WO2022153145A1 - 表示装置、及び表示装置の作製方法 - Google Patents

表示装置、及び表示装置の作製方法 Download PDF

Info

Publication number
WO2022153145A1
WO2022153145A1 PCT/IB2022/050074 IB2022050074W WO2022153145A1 WO 2022153145 A1 WO2022153145 A1 WO 2022153145A1 IB 2022050074 W IB2022050074 W IB 2022050074W WO 2022153145 A1 WO2022153145 A1 WO 2022153145A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
display device
light emitting
electrode
Prior art date
Application number
PCT/IB2022/050074
Other languages
English (en)
French (fr)
Inventor
山崎舜平
岡崎健一
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2022574862A priority Critical patent/JPWO2022153145A1/ja
Priority to CN202280008885.2A priority patent/CN116745832A/zh
Priority to US18/270,751 priority patent/US20240065026A1/en
Priority to KR1020237022792A priority patent/KR20230129020A/ko
Publication of WO2022153145A1 publication Critical patent/WO2022153145A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition

Definitions

  • One aspect of the present invention relates to a display device.
  • One aspect of the present invention relates to a method for manufacturing a display device.
  • one aspect of the present invention is not limited to the above technical fields.
  • the technical fields of one aspect of the present invention disclosed in the present specification and the like include semiconductor devices, display devices, light emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices, input / output devices, and methods for driving them. , Or a method for producing them, can be given as an example.
  • Semiconductor devices refer to all devices that can function by utilizing semiconductor characteristics.
  • a display device applicable to a display panel a liquid crystal display device, an organic EL (Electro Luminescence) element, a light emitting device including a light emitting element such as a light emitting diode (LED: Light Emitting Diode), and an electrophoresis method are typically used.
  • Examples include electronic papers that display by means of.
  • the basic configuration of an organic EL element is that a layer containing a luminescent organic compound is sandwiched between a pair of electrodes. By applying a voltage to this device, light emission can be obtained from a luminescent organic compound. Since the display device to which such an organic EL element is applied does not require a backlight, which is required for a liquid crystal display device or the like, a thin, lightweight, high-contrast, and low-power consumption display device can be realized. For example, an example of a display device using an organic EL element is described in Patent Document 1.
  • One aspect of the present invention is to provide a display device that can be easily made into high definition and a method for manufacturing the same.
  • One aspect of the present invention is to provide a display device having both high display quality and high definition.
  • One aspect of the present invention is to provide a display device having high contrast.
  • One aspect of the present invention is to provide a highly reliable display device.
  • One aspect of the present invention is to provide a display device having a novel configuration or a method for manufacturing the display device.
  • One aspect of the present invention is to provide a method for manufacturing the above-mentioned display device with a high yield.
  • One aspect of the present invention is to alleviate at least one of the problems of the prior art.
  • One aspect of the present invention is a method for manufacturing a display device, which comprises a first step of forming a first pixel electrode, a second pixel electrode, and a first electrode, and a first pixel electrode and a second.
  • the first sacrificial film and the first EL film are etched to expose the second pixel electrode, and the first EL layer, the first EL layer, and the first EL layer on the first pixel electrode are exposed.
  • the eighth step of exposing the first EL layer, the second EL layer, and the first electrode, and the ninth step of forming a common layer on the first EL layer and the second EL layer It has a step and a tenth step of forming a common electrode in contact with the common layer and the first electrode.
  • the first EL film, the second EL film, and the common layer are formed by a thin-film deposition method using a shielding mask.
  • the first pixel electrode and the second pixel electrode are arranged side by side in the first direction, and the plurality of first pixel electrodes are arranged side by side in the second direction intersecting the first direction. Is preferable. Further, after the tenth step, the eleventh step of removing the portions of the common electrode, the common layer, and the first EL layer located between the two adjacent first pixel electrodes by etching, respectively. It is preferable to have.
  • a twelfth step of forming an insulating layer between two adjacent first pixel electrodes between the first step and the second step it is preferable to have a twelfth step of forming an insulating layer between two adjacent first pixel electrodes between the first step and the second step.
  • the common electrode, the common layer, and the first EL layer located on the insulating layer may be etched, and a part of the insulating layer may be etched to form a recess in the insulating layer.
  • the first sacrificial film and the second sacrificial film include the same metal film, alloy film, metal oxide film, semiconductor film, or inorganic insulating film.
  • the first EL film is etched by dry etching using an etching gas containing no oxygen as a main component.
  • an aqueous solution of tetramethylammonium hydroxide, dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a mixed liquid thereof was used as the first sacrificial layer and the second sacrificial layer. It is preferably removed by wet etching.
  • the first sacrificial film and the second sacrificial film contain aluminum oxide.
  • any of the above it is preferable to have a thirteenth step of forming a hard mask between the third step and the fourth step. Further, in the fourth step, it is preferable that the first sacrificial film is etched with a hard mask, and then the hard mask and the first EL film are etched by the same treatment.
  • the first EL layer and the second EL layer are each processed so as to have a strip-shaped upper surface shape.
  • another aspect of the present invention is a display device having a plurality of first light emitting elements and a plurality of second light emitting elements.
  • the first light emitting element has a first pixel electrode, a first EL layer, a common layer, and a common electrode.
  • the second light emitting element has a second pixel electrode, a second EL layer, a common layer, and a common electrode.
  • An insulating layer is provided between the two first pixel electrodes, between the two second pixel electrodes, and between the first pixel electrode and the second pixel electrode.
  • the first light emitting element and the second light emitting element are arranged in the first direction.
  • the plurality of first light emitting elements and the plurality of second light emitting elements are arranged in a second direction intersecting the first direction, respectively.
  • the common layer and the common electrode have a band-like shape extending in the first direction.
  • the first EL layer, the common layer, and the common electrode have an end portion that overlaps with the insulating layer between two adjacent first pixel electrodes.
  • a display device that can be easily made into high definition and a method for manufacturing the same.
  • a display device having both high display quality and high definition can be provided.
  • a display device having high contrast can be provided.
  • a highly reliable display device can be provided.
  • a display device having a novel configuration or a method for manufacturing the display device.
  • a method for manufacturing the above-mentioned display device with a high yield.
  • at least one of the problems of the prior art can be alleviated.
  • 1A to 1D are diagrams showing a configuration example of a display device.
  • 2A to 2F are diagrams showing an example of a method for manufacturing a display device.
  • 3A to 3F are diagrams showing an example of a method for manufacturing a display device.
  • 4A to 4C are diagrams showing an example of a method for manufacturing a display device.
  • 5A to 5D are diagrams showing a configuration example of a display device.
  • 6A to 6E are diagrams showing an example of a method for manufacturing a display device.
  • 7A to 7C are diagrams showing a configuration example of a display device.
  • 8A to 8C are diagrams showing a configuration example of a display device.
  • 9A to 9C are diagrams showing a configuration example of the display device.
  • FIG. 10 is a perspective view showing an example of the display device.
  • 11A and 11B are cross-sectional views showing an example of a display device.
  • FIG. 12A is a cross-sectional view showing an example of the display device.
  • FIG. 12B is a cross-sectional view showing an example of a transistor.
  • 13A and 13B are perspective views showing an example of a display module.
  • FIG. 14 is a cross-sectional view showing an example of the display device.
  • FIG. 15 is a cross-sectional view showing an example of the display device.
  • FIG. 16 is a cross-sectional view showing an example of the display device.
  • 17A to 17D are diagrams showing a configuration example of a light emitting element.
  • 18A and 18B are diagrams showing a configuration example of a display device.
  • 19A and 19B are diagrams showing a configuration example of a display device.
  • 20A to 20J are diagrams showing a configuration example of a display device.
  • 21A and 21B are diagrams showing an example of an electronic device.
  • 22A to 22D are diagrams showing an example of an electronic device.
  • 23A to 23F are diagrams showing an example of an electronic device.
  • 24A to 24F are diagrams showing an example of an electronic device.
  • 25A and 25B are measurement results according to the embodiment.
  • membrane and the term “layer” can be interchanged with each other.
  • conductive layer or “insulating layer” may be interchangeable with the terms “conductive film” or “insulating film”.
