という。
 また、図29Bは、図29Aに示す発光素子が有するEL層786の変形例である。具体的には、図29Bに示す発光素子は、下部電極772上の層4430−1と、層4430−1上の層4430−2と、層4430−2上の発光層4411と、発光層4411上の層4420−1と、層4420−1上の層4420−2と、層4420−2上の上部電極788と、を有する。例えば、下部電極772を陽極とし、上部電極788を陰極とした場合、層4430−1が正孔注入層として機能し、層4430−2が正孔輸送層として機能し、層4420−1が電子輸送層として機能し、層4420−2が電子注入層として機能する。又は、下部電極772を陰極とし、上部電極788を陽極とした場合、層4430−1が電子注入層として機能し、層4430−2が電子輸送層として機能し、層4420−1が正孔輸送層として機能し、層4420−2が正孔注入層として機能する。このような層構造とすることで、発光層4411に効率よくキャリアを注入し、発光層4411内におけるキャリアの再結合の効率を高めることが可能となる。
 なお、図29C、及び図29Dに示すように層4420と層4430との間に複数の発光層(発光層4411、発光層4412、及び発光層4413)が設けられる構成もシングル構造のバリエーションである。
 また、図29E、及び図29Fに示すように、複数の発光ユニット(EL層786a、EL層786b)が中間層(電荷発生層)4440を介して直列に接続された構成を本明細書等ではタンデム構造という。なお、本明細書等においては、図29E、及び図29Fに示すような構成をタンデム構造いうが、これに限定されず、例えば、タンデム構造をスタック構造といってもよい。なお、タンデム構造とすることで、高輝度発光が可能な発光素子とすることができる。
 図29C、及び図29Dにおいて、発光層4411、発光層4412、及び発光層4413に、同じ色の光を発する発光物質、さらには同じ発光物質を用いてもよい。例えば、発光層4411、発光層4412、及び発光層4413に、青色の光を発する発光物質を用いてもよい。図29Dに示す層785として、色変換層を設けてもよい。
 また、発光層4411、発光層4412、及び発光層4413に、それぞれ異なる色の光を発する発光物質を用いてもよい。発光層4411、発光層4412、及び発光層4413がそれぞれ発する光が補色の関係である場合、白色発光が得られる。図29Dに示す層785として、カラーフィルタ(着色層ともいう)を設けてもよい。白色光がカラーフィルタを透過することで、所望の色の光を得ることができる。
 また、図29E、及び図29Fにおいて、発光層4411と、発光層4412とに、同じ色の光を発する発光物質、さらには同じ発光物質を用いてもよい。又は、発光層4411と、発光層4412とに、異なる色の光を発する発光物質を用いてもよい。発光層4411が発する光と、発光層4412が発する光が補色の関係である場合、白色発光が得られる。図29Fには、さらに層785を設ける例を示している。層785としては、色変換層及びカラーフィルタ(着色層)の一方又は双方を用いることができる。
 なお、図29C、図29D、図29E、及び図29Fにおいても、図29Bに示すように、層4420と、層4430とは、2層以上の層からなる積層構造としてもよい。
 発光素子ごとに、発光色(例えば青(B)、緑(G)、及び赤(R))を作り分ける構造をSBS(Side By Side)構造という場合がある。
 発光素子の発光色は、EL層786を構成する材料によって、赤、緑、青、シアン、マゼンタ、黄又は白等とすることができる。また、発光素子にマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。
 白色の光を発する発光素子は、発光層に2種類以上の発光物質を含む構成とすることが好ましい。白色発光を得るには、2以上の発光物質の各々の発光が補色の関係となるような発光物質を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光素子全体として白色発光する発光素子を得ることができる。また、発光層を3つ以上有する発光素子の場合も同様である。
 発光層には、R(赤)、G(緑)、B(青)、Y(黄)、又はO(橙)等の発光を示す発光物質を2種類以上含むことが好ましい。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物について説明する。
 金属酸化物は、少なくともインジウム又は亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、又はスズ等が含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルト等から選ばれた一種、又は複数種が含まれていてもよい。
 また、金属酸化物は、スパッタリング法、MOCVD法等のCVD法、又はALD法等により形成することができる。
<結晶構造の分類>
 酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(polycrystal)等が挙げられる。
 なお、膜又は基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法又はSeemann−Bohlin法ともいう。
 例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中又は基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜又は基板は非晶質状態であるとは言えない。
 また、膜又は基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。そのため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、及び非晶質酸化物半導体等が含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、又はCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つ又は複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタン等から選ばれた一種、又は複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°又はその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、及び組成等により変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、又は七角形等の格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、及び金属原子が置換することで原子間の結合距離が変化すること等によって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)といわれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、及び電界効果移動度の低下等を引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、及び欠陥の生成等によって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損等)の少ない酸化物半導体ともいえる。