WO2022153143A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2022153143A1
WO2022153143A1 PCT/IB2022/050072 IB2022050072W WO2022153143A1 WO 2022153143 A1 WO2022153143 A1 WO 2022153143A1 IB 2022050072 W IB2022050072 W IB 2022050072W WO 2022153143 A1 WO2022153143 A1 WO 2022153143A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
display device
light emitting
film
Prior art date
Application number
PCT/IB2022/050072
Other languages
English (en)
French (fr)
Inventor
岡崎健一
江口晋吾
安達広樹
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2022574860A priority Critical patent/JPWO2022153143A1/ja
Priority to CN202280010030.3A priority patent/CN116848952A/zh
Priority to DE112022000616.1T priority patent/DE112022000616T5/de
Priority to KR1020237022823A priority patent/KR20230131200A/ko
Priority to US18/260,847 priority patent/US20240057402A1/en
Publication of WO2022153143A1 publication Critical patent/WO2022153143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • G09F9/335Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes being organic light emitting diodes [OLED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • One aspect of the present invention relates to a display device.
  • One aspect of the present invention relates to a method for manufacturing a display device.
  • One aspect of the present invention is not limited to the above technical fields.
  • the technical fields of one aspect of the present invention disclosed in the present specification and the like include semiconductor devices, display devices, light emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices, input / output devices, and methods for driving them. , Or a method for producing them, can be given as an example.
  • Semiconductor devices refer to all devices that can function by utilizing semiconductor characteristics.
  • Devices that require high-definition display panels include, for example, smartphones, tablet terminals, and notebook computers.
  • stationary display devices such as television devices and monitor devices are also required to have higher definition as the resolution is increased.
  • a device requiring the highest definition for example, there is a device for virtual reality (VR: Virtual Reality) or augmented reality (AR: Augmented Reality).
  • VR Virtual Reality
  • AR Augmented Reality
  • a display device applicable to a display panel a liquid crystal display device, a light emitting device including a light emitting element such as an organic EL (Electro Luminescence) element or a light emitting diode (LED: Light Emitting Diode), and an electrophoresis method are typically used.
  • a light emitting device including a light emitting element such as an organic EL (Electro Luminescence) element or a light emitting diode (LED: Light Emitting Diode)
  • LED Light Emitting Diode
  • electrophoresis method examples include electronic papers that display by means of.
  • the basic configuration of an organic EL device is such that a layer containing a luminescent organic compound is sandwiched between a pair of electrodes. By applying a voltage to this device, light emission can be obtained from a luminescent organic compound. Since the display device to which such an organic EL element is applied does not require a backlight, which is required for a liquid crystal display device or the like, a thin, lightweight, high-contrast, and low-power consumption display device can be realized. For example, an example of a display device using an organic EL element is described in Patent Document 1.
  • Patent Document 2 discloses a display device for VR using an organic EL device.
  • One aspect of the present invention is to provide a display device having high display quality.
  • One aspect of the present invention is to provide a highly reliable display device.
  • One aspect of the present invention is to provide a display device having low power consumption.
  • One of the problems of one aspect of the present invention is to provide a display device that can easily achieve high definition.
  • One aspect of the present invention is to provide a display device having both high display quality and high definition.
  • One aspect of the present invention is to provide a display device having high contrast.
  • One aspect of the present invention is to provide a display device having a novel configuration or a method for manufacturing the display device.
  • One aspect of the present invention is to provide a method for manufacturing the above-mentioned display device with a high yield.
  • One aspect of the present invention is to alleviate at least one of the problems of the prior art.
  • One aspect of the present invention is an insulating layer, a first lower electrode, a first EL layer on the first lower electrode, a second lower electrode, and a second EL on the second lower electrode. It has a layer and upper electrodes on a first EL layer, a second EL layer, and an insulating layer, and the first EL layer has a first light emitting layer and a second EL.
  • the layer has a second light emitting layer, the first EL layer and the second EL layer are adjacent to each other, the insulating layer has a resin or a resin precursor, and the insulating layer is a first.
  • This is a display device having a region sandwiched between the first end face of the EL layer and the second end face of the second EL layer.
  • the resin has one or more selected from acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, and phenol resin
  • the resin precursor is , Acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, and a precursor of a resin having one or more selected from phenol resins.
  • the insulating layer is preferably in contact with the first end face and the second end face.
  • the upper surface of the first EL layer, the upper surface of the second EL layer, and the upper surface of the insulating layer are substantially aligned.
  • the upper surface of the insulating layer has a region having a height lower than that of the upper surface of the first EL layer and the upper surface of the second EL layer.
  • the upper surface of the insulating layer has a recess.
  • the upper surface of the insulating layer preferably has a convex portion.
  • a common layer including an electron injection layer or a hole injection layer, and the common layer is in contact with the upper surface of the first EL layer, the upper surface of the second EL layer, and the upper surface of the insulating layer. ..
  • the first EL layer has a common layer including an electron injection layer
  • the first EL layer has a first electron transport layer sandwiched between the first light emitting layer and the common layer, and has a second electron transport layer.
  • the EL layer has a second electron transport layer sandwiched between a second light emitting layer and a common layer
  • the common layer is an upper surface of the first EL layer, an upper surface of the second EL layer, and an insulating layer. It is preferable to be in contact with the upper surface of the.
  • a common layer including an electron injection layer and an electron transport layer, and the common layer is in contact with the upper surface of the first EL layer, the upper surface of the second EL layer, and the upper surface of the insulating layer.
  • the first light emitting layer has a light emitting substance exhibiting one color of light emission selected from blue, purple, bluish purple, green, yellowish green, yellow, orange, and red
  • the second light emitting layer has. , Blue, purple, bluish-purple, green, yellow-green, yellow, orange, and preferably having a luminescent material exhibiting the emission of another color selected from red.
  • One aspect of the present invention has a plurality of pixels on a substrate, each of the plurality of pixels has a light emitting element, and the light emitting elements are a pixel electrode, an EL layer on the pixel electrode, and an EL layer.
  • a first insulating layer having a common electrode, the common electrode in a plurality of pixels is shared with each light emitting element in the plurality of pixels, and the pixel electrodes of adjacent pixels in the plurality of pixels have an inorganic material.
  • One aspect of the present invention has a first pixel and a second pixel arranged adjacent to the first pixel, and the first pixel is a first pixel electrode and a first pixel.
  • a first light emitting element having a first EL layer on the electrodes and a common electrode on the first EL layer is provided, and the second pixel is on the second pixel electrode and the second pixel electrode.
  • a display device including a second light emitting element having a second EL layer and a common electrode on the second EL layer, the side surface of the first pixel electrode and the side surface of the first EL layer.
  • the side surface of the second pixel electrode and the side surface of the second EL layer have a region in contact with the first insulating layer, are provided in contact with the first insulating layer, and are below the common electrode.
  • the first insulating layer is a display device having an inorganic material
  • the second insulating layer is a display device having an organic material.
  • One aspect of the present invention has a first pixel and a second pixel arranged adjacent to the first pixel, and the first pixel is a first pixel electrode and a first pixel.
  • a first light emitting element having a first EL layer on the electrodes and a common electrode on the first EL layer is provided, and the second pixel is on the second pixel electrode and the second pixel electrode.
  • a display device including a second light emitting element having a second EL layer and a common electrode on the second EL layer, the side surface of the first pixel electrode and the side surface of the first EL layer.
  • the side surface of the second pixel electrode and the side surface of the second EL layer have a region in contact with the first insulating layer, are provided in contact with the first insulating layer, and are below the common electrode.
  • the first insulating layer has an inorganic material
  • the second insulating layer has an organic material, and has an upper surface of the first EL layer and a second insulating layer.
  • the upper surface of the EL layer, the upper surface of the first insulating layer, and the upper surface of the second insulating layer are display devices having a region in contact with the common electrode.
  • One aspect of the present invention has a first pixel and a second pixel arranged adjacent to the first pixel, and the first pixel is a first pixel electrode and a first pixel.
  • a first light emitting element having a first EL layer on an electrode, a common layer on the first EL layer, and a common electrode on the common layer is provided, and the second pixel is a second pixel electrode.
  • the side surface of the first pixel electrode, the side surface of the first EL layer, the side surface of the second pixel electrode, and the side surface of the second EL layer have a region in contact with the first insulating layer, and the first It has a second insulating layer provided in contact with the insulating layer of 1 and arranged below the common electrode, the first insulating layer has an inorganic material, and the second insulating layer is organic.
  • the first insulating layer may have a region protruding above the upper surface of the first EL layer or the upper surface of the second EL layer.
  • the first EL layer or the second EL layer may have a region protruding upward from the upper surface of the first insulating layer.
  • the upper surface of the second insulating layer may have a concave curved surface shape in a cross-sectional view of the display device.
  • the upper surface of the second insulating layer may have a convex curved surface shape.
  • a display device having high display quality it is possible to provide a display device having high display quality. Further, a highly reliable display device can be provided. Further, it is possible to provide a display device having low power consumption. Further, it is possible to provide a display device that can easily achieve high definition. Further, it is possible to provide a display device having both high display quality and high definition. Further, it is possible to provide a display device having high contrast.
  • a display device having a novel configuration or a method for manufacturing the display device. Further, it is possible to provide a method for manufacturing the above-mentioned display device with a high yield. According to one aspect of the invention, at least one of the problems of the prior art can be alleviated.
  • 1A to 1C are diagrams showing a configuration example of a display device.
  • 2A and 2B are diagrams showing a configuration example of the display device.
  • 3A to 3F are diagrams showing an example of a method for manufacturing a display device.
  • 4A to 4E are diagrams showing an example of a method for manufacturing a display device and an example of a configuration of the display device.
  • 5A to 5E are diagrams showing an example of a method for manufacturing a display device and an example of a configuration of the display device.
  • 6A to 6C are diagrams showing an example of a method for manufacturing a display device.
  • FIG. 6D is a diagram showing a configuration example of the display device.
  • 7A and 7B are diagrams showing a configuration example of the display device.
  • FIG. 8A and 8B are diagrams showing an example of a method for manufacturing a display device.
  • FIG. 8C is a diagram showing a configuration example of the display device.
  • 9A and 9B are diagrams showing a configuration example of the display device.
  • 10A and 10B are diagrams showing a configuration example of a display device.
  • 11A and 11B are diagrams showing a configuration example of a display device.
  • 12A and 12B are diagrams showing a configuration example of the display device.
  • 13A to 13F are diagrams showing an example of a method for manufacturing a display device.
  • 14A to 14F are views showing an example of a method for manufacturing a display device.
  • 15A to 15F are diagrams showing an example of a method for manufacturing a display device and an example of a configuration of the display device.
  • 16A and 16B are diagrams showing a configuration example of a display device.
  • 17A to 17C are diagrams showing a configuration example of a display device.
  • 18A to 18C are diagrams showing a configuration example of a display device.
  • 19A to 19D are diagrams showing a configuration example of a display device.
  • 20A and 20B are diagrams showing a configuration example of a display device.
  • FIG. 21 is a perspective view showing an example of the display device.
  • FIG. 22 is a cross-sectional view showing an example of the display device.
  • FIG. 23 is a cross-sectional view showing an example of the display device.
  • FIG. 24 is a cross-sectional view showing an example of the display device.
  • FIG. 25 is a cross-sectional view showing an example of the display device.
  • FIG. 21 is a perspective view showing an example of the display device.
  • FIG. 22 is a cross-sectional view showing an example of the display device.
  • FIG. 23 is a cross-
  • FIG. 26A is a cross-sectional view showing an example of the display device.
  • FIG. 26B is a cross-sectional view showing an example of a transistor.
  • FIG. 27 is a cross-sectional view showing an example of the display device.
  • 28A and 28B are perspective views showing an example of a display module.
  • FIG. 29 is a cross-sectional view showing an example of the display device.
  • FIG. 30 is a cross-sectional view showing an example of the display device.
  • FIG. 31 is a cross-sectional view showing an example of the display device.
  • FIG. 32 is a cross-sectional view showing an example of the display device.
  • FIG. 33 is a cross-sectional view showing an example of the display device.
  • FIG. 34 is a cross-sectional view showing an example of the display device.
  • 35A to 35D are diagrams showing a configuration example of a light emitting element.
  • 36A and 36B are diagrams showing an example of an electronic device.
  • 37A to 37D are diagrams showing an example of an electronic device.
  • 38A to 38F are diagrams showing an example of an electronic device.
  • 39A to 39F are diagrams showing an example of an electronic device.
  • membrane and the term “layer” can be interchanged with each other.
  • conductive layer or “insulating layer” may be interchangeable with the terms “conductive film” or “insulating film”.
  • an EL layer means a layer (also referred to as a light emitting layer) which is provided between a pair of electrodes of a light emitting element and contains at least a light emitting substance, or a laminated body containing a light emitting layer.
  • the display panel which is one aspect of the display device, has a function of displaying (outputting) an image or the like on a display surface. Therefore, the display panel is an aspect of the output device.
  • a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package) is attached
  • COG Chip On Glass
  • the light emitting element of one aspect of the present invention includes a layer containing a substance having a high hole injecting property, a substance having a high hole transporting property, a substance having a high electron transporting property, a substance having a high electron injecting property, a bipolar substance, and the like. You may have.
  • the light emitting layer and the layer containing a substance having a high hole injecting property, a substance having a high hole transporting property, a substance having a high electron transporting property, a substance having a high electron injecting property, a bipolar substance, etc. are each quantum dots. It may have an inorganic compound such as, or a polymer compound (oligoform, dendrimer, polymer, etc.). For example, by using quantum dots in the light emitting layer, it can function as a light emitting material.
  • a colloidal quantum dot material an alloy-type quantum dot material, a core-shell type quantum dot material, a core-type quantum dot material, or the like can be used.
  • materials containing element groups of groups 12 and 16, groups 13 and 15, or groups 14 and 16 may be used.
  • a quantum dot material containing elements such as cadmium, selenium, zinc, sulfur, phosphorus, indium, tellurium, lead, gallium, arsenic, and aluminum may be used.
  • a metal mask or a device manufactured by using an FMM may be referred to as a device having an MM (metal mask) structure.
  • a device manufactured without using a metal mask or FMM may be referred to as a device having an MML (metal maskless) structure.
  • SBS Side
  • a structure in which light emitting devices of each color here, blue (B), green (G), and red (R)
  • B blue
  • G green
  • R red
  • a white light emitting device By combining the white light emitting device with a colored layer (for example, a color filter), a display device for full-color display can be realized.
  • the light emitting device can be roughly classified into a single structure and a tandem structure.
  • a device having a single structure preferably has one light emitting unit between a pair of electrodes, and the light emitting unit preferably includes one or more light emitting layers.
  • a light emitting layer may be selected so that the light emission of each of the two or more light emitting layers has a complementary color relationship. For example, by making the emission color of the first light emitting layer and the emission color of the second light emitting layer have a complementary color relationship, it is possible to obtain a configuration in which the entire light emitting device emits white light. The same applies to a light emitting device having three or more light emitting layers.
  • a device having a tandem structure preferably has two or more light emitting units between a pair of electrodes, and each light emitting unit is preferably configured to include one or more light emitting layers.
  • each light emitting unit is preferably configured to include one or more light emitting layers.
  • the light from the light emitting layers of the plurality of light emitting units may be combined to obtain white light emission.
  • the configuration for obtaining white light emission is the same as the configuration for a single structure.
  • the power consumption of the SBS structure light emitting device can be lower than that of the white light emitting device.
  • the white light emitting device is suitable because the manufacturing process is simpler than that of the light emitting device having an SBS structure, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
  • One aspect of the present invention is a display device having a light emitting element (also referred to as a light emitting device).
  • the display device has at least two light emitting elements that emit light of different colors. Each light emitting element has a pair of electrodes and an EL layer between them.
  • an electroluminescent element such as an organic EL element or an inorganic EL element can be used.
  • a light emitting diode (LED) can be used.
  • the light emitting device according to one aspect of the present invention is preferably an organic EL device (organic electroluminescent device). Two or more light emitting elements that emit different colors each have an EL layer containing different materials.
  • a full-color display device can be realized by having three types of light emitting elements that emit red (R), green (G), or blue (B) light, respectively.
  • the EL layer is formed separately between light emitting elements of different colors, it is known that the EL layer is formed by a thin-film deposition method using a shadow mask such as a metal mask.
  • a shadow mask such as a metal mask.
  • the island-like shape is formed. Since the shape and position of the organic film deviate from the design, it is difficult to achieve high definition and high aperture ratio.
  • dust may be generated due to the material adhering to the metal mask during vapor deposition. Such dust may cause a pattern defect of the light emitting element.
  • the EL layer is processed into a fine pattern without using a shadow mask such as a metal mask.
  • a shadow mask such as a metal mask.
  • the pixel electrode is covered and the first EL film and the first sacrificial film are laminated and formed.
  • a resist mask is formed on the first sacrificial film.
  • a part of the first sacrificial film and a part of the first EL film are etched with a resist mask, and the first EL layer and the first sacrificial layer on the first EL layer are etched. To form.
  • the second EL film and the second sacrificial film are laminated and formed.
  • a part of the second sacrificial film and a part of the second EL film are etched with a resist mask, and the second EL layer and the second sacrificial layer on the second EL layer are etched.
  • the pixel electrodes are processed, and the first pixel electrode superposed on the first EL layer and the second sacrificed layer overlapped with the second EL layer. To form the pixel electrode of. In this way, the first EL layer and the second EL layer can be made separately.
  • two-color light emitting elements can be produced separately.
  • the EL layer of the light emitting element of three or more colors can be made separately, and a display device having the light emitting element of three colors or four or more colors can be realized.
  • a step is generated due to a region where the pixel electrode and the EL layer are provided and a region where the pixel electrode and the EL layer are not provided.
  • the coating property of the common electrode deteriorates due to the step at the end of the EL layer, and the common electrode is cut.
  • the common electrode will become thinner and the electrical resistance will increase.
  • the common electrode and the pixel electrode may be short-circuited.
  • the unevenness of the surface on which the common electrode is provided can be reduced. Therefore, the coverage of the common electrode at the end of the first EL layer and the end of the second EL layer can be enhanced, and good conductivity of the common electrode can be realized. Further, it is possible to suppress a short circuit between the common electrode and the pixel electrode.
  • the sacrificial layer can be formed by using a resist mask and the EL layer and the pixel electrode can be processed by using the formed sacrificial layer
  • the pixel electrode can be processed and the EL layer can be processed.
  • the light emitting element can be formed without using different resist masks. Therefore, the light emitting element can be formed without providing a margin between the positions of the pixel electrodes and the ends of the EL layer.
  • the position margin By reducing the position margin, the light emitting region can be widened, so that the aperture ratio of the light emitting element can be increased.
  • the pixel size can be reduced, and the display device can be made high-definition.
  • the process can be simplified, the cost can be reduced, and the yield can be improved.
  • the interval can be narrowed to 500 nm or less, 200 nm or less, 100 nm or less, and even 50 nm or less.
  • the aperture ratio is 50% or more, 60% or more, 70% or more, 80% or more, and even 90% or more, and less than 100% can be realized.
  • the pattern of the EL layer itself can be made extremely small as compared with the case where the metal mask is used. Further, for example, when a metal mask is used to separate the EL layers, the thickness varies between the center and the edges of the pattern, so that the effective area that can be used as the light emitting region becomes smaller than the area of the entire pattern. ..
  • the thickness can be made uniform within the pattern, and even a fine pattern emits light in almost the entire area. It can be used as an area. Therefore, according to the above-mentioned manufacturing method, it is possible to have both high definition and high aperture ratio.
  • FIG. 1A shows a schematic top view of the display device 100 according to one aspect of the present invention.
  • the display device 100 includes a plurality of light emitting elements 110R exhibiting red, a light emitting element 110G exhibiting green, and a plurality of light emitting elements 110B exhibiting blue.
  • R, G, and B are designated in the light emitting region of each light emitting element in order to simplify the distinction between the light emitting elements.
  • the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B are arranged in a matrix.
  • FIG. 1A shows a so-called stripe arrangement in which light emitting elements of the same color are arranged in one direction.
  • the arrangement method of the light emitting elements is not limited to this, and an arrangement method such as a delta arrangement or a zigzag arrangement may be applied, or a pentile arrangement may be used.
  • an EL element such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • the light emitting substances of the EL element include fluorescent substances (fluorescent materials), phosphorescent substances (phosphorescent materials), inorganic compounds (quantum dot materials, etc.), and substances showing thermal activated delayed fluorescence (thermally activated delayed fluorescence). (Thermally activated delayed fluorescence: TADF) material) and the like.
  • FIG. 1B is a schematic cross-sectional view corresponding to the alternate long and short dash line A1-A2 in FIG. 1A
  • FIG. 1C is a schematic cross-sectional view corresponding to the alternate long and short dash line B1-B2.
  • the light emitting device 100 includes a light emitting element 110R, a light emitting element 110G, and a light emitting element 110B on a substrate.
  • FIG. 1B shows a cross section of the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B.
  • the light emitting element 110R has a pixel electrode 111R, an EL layer 112R, and a common electrode 113.
  • the light emitting element 110G has a pixel electrode 111G, an EL layer 112G, and a common electrode 113.
  • the light emitting element 110B has a pixel electrode 111B, an EL layer 112B, and a common electrode 113.
  • the light emitting element 110R has an EL layer 112R between the pixel electrode 111R and the common electrode 113.
  • the EL layer 112R has a luminescent organic compound that emits light having intensity in at least the red wavelength region.
  • the light emitting element 110G has an EL layer 112G between the pixel electrode 111G and the common electrode 113.
  • the EL layer 112G has a luminescent organic compound that emits light having intensity in at least the green wavelength region.
  • the light emitting element 110B has an EL layer 112B between the pixel electrode 111B and the common electrode 113.
  • the EL layer 112B has a luminescent organic compound that emits light having intensity in at least the blue wavelength region.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B each have a layer (light emitting layer) containing a luminescent organic compound.
  • the light emitting layer may have one or more compounds (host material, assist material) in addition to the light emitting substance (guest material).
  • the host material and the assist material one or a plurality of substances having an energy gap larger than the energy gap of the luminescent substance (guest material) can be selected and used.
  • the host material and the assist material it is preferable to use a combination of compounds forming an excitation complex. In order to efficiently form an excitation complex, it is particularly preferable to combine a compound that easily receives holes (hole transporting material) and a compound that easily receives electrons (electron transporting material).
  • Either a low molecular weight compound or a high molecular weight compound can be used for the light emitting element, and an inorganic compound (quantum dot material or the like) may be contained.
  • Each of the EL layer 112R, the EL layer 112G, and the EL layer 112B has one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer in addition to the light emitting layer. May be good.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are provided for each light emitting element. Further, the common electrode 113 is provided as a continuous layer common to each light emitting element. A conductive film having translucency with respect to visible light is used for either one of the pixel electrodes and the common electrode 113, and a conductive film having reflectivity is used for the other.
  • each pixel electrode translucent and the common electrode 113 reflective it is possible to make a bottom emission type (bottom emission type) display device, and conversely, each pixel electrode is reflective and the common electrode 113 is transparent. By making it light, it can be used as a top-emission type (top-emission type) display device. By making both the pixel electrode and the common electrode 113 translucent, a double-sided injection type (dual emission type) display device can be obtained.
  • the symbols added to the reference numerals may be omitted and the description may be described as the light emitting element 110.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B may also be described as the pixel electrode 111 in the same manner.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B may also be described as the EL layer 112 in the same manner. The same applies to the other layers.
  • An insulating layer 131 is provided between the adjacent light emitting elements 110.
  • the insulating layer 131 is located between the EL layers 112 of the light emitting element 110. Further, a common electrode 113 is provided on the insulating layer 131.
  • the insulating layer 131 is provided, for example, between two EL layers 112, each of which exhibits a different color. Alternatively, the insulating layer 131 is provided, for example, between two EL layers 112 exhibiting the same color. Alternatively, the insulating layer 131 may be provided between two EL layers 112 exhibiting different colors and not provided between two EL layers 112 exhibiting the same color.
  • the insulating layer 131 is provided between the two EL layers 112 in a top view, for example.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B preferably have a region in contact with the upper surface of the pixel electrode and a region in contact with the side surface of the insulating layer 131, respectively. It is preferable that the ends of the EL layer 112R, the EL layer 112G, and the EL layer 112B are in contact with the side surface of the insulating layer 131.
  • the insulating layer 131 between the light emitting elements of different colors, it is possible to prevent the EL layer 112R, the EL layer 112G, and the EL layer 112G from coming into contact with each other. As a result, it is possible to preferably prevent an unintended light emission due to a current flowing through the two adjacent EL layers. Therefore, the contrast can be enhanced, and a display device having high display quality can be realized.
  • the upper surface of the insulating layer 131 is substantially aligned with the upper surface of the EL layer 112. Further, the upper surface of the insulating layer 131 has, for example, a flat shape.
  • the upper surface of the insulating layer 131 may be higher than the upper surface of the EL layer 112 (FIG. 6C described later). Further, the upper surface of the insulating layer 131 may be lower than the upper surface of the EL layer 112 (FIG. 7A described later).
  • the shape of the upper surface of the insulating layer 131 may have a recess (FIG. 8B or the like described later). Further, the shape of the upper surface of the insulating layer 131 may have a convex portion (FIG. 9A described later, etc.).
  • the difference in height between the upper surface of the insulating layer 131 and the upper surface of the EL layer 112 is, for example, preferably 0.5 times or less the thickness of the insulating layer 131, and more preferably 0.3 times or less the thickness of the insulating layer 131.
  • the insulating layer 131 may be provided so that the upper surface of the EL layer 112 is higher than the upper surface of the insulating layer 131.
  • the insulating layer 131 may be provided so that the upper surface of the insulating layer is higher than the upper surface of the light emitting layer of the EL layer 112.
  • the thickness of the insulating layer 131 is substantially the same as the thickness from the lower surface of the pixel electrode 111 to the upper surface of the EL layer 112, for example. Further, the thickness of the insulating layer 131 is, for example, 0.3 times or more, 0.5 times or more, or 0.7 times or more the thickness from the lower surface of the pixel electrode 111 to the upper surface of the EL layer 112. Is preferable.
  • Examples of the insulating layer 131 include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins.
  • a protective layer 121 is provided on the common electrode 113 so as to cover the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B.
  • the protective layer 121 has a function of preventing impurities such as water from diffusing into each light emitting element from above.
  • the protective layer 121 may have, for example, a single-layer structure or a laminated structure including at least an inorganic insulating film.
  • the inorganic insulating film include an oxide film such as a silicon oxide film, a silicon nitride film, a silicon nitride film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, and a hafnium oxide film, or a nitride film. ..
  • a semiconductor material such as indium gallium oxide or indium gallium zinc oxide may be used as the protective layer 121.
  • a laminated film of an inorganic insulating film and an organic insulating film can also be used.
  • the organic insulating film functions as a flattening film. As a result, the upper surface of the organic insulating film can be made flat, so that the covering property of the inorganic insulating film on the organic insulating film can be improved and the barrier property can be enhanced.
  • the upper surface of the protective layer 121 is flat, when a structure (for example, a color filter, a touch sensor electrode, a lens array, etc.) is provided above the protective layer 121, an uneven shape due to the lower structure is formed. It is preferable because the influence can be reduced.
  • a structure for example, a color filter, a touch sensor electrode, a lens array, etc.
  • FIGS. 2A and 2B are mainly different from the display device 100 shown in FIGS. 1B and 1C in that the display device 100A has a common layer 114.
  • FIG. 2A is a schematic cross-sectional view corresponding to the alternate long and short dash line A1-A2 in FIG. 1A
  • FIG. 2B is a schematic cross-sectional view corresponding to the alternate long and short dash line B1-B2.
  • the common layer 114 is provided over a plurality of light emitting elements.
  • the common layer 114 is provided so as to cover the EL layer 112R, the EL layer 112G, and the EL layer 112B.
  • the manufacturing process can be simplified, so that the manufacturing cost can be reduced.
  • the common layer 114 and the common electrode 113 can be continuously formed without interposing a process such as etching between them. Therefore, the interface between the common layer 114 and the common electrode can be made a clean surface, and good characteristics can be obtained in the light emitting element.
  • the common layer 114 is preferably in contact with one or more of the upper surfaces of the EL layer 112R, the EL layer 112G, and the EL layer 112B.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B each have, for example, a light emitting layer containing a light emitting material that emits at least one color.
  • the common layer 114 is preferably a layer containing one or more of, for example, an electron injection layer, an electron transport layer, a hole injection layer, or a hole transport layer.
  • a configuration including an electron injection layer or a configuration including two electron injection layers and an electron transport layer can be used as the common layer 114.
  • a microcavity structure can be realized by making the thickness of the EL layer 112 different in each light emitting element.
  • the EL layer 112R of the light emitting element 110R that emits the light having the longest wavelength can be the thickest
  • the EL layer 112B of the light emitting element 110B that emits the light having the shortest wavelength can be the thinnest.
  • the thickness of each EL layer can be adjusted in consideration of the wavelength of light emitted by each light emitting element, the optical characteristics of the layers constituting the light emitting element, the electrical characteristics of the light emitting element, and the like. ..
  • a layer having translucency with respect to visible light can be used as the optical adjustment layer, and the optical path length can be made different for each light emitting element.
  • an optical adjustment layer may be provided between the pixel electrode 111 and the EL layer 112.
  • a conductive material having translucency with respect to visible light can be used.
  • conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, indium tin oxide containing silicon, and indium zinc oxide containing silicon can be used. ..
  • Each optical adjustment layer is formed after the conductive film to be the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B is formed, and before the EL film 112Rf or the like shown in FIG. 13A or the like described later is formed. be able to.
  • the thickness of each optical adjustment layer By making the thickness of each optical adjustment layer different, the optical path length can be made different in each light emitting element.
  • Each optical adjustment layer may use a conductive film having a different thickness, or may have a single-layer structure, a two-layer structure, a three-layer structure, or the like in order from the thinnest one.
  • an optical adjustment layer and an EL layer having a different thickness for each color may be used in combination.
  • the film thicknesses of the optical adjustment layer and the EL layer may be adjusted so that the total film thickness of the optical adjustment layer and the EL layer of each light emitting element is substantially equal.
  • the forming surface of the common electrode 113 can be made flatter.
  • the light emitting element 110R has an optical adjustment layer 115R between the pixel electrode 111R and the EL layer 112R. Further, the light emitting element 110G has an optical adjustment layer 115G between the pixel electrode 111G and the EL layer 112G. Further, the light emitting element 110B has an optical adjustment layer 115B between the pixel electrode 111B and the EL layer 112B.
  • the display device 100C shown in FIG. 10B is mainly different from the display device 100B shown in FIG. 10A in that the configuration of the light emitting element is different in that the common layer 114 is provided between the EL layer 112 and the common electrode 113. ..
  • the thin films (insulating film, semiconductor film, conductive film, etc.) constituting the display device include a sputtering method, a chemical vapor deposition (CVD) method, a vacuum vapor deposition method, and a pulsed laser deposition (PLD). ) Method, atomic layer deposition (ALD) method, etc. can be used for formation.
  • CVD method include a plasma chemical vapor deposition (PECVD: Plasma Enhanced CVD) method and a thermal CVD method.
  • PECVD plasma chemical vapor deposition
  • thermal CVD there is an organometallic chemical vapor deposition (MOCVD: Metal Organic CVD) method.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) that make up the display device are spin coated, dip, spray coated, inkjet, dispense, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain. It can be formed by a method such as coating or knife coating.
  • the thin film when processing the thin film constituting the display device, a photolithography method or the like can be used.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • the island-shaped thin film may be directly formed by a film forming method using a shielding mask such as a metal mask.
  • a photolithography method there are typically the following two methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
  • the other is a method in which a photosensitive thin film is formed and then exposed and developed to process the thin film into a desired shape.
  • the light used for exposure for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture of these can be used.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • the exposure may be performed by the immersion exposure technique.
  • extreme ultraviolet (EUV: Extreme Ultra-violet) light or X-rays may be used.
  • an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible.
  • extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible.
  • a dry etching method, a wet etching method, a sandblasting method, or the like can be used for etching the thin film.
  • a substrate having at least enough heat resistance to withstand the subsequent heat treatment can be used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, an organic resin substrate, or the like can be used.
  • a single crystal semiconductor substrate made of silicon, silicon carbide or the like, a polycrystalline semiconductor substrate, a compound semiconductor substrate such as silicon germanium, or a semiconductor substrate such as an SOI substrate can be used.
  • the substrate 101 it is preferable to use a substrate in which a semiconductor circuit including a semiconductor element such as a transistor is formed on the semiconductor substrate or an insulating substrate.
  • the semiconductor circuit preferably comprises, for example, a pixel circuit, a gate line drive circuit (gate driver), a source line drive circuit (source driver), and the like.
  • gate driver gate line drive circuit
  • source driver source driver
  • an arithmetic circuit, a storage circuit, and the like may be configured.
  • a conductive film 111f to be a pixel electrode 111 is formed on the substrate 101.
  • a conductive film having transparency to visible light is used as the pixel electrode, it is preferable to use a material having as high a reflectance as possible in the entire wavelength range of visible light (for example, silver or aluminum). As a result, not only the light extraction efficiency of the light emitting element can be improved, but also the color reproducibility can be improved.
  • the EL film 112Rf has a film containing at least a luminescent compound.
  • one or more of the membranes functioning as an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, or a hole injection layer may be laminated.
  • the EL film 112Rf can be formed by, for example, a vapor deposition method, a sputtering method, an inkjet method, or the like. Not limited to this, the above-mentioned film forming method can be appropriately used.
  • a sputtering method for example, a sputtering method, an ALD method (thermal ALD method, PEALD method) or a vacuum deposition method can be used.
  • a forming method with less damage to the EL layer is preferable, and it is preferable to form the first sacrificial film 144a by using the ALD method or the vacuum vapor deposition method rather than the sputtering method.
  • the sacrificial film 144a it is particularly preferable to use aluminum oxide because the production cost can be reduced.
  • the ALD method can form less film formation damage to the substrate as compared with the sputtering method.
  • sacrificial film 144a a film having high resistance to etching treatment of each EL film such as EL film 112Rf, that is, a film having a large etching selection ratio can be used. Further, as the sacrificial film 144a, a film having a large etching selection ratio with a protective film such as a protective film 146a described later can be used. Further, as the sacrificial film 144a, a film that can be removed by a wet etching method with less damage to each EL film can be used.
  • a developing solution for example, an aqueous solution of tetramethylammonium hydroxide (TMAH), dilute phosphoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a chemical solution using a mixed solution thereof may be used.
  • TMAH tetramethylammonium hydroxide
  • dilute phosphoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid or a chemical solution using a mixed solution thereof may be used.
  • TMAH tetramethylammonium hydroxide
  • an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film can be used.
  • the sacrificial film 144a includes, for example, a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal material.
  • a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal material.
  • An alloy material containing the above can be used.
  • it is preferable to use a low melting point material such as aluminum or silver.
  • a metal oxide such as indium gallium zinc oxide (also referred to as In-Ga-Zn oxide or IGZO) can be used.
  • indium oxide, indium zinc oxide (In-Zn oxide), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), indium tin zinc oxide (In-Sn) -Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide) and the like can be used.
  • indium tin oxide containing silicon or the like can also be used.
  • M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten). , Or one or more selected from magnesium).
  • M is preferably one or more selected from gallium, aluminum, and yttrium.
  • an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide can be used.
  • an aluminum oxide film is formed by using the ALD method, damage to the substrate (particularly the EL layer) can be reduced, which is preferable.
  • the sacrificial film 144a may have a single-layer structure or a laminated structure having two or more layers.
  • the laminated structure is typically a two-layer structure of In-Ga-Zn oxide formed by a sputtering method and a silicon nitride film formed by a sputtering method, and In-formed by a sputtering method.
  • a layered structure and the like can be mentioned.
  • the film may be formed by heating.
  • the range in which the base material (EL film 112Rf in this case) does not deteriorate is preferable, and the substrate temperature at the time of film formation of the sacrificial film 144a is room temperature or more and 200 ° C. or less, preferably 50 ° C. or more and 150 ° C. or less, and further.
  • the temperature is preferably 70 ° C. or higher and 100 ° C. or lower, typically around 80 ° C.
  • the sacrificial film 144a does not necessarily have to be formed, and the protective film 146a may be formed so as to be in contact with the EL film 112Rf. The same applies to pixels exhibiting other colors.
  • the protective film 146a is a film used later as a hard mask when etching the sacrificial film 144a. Further, when the protective film 146a is processed later, the sacrificial film 144a is exposed. Therefore, the sacrificial film 144a and the protective film 146a select a combination of films having a large etching selection ratio with each other. Therefore, a film that can be used for the protective film 146a can be selected according to the etching conditions of the sacrificial film 144a and the etching conditions of the protective film 146a.
  • a gas containing fluorine also referred to as fluorine-based gas
  • An alloy containing molybdenum and niobium, an alloy containing molybdenum and tantalum, or the like can be used for the protective film 146a.
  • a metal oxide film such as IGZO or ITO. Can be used for the sacrificial film 144a.
  • the protective film 146a can be selected from various materials according to the etching conditions of the sacrificial film 144a and the etching conditions of the protective film 146a.
  • it can be selected from the membranes that can be used for the sacrificial membrane 144a.
  • a nitride film can be used as the protective film 146a.
  • nitrides such as silicon nitride, aluminum nitride, hafnium nitride, titanium nitride, tantalum nitride, tungsten nitride, gallium nitride, and germanium nitride can also be used.
  • an organic film that can be used for the EL film 112Rf or the like may be used as the protective film 146a.
  • the same film as the organic film used for the EL film 112Rf, the EL film 112Gf, or the EL film 112Bf can be used for the protective film 146a.
  • By using such an organic film it is possible to use the EL film 112Rf or the like in common with the film forming apparatus, which is preferable.
  • a resist material containing a photosensitive resin such as a positive type resist material or a negative type resist material can be used.
  • the EL film 112Rf is dissolved by the solvent of the resist material. There is a risk that it will end up.
  • the protective film 146a it is possible to prevent such a problem from occurring.
  • etching the protective film 146a it is preferable to use etching conditions having a high selection ratio so that the sacrificial film 144a is not removed by the etching.
  • the etching of the protective film 146a can be performed by wet etching or dry etching, but by using dry etching, it is possible to prevent the pattern of the protective film 146a from shrinking.
  • the resist mask 143a can be removed by wet etching or dry etching. In particular, it is preferable to remove the resist mask 143a by dry etching (also referred to as plasma ashing) using oxygen gas as the etching gas.
  • the resist mask 143a is removed while the EL film 112Rf is covered with the sacrificial film 144a, the influence on the EL film 112Rf is suppressed.
  • the EL film 112Rf comes into contact with oxygen, it may adversely affect the electrical characteristics, and is therefore suitable for etching using oxygen gas such as plasma ashing.
  • the sacrificial film 144a can be etched by wet etching or dry etching, but it is preferable to use a dry etching method because shrinkage of the pattern can be suppressed.
  • the etching of the EL film 112Rf it is preferable to use dry etching using an etching gas containing no oxygen as a main component.
  • an etching gas containing no oxygen as a main component include noble gases such as CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , and He.
  • a mixed gas of the above gas and a diluting gas containing no oxygen can be used as the etching gas.
  • the protective layer 147a may be removed by etching the EL film 112Rf.
  • an EL film 112Gf to be an EL layer 112G is formed on the sacrificial layer 145a, the protective layer 147a, and the exposed conductive film 111f.
  • the description of the EL film 112Rf can be referred to.
  • the sacrificial film 144b is formed on the EL film 112Gf, and the protective film 146b is formed on the sacrificial film 144b.
  • the description of the sacrificial membrane 144a can be referred to.
  • the description of the protective film 146a can be referred to.
  • a resist mask 143b is formed on the protective film 146b (FIG. 3C).
  • the protective film 146b is etched with the resist mask 143b to form the protective layer 147b. After that, the resist mask 143b is removed.
  • the sacrificial film 144b and the EL film 112Gf are etched to form the sacrificial layer 145b and the EL layer 112G, respectively (FIG. 3D).
  • an EL film 112Bf to be an EL layer 112B is formed on the sacrificial layer 145a, the sacrificial layer 145b, the protective layer 147a, the protective layer 147b, and the exposed conductive film 111f.
  • the description of the EL film 112Rf can be referred to.
  • the sacrificial film 144c is formed on the EL film 112Bf, and the protective film 146c is formed on the sacrificial film 144c.
  • the description of the sacrificial membrane 144a can be referred to.
  • the description of the protective film 146a can be referred to.
  • a resist mask 143c is formed on the protective film 146c (FIG. 3E).
  • the protective film 146c is etched with the resist mask 143c to form the protective layer 147c. After that, the resist mask 143c is removed.
  • the sacrificial film 144c and the EL film 112Bf are etched to form the sacrificial layer 145c and the EL layer 112B, respectively (FIG. 3F).
  • the etching of the conductive film 111f can be performed by wet etching or dry etching.
  • damage to the EL layer 112 can be reduced by using dry etching using an etching gas containing no oxygen as a main component.
  • damage to the EL layer 112 may be reduced by forming the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B in advance.
  • the insulating film 131f to be the insulating layer 131 is formed (FIG. 4B).
  • the insulating film 131f is provided so as to cover the protective layer 147, the sacrificial layer 145, the EL layer 112, and the pixel electrode 111.
  • the insulating film 131f is preferably a flattening film.
  • the insulating film 131f is, for example, an organic insulating film.
  • Examples of the material that can be used for the insulating film 131f include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins. ..
  • the insulating film 131f is etched to expose the upper surface of the protective layer 147 (FIG. 4C).
  • the etching of the insulating film 131f is performed substantially uniformly on the upper surface of the insulating film 131f. It should be noted that such uniform etching and flattening is also referred to as etch back.
  • a dry etching method or a wet etching method can be used for etching the insulating film 131f.
  • the insulating film 131f may be etched by ashing using oxygen plasma or the like. Since ashing using oxygen plasma has advantages such as high controllability, good in-plane uniformity, and suitable for processing using a large-format substrate, it is suitably used for removing a part of the insulating film 131f. be able to. Further, chemical mechanical polishing (CMP) may be used as the etching of the insulating film 131f.
  • CMP chemical mechanical polishing
  • etching the insulating film 131f it is preferable to suppress damage to the EL layer 112 due to the etching. Therefore, for example, it is preferable to etch the insulating film 131f so that the side surface of the EL layer 112 is less exposed.
  • the insulating film 131f may be etched so that the upper surface of the insulating layer 131 is substantially aligned with the upper surface of the EL layer 112.
  • the insulating layer 131 so that the upper surface of the insulating layer 131 and the upper surface of the EL layer are substantially aligned with each other, it is possible to reduce the unevenness of the surface on which the common electrode 113 is provided in the formation of the common electrode 113 shown in FIG. 4E described later. , The covering property can be improved.
  • FIG. 4C shows an example in which the insulating layer 131 is formed so that the upper surface and the side surface of the protective layer 147 and the side surface of the sacrificial layer 145 are exposed.
  • the flatness of the surface of the insulating film 131f may change due to the unevenness of the surface to be formed and the density of the pattern formed on the surface to be formed. Further, the flatness of the insulating film 131f may change depending on the viscosity of the material used as the insulating film 131f or the like.
  • the insulating film 131f may be thinner in the region between the plurality of EL layers 112 than in the region on the EL layer 112. In such a case, for example, by etching back the insulating film 131f, the height of the upper surface of the insulating layer 131 becomes lower than the height of the upper surface of the protective layer 147 or the height of the upper surface of the sacrificial layer 145. In some cases.
  • the insulating film 131f may have a recessed shape, a bulging shape, or the like in the region between the plurality of EL layers 112.
  • FIG. 4C shows an example in which the insulating layer 131 is provided so that the upper surface of the insulating layer 131 and the upper surface of the EL layer are substantially aligned with each other.
  • the insulating layer 131 may be provided so that the upper surface is higher than the upper surface of the EL layer 112.
  • the insulating layer 131 may be provided so that the upper surface of the insulating layer 131 is lower than the upper surface of the EL layer 112.
  • the shape of the upper surface of the insulating layer 131 may have recesses as described in detail in FIGS. 8A to 8C shown later. Further, the shape of the upper surface of the insulating layer 131 may have a convex portion as described in detail in FIGS. 9A and 9B shown later.
  • the shape and height of the upper surface of the insulating layer 131 may change due to the removal of the protective layer and the sacrificial layer shown in FIG. 4D, which will be described later.
  • the protective layer 147a, the protective layer 147b, the protective layer 147c, the sacrificial layer 145a, the sacrificial layer 145b, and the sacrificial layer 145c are removed to expose the upper surfaces of the EL layer 112R, the EL layer 112G, and the EL layer 112B (FIG. 4D).
  • FIG. 4D shows an example in which the insulating layer 131 is provided so that the height of the upper surface of the insulating layer 131 is substantially aligned with the height of the upper surface of the EL layer 112.
  • the upper surface of the EL layer 112 is exposed, and the side surface of the EL layer 112 is covered with the insulating layer 131.
  • the protective layer 147a, the protective layer 147b, and the protective layer 147c can be removed by wet etching or dry etching.
  • the sacrificial layer 145a, the sacrificial layer 145b, and the sacrificial layer 145c can be removed by wet etching or dry etching. At this time, it is preferable to use a method that does not damage the EL layer 112R, the EL layer 112G, and the EL layer 112B as much as possible. In particular, it is preferable to use the wet etching method. For example, it is preferable to use wet etching using an aqueous solution of tetramethylammonium hydroxide (TMAH), dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a mixed liquid thereof. By using these wet etching conditions, for example, damage to the insulating layer can be reduced.
  • TMAH tetramethylammonium hydroxide
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B can be made separately.