  • an EL layer means a layer (also referred to as a light emitting layer) which is provided between a pair of electrodes of a light emitting element and contains at least a light emitting substance, or a laminated body containing a light emitting layer.
  • the display panel which is one aspect of the display device, has a function of displaying (outputting) an image or the like on the display surface. Therefore, the display panel is an aspect of the output device.
  • a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package) is attached
  • COG Chip On Glass
  • One aspect of the present invention is a display device having a light emitting element (also referred to as a light emitting device).
  • the display device has at least two light emitting elements that emit light of different colors.
  • Each light emitting element has a pair of electrodes and an EL layer between them.
  • the light emitting element is preferably an organic EL element (organic electroluminescent element).
  • Two or more light emitting elements that emit different colors each have an EL layer containing different materials.
  • a full-color display device can be realized by having three types of light emitting elements that emit red (R), green (G), or blue (B) light, respectively.
  • the EL layer is formed separately between light emitting elements of different colors, it is known that the EL layer is formed by a thin-film deposition method using a shadow mask such as a metal mask.
  • a shadow mask such as a metal mask.
  • the island-like shape is formed. Since the shape and position of the organic film deviate from the design, it is difficult to increase the definition and aperture ratio of the display device. Therefore, measures have been taken to increase the fineness (also referred to as pixel density) in a pseudo manner by applying a special pixel arrangement method such as a pentile arrangement.
  • One aspect of the present invention is to process the EL layer into a fine pattern without using a shadow mask such as a metal mask. As a result, it is possible to realize a display device having high definition and a large aperture ratio, which has been difficult to realize so far. Further, since the EL layer can be made separately, it is possible to realize a display device that is extremely vivid, has high contrast, and has high display quality.
  • a device using a metal mask or FMM may be referred to as an MM (metal mask) structure.
  • MM metal mask
  • MML metal maskless
  • the first EL film and the first sacrificial film are laminated and formed by covering the two pixel electrodes.
  • a resist mask is formed on the first sacrificial film at a position overlapping one of the pixel electrodes (first pixel electrode).
  • the resist mask, a part of the first sacrificial film, and a part of the first EL film are etched.
  • the other pixel electrode (second pixel electrode) is exposed, the etching is completed.
  • a part of the first EL film also referred to as the first EL layer
  • a part of the sacrificial film first on the first EL film.
  • Also called the sacrificial layer of can be formed.
  • the second EL film and the second sacrificial film are laminated and formed.
  • a resist mask is formed at a position overlapping the second pixel electrode.
  • the resist mask, a part of the second sacrificial film, and a part of the second EL film are etched in the same manner as described above.
  • a first EL layer and a first sacrificial layer are provided on the first pixel electrode, and a second EL layer and a second sacrificial layer are provided on the second pixel electrode, respectively. It becomes. In this way, the first EL layer and the second EL layer can be made separately.
  • the first sacrificial layer and the second sacrificial layer are removed to expose the first EL layer and the second EL layer, and then a common electrode is formed to form a two-color light emitting element. Can be divided.
  • the EL layer of the light emitting elements of three or more colors can be made separately, and a display device having three colors or four or more colors of light emitting elements can be realized.
  • an electrode also referred to as a first electrode, a connection electrode, etc.
  • the connection electrode is arranged outside the display unit on which the pixel is provided.
  • the first sacrificial layer and the second sacrificial layer provided on the connection electrode are etched at the same time as the first sacrificial layer on the first EL layer and the second sacrificial layer on the second EL layer. Can be removed.
  • the spacing between EL layers of different colors is difficult to make less than 10 ⁇ m by, for example, a forming method using a metal mask, but according to the above method, it can be narrowed to 3 ⁇ m or less, 2 ⁇ m or less, or 1 ⁇ m or less. can.
  • the interval can be narrowed to 500 nm or less, 200 nm or less, 100 nm or less, and even 50 nm or less.
  • the aperture ratio can be brought close to 100%.
  • the aperture ratio is 50% or more, 60% or more, 70% or more, 80% or more, and even 90% or more, and less than 100% can be realized.
  • the pattern of the EL layer itself can be made extremely small as compared with the case where a metal mask is used. Further, for example, when a metal mask is used to separate the EL layers, the thickness varies between the center and the edges of the pattern, so that the effective area that can be used as the light emitting region becomes smaller than the area of the entire pattern. ..
  • the thickness can be made uniform within the pattern, and even a fine pattern emits light in almost the entire area. It can be used as an area. Therefore, according to the above-mentioned manufacturing method, it is possible to have both high definition and high aperture ratio.
  • FIG. 1A shows a schematic top view of the display device 100 according to one aspect of the present invention.
  • the display device 100 includes a plurality of light emitting elements 110R exhibiting red, a light emitting element 110G exhibiting green, and a plurality of light emitting elements 110B exhibiting blue.
  • R, G, and B are designated in the light emitting region of each light emitting element in order to simplify the distinction between the light emitting elements.
  • the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B are arranged in a matrix.
  • FIG. 1A shows a so-called stripe arrangement in which light emitting elements of the same color are arranged in one direction.
  • the arrangement method of the light emitting elements is not limited to this, and an arrangement method such as a delta arrangement or a zigzag arrangement may be applied, or a pentile arrangement may be used.
  • the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B are arranged in the X direction. Further, light emitting elements of the same color are arranged in the Y direction which intersects the X direction.
  • an EL element such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • the light emitting substances of the EL element include fluorescent substances (fluorescent materials), phosphorescent substances (phosphorescent materials), inorganic compounds (quantum dot materials, etc.), and substances showing thermal activated delayed fluorescence (thermally activated delayed fluorescence). (Thermally activated delayed fluorescence: TADF) material) and the like.
  • FIG. 1B is a schematic cross-sectional view corresponding to the alternate long and short dash line A1-A2 in FIG. 1A
  • FIG. 1C is a schematic cross-sectional view corresponding to the alternate long and short dash line B1-B2.
  • FIG. 1B shows a cross section of the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B.
  • the light emitting element 110R has a pixel electrode 111R, an EL layer 112R, an EL layer 114, and a common electrode 113.
  • the light emitting element 110G has a pixel electrode 111G, an EL layer 112G, an EL layer 114, and a common electrode 113.
  • the light emitting element 110B has a pixel electrode 111B, an EL layer 112B, an EL layer 114, and a common electrode 113.
  • the EL layer 114 and the common electrode 113 are commonly provided on the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B.
  • the EL layer 114 can also be called a common layer.
  • the EL layer 112R included in the light emitting element 110R has a luminescent organic compound that emits light having intensity in at least the red wavelength region.
  • the EL layer 112G included in the light emitting element 110G has a luminescent organic compound that emits light having intensity in at least the green wavelength region.
  • the EL layer 112B included in the light emitting element 110B has a luminescent organic compound that emits light having intensity in at least a blue wavelength region.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B are composed of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer, in addition to a layer containing a luminescent organic compound (light emitting layer), respectively. Of these, one or more may be possessed.
  • the EL layer 114 may have a configuration that does not have a light emitting layer.
  • the EL layer 114 has one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are provided for each light emitting element. Further, the common electrode 113 and the EL layer 114 are provided as a continuous layer common to each light emitting element. A conductive film having translucency with respect to visible light is used for either one of the pixel electrodes and the common electrode 113, and a conductive film having reflectivity is used for the other.
  • each pixel electrode translucent and the common electrode 113 reflective it is possible to make a bottom emission type (bottom emission type) display device, and conversely, each pixel electrode is reflective and the common electrode 113 is transparent. By making it light, it can be used as a top-emission type (top-emission type) display device. By making both the pixel electrode and the common electrode 113 translucent, a double-sided injection type (dual emission type) display device can be obtained.
  • An insulating layer 131 is provided so as to cover the ends of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B.
  • the end portion of the insulating layer 131 preferably has a tapered shape.
  • the insulating layer 131 may not be provided if it is unnecessary.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B each have a region in contact with the upper surface of the pixel electrode and a region in contact with the surface of the insulating layer 131. Further, the ends of the EL layer 112R, the EL layer 112G, and the EL layer 112B are located on the insulating layer 131.