したがって、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OS又は非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、又はその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つ又は複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、又はその近傍のサイズで混合した状態をモザイク状、又はパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。又は、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、又はインジウム亜鉛酸化物等が主成分である領域である。また、上記第2の領域は、ガリウム酸化物、又はガリウム亜鉛酸化物等が主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つ又は複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
 また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。したがって、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制できる。
 したがって、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
 また、CAC−OSを用いたトランジスタは、信頼性が高い。したがって、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体という場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 したがって、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、又はシリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコン又は炭素が含まれると、酸化物半導体において欠陥準位が形成される。そのため、酸化物半導体におけるシリコン又は炭素の濃度と、酸化物半導体との界面近傍のシリコン又は炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。そのため、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。又は、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。そのため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。したがって、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。そのため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
 本実施の形態では、本発明の一態様の電子機器について説明する。
 本実施の形態の電子機器は、本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化、高解像度化、及び大型化のそれぞれが容易である。したがって、本発明の一態様の表示装置は、様々な電子機器の表示部に用いることができる。
 また、本発明の一態様の表示装置は、低いコストで作製できるため、電子機器の製造コストを低減することができる。
 電子機器としては、例えば、テレビジョン装置、デスクトップ型若しくはノート型のパーソナルコンピュータ、コンピュータ用のモニタ、デジタルサイネージ、パチンコ機等の大型ゲーム機等の比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、及び音響再生装置等が挙げられる。
 特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば腕時計型又はブレスレット型等の情報端末機(ウェアラブル機器)、及びヘッドマウントディスプレイ等のVR向け機器又はメガネ型のAR向け機器等、頭部に装着可能なウェアラブル機器等が挙げられる。また、ウェアラブル機器としては、SR向け機器、及びMR向け機器も挙げられる。
 本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K2K(画素数3840×2160)、又は8K4K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K2K、8K4K、又はそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度又は高い精細度を有する表示装置を用いることで、携帯型又は家庭用途等のパーソナルユースの電子機器において、臨場感及び奥行き感等をより高めることが可能となる。
 本実施の形態の電子機器は、家屋若しくはビルの内壁、若しくは外壁、又は、自動車の内装若しくは外装の曲面に沿って組み込むことができる。
 本実施の形態の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像及び情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
 本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)を有していてもよい。
 本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、及びテキスト画像等)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻等を表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、及び記録媒体に記録されているプログラム又はデータを読み出す機能等を有することができる。
 図30Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
 電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
 表示部6502に、本発明の一態様の表示装置を適用することができる。
 図30Bは、筐体6501のマイク6506側の端部を含む断面図である。
 筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、及びバッテリ6518等が配置されている。