  • the common electrode 113 can be formed by, for example, a sputtering method or a vacuum vapor deposition method.
  • the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B can be manufactured.
  • the protective layer 121 is formed on the common electrode 113 (FIG. 4E). It is preferable to use a sputtering method, a PECVD method, or an ALD method for forming the inorganic insulating film used for the protective layer 121.
  • the ALD method is preferable because it has excellent step coverage and is less likely to cause defects such as pinholes. Further, it is preferable to use an inkjet method for forming the organic insulating film because a uniform film can be formed in a desired area.
  • the display device 100 shown in FIGS. 1B and 1C can be manufactured.
  • the common electrode 113 is formed by covering the EL layer 112R, the EL layer 112G, and the EL layer 112B, and then the common electrode 113 is formed.
  • the display device 100A shown in 2B can be manufactured.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B may be formed before the EL film 112Rf is formed.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are formed. Then, as described in FIGS. 3A to 3F, an EL layer 112, a sacrificial layer 145, and a protective layer 147 corresponding to each light emitting element 110 are formed by using a resist mask or the like (FIG. 5B). After that, the insulating layer 131 is formed (FIG. 5C), the sacrificial layer 145 and the protective layer 147 are removed (FIG. 5D), the common electrode 113 and the protective layer 121 are formed, and the display device 100 shown in FIG. 5E is obtained.
  • the end portion of the pixel electrode 111 is located outside the end portion of the EL layer 112. Further, on the upper surface of the pixel electrode 111, the end portion and its vicinity are covered with the insulating layer 131.
  • the insulating layer 131 may be provided so that the upper surface of the insulating layer 131 is higher than the upper surface of the EL layer 112.
  • the configuration shown in FIG. 6A is different from the configuration shown in FIG. 4C in that the insulating layer 131 is provided so that the upper surface of the insulating layer 131 is higher than the upper surface of the EL layer 112.
  • the protective layer 147 and the sacrificial layer 145 are removed to obtain the configuration shown in FIG. 6B.
  • the insulating layer 131 is provided so that the upper surface of the insulating layer 131 is higher than the upper surface of the EL layer 112, and a part of the side surface of the insulating layer 131 is exposed.
  • a part of the insulating layer 131 may be etched and the shape of the insulating layer 131 may change.
  • the thickness of the insulating layer 131 may be reduced.
  • the corners formed by the upper surface and the side surface of the insulating layer 131 may be rounded.
  • the upper surface of the insulating layer 131 may change to a convex or concave shape. By rounding the corners formed by the upper surface and the side surface of the insulating layer 131, the coverage of the common electrode 113 or the common layer 114 may be improved.
  • the common electrode 113 and the protective layer 121 are formed to obtain the display device 100 shown in FIG. 6C. Further, in the step shown in FIG. 6B, the common layer 114, the common electrode 113 and the protective layer 121 are formed to obtain the display device 100A shown in FIG. 6D.
  • the side surface of the EL layer 112 can be covered with the insulating layer 131. Therefore, the damage of the EL layer 112 in the removal of the protective layer 147 can be reduced.
  • the covering property of the common electrode 113 or the common layer 114 on the upper surface of the EL layer 112 may be improved.
  • the upper surface of the insulating layer 131 may have a recess.
  • FIG. 8A shows the configuration of the insulating film 131f after being etched back.
  • the shape of the upper surface of the insulating layer 131 formed by etch back may have recesses.
  • the shape of the upper surface of the insulating layer 131 has, for example, a gentle recess.
  • the common electrode 113 and the protective layer 121 are formed to obtain the display device 100 shown in FIG. 8B.
  • the common layer 114, the common electrode 113, and the protective layer 121 are formed to obtain the display device 100A shown in FIG. 8C.
  • the shape of the upper surface of the insulating layer 131 may have a convex portion.
  • the shape of the upper surface of the insulating layer 131 shown in FIGS. 9A and 9B has a gently curved surface that is convex upward.
  • a common electrode 113 is provided on an insulating layer 131 provided between the EL layer 112 and the plurality of EL layers and having a convex portion on the upper surface.
  • a common layer 114 is provided on the EL layer 112 and the insulating layer 131 provided between the plurality of EL layers and having a convex portion on the upper surface.
  • the display device 100 shown in FIG. 11A differs from FIG. 1B and the like in that it has an insulating layer 130.
  • 11A is a schematic cross-sectional view corresponding to the alternate long and short dash line A1-A2 in FIG. 1A
  • FIG. 11B is a schematic cross-sectional view corresponding to the alternate long and short dash line B1-B2.
  • FIG. 11A shows a cross section of the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B.
  • the light emitting element 110R has a pixel electrode 111R, an EL layer 112R, and a common electrode 113.
  • the light emitting element 110G has a pixel electrode 111G, an EL layer 112G, and a common electrode 113.
  • the light emitting element 110B has a pixel electrode 111B, an EL layer 112B, and a common electrode 113.
  • the light emitting element 110R has an EL layer 112R between the pixel electrode 111R and the common electrode 113.
  • the light emitting element 110G has an EL layer 112G between the pixel electrode 111G and the common electrode 113.
  • the light emitting element 110B has an EL layer 112B between the pixel electrode 111B and the common electrode 113.
  • the insulating layer 130 and the insulating layer 131 are provided so as to fill the gap between the laminated pixel electrode 111 and the EL layer 112 and the adjacent laminated pixel electrodes 111 and the EL layer 112.
  • the insulating layer 130 is provided so as to be in contact with the side surface of each pixel electrode 111 of the light emitting element 110 and the side surface of the EL layer 112. Further, in a cross-sectional view, the insulating layer 131 is provided in contact with the insulating layer 130 so as to fill the recesses of the insulating layer 130.
  • FIG. 1A between the pixel electrodes 111 and / or the EL layers 112 between adjacent pixels so that the insulating layer 130 and the insulating layer 131 have a mesh-like shape (which can also be called a grid shape or a matrix shape) when viewed from above. Is located in.
  • a mesh-like shape which can also be called a grid shape or a matrix shape
  • the insulating layer 130 and the insulating layer 131 between the light emitting elements of different colors, it is possible to prevent the EL layer 112R, the EL layer 112G, and the EL layer 112B from coming into contact with each other. As a result, it is possible to preferably prevent an unintended light emission due to a current flowing through the two adjacent EL layers. Therefore, the contrast can be enhanced, and a display device having high display quality can be realized.
  • the insulating layer 130 and the insulating layer 131 may not be provided between adjacent pixels exhibiting the same color, and the insulating layer 130 and the insulating layer 131 may be formed only between the pixels exhibiting different colors. In this case, the insulating layer 130 and the insulating layer 131 having a striped shape in the top view can be used. By forming the insulating layer 130 and the insulating layer 131 in a striped shape, the space required for forming the insulating layer 130 and the insulating layer 131 is not required as compared with the case where the insulating layer 130 and the insulating layer 131 have a grid-like shape. Can be enhanced. When the insulating layer 130 and the insulating layer 131 have a striped shape, the adjacent EL layers of the same color may be processed into a strip shape so as to be continuous in the row direction.
  • the common electrode 113 is provided in contact with the upper surface of the EL layer 112, the upper surface of the insulating layer 130, and the upper surface of the insulating layer 131.
  • the display device of one aspect of the present invention has the insulating layer 130 and the insulating layer 131 to flatten the step and the common electrode 113 is provided in contact with the substrate 101 between adjacent light emitting elements. Since the coverage of the common electrode can be improved, poor connection due to step breakage can be suppressed. Alternatively, it is possible to prevent the common electrode 113 from being locally thinned due to the step and increasing the electrical resistance.
  • the common electrode 113 and the pixel electrode 111 may be short-circuited when the common electrode 113 is formed on the EL layer 112.
  • the unevenness of the forming surface of the common electrode 113 can be reduced, so that the EL layer 112
  • the coverage of the common electrode 113 at the end of the common electrode 113 can be enhanced, and good conductivity of the common electrode 113 can be realized. Further, it is possible to suppress a short circuit between the common electrode 113 and the pixel electrode 111.
  • the upper surface of the insulating layer 130 and the upper surface of the insulating layer 131 substantially coincide with the upper surface of the EL layer 112. Further, it is preferable that the upper surface of the insulating layer 131 has a flat shape. However, the upper surface of the insulating layer 130, the upper surface of the insulating layer 131, and the upper surface of the EL layer 112 do not necessarily have to coincide with each other.
  • the insulating layer 130 has a region in contact with the side surface of the EL layer 112, and functions as a protective insulating layer of the EL layer 112. By providing the insulating layer 130, oxygen, moisture, or these constituent elements can be suppressed from entering from the side surface of the EL layer 112, and a highly reliable display device can be obtained.
  • the width of the insulating layer 130 in the region in contact with the side surface of the EL layer 112 is large in cross-sectional view, the distance between the EL layers 112 may be large and the aperture ratio may be low. Further, if the width of the insulating layer 130 is small, the effect of suppressing the invasion of oxygen, water, or these constituent elements from the side surface of the EL layer 112 to the inside may be reduced.
  • the width of the insulating layer 130 in the region in contact with the side surface of the EL layer 112 is preferably 3 nm or more and 200 nm or less, more preferably 3 nm or more and 150 nm or less, further preferably 5 nm or more and 150 nm or less, and further preferably 5 nm or more and 100 nm or less. Further, it is preferably 10 nm or more and 100 nm or less, and further preferably 10 nm or more and 50 nm or less.
  • the insulating layer 130 can be an insulating layer having an inorganic material.
  • aluminum oxide, magnesium oxide, hafnium oxide, gallium oxide, indium gallium zinc oxide, silicon oxide, silicon oxide, silicon nitride, silicon nitride, etc. may be used as a single layer or laminated. Can be done.
  • the oxidative nitride refers to a material having a higher oxygen content than nitrogen as its composition
  • the nitride oxide refers to a material having a higher nitrogen content than oxygen as its composition.
  • the description of silicon oxide refers to a material having a higher oxygen content than nitrogen as its composition
  • the description of silicon nitride refers to a material having a higher nitrogen content than oxygen as its composition. Is shown.
  • the insulating layer 130 is formed by a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, and an atomic layer deposition (PLD) method.
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxy
  • PLD pulsed laser deposition
  • PLA atomic layer deposition
  • ALD Atomic Layer Deposition
  • the insulating layer 131 provided on the insulating layer 130 has a function of flattening the recesses of the insulating layer 130 formed between the adjacent light emitting elements. In other words, having the insulating layer 131 has the effect of improving the flatness of the forming surface of the common electrode 113.
  • an insulating layer having an organic material can be preferably used.
  • acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, precursors of these resins and the like can be applied.
  • the difference in height between the upper surface of the insulating layer 131 and the upper surface of the EL layer 112 is, for example, preferably 0.5 times or less the thickness of the insulating layer 131, and more preferably 0.3 times or less the thickness of the insulating layer 131.
  • the insulating layer 131 may be provided so that the upper surface of the EL layer 112 is higher than the upper surface of the insulating layer 131.
  • the insulating layer 131 may be provided so that the upper surface of the insulating layer 131 is higher than the upper surface of the light emitting layer of the EL layer 112.
  • the thickness of the insulating layer 131 is, for example, 0.3 times or more, 0.5 times or more, or 0.7 times or more the thickness from the lower surface of the pixel electrode 111 to the upper surface of the EL layer 112. Is preferable.
  • a protective layer 121 is provided on the common electrode 113 so as to cover the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B.
  • the display device 100A shown in FIGS. 12A and 12B is mainly different from the display device 100 shown in FIGS. 11A and 11B in that the display device 100A has a common layer 114.
  • 12A is a schematic cross-sectional view corresponding to the alternate long and short dash line A1-A2 in FIG. 1A
  • FIG. 12B is a schematic cross-sectional view corresponding to the alternate long and short dash line B1-B2.
  • the display device 100A shown in FIGS. 12A and 12B is different from FIGS. 2A and 2B in that the display device 100A has an insulating layer 130.
  • the common layer 114 is provided over a plurality of light emitting elements.
  • the common layer 114 is provided so as to cover the EL layer 112R, the EL layer 112G, and the EL layer 112B.
  • the manufacturing process can be simplified, so that the manufacturing cost can be reduced.
  • the common layer 114 and the common electrode 113 can be continuously formed without interposing a process such as etching between them. Therefore, the interface between the common layer 114 and the common electrode can be made a clean surface, and good characteristics can be obtained in the light emitting element.
  • the common layer 114 is preferably in contact with one or more of the upper surfaces of the EL layer 112R, the EL layer 112G, and the EL layer 112B.
  • the display device 100B shown in FIG. 20A is mainly different from the display device 100B shown in FIG. 10A in that it has an insulating layer 130 and the like. Further, the display device 100C shown in FIG. 20B is mainly different from the display device 100C shown in FIG. 10B in that it has an insulating layer 130 and the like.
  • the light emitting element 110R has an optical adjustment layer 115R between the pixel electrode 111R and the EL layer 112R. Further, the light emitting element 110G has an optical adjustment layer 115G between the pixel electrode 111G and the EL layer 112G. Further, the light emitting element 110B has an optical adjustment layer 115B between the pixel electrode 111B and the EL layer 112B.
  • the display device 100C shown in FIG. 20B has a common layer 114 between the EL layer 112 and the common electrode 113, and the configuration of the light emitting element differs depending on the common layer 114. It is different.
  • the optical adjustment layer 115 by having the optical adjustment layer 115 and filling the gap between the light emitting elements with the insulating layer 130 and the insulating layer 131, the color purity is high and the reliability is improved. It can be a display device.
  • the display device of the present embodiment shown above does not form an EL layer using a metal mask, it is possible to increase the size, resolution, or definition of the display device.
  • the display device of the present embodiment has a configuration in which the EL layers arranged adjacent to each other or the gap between the pixel electrode and the EL layer is filled with an insulating layer having a laminated structure, the surface on which the common electrode is formed is formed. Since the flatness can be improved, the step breakage of the common electrode or the formation of a local thin film region can be suppressed. Thereby, the reliability of the display device can be improved.
  • the formation surface of the common electrode or the common layer can be effectively flattened.
  • the insulating layer having an inorganic material is provided in a manner of contacting the side surface of the EL layer to prevent impurities from being mixed into the EL layer and improve the reliability of the display device. be able to.
  • FIGS. 11A and 11B are schematic cross-sectional views of the method of manufacturing the display device illustrated below in each step.
  • the substrate 101 is prepared. Regarding the substrate 101, the description in the above-mentioned manufacturing method 1 can be referred to.
  • a conductive film 111f to be a pixel electrode 111 is formed on the substrate 101.
  • a protective film 146a is formed on the sacrificial film 144a.
  • the description in the above-mentioned production method 1 can be referred to.
  • resist mask 143a is formed on the protective film 146a (FIG. 13A).
  • the description in the above-mentioned production method 1 can be referred to.
  • etching the protective film 146a it is preferable to use etching conditions having a high selection ratio so that the sacrificial film 144a is not removed by the etching.
  • the etching of the protective film 146a can be performed by wet etching or dry etching, but by using dry etching, it is possible to suppress the reduction of the pattern of the protective film 146a.
  • the resist mask 143a can be removed by wet etching or dry etching. In particular, it is preferable to remove the resist mask 143a by dry etching (also referred to as plasma ashing) using oxygen gas as the etching gas.
  • the resist mask 143a is removed while the EL film 112Rf is covered with the sacrificial film 144a, the influence on the EL film 112Rf is suppressed.
  • the EL film 112Rf comes into contact with oxygen, it may adversely affect the electrical characteristics, and is therefore suitable for etching using oxygen gas such as plasma ashing.
  • the sacrificial film 144a can be etched by wet etching or dry etching, but it is preferable to use a dry etching method because shrinkage of the pattern can be suppressed.
  • the etching of the EL film 112Rf it is preferable to use dry etching using an etching gas containing no oxygen as a main component.
  • an etching gas containing no oxygen as a main component include noble gases such as CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , and He.
  • a mixed gas of the above gas and a diluting gas containing no oxygen can be used as the etching gas.
  • the protective layer 147a may be removed by etching the EL film 112Rf.
  • an EL film 112Gf to be an EL layer 112G is formed on the sacrificial layer 145a and the exposed conductive film 111f.
  • the description of the EL film 112Rf can be referred to.
  • the sacrificial film 144b is formed on the EL film 112Gf, and the protective film 146b is formed on the sacrificial film 144b.
  • the description of the sacrificial membrane 144a can be referred to.
  • the description of the protective film 146a can be referred to.
  • a resist mask 143b is formed on the protective film 146b (FIG. 13C).
  • the protective film 146b is etched with the resist mask 143b to form the protective layer 147b. After that, the resist mask 143b is removed.
  • the sacrificial film 144b and the EL film 112Gf are etched to form the sacrificial layer 145b and the EL layer 112G, respectively (FIG. 13D).
  • an EL film 112Bf to be an EL layer 112B is formed on the sacrificial layer 145a, the sacrificial layer 145b, and the exposed conductive film 111f.
  • the description of the EL film 112Rf can be referred to.
  • the sacrificial film 144c is formed on the EL film 112Bf, and the protective film 146c is formed on the sacrificial film 144c.
  • the description of the sacrificial membrane 144a can be referred to.
  • the description of the protective film 146a can be referred to.
  • a resist mask 143c is formed on the protective film 146c (FIG. 13E).
  • the protective film 146c is etched with the resist mask 143c to form the protective layer 147c. After that, the resist mask 143c is removed.
  • the sacrificial film 144c and the EL film 112Bf are etched to form the sacrificial layer 145c and the EL layer 112B, respectively (FIG. 13F).
  • the etching of the conductive film 111f can be performed by wet etching or dry etching.
  • damage to the EL layer 112 can be reduced by using dry etching using an etching gas containing no oxygen as a main component.
  • the insulating film 130f to be the insulating layer 130 is formed (FIG. 14B).
  • the insulating film 130f it is preferable to apply a film having an inorganic material.
  • a film having aluminum oxide, magnesium oxide, hafnium oxide, gallium oxide, indium gallium zinc oxide, silicon oxide, silicon nitride nitride, silicon nitride, silicon nitride or the like can be used as a single layer or laminated. ..
  • a sputtering method for the formation of the insulating film 130f, a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, an atomic layer deposition (ALD) method, or the like can be used.
  • the ALD method having good coverage can be preferably used.
  • the insulating film 131f to be the insulating layer 131 is formed (FIG. 14C).
  • the insulating film 131f is provided so as to cover the protective layer 147, the sacrificial layer 145, the EL layer 112, and the pixel electrode 111.
  • the insulating film 131f is preferably a flattening film.
  • the insulating film 131f it is preferable to apply an insulating film having an organic material, and it is preferable to use a resin as the organic material.
  • Examples of the material that can be used for the insulating film 131f include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins. ..
  • the insulating film 130f and the insulating film 131f are etched to expose the upper surface of the protective layer 147 (FIG. 14D).
  • the insulating layer 130 and the insulating layer 131 that cover the side surfaces of the EL layer 112R, the EL layer 112G, and the EL layer 112B are formed.
  • the etching of the insulating film 130f and the insulating film 131f is performed substantially uniformly on the upper surfaces of the insulating film 130f and the insulating film 131f. It should be noted that such uniform etching and flattening is also referred to as etch back.
  • a dry etching method or a wet etching method can be used for etching the insulating film 130f and the insulating film 131f. Further, etching may be performed by ashing using oxygen plasma or the like. Since ashing using oxygen plasma has advantages such as high controllability, good in-plane uniformity, and suitable for processing using a large-format substrate, a part of the insulating film 130f and the insulating film 131f is removed. Can be suitably used for. Further, chemical mechanical polishing (CMP) may be used as the etching of the insulating film 130f and the insulating film 131f.
  • CMP chemical mechanical polishing
  • etching the insulating film 130f and the insulating film 131f it is preferable to suppress damage to the EL layer 112 due to the etching. Therefore, for example, it is preferable to perform etching so that the side surface of the EL layer 112 is less exposed. Further, by etching the insulating film 130f and the insulating film 131f with the sacrificial layer 145 and / or the protective layer 147 provided on the EL layer 112, damage to the upper surface of the EL layer 112 due to the etching can be suppressed. Can be done.
  • the height of the upper surface of the insulating layer 130 and / or the height of the upper surface of the insulating layer 131 can be adjusted by the etching amount.
  • etching is performed so that the upper surface of the insulating layer 130 and the upper surface of the insulating layer 131 are substantially aligned with the upper surface of the EL layer 112.
  • the insulating layer 130 and the insulating layer 131 are formed so that the upper surface and the side surface of the protective layer 147 and the side surface of the sacrificial layer 145 are exposed.
  • the flatness of the surface of the insulating film 131f having an organic material may change due to the unevenness of the surface to be formed and the density of the pattern formed on the surface to be formed. Further, the flatness of the insulating film 131f may change depending on the viscosity of the material used as the insulating film 131f or the like. For example, the film thickness of the insulating film 131f in the region not overlapping the EL layer 112 may be smaller than the film thickness of the insulating film 131f in the region overlapping the EL layer 112.
  • the height of the upper surface of the insulating layer 131 becomes lower than the height of the upper surface of the protective layer 147 or the height of the upper surface of the sacrificial layer 145. In some cases.
  • the insulating film 131f may have a shape having a concave curved surface (dented shape), a shape having a convex curved surface (bulging shape), or the like in the region between the plurality of EL layers 112.
  • the protective layer 147a, the protective layer 147b, the protective layer 147c, the sacrificial layer 145a, the sacrificial layer 145b, and the sacrificial layer 145c are removed to expose the upper surfaces of the EL layer 112R, the EL layer 112G, and the EL layer 112B (FIG. 14E).
  • FIG. 14E shows an example in which the insulating layer 130 is provided so that the height of the upper surface of the insulating layer 130 is substantially aligned with the height of the upper surface of the EL layer 112.
  • the upper surface of the EL layer 112 is exposed, and the side surface of the EL layer 112 is covered with the insulating layer 130.
  • the shape or height of the upper surface of the insulating layer 130 and / or the insulating layer 131 may change depending on the step of removing the protective layer and the sacrificial layer.
  • the protective layer 147a, the protective layer 147b, and the protective layer 147c can be removed by wet etching or dry etching.
  • the sacrificial layer 145a, the sacrificial layer 145b, and the sacrificial layer 145c can be removed by wet etching or dry etching. At this time, it is preferable to use a method that does not damage the EL layer 112R, the EL layer 112G, and the EL layer 112B as much as possible. In particular, it is preferable to use the wet etching method. For example, it is preferable to use wet etching using an aqueous solution of tetramethylammonium hydroxide (TMAH), dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a mixed liquid thereof. By using these wet etching conditions, for example, damage to the insulating layer can be reduced.
  • TMAH tetramethylammonium hydroxide
  • FIGS. 14C to 14E the case where the protective layer and the sacrificial layer are removed after etching back the insulating film 130f and the insulating film 131f is shown as an example, but the embodiment of the present invention is not limited to this. ..
  • the sacrificial layer 145 and the protective layer 147, and the insulating film 130f and the insulating film 131f in the region overlapping the protective layer 147 may be removed by a lift-off method or the like to form the insulating layer 130 and the insulating layer 131.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B can be made separately.
  • the EL layer is formed separately between light emitting elements of different colors, it is known that the EL layer is formed by a thin-film deposition method using a shadow mask such as a metal mask.
  • a shadow mask such as a metal mask.
  • the island-like shape is formed. Since the shape and position of the organic film deviate from the design, it is difficult to achieve high definition and high aperture ratio.
  • dust may be generated due to the material adhering to the metal mask during vapor deposition. Such dust may cause a pattern defect of the light emitting element.
  • the EL layer is processed into a fine pattern without using a shadow mask such as a metal mask.
  • a shadow mask such as a metal mask.
  • the pixel is not limited to this, and the pixel may be formed by a light emitting element exhibiting two different colors, or the pixel may be formed by a light emitting element having three or more colors.
  • the common electrode 113 can be formed by, for example, a sputtering method or a vacuum vapor deposition method.
  • the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B can be manufactured.
  • the protective layer 121 is formed on the common electrode 113 (FIG. 14F). It is preferable to use a sputtering method, a PECVD method, or an ALD method for forming the inorganic insulating film used for the protective layer 121.
  • the ALD method is preferable because it has excellent step coverage and is less likely to cause defects such as pinholes. Further, it is preferable to use an inkjet method for forming the organic insulating film because a uniform film can be formed in a desired area.
  • the display device 100 shown in FIGS. 11A and 11B can be manufactured.
  • the common electrode 113 is formed by covering the EL layer 112R, the EL layer 112G, and the EL layer 112B, and then the common electrode 113 is formed.
  • the display device 100A shown in 12B can be manufactured.
  • a sacrificial layer can be formed by using a resist mask, and the EL layer and the pixel electrode can be processed by using the formed sacrificial layer. Therefore, the pixel electrode can be processed.
  • the light emitting element can be formed without using different resist masks. Therefore, the light emitting element can be formed without providing a margin between the positions of the pixel electrodes and the ends of the EL layer. By reducing the position margin, the light emitting region can be widened, so that the aperture ratio of the light emitting element can be increased. Further, by reducing the position margin, the pixel size can be reduced, and the display device can be made high-definition. Further, since the number of times the resist mask is used can be reduced, the process can be simplified, the cost can be reduced, and the yield can be improved.
  • the interval can be narrowed to 500 nm or less, 200 nm or less, 100 nm or less, and even 50 nm or less.
  • the aperture ratio is 50% or more, 60% or more, 70% or more, 80% or more, and even 90% or more, and less than 100% can be realized.
  • the pattern of the EL layer itself can be made extremely small as compared with the case where the metal mask is used. Further, for example, when a metal mask is used to separate the EL layers, the thickness varies between the center and the edges of the pattern, so that the effective area that can be used as the light emitting region becomes smaller than the area of the entire pattern. ..
  • the thickness can be made uniform within the pattern, and even a fine pattern emits light in almost the entire area. It can be used as an area. Therefore, according to the above-mentioned manufacturing method, it is possible to have both high definition and high aperture ratio.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are formed.
  • an EL layer 112, a sacrificial layer 145, and a protective layer 147 corresponding to each light emitting element 110 are formed by using a resist mask or the like (FIG. 15B).
  • the insulating film 130f and the insulating film 131f are formed (FIG. 15C).
  • the sacrificial layer 145 and the protective layer 147 are removed (FIG. 15E) to obtain the display device 100 shown in FIG. 15F.
  • the end portion of the pixel electrode 111 is located outside the end portion of the EL layer 112. Further, on the upper surface of the pixel electrode 111, the end portion and its vicinity are covered with the insulating layer 131.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are patterned in advance, as compared with the case where the conductive film is patterned after the EL layer 112 is formed. In some cases, damage to the EL layer 112 can be reduced.
  • the configuration example 1 by making the end of the EL layer 112 and the end of the pixel electrode 111 coincide with each other, the width between adjacent light emitting elements can be reduced, so that the aperture ratio is improved. Can be made to. Further, since the mask for forming the pixel electrode 111 can be reduced, the yield of manufacturing the display device can be improved and the cost can be reduced.
  • FIG. 16A shows another configuration example of the display device 100 of this embodiment.
  • FIG. 16A shows an embodiment in which the upper surface of the insulating layer 131 has a region closer to the substrate 101 than the upper surface of the EL layer 112 (which can be said to be lower than the upper surface of the EL layer 112).
  • FIG. 16A shows an example in which the upper surface of the insulating layer 131 formed by etch back has a concave curved surface shape, and the end portion coincides with the upper surface of the insulating layer 130 and / or the EL layer 112 in a cross-sectional view.
  • the upper surface of the insulating layer 131 may have a substantially flat shape, and the upper surface may be located closer to the substrate 101 than the upper surface of the EL layer 112.
  • the end portion of the insulating layer 131 may be in contact with the side surface of the insulating layer 130.
  • the covering property of the common electrode 113 on the upper surface of the EL layer 112 may be improved.
  • FIG. 16B shows another configuration example of the display device 100 of this embodiment.
  • FIG. 16B shows an embodiment in which the upper surface of the insulating layer 131 has a region protruding from the upper surface of the EL layer 112.
  • the case where the insulating layer 131 has a convex curved surface shape and the end portion coincides with the upper surface of the insulating layer 130 and / or the EL layer 112 in a cross-sectional view is shown as an example.
  • the embodiment of is not limited to this.
  • the upper surface of the insulating layer 131 may have a substantially flat shape, and the upper surface may protrude from the upper surface of the EL layer 112.
  • the common electrode 113 has a region in contact with a part of the side surface of the insulating layer 131.
  • a part of the insulating layer 131 may be etched and the shape of the insulating layer 131 may change.
  • the thickness of the insulating layer 131 may be reduced.
  • the corners formed by the upper surface and the side surface of the insulating layer 131 may be rounded.
  • the coverage of the common electrode 113 may be improved by rounding the corners formed by the upper surface and the side surface of the insulating layer 131.
  • the side surface of the EL layer 112 can also be protected by the insulating layer 131, and the EL layer in removing the protective layer 147.
  • the damage of 112 can be reduced.
  • FIG. 17A shows another configuration example of the display device 100 of this embodiment.
  • FIG. 17A shows an embodiment in which the upper surface of the insulating layer 130 has a region closer to the substrate 101 than the upper surface of the EL layer 112 (which can be said to be lower than the upper surface of the EL layer 112).
  • the insulating layer 131 is preferably in contact with at least the side surface of the light emitting layer contained in the EL layer 112. By covering the side surface of the light emitting layer with the insulating layer 131, it is possible to suppress the invasion of oxygen, moisture, or these constituent elements from the side surface of the light emitting layer into the inside, and it is possible to obtain a highly reliable display device.
  • FIG. 17B shows another configuration example of the display device 100 of this embodiment.
  • FIG. 17B shows an embodiment in which the upper surface of the insulating layer 130 has a region closer to the substrate 101 than the upper surface of the EL layer 112, and the upper surface of the insulating layer 131 has a region closer to the substrate 101 than the upper surface of the insulating layer 130. ..
  • FIG. 17B shows an example in which the upper surface of the insulating layer 131 formed by etch back has a concave curved surface shape, but the embodiment of the present invention is not limited to this.
  • the upper surface of the insulating layer 131 may have a substantially flat shape, and the upper surface may be located closer to the substrate 101 than the upper surface of the insulating layer 130.
  • the covering property of the common electrode 113 on the upper surface of the EL layer 112 may be improved. be.
  • FIG. 17C shows another configuration example of the display device 100 of this embodiment.
  • FIG. 17C shows an embodiment in which the upper surface of the insulating layer 130 has a region closer to the substrate 101 than the upper surface of the EL layer 112, and the upper surface of the insulating layer 131 has a region protruding from the upper surface of the insulating layer 130. In the protruding region, the side surface of the insulating layer 131 is in contact with the common electrode 113.
  • FIG. 17C shows an example in which the upper surface of the insulating layer 131 has a convex curved surface shape, but the embodiment of the present invention is not limited to this.
  • the upper surface of the insulating layer 131 may have a substantially flat shape, and the upper surface may protrude from the upper surface of the insulating layer 130.
  • the side surface of the EL layer 112 in the region not covered by the insulating layer 130 can be protected by the insulating layer 131, and the EL layer in removing the protective layer 147 can be protected.
  • the damage of 112 can be reduced.
  • FIG. 18A shows another configuration example of the display device 100 of this embodiment.
  • FIG. 18A shows a mode in which the upper surface of the insulating layer 130 and the upper surface of the insulating layer 131 have a region protruding from the upper surface of the EL layer 112 in a cross-sectional view. In the protruding region, the side surface of the insulating layer 130 is in contact with the common electrode 113.
  • the side surface of the EL layer 112 can be more reliably protected by the insulating layer 130, so that the display device can be trusted.
  • the sex can be improved.
  • the flatness of the forming surface of the common electrode 113 can be improved, so that the coating of the common electrode 113 can be improved.
  • the sex can be improved.
  • FIG. 18B shows another configuration example of the display device 100 of this embodiment.
  • the configuration example shown in FIG. 18B is different from the configuration example 13 described above in that the upper surface of the insulating layer 131 has a region closer to the substrate 101 than the upper surface of the insulating layer 130, and is in agreement in other respects. ..
  • FIG. 18B shows an example in which the upper surface of the insulating layer 131 formed by etch back has a concave curved surface shape, but the embodiment of the present invention is not limited to this.
  • the upper surface of the insulating layer 131 may have a substantially flat shape, and the upper surface may be located closer to the substrate 101 than the upper surface of the insulating layer 130.
  • FIG. 18C shows another configuration example of the display device 100 of this embodiment.
  • the configuration example shown in FIG. 18C is different from the configuration example 13 described above in that the upper surface of the insulating layer 131 has a region protruding from the upper surface of the insulating layer 130, and is in agreement in other respects.
  • the side surface of the insulating layer 131 is in contact with the common electrode 113.
  • the case where the insulating layer 131 has a convex curved surface shape is shown as an example, but the embodiment of the present invention is not limited to this.
  • the upper surface of the insulating layer 131 may have a substantially flat shape, and the upper surface may protrude from the upper surface of the insulating layer 130.
  • the covering property of the common electrode 113 on the upper surface of the EL layer 112 may be improved. ..
  • FIG. 19 shows an example in which a part of the substrate 101 is etched to form a groove when the pixel electrode 111 is formed.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are formed.
  • a part of the substrate 101 in the region not covered by the pixel electrode 111 may be etched to form the groove 160.
  • the groove portion 160 is formed at least later in the uppermost insulating layer or conductive layer in contact with the insulating layer 130.
  • the insulating film 130f covering the EL layer 112, the sacrificial layer 145, and the protective layer 147 and the insulating film 131f on the insulating film 130f are formed (FIG. 19B).
  • the sacrificial layer 145 and the protective layer 147 are removed to form the common electrode 113 and the protective layer 121, and the display device 100 shown in FIG. 19D. To get.
  • the reliability of the insulation separation of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B is improved, and the unevenness caused by the groove 160 is flattened by the insulating layer 131.
  • the common electrode 113 can be formed with good coverage.
  • the tact time in the pixel electrode 111 forming step can be shortened by adopting the configuration without the groove portion 160, so that the yield of manufacturing the display device can be improved. ..
  • This embodiment can be carried out in combination with at least a part thereof as appropriate with other embodiments described in the present specification.
  • the display device of the present embodiment can be a high-resolution display device or a large-scale display device. Therefore, the display device of the present embodiment includes a relatively large screen such as a television device, a desktop or notebook personal computer, a monitor for a computer, a digital signage, a large game machine such as a pachinko machine, or the like. In addition to electronic devices, it can be used as a display unit of a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a smartphone, a wristwatch type terminal, a tablet terminal, a mobile information terminal, and a sound reproduction device.
  • Display device 400A 21 shows a perspective view of the display device 400A, and FIG. 22 shows a cross-sectional view of the display device 400A.
  • the display device 400A has a configuration in which a substrate 452 and a substrate 451 are bonded together.
  • the substrate 452 is clearly indicated by a broken line.
  • the display device 400A includes a display unit 462, a circuit 464, wiring 465, and the like.
  • FIG. 21 shows an example in which IC473 and FPC472 are mounted on the display device 400A. Therefore, the configuration shown in FIG. 21 can be said to be a display module having a display device 400A, an IC (integrated circuit), and an FPC.
  • a scanning line drive circuit can be used.
  • the wiring 465 has a function of supplying signals and power to the display unit 462 and the circuit 464.
  • the signal and power are input to the wiring 465 from the outside via the FPC 472 or from the IC 473.
  • FIG. 21 shows an example in which the IC 473 is provided on the substrate 451 by the COG (Chip On Glass) method, the COF (Chip on Film) method, or the like.
  • the IC 473 an IC having, for example, a scanning line drive circuit or a signal line drive circuit can be applied.
  • the display device 400A and the display module may be configured not to be provided with an IC. Further, the IC may be mounted on the FPC by the COF method or the like.
  • FIG. 22 shows an example of a cross section of the display device 400A when a part of the region including the FPC 472, a part of the circuit 464, a part of the display unit 462, and a part of the region including the end are cut. show.
  • the display device 400A shown in FIG. 22 has a transistor 201, a transistor 205, a light emitting element 430a that emits red light, a light emitting element 430b that emits green light, and a light emitting element that emits blue light between the substrate 451 and the substrate 452. It has an element 430c and the like.
  • the light emitting element exemplified in the first embodiment can be applied to the light emitting element 430a, the light emitting element 430b, and the light emitting element 430c.
  • the three sub-pixels include sub-pixels of three colors R, G, and B, and yellow (Y). , Cyan (C), and magenta (M) three-color sub-pixels and the like.
  • examples of the four sub-pixels include sub-pixels of four colors of R, G, B, and white (W), and sub-pixels of four colors of R, G, B, and Y. Be done.
  • the protective layer 416 and the substrate 452 are adhered to each other via the adhesive layer 442.
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to seal the light emitting element.
  • the substrate 452, the adhesive layer 442, and the space 443 surrounded by the substrate 451 are filled with an inert gas (nitrogen, argon, etc.), and a hollow sealing structure is applied.
  • the adhesive layer 442 may be provided so as to overlap with the light emitting element. Further, the space 443 surrounded by the substrate 452, the adhesive layer 442, and the substrate 451 may be filled with a resin different from that of the adhesive layer 442.
  • the pixel electrode 411a, the pixel electrode 411b, and the pixel electrode 411c are each connected to the conductive layer 222b of the transistor 205 via an opening provided in the insulating layer 214.
  • the pixel electrode contains a material that reflects visible light
  • the counter electrode contains a material that transmits visible light.
  • An insulating layer 421 is provided between the light emitting element 430a and the light emitting element 430b, and between the light emitting element 430b and the light emitting element 430c.
  • the insulating layer 421 for example, the insulating layer 131 shown in the previous embodiment can be applied.
  • the light emitted by the light emitting element is emitted to the substrate 452 side. It is preferable to use a material having high transparency to visible light for the substrate 452.
  • Both the transistor 201 and the transistor 205 are formed on the substrate 451. These transistors can be manufactured by the same material and the same process.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided on the substrate 451 in this order.
  • a part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • a part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • the insulating layer 215 is provided so as to cover the transistor.
  • the insulating layer 214 is provided so as to cover the transistor and has a function as a flattening layer.
  • the number of gate insulating layers and the number of insulating layers covering the transistors are not limited, and may be a single layer or two or more layers, respectively.
  • the insulating layer can function as a barrier layer.
  • an inorganic insulating film as the insulating layer 211, the insulating layer 213, and the insulating layer 215, respectively.
  • an inorganic insulating film for example, a silicon nitride film, a silicon nitride film, a silicon oxide film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film and the like may be used. Further, two or more of the above-mentioned insulating films may be laminated and used.
  • the organic insulating film often has a lower barrier property than the inorganic insulating film. Therefore, the organic insulating film preferably has an opening near the end of the display device 400A. As a result, it is possible to prevent impurities from entering from the end of the display device 400A via the organic insulating film.
  • the organic insulating film may be formed so that the end portion of the organic insulating film is inside the end portion of the display device 400A so that the organic insulating film is not exposed at the end portion of the display device 400A.
  • An organic insulating film is suitable for the insulating layer 214 that functions as a flattening layer.
  • the material that can be used for the organic insulating film include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins. ..
  • an opening is formed in the insulating layer 214.
  • an organic insulating film is used for the insulating layer 214, it is possible to prevent impurities from entering the display unit 462 from the outside via the insulating layer 214. Therefore, the reliability of the display device 400A can be improved.
  • the layer 414 is provided so as to embed the recess formed so as to cover the opening. You may.
  • the unevenness of the surface to be formed of the optical adjustment layer 415a, the optical adjustment layer 415b, the optical adjustment layer 415c, the EL layer 416a, the EL layer 416b, and the EL layer 416c is reduced, and the covering property is improved. Can be done.
  • the layer 414 is preferably an insulating layer. Alternatively, the layer 414 may be a conductive layer.
  • the transistors 201 and 205 include a conductive layer 221 that functions as a gate, an insulating layer 211 that functions as a gate insulating layer, a conductive layer 222a and a conductive layer 222b that function as sources and drains, a semiconductor layer 231 and an insulation that functions as a gate insulating layer. It has a layer 213 and a conductive layer 223 that functions as a gate. Here, the same hatching pattern is attached to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231.
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231.
  • the structure of the transistor included in the display device of this embodiment is not particularly limited.
  • a planar type transistor, a stagger type transistor, an inverted stagger type transistor and the like can be used.
  • a top gate type or a bottom gate type transistor structure may be used.
  • gates may be provided above and below the semiconductor layer on which the channel is formed.
  • a configuration in which a semiconductor layer on which a channel is formed is sandwiched between two gates is applied to the transistor 201 and the transistor 205.
  • the transistor may be driven by connecting two gates and supplying the same signal to them.
  • the threshold voltage of the transistor may be controlled by giving a potential for controlling the threshold voltage to one of the two gates and giving a potential for driving to the other.
  • the crystallinity of the semiconductor material used for the transistor is also not particularly limited, and either an amorphous semiconductor or a semiconductor having crystallinity (microcrystal semiconductor, polycrystalline semiconductor, single crystal semiconductor, or semiconductor having a partially crystalline region). May be used. It is preferable to use a semiconductor having crystallinity because deterioration of transistor characteristics can be suppressed.
  • the semiconductor layer of the transistor preferably has a metal oxide (also referred to as an oxide semiconductor). That is, it is preferable that the display device of the present embodiment uses a transistor (hereinafter, OS transistor) in which a metal oxide is used in the channel forming region.
  • OS transistor a transistor
  • the semiconductor layer of the transistor may have silicon. Examples of silicon include amorphous silicon and crystalline silicon (low temperature polysilicon, single crystal silicon, etc.).
  • the semiconductor layers include, for example, indium and M (M is gallium, aluminum, silicon, boron, ittrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, etc. It is preferable to have one or more selected from hafnium, tantalum, tungsten, and magnesium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) also referred to as IGZO
  • IGZO oxide containing indium (In), gallium (Ga), and zinc (Zn)
  • the atomic number ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic number ratio of M.
  • the atomic number ratio of In is 4
  • the atomic number ratio of Ga is 1 or more and 3 or less.
  • the atomic number ratio of Ga is larger than 0.1 when the atomic number ratio of In is 5. This includes the case where the number of atoms is 2 or less and the atomic number ratio of Zn is 5 or more and 7 or less.
  • the atomic number ratio of Ga is larger than 0.1 when the atomic number ratio of In is 1. This includes the case where the number of atoms of Zn is 2 or less and the atomic number ratio of Zn is larger than 0.1 and 2 or less.
  • the transistor included in the circuit 464 and the transistor included in the display unit 462 may have the same structure or different structures.
  • the structures of the plurality of transistors included in the circuit 464 may all be the same, or there may be two or more types.
  • the structures of the plurality of transistors included in the display unit 462 may all be the same, or there may be two or more types.
  • a connecting portion 204 is provided in a region of the substrate 451 where the substrates 452 do not overlap.
  • the wiring 465 is electrically connected to the FPC 472 via the conductive layer 466 and the connection layer 242.
  • the conductive layer 466 shows an example in which the conductive film obtained by processing the same conductive film as the pixel electrode and the conductive film obtained by processing the same conductive film as the optical adjustment layer have a laminated structure. ..
  • the conductive layer 466 is exposed on the upper surface of the connecting portion 204. As a result, the connection portion 204 and the FPC 472 can be electrically connected via the connection layer 242.
  • a light-shielding layer 417 on the surface of the substrate 452 on the substrate 451 side.
  • various optical members can be arranged on the outside of the substrate 452. Examples of the optical member include a polarizing plate, a retardation plate, a light diffusing layer (diffusing film, etc.), an antireflection layer, a condensing film, and the like.
  • an antistatic film for suppressing the adhesion of dust, a water-repellent film for preventing the adhesion of dirt, a hard coat film for suppressing the occurrence of scratches due to use, a shock absorbing layer and the like are arranged. You may.
  • the protective layer 416 that covers the light emitting element By providing the protective layer 416 that covers the light emitting element, it is possible to suppress the entry of impurities such as water into the light emitting element and improve the reliability of the light emitting element.
  • the insulating layer 215 and the protective layer 416 are in contact with each other through the opening of the insulating layer 214.
  • the inorganic insulating film of the insulating layer 215 and the inorganic insulating film of the protective layer 416 are in contact with each other.
  • Glass, quartz, ceramic, sapphire, resin, metal, alloy, semiconductor and the like can be used for the substrate 451 and the substrate 452, respectively.
  • a material that transmits the light is used for the substrate on the side that extracts the light from the light emitting element.
  • a flexible material is used for the substrate 451 and the substrate 452, the flexibility of the display device can be increased.
  • a polarizing plate may be used as the substrate 451 or the substrate 452.
  • the substrates 451 and 452 include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyethers, respectively.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyacrylonitrile resins acrylic resins
  • acrylic resins polyimide resins
  • PC polymethyl methacrylate resins
  • PC polycarbonate
  • polyethers polyethers
  • Sulfonate (PES) resin polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofibers and the like can be used.
  • PES Sulfonate
  • polyamide resin nylon, aramid, etc.
  • polysiloxane resin cycloolefin resin
  • polystyrene resin polyamideimide resin
  • polyurethane resin polyvinyl chloride resin
  • polyvinylidene chloride resin polypropylene resin
  • PTFE polytetrafluoroethylene
  • ABS resin polytetrafluoroethylene
  • a substrate having high optical isotropic properties has a small amount of birefringence (it can be said that the amount of birefringence is small).
  • the absolute value of the retardation (phase difference) value of the substrate having high optical isotropic properties is preferably 30 nm or less, more preferably 20 nm or less, still more preferably 10 nm or less.
  • the film having high optical isotropic properties examples include a triacetyl cellulose (TAC, also referred to as cellulose triacetate) film, a cycloolefin polymer (COP) film, a cycloolefin copolymer (COC) film, and an acrylic film.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • a film having a low water absorption rate as the substrate.
  • a film having a water absorption rate of 1% or less more preferably a film having a water absorption rate of 0.1% or less, and further preferably using a film having a water absorption rate of 0.01% or less.
  • various curable adhesives such as a photocurable adhesive such as an ultraviolet curable type, a reaction curable type adhesive, a thermosetting type adhesive, and an anaerobic type adhesive can be used.
  • these adhesives include epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin and the like.
  • a material having low moisture permeability such as epoxy resin is preferable.
  • a two-component mixed type resin may be used.
  • an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Connective Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Connective Paste
  • Materials that can be used for conductive layers such as transistor gates, sources and drains, as well as various wirings and electrodes that make up display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, and silver. Examples thereof include metals such as titanium and tungsten, and alloys containing the metal as a main component. A film containing these materials can be used as a single layer or as a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene can be used.
  • a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or an alloy material containing the metal material can be used.
  • a nitride of the metal material for example, titanium nitride
  • the laminated film of the above material can be used as the conductive layer.
  • a laminated film of an alloy of silver and magnesium and an indium tin oxide because the conductivity can be enhanced.
  • These can also be used for conductive layers such as various wirings and electrodes constituting the display device, and conductive layers (conductive layers that function as pixel electrodes or common electrodes) of the light emitting element.
  • Examples of the insulating material that can be used for each insulating layer include resins such as acrylic resin and epoxy resin, and inorganic insulating materials such as silicon oxide, silicon oxide, silicon nitride, silicon nitride, and aluminum oxide.
  • FIG. 24 shows a cross section of the display device 400A-2 when a part of the region including the FPC 472, a part of the circuit 464, a part of the display unit 462, and a part of the region including the end are cut. An example is shown.
  • the perspective view of the display device 400A-2 is the same as that of the display device 400A (FIG. 21). The description of the same part as that of the display device 400A may be omitted.
  • the display device 400A-2 shown in FIG. 24 has an insulating layer 421a instead of the insulating layer 421 as an insulating layer provided between the light emitting element 430a and the light emitting element 430b and between the light emitting element 430b and the light emitting element 430c. It is different from FIG. 22 in that it has an insulating layer 421b and an insulating layer 421b.