  • a gap is provided between the two EL layers between the light emitting elements of different colors.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112G are provided so as not to be in contact with each other.
  • the EL layer 112R is formed in a band shape so that the EL layer 112R is continuous in the Y direction.
  • the EL layer 112R or the like is formed in a band shape, a space for dividing the EL layer 112R or the like is not required, and the area of the non-light emitting region between the light emitting elements can be reduced, so that the aperture ratio can be increased.
  • the cross section of the light emitting element 110R is shown as an example in FIG. 1C, the light emitting element 110G and the light emitting element 110B can have the same shape.
  • a protective layer 121 is provided on the common electrode 113 so as to cover the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B.
  • the protective layer 121 has a function of preventing impurities such as water from diffusing into each light emitting element from above.
  • the protective layer 121 may have, for example, a single-layer structure or a laminated structure including at least an inorganic insulating film.
  • the inorganic insulating film include an oxide film such as a silicon oxide film, a silicon nitride film, a silicon nitride film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, and a hafnium oxide film, or a nitride film. ..
  • a semiconductor material such as indium gallium oxide or indium gallium zinc oxide may be used as the protective layer 121.
  • a laminated film of an inorganic insulating film and an organic insulating film can also be used.
  • the organic insulating film functions as a flattening film. As a result, the upper surface of the organic insulating film can be made flat, so that the covering property of the inorganic insulating film on the organic insulating film can be improved and the barrier property can be enhanced.
  • the upper surface of the protective layer 121 is flat, when a structure (for example, a color filter, a touch sensor electrode, a lens array, etc.) is provided above the protective layer 121, an uneven shape due to the lower structure is formed. It is preferable because the influence can be reduced.
  • a structure for example, a color filter, a touch sensor electrode, a lens array, etc.
  • FIG. 1A shows a connection electrode 111C that is electrically connected to the common electrode 113.
  • the connection electrode 111C is provided with a potential (for example, an anode potential or a cathode potential) for supplying to the common electrode 113.
  • the connection electrode 111C is provided outside the display area in which the light emitting elements 110R and the like are arranged. Further, in FIG. 1A, the common electrode 113 is shown by a broken line.
  • connection electrode 111C can be provided along the outer circumference of the display area. For example, it may be provided along one side of the outer circumference of the display area, or may be provided over two or more sides of the outer circumference of the display area. That is, when the upper surface shape of the display area is rectangular, the upper surface shape of the connection electrode 111C can be a band shape, an L shape, a U shape (square bracket shape), a quadrangle, or the like.
  • FIG. 1D is a schematic cross-sectional view corresponding to the alternate long and short dash line C1-C2 in FIG. 1A.
  • FIG. 1D shows a connection portion 130 in which the connection electrode 111C and the common electrode 113 are electrically connected.
  • the connection portion 130 the common electrode 113 is provided in contact with the connection electrode 111C, and the protective layer 121 is provided so as to cover the common electrode 113. Further, an insulating layer 131 is provided so as to cover the end portion of the connection electrode 111C.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) constituting the display device include a sputtering method, a chemical vapor deposition (CVD) method, a vacuum vapor deposition method, and a pulsed laser deposition (PLD). ) Method, atomic layer deposition (ALD) method, etc. can be used for formation.
  • CVD method include a plasma chemical vapor deposition (PECVD: Plasma Enhanced CVD) method and a thermal CVD method.
  • PECVD plasma chemical vapor deposition
  • thermal CVD there is an organometallic chemical vapor deposition (MOCVD: Metal Organic CVD) method.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) that make up the display device are spin coated, dip, spray coated, inkjet, dispense, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain. It can be formed by a method such as coating or knife coating.
  • the thin film when processing the thin film constituting the display device, a photolithography method or the like can be used.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • the island-shaped thin film may be directly formed by a film forming method using a shielding mask such as a metal mask.
  • photolithography methods There are typically the following two methods as photolithography methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
  • the other is a method in which a photosensitive thin film is formed and then exposed and developed to process the thin film into a desired shape.
  • the light used for exposure for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture of these can be used.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • the exposure may be performed by the immersion exposure technique.
  • extreme ultraviolet (EUV: Extreme Ultra-violet) light, X-rays, or the like may be used as the light used for exposure.
  • an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible.
  • extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible.
  • a dry etching method, a wet etching method, a sandblasting method, etc. can be used for etching the thin film.
  • a substrate having at least enough heat resistance to withstand the subsequent heat treatment can be used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, an organic resin substrate, or the like can be used.
  • a single crystal semiconductor substrate made of silicon, silicon carbide or the like, a polycrystalline semiconductor substrate, a compound semiconductor substrate such as silicon germanium, or a semiconductor substrate such as an SOI substrate can be used.
  • the substrate 101 it is preferable to use a substrate in which a semiconductor circuit including a semiconductor element such as a transistor is formed on the semiconductor substrate or an insulating substrate.
  • the semiconductor circuit preferably comprises, for example, a pixel circuit, a gate line drive circuit (gate driver), a source line drive circuit (source driver), and the like.
  • gate driver gate line drive circuit
  • source driver source driver
  • an arithmetic circuit, a storage circuit, and the like may be configured.
  • Pixel Electrodes 111R, 111G, 111B, Connection Electrodes 111C are formed on the substrate 101.
  • a conductive film to be a pixel electrode is formed, a resist mask is formed by a photolithography method, and an unnecessary portion of the conductive film is removed by etching. After that, by removing the resist mask, the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B can be formed.
  • each pixel electrode When a conductive film having reflectivity to visible light is used as each pixel electrode, it is preferable to apply a material having as high a reflectance as possible in the entire wavelength range of visible light (for example, silver or aluminum). As a result, not only the light extraction efficiency of the light emitting element can be improved, but also the color reproducibility can be improved.
  • the end portions of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are covered to form the insulating layer 131 (FIG. 2A).
  • the insulating layer 131 an organic insulating film or an inorganic insulating film can be used. It is preferable that the end of the insulating layer 131 has a tapered shape in order to improve the step covering property of the later EL film. In particular, when an organic insulating film is used, it is preferable to use a photosensitive material because the shape of the end portion can be easily controlled depending on the exposure and development conditions.
  • an EL film 112Rf which will later become an EL layer 112R, is formed on the pixel electrode 111R, the pixel electrode 111G, the pixel electrode 111B, and the insulating layer 131.
  • the EL film 112Rf has a film containing at least a luminescent compound.
  • one or more of the membranes functioning as an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, or a hole injection layer may be laminated.
  • the EL film 112Rf can be formed by, for example, a vapor deposition method, a sputtering method, an inkjet method, or the like. Not limited to this, the above-mentioned film forming method can be appropriately used.
  • the EL film 112Rf is a laminated film in which the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer are laminated in this order.
  • a film having an electron injection layer can be used as the EL layer 114 to be formed later.
  • the electron transport layer so as to cover the light emitting layer, it is possible to prevent the light emitting layer from being damaged by a subsequent photolithography step or the like, and it is possible to manufacture a highly reliable light emitting element.
  • an electron-transporting organic compound can be used for the electron-transporting layer, and a material containing the organic compound and a metal can be used for the electron-injecting layer.
  • the EL film 112Rf is formed so as not to be provided on the connection electrode 111C.
  • the EL film 112Rf is formed by a vapor deposition method (or a sputtering method)
  • sacrificial film 144a a film having high resistance to etching treatment of each EL film such as EL film 112Rf, that is, a film having a large etching selection ratio can be used. Further, as the sacrificial film 144a, a film having a large etching selection ratio with a protective film such as a protective film 146a described later can be used. Further, as the sacrificial film 144a, a film that can be removed by a wet etching method with less damage to each EL film can be used.
  • the sacrificial film 144a for example, an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film can be used.
  • the sacrificial film 144a can be formed by various film forming methods such as a sputtering method, a vapor deposition method, a CVD method, and an ALD method.
  • the sacrificial film 144a includes, for example, a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal material.
  • a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal material.
  • An alloy material containing the above can be used.
  • it is preferable to use a low melting point material such as aluminum or silver.
  • a metal oxide such as indium gallium zinc oxide (also referred to as In-Ga-Zn oxide or IGZO) can be used.