 保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
 表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続される。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続される。
 表示パネル6511には本発明の一態様のフレキシブルディスプレイ(可撓性を有する表示装置)を適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
 図31Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図31Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び別体のリモコン操作機7111により行うことができる。又は、表示部7000にタッチセンサを備えていてもよく、例えば指で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キー又はタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
 なお、テレビジョン装置7100は、受信機及びモデム等を備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線又は無線による通信ネットワークに接続することにより、一方向(送信者から受信者)又は双方向(送信者と受信者間、あるいは受信者間同士等)の情報通信を行うことも可能である。
 図31Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、及び外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図31C、及び図31Dに、デジタルサイネージの一例を示す。
 図31Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、又は操作スイッチを含む)、接続端子、各種センサ、及びマイクロフォン等を有することができる。
 図31Dは、円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
 図31C、及び図31Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
 表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
 表示部7000にタッチパネルを適用することで、表示部7000に画像又は動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報又は交通情報等の情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
 また、図31C、及び図31Dに示すように、デジタルサイネージ7300又はデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311又は情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311又は情報端末機7411の画面に表示させることができる。また、情報端末機7311又は情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
 また、デジタルサイネージ7300又はデジタルサイネージ7400に、情報端末機7311又は情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
 図32Aは、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
 カメラ8000は、筐体8001、表示部8002、操作ボタン8003、及びシャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。なお、カメラ8000は、レンズ8006と筐体とが一体となっていてもよい。
 カメラ8000は、シャッターボタン8004を押す、又はタッチパネルとして機能する表示部8002をタッチすることにより撮像することができる。
 筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、例えばストロボ装置を接続することができる。
 ファインダー8100は、筐体8101、表示部8102、及びボタン8103等を有する。
 筐体8101は、カメラ8000のマウントと係合するマウントにより、カメラ8000に取り付けられている。ファインダー8100は例えばカメラ8000から受信した映像を表示部8102に表示させることができる。
 ボタン8103は、例えば電源ボタンとしての機能を有する。
 カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。なお、ファインダーが内蔵されたカメラ8000であってもよい。
 図32Bは、ヘッドマウントディスプレイ8200の外観を示す図である。
 ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、及びケーブル8205等を有している。また装着部8201には、バッテリ8206が内蔵されている。
 ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体8203は例えば無線受信機を備え、受信した映像情報を表示部8204に表示させることができる。また、本体8203はカメラを備え、使用者の眼球又はまぶたの動きの情報を入力手段として用いることができる。
 また、装着部8201には、使用者に触れる位置に、使用者の眼球の動きに伴って流れる電流を検知可能な複数の電極を設けることができる。これにより、ヘッドマウントディスプレイ8200は、使用者の視線を認識する機能を有することができる。また、ヘッドマウントディスプレイ8200は、上記電極に流れる電流により、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、又は加速度センサ等の各種センサを設けてもよい。また、ヘッドマウントディスプレイ8200は、使用者の生体情報を表示部8204に表示する機能、又は使用者の頭部の動きに合わせて表示部8204に表示する映像を変化させる機能等を有していてもよい。
 表示部8204に、本発明の一態様の表示装置を適用することができる。
 図32C乃至図32Eは、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
 使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると、使用者が高い臨場感を感じることができるため好ましい。また、表示部8302の異なる領域に表示された別の画像を、レンズ8305を通して視認することで、例えば視差を用いた3次元表示を行うこともできる。なお、表示部8302を1つ設ける構成に限られず、表示部8302を2つ設け、使用者の片方の目につき1つの表示部を配置してもよい。