  • the display device 400A-2 shown in FIG. 24 has a transistor 201, a transistor 205, a light emitting element 430a that emits red light, a light emitting element 430b that emits green light, and blue light between the substrates 451 and 452. It has a light emitting element 430c or the like that emits light.
  • the light emitting element exemplified in the first embodiment can be applied to the light emitting element 430a, the light emitting element 430b, and the light emitting element 430c.
  • the protective layer 416 and the substrate 452 are adhered to each other via the adhesive layer 442.
  • the pixel electrodes 411a, 411b, and 411c are each connected to the conductive layer 222b of the transistor 205 via an opening provided in the insulating layer 214.
  • the pixel electrode contains a material that reflects visible light
  • the counter electrode contains a material that transmits visible light.
  • An insulating layer 421a and an insulating layer 421b are provided between the light emitting element 430a and the light emitting element 430b, and between the light emitting element 430b and the light emitting element 430c.
  • the insulating layer 421a and the insulating layer 421b for example, the insulating layer 130 shown in FIGS. 11A and 12A of the previous embodiment and the insulating layer 131 provided so as to fill the recesses of the insulating layer 130 are applied, respectively. can do.
  • the light emitted by the light emitting element is emitted to the substrate 452 side.
  • Both the transistor 201 and the transistor 205 are formed on the substrate 451.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided on the substrate 451 in this order.
  • an opening is formed in the insulating layer 214.
  • the layer 414 is provided so as to embed the recess formed so as to cover the opening. You may.
  • the unevenness of the surface to be formed of the optical adjustment layers 415a, 415b, 415c, EL layers 416a, 416b, and 416c can be reduced, and the covering property can be improved.
  • the description of the same portion as that of the display device 400A may be omitted.
  • FIG. 26A shows a cross-sectional view of the display device 400B.
  • the perspective view of the display device 400B is the same as that of the display device 400A (FIG. 21).
  • FIG. 26A shows an example of a cross section of the display device 400B when a part of the region including the FPC 472, a part of the circuit 464, and a part of the display unit 462 are cut.
  • FIG. 26A shows an example of a cross section of the display unit 462 when a region including a light emitting element 430b that emits green light and a light emitting element 430c that emits blue light is cut.
  • the description of the same part as that of the display device 400A may be omitted.
  • the display device 400B shown in FIG. 26A has a transistor 202, a transistor 210, a light emitting element 430b, a light emitting element 430c, and the like between the substrate 453 and the substrate 454.
  • the substrate 454 and the protective layer 416 are adhered to each other via the adhesive layer 442.
  • the adhesive layer 442 is provided so as to overlap the light emitting element 430b and the light emitting element 430c, respectively, and a solid-state sealing structure is applied to the display device 400B.
  • the substrate 453 and the insulating layer 212 are bonded to each other by an adhesive layer 455.
  • a manufacturing substrate provided with an insulating layer 212, each transistor, each light emitting element, and the like and a substrate 454 provided with a light-shielding layer 417 are bonded together by an adhesive layer 442. Then, by peeling off the production substrate and attaching the substrate 453 to the exposed surface, each component formed on the production substrate is transposed to the substrate 453. It is preferable that the substrate 453 and the substrate 454 have flexibility, respectively. Thereby, the flexibility of the display device 400B can be increased.
  • an inorganic insulating film that can be used for the insulating layer 211, the insulating layer 213, and the insulating layer 215 can be used, respectively.
  • the pixel electrode is connected to the conductive layer 222b of the transistor 210 via an opening provided in the insulating layer 214.
  • the conductive layer 222b is connected to the low resistance region 231n via the openings provided in the insulating layer 215 and the insulating layer 225.
  • the transistor 210 has a function of controlling the drive of the light emitting element.
  • An insulating layer 421 is provided between the light emitting element 430b and the light emitting element 430c.
  • the light emitted by the light emitting elements 430b and 430c is emitted to the substrate 454 side. It is preferable to use a material having high transparency to visible light for the substrate 454.
  • a connecting portion 204 is provided in a region of the substrate 453 where the substrates 454 do not overlap.
  • the wiring 465 is electrically connected to the FPC 472 via the conductive layer 466 and the connection layer 242.
  • the conductive layer 466 can be obtained by processing the same conductive film as the pixel electrode. As a result, the connection portion 204 and the FPC 472 can be electrically connected via the connection layer 242.
  • the transistor 202 and the transistor 210 include a conductive layer 221 that functions as a gate, an insulating layer 211 that functions as a gate insulating layer, a semiconductor layer having a channel forming region 231i and a pair of low resistance regions 231n, and one of a pair of low resistance regions 231n.
  • the insulating layer 211 is located between the conductive layer 221 and the channel forming region 231i.
  • the insulating layer 225 is located between the conductive layer 223 and the channel forming region 231i.
  • the conductive layer 222a and the conductive layer 222b are each connected to the low resistance region 231n via an opening provided in the insulating layer 215.
  • the conductive layer 222a and the conductive layer 222b one functions as a source and the other functions as a drain.
  • FIG. 26A shows an example in which the insulating layer 225 covers the upper surface and the side surface of the semiconductor layer.
  • the conductive layer 222a and the conductive layer 222b are connected to the low resistance region 231n via openings provided in the insulating layer 225 and the insulating layer 215, respectively.
  • the insulating layer 225 overlaps with the channel forming region 231i of the semiconductor layer 231 and does not overlap with the low resistance region 231n.
  • the structure shown in FIG. 26B can be produced by processing the insulating layer 225 using the conductive layer 223 as a mask.
  • the insulating layer 215 is provided so as to cover the insulating layer 225 and the conductive layer 223, and the conductive layer 222a and the conductive layer 222b are each connected to the low resistance region 231n through the opening of the insulating layer 215.
  • an insulating layer 218 may be provided to cover the transistor.
  • Transistor 209 shown in FIG. 26B may be used instead of the transistor 210 and the transistor 202.
  • FIG. 27 shows a cross-sectional view of the display device 400B-2.
  • the perspective view of the display device 400B-2 is the same as that of the display device 400A (FIG. 21).
  • FIG. 27 shows an example of a cross section of the display device 400B-2 when a part of the region including the FPC 472, a part of the circuit 464, and a part of the display unit 462 are cut.
  • FIG. 27 shows an example of a cross section of the display unit 462 when a region including a light emitting element 430b that emits green light and a light emitting element 430c that emits blue light is cut.
  • the display device 400B-2 shown in FIG. 27 has an insulating layer 421a and an insulating layer 421b instead of the insulating layer 421 as an insulating layer provided between the light emitting element 430b and the light emitting element 430c. different.
  • the description of the same part as that of the display device 400B may be omitted.
  • the display device 400B-2 shown in FIG. 27 has a transistor 202, a transistor 210, a light emitting element 430b, a light emitting element 430c, and the like between the substrate 453 and the substrate 454.
  • the substrate 454 and the protective layer 416 are adhered to each other via the adhesive layer 442.
  • the adhesive layer 442 is provided so as to overlap the light emitting element 430b and the light emitting element 430c, respectively, and a solid-state sealing structure is applied to the display device 400B.
  • the substrate 453 and the insulating layer 212 are bonded to each other by an adhesive layer 455.
  • a manufacturing substrate provided with an insulating layer 212, each transistor, each light emitting element, and the like and a substrate 454 provided with a light-shielding layer 417 are bonded together by an adhesive layer 442. .. Then, by peeling off the production substrate and attaching the substrate 453 to the exposed surface, each component formed on the production substrate is transposed to the substrate 453. It is preferable that the substrate 453 and the substrate 454 have flexibility, respectively. Thereby, the flexibility of the display device 400B can be increased.
  • the pixel electrode is connected to the conductive layer 222b of the transistor 210 via an opening provided in the insulating layer 214.
  • the conductive layer 222b is connected to the low resistance region 231n via the openings provided in the insulating layer 215 and the insulating layer 225.
  • the transistor 210 has a function of controlling the drive of the light emitting element.
  • An insulating layer 421a and an insulating layer 421b are provided between the light emitting element 430b and the light emitting element 430c.
  • the light emitted by the light emitting elements 430b and 430c is emitted to the substrate 454 side. It is preferable to use a material having high transparency to visible light for the substrate 454.
  • a connecting portion 204 is provided in a region of the substrate 453 where the substrates 454 do not overlap.
  • the wiring 465 is electrically connected to the FPC 472 via the conductive layer 466 and the connection layer 242.
  • the display device of the present embodiment can be a high-definition display device. Therefore, the display device of the present embodiment can be attached to the head of, for example, an information terminal (wearable device) such as a wristwatch type or a bracelet type, a device for VR such as a head-mounted display, or a device for AR of a glasses type. It can be used as a display unit of a wearable device that can be worn.
  • an information terminal wearable device
  • VR such as a head-mounted display
  • AR of a glasses type a device for AR of a glasses type.
  • FIG. 28A shows a perspective view of the display module 280.
  • the display module 280 includes a display device 400C and an FPC 290.
  • the display device included in the display module 280 is not limited to the display device 400C, and may be the display device 400D or the display device 400E described later.
  • the display module 280 has a substrate 291 and a substrate 292.
  • the display module 280 has a display unit 281.
  • the display unit 281 is an area for displaying an image in the display module 280, and is an area in which light from each pixel provided in the pixel unit 284, which will be described later, can be visually recognized.
  • FIG. 28B shows a perspective view schematically showing the configuration of the substrate 291 side.
  • a circuit unit 282, a pixel circuit unit 283 on the circuit unit 282, and a pixel unit 284 on the pixel circuit unit 283 are laminated on the substrate 291.
  • a terminal portion 285 for connecting to the FPC 290 is provided in a portion of the substrate 291 that does not overlap with the pixel portion 284.
  • the terminal portion 285 and the circuit portion 282 are electrically connected by a wiring portion 286 composed of a plurality of wirings.
  • the pixel unit 284 has a plurality of pixels 284a that are periodically arranged. An enlarged view of one pixel 284a is shown on the right side of FIG. 28B.
  • the pixel 284a has light emitting elements 430a, 430b, and 430c having different emission colors.
  • the plurality of light emitting elements are preferably arranged in a striped arrangement as shown in FIG. 28B.
  • the pixel circuits of the light emitting element of one aspect of the present invention can be arranged at high density, so that a high-definition display device can be provided.
  • various arrangement methods such as a delta arrangement and a pentile arrangement can be applied.
  • the pixel circuit unit 283 has a plurality of pixel circuits 283a arranged periodically.
  • One pixel circuit 283a is a circuit that controls light emission of three light emitting elements included in one pixel 284a.
  • the one pixel circuit 283a may be configured to be provided with three circuits for controlling the light emission of one light emitting element.
  • the pixel circuit 283a can have at least one selection transistor, one current control transistor (drive transistor), and a capacitance element for each light emitting element. At this time, a gate signal is input to the gate of the selection transistor, and a source signal is input to one of the source and drain. As a result, an active matrix type display device is realized.
  • the circuit unit 282 has a circuit for driving each pixel circuit 283a of the pixel circuit unit 283.
  • a gate line drive circuit and a source line drive circuit.
  • it may have at least one of an arithmetic circuit, a memory circuit, a power supply circuit, and the like.
  • the FPC 290 functions as wiring for supplying a video signal, a power supply potential, or the like to the circuit unit 282 from the outside. Further, the IC may be mounted on the FPC 290.
  • the aperture ratio (effective display area ratio) of the display unit 281 is extremely high.
  • the aperture ratio of the display unit 281 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, and more preferably 60% or more and 95% or less.
  • the pixels 284a can be arranged at an extremely high density, and the definition of the display unit 281 can be extremely high.
  • pixels 284a may be arranged with a fineness of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, still more preferably 6000 ppi or more, 20000 ppi or less, or 30000 ppi or less. preferable.
  • a display module 280 Since such a display module 280 has extremely high definition, it can be suitably used for a VR device such as a head-mounted display or a glasses-type AR device. For example, even in the case of a configuration in which the display unit of the display module 280 is visually recognized through the lens, since the display module 280 has an extremely high-definition display unit 281, the pixels are not visually recognized even if the display unit is enlarged by the lens. , A highly immersive display can be performed. Further, the display module 280 is not limited to this, and can be suitably used for an electronic device having a relatively small display unit. For example, it can be suitably used for a display unit of a wearable electronic device such as a wristwatch.
  • Display device 400C The display device 400C shown in FIG. 29 includes a substrate 301, light emitting elements 430a, 430b, 430c, a capacitance 240, and a transistor 310.
  • the substrate 301 corresponds to the substrate 291 in FIGS. 28A and 28B.
  • the laminated structure from the substrate 301 to the insulating layer 255 corresponds to the substrate in the first embodiment.
  • the transistor 310 is a transistor having a channel forming region on the substrate 301.
  • a semiconductor substrate such as a single crystal silicon substrate can be used.
  • the transistor 310 has a part of the substrate 301, a conductive layer 311, a low resistance region 312, an insulating layer 313, and an insulating layer 314.
  • the conductive layer 311 functions as a gate electrode.
  • the insulating layer 313 is located between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer.
  • the low resistance region 312 is a region where the substrate 301 is doped with impurities and functions as either a source or a drain.
  • the insulating layer 314 is provided so as to cover the side surface of the conductive layer 311 and functions as an insulating layer.
  • an element separation layer 315 is provided between two adjacent transistors 310 so as to be embedded in the substrate 301.
  • an insulating layer 261 is provided so as to cover the transistor 310, and a capacity 240 is provided on the insulating layer 261.
  • the capacity 240 has a conductive layer 241 and a conductive layer 245, and an insulating layer 243 located between them.
  • the conductive layer 241 functions as one electrode of the capacity 240
  • the conductive layer 245 functions as the other electrode of the capacity 240
  • the insulating layer 243 functions as a dielectric of the capacity 240.
  • the conductive layer 241 is provided on the insulating layer 261 and is embedded in the insulating layer 254.
  • the conductive layer 241 is electrically connected to one of the source and drain of the transistor 310 by a plug 271 embedded in the insulating layer 261.
  • the insulating layer 243 is provided so as to cover the conductive layer 241.
  • the conductive layer 245 is provided in a region overlapping the conductive layer 241 via an insulating layer 243.
  • An insulating layer 255 is provided so as to cover the capacity 240, and light emitting elements 430a, 430b, 430c and the like are provided on the insulating layer 255.
  • a protective layer 416 is provided on the light emitting elements 430a, 430b, and 430c, and a substrate 420 is bonded to the upper surface of the protective layer 416 by a resin layer 419.
  • the substrate 420 corresponds to the substrate 292 in FIG. 28A.
  • the pixel electrodes of the light emitting element are electrically connected to one of the source or drain of the transistor 310 by the plug 256 embedded in the insulating layer 255, the conductive layer 241 embedded in the insulating layer 254, and the plug 271 embedded in the insulating layer 261. Is connected.
  • the configuration shown in the first embodiment can be applied as an insulating layer between the light emitting element 430a, the light emitting element 430b, the light emitting element 430c, and the light emitting element.
  • an example of applying the configuration shown in FIG. 1B is shown, but the applicable configuration is not limited to this.
  • Display device 400C-2 The display device 400C-2 shown in FIG. 30 is different from the display device 400C shown in FIG. 29 in that the configuration having the insulating layer 130 described in the first embodiment is applied as the insulating layer between the light emitting elements. .. FIG. 30 shows an example in which the configuration shown in FIG. 10A is applied as an insulating layer between the light emitting element 430a, the light emitting element 430b, the light emitting element 430c, and the light emitting element.
  • the display device 400C-2 shown in FIG. 30 includes a substrate 301, light emitting elements 430a, 430b, 430c, a capacitance 240, and a transistor 310.
  • an element separation layer 315 is provided between two adjacent transistors 310 so as to be embedded in the substrate 301.
  • an insulating layer 261 is provided so as to cover the transistor 310, and a capacity 240 is provided on the insulating layer 261.
  • the capacity 240 has a conductive layer 241 and a conductive layer 245, and an insulating layer 243 located between them.
  • the conductive layer 241 functions as one electrode of the capacity 240
  • the conductive layer 245 functions as the other electrode of the capacity 240
  • the insulating layer 243 functions as a dielectric of the capacity 240.
  • the conductive layer 241 is provided on the insulating layer 261 and is embedded in the insulating layer 254.
  • the conductive layer 241 is electrically connected to either the source or the drain of the transistor 310 by a plug 271 embedded in the insulating layer 261.
  • the insulating layer 243 is provided so as to cover the conductive layer 241.
  • the conductive layer 245 is provided in a region overlapping the conductive layer 241 via an insulating layer 243.
  • An insulating layer 255 is provided so as to cover the capacity 240, and light emitting elements 430a, 430b, 430c and the like are provided on the insulating layer 255.
  • a protective layer 416 is provided on the light emitting elements 430a, 430b, and 430c, and a substrate 420 is bonded to the upper surface of the protective layer 416 by a resin layer 419.
  • the substrate 420 corresponds to the substrate 292 in FIG. 28A.
  • the pixel electrodes of the light emitting element are electrically connected to one of the source or drain of the transistor 310 by the plug 256 embedded in the insulating layer 255, the conductive layer 241 embedded in the insulating layer 254, and the plug 271 embedded in the insulating layer 261. Is connected.
  • Display device 400D The display device 400D shown in FIG. 31 is mainly different from the display device 400C in that the transistor configuration is different. The description of the same part as that of the display device 400C may be omitted.
  • the transistor 320 is a transistor in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer on which a channel is formed.
  • a metal oxide also referred to as an oxide semiconductor
  • the transistor 320 has a semiconductor layer 321 and an insulating layer 323, a conductive layer 324, a pair of conductive layers 325, an insulating layer 326, and a conductive layer 327.
  • the substrate 331 corresponds to the substrate 291 in FIGS. 28A and 28B.
  • the laminated structure from the substrate 331 to the insulating layer 255 corresponds to the layer 401 including the transistor in the second embodiment.
  • An insulating layer 332 is provided on the substrate 331.
  • the insulating layer 332 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 331 into the transistor 320 and oxygen from being desorbed from the semiconductor layer 321 to the insulating layer 332.
  • a film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, in which hydrogen or oxygen is less likely to diffuse than the silicon oxide film, can be used.
  • a conductive layer 327 is provided on the insulating layer 332, and an insulating layer 326 is provided so as to cover the conductive layer 327.
  • the conductive layer 327 functions as a first gate electrode of the transistor 320, and a part of the insulating layer 326 functions as a first gate insulating layer. It is preferable to use an oxide insulating film such as a silicon oxide film for at least a portion of the insulating layer 326 in contact with the semiconductor layer 321.
  • the upper surface of the insulating layer 326 is preferably flattened.
  • the semiconductor layer 321 is provided on the insulating layer 326.
  • the semiconductor layer 321 preferably has a metal oxide (also referred to as an oxide semiconductor) film having semiconductor characteristics. Details of the materials that can be suitably used for the semiconductor layer 321 will be described later.
  • the pair of conductive layers 325 are provided in contact with the semiconductor layer 321 and function as source electrodes and drain electrodes.
  • an insulating layer 328 is provided so as to cover the upper surface and side surfaces of the pair of conductive layers 325, the side surfaces of the semiconductor layer 321 and the like, and the insulating layer 264 is provided on the insulating layer 328.
  • the insulating layer 328 functions as a barrier layer that prevents impurities such as water and hydrogen from diffusing from the insulating layer 264 and the like into the semiconductor layer 321 and oxygen from being desorbed from the semiconductor layer 321.
  • the same insulating film as the insulating layer 332 can be used as the insulating layer 332.
  • the insulating layer 328 and the insulating layer 264 are provided with openings that reach the semiconductor layer 321. Inside the opening, the insulating layer 264, the insulating layer 328, the side surfaces of the conductive layer 325, the insulating layer 323 in contact with the upper surface of the semiconductor layer 321 and the conductive layer 324 are embedded.
  • the conductive layer 324 functions as a second gate electrode, and the insulating layer 323 functions as a second gate insulating layer.
  • the upper surface of the conductive layer 324, the upper surface of the insulating layer 323, and the upper surface of the insulating layer 264 are flattened so that their heights are substantially the same, and the insulating layer 329 and the insulating layer 265 are provided to cover them. ..
  • the insulating layer 264 and the insulating layer 265 function as an interlayer insulating layer.
  • the insulating layer 329 functions as a barrier layer that prevents impurities such as water and hydrogen from diffusing from the insulating layer 265 and the like into the transistor 320.
  • the same insulating film as the insulating layer 328 and the insulating layer 332 can be used.
  • the plug 274 that is electrically connected to one of the pair of conductive layers 325 is provided so as to be embedded in the insulating layer 265, the insulating layer 329, and the insulating layer 264.
  • the plug 274 is a conductive layer 274a that covers a part of the side surface of each opening of the insulating layer 265, the insulating layer 329, the insulating layer 264, and the insulating layer 328, and a part of the upper surface of the conductive layer 325, and the conductive layer 274a. It is preferable to have a conductive layer 274b in contact with the upper surface. At this time, it is preferable to use a conductive material as the conductive layer 274a, which is difficult for hydrogen and oxygen to diffuse.
  • the configuration of the insulating layer 254 to the substrate 420 in the display device 400D is the same as that of the display device 400C.
  • Display device 400D-2 The display device 400D-2 shown in FIG. 32 is mainly different from the display device 400C-2 in that the transistor configuration is different. Further, it is different from the display device 400D shown in FIG. 28 in that the configuration having the insulating layer 130 described in the first embodiment is applied. The same parts as the display devices 400C, display devices 400C-2, and 400D may be omitted.
  • the transistor 320 is a transistor in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer on which a channel is formed.
  • a metal oxide also referred to as an oxide semiconductor
  • the transistor 320 has a semiconductor layer 321 and an insulating layer 323, a conductive layer 324, a pair of conductive layers 325, an insulating layer 326, and a conductive layer 327.
  • An insulating layer 332 is provided on the substrate 331.
  • a conductive layer 327 is provided on the insulating layer 332, and an insulating layer 326 is provided so as to cover the conductive layer 327.
  • the conductive layer 327 functions as a first gate electrode of the transistor 320, and a part of the insulating layer 326 functions as a first gate insulating layer. It is preferable to use an oxide insulating film such as a silicon oxide film for at least a portion of the insulating layer 326 in contact with the semiconductor layer 321.
  • the upper surface of the insulating layer 326 is preferably flattened.
  • the semiconductor layer 321 is provided on the insulating layer 326.
  • the semiconductor layer 321 preferably has a metal oxide (also referred to as an oxide semiconductor) film having semiconductor characteristics.
  • the pair of conductive layers 325 are provided in contact with the semiconductor layer 321 and function as source electrodes and drain electrodes.
  • an insulating layer 328 is provided so as to cover the upper surface and side surfaces of the pair of conductive layers 325, the side surfaces of the semiconductor layer 321 and the like, and the insulating layer 264 is provided on the insulating layer 328.
  • the insulating layer 328 and the insulating layer 264 are provided with openings that reach the semiconductor layer 321. Inside the opening, the insulating layer 264, the insulating layer 328, the side surfaces of the conductive layer 325, the insulating layer 323 in contact with the upper surface of the semiconductor layer 321 and the conductive layer 324 are embedded.
  • the conductive layer 324 functions as a second gate electrode, and the insulating layer 323 functions as a second gate insulating layer.
  • the upper surface of the conductive layer 324, the upper surface of the insulating layer 323, and the upper surface of the insulating layer 264 are flattened so that their heights are substantially the same, and the insulating layer 329 and the insulating layer 265 are provided to cover them. ..
  • the plug 274 that is electrically connected to one of the pair of conductive layers 325 is provided so as to be embedded in the insulating layer 265, the insulating layer 329, and the insulating layer 264.
  • the configuration of the insulating layer 254 to the substrate 420 in the display device 400D-2 is the same as that of the display device 400C-2.
  • Display device 400E The display device 400E shown in FIG. 33 has a configuration in which a transistor 310 having a channel formed on the substrate 301 and a transistor 320 containing a metal oxide are laminated on a semiconductor layer on which the channel is formed. The description of the same parts as those of the display devices 400C and 400D may be omitted.
  • An insulating layer 261 is provided so as to cover the transistor 310, and a conductive layer 251 is provided on the insulating layer 261. Further, an insulating layer 262 is provided so as to cover the conductive layer 251, and a conductive layer 252 is provided on the insulating layer 262. The conductive layer 251 and the conductive layer 252 each function as wiring. Further, an insulating layer 263 and an insulating layer 332 are provided so as to cover the conductive layer 252, and a transistor 320 is provided on the insulating layer 332. Further, an insulating layer 265 is provided so as to cover the transistor 320, and a capacity 240 is provided on the insulating layer 265. The capacitance 240 and the transistor 320 are electrically connected by a plug 274.
  • the transistor 320 can be used as a transistor constituting a pixel circuit. Further, the transistor 310 can be used as a transistor constituting a pixel circuit or a transistor constituting a drive circuit (gate line drive circuit, source line drive circuit) for driving the pixel circuit. Further, the transistor 310 and the transistor 320 can be used as transistors constituting various circuits such as an arithmetic circuit or a storage circuit.
  • the display device 400E-2 shown in FIG. 34 has a configuration in which a transistor 310 having a channel formed on the substrate 301 and a transistor 320 containing a metal oxide are laminated on the semiconductor layer on which the channel is formed.
  • the display device 400E-2 shown in FIG. 34 is different from the display device 400E shown in FIG. 33 in that the configuration having the insulating layer 130 described in the first embodiment is applied.
  • the same parts as the display devices 400C, 400D, 400C-2, 400D-2, and 400E may be omitted.
  • An insulating layer 261 is provided so as to cover the transistor 310, and a conductive layer 251 is provided on the insulating layer 261. Further, an insulating layer 262 is provided so as to cover the conductive layer 251, and a conductive layer 252 is provided on the insulating layer 262. The conductive layer 251 and the conductive layer 252 each function as wiring. Further, an insulating layer 263 and an insulating layer 332 are provided so as to cover the conductive layer 252, and a transistor 320 is provided on the insulating layer 332. Further, an insulating layer 265 is provided so as to cover the transistor 320, and a capacity 240 is provided on the insulating layer 265. The capacitance 240 and the transistor 320 are electrically connected by a plug 274.
  • the light emitting element has an EL layer 686 between a pair of electrodes (lower electrode 672, upper electrode 688).
  • the EL layer 686 can be composed of a plurality of layers such as a layer 4420, a light emitting layer 4411 and a layer 4430.
  • the layer 4420 can include, for example, a layer containing a substance having a high electron injectability (electron injection layer) and a layer containing a substance having a high electron transport property (electron transport layer).
  • the light emitting layer 4411 has, for example, a luminescent compound.
  • the layer 4430 can have, for example, a layer containing a substance having a high hole injection property (hole injection layer) and a layer containing a substance having a high hole transport property (hole transport layer).
  • a configuration having a layer 4420, a light emitting layer 4411 and a layer 4430 provided between a pair of electrodes can function as a single light emitting unit, and the configuration of FIG. 35A is referred to herein as a single structure.
  • FIG. 35B is a modified example of the EL layer 686 included in the light emitting element shown in FIG. 35A.
  • the light emitting elements shown in FIG. 35B include a layer 4430-1 on the lower electrode 672, a layer 4430-2 on the layer 4430-1, a light emitting layer 4411 on the layer 4430-2, and a light emitting layer 4411. It has an upper layer 4420-1, a layer 4420-2 on the layer 4420-1 and an upper electrode 688 on the layer 4420-2.
  • layer 4430-1 functions as a hole injection layer
  • layer 4430-2 functions as a hole transport layer
  • layer 4420-1 is an electron. It functions as a transport layer
  • layer 4420-2 functions as an electron injection layer.
  • the layer 4430-1 functions as an electron injection layer
  • the layer 4430-2 functions as an electron transport layer
  • the layer 4420-1 functions as a hole transport layer. It functions as a layer
  • layer 4420-2 functions as a hole injection layer.
  • a configuration in which a plurality of light emitting layers (light emitting layer 4411, light emitting layer 4412, light emitting layer 4413) are provided between the layer 4420 and the layer 4430 is also a variation of the single structure.
  • tandem structure a configuration in which a plurality of light emitting units (EL layer 686a, EL layer 686b) are connected in series via an intermediate layer (charge generation layer) 4440 is referred to as a tandem structure in the present specification.
  • the structure shown in FIG. 35D is referred to as a tandem structure, but the structure is not limited to this, and for example, the tandem structure may be referred to as a stack structure.
  • the tandem structure makes it possible to obtain a light emitting element capable of high-luminance light emission.
  • the layer 4420 and the layer 4430 may have a laminated structure composed of two or more layers.
  • the power consumption can be reduced in the order of the SBS structure, the tandem structure, and the single structure.
  • the single structure and the tandem structure are suitable because the manufacturing process is simpler than the SBS structure, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
  • the emission color of the light emitting element can be red, green, blue, cyan, magenta, yellow, white, or the like, depending on the material constituting the EL layer 686. Further, the color purity can be further improved by imparting a microcavity structure to the light emitting element.
  • the light emitting element that emits white light preferably has a structure in which the light emitting layer contains two or more kinds of light emitting substances.
  • a light emitting substance may be selected so that the light emission of each of the two or more light emitting substances has a complementary color relationship.
  • the emission color of the first light emitting layer and the emission color of the second light emitting layer have a complementary color relationship, it is possible to obtain a light emitting element that emits white light as the entire light emitting element.
  • a light emitting element having three or more light emitting layers may be made so that the light emission color of the first light emitting layer and the emission color of the second light emitting layer have a complementary color relationship.
  • the light emitting layer preferably contains two or more light emitting substances such as red (R), green (G), blue (B), yellow (Y), and orange (O). Further, it may contain a luminescent substance that emits light such as purple, bluish purple, yellowish green, and near infrared. Alternatively, it is preferable that the luminescent substance has two or more, and the luminescence of each luminescent substance contains spectral components of two or more colors among red, green, and blue.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. It may also contain one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like. ..
  • CVD chemical vapor deposition
  • MOCVD organic metal chemical vapor deposition
  • ALD atomic layer deposition
  • the crystal structure of the oxide semiconductor includes amorphous (including compactly atomous), CAAC (c-axis-aligned crystal line), nc (nanocrystalline), CAC (crowd-aligned crystal), single crystal (single crystal), and single crystal. (Poly crystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Diffraction) spectrum.
  • XRD X-Ray Diffraction
  • it can be evaluated using the XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the shape of the peak of the XRD spectrum is almost symmetrical.
  • the shape of the peak of the XRD spectrum is asymmetrical.
  • the asymmetrical shape of the peaks in the XRD spectrum clearly indicates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peak of the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • a diffraction pattern also referred to as a microelectron diffraction pattern
  • NBED Nano Beam Electron Diffraction
  • halos are observed, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. Therefore, it is presumed that the IGZO film formed at room temperature is neither in a crystalline state nor in an amorphous state, in an intermediate state, and cannot be concluded to be in an amorphous state.
  • oxide semiconductors may be classified differently from the above.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, and the plurality of crystal regions are oriented in a specific direction on the c-axis.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS has indium (In) and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which a layer (hereinafter, In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. There is. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium. In addition, the In layer may contain the element M. The In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction, or that the bond distance between atoms changes due to the substitution of metal atoms. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor having high crystallinity and no clear grain boundary is confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities and the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures (so-called thermal budgets) in the manufacturing process. Therefore, when CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • nc-OS may be indistinguishable from a-like OS or amorphous oxide semiconductor depending on the analysis method.
  • a structural analysis is performed on an nc-OS film using an XRD apparatus, a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan.
  • electron beam diffraction also referred to as limited field electron diffraction
  • a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS.
  • a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • CAC-OS in In-Ga-Zn oxide is a region containing Ga as a main component and a part of In as a main component in a material composition containing In, Ga, Zn, and O. Each of the regions is mosaic, and these regions are randomly present. Therefore, it is presumed that CAC-OS has a structure in which metal elements are non-uniformly distributed.
  • the CAC-OS can be formed by a sputtering method, for example, under the condition that the substrate is not heated.
  • a sputtering method one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as the film forming gas. good.
  • the lower the flow rate ratio of the oxygen gas to the total flow rate of the film-forming gas at the time of film formation is preferable.
  • the flow rate ratio of the oxygen gas to the total flow rate of the film-forming gas at the time of film formation is preferably 0% or more and less than 30%. Is preferably 0% or more and 10% or less.
  • EDX Energy Dispersive X-ray spectroscopy
  • the first region is a region having higher conductivity than the second region. That is, when the carrier flows through the first region, conductivity as a metal oxide is exhibited. Therefore, high field effect mobility ( ⁇ ) can be realized by distributing the first region in the metal oxide in a cloud shape.
  • the second region is a region having higher insulating properties than the first region. That is, the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the function (On / Off). Function) can be added to CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on -current (Ion), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on -current
  • high field effect mobility
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor having high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm -3 or less, preferably 1 ⁇ 10 15 cm -3 or less, more preferably 1 ⁇ 10 13 cm -3 or less, more preferably 1 ⁇ 10 11 cm ⁇ . It is 3 or less, more preferably less than 1 ⁇ 10 10 cm -3 , and more than 1 ⁇ 10 -9 cm -3 .
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon near the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • defect levels may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, and more preferably 1 ⁇ 10 18 atoms / cm 3 or less. , More preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , and more preferably 5 ⁇ 10 18 atoms / cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • This embodiment can be carried out in combination with at least a part thereof as appropriate with other embodiments described in the present specification.
  • the electronic device of the present embodiment has a display device of one aspect of the present invention.
  • the display device according to one aspect of the present invention can be easily increased in definition, resolution, and size. Therefore, the display device of one aspect of the present invention can be used for the display unit of various electronic devices.
  • the display device according to one aspect of the present invention can be manufactured at a low cost, the manufacturing cost of the electronic device can be reduced.
  • Electronic devices include, for example, electronic devices with relatively large screens such as television devices, desktop or notebook personal computers, monitors for computers, digital signage, and large game machines such as pachinko machines, as well as digital devices. Examples include cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, mobile information terminals, sound reproduction devices, and the like.
  • the display device of one aspect of the present invention can increase the definition, it can be suitably used for an electronic device having a relatively small display unit.
  • Such electronic devices include wearable devices that can be worn on the head, such as wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, and glasses-type AR devices. Equipment and the like can be mentioned. Further, examples of the wearable device include a device for SR and a device for MR.
  • the display device of one aspect of the present invention includes HD (number of pixels 1280 ⁇ 720), FHD (number of pixels 1920 ⁇ 1080), WQHD (number of pixels 2560 ⁇ 1440), WQXGA (number of pixels 2560 ⁇ 1600), 4K2K (number of pixels). It is preferable to have an extremely high resolution such as 3840 ⁇ 2160) and 8K4K (number of pixels 7680 ⁇ 4320). In particular, it is preferable to set the resolution to 4K2K, 8K4K, or higher.
  • the pixel density (definition) in the display device of one aspect of the present invention is preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, more preferably 3000 ppi or more, and more preferably 5000 ppi or more. Is more preferable, and 7,000 ppi or more is further preferable.
  • a display device having such a high resolution or high definition it is possible to further enhance the sense of presence and depth in an electronic device for personal use such as a portable type or a home use.
  • the electronic device of the present embodiment can be incorporated along the inner or outer wall of a house or building, or along the curved surface of the interior or exterior of an automobile.
  • the electronic device of this embodiment may have an antenna.
  • the display unit can display images, information, and the like.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of the present embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage). , Including the ability to measure power, radiation, flow rate, humidity, gradient, vibration, odor or infrared rays).
  • the electronic device of this embodiment can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, a function to execute various software (programs), wireless communication. It can have a function, a function of reading a program or data recorded on a recording medium, and the like.
  • the electronic device 6500 shown in FIG. 36A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display unit 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • the display unit 6502 has a touch panel function.
  • a display device can be applied to the display unit 6502.
  • FIG. 36B is a schematic cross-sectional view including an end portion of the housing 6501 on the microphone 6506 side.
  • a translucent protective member 6510 is provided on the display surface side of the housing 6501, and the display panel 6511, the optical member 6512, the touch sensor panel 6513, and the printed circuit board are provided in the space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 by an adhesive layer (not shown).
  • a part of the display panel 6511 is folded back, and the FPC 6515 is connected to the folded back portion.
  • IC6516 is mounted on FPC6515.
  • the FPC6515 is connected to a terminal provided on the printed circuit board 6517.
  • a flexible display (a flexible display device) according to an aspect of the present invention can be applied to the display panel 6511. Therefore, an extremely lightweight electronic device can be realized. Further, since the display panel 6511 is extremely thin, it is possible to mount a large-capacity battery 6518 while suppressing the thickness of the electronic device. Further, by folding back a part of the display panel 6511 and arranging the connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device having a narrow frame can be realized.
  • FIG. 37A shows an example of a television device.
  • the display unit 7000 is incorporated in the housing 7101.
  • the configuration in which the housing 7101 is supported by the stand 7103 is shown.
  • a display device can be applied to the display unit 7000.
  • the operation of the television device 7100 shown in FIG. 37A can be performed by the operation switch provided in the housing 7101 and the separate remote control operation machine 7111.
  • the display unit 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display unit 7000 with a finger or the like.
  • the remote controller 7111 may have a display unit that displays information output from the remote controller 7111.
  • the channel and volume can be operated by the operation keys or the touch panel provided on the remote controller 7111, and the image displayed on the display unit 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts.
  • information communication is performed in one direction (from sender to receiver) or in two directions (between sender and receiver, or between recipients, etc.). It is also possible.
  • FIG. 37B shows an example of a notebook personal computer.
  • the notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display unit 7000 is incorporated in the housing 7211.
  • a display device can be applied to the display unit 7000.
  • 37C and 37D show an example of digital signage.
  • the digital signage 7300 shown in FIG. 37C has a housing 7301, a display unit 7000, a speaker 7303, and the like. Further, it may have an LED lamp, an operation key (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like.
  • FIG. 37D is a digital signage 7400 attached to a columnar pillar 7401.
  • the digital signage 7400 has a display unit 7000 provided along the curved surface of the pillar 7401.
  • the display device of one aspect of the present invention can be applied to the display unit 7000.
  • the wider the display unit 7000 the more information can be provided at one time. Further, the wider the display unit 7000 is, the easier it is for people to see it, and for example, the advertising effect of the advertisement can be enhanced.
  • the touch panel By applying the touch panel to the display unit 7000, not only the image or moving image can be displayed on the display unit 7000, but also the user can intuitively operate the display unit 7000, which is preferable. Further, when it is used for providing information such as route information or traffic information, usability can be improved by intuitive operation.
  • the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 such as a smartphone or the information terminal 7411 owned by the user by wireless communication.
  • the information of the advertisement displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, by operating the information terminal 7311 or the information terminal 7411, the display of the display unit 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can be made to execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). As a result, an unspecified number of users can participate in and enjoy the game at the same time.
  • FIG. 38A is a diagram showing the appearance of the camera 8000 with the finder 8100 attached.
  • the camera 8000 includes a housing 8001, a display unit 8002, an operation button 8003, a shutter button 8004, and the like.
  • a removable lens 8006 is attached to the camera 8000.
  • the lens 8006 and the housing may be integrated.
  • the camera 8000 can take an image by pressing the shutter button 8004 or touching the display unit 8002 that functions as a touch panel.
  • the housing 8001 has a mount having electrodes, and a strobe device or the like can be connected in addition to the finder 8100.
  • the finder 8100 includes a housing 8101, a display unit 8102, a button 8103, and the like.
  • the housing 8101 is attached to the camera 8000 by a mount that engages with the mount of the camera 8000.
  • the finder 8100 can display an image or the like received from the camera 8000 on the display unit 8102.
  • Button 8103 has a function as a power button or the like.
  • the display device of one aspect of the present invention can be applied to the display unit 8002 of the camera 8000 and the display unit 8102 of the finder 8100.
  • the camera 8000 with a built-in finder may be used.
  • FIG. 38B is a diagram showing the appearance of the head-mounted display 8200.
  • the head-mounted display 8200 includes a mounting unit 8201, a lens 8202, a main body 8203, a display unit 8204, a cable 8205, and the like. Further, the mounting portion 8201 has a built-in battery 8206.
  • the cable 8205 supplies electric power from the battery 8206 to the main body 8203.
  • the main body 8203 is provided with a wireless receiver or the like, and the received video information can be displayed on the display unit 8204. Further, the main body 8203 is provided with a camera, and information on the movement of the user's eyeball or eyelid can be used as an input means.
  • the mounting portion 8201 may be provided with a plurality of electrodes capable of detecting the current flowing with the movement of the user's eyeball at a position where the user touches the user, and may have a function of recognizing the line of sight. Further, it may have a function of monitoring the pulse of the user by the current flowing through the electrode. Further, the mounting unit 8201 may have various sensors such as a temperature sensor, a pressure sensor, and an acceleration sensor, and has a function of displaying the biometric information of the user on the display unit 8204 and a movement of the user's head. At the same time, it may have a function of changing the image displayed on the display unit 8204.
  • a display device can be applied to the display unit 8204.
  • the head-mounted display 8300 includes a housing 8301, a display unit 8302, a band-shaped fixture 8304, and a pair of lenses 8305.
  • the user can visually recognize the display of the display unit 8302 through the lens 8305. It is preferable to arrange the display unit 8302 in a curved manner because the user can feel a high sense of presence. Further, by visually recognizing another image displayed in a different area of the display unit 8302 through the lens 8305, it is possible to perform three-dimensional display or the like using parallax.
  • the configuration is not limited to the configuration in which one display unit 8302 is provided, and two display units 8302 may be provided and one display unit may be arranged for one eye of the user.
  • a display device can be applied to the display unit 8302.
  • the display device of one aspect of the present invention can also realize extremely high definition. For example, even when the display is magnified and visually recognized by using the lens 8305 as shown in FIG. 38E, it is difficult for the user to visually recognize the pixels. That is, the display unit 8302 can be used to make the user visually recognize a highly realistic image.
  • FIG. 38F is a diagram showing the appearance of the goggle-type head-mounted display 8400.
  • the head-mounted display 8400 has a pair of housings 8401, a mounting portion 8402, and a cushioning member 8403.
  • a display unit 8404 and a lens 8405 are provided in the pair of housings 8401, respectively. By displaying different images on the pair of display units 8404, it is possible to perform three-dimensional display using parallax.
  • the user can visually recognize the display unit 8404 through the lens 8405.
  • the lens 8405 has a focus adjustment mechanism, and the position can be adjusted according to the eyesight of the user.
  • the display unit 8404 is preferably a square or a horizontally long rectangle. As a result, the sense of presence can be enhanced.
  • the mounting portion 8402 is preferably plastic and elastic so that it can be adjusted according to the size of the user's face and does not slip off. Further, it is preferable that a part of the mounting portion 8402 has a vibration mechanism that functions as a bone conduction earphone. As a result, you can enjoy video and audio just by wearing it without the need for separate audio equipment such as earphones and speakers.
  • the housing 8401 may have a function of outputting voice data by wireless communication.
  • the mounting portion 8402 and the cushioning member 8403 are portions that come into contact with the user's face (forehead, cheeks, etc.). When the cushioning member 8403 is in close contact with the user's face, light leakage can be prevented and the immersive feeling can be further enhanced.
  • the cushioning member 8403 is preferably made of a soft material so that when the user wears the head-mounted display 8400, it comes into close contact with the user's face. For example, materials such as rubber, silicone rubber, urethane, and sponge can be used.
  • a gap is unlikely to occur between the user's face and the cushioning member 8403, and light leakage is suitably prevented. Can be done. Further, it is preferable to use such a material because it is soft to the touch and does not make the user feel cold when worn in a cold season or the like.
  • the electronic devices shown in FIGS. 39A to 39F include a housing 9000, a display unit 9001, a speaker 9003, an operation key 9005 (including a power switch or an operation switch), a connection terminal 9006, and a sensor 9007 (force, displacement, position, speed). , Acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell or infrared (Including the function of), microphone 9008, and the like.
  • the electronic devices shown in FIGS. 39A to 39F have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, etc., a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing a program or data recorded on a recording medium, and the like.
  • the functions of electronic devices are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device even if the electronic device is provided with a camera or the like, it has a function of shooting a still image or a moving image and saving it on a recording medium (external or built in the camera), a function of displaying the shot image on a display unit, and the like. good.
  • a display device can be applied to the display unit 9001.
  • FIG. 39A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as, for example, a smartphone.
  • the mobile information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like. Further, the mobile information terminal 9101 can display character and image information on a plurality of surfaces thereof.
  • FIG. 39A shows an example in which three icons 9050 are displayed. Further, the information 9051 indicated by the broken line rectangle can be displayed on the other surface of the display unit 9001. Examples of information 9051 include notification of incoming calls such as e-mail, SNS, and telephone, titles such as e-mail and SNS, sender name, date and time, time, remaining battery level, and antenna reception strength. Alternatively, an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 39B is a perspective view showing a mobile information terminal 9102.
  • the mobile information terminal 9102 has a function of displaying information on three or more surfaces of the display unit 9001.
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can check the information 9053 displayed at a position that can be observed from above the mobile information terminal 9102 with the mobile information terminal 9102 stored in the chest pocket of the clothes.
  • the user can check the display without taking out the mobile information terminal 9102 from the pocket, and can determine, for example, whether or not to receive a call.
  • FIG. 39C is a perspective view showing a wristwatch-type portable information terminal 9200.
  • the mobile information terminal 9200 can be used as, for example, a smart watch (registered trademark).
  • the display unit 9001 is provided with a curved display surface, and can display along the curved display surface. It is also possible to make a hands-free call by communicating the mobile information terminal 9200 with, for example, a headset capable of wireless communication.
  • the mobile information terminal 9200 can also perform data transmission and charge with other information terminals by means of the connection terminal 9006.
  • the charging operation may be performed by wireless power supply.
  • FIG. 39D to 39F are perspective views showing a foldable mobile information terminal 9201. Further, FIG. 39D is a perspective view of the mobile information terminal 9201 in an unfolded state, FIG. 39F is a folded state, and FIG. 39E is a perspective view of a state in which one of FIGS. 39D and 39F is in the process of changing to the other.
  • the mobile information terminal 9201 is excellent in portability in the folded state, and is excellent in display listability due to a wide seamless display area in the unfolded state.
  • the display unit 9001 included in the mobile information terminal 9201 is supported by three housings 9000 connected by a hinge 9055. For example, the display unit 9001 can be bent with a radius of curvature of 0.1 mm or more and 150 mm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