  • indium oxide, indium zinc oxide (In-Zn oxide), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), indium tin zinc oxide (In-Sn) -Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide) and the like can be used.
  • indium tin oxide containing silicon or the like can also be used.
  • M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten). , Or one or more selected from magnesium).
  • M is preferably one or more selected from gallium, aluminum, and yttrium.
  • an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide can be used.
  • the sacrificial film 144a it is preferable to use a material that can dissolve at least a film located at the uppermost part of the EL film 112Rf in a chemically stable solvent.
  • a material that dissolves in water or alcohol can be suitably used for the sacrificial membrane 144a.
  • the sacrificial film 144a is dissolved in a solvent such as water or alcohol, applied by a wet film forming method, and then heat-treated to evaporate the solvent. At this time, by performing the heat treatment in a reduced pressure atmosphere, the solvent can be removed at a low temperature and in a short time, so that thermal damage to the EL film 112Rf can be reduced, which is preferable.
  • wet film formation methods that can be used to form the sacrificial film 144a include spin coating, dip, spray coating, inkjet, dispense, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, and knife. There is a coat etc.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, purulan, water-soluble cellulose, or alcohol-soluble polyamide resin can be used.
  • the protective film 146a is a film used later as a hard mask when etching the sacrificial film 144a. Further, when the protective film 146a is processed later, the sacrificial film 144a is exposed. Therefore, the sacrificial film 144a and the protective film 146a select a combination of films having a large etching selection ratio with each other. Therefore, a film that can be used for the protective film 146a can be selected according to the etching conditions of the sacrificial film 144a and the etching conditions of the protective film 146a.
  • a gas containing fluorine also referred to as fluorine-based gas
  • An alloy containing molybdenum and niobium, an alloy containing molybdenum and tantalum, or the like can be used for the protective film 146a.
  • a metal oxide film such as IGZO or ITO. Can be used for the sacrificial film 144a.
  • the protective film 146a can be selected from various materials according to the etching conditions of the sacrificial film 144a and the etching conditions of the protective film 146a.
  • it can be selected from the membranes that can be used for the sacrificial membrane 144a.
  • a nitride film can be used as the protective film 146a.
  • nitrides such as silicon nitride, aluminum nitride, hafnium nitride, titanium nitride, tantalum nitride, tungsten nitride, gallium nitride, and germanium nitride can also be used.
  • an oxide film can be used as the protective film 146a.
  • an oxide film such as silicon oxide, silicon oxide nitride, aluminum oxide, aluminum oxide nitride, hafnium oxide, and hafnium oxide nitride, or an oxynitride film can also be used.
  • an organic film that can be used for the EL film 112Rf or the like may be used as the protective film 146a.
  • the same film as the organic film used for the EL film 112Rf, the EL film 112Gf, or the EL film 112Bf (not shown) can be used for the protective film 146a.
  • By using such an organic film it is possible to use the EL film 112Rf or the like in common with the film forming apparatus, which is preferable.
  • a resist mask 143a is formed on the protective film 146a at a position overlapping the pixel electrode 111R and a position overlapping the connection electrode 111C (FIG. 2C).
  • a resist material containing a photosensitive resin such as a positive type resist material or a negative type resist material can be used.
  • the EL film 112Rf is dissolved by the solvent of the resist material. There is a risk that it will end up.
  • the protective film 146a it is possible to prevent such a problem from occurring.
  • the resist mask 143a may be formed directly on the sacrificial film 144a without using the protective film 146a.
  • etching the protective film 146a it is preferable to use etching conditions with a high selection ratio so that the sacrificial film 144a is not removed by the etching.
  • the etching of the protective film 146a can be performed by wet etching or dry etching, but by using dry etching, it is possible to prevent the pattern of the protective film 146a from shrinking.
  • the resist mask 143a can be removed by wet etching or dry etching. In particular, it is preferable to remove the resist mask 143a by dry etching (also referred to as plasma ashing) using oxygen gas as the etching gas.
  • the resist mask 143a is removed in a state where the EL film 112Rf is covered with the sacrificial film 144a, the influence on the EL film 112Rf is suppressed.
  • the EL film 112Rf comes into contact with oxygen, it may adversely affect the electrical characteristics, and is therefore suitable for etching using oxygen gas such as plasma ashing.
  • the sacrificial film 144a can be etched by wet etching or dry etching, but it is preferable to use the dry etching method because shrinkage of the pattern can be suppressed.
  • etching the EL film 112Rf it is preferable to use dry etching using an etching gas containing no oxygen as a main component.
  • an etching gas containing no oxygen as a main component
  • the etching gas containing no oxygen as a main component include noble gases such as CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, B Cl 3 , H 2 or He.
  • a mixed gas of the above gas and a diluting gas containing no oxygen can be used as the etching gas.
  • the etching of the EL film 112Rf and the etching of the protective layer 147a may be performed separately. At this time, the EL film 112Rf may be etched first, or the protective layer 147a may be etched first.
  • the EL layer 112R and the connection electrode 111C are covered with the sacrificial layer 145a.
  • an EL film 112Gf which will later become an EL layer 112G, is formed on the sacrificial layer 145a, the insulating layer 131, the pixel electrode 111G, and the pixel electrode 111B. At this time, similarly to the EL film 112Rf, it is preferable not to provide the EL film 112Gf on the connection electrode 111C.
  • the above description of the EL film 112Rf can be incorporated.
  • a sacrificial film 144b is formed on the EL film 112Gf.
  • the sacrificial film 144b can be formed in the same manner as the sacrificial film 144a. In particular, it is preferable to use the same material as the sacrificial film 144a for the sacrificial film 144b.
  • a sacrificial film 144a is formed on the connection electrode 111C so as to cover the sacrificial layer 145a.
  • a protective film 146b is formed on the sacrificial film 144b.
  • the protective film 146b can be formed in the same manner as the protective film 146a. In particular, it is preferable to use the same material as the protective film 146a for the protective film 146b.
  • a resist mask 143b is formed on the protective film 146b in a region overlapping the pixel electrode 111G and a region overlapping the connection electrode 111C (FIG. 3A).
  • the resist mask 143b can be formed in the same manner as the resist mask 143a.
  • the above description of the protective film 146a can be incorporated.
  • the above description of the sacrificial film 144a can be used.
  • the description of the EL film 112Rf and the protective layer 147a can be incorporated.
  • the strip-shaped EL layer 112R and the strip-shaped EL layer 112G can be made separately with high positional accuracy.
  • the EL film 112Bf, the sacrificial film 144c, the protective film 146c, and the resist mask 143c are formed in this order.
  • the protective film 146c is etched to form the protective layer 147c (not shown), and then the resist mask 143c is removed.
  • the sacrificial film 144c is etched to form the sacrificial layer 145c.
  • the protective layer 147c and the EL film 112Bf are etched to form a band-shaped EL layer 112B.
  • the sacrificial layer 145c is also formed on the connection electrode 111C at the same time.
  • a sacrificial layer 145a, a sacrificial layer 145b, and a sacrificial layer 145c are laminated on the connection electrode 111C.
  • the sacrificial layer 145a, the sacrificial layer 145b, and the sacrificial layer 145c are removed to expose the upper surfaces of the EL layer 112R, the EL layer 112G, and the EL layer 112B (FIG. 3E). At the same time, the upper surface of the connection electrode 111C is also exposed.
  • the sacrificial layer 145a, the sacrificial layer 145b, and the sacrificial layer 145c can be removed by wet etching or dry etching. At this time, it is preferable to use a method that does not damage the EL layer 112R, the EL layer 112G, and the EL layer 112B as much as possible. In particular, it is preferable to use the wet etching method. For example, it is preferable to use wet etching using an aqueous solution of tetramethylammonium hydroxide (TMAH), dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a mixed liquid thereof.
  • TMAH tetramethylammonium hydroxide
  • the sacrificial layer 145a, the sacrificial layer 145b, and the sacrificial layer 145c by dissolving them in a solvent such as water or alcohol.
  • a solvent such as water or alcohol.