 表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、極めて高い精細度を実現することも可能である。例えば、図32Eのようにレンズ8305を用いて表示を拡大して視認される場合でも、使用者に画素が視認されにくい。つまり、表示部8302を用いて、使用者に現実感の高い映像を視認させることができる。
 図32Fは、ゴーグル型のヘッドマウントディスプレイ8400の外観を示す図である。ヘッドマウントディスプレイ8400は、一対の筐体8401と、装着部8402と、緩衝部材8403と、を有する。一対の筐体8401内には、それぞれ、表示部8404及びレンズ8405が設けられる。一対の表示部8404に互いに異なる画像を表示させることで、視差を用いた3次元表示を行うことができる。
 使用者は、レンズ8405を通して表示部8404を視認することができる。レンズ8405はピント調整機構を有し、使用者の視力に応じて位置を調整することができる。表示部8404は、正方形又は横長の長方形であることが好ましい。これにより、臨場感を高めることができる。
 装着部8402は、使用者の顔のサイズに応じて調整でき、且つ、ずれ落ちることのないよう、可塑性及び弾性を有することが好ましい。また、装着部8402の一部は、骨伝導イヤフォンとして機能する振動機構を有していることが好ましい。これにより、別途イヤフォン、又はスピーカ等の音響機器を必要とせず、装着しただけで映像と音声を楽しむことができる。なお、筐体8401内に、無線通信により音声データを出力する機能を有していてもよい。
 装着部8402と緩衝部材8403は、使用者の顔(額、又は頬等)に接触する部分である。緩衝部材8403が使用者の顔と密着することにより、光漏れを防ぐことができ、より没入感を高めることができる。緩衝部材8403は、使用者がヘッドマウントディスプレイ8400を装着した際に使用者の顔に密着するよう、柔らかな素材を用いることが好ましい。例えばゴム、シリコーンゴム、ウレタン、又はスポンジ等の素材を用いることができる。また、例えばスポンジの表面を布、又は革(天然皮革又は合成皮革)等で覆ったものを用いると、使用者の顔と緩衝部材8403との間に隙間が生じにくく光漏れを好適に防ぐことができる。また、このような素材を用いると、肌触りが良いことに加え、例えば寒い季節に装着した際に、使用者に冷たさを感じさせないため好ましい。緩衝部材8403及び装着部8402等の、使用者の肌に触れる部材は、取り外し可能な構成とすると、クリーニング又は交換が容易となるため好ましい。
 図33A乃至図33Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又は操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
 図33A乃至図33Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、及びテキスト画像等)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻等を表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、及び記録媒体に記録されているプログラム又はデータを読み出して処理する機能等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器に例えばカメラを設け、静止画又は動画を撮影し、記録媒体(外部又はカメラに内蔵)に保存する機能、及び撮影した画像を表示部に表示する機能等を有していてもよい。
 表示部9001に、本発明の一態様の表示装置を適用することができる。
 図33A乃至図33Fに示す電子機器の詳細について、以下説明を行う。
 図33Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101には、スピーカ9003、接続端子9006、及びセンサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図33Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、又は電話等の着信の通知、電子メール、例えばSNSの題名、送信者名、日時、時刻、バッテリの残量、又は電波強度等がある。又は、情報9051が表示されている位置には例えばアイコン9050を表示してもよい。
 図33Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、及び情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
 図33Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200を、例えば無線通信可能なヘッドセットと相互通信させることによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
 図33D乃至図33Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図33Dは携帯情報端末9201を展開した状態、図33Fは折り畳んだ状態、図33Eは図33Dと図33Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、又は図面等と適宜組み合わせることができる。
 本実施例では、発光素子を有するサンプルを作製し、評価を行った結果について説明する。
 図34A、図34B、及び図34Cは、本実施例で作製したサンプルの構成を示す断面図である。図34Aに示すサンプル200Aは、絶縁層101aと、絶縁層101a上の絶縁層101bと、絶縁層101b上の発光素子110Rと、発光素子110R上の保護層121と、を有する。
 発光素子110Rは、絶縁層101b上の画素電極111Raと、画素電極111Ra上、及び絶縁層101b上の画素電極111Rbと、画素電極111Rb上、及び絶縁層101b上のEL層112Rと、を有する。また、サンプル200Aは、EL層112Rの側面と接する領域を有する、絶縁層101b上の保護層131Raと、保護層131Ra上の保護層131Rbと、を有する。さらに、サンプル200Aは、EL層112R上、保護層131Ra上、保護層131Rb上、及び絶縁層101b上の共通層114と、共通層114上の共通電極115と、を有する。また、共通電極115上に保護層121が設けられる。ここで、画素電極111Raと、画素電極111Rbと、により実施の形態1等に示す画素電極111Rが構成され、保護層131Raと、保護層131Rbと、により実施の形態1等に示す保護層131Rが構成されるとした。
 図34Bに示すサンプル200Bは、保護層131Ra、及び保護層131Rbを有さない点が、サンプル200Aと異なる。サンプル200Bでは、EL層112Rの側面は共通層114と接する。
 図34Cに示すサンプル200Cは、絶縁層101aと、絶縁層101a上の絶縁層101bと、絶縁層101b上の画素電極111Raと、画素電極111Ra上の画素電極111Rbと、画素電極111Rb上のEL層112Rと、EL層112R上の共通層114と、共通層114上の共通電極115と、共通電極115上の保護層121と、を有する。サンプル200Cは、パターニングがされていない点がサンプル200Bと異なる。