表示品位の高い表示装置を提供する。信頼性の高い表示装置を提供する。消費電力の低い表示装置を提供する。高精細化が容易な表示装置を提供する。高い表示品位と、高い精細度を兼ね備える表示装置を提供する。コントラストの高い表示装置を提供する。 絶縁層と、第1の下部電極と、第1の下部電極上の第1のEL層と、第2の下部電極と、第2の下部電極上の第2のEL層と、第1のEL層上、第2のEL層上、及び絶縁層上の上部電極とを有し、第1のEL層は第1の発光層を有し、第2のEL層は第2の発光層を有し、第1のEL層と第2のEL層は隣接し、絶縁層は樹脂または樹脂の前駆体を有し、絶縁層は第1のEL層が有する第1の端面と第2のEL層が有する第2の端面に挟まれる領域を有する表示装置である。

Description

表示装置
本発明の一態様は、表示装置に関する。本発明の一態様は、表示装置の作製方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
近年、ディスプレイパネルの高精細化が求められている。高精細なディスプレイパネルが要求される機器としては、例えばスマートフォン、タブレット端末、ノート型コンピュータなどがある。また、テレビジョン装置、モニター装置などの据え置き型のディスプレイ装置においても、高解像度化に伴う高精細化が求められている。さらに、最も高精細度が要求される機器としては、例えば、仮想現実(VR:Virtual Reality)、または拡張現実(AR:Augmented Reality)向けの機器がある。
また、ディスプレイパネルに適用可能な表示装置としては、代表的には液晶表示装置、有機EL(Electro Luminescence)素子や発光ダイオード(LED:Light Emitting Diode)等の発光素子を備える発光装置、電気泳動方式などにより表示を行う電子ペーパなどが挙げられる。
例えば、有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層を挟持したものである。この素子に電圧を印加することにより、発光性の有機化合物から発光を得ることができる。このような有機EL素子が適用された表示装置は、液晶表示装置等で必要であったバックライトが不要なため、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。例えば、有機EL素子を用いた表示装置の一例が、特許文献1に記載されている。
特許文献2には、有機ELデバイスを用いた、VR向けの表示装置が開示されている。
特開2002−324673号公報 国際公開第2018/087625号
本発明の一態様は、表示品位の高い表示装置を提供することを課題の一とする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一とする。本発明の一態様は、消費電力の低い表示装置を提供することを課題の一とする。本発明の一態様は、高精細化が容易な表示装置を提供することを課題の一とする。本発明の一態様は、高い表示品位と、高い精細度を兼ね備える表示装置を提供することを課題の一とする。本発明の一態様は、コントラストの高い表示装置を提供することを課題の一とする。
本発明の一態様は、新規な構成を有する表示装置、または表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、上述した表示装置を歩留まりよく製造する方法を提供することを課題の一とする。本発明の一態様は、先行技術の問題点の少なくとも一を少なくとも軽減することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
本発明の一態様は、絶縁層と、第1の下部電極と、第1の下部電極上の第1のEL層と、第2の下部電極と、第2の下部電極上の第2のEL層と、第1のEL層上、第2のEL層上、及び絶縁層上の上部電極と、を有し、第1のEL層は、第1の発光層を有し、第2のEL層は、第2の発光層を有し、第1のEL層と、第2のEL層と、は隣接し、絶縁層は、樹脂または樹脂の前駆体を有し、絶縁層は、第1のEL層が有する第1の端面と、第2のEL層が有する第2の端面と、に挟まれる領域を有する表示装置である。
また上記構成において、樹脂は、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、及びフェノール樹脂から選ばれる一以上を有し、樹脂の前駆体は、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、及びフェノール樹脂から選ばれる一以上を有する樹脂の前駆体であることが好ましい。
また上記構成において、絶縁層は、第1の端面及び第2の端面と接することが好ましい。
また上記構成において、第1のEL層の上面と、第2のEL層の上面と、絶縁層の上面と、は概略揃うことが好ましい。
また上記構成において、絶縁層の上面は、第1のEL層の上面及び第2のEL層の上面よりも高さが低い領域を有することが好ましい。
また上記構成において、絶縁層の上面は、凹部を有することが好ましい。
また上記構成において、絶縁層の上面は、凸部を有することが好ましい。
また上記構成において、電子注入層または正孔注入層を含む共通層を有し、共通層は、第1のEL層の上面、第2のEL層の上面及び絶縁層の上面と接することが好ましい。
また上記構成において、電子注入層を含む共通層を有し、第1のEL層は、第1の発光層と、共通層と、に挟まれる第1の電子輸送層を有し、第2のEL層は、第2の発光層と、共通層と、に挟まれる第2の電子輸送層を有し、共通層は、第1のEL層の上面、第2のEL層の上面及び絶縁層の上面と接することが好ましい。
また上記構成において、電子注入層及び電子輸送層を含む共通層を有し、共通層は、第1のEL層の上面、第2のEL層の上面及び絶縁層の上面と接することが好ましい。
また上記構成において、第1の発光層は、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、及び赤色から選ばれる一色の発光を示す発光物質を有し、第2の発光層は、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、及び赤色から選ばれる他の一色の発光を示す発光物質を有することが好ましい。
本発明の一態様は、基板上に複数の画素を有し、複数の画素のそれぞれは、発光素子を有し、発光素子は、画素電極と、画素電極上のEL層と、EL層上の共通電極とを有し、複数の画素における共通電極は、複数の画素における、それぞれの発光素子と、共有され、複数の画素において隣接する画素の画素電極は、無機材料を有する第1の絶縁層と、有機材料を有する第2の絶縁層とによって分離されており、画素電極の側面と、EL層の側面と、は第1の絶縁層と接する領域を有し、第2の絶縁層は、第1の絶縁層上に接し、且つ共通電極の下方に配置される表示装置である。
本発明の一態様は、第1の画素と、第1の画素と隣接して配置された第2の画素とを有し、第1の画素は、第1の画素電極と、第1の画素電極上の第1のEL層と、第1のEL層上の共通電極と、を有する第1の発光素子を備え、第2の画素は、第2の画素電極と、第2の画素電極上の第2のEL層と、第2のEL層上の共通電極と、を有する第2の発光素子を備える表示装置であって、第1の画素電極の側面と、第1のEL層の側面と、第2の画素電極の側面と、第2のEL層の側面とは、第1の絶縁層と接する領域を有し、第1の絶縁層上に接して設けられ、且つ共通電極の下方に配置された第2の絶縁層を有し、第1の絶縁層は、無機材料を有し、第2の絶縁層は、有機材料を有する表示装置である。
本発明の一態様は、第1の画素と、第1の画素と隣接して配置された第2の画素とを有し、第1の画素は、第1の画素電極と、第1の画素電極上の第1のEL層と、第1のEL層上の共通電極と、を有する第1の発光素子を備え、第2の画素は、第2の画素電極と、第2の画素電極上の第2のEL層と、第2のEL層上の共通電極と、を有する第2の発光素子を備える表示装置であって、第1の画素電極の側面と、第1のEL層の側面と、第2の画素電極の側面と、第2のEL層の側面とは、第1の絶縁層と接する領域を有し、第1の絶縁層上に接して設けられ、且つ共通電極の下方に配置された第2の絶縁層を有し、第1の絶縁層は、無機材料を有し、第2の絶縁層は、有機材料を有し、第1のEL層の上面と、第2のEL層の上面と、第1の絶縁層の上面と、第2の絶縁層の上面と、は共通電極と接する領域を有する表示装置である。
本発明の一態様は、第1の画素と、第1の画素と隣接して配置された第2の画素とを有し、第1の画素は、第1の画素電極と、第1の画素電極上の第1のEL層と、第1のEL層上の共通層と、共通層上の共通電極と、を有する第1の発光素子を備え、第2の画素は、第2の画素電極と、第2の画素電極上の第2のEL層と、第2のEL層上の共通層と、共通層上の共通電極と、を有する第2の発光素子を備える表示装置であって、第1の画素電極の側面と、第1のEL層の側面と、第2の画素電極の側面と、第2のEL層の側面とは、第1の絶縁層と接する領域を有し、第1の絶縁層上に接して設けられ、且つ共通電極の下方に配置された第2の絶縁層を有し、第1の絶縁層は、無機材料を有し、第2の絶縁層は、有機材料を有し、第1のEL層の上面と、第2のEL層の上面と、第1の絶縁層の上面と、第2の絶縁層の上面と、は共通層と接する領域を有する表示装置である。
上記において、表示装置の断面視において、第1の絶縁層は、第1のEL層の上面または第2のEL層の上面よりも上方に突出した領域を有していてもよい。
または、上記において、表示装置の断面視において、第1のEL層または第2のEL層は、第1の絶縁層の上面よりも上方に突出した領域を有していてもよい。
または、上記において、表示装置の断面視において、第2の絶縁層の上面は凹曲面形状を有していてもよい。
または、上記において、表示装置の断面視において、第2の絶縁層の上面は、凸曲面形状を有していてもよい。
本発明の一態様によれば、表示品位の高い表示装置を提供できる。また、信頼性の高い表示装置を提供できる。また、消費電力の低い表示装置を提供できる。また、高精細化が容易な表示装置を提供できる。また、高い表示品位と、高い精細度を兼ね備える表示装置を提供できる。また、コントラストの高い表示装置を提供できる。
また、本発明の一態様によれば、新規な構成を有する表示装置、または表示装置の作製方法を提供できる。また、上述した表示装置を歩留まりよく製造する方法を提供できる。本発明の一態様によれば、先行技術の問題点の少なくとも一を少なくとも軽減することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
図1A乃至図1Cは、表示装置の構成例を示す図である。
図2A及び図2Bは、表示装置の構成例を示す図である。
図3A乃至図3Fは、表示装置の作製方法例を示す図である。
図4A乃至図4Eは、表示装置の作製方法例及び表示装置の構成例を示す図である。
図5A乃至図5Eは、表示装置の作製方法例及び表示装置の構成例を示す図である。
図6A乃至図6Cは、表示装置の作製方法例を示す図である。図6Dは、表示装置の構成例を示す図である。
図7A及び図7Bは、表示装置の構成例を示す図である。
図8A及び図8Bは、表示装置の作製方法例を示す図である。図8Cは、表示装置の構成例を示す図である。
図9A及び図9Bは、表示装置の構成例を示す図である。
図10A及び図10Bは、表示装置の構成例を示す図である。
図11A及び図11Bは、表示装置の構成例を示す図である。
図12A及び図12Bは、表示装置の構成例を示す図である。
図13A乃至図13Fは、表示装置の作製方法例を示す図である。
図14A乃至図14Fは、表示装置の作製方法例を示す図である。
図15A乃至図15Fは、表示装置の作製方法例及び表示装置の構成例を示す図である。
図16A及び図16Bは、表示装置の構成例を示す図である。
図17A乃至図17Cは、表示装置の構成例を示す図である。
図18A乃至図18Cは、表示装置の構成例を示す図である。
図19A乃至図19Dは、表示装置の構成例を示す図である。
図20A及び図20Bは、表示装置の構成例を示す図である。
図21は、表示装置の一例を示す斜視図である。
図22は、表示装置の一例を示す断面図である。
図23は、表示装置の一例を示す断面図である。
図24は、表示装置の一例を示す断面図である。
図25は、表示装置の一例を示す断面図である。
図26Aは、表示装置の一例を示す断面図である。図26Bは、トランジスタの一例を示す断面図である。
図27は、表示装置の一例を示す断面図である。
図28A及び図28Bは、表示モジュールの一例を示す斜視図である。
図29は、表示装置の一例を示す断面図である。
図30は、表示装置の一例を示す断面図である。
図31は、表示装置の一例を示す断面図である。
図32は、表示装置の一例を示す断面図である。
図33は、表示装置の一例を示す断面図である。
図34は、表示装置の一例を示す断面図である。
図35A乃至図35Dは、発光素子の構成例を示す図である。
図36A及び図36Bは、電子機器の一例を示す図である。
図37A乃至図37Dは、電子機器の一例を示す図である。
図38A乃至図38Fは、電子機器の一例を示す図である。
図39A乃至図39Fは、電子機器の一例を示す図である。
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
なお、本明細書で説明する各図において、各構成要素の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」または「絶縁層」という用語は、「導電膜」または「絶縁膜」という用語に相互に交換することが可能な場合がある。
なお、本明細書において、EL層とは発光素子の一対の電極間に設けられ、少なくとも発光性の物質を含む層(発光層とも呼ぶ)、または発光層を含む積層体を示すものとする。
本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
本発明の一態様の発光素子は、正孔注入性の高い物質、正孔輸送性の高い物質、電子輸送性の高い物質、および電子注入性の高い物質、バイポーラ性の物質等を含む層を有してもよい。
なお、発光層、ならびに正孔注入性の高い物質、正孔輸送性の高い物質、電子輸送性の高い物質、および電子注入性の高い物質、バイポーラ性の物質等を含む層は、それぞれ量子ドットなどの無機化合物または高分子化合物(オリゴマー、デンドリマー、ポリマー等)を有していてもよい。例えば、量子ドットを発光層に用いることで、発光材料として機能させることもできる。
なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。また、12族と16族、13族と15族、または14族と16族の元素グループを含む材料を用いてもよい。または、カドミウム、セレン、亜鉛、硫黄、リン、インジウム、テルル、鉛、ガリウム、ヒ素、アルミニウム等の元素を含む量子ドット材料を用いてもよい。
本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
なお、本明細書等において、各色の発光デバイス(ここでは青(B)、緑(G)、及び赤(R))で、発光層を作り分ける、または発光層を塗り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。また、本明細書等において、白色光を発することのできる発光デバイスを白色発光デバイスと呼ぶ場合がある。なお、白色発光デバイスは、着色層(たとえば、カラーフィルタ)と組み合わせることで、フルカラー表示の表示装置を実現することができる。
また、発光デバイスは、シングル構造と、タンデム構造とに大別することができる。シングル構造のデバイスは、一対の電極間に1つの発光ユニットを有し、当該発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、2以上の発光層の各々の発光が補色の関係となるような発光層を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する構成を得ることができる。また、発光層を3つ以上有する発光デバイスの場合も同様である。
タンデム構造のデバイスは、一対の電極間に2以上の複数の発光ユニットを有し、各発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、複数の発光ユニットの発光層からの光を合わせて白色発光が得られる構成とすればよい。なお、白色発光が得られる構成については、シングル構造の構成と同様である。なお、タンデム構造のデバイスにおいて、複数の発光ユニットの間には、電荷発生層などの中間層を設けると好適である。
また、上述の白色発光デバイス(シングル構造またはタンデム構造)と、SBS構造の発光デバイスと、を比較した場合、SBS構造の発光デバイスは、白色発光デバイスよりも消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造の発光デバイスを用いると好適である。一方で、白色発光デバイスは、製造プロセスがSBS構造の発光デバイスよりも簡単であるため、製造コストを低くすることができる、又は製造歩留まりを高くすることができるため、好適である。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置の構成例、及び表示装置の作製方法例について説明する。
本発明の一態様は、発光素子(発光デバイスともいう)を有する表示装置である。表示装置は、少なくとも異なる色の光を発する2つの発光素子を有する。発光素子は、それぞれ一対の電極と、その間にEL層を有する。発光素子として、有機EL素子、無機EL素子などの電界発光素子を用いることができる。その他、発光ダイオード(LED)を用いることができる。本発明の一態様の発光素子は、有機EL素子(有機電界発光素子)であることが好ましい。異なる色を発する2つ以上の発光素子は、それぞれ異なる材料を含むEL層を有する。例えば、それぞれ赤色(R)、緑色(G)、または青色(B)の光を発する3種類の発光素子を有することで、フルカラーの表示装置を実現できる。
ここで、異なる色の発光素子間で、EL層を作り分ける場合、メタルマスクなどのシャドーマスクを用いた蒸着法により形成することが知られている。しかしながら、この方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の有機膜の形状及び位置に設計からのずれが生じるため、高精細化、及び高開口率化が困難である。また、蒸着においてメタルマスクに付着した材料に起因するゴミが発生する場合がある。このようなゴミは、発光素子のパターン不良を引き起こす懸念がある。また、ゴミに起因したショートが生じる可能性がある。また、メタルマスクに付着した材料のクリーニングの工程を要する。そのため、ペンタイル配列などの特殊な画素配列方式を適用することなどにより、疑似的に精細度(画素密度ともいう)を高める対策が取られていた。
本発明の一態様は、EL層をメタルマスクなどのシャドーマスクを用いることなく、微細なパターンに加工する。これにより、これまで実現が困難であった高い精細度と、大きな開口率を有する表示装置を実現できる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を実現できる。
ここでは、簡単のために、2色の発光素子のEL層を作り分ける場合について説明する。まず、画素電極を覆って、第1のEL膜と、第1の犠牲膜とを積層して形成する。続いて、第1の犠牲膜上にレジストマスクを形成する。続いて、レジストマスクを用いて、第1の犠牲膜の一部、及び第1のEL膜の一部をエッチングし、第1のEL層、および第1のEL層上の第1の犠牲層を形成する。
続いて、第2のEL膜と、第2の犠牲膜とを積層して形成する。続いて、レジストマスクを用いて、第2の犠牲膜の一部、及び第2のEL膜の一部をエッチングし、第2のEL層、および第2のEL層上の第2の犠牲層を形成する。次に、第1の犠牲層および第2の犠牲層をマスクとして、画素電極の加工を行い、第1のEL層と重畳する第1の画素電極、および第2のEL層と重畳する第2の画素電極を形成する。このようにして、第1のEL層と第2のEL層を作り分けることができる。最後に、第1の犠牲層及び第2の犠牲層を除去し、共通電極を形成することで、二色の発光素子を作り分けることができる。
さらに、上記を繰り返すことで、3色以上の発光素子のEL層を作り分けることができ、3色、または4色以上の発光素子を有する表示装置を実現できる。
EL層の端部においては、画素電極およびEL層が設けられる領域と、画素電極およびEL層が設けられない領域と、に起因する段差が生じている。EL層上に共通電極を形成する際に、EL層の端部の段差に起因して、共通電極の被覆性が悪くなり、共通電極が切断される懸念がある。また、共通電極が薄くなり、電気抵抗が上昇する懸念がある。
また、画素電極の端部がEL層の端部と概略揃う場合、および、画素電極の端部がEL層の端部より外側に位置する場合においては、EL層上に共通電極を形成する際に、共通電極と画素電極とが短絡する場合がある。
本発明の一態様は、第1のEL層と第2のEL層の間に絶縁層を設けることにより、共通電極を設ける面の凹凸を小さくすることができる。よって、第1のEL層の端部、および第2のEL層の端部における共通電極の被覆性を高めることができ、共通電極の良好な導電性を実現することができる。また、共通電極と画素電極の短絡を抑制することができる。
また、本発明の一態様は、レジストマスクを用いて犠牲層を形成し、形成された犠牲層を用いてEL層および画素電極の加工を行うことができるため、画素電極の加工とEL層の加工において、異なるレジストマスクを用いずに発光素子を形成することができる。よって、画素電極とEL層の端部の位置のマージンを設けずとも発光素子を形成することができる。位置のマージンを小さくすることにより、発光領域を広くすることができるため、発光素子の開口率を高めることができる。また、位置のマージンを小さくすることにより、画素サイズの縮小が可能となり、表示装置の高精細化が可能となる。また、レジストマスクを用いる回数を減らすことができるため、工程を簡略化することができ、コストの低減および歩留まりの向上が可能となる。
異なる色のEL層が隣接する場合、隣接するEL層の間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法によれば、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで間隔を狭めることもできる。これにより、2つの発光素子間に存在しうる非発光領域の面積を大幅に縮小することができ、開口率を100%に近づけることが可能となる。例えば、開口率は、50%以上、60%以上、70%以上、80%以上、さらには90%以上であって、100%未満を実現することもできる。
さらに、EL層自体のパターンについても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、パターンの中央と端で厚さのばらつきが生じるため、パターン全体の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工することでパターンを形成するため、パターン内で厚さを均一にでき、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、上記作製方法によれば、高い精細度と高い開口率を兼ね備えることができる。
このように、上記作製方法によれば、微細な発光素子を集積した表示装置を実現することができるため、例えばペンタイル方式などの特殊な画素配列方式を適用し、疑似的に精細度を高める必要が無いため、R、G、Bをそれぞれ一方向に配列させた、いわゆるストライプ配置で、且つ、500ppi以上、1000ppi以上、または2000ppi以上、さらには3000ppi以上、さらには5000ppi以上の精細度の表示装置を実現することができる。
以下では、本発明の一態様の表示装置の、より具体的な構成例及び作製方法例について、図面を参照して説明する。
<絶縁層131を有する構成>
以下に、本発明の一態様の表示装置の構成例について、図1A乃至図1C、図2A及び図2B、図10A及び図10B、などを用いて説明する。
[構成例1]
図1Aに、本発明の一態様の表示装置100の上面概略図を示す。表示装置100は、赤色を呈する発光素子110R、緑色を呈する発光素子110G、及び青色を呈する発光素子110Bをそれぞれ複数有する。図1Aでは、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。
発光素子110R、発光素子110G、及び発光素子110Bは、それぞれマトリクス状に配列している。図1Aは、一方向に同一の色の発光素子が配列する、いわゆるストライプ配列を示している。なお、発光素子の配列方法はこれに限られず、デルタ配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列を用いることもできる。
発光素子110R、発光素子110G、及び発光素子110Bとしては、OLED(Organic Light Emitting Diode)、またはQLED(Quantum−dot Light Emitting Diode)などのEL素子を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)などが挙げられる。
図1Bは、図1A中の一点鎖線A1−A2に対応する断面概略図であり、図1Cは、一点鎖線B1−B2に対応する断面概略図である。
発光装置100は、基板上の発光素子110R、発光素子110G、及び発光素子110Bを有する。図1Bには、発光素子110R、発光素子110G、及び発光素子110Bの断面を示している。発光素子110Rは、画素電極111R、EL層112R、及び共通電極113を有する。発光素子110Gは、画素電極111G、EL層112G、及び共通電極113を有する。発光素子110Bは、画素電極111B、EL層112B、及び共通電極113を有する。
発光素子110Rは、画素電極111Rと共通電極113との間に、EL層112Rを有する。EL層112Rは、少なくとも赤色の波長域に強度を有する光を発する発光性の有機化合物を有する。発光素子110Gは、画素電極111Gと共通電極113との間に、EL層112Gを有する。EL層112Gは、少なくとも緑色の波長域に強度を有する光を発する発光性の有機化合物を有する。発光素子110Bは、画素電極111Bと共通電極113との間に、EL層112Bを有する。EL層112Bは、少なくとも青色の波長域に強度を有する光を発する発光性の有機化合物を有する。
EL層112R、EL層112G、及びEL層112Bは、それぞれ発光性の有機化合物を含む層(発光層)を有する。発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の化合物(ホスト材料、アシスト材料)を有していてもよい。ホスト材料、アシスト材料としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いることができる。ホスト材料、アシスト材料としては、励起錯体を形成する化合物を組み合わせて用いることが好ましい。効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。
発光素子には低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物(量子ドット材料等)を含んでいてもよい。
EL層112R、EL層112G、及びEL層112Bのそれぞれは、発光層のほかに、電子注入層、電子輸送層、正孔注入層、及び正孔輸送層のうち、一以上を有していてもよい。
画素電極111R、画素電極111G、及び画素電極111Bは、それぞれ発光素子毎に設けられている。また、共通電極113は、各発光素子に共通な一続きの層として設けられている。各画素電極と共通電極113のいずれか一方に可視光に対して透光性を有する導電膜を用い、他方に反射性を有する導電膜を用いる。各画素電極を透光性、共通電極113を反射性とすることで、下面射出型(ボトムエミッション型)の表示装置とすることができ、反対に各画素電極を反射性、共通電極113を透光性とすることで、上面射出型(トップエミッション型)の表示装置とすることができる。なお、各画素電極と共通電極113の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示装置とすることもできる。
なお以下では、発光素子110R、発光素子110G、及び発光素子110Bに共通の事項を説明する場合には、符号に付加する記号を省略し、発光素子110と表記して説明する場合がある。また、画素電極111R、画素電極111G、及び画素電極111Bも同様に、画素電極111と表記して説明する場合がある。また、EL層112R、EL層112G、及びEL層112Bも同様に、EL層112と表記して説明する場合がある。その他の層についても同様である。
隣接する発光素子110の間には、絶縁層131が設けられている。絶縁層131は、発光素子110が有するそれぞれのEL層112の間に位置する。また、絶縁層131上には共通電極113が設けられている。
絶縁層131は例えば、それぞれが異なる色を呈する2つのEL層112の間に設けられる。あるいは絶縁層131は例えば、同じ色を呈する2つのEL層112の間に設けられる。あるいは絶縁層131が、異なる色を呈する2つのEL層112の間に設けられ、同じ色を呈する2つのEL層112の間には設けられない構成としてもよい。
絶縁層131は例えば、上面視において、2つのEL層112の間に設けられる。
EL層112R、EL層112G、及びEL層112Bは、それぞれ画素電極の上面に接する領域と、絶縁層131の側面に接する領域と、を有することが好ましい。EL層112R、EL層112G、及びEL層112Bの端部は、絶縁層131の側面と接することが好ましい。
異なる色の発光素子間に絶縁層131を設けることにより、EL層112R、EL層112G、及びEL層112Gが、互いに接することを抑制することができる。これにより、隣接する2つのEL層を介して電流が流れ、意図しない発光が生じることを好適に防ぐことができる。そのため、コントラストを高めることができ、表示品位の高い表示装置を実現できる。
絶縁層131の上面は、EL層112の上面と概略揃うことが好ましい。また、絶縁層131の上面は例えば、平坦な形状を有する。
また、絶縁層131の上面がEL層112の上面よりも高くなる場合がある(後述の図6C等)。また、絶縁層131の上面がEL層112の上面よりも低くなる場合がある(後述の図7A等)。
また、絶縁層131の上面の形状が凹部を有する場合がある(後述する図8B等)。また、絶縁層131の上面の形状が凸部を有する場合がある(後述する図9A等)。
絶縁層131の上面とEL層112の上面の高さの差は例えば、絶縁層131の厚さの0.5倍以下が好ましく、絶縁層131の厚さの0.3倍以下がより好ましい。また例えば、EL層112の上面が絶縁層131の上面よりも高くなるように、絶縁層131を設ければよい。また例えば、絶縁層の上面がEL層112が有する発光層の上面よりも高くなるように、絶縁層131を設ければよい。また、絶縁層131の厚さは例えば、画素電極111の下面から、EL層112の上面までの厚さと概略同じである。また、絶縁層131の厚さは例えば、画素電極111の下面から、EL層112の上面までの厚さの0.3倍以上、あるいは0.5倍以上、あるいは0.7倍以上であることが好ましい。
絶縁層131として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
また、共通電極113上には、発光素子110R、発光素子110G、及び発光素子110Bを覆って、保護層121が設けられている。保護層121は、上方から各発光素子に水などの不純物が拡散することを防ぐ機能を有する。
保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造または積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜または窒化物膜が挙げられる。または、保護層121としてインジウムガリウム酸化物、インジウムガリウム亜鉛酸化物などの半導体材料を用いてもよい。
また、保護層121として、無機絶縁膜と、有機絶縁膜の積層膜を用いることもできる。例えば、一対の無機絶縁膜の間に、有機絶縁膜を挟んだ構成とすることが好ましい。さらに有機絶縁膜が平坦化膜として機能することが好ましい。これにより、有機絶縁膜の上面を平坦なものとすることができるため、その上の無機絶縁膜の被覆性が向上し、バリア性を高めることができる。また、保護層121の上面が平坦となるため、保護層121の上方に構造物(例えばカラーフィルタ、タッチセンサの電極、またはレンズアレイなど)を設ける場合に、下方の構造に起因する凹凸形状の影響を軽減できるため好ましい。
[構成例2]
図2Aおよび図2Bに示す表示装置100Aは、共通層114を有する点で、図1Bおよび図1Cに示す表示装置100と主に相違している。図2Aは、図1A中の一点鎖線A1−A2に対応する断面概略図であり、図2Bは、一点鎖線B1−B2に対応する断面概略図である。
共通層114は、共通電極113と同様、複数の発光素子にわたって設けられる。共通層114は、EL層112R、EL層112G、及びEL層112Bを覆って設けられている。共通層114を有する構成とすることで、作製工程を簡略化できるため、作製コストを低減できる。共通層114と共通電極113は、間にエッチングなどの工程を挟まずに連続して形成することができる。よって、共通層114と共通電極の界面を清浄な面とすることができ、発光素子において、良好な特性を得ることができる。
共通層114は、EL層112R、EL層112G、及びEL層112Bの上面の一以上と接することが好ましい。
EL層112R、EL層112G、及びEL層112Bは例えば、少なくともそれぞれ、一の色を発光する発光材料を含む発光層を有していることが好ましい。また、共通層114は例えば、電子注入層、電子輸送層、正孔注入層、または正孔輸送層のうち、一以上を含む層とすることが好ましい。画素電極をアノード、共通電極をカソードとした発光素子においては、共通層114として、電子注入層を含む構成、または電子注入層と電子輸送層の2つを含む構成を、用いることができる。
[構成例3]
各発光素子において、マイクロキャビティ構造(微小共振器構造)を用いて光路長を異ならせることにより、特定の波長の光を強めることができる。これにより、色純度が高められた表示装置を実現することができる。
例えば、各発光素子において、EL層112の厚さを異ならせることにより、マイクロキャビティ構造を実現することができる。例えば、最も波長の長い光を発する発光素子110RのEL層112Rを最も厚く、最も波長の短い光を発する発光素子110BのEL層112Bが最も薄い構成とすることができる。なお、これに限られず、各発光素子が発する光の波長、発光素子を構成する層の光学特性、及び発光素子の電気特性などを考慮して、各EL層の厚さを調整することができる。
また例えば、光学調整層として可視光に対して透光性を有する層を用いて、発光素子毎に光路長を異ならせることができる。例えば、画素電極111とEL層112との間に光学調整層を設ければよい。光学調整層として例えば、可視光に対して透光性を有する、導電性材料を用いることができる。例えば、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛、シリコンを含むインジウム錫酸化物、シリコンを含むインジウム亜鉛酸化物などの導電性酸化物を用いることができる。
各光学調整層は、画素電極111R、画素電極111G、及び画素電極111Bとなる導電膜を成膜した後であって、後述する図13A等に示すEL膜112Rf等を形成する前に、形成することができる。各光学調整層の厚さを異ならせることにより、各発光素子において、光路長を異ならせることができる。各光学調整層は、それぞれ厚さの異なる導電膜を用いてもよいし、薄いものから順に、単層構造、2層構造、3層構造などとしてもよい。
あるいは、光学調整層と、色毎に厚さが異なるEL層と、を組み合わせて用いてもよい。
例えば、各発光素子の光学調整層とEL層の合計の膜厚が概略等しくなるように、光学調整層とEL層の膜厚を調整してもよい。この場合、共通電極113の形成表面をより平坦化させることができる。
図10Aに示す表示装置100Bにおいて、発光素子110Rは、画素電極111RとEL層112Rとの間に、光学調整層115Rを有する。また発光素子110Gは、画素電極111GとEL層112Gとの間に、光学調整層115Gを有する。また発光素子110Bは、画素電極111BとEL層112Bとの間に、光学調整層115Bを有する。
図10Bに示す表示装置100Cは、EL層112と共通電極113の間に共通層114を有する点で、発光素子の構成が異なる点で、図10Aに示す表示装置100Bと主に相違している。
[作製方法例1]
以下では、本発明の一態様の表示装置の作製方法の一例について、図面を参照して説明する。ここでは、上記構成例で示した表示装置100Aを例に挙げて説明する。図3A乃至図4Eは、以下で例示する表示装置の作製方法の、各工程における断面概略図である。
なお、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、または熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
また、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。それ以外に、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光またはX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
〔基板101の準備〕
基板101としては、少なくとも後の熱処理に耐えうる程度の耐熱性を有する基板を用いることができる。基板101として、絶縁性基板を用いる場合には、ガラス基板、石英基板、サファイア基板、セラミック基板、有機樹脂基板などを用いることができる。また、シリコンまたは炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板などの半導体基板を用いることができる。
特に、基板101として、上記半導体基板または絶縁性基板上に、トランジスタなどの半導体素子を含む半導体回路が形成された基板を用いることが好ましい。当該半導体回路は、例えば画素回路、ゲート線駆動回路(ゲートドライバ)、ソース線駆動回路(ソースドライバ)などを構成していることが好ましい。また、上記に加えて演算回路、記憶回路などが構成されていてもよい。
続いて、基板101上に画素電極111となる導電膜111fを成膜する。
画素電極として可視光に対して反射性を有する導電膜を用いる場合、可視光の波長域全域での反射率ができるだけ高い材料(例えば銀またはアルミニウムなど)を適用することが好ましい。これにより、発光素子の光取り出し効率を高められるだけでなく、色再現性を高めることができる。
〔EL膜112Rfの形成〕
続いて、導電膜111f上に、後にEL層112RとなるEL膜112Rfを成膜する。
EL膜112Rfは、少なくとも発光性の化合物を含む膜を有する。このほかに、電子注入層、電子輸送層、電荷発生層、正孔輸送層、または正孔注入層として機能する膜のうち、一以上が積層された構成としてもよい。EL膜112Rfは、例えば蒸着法、スパッタリング法、またはインクジェット法等により形成することができる。なおこれに限られず、上述した成膜方法を適宜用いることができる。
〔犠牲膜144aの形成〕
続いて、EL膜112Rfを覆って犠牲膜144aを形成する。
犠牲膜144aの形成には、例えば、スパッタリング法、ALD法(熱ALD法、PEALD法)または真空蒸着法を用いることができる。なお、EL層へのダメージが少ない形成方法が好ましく、スパッタリング法よりも、ALD法、または真空蒸着法を用いて、第1の犠牲膜144aを形成すると好適である。また、犠牲膜144aとしては、特に酸化アルミニウムを用いると製造コストを安くすることができるため好適である。また、ALD法はスパッタリング法と比較し、下地に与える成膜ダメージを少なく形成することができる。
犠牲膜144aは、EL膜112Rfなどの各EL膜のエッチング処理に対する耐性の高い膜、すなわちエッチングの選択比の大きい膜を用いることができる。また、犠牲膜144aは、後述する保護膜146aなどの保護膜とのエッチングの選択比の大きい膜を用いることができる。さらに、犠牲膜144aは、各EL膜へのダメージの少ないウェットエッチング法により除去可能な膜を用いることができる。ウェットエッチング法を用いる場合、例えば、現像液、水酸化テトラメチルアンモニウム(TMAH)水溶液、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いた薬液などを用いることが好ましい。
犠牲膜144aとしては、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜などの無機膜を用いることができる。
犠牲膜144aとしては、例えば金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタルなどの金属材料、または該金属材料を含む合金材料を用いることができる。特に、アルミニウムまたは銀などの低融点材料を用いることが好ましい。
また、犠牲膜144aとしては、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも表記する)などの金属酸化物を用いることができる。さらに、酸化インジウム、インジウム亜鉛酸化物(In−Zn酸化物)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)などを用いることができる。またはシリコンを含むインジウムスズ酸化物などを用いることもできる。
なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)を用いた場合にも適用できる。特に、Mは、ガリウム、アルミニウム、またはイットリウムから選ばれた一種または複数種とすることが好ましい。
また、犠牲膜144aとしては、酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの無機絶縁材料を用いることができる。特に、犠牲膜144aとしては、ALD法を用いて、酸化アルミニウム膜を形成すると、下地(特にEL層など)へのダメージを低減できるため、好適である。
また、犠牲膜144aとしては、単層構造、または2層以上の積層構造としてもよい。当該積層構造としては、代表的には、スパッタリング法により形成されるIn−Ga−Zn酸化物と、スパッタリング法により形成される窒化シリコン膜と、の2層構造、スパッタリング法により形成されるIn−Ga−Zn酸化物と、ALD法により形成される酸化アルミニウムと、の2層構造、またはALD法により形成される酸化アルミニウムと、スパッタリング法により形成されるIn−Ga−Zn酸化物と、の2層構造などがあげられる。
なお、ALD法、またはスパッタリング法にて犠牲膜144aを形成する際に、加熱成膜する構成としてよい。当該構成の場合、下地材料(ここではEL膜112Rf)が劣化しない範囲が好ましく、犠牲膜144aの成膜時の基板温度としては、室温以上200℃以下、好ましくは50℃以上150℃以下、さらに好ましくは70℃以上100℃以下、代表的には80℃近傍の温度とすればよい。上記構成とすることで、下地材料と、犠牲膜144aとの密着性を向上させることができる。
なお、犠牲膜144aは、必ずしも形成しなくともよく、EL膜112Rf上に接するように保護膜146aを形成してもよい。他の色を呈する画素においても同様である。
〔保護膜146aの形成〕
続いて、犠牲膜144a上に、保護膜146aを形成する。
保護膜146aは、後に犠牲膜144aをエッチングする際のハードマスクとして用いる膜である。また、後の保護膜146aの加工時には、犠牲膜144aが露出する。したがって、犠牲膜144aと保護膜146aとは、互いにエッチングの選択比の大きい膜の組み合わせを選択する。そのため、犠牲膜144aのエッチング条件、及び保護膜146aのエッチング条件に応じて、保護膜146aに用いることのできる膜を選択することができる。
例えば、保護膜146aのエッチングに、フッ素を含むガス(フッ素系ガスともいう)を用いたドライエッチングを用いる場合には、シリコン、窒化シリコン、酸化シリコン、タングステン、チタン、モリブデン、タンタル、窒化タンタル、モリブデンとニオブを含む合金、またはモリブデンとタングステンを含む合金などを、保護膜146aに用いることができる。ここで、上記フッ素系ガスを用いたドライエッチングに対して、エッチングの選択比を大きくとれる(すなわち、エッチング速度を遅くできる)膜としては、IGZO、ITOなどの金属酸化物膜などがあり、これを犠牲膜144aに用いることができる。
なお、これに限られず、保護膜146aは、様々な材料の中から、犠牲膜144aのエッチング条件、及び保護膜146aのエッチング条件に応じて、選択することができる。例えば、上記犠牲膜144aに用いることのできる膜の中から選択することもできる。
また、保護膜146aとしては、例えば窒化物膜を用いることができる。具体的には、窒化シリコン、窒化アルミニウム、窒化ハフニウム、窒化チタン、窒化タンタル、窒化タングステン、窒化ガリウム、窒化ゲルマニウムなどの窒化物を用いることもできる。
また、保護膜146aとして、EL膜112Rfなどに用いることのできる有機膜を用いてもよい。例えば、EL膜112Rf、EL膜112Gf、またはEL膜112Bfに用いる有機膜と同じ膜を、保護膜146aに用いることができる。このような有機膜を用いることで、EL膜112Rfなどと成膜装置を共通に用いることができるため、好ましい。
〔レジストマスク143aの形成〕
続いて、保護膜146a上にレジストマスク143aを形成する(図3A)。
レジストマスク143aは、ポジ型のレジスト材料、またはネガ型のレジスト材料など、感光性の樹脂を含むレジスト材料を用いることができる。
ここで、保護膜146aを有さずに、犠牲膜144a上にレジストマスク143aを形成する場合、犠牲膜144aにピンホールなどの欠陥が存在すると、レジスト材料の溶媒によって、EL膜112Rfが溶解してしまう恐れがある。保護膜146aを用いることで、このような不具合が生じることを防ぐことができる。
〔保護膜146aのエッチング〕
続いて、保護膜146aの、レジストマスク143aに覆われない一部をエッチングにより除去し、島状または帯状の保護層147aを形成する。
保護膜146aのエッチングの際、犠牲膜144aが当該エッチングにより除去されないように、選択比の高いエッチング条件を用いることが好ましい。保護膜146aのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチングを用いることで、保護膜146aのパターンが縮小することを抑制できる。
〔レジストマスク143aの除去〕
続いて、レジストマスク143aを除去する。
レジストマスク143aの除去は、ウェットエッチングまたはドライエッチングにより行うことができる。特に、酸素ガスをエッチングガスに用いたドライエッチング(プラズマアッシングともいう)により、レジストマスク143aを除去することが好ましい。
このとき、レジストマスク143aの除去は、EL膜112Rfは、犠牲膜144aに覆われた状態で行われるため、EL膜112Rfへの影響が抑制されている。特に、EL膜112Rfが酸素に触れると、電気特性に悪影響を及ぼす場合があるため、プラズマアッシングなどの、酸素ガスを用いたエッチングを行う場合には好適である。
〔犠牲膜144aのエッチング〕
続いて、保護層147aをマスクとして用いて、犠牲膜144aの保護層147aに覆われない一部をエッチングにより除去し、島状または帯状の犠牲層145aを形成する。
犠牲膜144aのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチング法を用いると、パターンの縮小を抑制できるため好ましい。
〔EL膜112Rfのエッチング〕
続いて、犠牲層145aに覆われないEL膜112Rfの一部をエッチングにより除去し、島状または帯状のEL層112Rを形成する(図3B)。
EL膜112Rfのエッチングには、酸素を主成分に含まないエッチングガスを用いたドライエッチングを用いることが好ましい。これにより、EL膜112Rfの変質を抑制し、信頼性の高い表示装置を実現できる。酸素を主成分に含まないエッチングガスとしては、例えばCF、C、SF、CHF、Cl、HO、BCl、またはHeなどの貴ガスが挙げられる。また、上記ガスと、酸素を含まない希釈ガスとの混合ガスをエッチングガスに用いることができる。ここで、EL膜112Rfのエッチングにおいて、保護層147aを除去してもよい。
〔EL層112G、EL層112Bの形成〕
続いて、犠牲層145a、保護層147a、及び露出した導電膜111f上にEL層112GとなるEL膜112Gfを成膜する。EL膜112Gfについては、EL膜112Rfの記載を参照することができる。
続いて、EL膜112Gf上に犠牲膜144bを成膜し、犠牲膜144b上に保護膜146bを成膜する。犠牲膜144bについては、犠牲膜144aの記載を参照することができる。保護膜146bについては、保護膜146aの記載を参照することができる。
続いて、保護膜146b上にレジストマスク143bを形成する(図3C)。
続いて、レジストマスク143bを用いて保護膜146bをエッチングして保護層147bを形成する。その後、レジストマスク143bを除去する。
続いて、保護層147bをマスクとして、犠牲膜144b及びEL膜112Gfをそれぞれエッチングして犠牲層145b及びEL層112Gを形成する(図3D)。
続いて、犠牲層145a、犠牲層145b、保護層147a、保護層147b、及び露出した導電膜111f上にEL層112BとなるEL膜112Bfを成膜する。EL膜112Bfについては、EL膜112Rfの記載を参照することができる。
続いて、EL膜112Bf上に犠牲膜144cを成膜し、犠牲膜144c上に保護膜146cを成膜する。犠牲膜144cについては、犠牲膜144aの記載を参照することができる。保護膜146cについては、保護膜146aの記載を参照することができる。
続いて、保護膜146c上にレジストマスク143cを形成する(図3E)。
続いて、レジストマスク143cを用いて保護膜146cをエッチングして保護層147cを形成する。その後、レジストマスク143cを除去する。
続いて、保護層147cをマスクとして、犠牲膜144c及びEL膜112Bfをそれぞれエッチングして犠牲層145c及びEL層112Bを形成する(図3F)。
〔画素電極111R、画素電極111G、及び画素電極111Bの形成〕
続いて、導電膜111fにおいて、EL層112R、EL層112G、EL層112B、犠牲層145a、犠牲層145b、犠牲層145c、保護層147a、保護層147b、及び保護層147cに覆われない一部をエッチングし、画素電極111R、画素電極111G、及び画素電極111Bを形成する(図4A)。
導電膜111fのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができる。ここで、導電膜111fのエッチングの条件として、酸素を主成分に含まないエッチングガスを用いたドライエッチングを用いることにより、EL層112へのダメージを低減することができる。また、後述する図5A乃至図5Eにおいて説明する通り、画素電極111R、画素電極111G、及び画素電極111Bをあらかじめ形成することにより、EL層112へのダメージを低減できる場合がある。
〔絶縁層131の形成〕
続いて、絶縁層131となる絶縁膜131fを形成する(図4B)。絶縁膜131fは、保護層147、犠牲層145、EL層112、画素電極111を覆うように設けられる。絶縁膜131fは、平坦化膜であることが好ましい。
絶縁膜131fとして、樹脂を用いることが好ましい。絶縁膜131fは例えば、有機絶縁膜である。
絶縁膜131fに用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
続いて、絶縁膜131fのエッチングを行い、保護層147の上面を露出させる(図4C)。絶縁膜131fのエッチングは、絶縁膜131fの上面に対し略均一に施される。なお、このように均一にエッチングして平坦化することをエッチバックともいう。
絶縁膜131fのエッチングは、ドライエッチング法、ウェットエッチング法を用いることができる。また、酸素プラズマを用いたアッシング、等により絶縁膜131fのエッチングを行ってもよい。なお、酸素プラズマを用いたアッシングは、制御性が高い、面内均一性がよく大判基板を用いた処理に適している等の利点を有するため、絶縁膜131fの一部の除去に好適に用いることができる。また、絶縁膜131fのエッチングとして、化学機械研磨(CMP:Chemical Mechanical Poliching)を用いてもよい。