  • the alcohol capable of dissolving the sacrificial layer 145a, the sacrificial layer 145b, and the sacrificial layer 145c various alcohols such as ethyl alcohol, methyl alcohol, isopropyl alcohol (IPA), and glycerin can be used.
  • IPA isopropyl alcohol
  • a drying treatment is performed to remove the water contained inside the EL layer 112R, the EL layer 112G, and the EL layer 112B, and the water adsorbed on the surface. It is preferable to do so.
  • the heat treatment can be carried out at a substrate temperature of 50 ° C. or higher and 200 ° C. or lower, preferably 60 ° C. or higher and 150 ° C. or lower, and more preferably 70 ° C. or higher and 120 ° C. or lower. It is preferable to use a reduced pressure atmosphere because it can be dried at a lower temperature.
  • the EL layer 112R, the EL layer 112G, and the EL layer 112B can be made separately.
  • the EL layer 114 can be formed by the same method as the EL film 112Rf or the like. When the EL layer 114 is formed by the vapor deposition method, it is preferable to form the EL layer 114 by using a shielding mask so that the EL layer 114 is not formed on the connection electrode 111C.
  • the common electrode 113 can be formed by a film forming method such as a vapor deposition method or a sputtering method. Alternatively, the film formed by the vapor deposition method and the film formed by the sputtering method may be laminated. At this time, it is preferable to form the common electrode 113 so as to include the region where the EL layer 114 is formed. That is, the end portion of the EL layer 114 can be configured to overlap with the common electrode 113.
  • the common electrode 113 is preferably formed by using a shielding mask.
  • the common electrode 113 is electrically connected to the connection electrode 111C outside the display region.
  • the protective layer 121 is formed on the common electrode 113. It is preferable to use a sputtering method, a PECVD method, or an ALD method for forming the inorganic insulating film used for the protective layer 121.
  • the ALD method is preferable because it has excellent step coverage and is less likely to cause defects such as pinholes.
  • the display device 100 shown in FIGS. 1B and 1C can be manufactured.
  • the common electrode 113 and the EL layer 114 are formed so as to have different upper surface shapes is shown above, they may be formed in the same region so that the upper surface shapes match.
  • FIG. 4A shows a schematic cross-sectional view after removing the sacrificial layer in the above. Subsequently, as shown in FIG. 4B, the EL layer 114 and the common electrode 113 are formed with or without the same shielding mask. As a result, the manufacturing cost can be reduced as compared with the case where different shielding masks are used.
  • the connecting portion 130 has a configuration in which the EL layer 114 is sandwiched between the connecting electrode 111C and the common electrode 113.
  • a material having as low an electrical resistance as possible for the EL layer 114 it is preferable to use a material having as low an electrical resistance as possible for the EL layer 114.
  • an electron-injectable or hole-injectable material having a thickness of 1 nm or more and 5 nm or less, preferably 1 nm or more and 3 nm or less as the EL layer 114, the electric resistance between the connection electrode 111C and the common electrode 113 can be increased. In some cases, it can be made small enough to be ignored.
  • the protective layer 121 is formed.
  • the protective layer 121 is provided so as to cover the end portion of the common electrode 113 and the end portion of the EL layer 114.
  • impurities such as water and oxygen
  • the display device 100A shown in FIGS. 5A to 5D is mainly different from the display device 100 in that the shapes of the EL layer 114 and the common electrode 113 are different.
  • the EL layer 112R, the EL layer 114, and the common electrode 113 are separated between the two light emitting elements 110R in the cross section in the Y direction.
  • the EL layer 112R, the EL layer 114, and the common electrode 113 have an end portion at a portion overlapping the insulating layer 131.
  • the protective layer 121 is provided so as to cover the side surfaces of the EL layer 112R, the EL layer 114, and the common electrode 113 in a region overlapping the insulating layer 131.
  • a recess may be formed in a part of the upper surface of the insulating layer 131.
  • the protective layer 121 is provided in contact with the surface of the recess of the insulating layer 131. This is preferable because the contact area between the insulating layer 131 and the protective layer 121 is increased and the adhesion between them is improved.
  • the contours of the common electrode 113 and the EL layer 114 are shown by broken lines.
  • the common electrode 113 and the EL layer 114 each have a strip-shaped upper surface shape whose longitudinal direction is parallel to the X direction.
  • the EL layer 112R has an island-like shape.
  • the light emitting element 110G and the light emitting element 110B can have the same configuration.
  • FIG. 6A to 6D show schematic cross-sectional views in each step illustrated below.
  • the cross section corresponding to the alternate long and short dash line B3-B4 in FIG. 5A and the cross section corresponding to the alternate long and short dash line C3-C4 are shown side by side.
  • the formation of the common electrode 113 is performed in order (FIG. 6A).
  • a plurality of resist masks 143d are formed on the common electrode 113.
  • the resist mask 143d is formed so as to have a strip-shaped upper surface shape extending in the X direction.
  • the resist mask 143d is superimposed on the pixel electrode 111R. Further, the resist mask 143d is provided with an end portion on the insulating layer 131.
  • the portions of the common electrode 113, the EL layer 114, the EL layer 112R, the EL layer 112G (not shown), and the EL layer 112B (not shown) that are not covered by the resist mask 143d are removed by etching (FIG. 6C). ).
  • the common electrode 113 and the EL layer 114 which have been continuously provided so as to cover all the pixel electrodes, are separated by forming a slit by the etching, and the plurality of strip-shaped common electrodes 113 and the plurality of strip-shaped common electrodes 113 are separated.
  • the EL layer 114 is formed.
  • Etching is preferably performed by dry etching.
  • the common electrode 113, the EL layer 114, the EL layer 112R, and the like are continuously etched without being exposed to the atmosphere by switching the etching gas.
  • a part of the insulating layer 131 may be etched, and as shown in FIG. 6C, a recess may be formed in the upper part of the insulating layer 131.
  • the portion of the insulating layer 131 that is not covered by the resist mask 143d may be etched and divided into two.
  • the resist mask 143d is removed.
  • the resist mask 143d can be removed by wet etching or dry etching.
  • the protective layer 121 is formed (FIG. 6D).
  • the protective layer 121 is provided so as to cover the side surface of the common electrode 113, the side surface of the EL layer 114, and the side surface of the EL layer 112R. Further, the protective layer 121 is preferably provided in contact with the upper surface of the insulating layer 131.
  • a gap (also referred to as a gap, a space, etc.) 122 may be formed above the insulating layer 131.
  • the void 122 may be in a reduced pressure state or may be in an atmospheric pressure. Further, it may contain a gas such as air, nitrogen, or a noble gas, or a film-forming gas used for forming the protective layer 121.
  • the above is an explanation of an example of a method for manufacturing the display device 100A.
  • the resist mask 143d is directly formed on the common electrode 113 here, a film that functions as a hard mask may be provided on the common electrode 113.
  • a hard mask is formed using the resist mask 143d as a mask, and after removing the resist mask, the common electrode 113, the EL layer 114, the EL layer 112R, and the like can be etched using the hard mask as a mask. At this time, the hard mask may be removed or may remain.
  • [Modification 1] 7A and 7B show a schematic cross-sectional view of the display device 100B.
  • the top view of the display device 100B is the same as that in FIG. 1A.
  • FIG. 7A corresponds to a cross section in the X direction
  • FIG. 7B corresponds to a cross section in the Y direction.
  • the display device 100B is mainly different from the display device 100 in that it does not have the EL layer 114 which is a common layer.
  • the common electrode 113 is provided in contact with the upper surfaces of the EL layer 112R, the EL layer 112G, and the EL layer 112B.
  • the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B can have completely different laminated structures, and the choice of materials is increased, so that the degree of freedom in design can be increased. can.
  • the display device 100C shown in FIG. 7C is an example in which a slit extending in the X direction is formed in a region of the common electrode 113 that overlaps with the insulating layer 131, similarly to the display device 100A.
  • the protective layer 121 is provided in contact with the side surface of the common electrode 113, the side surface of the EL layer 112R, and the upper surface of the insulating layer 131.
  • the display device 100D shown in FIGS. 8A and 8B is mainly different from the display device 100 in that the configuration of the light emitting element is different.
  • the light emitting element 110R has an optical adjustment layer 115R between the pixel electrode 111R and the EL layer 112R.