 図34Dは、EL層112Rの構成を示す図である。EL層112は、正孔注入層151と、正孔注入層151上の正孔輸送層152と、正孔輸送層152上の発光層153と、発光層153上の正孔ブロック層154と、正孔ブロック層154上の電子輸送層155と、を有する。ここで、発光層153は、赤色の光を発する機能を有する。
 図35A乃至図35E、及び図36A乃至図36Dは、本実施例におけるサンプル200Aの作製方法の、各工程における断面図である。
 サンプル200Aの作製では、まず、基板(図示せず)上に、絶縁層101aとして樹脂層を、スピンコート法を用いて形成した。次に、絶縁層101bとして窒化シリコン層を、CVD法を用いて絶縁層101a上に形成した。
 続いて、後に画素電極111Raとなる導電膜として銀とパラジウムと銅の合金膜を、膜厚100nmとなるようにスパッタリング法を用いて絶縁層101b上に成膜した。その後、当該導電膜の一部をウェットエッチングにより除去し、画素電極111Raを形成した。
 続いて、後に画素電極111Rbとなる導電膜としてシリコンを含むインジウム錫酸化物膜を、膜厚100nmとなるようにスパッタリング法を用いて画素電極111Ra上、及び絶縁層101b上に成膜した。その後、当該導電膜の一部をウェットエッチングにより除去し、画素電極111Rbを形成した。(図35A)。
 続いて、後にEL層112RとなるEL膜112Rfを、蒸着法を用いて画素電極111Rb上、及び絶縁層101b上に形成した。ここで、EL膜112Rfの構成は図34Dに示す通りとし、正孔注入層151の膜厚が11.4nm、正孔輸送層152の膜厚が57.5nm、発光層153の膜厚が74.4nm、正孔ブロック層154の膜厚が10nm、電子輸送層155の膜厚が10nmとなるようにEL膜112Rfを形成した。
続いて、後に犠牲層145Raとなる犠牲膜144Raとして酸化アルミニウム膜を、膜厚30nmとなるようにALD法を用いてEL膜112Rf上に成膜した。続いて、後に犠牲層145Rbとなる犠牲膜144Rbとしてインジウム錫酸化物膜を、膜厚50nmとなるようにスパッタリング法を用いて犠牲膜144Ra上に成膜した。
 続いて、犠牲膜144Rb上にレジストを塗布し、露光及び現像を行うことにより、レジストマスク143を形成した(図35B)。
 続いて、犠牲膜144Rb、犠牲膜144Ra、及びEL膜112Rfの、レジストマスク143に覆われない部分をドライエッチングにより除去し、犠牲層145Rb、犠牲層145Ra、及びEL層112Rを形成した。また、レジストマスク143を除去した(図35C)。
 続いて、後に保護層131Raとなる保護膜131Rafとして酸化アルミニウム膜を、膜厚15nmとなるようにALD法を用いて犠牲層145Rb上、及び絶縁層101b上に形成した。その後、EL膜112fを、蒸着法を用いて保護膜131Raf上に形成した(図35D)。
 続いて、EL膜112fを、ドライエッチングにより除去した(図35E)。その後、後に保護層131Rbとなる保護膜131Rbfとして窒化シリコン膜を、膜厚90nmとなるようにスパッタリング法を用いて保護膜131Raf上に形成した(図36A)。
 続いて、保護膜131Rbfをドライエッチングにより加工し、保護層131Rbを形成した。(図36B)。次に、保護膜131Rafをドライエッチングにより加工し、保護層131Raを形成した。その後、犠牲層145Rb、及び犠牲層145Raを、ウェットエッチングを用いて除去した(図36C)。
 続いて、共通層114として、フッ化リチウム膜を膜厚1nmとなるように蒸着法を用いてEL層112R上、保護層131Ra上、保護層131Rb上、及び絶縁層101b上に形成した後、イッテルビウム膜を膜厚1nmとなるように蒸着法を用いてフッ化リチウム膜上に形成した。つまり、共通層114を、フッ化リチウム膜と、イッテルビウム膜と、の積層構造とした。
 続いて、共通電極115として、銀とマグネシウムの比が10:1の合金膜を、膜厚15nmとなるように蒸着法を用いて共通層114上に形成した。以上により、発光素子110Rを形成した。
 続いて、保護層121として、インジウムガリウム亜鉛酸化物膜を、膜厚70nmとなるようにスパッタリング法を用いて共通電極115上に形成した(図36D)。以上示した方法で、サンプル200Aを形成した。
 図37A乃至図37Eは、本実施例におけるサンプル200Bの作製方法の、各工程における断面図である。
 サンプル200Bの作製では、まず、サンプル200Aの作製における図35A、図35B、及び図35Cに示す工程と同様の工程を行った(図37A)。次に、EL膜112fを、蒸着法を用いて犠牲層145Rb上、及び絶縁層101b上に形成した(図37B)。つまり、サンプル200Aと異なり、保護膜131Rafの形成は行わなかった。
 続いて、EL膜112fを、ドライエッチングにより除去した(図37C)。その後、犠牲層145Rb、及び犠牲層145Raを除去した(図37D)。つまり、サンプル200Aと異なり、保護膜131Rbfの形成は行わなかった。
 その後、サンプル200Aと同様に、共通層114、共通電極115、及び保護層121を形成した(図37E)。以上示した方法で、サンプル200Bを形成した。
 サンプル200Cの作製では、まず、基板(図示せず)上に絶縁層101aとして、スピンコート法を用いて樹脂層を形成した。次に、絶縁層101bとして、CVD法を用いて窒化シリコン層を絶縁層101a上に形成した。
 続いて、画素電極111Raとして銀とパラジウムと銅の合金膜を、膜厚100nmとなるようにスパッタリング法を用いて絶縁層101b上に成膜した。その後、画素電極111Rbとしてシリコンを含むインジウム錫酸化物膜を、膜厚100nmとなるようにスパッタリング法を用いて画素電極111Ra上に成膜した。
 続いて、EL層112Rを、蒸着法を用いて画素電極111Rb上に形成した。EL層112Rの構成は図34Dに示す通りとし、正孔注入層151、正孔輸送層152、発光層153、正孔ブロック層154、及び電子輸送層155の膜厚はサンプル200A、及びサンプル200Bと同様とした。
 その後、サンプル200A、及びサンプル200Bと同様に、共通層114、共通電極115、及び保護層121を形成した。以上示した方法で、サンプル200Cを形成した。以上のように、サンプル200Cの形成の際には、犠牲層の形成及びEL膜のエッチング法によるパターニングは行わなかった。サンプル200Cの作製は、真空一貫で行ったということができる。
 図38は、サンプル200A、サンプル200B、及びサンプル200Cの輝度−電圧特性を示すグラフである。図39は、サンプル200A、サンプル200B、及びサンプル200Cの電流効率−輝度特性を示すグラフである。また、サンプル200A、サンプル200B、及びサンプル200Cのそれぞれにおける、発光輝度が1000cd/m付近である場合の、発光素子110Rの特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図38に示すように、サンプル200Bは、サンプル200A、及びサンプル200Cと比較して同じ輝度を得るために必要な電圧が高い結果となった。一方、サンプル200Aの輝度−電圧特性とサンプル200Cの輝度−電圧特性はほとんど差がなかった。つまり、サンプル200Aは、EL膜112Rfのドライエッチングによる加工を行ったにもかかわらず、真空一貫で作製したサンプル200Cと、輝度−電圧特性が同等であったといえる。