なお、絶縁膜131fのエッチングを行う際には、エッチングによるEL層112へのダメージを抑制することが好ましい。よって例えば、EL層112の側面の露出が少なくなるように絶縁膜131fをエッチングすることが好ましい。
また、EL層112上に犠牲層145を設けた状態で、絶縁膜131fのエッチングを行うことにより、エッチングによるEL層112の上面へのダメージを抑制することができる。
図4Cに示すように、絶縁層131の上面が、EL層112の上面と概略揃うように絶縁膜131fのエッチングを行えばよい。絶縁層131の上面とEL層の上面が概略揃うように絶縁層131を設けることにより、後述する図4Eに示す共通電極113の形成において、共通電極113を設ける面の凹凸を小さくすることができ、被覆性を高めることができる。
図4Cは、保護層147の上面と側面、及び犠牲層145の側面が露出するように絶縁層131が形成される例を示す。
絶縁膜131fは、被形成面の凹凸、及び被形成面に形成されるパターンの疎密により、表面の平坦性が変化する場合がある。また、絶縁膜131fとして用いる材料の粘度等により、絶縁膜131fの平坦性が変化する場合がある。
絶縁膜131fは例えば、複数のEL層112の間の領域において、EL層112上の領域に比べて厚さが薄くなる場合がある。このような場合には例えば、絶縁膜131fのエッチバックを行うことにより、絶縁層131の上面の高さは、保護層147の上面の高さ、あるいは犠牲層145の上面の高さよりも低くなる場合がある。
また、絶縁膜131fは複数のEL層112の間の領域においてくぼんだ形状、膨らんだ形状、等になる場合がある。
図4Cには、絶縁層131の上面とEL層の上面が概略揃うように絶縁層131を設ける例を示すが、後に示す図6A乃至図6D等にて詳述するように、絶縁層131の上面がEL層112の上面より高くなるように絶縁層131を設けてもよい。あるいは、後に示す図7A及び図7B等にて詳述するように、絶縁層131の上面がEL層112の上面より低くなるように絶縁層131を設けてもよい。
また、絶縁層131の上面の形状は、後に示す図8A乃至図8C等にて詳述するように、凹部を有してもよい。また、絶縁層131の上面の形状は、後に示す図9A及び図9B等にて詳述するように、凸部を有してもよい。
また、絶縁層131の上面の形状及び高さは、後述する図4Dに示す保護層及び犠牲層の除去により、変化する場合がある。
〔保護層及び犠牲層の除去〕
続いて、保護層147a、保護層147b、保護層147c、犠牲層145a、犠牲層145b、及び犠牲層145cを除去し、EL層112R、EL層112G、及びEL層112Bの上面を露出させる(図4D)。
図4Dにおいては、絶縁層131の上面の高さをEL層112の上面の高さと概略揃うように絶縁層131を設ける例を示す。図4Dにおいては、EL層112の上面が露出し、EL層112の側面は、絶縁層131により覆われている。EL層112の側面が絶縁層131に覆われることにより、保護層147のエッチングにおけるEL層へのダメージを低減することができる。
保護層147a、保護層147b、及び保護層147cは、ウェットエッチングまたはドライエッチングにより除去することができる。
犠牲層145a、犠牲層145b、及び犠牲層145cは、ウェットエッチングまたはドライエッチングにより除去することができる。このとき、EL層112R、EL層112G、及びEL層112Bにできるだけダメージを与えない方法を用いることが好ましい。特に、ウェットエッチング法を用いることが好ましい。例えば、水酸化テトラメチルアンモニウム(TMAH)水溶液、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いたウェットエッチングを用いることが好ましい。これらのウェットエッチングの条件を用いることにより例えば、絶縁層へのダメージを低減することができる。
このようにして、EL層112R、EL層112G、及びEL層112Bを作り分けることができる。
〔共通電極113の形成〕
続いて、EL層112R、EL層112G、及びEL層112Bを覆って、共通電極113を形成する。共通電極113は、例えばスパッタリング法または真空蒸着法などにより形成することができる。
以上の工程により、発光素子110R、発光素子110G、及び発光素子110Bを作製することができる。
〔保護層121の形成〕
続いて、共通電極113上に、保護層121を形成する(図4E)。保護層121に用いる無機絶縁膜の成膜には、スパッタリング法、PECVD法、またはALD法を用いることが好ましい。特にALD法は、段差被覆性に優れ、ピンホールなどの欠陥が生じにくいため、好ましい。また、有機絶縁膜の成膜には、インクジェット法を用いると、所望のエリアに均一な膜を形成できるため好ましい。
以上の工程により、図1B及び図1Cに示す表示装置100を作製することができる。
上記作製方法を用いることで、EL層112R、EL層112G、及びEL層112Bへのプロセスダメージを軽減することができるため、極めて信頼性の高い表示装置を実現できる。
〔共通層114の形成〕
なお、共通電極113の形成の前に、EL層112R、EL層112G、及びEL層112Bを覆って共通層114の形成を行った後、共通電極113の形成を行うことにより、図2A及び図2Bに示す表示装置100Aを作製することができる。
[構成例1の変形例]
なお、EL膜112Rfを形成する前に、画素電極111R、画素電極111G、及び画素電極111Bを形成してもよい。
まず、図5Aに示すように、画素電極111R、画素電極111G、及び画素電極111Bを形成する。その後、図3A乃至図3Fにおいて述べたように、レジストマスク等を用いて、各発光素子110に対応するEL層112、犠牲層145及び保護層147を形成する(図5B)。その後、絶縁層131を形成し(図5C)、犠牲層145及び保護層147を除去し(図5D)、共通電極113及び保護層121を形成し、図5Eに示す表示装置100を得る。
図5Eに示すそれぞれの発光素子110において、画素電極111の端部は、EL層112の端部よりも外側に位置する。また、画素電極111の上面において、端部及びその近傍は、絶縁層131に覆われる。
[構成例3]
なお、絶縁層131の上面がEL層112の上面より高くなるように絶縁層131を設けてもよい。
図6Aに示す構成は、絶縁層131の上面がEL層112の上面より高くなるように絶縁層131が設けられる点において、図4Cに示す構成と異なる。
図6Aに示す構成において、保護層147および犠牲層145を除去し、図6Bに示す構成を得る。図6Bにおいて、絶縁層131の上面がEL層112の上面より高くなるように絶縁層131が設けられており、絶縁層131の側面の一部が露出する。なお、保護層147および犠牲層145の除去により、絶縁層131の一部がエッチングされ、絶縁層131の形状が変化する場合がある。例えば、絶縁層131の厚さが薄くなる場合がある。また例えば、絶縁層131の上面と側面が形成する角が丸くなる場合がある。また例えば、絶縁層131の上面が凸状、凹状等の形状に変化する場合がある。絶縁層131の上面と側面が形成する角が丸くなることにより、共通電極113、あるいは共通層114の被覆性が向上する場合がある。
図6Bに示す工程において、共通電極113及び保護層121を形成し、図6Cに示す表示装置100を得る。また、図6Bに示す工程において、共通層114、共通電極113及び保護層121を形成し、図6Dに示す表示装置100Aを得る。
絶縁層131の上面をEL層112の上面より高くすることにより、EL層112の側面を絶縁層131により覆うことができる。よって、保護層147の除去におけるEL層112のダメージを低減することができる。
[構成例4]
また、絶縁層131の上面がEL層112の上面より低くなるように絶縁層131を設けることにより、図7Aに示す表示装置100、及び図7Bに示す表示装置100Aを得る。
絶縁層131の上面がEL層112の上面より低くなるように絶縁層131を設けることにより、共通電極113、あるいは共通層114のEL層112の上面への被覆性が向上する場合がある。
[構成例5]
絶縁層131の上面は凹部を有する場合がある。
図8Aは、絶縁膜131fのエッチバックを行った後の構成を示す。図8Aに示すように、エッチバックにより形成された絶縁層131の上面の形状は凹部を有する場合がある。絶縁層131の上面の形状は例えば、なだらかな窪みを有する。
図8Aの構成において、共通電極113及び保護層121を形成し、図8Bに示す表示装置100を得る。あるいは、図8Aの構成において、共通層114、共通電極113及び保護層121を形成し、図8Cに示す表示装置100Aを得る。
[構成例6]
また、絶縁層131の上面の形状は凸部を有する場合がある。図9A及び図9Bに示す絶縁層131の上面の形状は、上に向かって凸のなだらかな曲面を有する。
図9Aに示す表示装置100において、EL層112と、複数のEL層の間に設けられ、上面の形状が凸部を有する絶縁層131と、の上に共通電極113が設けられている。図9Bに示す表示装置100において、EL層112と、複数のEL層の間に設けられ、上面の形状が凸部を有する絶縁層131と、の上に共通層114が設けられている。
<絶縁層131及び絶縁層130を有する構成>
以下に、本発明の一態様の表示装置の構成例について、図11A及び図11B、図12A及び図12B、図20A及び図20B、などを用いて説明する。
[構成例1−2]
以下には、表示装置100において、隣接する発光素子の間に設ける絶縁層として上述の絶縁層131に加えて絶縁層130を有する構成について、説明する。
図11Aに示す表示装置100は、絶縁層130を有する点で、図1B等と異なる。図11Aは、図1A中の一点鎖線A1−A2に対応する断面概略図であり、図11Bは、一点鎖線B1−B2に対応する断面概略図である。
図11Aには、発光素子110R、発光素子110G、及び発光素子110Bの断面を示している。発光素子110Rは、画素電極111R、EL層112R、及び共通電極113を有する。発光素子110Gは、画素電極111G、EL層112G、及び共通電極113を有する。発光素子110Bは、画素電極111B、EL層112B、及び共通電極113を有する。
発光素子110Rは、画素電極111Rと共通電極113との間に、EL層112Rを有する。発光素子110Gは、画素電極111Gと共通電極113との間に、EL層112Gを有する。発光素子110Bは、画素電極111Bと共通電極113との間に、EL層112Bを有する。
積層された画素電極111及びEL層112と、隣接する、積層された画素電極111及びEL層112と、の間隙を埋めるように、絶縁層130及び絶縁層131が設けられている。絶縁層130は、発光素子110が有するそれぞれの画素電極111の側面と、EL層112の側面とに接するように設けられる。また、断面視において、絶縁層130の凹部を充填するように絶縁層130上に接して絶縁層131が設けられている。
図1Aでは、絶縁層130及び絶縁層131は上面視において網目状(格子状、又はマトリクス状ということもできる)の形状を有するように、隣接画素間の画素電極111及び/又はEL層112間に配置されている。
図11Bに示すように、異なる色の発光素子間に絶縁層130及び絶縁層131を設けることにより、EL層112R、EL層112G、及びEL層112Bが、互いに接することを抑制することができる。これにより、隣接する2つのEL層を介して電流が流れ、意図しない発光が生じることを好適に防ぐことができる。そのため、コントラストを高めることができ、表示品位の高い表示装置を実現できる。
なお、隣接する同色を呈する画素間において絶縁層130及び絶縁層131を設けずに、異なる色を呈する画素間においてのみ絶縁層130及び絶縁層131を形成してもよい。この場合、上面視においてストライプ形状を有する絶縁層130及び絶縁層131とすることができる。絶縁層130及び絶縁層131をストライプ形状とすることで、格子状の形状を有する場合と比較して絶縁層130及び絶縁層131を形成するために必要なスペースが不要となるため、開口率を高めることができる。絶縁層130及び絶縁層131をストライプ形状とする場合、隣接する同色のEL層は列方向に地続きになるように帯状に加工されていてもよい。
共通電極113は、EL層112の上面、絶縁層130の上面、絶縁層131の上面に接して設けられる。隣接する発光素子間において、画素電極111及びEL層112の端部では、画素電極111およびEL層112が設けられる領域と、画素電極111およびEL層112が設けられない領域と、に起因する段差が生じている。本発明の一態様の表示装置は、絶縁層130及び絶縁層131を有することで当該段差を平坦化させ、共通電極113が隣接する発光素子の間で基板101と接して設けられる場合と比較して共通電極の被覆性を向上させることができるため、段切れによる接続不良を抑制することができる。又は、段差によって共通電極113が局所的に薄膜化して電気抵抗が上昇することを抑制することができる。
また、画素電極111の端部がEL層112の端部と概略揃う場合、EL層112上に共通電極113を形成する際に、共通電極113と画素電極111とが短絡する場合がある。本発明の一態様は、隣接して配置されるEL層112の間に絶縁層130及び絶縁層131を設けることにより、共通電極113の形成面の凹凸を小さくすることができるため、EL層112の端部における共通電極113の被覆性を高めることができ、共通電極113の良好な導電性を実現することができる。また、共通電極113と画素電極111の短絡を抑制することができる。
共通電極113の形成面の平坦性を向上させるためには、絶縁層130の上面、絶縁層131の上面は、EL層112の上面と概略一致することが好ましい。また、絶縁層131の上面は平坦な形状を有することが好ましい。ただし、絶縁層130の上面、絶縁層131の上面及びEL層112の上面は必ずしも一致していなくてもよい。
絶縁層130は、EL層112の側面と接する領域を有し、EL層112の保護絶縁層として機能する。絶縁層130を設けることで、EL層112の側面から内部へ酸素、水分、またはこれらの構成元素が侵入することを抑制でき、信頼性の高い表示装置とすることができる。
断面視においてEL層112の側面と接する領域における絶縁層130の幅が大きいと、EL層112の間隔が大きくなり、開口率が低くなってしまう場合がある。また、絶縁層130の幅が小さいと、EL層112の側面から内部へ酸素、水分、またはこれらの構成元素が侵入することを抑制する効果が小さくなってしまう場合がある。EL層112の側面と接する領域における絶縁層130の幅は、3nm以上200nm以下が好ましく、さらには3nm以上150nm以下が好ましく、さらには5nm以上150nm以下が好ましく、さらには5nm以上100nm以下が好ましく、さらには10nm以上100nm以下が好ましく、さらには10nm以上50nm以下が好ましい。絶縁層130の幅を前述の範囲とすることで、高い開口率を有し、かつ信頼性の高い表示装置とすることができる。
絶縁層130は、無機材料を有する絶縁層とすることができる。例えば絶縁層130として、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、酸化シリコン、酸化窒化シリコン、窒化シリコン、または窒化酸化シリコンなどを単層で、又は積層して用いることができる。
なお、本明細書中において、酸化窒化物とは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
絶縁層130の形成は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法などを用いることができる。絶縁層130の形成は、被覆性が良好なALD法を好適に用いることができる。
絶縁層130上に設けられる絶縁層131は、隣接する発光素子間に形成された絶縁層130の凹部を平坦化する機能を有する。換言すると、絶縁層131を有することで共通電極113の形成面の平坦性を向上させる効果を奏する。絶縁層131としては、有機材料を有する絶縁層を好適に用いることができる。例えば、絶縁層131として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。
絶縁層131の上面とEL層112の上面の高さの差は例えば、絶縁層131の厚さの0.5倍以下が好ましく、絶縁層131の厚さの0.3倍以下がより好ましい。また例えば、EL層112の上面が絶縁層131の上面よりも高くなるように、絶縁層131を設ければよい。また例えば、絶縁層131の上面が、EL層112が有する発光層の上面よりも高くなるように、絶縁層131を設ければよい。また、絶縁層131の厚さは例えば、画素電極111の下面から、EL層112の上面までの厚さの0.3倍以上、あるいは0.5倍以上、あるいは0.7倍以上であることが好ましい。
また、共通電極113上には、発光素子110R、発光素子110G、及び発光素子110Bを覆って、保護層121が設けられている。
[構成例2−2]
図12Aおよび図12Bに示す表示装置100Aは、共通層114を有する点で、図11Aおよび図11Bに示す表示装置100と主に相違している。図12Aは、図1A中の一点鎖線A1−A2に対応する断面概略図であり、図12Bは、一点鎖線B1−B2に対応する断面概略図である。
また、図12Aおよび図12Bに示す表示装置100Aは、絶縁層130を有する点で、図2Aおよび図2B等と異なる。
共通層114は、共通電極113と同様、複数の発光素子にわたって設けられる。共通層114は、EL層112R、EL層112G、及びEL層112Bを覆って設けられている。共通層114を有する構成とすることで、作製工程を簡略化できるため、作製コストを低減できる。共通層114と共通電極113は、間にエッチングなどの工程を挟まずに連続して形成することができる。よって、共通層114と共通電極の界面を清浄な面とすることができ、発光素子において、良好な特性を得ることができる。
共通層114は、EL層112R、EL層112G、及びEL層112Bの上面の一以上と接することが好ましい。
[構成例3−2]
図20Aに示す表示装置100Bは、図10Aに示す表示装置100Bと比較して、絶縁層130を有する点などが主に異なる。また、図20Bに示す表示装置100Cは、図10Bに示す表示装置100Cと比較して、絶縁層130を有する点などが主に異なる。
図20Aに示す表示装置100Bにおいて、発光素子110Rは、画素電極111RとEL層112Rとの間に、光学調整層115Rを有する。また発光素子110Gは、画素電極111GとEL層112Gとの間に、光学調整層115Gを有する。また発光素子110Bは、画素電極111BとEL層112Bとの間に、光学調整層115Bを有する。
図20Bに示す表示装置100Cは、EL層112と共通電極113の間に共通層114を有し、当該共通層114によって発光素子の構成が異なる点で、図20Aに示す表示装置100Bと主に相違している。
図20A及び図20Bに示すように、光学調整層115を有し、且つ発光素子間の間隙を絶縁層130及び絶縁層131によって埋める構成とすることで、色純度が高く且つ高信頼性化された表示装置とすることができる。
以上示した本実施の形態の表示装置は、メタルマスクを用いたEL層の成膜を行わないため、表示装置の大型化、高解像度化、または、高精細化を実現することができる。
また、本実施の形態の表示装置は、隣接して配置されるEL層間、又は画素電極及びEL層間の間隙を、積層構造を有する絶縁層によって充填する構成を有するため、共通電極の形成表面の平坦性を向上させることができるため、共通電極の段切れ、又は局所的な薄膜領域の形成を抑制することができる。これによって、表示装置の信頼性を向上させることができる。
特に、積層構造を有する絶縁層の一として、有機材料を有する絶縁層とを適用することで、共通電極又は共通層の形成表面を効果的に平坦化させることができる。また、積層構造を有する絶縁層の一として、無機材料を有する絶縁層をEL層の側面に接する態様で設けることで、EL層への不純物混入を防止して、表示装置を高信頼性化させることができる。
上記説明の本発明の一態様の表示装置の構成及び作製方法を用いることで、微細、高輝度、高信頼性の有機EL素子が搭載された表示装置とすることができる。
[作製方法例2]
以下では、図11A及び図11Bに示した表示装置100を例に挙げて説明する。図13A乃至図14Fは、以下で例示する表示装置の作製方法の、各工程における断面概略図である。
〔基板101の準備〕
まず、基板101を準備する。基板101について、先の作製方法1における記載を参照することができる。
続いて、基板101上に画素電極111となる導電膜111fを成膜する。
〔EL膜112Rfの形成〕
続いて、導電膜111f上に、後にEL層112RとなるEL膜112Rfを成膜する。EL膜112Rfについて、先の作製方法1における記載を参照することができる。
〔犠牲膜144aの形成〕
続いて、EL膜112Rfを覆って犠牲膜144aを形成する。犠牲膜144aについて、先の作製方法1における記載を参照することができる。
〔保護膜146aの形成〕
続いて、犠牲膜144a上に、保護膜146aを形成する。保護膜146aについて、先の作製方法1における記載を参照することができる。
〔レジストマスク143aの形成〕
続いて、保護膜146a上にレジストマスク143aを形成する(図13A)。レジストマスク143aについて、先の作製方法1における記載を参照することができる。
〔保護膜146aのエッチング〕
続いて、保護膜146aの、レジストマスク143aに覆われない一部をエッチングにより除去し、島状または帯状の保護層147aを形成する。
保護膜146aのエッチングの際、犠牲膜144aが当該エッチングにより除去されないように、選択比の高いエッチング条件を用いることが好ましい。保護膜146aのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチングを用いることで、保護膜146aのパターンが縮小することを抑制できる。
〔レジストマスク143aの除去〕
続いて、レジストマスク143aを除去する。
レジストマスク143aの除去は、ウェットエッチングまたはドライエッチングにより行うことができる。特に、酸素ガスをエッチングガスに用いたドライエッチング(プラズマアッシングともいう)により、レジストマスク143aを除去することが好ましい。
このとき、レジストマスク143aの除去は、EL膜112Rfは、犠牲膜144aに覆われた状態で行われるため、EL膜112Rfへの影響が抑制されている。特に、EL膜112Rfが酸素に触れると、電気特性に悪影響を及ぼす場合があるため、プラズマアッシングなどの、酸素ガスを用いたエッチングを行う場合には好適である。
〔犠牲膜144aのエッチング〕
続いて、保護層147aをマスクとして用いて、犠牲膜144aの保護層147aに覆われない一部をエッチングにより除去し、島状または帯状の犠牲層145aを形成する。
犠牲膜144aのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチング法を用いると、パターンの縮小を抑制できるため好ましい。
〔EL膜112Rfのエッチング〕
続いて、犠牲層145aに覆われないEL膜112Rfの一部をエッチングにより除去し、島状または帯状のEL層112Rを形成する(図13B)。
EL膜112Rfのエッチングには、酸素を主成分に含まないエッチングガスを用いたドライエッチングを用いることが好ましい。これにより、EL膜112Rfの変質を抑制し、信頼性の高い表示装置を実現できる。酸素を主成分に含まないエッチングガスとしては、例えばCF、C、SF、CHF、Cl、HO、BCl、またはHeなどの貴ガスが挙げられる。また、上記ガスと、酸素を含まない希釈ガスとの混合ガスをエッチングガスに用いることができる。ここで、EL膜112Rfのエッチングにおいて、保護層147aを除去してもよい。
〔EL層112G、EL層112Bの形成〕
続いて、犠牲層145a、及び露出した導電膜111f上にEL層112GとなるEL膜112Gfを成膜する。EL膜112Gfについては、EL膜112Rfの記載を参照することができる。
続いて、EL膜112Gf上に犠牲膜144bを成膜し、犠牲膜144b上に保護膜146bを成膜する。犠牲膜144bについては、犠牲膜144aの記載を参照することができる。保護膜146bについては、保護膜146aの記載を参照することができる。
続いて、保護膜146b上にレジストマスク143bを形成する(図13C)。
続いて、レジストマスク143bを用いて保護膜146bをエッチングして保護層147bを形成する。その後、レジストマスク143bを除去する。
続いて、保護層147bをマスクとして、犠牲膜144b及びEL膜112Gfをそれぞれエッチングして犠牲層145b及びEL層112Gを形成する(図13D)。
続いて、犠牲層145a、犠牲層145b、及び露出した導電膜111f上にEL層112BとなるEL膜112Bfを成膜する。EL膜112Bfについては、EL膜112Rfの記載を参照することができる。
続いて、EL膜112Bf上に犠牲膜144cを成膜し、犠牲膜144c上に保護膜146cを成膜する。犠牲膜144cについては、犠牲膜144aの記載を参照することができる。保護膜146cについては、保護膜146aの記載を参照することができる。
続いて、保護膜146c上にレジストマスク143cを形成する(図13E)。
続いて、レジストマスク143cを用いて保護膜146cをエッチングして保護層147cを形成する。その後、レジストマスク143cを除去する。
続いて、保護層147cをマスクとして、犠牲膜144c及びEL膜112Bfをそれぞれエッチングして犠牲層145c及びEL層112Bを形成する(図13F)。
〔画素電極111R、画素電極111G、及び画素電極111Bの形成〕
続いて、導電膜111fにおいて、EL層112R、EL層112G、EL層112B、犠牲層145a、犠牲層145b、犠牲層145c、保護層147a、保護層147b、及び保護層147cに覆われない一部をエッチングし、画素電極111R、画素電極111G、及び画素電極111Bを形成する(図14A)。
導電膜111fのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができる。ここで、導電膜111fのエッチングの条件として、酸素を主成分に含まないエッチングガスを用いたドライエッチングを用いることにより、EL層112へのダメージを低減することができる。
〔絶縁層130の形成〕
続いて、絶縁層130となる絶縁膜130fを形成する(図14B)。絶縁膜130fは無機材料を有する膜を適用することが好ましい。例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、酸化シリコン、酸化窒化シリコン、窒化シリコン、または窒化酸化シリコンなどを有する膜を単層で又は積層して用いることができる。
絶縁膜130fの形成は、スパッタリング法、化学気相成長(CVD)法、分子線エピタキシー(MBE)法、パルスレーザ堆積(PLD)法、原子層堆積(ALD)法などを用いることができる。絶縁膜130fの形成は、被覆性が良好なALD法を好適に用いることができる。
〔絶縁層131の形成〕
続いて、絶縁層131となる絶縁膜131fを形成する(図14C)。絶縁膜131fは、保護層147、犠牲層145、EL層112、画素電極111を覆うように設けられる。絶縁膜131fは、平坦化膜であることが好ましい。
絶縁膜131fとして、有機材料を有する絶縁膜を適用することが好ましく、有機材料としては樹脂を用いることが好ましい。
絶縁膜131fに用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
続いて、絶縁膜130f及び絶縁膜131fのエッチングを行い、保護層147の上面を露出させる(図14D)。これにより、EL層112R、EL層112G、及びEL層112Bの側面を覆う、絶縁層130及び絶縁層131が形成される。絶縁膜130f及び絶縁膜131fのエッチングは、絶縁膜130f及び絶縁膜131fの上面に対し略均一に施される。なお、このように均一にエッチングして平坦化することをエッチバックともいう。
絶縁膜130f及び絶縁膜131fのエッチングは、ドライエッチング法、ウェットエッチング法を用いることができる。また、酸素プラズマを用いたアッシング、等によりエッチングを行ってもよい。なお、酸素プラズマを用いたアッシングは、制御性が高い、面内均一性がよく大判基板を用いた処理に適している等の利点を有するため、絶縁膜130f及び絶縁膜131fの一部の除去に好適に用いることができる。また絶縁膜130f及び、絶縁膜131fのエッチングとして、化学機械研磨(CMP:Chemical Mechanical Poliching)を用いてもよい。
なお、絶縁膜130f及び絶縁膜131fのエッチングを行う際には、エッチングによるEL層112へのダメージを抑制することが好ましい。よって例えば、EL層112の側面の露出が少なくなるようにエッチングすることが好ましい。また、EL層112上に犠牲層145及び/又は保護層147を設けた状態で、絶縁膜130f及び絶縁膜131fのエッチングを行うことにより、エッチングによるEL層112の上面へのダメージを抑制することができる。
絶縁層130及び絶縁層131の形成の際、エッチング量により、絶縁層130の上面の高さ及び/又は、絶縁層131の上面の高さを調整することができる。ここでは絶縁層130がEL層112の側面を覆うように、エッチング量を調整することが好ましい。特に、絶縁層130が、EL層112が有する発光層の側面を覆うように、エッチング量を調整することが好ましい。
本実施の形態では、図14Dに示すように、絶縁層130の上面及び絶縁層131の上面が、EL層112の上面と概略揃うようにエッチングを行う。また、保護層147の上面と側面、及び犠牲層145の側面が露出するように絶縁層130及び絶縁層131が形成される例を示す。絶縁層130の上面及び絶縁層131の上面とEL層の上面が概略揃うことにより、後述する図14Fに示す共通電極113の形成において、共通電極113を設ける面の凹凸を小さくすることができ、被覆性を高めることができる。
なお、有機材料を有する絶縁膜131fは、被形成面の凹凸、及び被形成面に形成されるパターンの疎密により、表面の平坦性が変化する場合がある。また、絶縁膜131fとして用いる材料の粘度等により、絶縁膜131fの平坦性が変化する場合がある。例えば、EL層112上に重なる領域の絶縁膜131fの膜厚と比較して、EL層112と重ならない領域の絶縁膜131fの膜厚が小さくなる場合がある。このような場合には例えば、絶縁膜131fのエッチバックを行うことにより、絶縁層131の上面の高さは、保護層147の上面の高さ、あるいは犠牲層145の上面の高さよりも低くなる場合がある。
また、絶縁膜131fは複数のEL層112の間の領域において凹曲面を有する形状(くぼんだ形状)、凸曲面を有する形状(膨らんだ形状)、等になる場合がある。
〔保護層及び犠牲層の除去〕
続いて、保護層147a、保護層147b、保護層147c、犠牲層145a、犠牲層145b、及び犠牲層145cを除去し、EL層112R、EL層112G、及びEL層112Bの上面を露出させる(図14E)。
図14Eにおいては、絶縁層130の上面の高さをEL層112の上面の高さと概略揃うように絶縁層130を設ける例を示す。図14Eにおいては、EL層112の上面が露出し、EL層112の側面は、絶縁層130により覆われている。EL層112の側面が絶縁層130に覆われることにより、EL層の水分による劣化を防ぐとともに、保護層147のエッチングにおけるEL層へのダメージを低減することができる。
なお、絶縁層130及び/又は絶縁層131の上面の形状又は高さは、保護層及び犠牲層の除去工程によって変化する場合がある。
保護層147a、保護層147b、及び保護層147cは、ウェットエッチングまたはドライエッチングにより除去することができる。
犠牲層145a、犠牲層145b、及び犠牲層145cは、ウェットエッチングまたはドライエッチングにより除去することができる。このとき、EL層112R、EL層112G、及びEL層112Bにできるだけダメージを与えない方法を用いることが好ましい。特に、ウェットエッチング法を用いることが好ましい。例えば、水酸化テトラメチルアンモニウム(TMAH)水溶液、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いたウェットエッチングを用いることが好ましい。これらのウェットエッチングの条件を用いることにより例えば、絶縁層へのダメージを低減することができる。
なお、図14C乃至図14Eでは、絶縁膜130f及び絶縁膜131fをエッチバックした後に、保護層及び犠牲層を除去する場合を例に示したが、本発明の実施の形態はこれに限られない。例えば、リフトオフ法などによって犠牲層145及び保護層147と、保護層147に重なる領域の絶縁膜130f及び絶縁膜131fを除去して、絶縁層130及び絶縁層131を形成してもよい。
このようにして、EL層112R、EL層112G、及びEL層112Bを作り分けることができる。
異なる色の発光素子間で、EL層を作り分ける場合、メタルマスクなどのシャドーマスクを用いた蒸着法により形成することが知られている。しかしながら、この方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の有機膜の形状及び位置に設計からのずれが生じるため、高精細化、及び高開口率化が困難である。また、蒸着においてメタルマスクに付着した材料に起因するゴミが発生する場合がある。このようなゴミは、発光素子のパターン不良を引き起こす懸念がある。また、ゴミに起因したショートが生じる可能性がある。また、メタルマスクに付着した材料のクリーニングの工程を要する。そのため、ペンタイル配列などの特殊な画素配列方式を適用することなどにより、疑似的に精細度(画素密度ともいう)を高める対策が取られていた。
本発明の一態様は、EL層をメタルマスクなどのシャドーマスクを用いることなく、微細なパターンに加工する。これにより、これまで実現が困難であった高い精細度と、大きな開口率を有する表示装置を実現できる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を実現できる。
なお、本実施の形態では、画素内に配置される発光素子として、異なる3色のEL層のいずれか一を有する発光素子を適用する場合を例に示したが、本発明の実施の形態はこれに限られず、異なる2色を呈する発光素子によって画素を構成してもよいし、3色以上の発光素子によって画素を構成してもよい。
〔共通電極113の形成〕
続いて、EL層112R、EL層112G、及びEL層112Bを覆って、共通電極113を形成する。共通電極113は、例えばスパッタリング法または真空蒸着法などにより形成することができる。
以上の工程により、発光素子110R、発光素子110G、及び発光素子110Bを作製することができる。
〔保護層121の形成〕
続いて、共通電極113上に、保護層121を形成する(図14F)。保護層121に用いる無機絶縁膜の成膜には、スパッタリング法、PECVD法、またはALD法を用いることが好ましい。特にALD法は、段差被覆性に優れ、ピンホールなどの欠陥が生じにくいため、好ましい。また、有機絶縁膜の成膜には、インクジェット法を用いると、所望のエリアに均一な膜を形成できるため好ましい。
以上の工程により、図11A及び図11Bに示す表示装置100を作製することができる。
上記作製方法を用いることで、EL層112R、EL層112G、及びEL層112Bへのプロセスダメージを軽減することができるため、極めて信頼性の高い表示装置を実現できる。
〔共通層114の形成〕
なお、共通電極113の形成の前に、EL層112R、EL層112G、及びEL層112Bを覆って共通層114の形成を行った後、共通電極113の形成を行うことにより、図12A及び図12Bに示す表示装置100Aを作製することができる。
本実施の形態に示す表示装置の作製方法は、レジストマスクを用いて犠牲層を形成し、形成された犠牲層を用いてEL層および画素電極の加工を行うことができるため、画素電極の加工とEL層の加工において、異なるレジストマスクを用いずに発光素子を形成することができる。よって、画素電極とEL層の端部の位置のマージンを設けずとも発光素子を形成することができる。位置のマージンを小さくすることにより、発光領域を広くすることができるため、発光素子の開口率を高めることができる。また、位置のマージンを小さくすることにより、画素サイズの縮小が可能となり、表示装置の高精細化が可能となる。また、レジストマスクを用いる回数を減らすことができるため、工程を簡略化することができ、コストの低減および歩留まりの向上が可能となる。
異なる色のEL層が隣接する場合、隣接するEL層の間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法によれば、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで間隔を狭めることもできる。これにより、2つの発光素子間に存在しうる非発光領域の面積を大幅に縮小することができ、開口率を100%に近づけることが可能となる。例えば、開口率は、50%以上、60%以上、70%以上、80%以上、さらには90%以上であって、100%未満を実現することもできる。
さらに、EL層自体のパターンについても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、パターンの中央と端で厚さのばらつきが生じるため、パターン全体の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工することでパターンを形成するため、パターン内で厚さを均一にでき、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、上記作製方法によれば、高い精細度と高い開口率を兼ね備えることができる。
このように、上記作製方法によれば、微細な発光素子を集積した表示装置を実現することができるため、例えばペンタイル方式などの特殊な画素配列方式を適用し、疑似的に精細度を高める必要が無いため、R、G、Bをそれぞれ一方向に配列させた、いわゆるストライプ配置で、且つ、500ppi以上、1000ppi以上、または2000ppi以上、さらには3000ppi以上、さらには5000ppi以上の精細度の表示装置を実現することができる。
[構成例7]
上記図13A乃至図14Fに示す作製方法では、EL層112を形成後に、EL層112に覆われない領域の導電膜111fをエッチングすることでEL層112の端部と略一致した端部を有する画素電極111を形成する方法を示したが、本発明の実施の形態はこれに限られない。図15A乃至図15Fを用いて、EL膜112Rfを形成する前に、画素電極111R、画素電極111G、及び画素電極111Bを形成する場合の構成例2及びその作製方法を説明する。
まず、図15Aに示すように、画素電極111R、画素電極111G、及び画素電極111Bを形成する。その後、図13A乃至図13Fにおいて述べたように、レジストマスク等を用いて、各発光素子110に対応するEL層112、犠牲層145及び保護層147を形成する(図15B)。その後、絶縁膜130f及び絶縁膜131fを形成する(図15C)。
次いで、図15Dに示すように絶縁膜130f及び絶縁膜131fをエッチバックした後、犠牲層145及び保護層147を除去し(図15E)、図15Fに示す表示装置100を得る。
図15Fに示すそれぞれの発光素子110において、画素電極111の端部は、EL層112の端部よりも外側に位置する。また、画素電極111の上面において、端部及びその近傍は、絶縁層131に覆われる。
図15A乃至図15Fに示す構成例では、画素電極111R、画素電極111G、及び画素電極111Bをあらかじめパターン形成しておくことで、EL層112を形成後に導電膜をパターン形成する場合と比較してEL層112へのダメージを低減できる場合がある。一方、構成例1のように、EL層112の端部と画素電極111の端部を一致した構成とすることで、隣接する発光素子間の幅を低減させることができるため、開口率を向上させることができる。また、画素電極111の形成のためのマスクを削減することができるため、表示装置の作製の歩留まりを向上させ、コストを低減させることができる。
[構成例8]
図16Aに、本実施の形態の表示装置100の他の構成例を示す。図16Aでは、絶縁層131の上面がEL層112の上面よりも基板101に近い(EL層112の上面よりも低い、ということもできる)領域を有する態様を示す。
図16Aでは、エッチバックにより形成された絶縁層131の上面が凹曲面形状を有しており、断面視において端部が絶縁層130及び/又はEL層112の上面と一致している場合を例に示すが、本発明の実施の形態はこれに限られない。絶縁層131の上面は略平坦な形状を有し、該上面がEL層112の上面よりも基板101側に位置する構成としてもよい。又は、絶縁層131の端部が絶縁層130の側面に接していてもよい。
絶縁層131の上面をEL層112の上面よりも基板101側に位置するように絶縁層131を設けることにより、共通電極113のEL層112の上面への被覆性が向上する場合がある。
[構成例9]
図16Bに、本実施の形態の表示装置100の他の構成例を示す。図16Bでは、絶縁層131の上面がEL層112の上面よりも突出した領域を有する態様を示す。
なお、図16Bでは、絶縁層131は凸曲面形状を有しており、断面視において端部が絶縁層130及び/又はEL層112の上面と一致している場合を例に示すが、本発明の実施の形態はこれに限られない。絶縁層131の上面は略平坦な形状を有し、該上面がEL層112の上面よりも突出した構成としてもよい。
絶縁層131の上面をEL層112の上面よりも基板101側に位置するように絶縁層131を設けることにより、共通電極113は、絶縁層131の側面の一部と接する領域を有する。なお、作製工程において保護層147および犠牲層145の除去により、絶縁層131の一部がエッチングされ、絶縁層131の形状が変化する場合がある。例えば、絶縁層131の厚さが薄くなる場合がある。また例えば、絶縁層131の上面と側面が形成する角が丸くなる場合がある。絶縁層131の上面と側面が形成する角が丸くなることにより、共通電極113の被覆性が向上する場合がある。
構成例4に示すように、絶縁層131の上面をEL層112の上面より突出させることにより、EL層112の側面を絶縁層131によっても保護することができ、保護層147の除去におけるEL層112のダメージを低減することができる。
[構成例10]
図17Aに、本実施の形態の表示装置100の他の構成例を示す。図17Aでは、絶縁層130の上面がEL層112の上面よりも基板101に近い(EL層112の上面よりも低い、ということもできる)領域を有する態様を示す。
絶縁層131は、少なくともEL層112に含まれる発光層の側面と接することが好ましい。絶縁層131が発光層の側面を覆うことで、発光層の側面から内部へ酸素、水分、またはこれらの構成元素が侵入することを抑制でき、信頼性の高い表示装置とすることができる。
[構成例11]
図17Bに、本実施の形態の表示装置100の他の構成例を示す。図17Bでは、絶縁層130の上面がEL層112の上面よりも基板101に近い領域を有し、且つ絶縁層131の上面が絶縁層130の上面よりも基板101に近い領域を有する態様を示す。
なお、図17Bでは、エッチバックにより形成された絶縁層131の上面が凹曲面形状を有する場合を例に示すが、本発明の実施の形態はこれに限られない。絶縁層131の上面は略平坦な形状を有し、該上面が絶縁層130の上面よりも基板101側に位置する構成としてもよい。
絶縁層130及び絶縁層131の上面をEL層112の上面よりも段階的に基板101側に位置する態様とすることにより、共通電極113のEL層112の上面への被覆性が向上する場合がある。
[構成例12]
図17Cに、本実施の形態の表示装置100の他の構成例を示す。図17Cでは、絶縁層130の上面がEL層112の上面よりも基板101に近い領域を有し、且つ絶縁層131の上面が絶縁層130の上面よりも突出した領域を有する態様を示す。該突出した領域において絶縁層131の側面は共通電極113と接している。
なお、図17Cでは、絶縁層131の上面は凸曲面形状を有する場合を例に示すが、本発明の実施の形態はこれに限られない。絶縁層131の上面は略平坦な形状を有し、該上面が絶縁層130の上面よりも突出した構成としてもよい。
絶縁層131の上面を絶縁層130の上面より突出させることにより、絶縁層130に覆われない領域のEL層112の側面を絶縁層131によって保護することができ、保護層147の除去におけるEL層112のダメージを低減することができる。
[構成例13]
図18Aに、本実施の形態の表示装置100の他の構成例を示す。図18Aでは、断面視において絶縁層130の上面及び絶縁層131の上面がEL層112の上面より突出した領域を有する態様を示す。該突出した領域において絶縁層130の側面は共通電極113と接している。
図18Aに示すように、絶縁層130の上面をEL層112の上面よりも突出させることで、絶縁層130によるEL層112の側面の保護をより確実に行うことができるため、表示装置の信頼性を向上させることができる。また、絶縁層131の上面を絶縁層130の上面と同様にEL層112の上面よりも突出させることで、共通電極113の形成面の平坦性を向上させることができるため、共通電極113の被覆性を向上させることができる。
[構成例14]
図18Bに、本実施の形態の表示装置100の他の構成例を示す。図18Bに示す構成例は、絶縁層131の上面が、絶縁層130の上面よりも基板101に近い領域を有する点において、先に説明した構成例13と異なり、その他の点では一致している。
なお、図18Bでは、エッチバックにより形成された絶縁層131の上面が凹曲面形状を有してする場合を例に示すが、本発明の実施の形態はこれに限られない。絶縁層131の上面は略平坦な形状を有し、該上面が絶縁層130の上面よりも基板101側に位置する構成としてもよい。
[構成例15]
図18Cに、本実施の形態の表示装置100の他の構成例を示す。図18Cに示す構成例は、絶縁層131の上面が絶縁層130の上面よりも突出した領域を有する点において、先に説明した構成例13と異なり、その他の点では一致している。なお、絶縁層131において絶縁層130の上面よりも上面が突出した領域においては、絶縁層131の側面は共通電極113と接している。
なお、図18Cでは、絶縁層131は凸曲面形状を有する場合を例に示すが、本発明の実施の形態はこれに限られない。絶縁層131の上面は略平坦な形状を有し、該上面が絶縁層130の上面よりも突出した構成としてもよい。
絶縁層130及び絶縁層131の上面をEL層112の上面よりも基板101から離れる方向に段階的に突出させることで、共通電極113のEL層112の上面への被覆性が向上する場合がある。
[構成例16]
図19A乃至図19Dに本実施の形態の他の構成例及びその作製方法を示す。図19では、画素電極111の形成時に基板101の一部がエッチングされ、溝部が形成される場合を例に示す。
まず、図19Aに示すように、画素電極111R、画素電極111G、及び画素電極111Bを形成する。画素電極111のエッチング条件によっては、画素電極111に覆われない領域の基板101の一部がエッチングされ溝部160が形成される場合がある。なお、基板101としてトランジスタなどの半導体素子を含む半導体回路が形成された基板を用いる場合には、溝部160は、少なくとも後に絶縁層130と接する最上層の絶縁層又は導電層に形成される。
その後、EL層112、犠牲層145及び保護層147を覆う絶縁膜130fと、絶縁膜130f上の絶縁膜131fを形成する(図19B)。
次いで、図19Cに示すように絶縁膜130f及び絶縁膜131fをエッチバックした後、犠牲層145及び保護層147を除去し、共通電極113及び保護層121を形成して図19Dに示す表示装置100を得る。
図19A乃至図19Dに示す構成例では、画素電極111R、画素電極111G、及び画素電極111Bの絶縁分離の信頼性を向上させるとともに、溝部160に起因する凹凸を絶縁層131によって平坦化することで被覆性良く共通電極113を形成することができる。一方、構成例1乃至10のように、溝部160を有しない構成とすることで、画素電極111形成工程におけるタクトタイムを短縮することができるため、表示装置の作製の歩留まりを向上させることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置の構成例について説明する。
本実施の形態の表示装置は、高解像度な表示装置または大型な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、スマートフォン、腕時計型端末、タブレット端末、携帯情報端末、音響再生装置の表示部に用いることができる。
[表示装置400A]
図21に、表示装置400Aの斜視図を示し、図22に、表示装置400Aの断面図を示す。
表示装置400Aは、基板452と基板451とが貼り合わされた構成を有する。図21では、基板452を破線で明示している。
表示装置400Aは、表示部462、回路464、配線465等を有する。図21では表示装置400AにIC473及びFPC472が実装されている例を示している。そのため、図21に示す構成は、表示装置400A、IC(集積回路)、及びFPCを有する表示モジュールということもできる。
回路464としては、例えば走査線駆動回路を用いることができる。
配線465は、表示部462及び回路464に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC472を介して外部から、またはIC473から配線465に入力される。
図21では、COG(Chip On Glass)方式またはCOF(Chip on Film)方式等により、基板451にIC473が設けられている例を示す。IC473は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置400A及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
図22に、表示装置400Aの、FPC472を含む領域の一部、回路464の一部、表示部462の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図22に示す表示装置400Aは、基板451と基板452の間に、トランジスタ201、トランジスタ205、赤色の光を発する発光素子430a、緑色の光を発する発光素子430b、及び、青色の光を発する発光素子430c等を有する。
発光素子430a、発光素子430b、及び発光素子430cには、実施の形態1で例示した発光素子を適用することができる。
ここで、表示装置の画素が、互いに異なる色を発する発光素子を有する副画素を3種類有する場合、当該3つの副画素としては、R、G、Bの3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。当該副画素を4つ有する場合、当該4つの副画素としては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素などが挙げられる。
保護層416と基板452は接着層442を介して接着されている。発光素子の封止には、固体封止構造または中空封止構造などが適用できる。図22では、基板452、接着層442、及び基板451に囲まれた空間443が、不活性ガス(窒素またはアルゴンなど)で充填されており、中空封止構造が適用されている。接着層442は、発光素子と重ねて設けられていてもよい。また、基板452、接着層442、及び基板451に囲まれた空間443を、接着層442とは異なる樹脂で充填してもよい。
画素電極411a、画素電極411b、画素電極411cは、それぞれ、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。画素電極は可視光を反射する材料を含み、対向電極は可視光を透過する材料を含む。
発光素子430aと発光素子430bの間、及び発光素子430bと発光素子430cの間には絶縁層421が設けられている。絶縁層421として例えば、先の実施の形態に示す絶縁層131を適用することができる。
発光素子が発する光は、基板452側に射出される。基板452には、可視光に対する透過性が高い材料を用いることが好ましい。
トランジスタ201及びトランジスタ205は、いずれも基板451上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
基板451上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
トランジスタを覆う絶縁層の少なくとも一層に、水及び水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置400Aの端部近傍に開口を有することが好ましい。これにより、表示装置400Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置400Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置400Aの端部に有機絶縁膜が露出しないようにしてもよい。