  • the light emitting element 110G has an optical adjustment layer 115G between the pixel electrode 111G and the EL layer 112G.
  • the light emitting element 110B has an optical adjustment layer 115B between the pixel electrode 111B and the EL layer 112B.
  • optical adjustment layer 115R, the optical adjustment layer 115G, and the optical adjustment layer 115B each have translucency with respect to visible light.
  • the optical adjustment layer 115R, the optical adjustment layer 115G, and the optical adjustment layer 115B have different thicknesses. As a result, the optical path length can be made different for each light emitting element.
  • a conductive film having a reflective property with respect to visible light is used for the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B, and the common electrode 113 is conductive with a reflective property and a translucent property with respect to visible light.
  • a so-called microcavity structure is realized in each light emitting element, and light having a specific wavelength is strengthened. As a result, it is possible to realize a display device having improved color purity.
  • a conductive material having translucency with respect to visible light can be used.
  • conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, indium tin oxide containing silicon, and indium zinc oxide containing silicon can be used. ..
  • Each optical adjustment layer can be formed after the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B are formed, and before the EL film 112Rf or the like is formed.
  • Each optical adjustment layer may use a conductive film having a different thickness, or may have a single-layer structure, a two-layer structure, a three-layer structure, or the like in order from the thinnest one.
  • FIG. 8C shows a cross section of two light emitting elements 110G arranged side by side in the Y direction.
  • the display device 100F shown in FIGS. 9A and 9B is mainly different from the display device 100D in that it does not have an optical adjustment layer.
  • the display device 100F is an example in which a microcavity structure is realized by the thickness of the EL layer 112R, the EL layer 112G, and the EL layer 112B. With such a configuration, it is not necessary to separately provide an optical adjustment layer, so that the process can be simplified.
  • the EL layer 112R of the light emitting element 110R that emits the light having the longest wavelength is the thickest
  • the EL layer 112B of the light emitting element 110B that emits the light having the shortest wavelength is the thinnest.
  • the thickness of each EL layer can be adjusted in consideration of the wavelength of light emitted by each light emitting element, the optical characteristics of the layers constituting the light emitting element, the electrical characteristics of the light emitting element, and the like. ..
  • the display device 100G shown in FIG. 9C is an example in which the microcavity structure is realized by making the thickness of the EL layer of the display device 100A different.
  • FIG. 9C shows a cross section of two light emitting elements 110G arranged side by side in the Y direction.
  • the EL layer 114 is used in the second and third modifications, the EL layer 114 may not be provided.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • the display device of this embodiment can be a high-resolution display device or a large-scale display device. Therefore, the display device of the present embodiment includes, for example, a television device, a desktop or notebook type personal computer, a monitor for a computer, a digital signage, a large game machine such as a pachinko machine, or the like, and a relatively large screen. In addition to electronic devices, it can be used as a display unit of a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game machine, a smartphone, a wristwatch type terminal, a tablet terminal, a mobile information terminal, and a sound reproduction device.
  • FIG. 10 shows a perspective view of the display device 400A
  • FIG. 11A shows a cross-sectional view of the display device 400A.
  • the display device 400A has a configuration in which a substrate 452 and a substrate 451 are bonded together.
  • the substrate 452 is clearly indicated by a broken line.
  • the display device 400A has a display unit 462, a circuit 464, a wiring 465, and the like.
  • FIG. 10 shows an example in which IC473 and FPC472 are mounted on the display device 400A. Therefore, the configuration shown in FIG. 10 can be said to be a display module having a display device 400A, an IC (integrated circuit), and an FPC.
  • a scanning line drive circuit can be used.
  • the wiring 465 has a function of supplying signals and power to the display unit 462 and the circuit 464.
  • the signal and power are input to the wiring 465 from the outside via the FPC 472, or are input to the wiring 465 from the IC 473.
  • FIG. 10 shows an example in which the IC 473 is provided on the substrate 451 by the COG (Chip On Glass) method, the COF (Chip on Film) method, or the like.
  • the IC 473 an IC having, for example, a scanning line drive circuit or a signal line drive circuit can be applied.
  • the display device 400A and the display module may be configured not to be provided with an IC. Further, the IC may be mounted on the FPC by the COF method or the like.
  • FIG. 11A shows an example of a cross section of the display device 400A when a part of the region including the FPC 472, a part of the circuit 464, a part of the display unit 462, and a part of the region including the end are cut. show.
  • the display device 400A shown in FIG. 11A has a transistor 201, a transistor 205, a light emitting element 430a that emits red light, a light emitting element 430b that emits green light, and a light emitting element that emits blue light between the substrate 451 and the substrate 452. It has an element 430c and the like.
  • the light emitting element exemplified in the first embodiment can be applied to the light emitting element 430a, the light emitting element 430b, and the light emitting element 430c.
  • the three sub-pixels include sub-pixels of three colors R, G, and B, and yellow (Y). , Cyan (C), and magenta (M) three-color sub-pixels and the like.
  • examples of the four sub-pixels include sub-pixels of four colors of R, G, B, and white (W), and sub-pixels of four colors of R, G, B, and Y. Be done.
  • the protective layer 416 and the substrate 452 are adhered to each other via the adhesive layer 442.
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to seal the light emitting element.
  • the substrate 452, the adhesive layer 442, and the space 443 surrounded by the substrate 451 are filled with an inert gas (nitrogen, argon, etc.), and a hollow sealing structure is applied.
  • the adhesive layer 442 may be provided so as to overlap with the light emitting element. Further, the space 443 surrounded by the substrate 452, the adhesive layer 442, and the substrate 451 may be filled with a resin different from that of the adhesive layer 442.
  • the light emitting elements 430a, 430b, and 430c have an optical adjustment layer between the pixel electrode and the EL layer.
  • the light emitting element 430a has an optical adjustment layer 426a
  • the light emitting element 430b has an optical adjustment layer 426b
  • the light emitting element 430c has an optical adjustment layer 426c.
  • the first embodiment can be referred to for the details of the light emitting element.
  • the pixel electrodes 411a, 411b, and 411c are each connected to the conductive layer 222b of the transistor 205 via an opening provided in the insulating layer 214.
  • the edges of the pixel electrode and the optical adjustment layer are covered with the insulating layer 421.
  • the pixel electrode contains a material that reflects visible light
  • the counter electrode (common electrode) contains a material that transmits visible light.
  • the light emitted by the light emitting element is emitted to the substrate 452 side. It is preferable to use a material having high transparency to visible light for the substrate 452.
  • Both the transistor 201 and the transistor 205 are formed on the substrate 451. These transistors can be manufactured by the same material and the same process.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided on the substrate 451 in this order.
  • a part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • a part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • the insulating layer 215 is provided so as to cover the transistor.
  • the insulating layer 214 is provided so as to cover the transistor and has a function as a flattening layer.
  • the number of gate insulating layers and the number of insulating layers covering the transistors are not limited, and may be a single layer or two or more layers, respectively.
  • the insulating layer can function as a barrier layer.
  • an inorganic insulating film as the insulating layer 211, the insulating layer 213, and the insulating layer 215, respectively.
  • an inorganic insulating film for example, a silicon nitride film, a silicon nitride film, a silicon oxide film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film and the like may be used. Further, two or more of the above-mentioned insulating films may be laminated and used.
  • the organic insulating film often has a lower barrier property than the inorganic insulating film. Therefore, the organic insulating film preferably has an opening near the end of the display device 400A. As a result, it is possible to prevent impurities from entering from the end of the display device 400A via the organic insulating film.
  • the organic insulating film may be formed so that the end portion of the organic insulating film is inside the end portion of the display device 400A so that the organic insulating film is not exposed at the end portion of the display device 400A.
  • An organic insulating film is suitable for the insulating layer 214 that functions as a flattening layer.
  • the material that can be used for the organic insulating film include acrylic resin, polyimide resin, epoxy resin, polyamide resin, polyimideamide resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins. ..
  • an opening is formed in the insulating layer 214.
  • an organic insulating film is used for the insulating layer 214, it is possible to prevent impurities from entering the display unit 462 from the outside via the insulating layer 214. Therefore, the reliability of the display device 400A can be improved.