 また、図39に示すように、真空一貫で作製したサンプル200Cに比べて、EL膜112Rfのドライエッチングによる加工を行ったサンプル200A及びサンプル200Bは、低輝度側において、電流効率が低くなった。しかし、サンプル200Aは、サンプル200Bに比べて電流効率の低下が抑制されていることが確認された。
 ここで、サンプル200Aは、図35D、及び図35Eに示すEL膜112fの成膜、及びドライエッチングによる除去を行う前に、図35Cに示すように例えばEL層112Rの側面を覆う保護膜131Rafを設ける点で、サンプル200Bと異なる。保護膜131Rafを設けることで、EL膜112fの成膜、ドライエッチングによる除去を行うことによる、発光素子110Rの特性の低下を抑制できることが示唆された。
 図40は、サンプル200A、サンプル200B、及びサンプル200Cの規格化輝度の経時変化を示すグラフである。図40において、規格化輝度は、時間0、つまり輝度の測定開始時点における発光素子110Rの輝度を基準とした相対輝度を示す。図40に示す規格化輝度は、発光素子110Rの真性輝度を7900cd/mとした定電流測定で、且つ室温で測定した。ここで、規格化輝度の経時変化を示すグラフを、信頼性曲線という。
 図40に示すように、サンプル200Aの信頼性曲線の傾きと、サンプル200Bの信頼性曲線の傾きと、サンプル200Cの信頼性曲線の傾きと、に大きな差は見られなかった。よって、サンプル200Aの信頼性と、サンプル200Bの信頼性と、サンプル200Cの信頼性と、に大きな差がないことが確認された。
 以上のように、保護層131Ra及び保護層131Rbを設けることで、EL膜のドライエッチングによる加工を行っても、真空一貫で作製した発光素子と同等の駆動電圧及び信頼性を有し、保護層131Ra及び保護層131Rbを設けない場合より電流効率の低下が抑制された発光素子を作製することができた。
100:表示装置、100A:表示装置、100B:表示装置、100C:表示装置、100D:表示装置、100E:表示装置、100F:表示装置、101:層、101a:絶縁層、101b:絶縁層、103:画素、103a:副画素、103b:副画素、103c:副画素、110:発光素子、110B:発光素子、110G:発光素子、110R:発光素子、111:画素電極、111B:画素電極、111C:接続電極、111G:画素電極、111R:画素電極、111Ra:画素電極、111Rb:画素電極、112:EL層、112B:EL層、112Bf:EL膜、112f:EL膜、112G:EL層、112Gf:EL膜、112R:EL層、112Rf:EL膜、114:共通層、115:共通電極、121:保護層、124a:画素、124b:画素、130:領域、131:保護層、131a:保護層、131b:保護層、131B:保護層、131Ba:保護層、131Baf:保護膜、131Bb:保護層、131Bbf:保護膜、131Bf:保護膜、131G:保護層、131Ga:保護層、131Gaf:保護膜、131Gb:保護層、131Gbf:保護膜、131Gf:保護膜、131R:保護層、131Ra:保護層、131Raf:保護膜、131Rb:保護層、131Rbf:保護膜、131Rf:保護膜、132:絶縁層、132f:絶縁膜、133:保護層、133f:保護膜、143:レジストマスク、143a:レジストマスク、143b:レジストマスク、143c:レジストマスク、144Ba:犠牲膜、144Bb:犠牲膜、144Ga:犠牲膜、144Gb:犠牲膜、144Ra:犠牲膜、144Rb:犠牲膜、145:犠牲層、145a:犠牲層、145b:犠牲層、145Ba:犠牲層、145Bb:犠牲層、145G:犠牲層、145Ga:犠牲層、145Gb:犠牲層、145R:犠牲層、145Ra:犠牲層、145Rb:犠牲層、151:正孔注入層、152:正孔輸送層、153:発光層、154:正孔ブロック層、155:電子輸送層、160a:領域、160b:領域、200A:サンプル、200B:サンプル、200C:サンプル、201:トランジスタ、204:接続部、205:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、228:領域、231:半導体層、231i:チャネル形成領域、231n:低抵抗領域、240:容量、241:導電層、242:接続層、243:絶縁層、245:導電層、251:導電層、252:導電層、253:絶縁層、254:絶縁層、255:絶縁層、256:プラグ、261:絶縁層、262:絶縁層、263:絶縁層、264:絶縁層、265:絶縁層、271:プラグ、274:プラグ、274a:導電層、274b:導電層、280:表示モジュール、281:表示部、282:回路部、283:画素回路部、283a:画素回路、284:画素部、285:端子部、286:配線部、290:FPC、291:基板、292:基板、301:基板、301A:基板、301B:基板、310:トランジスタ、310A:トランジスタ、310B:トランジスタ、311:導電層、312:低抵抗領域、313:絶縁層、314:絶縁層、315:素子分離層、320:トランジスタ、321:半導体層、323:絶縁層、324:導電層、325:導電層、326:絶縁層、327:導電層、328:絶縁層、329:絶縁層、331:基板、332:絶縁層、341:導電層、342:導電層、343:プラグ、414:絶縁層、417:遮光層、418:導電層、418B:導電層、418G:導電層、418R:導電層、419:樹脂層、420:基板、442:接着層、443:空間、451:基板、452:基板、461:導電層、462:表示部、464:回路、465:配線、468:導電層、472:FPC、473:IC、772:下部電極、785:層、786:EL層、786a:EL層、786b:EL層、788:上部電極、4411:発光層、4412:発光層、4413:発光層、4420:層、4420−1:層、4420−2:層、4430:層、4430−1:層、4430−2:層、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、8000:カメラ、8001:筐体、8002:表示部、8003:操作ボタン、8004:シャッターボタン、8006:レンズ、8100:ファインダー、8101:筐体、8102:表示部、8103:ボタン、8200:ヘッドマウントディスプレイ、8201:装着部、8202:レンズ、8203:本体、8204:表示部、8205:ケーブル、8206:バッテリ、8300:ヘッドマウントディスプレイ、8301:筐体、8302:表示部、8304:固定具、8305:レンズ、8400:ヘッドマウントディスプレイ、8401:筐体、8402:装着部、8403:緩衝部材、8404:表示部、8405:レンズ、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (19)