平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
図22に示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部462に不純物が入り込むことを抑制できる。従って、表示装置400Aの信頼性を高めることができる。
なお、図23に示すように、絶縁層214に設けられた開口部に画素電極411a、411b、及び411cを形成した後、開口部を覆うように形成された凹部を埋め込むように層414を設けてもよい。層414を設けることにより、光学調整層415a、光学調整層415b、光学調整層415c、EL層416a、EL層416b、及びEL層416cの被形成面の凹凸を低減し、被覆性を向上することができる。
層414は絶縁層であることが好ましい。あるいは、層414は導電層であってもよい。
トランジスタ201及びトランジスタ205は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
回路464が有するトランジスタと、表示部462が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路464が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部462が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
基板451の、基板452が重ならない領域には、接続部204が設けられている。接続部204では、配線465が導電層466及び接続層242を介してFPC472と電気的に接続されている。導電層466は、画素電極と同一の導電膜を加工して得られた導電膜と、光学調整層と同一の導電膜を加工して得られた導電膜と、の積層構造である例を示す。接続部204の上面では、導電層466が露出している。これにより、接続部204とFPC472とを接続層242を介して電気的に接続することができる。
基板452の基板451側の面には、遮光層417を設けることが好ましい。また、基板452の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板452の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
発光素子を覆う保護層416を設けることで、発光素子に水などの不純物が入り込むことを抑制し、発光素子の信頼性を高めることができる。
表示装置400Aの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層416とが互いに接することが好ましい。特に、絶縁層215が有する無機絶縁膜と保護層416が有する無機絶縁膜とが互いに接することが好ましい。これにより、有機絶縁膜を介して外部から表示部462に不純物が入り込むことを抑制することができる。従って、表示装置400Aの信頼性を高めることができる。
基板451及び基板452には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光素子からの光を取り出す側の基板には、該光を透過する材料を用いる。基板451及び基板452に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板451または基板452として偏光板を用いてもよい。
基板451及び基板452としては、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板451及び基板452の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料、または、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、または、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層、及び、発光素子が有する導電層(画素電極または共通電極として機能する導電層)にも用いることができる。
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
[表示装置400A−2]
図24に、表示装置400A−2の、FPC472を含む領域の一部、回路464の一部、表示部462の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。表示装置400A−2の斜視図は表示装置400A(図21)と同様である。なお、表示装置400Aと同様の部分については説明を省略することがある。
なお、図24に示す表示装置400A−2は、発光素子430aと発光素子430bの間、及び発光素子430bと発光素子430cの間に設けられる絶縁層として、絶縁層421に替えて、絶縁層421a及び絶縁層421bを有する点が図22と異なる。
図24に示す表示装置400A−2は、基板451と基板452の間に、トランジスタ201、トランジスタ205、赤色の光を発する発光素子430a、緑色の光を発する発光素子430b、及び、青色の光を発する発光素子430c等を有する。
発光素子430a、発光素子430b、及び発光素子430cには、実施の形態1で例示した発光素子を適用することができる。
保護層416と基板452は接着層442を介して接着されている。
画素電極411a、411b、411cは、それぞれ、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。画素電極は可視光を反射する材料を含み、対向電極は可視光を透過する材料を含む。
発光素子430aと発光素子430bの間、及び発光素子430bと発光素子430cの間には絶縁層421a及び絶縁層421bが設けられている。絶縁層421a及び絶縁層421bとして例えば、先の実施の形態の図11A、図12A、等に示す絶縁層130と、絶縁層130の凹部を充填するように設けられる絶縁層131と、をそれぞれ適用することができる。
発光素子が発する光は、基板452側に射出される。
トランジスタ201及びトランジスタ205は、いずれも基板451上に形成されている。
基板451上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。
図24に示す領域228では、絶縁層214に開口が形成されている。
なお、図25に示すように、絶縁層214に設けられた開口部に画素電極411a、411b、及び411cを形成した後、開口部を覆うように形成された凹部を埋め込むように層414を設けてもよい。層414を設けることにより、光学調整層415a、415b、415c、EL層416a、416b、及び416cの被形成面の凹凸を低減し、被覆性を向上することができる。なお、図25において、表示装置400Aと同様の部分については説明を省略することがある。
[表示装置400B]
図26Aに、表示装置400Bの断面図を示す。表示装置400Bの斜視図は表示装置400A(図21)と同様である。図26Aには、表示装置400Bの、FPC472を含む領域の一部、回路464の一部、及び、表示部462の一部をそれぞれ切断したときの断面の一例を示す。図26Aでは、表示部462のうち、特に、緑色の光を発する発光素子430bと青色の光を発する発光素子430cを含む領域を切断したときの断面の一例を示す。なお、表示装置400Aと同様の部分については説明を省略することがある。
図26Aに示す表示装置400Bは、基板453と基板454の間に、トランジスタ202、トランジスタ210、発光素子430b、及び発光素子430c等を有する。
基板454と保護層416とは接着層442を介して接着されている。接着層442は、発光素子430b及び発光素子430cそれぞれと重ねて設けられており、表示装置400Bには、固体封止構造が適用されている。
基板453と絶縁層212とは接着層455によって貼り合わされている。
表示装置400Bの作製方法としては、まず、絶縁層212、各トランジスタ、各発光素子等が設けられた作製基板と、遮光層417が設けられた基板454と、を接着層442によって貼り合わせる。そして、作製基板を剥離し露出した面に基板453を貼ることで、作製基板上に形成した各構成要素を、基板453に転置する。基板453及び基板454は、それぞれ、可撓性を有することが好ましい。これにより、表示装置400Bの可撓性を高めることができる。
絶縁層212には、それぞれ、絶縁層211、絶縁層213、及び絶縁層215に用いることができる無機絶縁膜を用いることができる。
画素電極は、絶縁層214に設けられた開口を介して、トランジスタ210が有する導電層222bと接続されている。導電層222bは、絶縁層215及び絶縁層225に設けられた開口を介して、低抵抗領域231nと接続される。トランジスタ210は、発光素子の駆動を制御する機能を有する。
発光素子430bと発光素子430cの間には、絶縁層421が設けられている。
発光素子430b、430cが発する光は、基板454側に射出される。基板454には、可視光に対する透過性が高い材料を用いることが好ましい。
基板453の、基板454が重ならない領域には、接続部204が設けられている。接続部204では、配線465が導電層466及び接続層242を介してFPC472と電気的に接続されている。導電層466は、画素電極と同一の導電膜を加工して得ることができる。これにより、接続部204とFPC472とを接続層242を介して電気的に接続することができる。
トランジスタ202及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、導電層223とチャネル形成領域231iとの間に位置する。
導電層222a及び導電層222bは、それぞれ、絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
図26Aでは、絶縁層225が半導体層の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。
一方、図26Bに示すトランジスタ209では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、図26Bに示す構造を作製できる。図26Bでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。さらに、トランジスタを覆う絶縁層218を設けてもよい。
トランジスタ210及びトランジスタ202に替えて、図26Bに示すトランジスタ209を用いてもよい。
[表示装置400B−2]
図27に、表示装置400B−2の断面図を示す。表示装置400B−2の斜視図は表示装置400A(図21)と同様である。図27には、表示装置400B−2の、FPC472を含む領域の一部、回路464の一部、及び、表示部462の一部をそれぞれ切断したときの断面の一例を示す。図27では、表示部462のうち、特に、緑色の光を発する発光素子430bと青色の光を発する発光素子430cを含む領域を切断したときの断面の一例を示す。
なお、図27に示す表示装置400B−2は、発光素子430bと発光素子430cの間に設けられる絶縁層として、絶縁層421に替えて、絶縁層421a及び絶縁層421bを有する点が図22と異なる。なお、表示装置400Bと同様の部分については説明を省略することがある。
図27に示す表示装置400B−2は、基板453と基板454の間に、トランジスタ202、トランジスタ210、発光素子430b、及び発光素子430c等を有する。
基板454と保護層416とは接着層442を介して接着されている。接着層442は、発光素子430b及び発光素子430cそれぞれと重ねて設けられており、表示装置400Bには、固体封止構造が適用されている。
基板453と絶縁層212とは接着層455によって貼り合わされている。
表示装置400B−2の作製方法としては、まず、絶縁層212、各トランジスタ、各発光素子等が設けられた作製基板と、遮光層417が設けられた基板454と、を接着層442によって貼り合わせる。そして、作製基板を剥離し露出した面に基板453を貼ることで、作製基板上に形成した各構成要素を、基板453に転置する。基板453及び基板454は、それぞれ、可撓性を有することが好ましい。これにより、表示装置400Bの可撓性を高めることができる。
画素電極は、絶縁層214に設けられた開口を介して、トランジスタ210が有する導電層222bと接続されている。導電層222bは、絶縁層215及び絶縁層225に設けられた開口を介して、低抵抗領域231nと接続される。トランジスタ210は、発光素子の駆動を制御する機能を有する。
発光素子430bと発光素子430cの間には、絶縁層421a及び絶縁層421bが設けられている。
発光素子430b、430cが発する光は、基板454側に射出される。基板454には、可視光に対する透過性が高い材料を用いることが好ましい。
基板453の、基板454が重ならない領域には、接続部204が設けられている。接続部204では、配線465が導電層466及び接続層242を介してFPC472と電気的に接続されている。
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、上記とは異なる表示装置の構成例について説明する。
本実施の形態の表示装置は、高精細な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、腕時計型、ブレスレット型などの情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器など、頭部に装着可能なウェアラブル機器の表示部に用いることができる。
[表示モジュール]
図28Aに、表示モジュール280の斜視図を示す。表示モジュール280は、表示装置400Cと、FPC290と、を有する。なお、表示モジュール280が有する表示装置は表示装置400Cに限られず、後述する表示装置400Dまたは表示装置400Eであってもよい。
表示モジュール280は、基板291及び基板292を有する。表示モジュール280は、表示部281を有する。表示部281は、表示モジュール280における画像を表示する領域であり、後述する画素部284に設けられる各画素からの光を視認できる領域である。
図28Bに、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部282と、回路部282上の画素回路部283と、画素回路部283上の画素部284と、が積層されている。また、基板291上の画素部284と重ならない部分に、FPC290と接続するための端子部285が設けられている。端子部285と回路部282とは、複数の配線により構成される配線部286により電気的に接続されている。
画素部284は、周期的に配列した複数の画素284aを有する。図28Bの右側に、1つの画素284aの拡大図を示している。画素284aは、発光色が互いに異なる発光素子430a、430b、430cを有する。複数の発光素子は、図28Bに示すようにストライプ配列で配置することが好ましい。ストライプ配列を用いることにより、本発明の一態様の発光素子を高密度に画素回路を配列することが出来るため、高精細な表示装置を提供できる。また、デルタ配列、ペンタイル配列など様々な配列方法を適用することができる。
画素回路部283は、周期的に配列した複数の画素回路283aを有する。
1つの画素回路283aは、1つの画素284aが有する3つの発光素子の発光を制御する回路である。1つの画素回路283aは、1つの発光素子の発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路283aは、1つの発光素子につき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースまたはドレインの一方にはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。
回路部282は、画素回路部283の各画素回路283aを駆動する回路を有する。例えば、ゲート線駆動回路、及び、ソース線駆動回路の一方または双方を有することが好ましい。このほか、演算回路、メモリ回路、及び電源回路等の少なくとも一つを有していてもよい。
FPC290は、外部から回路部282にビデオ信号または電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。
表示モジュール280は、画素部284の下側に画素回路部283及び回路部282の一方または双方が積層された構成とすることができるため、表示部281の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部281の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素284aを極めて高密度に配置することが可能で、表示部281の精細度を極めて高くすることができる。例えば、表示部281には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素284aが配置されることが好ましい。
このような表示モジュール280は、極めて高精細であることから、ヘッドマウントディスプレイなどのVR向け機器、またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール280の表示部を視認する構成の場合であっても、表示モジュール280は極めて高精細な表示部281を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール280はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計などの装着型の電子機器の表示部に好適に用いることができる。
[表示装置400C]
図29に示す表示装置400Cは、基板301、発光素子430a、430b、430c、容量240、及び、トランジスタ310を有する。
基板301は、図28A及び図28Bにおける基板291に相当する。基板301から絶縁層255までの積層構造が、実施の形態1における基板に相当する。
トランジスタ310は、基板301にチャネル形成領域を有するトランジスタである。基板301としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ310は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、及び、絶縁層314を有する。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層314は、導電層311の側面を覆って設けられ、絶縁層として機能する。
また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられている。
また、トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に容量240が設けられている。
容量240は、導電層241と、導電層245と、これらの間に位置する絶縁層243を有する。導電層241は容量240の一方の電極として機能し、導電層245は容量240の他方の電極として機能し、絶縁層243は容量240の誘電体として機能する。
導電層241は絶縁層261上に設けられ、絶縁層254に埋め込まれている。導電層241は、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられている。
容量240を覆って、絶縁層255が設けられ、絶縁層255上に発光素子430a、430b、430c等が設けられている。発光素子430a、430b、430c上には保護層416が設けられており、保護層416の上面には、樹脂層419によって基板420が貼り合わされている。基板420は、図28Aにおける基板292に相当する。
発光素子の画素電極は、絶縁層255に埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、及び、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。
発光素子430a、発光素子430b、発光素子430c、及び発光素子の間の絶縁層として、実施の形態1に示す構成を適用することができる。ここでは、図1Bに示す構成を適用する例を示すが、適用できる構成はこれに限らない。
[表示装置400C−2]
図30に示す表示装置400C−2は、発光素子の間の絶縁層として、実施の形態1において述べた、絶縁層130を有する構成を適用した点などが、図29に示す表示装置400Cと異なる。図30には、発光素子430a、発光素子430b、発光素子430c、及び発光素子の間の絶縁層として、図10Aに示す構成を適用する例を示す。
図30に示す表示装置400C−2は、基板301、発光素子430a、430b、430c、容量240、及び、トランジスタ310を有する。
また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられている。
また、トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に容量240が設けられている。
容量240は、導電層241と、導電層245と、これらの間に位置する絶縁層243を有する。導電層241は容量240の一方の電極として機能し、導電層245は容量240の他方の電極として機能し、絶縁層243は容量240の誘電体として機能する。
導電層241は絶縁層261上に設けられ、絶縁層254に埋め込まれている。導電層241は、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられている。
容量240を覆って、絶縁層255が設けられ、絶縁層255上に発光素子430a、430b、430c等が設けられている。発光素子430a、430b、430c上には保護層416が設けられており、保護層416の上面には、樹脂層419によって基板420が貼り合わされている。基板420は、図28Aにおける基板292に相当する。
発光素子の画素電極は、絶縁層255に埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、及び、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。
[表示装置400D]
図31に示す表示装置400Dは、トランジスタの構成が異なる点で、表示装置400Cと主に相違する。なお、表示装置400Cと同様の部分については説明を省略することがある。
トランジスタ320は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタである。
トランジスタ320は、半導体層321、絶縁層323、導電層324、一対の導電層325、絶縁層326、及び、導電層327を有する。
基板331は、図28A及び図28Bにおける基板291に相当する。基板331から絶縁層255までの積層構造が、実施の形態2におけるトランジスタを含む層401に相当する。基板331としては、絶縁性基板または半導体基板を用いることができる。
基板331上に、絶縁層332が設けられている。絶縁層332は、基板331から水または水素などの不純物がトランジスタ320に拡散すること、及び半導体層321から絶縁層332側に酸素が脱離することを防ぐバリア層として機能する。絶縁層332としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
絶縁層332上に導電層327が設けられ、導電層327を覆って絶縁層326が設けられている。導電層327は、トランジスタ320の第1のゲート電極として機能し、絶縁層326の一部は、第1のゲート絶縁層として機能する。絶縁層326の少なくとも半導体層321と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層326の上面は、平坦化されていることが好ましい。
半導体層321は、絶縁層326上に設けられる。半導体層321は、半導体特性を有する金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。半導体層321に好適に用いることのできる材料の詳細については後述する。
一対の導電層325は、半導体層321上に接して設けられ、ソース電極及びドレイン電極として機能する。
また、一対の導電層325の上面及び側面、並びに半導体層321の側面等を覆って絶縁層328が設けられ、絶縁層328上に絶縁層264が設けられている。絶縁層328は、半導体層321に絶縁層264等から水または水素などの不純物が拡散すること、及び半導体層321から酸素が脱離することを防ぐバリア層として機能する。絶縁層328としては、上記絶縁層332と同様の絶縁膜を用いることができる。
絶縁層328及び絶縁層264に、半導体層321に達する開口が設けられている。当該開口の内部において、絶縁層264、絶縁層328、及び導電層325の側面、並びに半導体層321の上面に接する絶縁層323と、導電層324とが埋め込まれている。導電層324は、第2のゲート電極として機能し、絶縁層323は第2のゲート絶縁層として機能する。
導電層324の上面、絶縁層323の上面、及び絶縁層264の上面は、それぞれ高さが概略一致するように平坦化処理され、これらを覆って絶縁層329及び絶縁層265が設けられている。
絶縁層264及び絶縁層265は、層間絶縁層として機能する。絶縁層329は、トランジスタ320に絶縁層265等から水または水素などの不純物が拡散することを防ぐバリア層として機能する。絶縁層329としては、上記絶縁層328及び絶縁層332と同様の絶縁膜を用いることができる。
一対の導電層325の一方と電気的に接続するプラグ274は、絶縁層265、絶縁層329、及び絶縁層264に埋め込まれるように設けられている。ここで、プラグ274は、絶縁層265、絶縁層329、絶縁層264、及び絶縁層328のそれぞれの開口の側面、及び導電層325の上面の一部を覆う導電層274aと、導電層274aの上面に接する導電層274bとを有することが好ましい。このとき、導電層274aとして、水素及び酸素が拡散しにくい導電材料を用いることが好ましい。
表示装置400Dにおける、絶縁層254から基板420までの構成は、表示装置400Cと同様である。
[表示装置400D−2]
図32に示す表示装置400D−2は、トランジスタの構成が異なる点で、表示装置400C−2と主に相違する。また、実施の形態1において述べた、絶縁層130を有する構成を適用した点が、図28に示す表示装置400Dと異なる。なお、表示装置400C、表示装置400C−2、400Dと同様の部分については説明を省略することがある。
トランジスタ320は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタである。
トランジスタ320は、半導体層321、絶縁層323、導電層324、一対の導電層325、絶縁層326、及び、導電層327を有する。
基板331上に、絶縁層332が設けられている。
絶縁層332上に導電層327が設けられ、導電層327を覆って絶縁層326が設けられている。導電層327は、トランジスタ320の第1のゲート電極として機能し、絶縁層326の一部は、第1のゲート絶縁層として機能する。絶縁層326の少なくとも半導体層321と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層326の上面は、平坦化されていることが好ましい。
半導体層321は、絶縁層326上に設けられる。半導体層321は、半導体特性を有する金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。
一対の導電層325は、半導体層321上に接して設けられ、ソース電極及びドレイン電極として機能する。
また、一対の導電層325の上面及び側面、並びに半導体層321の側面等を覆って絶縁層328が設けられ、絶縁層328上に絶縁層264が設けられている。
絶縁層328及び絶縁層264に、半導体層321に達する開口が設けられている。当該開口の内部において、絶縁層264、絶縁層328、及び導電層325の側面、並びに半導体層321の上面に接する絶縁層323と、導電層324とが埋め込まれている。導電層324は、第2のゲート電極として機能し、絶縁層323は第2のゲート絶縁層として機能する。
導電層324の上面、絶縁層323の上面、及び絶縁層264の上面は、それぞれ高さが概略一致するように平坦化処理され、これらを覆って絶縁層329及び絶縁層265が設けられている。
一対の導電層325の一方と電気的に接続するプラグ274は、絶縁層265、絶縁層329、及び絶縁層264に埋め込まれるように設けられている。
表示装置400D−2における、絶縁層254から基板420までの構成は、表示装置400C−2と同様である。
[表示装置400E]
図33に示す表示装置400Eは、基板301にチャネルが形成されるトランジスタ310と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320とが積層された構成を有する。なお、表示装置400C、400Dと同様の部分については説明を省略することがある。
トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に導電層251が設けられている。また導電層251を覆って絶縁層262が設けられ、絶縁層262上に導電層252が設けられている。導電層251及び導電層252は、それぞれ配線として機能する。また、導電層252を覆って絶縁層263及び絶縁層332が設けられ、絶縁層332上にトランジスタ320が設けられている。また、トランジスタ320を覆って絶縁層265が設けられ、絶縁層265上に容量240が設けられている。容量240とトランジスタ320とは、プラグ274により電気的に接続されている。
トランジスタ320は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ310は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ310及びトランジスタ320は、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。
このような構成とすることで、発光素子の直下に画素回路だけでなく駆動回路等を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示装置を小型化することが可能となる。
[表示装置400E−2]
図34に示す表示装置400E−2は、基板301にチャネルが形成されるトランジスタ310と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320とが積層された構成を有する。図34に示す表示装置400E−2は、実施の形態1において述べた、絶縁層130を有する構成を適用した点が、図33に示す表示装置400Eと異なる。なお、表示装置400C、400D、400C−2、400D−2、400Eと同様の部分については説明を省略することがある。
トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に導電層251が設けられている。また導電層251を覆って絶縁層262が設けられ、絶縁層262上に導電層252が設けられている。導電層251及び導電層252は、それぞれ配線として機能する。また、導電層252を覆って絶縁層263及び絶縁層332が設けられ、絶縁層332上にトランジスタ320が設けられている。また、トランジスタ320を覆って絶縁層265が設けられ、絶縁層265上に容量240が設けられている。容量240とトランジスタ320とは、プラグ274により電気的に接続されている。
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様である表示装置に用いることができる発光素子(発光デバイスともいう)について説明する。
<発光素子の構成例>
図35Aに示すように、発光素子は、一対の電極(下部電極672、上部電極688)の間に、EL層686を有する。EL層686は、層4420、発光層4411、層4430などの複数の層で構成することができる。層4420は、例えば電子注入性の高い物質を含む層(電子注入層)および電子輸送性の高い物質を含む層(電子輸送層)などを有することができる。発光層4411は、例えば発光性の化合物を有する。層4430は、例えば正孔注入性の高い物質を含む層(正孔注入層)および正孔輸送性の高い物質を含む層(正孔輸送層)を有することができる。
一対の電極間に設けられた層4420、発光層4411および層4430を有する構成は単一の発光ユニットとして機能することができ、本明細書では図35Aの構成をシングル構造と呼ぶ。
また、図35Bは、図35Aに示す発光素子が有するEL層686の変形例である。具体的には、図35Bに示す発光素子は、下部電極672上の層4430−1と、層4430−1上の層4430−2と、層4430−2上の発光層4411と、発光層4411上の層4420−1と、層4420−1上の層4420−2と、層4420−2上の上部電極688と、を有する。例えば、下部電極672を陽極とし、上部電極688を陰極とした場合、層4430−1が正孔注入層として機能し、層4430−2が正孔輸送層として機能し、層4420−1が電子輸送層として機能し、層4420−2が電子注入層として機能する。または、下部電極672を陰極とし、上部電極688を陽極とした場合、層4430−1が電子注入層として機能し、層4430−2が電子輸送層として機能し、層4420−1が正孔輸送層として機能し、層4420−2が正孔注入層として機能する。このような層構造とすることで、発光層4411に効率よくキャリアを注入し、発光層4411内におけるキャリアの再結合の効率を高めることが可能となる。
なお、図35Cに示すように層4420と層4430との間に複数の発光層(発光層4411、発光層4412、発光層4413)が設けられる構成もシングル構造のバリエーションである。
また、図35Dに示すように、複数の発光ユニット(EL層686a、EL層686b)が中間層(電荷発生層)4440を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。なお、本明細書等においては、図35Dに示すような構成をタンデム構造として呼称するが、これに限定されず、例えば、タンデム構造をスタック構造と呼んでもよい。なお、タンデム構造とすることで、高輝度発光が可能な発光素子とすることができる。
なお、図35C、及び図35Dにおいても、図35Bに示すように、層4420と、層4430とは、2層以上の層からなる積層構造としてもよい。
また、上述のシングル構造、及びタンデム構造と、後述するSBS構造と、を比較した場合、SBS構造、タンデム構造、及びシングル構造の順で消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造を用いると好適である。一方で、シングル構造、及びタンデム構造は、製造プロセスがSBS構造よりも簡単であるため、製造コストを低くすることができる、または製造歩留まりを高くすることができるため、好適である。
発光素子の発光色は、EL層686を構成する材料によって、赤、緑、青、シアン、マゼンタ、黄または白などとすることができる。また、発光素子にマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。
白色の光を発する発光素子は、発光層に2種類以上の発光物質を含む構成とすることが好ましい。白色発光を得るには、2以上の発光物質の各々の発光が補色の関係となるような発光物質を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光素子全体として白色発光する発光素子を得ることができる。また、発光層を3つ以上有する発光素子の場合も同様である。
発光層には、赤(R)、緑(G)、青(B)、黄(Y)、橙(O)等の発光を示す発光物質を2以上含むことが好ましい。また、紫、青紫、黄緑、近赤外、等の発光を示す発光物質を含んでもよい。または、発光物質が2以上有し、それぞれの発光物質の発光は、赤、緑、青のうち2以上の色のスペクトル成分を含むことが好ましい。
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
また、金属酸化物は、スパッタリング法、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの化学気相成長(CVD:Chemical Vapor Deposition)法、及び原子層堆積(ALD:Atomic Layer Deposition)法などにより形成することができる。
<結晶構造の分類>
酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(poly crystal)等が挙げられる。
なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。
例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜または基板は非晶質状態であるとは言えない。
また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、または金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入及び欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OSあるいは非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
従って、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンまたは炭素の濃度と、酸化物半導体との界面近傍のシリコンまたは炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
本実施の形態では、本発明の一態様の電子機器について図36A乃至図39Fを用いて説明する。
本実施の形態の電子機器は、本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化、高解像度化、大型化のそれぞれが容易である。したがって、本発明の一態様の表示装置は、様々な電子機器の表示部に用いることができる。
また、本発明の一態様の表示装置は、低いコストで作製できるため、電子機器の製造コストを低減することができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば腕時計型、ブレスレット型などの情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。また、ウェアラブル機器としては、SR向け機器、及び、MR向け機器も挙げられる。
本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K2K(画素数3840×2160)、8K4K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K2K、8K4K、又はそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度または高い精細度を有する表示装置を用いることで、携帯型または家庭用途などのパーソナルユースの電子機器において、臨場感及び奥行き感などをより高めることが可能となる。
本実施の形態の電子機器は、家屋もしくはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。
本実施の形態の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像及び情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図36Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
表示部6502に、本発明の一態様の表示装置を適用することができる。
図36Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
表示パネル6511には本発明の一態様のフレキシブルディスプレイ(可撓性を有する表示装置)を適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
図37Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図37Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図37Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図37C及び図37Dに、デジタルサイネージの一例を示す。
図37Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図37Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図37C及び図37Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図37C及び図37Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
図38Aは、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。なお、カメラ8000は、レンズ8006と筐体とが一体となっていてもよい。
カメラ8000は、シャッターボタン8004を押す、またはタッチパネルとして機能する表示部8002をタッチすることにより撮像することができる。
筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
筐体8101は、カメラ8000のマウントと係合するマウントにより、カメラ8000に取り付けられている。ファインダー8100はカメラ8000から受信した映像等を表示部8102に表示させることができる。
ボタン8103は、電源ボタン等としての機能を有する。
カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。なお、ファインダーが内蔵されたカメラ8000であってもよい。
図38Bは、ヘッドマウントディスプレイ8200の外観を示す図である。
ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリ8206が内蔵されている。
ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した映像情報を表示部8204に表示させることができる。また、本体8203はカメラを備え、使用者の眼球またはまぶたの動きの情報を入力手段として用いることができる。
また、装着部8201には、使用者に触れる位置に、使用者の眼球の動きに伴って流れる電流を検知可能な複数の電極が設けられ、視線を認識する機能を有していてもよい。また、当該電極に流れる電流により、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能、使用者の頭部の動きに合わせて表示部8204に表示する映像を変化させる機能などを有していてもよい。
表示部8204に、本発明の一態様の表示装置を適用することができる。
図38C乃至図38Eは、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると、使用者が高い臨場感を感じることができるため好ましい。また、表示部8302の異なる領域に表示された別の画像を、レンズ8305を通して視認することで、視差を用いた3次元表示等を行うこともできる。なお、表示部8302を1つ設ける構成に限られず、表示部8302を2つ設け、使用者の片方の目につき1つの表示部を配置してもよい。
表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、極めて高い精細度を実現することも可能である。例えば、図38Eのようにレンズ8305を用いて表示を拡大して視認される場合でも、使用者に画素が視認されにくい。つまり、表示部8302を用いて、使用者に現実感の高い映像を視認させることができる。
図38Fは、ゴーグル型のヘッドマウントディスプレイ8400の外観を示す図である。ヘッドマウントディスプレイ8400は、一対の筐体8401と、装着部8402と、緩衝部材8403と、を有する。一対の筐体8401内には、それぞれ、表示部8404及びレンズ8405が設けられる。一対の表示部8404に互いに異なる画像を表示させることで、視差を用いた3次元表示を行うことができる。
使用者は、レンズ8405を通して表示部8404を視認することができる。レンズ8405はピント調整機構を有し、使用者の視力に応じて位置を調整することができる。表示部8404は、正方形または横長の長方形であることが好ましい。これにより、臨場感を高めることができる。
装着部8402は、使用者の顔のサイズに応じて調整でき、かつ、ずれ落ちることのないよう、可塑性及び弾性を有することが好ましい。また、装着部8402の一部は、骨伝導イヤフォンとして機能する振動機構を有していることが好ましい。これにより、別途イヤフォン、スピーカなどの音響機器を必要とせず、装着しただけで映像と音声を楽しむことができる。なお、筐体8401内に、無線通信により音声データを出力する機能を有していてもよい。
装着部8402と緩衝部材8403は、使用者の顔(額、頬など)に接触する部分である。緩衝部材8403が使用者の顔と密着することにより、光漏れを防ぐことができ、より没入感を高めることができる。緩衝部材8403は、使用者がヘッドマウントディスプレイ8400を装着した際に使用者の顔に密着するよう、柔らかな素材を用いることが好ましい。例えばゴム、シリコーンゴム、ウレタン、スポンジなどの素材を用いることができる。また、スポンジ等の表面を布、革(天然皮革または合成皮革)、などで覆ったものを用いると、使用者の顔と緩衝部材8403との間に隙間が生じにくく光漏れを好適に防ぐことができる。また、このような素材を用いると、肌触りが良いことに加え、寒い季節などに装着した際に、使用者に冷たさを感じさせないため好ましい。緩衝部材8403または装着部8402などの、使用者の肌に触れる部材は、取り外し可能な構成とすると、クリーニングまたは交換が容易となるため好ましい。
図39A乃至図39Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
図39A乃至図39Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
表示部9001に、本発明の一態様の表示装置を適用することができる。
図39A乃至図39Fに示す電子機器の詳細について、以下説明を行う。
図39Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図39Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メール、SNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
図39Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図39Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200を、例えば無線通信可能なヘッドセットと相互通信させることによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
図39D乃至図39Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図39Dは携帯情報端末9201を展開した状態、図39Fは折り畳んだ状態、図39Eは図39Dと図39Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
100:表示装置、100A:表示装置、100B:表示装置、100C:表示装置、101:基板、110:発光素子、110B:発光素子、110G:発光素子、110R:発光素子、111:画素電極、111B:画素電極、111f:導電膜、111G:画素電極、111R:画素電極、112:EL層、112B:EL層、112Bf:EL膜、112G:EL層、112Gf:EL膜、112R:EL層、112Rf:EL膜、113:共通電極、114:共通層、115:光学調整層、115B:光学調整層、115G:光学調整層、115R:光学調整層、121:保護層、130:絶縁層、130f:絶縁膜、131:絶縁層、131f:絶縁膜、143a:レジストマスク、143b:レジストマスク、143c:レジストマスク、144a:犠牲膜、144b:犠牲膜、144c:犠牲膜、145:犠牲層、145a:犠牲層、145b:犠牲層、145c:犠牲層、146a:保護膜、146b:保護膜、146c:保護膜、147:保護層、147a:保護層、147b:保護層、147c:保護層、201:トランジスタ、202:トランジスタ、204:接続部、205:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、212:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、228:領域、231:半導体層、231i:チャネル形成領域、231n:低抵抗領域、240:容量、241:導電層、242:接続層、243:絶縁層、245:導電層、251:導電層、252:導電層、254:絶縁層、255:絶縁層、256:プラグ、261:絶縁層、262:絶縁層、263:絶縁層、264:絶縁層、265:絶縁層、271:プラグ、274:プラグ、274a:導電層、274b:導電層、280:表示モジュール、281:表示部、282:回路部、283:画素回路部、283a:画素回路、284:画素部、284a:画素、285:端子部、286:配線部、290:FPC、291:基板、292:基板、301:基板、310:トランジスタ、311:導電層、312:低抵抗領域、313:絶縁層、314:絶縁層、315:素子分離層、320:トランジスタ、321:半導体層、323:絶縁層、324:導電層、325:導電層、326:絶縁層、327:導電層、328:絶縁層、329:絶縁層、331:基板、332:絶縁層、400A:表示装置、400A−2:表示装置、400B:表示装置、400B−2:表示装置、400C:表示装置、400C−2:表示装置、400D:表示装置、400D−2:表示装置、400E:表示装置、400E−2:表示装置、401:層、411a:画素電極、411b:画素電極、411c:画素電極、414:層、415a:光学調整層、415b:光学調整層、415c:光学調整層、416:保護層、416a:EL層、416b:EL層、416c:EL層、417:遮光層、419:樹脂層、420:基板、421:絶縁層、421a:絶縁層、421b:絶縁層、430a:発光素子、430b:発光素子、430c:発光素子、442:接着層、443:空間、451:基板、452:基板、453:基板、454:基板、455:接着層、462:表示部、464:回路、465:配線、466:導電層、472:FPC、473:IC、672:電極、686:EL層、686a:EL層、686b:EL層、688:電極、4411:発光層、4412:発光層、4413:発光層、4420:層、4420−1:層、4420−2:層、4430:層、4430−1:層、4430−2:層、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、8000:カメラ、8001:筐体、8002:表示部、8003:操作ボタン、8004:シャッターボタン、8006:レンズ、8100:ファインダー、8101:筐体、8102:表示部、8103:ボタン、8200:ヘッドマウントディスプレイ、8201:装着部、8202:レンズ、8203:本体、8204:表示部、8205:ケーブル、8206:バッテリ、8300:ヘッドマウントディスプレイ、8301:筐体、8302:表示部、8304:固定具、8305:レンズ、8400:ヘッドマウントディスプレイ、8401:筐体、8402:装着部、8403:緩衝部材、8404:表示部、8405:レンズ、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (19)