  • the transistors 201 and 205 include a conductive layer 221 that functions as a gate, an insulating layer 211 that functions as a gate insulating layer, a conductive layer 222a and a conductive layer 222b that function as sources and drains, a semiconductor layer 231 and an insulation that functions as a gate insulating layer. It has a layer 213 and a conductive layer 223 that functions as a gate. Here, the same hatching pattern is attached to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231.
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231.
  • the structure of the transistor included in the display device of this embodiment is not particularly limited.
  • a planar type transistor, a stagger type transistor, an inverted stagger type transistor and the like can be used.
  • a top gate type or a bottom gate type transistor structure may be used.
  • gates may be provided above and below the semiconductor layer on which the channel is formed.
  • a configuration in which a semiconductor layer on which a channel is formed is sandwiched between two gates is applied to the transistor 201 and the transistor 205.
  • the transistor may be driven by connecting two gates and supplying the same signal to them.
  • the threshold voltage of the transistor may be controlled by giving a potential for controlling the threshold voltage to one of the two gates and giving a potential for driving to the other.
  • the crystallinity of the semiconductor material used for the transistor is also not particularly limited, and an amorphous semiconductor, a single crystal semiconductor, or a semiconductor having a crystallinity other than a single crystal (microcrystalline semiconductor, polycrystalline semiconductor, or a partially crystalline region) is provided. Any of the semiconductors) may be used. It is preferable to use a single crystal semiconductor or a semiconductor having crystallinity because deterioration of transistor characteristics can be suppressed.
  • the semiconductor layer of the transistor preferably has a metal oxide (also referred to as an oxide semiconductor). That is, it is preferable that the display device of the present embodiment uses a transistor (hereinafter, OS transistor) in which a metal oxide is used in the channel forming region.
  • OS transistor a transistor
  • the semiconductor layer of the transistor may have silicon. Examples of silicon include amorphous silicon and crystalline silicon (low temperature polysilicon, single crystal silicon, etc.).
  • the semiconductor layers include, for example, indium and M (M is gallium, aluminum, silicon, boron, ittrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, etc. It is preferable to have one or more selected from hafnium, tantalum, tungsten, and magnesium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) also referred to as IGZO
  • IGZO oxide containing indium (In), gallium (Ga), and zinc (Zn)
  • the atomic number ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic number ratio of M.
  • the transistor included in the circuit 464 and the transistor included in the display unit 462 may have the same structure or different structures.
  • the structures of the plurality of transistors included in the circuit 464 may all be the same, or there may be two or more types.
  • the structures of the plurality of transistors included in the display unit 462 may all be the same, or there may be two or more types.
  • a connecting portion 204 is provided in a region of the substrate 451 where the substrates 452 do not overlap.
  • the wiring 465 is electrically connected to the FPC 472 via the conductive layer 466 and the connection layer 242.
  • the conductive layer 466 shows an example in which the conductive film obtained by processing the same conductive film as the pixel electrode and the conductive film obtained by processing the same conductive film as the optical adjustment layer have a laminated structure. ..
  • the conductive layer 466 is exposed on the upper surface of the connecting portion 204. As a result, the connection portion 204 and the FPC 472 can be electrically connected via the connection layer 242.
  • a light-shielding layer 417 on the surface of the substrate 452 on the substrate 451 side.
  • various optical members can be arranged on the outside of the substrate 452. Examples of the optical member include a polarizing plate, a retardation plate, a light diffusing layer (diffusing film, etc.), an antireflection layer, a condensing film, and the like.
  • an antistatic film for suppressing the adhesion of dust, a water-repellent film for preventing the adhesion of dirt, a hard coat film for suppressing the occurrence of scratches due to use, a shock absorbing layer and the like are arranged. You may.
  • the protective layer 416 that covers the light emitting element By providing the protective layer 416 that covers the light emitting element, it is possible to suppress the entry of impurities such as water into the light emitting element and improve the reliability of the light emitting element.
  • the insulating layer 215 and the protective layer 416 are in contact with each other through the opening of the insulating layer 214.
  • the inorganic insulating film of the insulating layer 215 and the inorganic insulating film of the protective layer 416 are in contact with each other.
  • FIG. 11B shows an example in which the protective layer 416 has a three-layer structure.
  • the protective layer 416 has an inorganic insulating layer 416a on the light emitting element 430c, an organic insulating layer 416b on the inorganic insulating layer 416a, and an inorganic insulating layer 416c on the organic insulating layer 416b.
  • the end of the inorganic insulating layer 416a and the end of the inorganic insulating layer 416c extend outward from the end of the organic insulating layer 416b and are in contact with each other. Then, the inorganic insulating layer 416a comes into contact with the insulating layer 215 (inorganic insulating layer) through the opening of the insulating layer 214 (organic insulating layer). As a result, the light emitting element can be surrounded by the insulating layer 215 and the protective layer 416, so that the reliability of the light emitting element can be improved.
  • the protective layer 416 may have a laminated structure of an organic insulating film and an inorganic insulating film. At this time, it is preferable that the end portion of the inorganic insulating film extends outward rather than the end portion of the organic insulating film.
  • Glass, quartz, ceramic, sapphire, resin, metal, alloy, semiconductor, etc. can be used for the substrate 451 and the substrate 452, respectively.
  • a material that transmits the light is used for the substrate on the side that extracts the light from the light emitting element.
  • a flexible material is used for the substrate 451 and the substrate 452, the flexibility of the display device can be increased.
  • a polarizing plate may be used as the substrate 451 or the substrate 452.
  • the substrates 451 and 452 include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyethers, respectively.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyacrylonitrile resins acrylic resins
  • acrylic resins polyimide resins
  • PC polymethyl methacrylate resins
  • PC polycarbonate
  • polyethers polyethers
  • Sulfonate (PES) resin polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofibers and the like can be used.
  • PES Sulfonate
  • polyamide resin nylon, aramid, etc.
  • polysiloxane resin cycloolefin resin
  • polystyrene resin polyamideimide resin
  • polyurethane resin polyvinyl chloride resin
  • polyvinylidene chloride resin polypropylene resin
  • PTFE polytetrafluoroethylene
  • ABS resin polytetrafluoroethylene
  • a substrate having high optical isotropic properties has a small amount of birefringence (it can be said that the amount of birefringence is small).
  • the absolute value of the retardation (phase difference) value of the substrate having high optical isotropic properties is preferably 30 nm or less, more preferably 20 nm or less, still more preferably 10 nm or less.
  • the film having high optical isotropic properties examples include a triacetyl cellulose (TAC, also referred to as cellulose triacetate) film, a cycloolefin polymer (COP) film, a cycloolefin copolymer (COC) film, and an acrylic film.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • the film when a film is used as the substrate, the film absorbs water, which may cause shape changes such as wrinkles on the display panel. Therefore, it is preferable to use a film having a low water absorption rate as the substrate. For example, it is preferable to use a film having a water absorption rate of 1% or less, more preferably a film having a water absorption rate of 0.1% or less, and further preferably using a film having a water absorption rate of 0.01% or less.
  • various curable adhesives such as a photocurable adhesive such as an ultraviolet curable type, a reaction curable type adhesive, a thermosetting type adhesive, and an anaerobic type adhesive can be used.
  • these adhesives include epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin and the like.
  • a material having low moisture permeability such as epoxy resin is preferable.
  • a two-component mixed type resin may be used.
  • an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Connective Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Connective Paste
  • Materials that can be used for conductive layers such as transistor gates, sources and drains, as well as various wirings and electrodes that make up display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, and silver. Examples thereof include metals such as titanium and tungsten, and alloys containing the metal as a main component. A film containing these materials can be used as a single layer or as a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene can be used.
  • a metal material such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or an alloy material containing the metal material can be used.
  • a nitride of the metal material for example, titanium nitride
  • the laminated film of the above material can be used as the conductive layer.
  • a laminated film of an alloy of silver and magnesium and an indium tin oxide because the conductivity can be enhanced.
  • These can also be used for conductive layers such as various wirings and electrodes constituting the display device, and conductive layers (conductive layers that function as pixel electrodes or common electrodes) of the light emitting element.