  1.  第1の発光素子と、前記第1の発光素子と隣接して配置された第2の発光素子と、第1の保護層と、第2の保護層と、絶縁層と、を有し、
     前記第1の発光素子は、第1の画素電極と、第1のEL層と、共通電極と、を有し、
     前記第2の発光素子は、第2の画素電極と、第2のEL層と、前記共通電極と、を有し、
     前記第1のEL層は、前記第1の画素電極上に設けられ、
     前記第2のEL層は、前記第2の画素電極上に設けられ、
     前記第1の保護層は、前記第1の画素電極の側面、前記第2の画素電極の側面、前記第1のEL層の側面、及び前記第2のEL層の側面と重なる領域を有し、
     前記絶縁層は、前記第1の保護層上に設けられ、
     前記第2の保護層は、前記絶縁層上に設けられ、
     前記共通電極は、前記第1のEL層上、前記第2のEL層上、及び前記第2の保護層上に設けられる表示装置。
  2.  請求項1において、
     前記絶縁層は、前記第1のEL層と前記第2のEL層の間に設けられる表示装置。
  3.  請求項1又は2において、
     前記表示装置は、第3の保護層を有し、
     前記第3の保護層は、前記第1の保護層の側面及び下面と接する領域を有する表示装置。
  4.  請求項3において、
     前記第1乃至第3の保護層は、無機材料を有する表示装置。
  5.  請求項1乃至4のいずれか一項において、
     前記第1の保護層は、前記絶縁層の側面、及び下面と接する領域を有し、
     前記第2の保護層は、前記絶縁層の上面と接する領域を有し、
     前記第1の保護層、及び前記第2の保護層は、窒化物を有する表示装置。
  6.  請求項1乃至5のいずれか一項において、
     前記第1の保護層、及び前記第2の保護層は、窒化シリコン、窒化アルミニウム、又は窒化ハフニウムのうち少なくとも1つを有する表示装置。
  7.  請求項1乃至6のいずれか一項において、
     前記絶縁層は、有機材料を有する表示装置。
  8.  請求項1乃至7のいずれか一項において、
     前記第1のEL層、前記第2のEL層、及び前記第2の保護層と、前記共通電極と、の間に共通層が設けられ、
     前記共通層は、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、又は電子注入層の少なくとも一つを有する表示装置。
  9.  請求項1乃至8のいずれか一項において、
     前記第1のEL層の側面と、前記第2のEL層の側面との間隔は、1μm以下の領域を有する表示装置。
  10.  請求項9において、
     前記第1のEL層の側面と、前記第2のEL層の側面との間隔は、100nm以下の領域を有する表示装置。
  11.  請求項1乃至10のいずれか一に記載の表示装置と、
     コネクタ及び集積回路のうち少なくとも一方と、を有する表示モジュール。
  12.  請求項11に記載の表示モジュールと、
     バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有する電子機器。
  13.  絶縁表面上に、第1の画素電極、及び第2の画素電極を形成し、
     前記第1の画素電極上、及び前記第2の画素電極上に、第1のEL膜、及び第1の犠牲膜を順に形成し、
     前記第1の犠牲膜、及び前記第1のEL膜を加工することにより、前記第1の画素電極と重なる領域を有する、第1の犠牲層及び第1のEL層をそれぞれ形成し、
     少なくとも前記第1のEL層の側面と、前記第1の犠牲層の側面及び上面と、を覆う、第1の保護膜を形成し、
     前記第1の保護膜を加工することにより、前記第1のEL層の側面と重なる領域を有する第1の保護層を形成し、
     前記第1の犠牲層上、及び前記第2の画素電極上に、第2のEL膜、及び第2の犠牲膜を順に形成し、
     前記第2の犠牲膜、及び前記第2のEL膜を加工することにより、前記第2の画素電極と重なる領域を有する、第2の犠牲層及び第2のEL層をそれぞれ形成し、
     少なくとも前記第1の犠牲層の上面と、前記第2の犠牲層の上面及び側面と、前記第1の保護層の側面と、前記第2のEL層の側面と、を覆う、第2の保護膜を形成し、
     前記第2の保護膜上に、絶縁膜を形成し、
     前記絶縁膜を加工することにより、前記第1のEL層と、前記第2のEL層と、の間に絶縁層を形成し、
     前記第2の保護膜を加工することにより、前記第1の保護層と前記絶縁層の間、及び前記第2のEL層と前記絶縁層の間に、第2の保護層を形成し、
     前記第1の犠牲層上、前記第2の犠牲層上、及び前記絶縁層上に、第3の保護膜を形成し、
     前記第3の保護膜を加工することにより、前記絶縁層上に第3の保護層を形成し、
     前記第1の犠牲層、及び前記第2の犠牲層を除去し、
     前記第1のEL層上、及び前記第2のEL層上、及び前記第3の保護層上に共通電極を形成する表示装置の作製方法。
  14.  請求項13において、
     前記第1の保護膜の形成後に、前記第1の保護膜と接する領域を有するように第4の保護膜を形成し、
     前記第2の保護膜の形成後に、前記第2の保護膜と接する領域を有するように第5の保護膜を形成する表示装置の作製方法。
  15.  請求項14において、
     前記第1の保護膜、及び前記第2の保護膜は、ALD法を用いて形成し、
     前記第3乃至第5の保護膜は、スパッタリング法、又はCVD法を用いて形成する表示装置の作製方法。
  16.  請求項13乃至15のいずれか一項において、
     前記絶縁膜は、スピンコート法、スプレー法、スクリーン印刷法、又はペイント法を用いて形成する表示装置の作製方法。
  17.  請求項13乃至16のいずれか一項において、
     前記絶縁膜を、フォトリソグラフィ法を用いて加工する表示装置の作製方法。
  18.  請求項13乃至17のいずれか一項において、
     前記第1の保護膜、前記第2の保護膜、前記第4の保護膜、及び前記第5の保護膜は、ドライエッチング法を用いて加工する表示装置の作製方法。
  19.  請求項13又は18のいずれか一項において、
     前記共通電極を形成する前に、前記第1のEL層上、及び前記第2のEL層上、及び前記絶縁層上に、共通層として、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、又は電子注入層の少なくとも一つを形成する表示装置の作製方法。
PCT/IB2022/052921 2021-04-08 2022-03-30 表示装置、表示装置の作製方法、表示モジュール、電子機器 WO2022214916A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023512494A JPWO2022214916A1 (ja) 2021-04-08 2022-03-30
CN202280024269.6A CN117099482A (zh) 2021-04-08 2022-03-30 显示装置、显示装置的制造方法、显示模块及电子设备