  1.  絶縁層と、
     第1の下部電極と、
     前記第1の下部電極上の第1のEL層と、
     第2の下部電極と、
     前記第2の下部電極上の第2のEL層と、
     前記第1のEL層上、前記第2のEL層上、及び前記絶縁層上の上部電極と、
     を有し、
     前記第1のEL層は、第1の発光層を有し、
     前記第2のEL層は、第2の発光層を有し、
     前記第1のEL層と、前記第2のEL層と、は隣接し、
     前記絶縁層は、樹脂または前記樹脂の前駆体を有し、
     前記絶縁層は、前記第1のEL層が有する第1の端面と、前記第2のEL層が有する第2の端面と、に挟まれる領域を有する表示装置。
  2.  請求項1において、
     前記樹脂は、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、及びフェノール樹脂から選ばれる一以上を有し、
     前記樹脂の前駆体は、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、及びフェノール樹脂から選ばれる一以上を有する樹脂の前駆体である表示装置。
  3.  請求項1または請求項2において、
     前記絶縁層は、前記第1の端面及び前記第2の端面と接する表示装置。
  4.  請求項1乃至請求項3のいずれか一において、
     前記第1のEL層の上面と、前記第2のEL層の上面と、前記絶縁層の上面と、が揃う表示装置。
  5.  請求項1乃至請求項3のいずれか一において、
     前記絶縁層の上面は、前記第1のEL層の上面及び前記第2のEL層の上面よりも高さが低い領域を有する表示装置。
  6.  請求項5において、
     前記絶縁層の上面は、凹部を有する表示装置。
  7.  請求項1乃至請求項3のいずれか一において、
     前記絶縁層の上面は、凸部を有する表示装置。
  8.  請求項1乃至請求項7のいずれか一において、
     電子注入層または正孔注入層を含む共通層を有し、
     前記共通層は、前記第1のEL層の上面、前記第2のEL層の上面及び前記絶縁層の上面と接する表示装置。
  9.  請求項1乃至請求項7のいずれか一において、
     電子注入層を含む共通層を有し、
     前記第1のEL層は、前記第1の発光層と、前記共通層と、に挟まれる第1の電子輸送層を有し、
     前記第2のEL層は、前記第2の発光層と、前記共通層と、に挟まれる第2の電子輸送層を有し、
     前記共通層は、前記第1のEL層の上面、前記第2のEL層の上面及び前記絶縁層の上面と接する表示装置。
  10.  請求項1乃至請求項7のいずれか一において、
     電子注入層及び電子輸送層を含む共通層を有し、
     前記共通層は、前記第1のEL層の上面、前記第2のEL層の上面及び前記絶縁層の上面と接する表示装置。
  11.  請求項1乃至請求項10のいずれか一において、
     前記第1の発光層は、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、及び赤色から選ばれる第1の色の発光を示す発光物質を有し、
     前記第2の発光層は、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、及び赤色から選ばれ、かつ前記第1の色とは異なる第2の色の発光を示す発光物質を有する表示装置。
  12.  基板上に複数の画素を有し、
     前記複数の画素のそれぞれは、発光素子を有し、
     前記発光素子は、画素電極と、前記画素電極上のEL層と、前記EL層上の共通電極とを有し、
     前記複数の画素における前記共通電極は、前記複数の画素における、それぞれの発光素子と、共有され、
     前記複数の画素において隣接する画素の前記画素電極は、無機材料を有する第1の絶縁層と、有機材料を有する第2の絶縁層とによって分離されており、
     前記画素電極の側面と、前記EL層の側面と、は前記第1の絶縁層と接する領域を有し、
     前記第2の絶縁層は、前記第1の絶縁層上に接し、且つ前記共通電極の下方に配置される表示装置。
  13.  第1の画素と、前記第1の画素と隣接して配置された第2の画素とを有し、
     前記第1の画素は、第1の画素電極と、前記第1の画素電極上の第1のEL層と、前記第1のEL層上の共通電極と、を有する第1の発光素子を備え、
     前記第2の画素は、第2の画素電極と、前記第2の画素電極上の第2のEL層と、前記第2のEL層上の前記共通電極と、を有する第2の発光素子を備える表示装置であって、
     前記第1の画素電極の側面と、前記第1のEL層の側面と、前記第2の画素電極の側面と、前記第2のEL層の側面とは、第1の絶縁層と接する領域を有し、
     前記第1の絶縁層上に接して設けられ、且つ前記共通電極の下方に配置された第2の絶縁層を有し、
     前記第1の絶縁層は、無機材料を有し、
     前記第2の絶縁層は、有機材料を有する表示装置。
  14.  第1の画素と、前記第1の画素と隣接して配置された第2の画素とを有し、
     前記第1の画素は、第1の画素電極と、前記第1の画素電極上の第1のEL層と、前記第1のEL層上の共通電極と、を有する第1の発光素子を備え、
     前記第2の画素は、第2の画素電極と、前記第2の画素電極上の第2のEL層と、前記第2のEL層上の前記共通電極と、を有する第2の発光素子を備える表示装置であって、
     前記第1の画素電極の側面と、前記第1のEL層の側面と、前記第2の画素電極の側面と、前記第2のEL層の側面とは、第1の絶縁層と接する領域を有し、
     前記第1の絶縁層上に接して設けられ、且つ前記共通電極の下方に配置された第2の絶縁層を有し、
     前記第1の絶縁層は、無機材料を有し、
     前記第2の絶縁層は、有機材料を有し、
     前記第1のEL層の上面と、前記第2のEL層の上面と、前記第1の絶縁層の上面と、前記第2の絶縁層の上面と、は前記共通電極と接する領域を有する表示装置。
  15.  第1の画素と、前記第1の画素と隣接して配置された第2の画素とを有し、
     前記第1の画素は、第1の画素電極と、前記第1の画素電極上の第1のEL層と、前記第1のEL層上の共通層と、前記共通層上の共通電極と、を有する第1の発光素子を備え、
     前記第2の画素は、第2の画素電極と、前記第2の画素電極上の第2のEL層と、前記第2のEL層上の前記共通層と、前記共通層上の前記共通電極と、を有する第2の発光素子を備える表示装置であって、
     前記第1の画素電極の側面と、前記第1のEL層の側面と、前記第2の画素電極の側面と、前記第2のEL層の側面とは、第1の絶縁層と接する領域を有し、
     前記第1の絶縁層上に接して設けられ、且つ前記共通電極の下方に配置された第2の絶縁層を有し、
     前記第1の絶縁層は、無機材料を有し、
     前記第2の絶縁層は、有機材料を有し、
     前記第1のEL層の上面と、前記第2のEL層の上面と、前記第1の絶縁層の上面と、前記第2の絶縁層の上面と、は前記共通層と接する領域を有する表示装置。
  16.  請求項13乃至15のいずれか一において、
     前記表示装置の断面視において、前記第1の絶縁層は、前記第1のEL層の上面または前記第2のEL層の上面よりも上方に突出した領域を有する表示装置。
  17.  請求項13乃至15のいずれか一において、
     前記表示装置の断面視において、前記第1のEL層または前記第2のEL層は、前記第1の絶縁層の上面よりも上方に突出した領域を有する表示装置。
  18.  請求項12乃至15のいずれか一において、
     前記表示装置の断面視において、前記第2の絶縁層の上面は凹曲面形状を有する表示装置。
  19.  請求項12乃至15のいずれか一において、
     前記表示装置の断面視において、前記第2の絶縁層の上面は、凸曲面形状を有する表示装置。
PCT/IB2022/050072 2021-01-14 2022-01-06 表示装置 WO2022153143A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022574860A JPWO2022153143A1 (ja) 2021-01-14 2022-01-06
CN202280010030.3A CN116848952A (zh) 2021-01-14 2022-01-06 显示装置
DE112022000616.1T DE112022000616T5 (de) 2021-01-14 2022-01-06 Anzeigevorrichtung
KR1020237022823A KR20230131200A (ko) 2021-01-14 2022-01-06 표시 장치
US18/260,847 US20240057402A1 (en) 2021-01-14 2022-01-06 Display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-004031 2021-01-14
JP2021004031 2021-01-14
JP2021-011800 2021-01-28
JP2021011800 2021-01-28
JP2021-171640 2021-10-20
JP2021171640 2021-10-20

Publications (1)

Publication Number Publication Date
WO2022153143A1 true WO2022153143A1 (ja) 2022-07-21

Family

ID=82447990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/050072 WO2022153143A1 (ja) 2021-01-14 2022-01-06 表示装置

Country Status (6)

Country Link
US (1) US20240057402A1 (ja)
JP (1) JPWO2022153143A1 (ja)
KR (1) KR20230131200A (ja)
DE (1) DE112022000616T5 (ja)
TW (1) TW202234695A (ja)
WO (1) WO2022153143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117613174A (zh) * 2024-01-23 2024-02-27 长春希龙显示技术有限公司 一种超薄显示单元及其封装方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066573A1 (ja) * 2005-12-05 2007-06-14 Sharp Kabushiki Kaisha 有機エレクトロルミネセンスパネル及び有機エレクトロルミネセンス表示装置
JP2009087623A (ja) * 2007-09-28 2009-04-23 Seiko Epson Corp 有機el発光素子の製造方法、有機el発光素子、及び電子機器
JP2011210614A (ja) * 2010-03-30 2011-10-20 Toppan Printing Co Ltd 有機el素子及びその製造方法
JP2012216501A (ja) * 2011-03-30 2012-11-08 Canon Inc 有機el表示装置の製造方法
US20190157619A1 (en) * 2015-10-28 2019-05-23 Lg Display Co., Ltd. Flexible organic light emitting display device
US20200043998A1 (en) * 2018-07-31 2020-02-06 Samsung Display Co., Ltd. Organic light-emitting diode display device and method of fabricating the same
US20200176521A1 (en) * 2018-12-03 2020-06-04 Lg Display Co., Ltd. Display device
JP2020140940A (ja) * 2019-03-01 2020-09-03 株式会社Joled 有機el表示パネル、有機el表示装置、および、その製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG118118A1 (en) 2001-02-22 2006-01-27 Semiconductor Energy Lab Organic light emitting device and display using the same
KR20190076045A (ko) 2016-11-10 2019-07-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 표시 장치의 구동 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066573A1 (ja) * 2005-12-05 2007-06-14 Sharp Kabushiki Kaisha 有機エレクトロルミネセンスパネル及び有機エレクトロルミネセンス表示装置
JP2009087623A (ja) * 2007-09-28 2009-04-23 Seiko Epson Corp 有機el発光素子の製造方法、有機el発光素子、及び電子機器
JP2011210614A (ja) * 2010-03-30 2011-10-20 Toppan Printing Co Ltd 有機el素子及びその製造方法
JP2012216501A (ja) * 2011-03-30 2012-11-08 Canon Inc 有機el表示装置の製造方法
US20190157619A1 (en) * 2015-10-28 2019-05-23 Lg Display Co., Ltd. Flexible organic light emitting display device
US20200043998A1 (en) * 2018-07-31 2020-02-06 Samsung Display Co., Ltd. Organic light-emitting diode display device and method of fabricating the same
US20200176521A1 (en) * 2018-12-03 2020-06-04 Lg Display Co., Ltd. Display device
JP2020140940A (ja) * 2019-03-01 2020-09-03 株式会社Joled 有機el表示パネル、有機el表示装置、および、その製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117613174A (zh) * 2024-01-23 2024-02-27 长春希龙显示技术有限公司 一种超薄显示单元及其封装方法
CN117613174B (zh) * 2024-01-23 2024-05-03 长春希龙显示技术有限公司 一种超薄显示单元及其封装方法

Also Published As

Publication number Publication date
US20240057402A1 (en) 2024-02-15
KR20230131200A (ko) 2023-09-12
DE112022000616T5 (de) 2023-11-09
TW202234695A (zh) 2022-09-01
JPWO2022153143A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2022162501A1 (ja) 表示装置
WO2022153143A1 (ja) 表示装置
WO2022144666A1 (ja) 表示装置の作製方法
WO2022167894A1 (ja) 表示装置
WO2022123382A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2022153118A1 (ja) 表示装置の作製方法
US11871600B2 (en) Display device
WO2022153145A1 (ja) 表示装置、及び表示装置の作製方法
CN116848952A (zh) 显示装置
WO2023209493A1 (ja) 半導体装置及び半導体装置の作製方法
WO2022162485A1 (ja) 表示装置
WO2022214904A1 (ja) 表示装置
WO2022162491A1 (ja) 表示装置
WO2022189908A1 (ja) 表示装置
WO2022175774A1 (ja) 表示装置および表示装置の作製方法
WO2023203425A1 (ja) 半導体装置及び半導体装置の作製方法
WO2022224073A1 (ja) 表示装置、及び表示装置の作製方法
WO2022259068A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
CN117044397A (zh) 显示装置
CN117480881A (zh) 显示装置、显示装置的制造方法、显示模块及电子设备
TW202303548A (zh) 顯示裝置、顯示模組及電子裝置
CN117044396A (zh) 显示装置、显示装置的制造方法、显示模块及电子设备
CN117242899A (zh) 显示装置
CN117099482A (zh) 显示装置、显示装置的制造方法、显示模块及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574860

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18260847

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280010030.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022000616

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739219

Country of ref document: EP

Kind code of ref document: A1