KR1020237036260A KR20230166098A (ko) 2021-04-08 2022-03-30 표시 장치, 표시 장치의 제작 방법, 표시 모듈, 전자 기기
US18/283,511 US20240179935A1 (en) 2021-04-08 2022-03-30 Display device, method for manufacturing display device, display module, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021065971 2021-04-08
JP2021-065971 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022214916A1 true WO2022214916A1 (ja) 2022-10-13

Family

ID=83545183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/052921 WO2022214916A1 (ja) 2021-04-08 2022-03-30 表示装置、表示装置の作製方法、表示モジュール、電子機器

Country Status (5)

Country Link
US (1) US20240179935A1 (ja)
JP (1) JPWO2022214916A1 (ja)
KR (1) KR20230166098A (ja)
CN (1) CN117099482A (ja)
WO (1) WO2022214916A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216501A (ja) * 2011-03-30 2012-11-08 Canon Inc 有機el表示装置の製造方法
JP2015173104A (ja) * 2014-02-19 2015-10-01 株式会社半導体エネルギー研究所 発光装置及び剥離方法
WO2020004086A1 (ja) * 2018-06-25 2020-01-02 ソニーセミコンダクタソリューションズ株式会社 有機el素子および有機el素子の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG118118A1 (en) 2001-02-22 2006-01-27 Semiconductor Energy Lab Organic light emitting device and display using the same
CN109937443A (zh) 2016-11-10 2019-06-25 株式会社半导体能源研究所 显示装置及显示装置的驱动方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216501A (ja) * 2011-03-30 2012-11-08 Canon Inc 有機el表示装置の製造方法
JP2015173104A (ja) * 2014-02-19 2015-10-01 株式会社半導体エネルギー研究所 発光装置及び剥離方法
WO2020004086A1 (ja) * 2018-06-25 2020-01-02 ソニーセミコンダクタソリューションズ株式会社 有機el素子および有機el素子の製造方法

Also Published As

Publication number Publication date
JPWO2022214916A1 (ja) 2022-10-13
US20240179935A1 (en) 2024-05-30
KR20230166098A (ko) 2023-12-06
CN117099482A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2022162501A1 (ja) 表示装置
TW202234695A (zh) 顯示裝置
WO2022214916A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、電子機器
WO2022214904A1 (ja) 表示装置
WO2022200916A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2022189908A1 (ja) 表示装置
WO2022224073A1 (ja) 表示装置、及び表示装置の作製方法
WO2022224091A1 (ja) 表示装置
WO2023281344A1 (ja) 表示装置
WO2022162485A1 (ja) 表示装置
WO2022172115A1 (ja) 表示装置
WO2022162492A1 (ja) 表示装置
WO2022157595A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2022175774A1 (ja) 表示装置および表示装置の作製方法
WO2022162491A1 (ja) 表示装置
WO2022162486A1 (ja) 表示装置
WO2022167894A1 (ja) 表示装置
WO2022153118A1 (ja) 表示装置の作製方法
WO2022175789A1 (ja) 表示装置
US20220320184A1 (en) Display apparatus, display module, electronic device, and method for manufacturing display apparatus
WO2022172128A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
US20240172516A1 (en) Display apparatus
WO2022185149A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022162496A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2022175775A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784224

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18283511

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280024269.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023512494

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237036260

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784224

Country of ref document: EP

Kind code of ref document: A1