  • Examples of the insulating material that can be used for each insulating layer include resins such as acrylic resin and epoxy resin, and inorganic insulating materials such as silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
  • FIG. 12A shows a cross-sectional view of the display device 400B.
  • the perspective view of the display device 400B is the same as that of the display device 400A (FIG. 10).
  • FIG. 12A shows an example of a cross section of the display device 400B when a part of the region including the FPC 472, a part of the circuit 464, and a part of the display unit 462 are cut.
  • FIG. 12A shows an example of a cross section of the display unit 462 when a region including a light emitting element 430b that emits green light and a light emitting element 430c that emits blue light is cut.
  • the description of the same part as that of the display device 400A may be omitted.
  • the display device 400B shown in FIG. 12A has a transistor 202, a transistor 210, a light emitting element 430b, a light emitting element 430c, and the like between the substrate 453 and the substrate 454.
  • the substrate 454 and the protective layer 416 are adhered to each other via the adhesive layer 442.
  • the adhesive layer 442 is provided so as to overlap the light emitting element 430b and the light emitting element 430c, respectively, and a solid-state sealing structure is applied to the display device 400B.
  • the substrate 453 and the insulating layer 212 are bonded to each other by an adhesive layer 455.
  • a manufacturing substrate provided with an insulating layer 212, each transistor, each light emitting element, and the like and a substrate 454 provided with a light-shielding layer 417 are bonded together by an adhesive layer 442. Then, by peeling off the production substrate and attaching the substrate 453 to the exposed surface, each component formed on the production substrate is transposed to the substrate 453. It is preferable that the substrate 453 and the substrate 454 have flexibility, respectively. Thereby, the flexibility of the display device 400B can be increased.
  • an inorganic insulating film that can be used for the insulating layer 211, the insulating layer 213, and the insulating layer 215 can be used, respectively.
  • the pixel electrode is connected to the conductive layer 222b of the transistor 210 via an opening provided in the insulating layer 214.
  • the conductive layer 222b is connected to the low resistance region 231n via the openings provided in the insulating layer 215 and the insulating layer 225.
  • the transistor 210 has a function of controlling the drive of the light emitting element.
  • the end of the pixel electrode is covered with an insulating layer 421.
  • the light emitted by the light emitting elements 430b and 430c is emitted to the substrate 454 side. It is preferable to use a material having high transparency to visible light for the substrate 454.
  • a connecting portion 204 is provided in a region of the substrate 453 where the substrates 454 do not overlap.
  • the wiring 465 is electrically connected to the FPC 472 via the conductive layer 466 and the connection layer 242.
  • the conductive layer 466 can be obtained by processing the same conductive film as the pixel electrode. As a result, the connection portion 204 and the FPC 472 can be electrically connected via the connection layer 242.
  • the transistor 202 and the transistor 210 include a conductive layer 221 that functions as a gate, an insulating layer 211 that functions as a gate insulating layer, a semiconductor layer having a channel forming region 231i and a pair of low resistance regions 231n, and one of a pair of low resistance regions 231n.
  • the insulating layer 211 is located between the conductive layer 221 and the channel forming region 231i.
  • the insulating layer 225 is located between the conductive layer 223 and the channel forming region 231i.
  • the conductive layer 222a and the conductive layer 222b are each connected to the low resistance region 231n via an opening provided in the insulating layer 215.
  • the conductive layer 222a and the conductive layer 222b one functions as a source and the other functions as a drain.
  • FIG. 12A shows an example in which the insulating layer 225 covers the upper surface and the side surface of the semiconductor layer.
  • the conductive layer 222a and the conductive layer 222b are connected to the low resistance region 231n via openings provided in the insulating layer 225 and the insulating layer 215, respectively.
  • the insulating layer 225 overlaps with the channel forming region 231i of the semiconductor layer 231 and does not overlap with the low resistance region 231n.
  • the structure shown in FIG. 12B can be produced by processing the insulating layer 225 using the conductive layer 223 as a mask.
  • the insulating layer 215 is provided so as to cover the insulating layer 225 and the conductive layer 223, and the conductive layer 222a and the conductive layer 222b are connected to the low resistance region 231n, respectively, through the openings of the insulating layer 215.
  • an insulating layer 218 may be provided to cover the transistor.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • the display device of this embodiment can be a high-definition display device. Therefore, the display device of the present embodiment can be attached to the head of, for example, an information terminal (wearable device) such as a wristwatch type or a bracelet type, a device for VR such as a head-mounted display, or a device for AR of a glasses type. It can be used as a display unit of a wearable device that can be worn.
  • an information terminal wearable device
  • VR such as a head-mounted display
  • AR of a glasses type a device for AR of a glasses type.
  • FIG. 13A shows a perspective view of the display module 280.
  • the display module 280 includes a display device 400C and an FPC 290.
  • the display device included in the display module 280 is not limited to the display device 400C, and may be the display device 400D or the display device 400E described later.
  • the display module 280 has a substrate 291 and a substrate 292.
  • the display module 280 has a display unit 281.
  • the display unit 281 is an area for displaying an image in the display module 280, and is an area in which light from each pixel provided in the pixel unit 284, which will be described later, can be visually recognized.
  • FIG. 13B shows a perspective view schematically showing the configuration on the substrate 291 side.
  • a circuit unit 282, a pixel circuit unit 283 on the circuit unit 282, and a pixel unit 284 on the pixel circuit unit 283 are laminated on the substrate 291.
  • a terminal portion 285 for connecting to the FPC 290 is provided in a portion of the substrate 291 that does not overlap with the pixel portion 284.
  • the terminal portion 285 and the circuit portion 282 are electrically connected by a wiring portion 286 composed of a plurality of wirings.
  • the pixel unit 284 has a plurality of pixels 284a arranged periodically. An enlarged view of one pixel 284a is shown on the right side of FIG. 13B.
  • the pixel 284a has light emitting elements 430a, 430b, and 430c having different emission colors.
  • the plurality of light emitting elements may be arranged in a striped arrangement as shown in FIG. 13B. Since the stripe arrangement can arrange the pixel circuits at high density, it is possible to provide a high-definition display device. In addition, various arrangement methods such as a delta arrangement and a pentile arrangement can be applied.
  • the pixel circuit unit 283 has a plurality of pixel circuits 283a arranged periodically.
  • One pixel circuit 283a is a circuit that controls light emission of three light emitting elements possessed by one pixel 284a.
  • the one pixel circuit 283a may be configured to be provided with three circuits for controlling the light emission of one light emitting element.
  • the pixel circuit 283a can have at least one selection transistor, one current control transistor (drive transistor), and a capacitance element for each light emitting element. At this time, a gate signal is input to the gate of the selection transistor, and a source signal is input to one of the source and drain. As a result, an active matrix type display device is realized.
  • the circuit unit 282 has a circuit for driving each pixel circuit 283a of the pixel circuit unit 283.
  • a gate line drive circuit and a source line drive circuit.
  • it may have at least one of an arithmetic circuit, a memory circuit, a power supply circuit, and the like.
  • the FPC 290 functions as wiring for supplying a video signal, a power supply potential, or the like to the circuit unit 282 from the outside. Further, the IC may be mounted on the FPC 290.
  • the aperture ratio (effective display area ratio) of the display unit 281 is extremely high.
  • the aperture ratio of the display unit 281 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, and more preferably 60% or more and 95% or less.
  • the pixels 284a can be arranged at an extremely high density, and the definition of the display unit 281 can be extremely high.
  • pixels 284a may be arranged with a fineness of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, still more preferably 6000 ppi or more, 20000 ppi or less, or 30000 ppi or less. preferable.
  • a display module 280 has extremely high definition, it can be suitably used for a device for VR such as a head-mounted display or a device for glasses-type AR. For example, even in the case of a configuration in which the display unit of the display module 280 is visually recognized through the lens, since the display module 280 has an extremely high-definition display unit 281, the pixels are not visually recognized even if the display unit is enlarged by the lens. , A highly immersive display can be performed. Further, the display module 280 is not limited to this, and can be suitably used for an electronic device having a relatively small display unit. For example, it can be suitably used for a display unit of a wearable electronic device such as a wristwatch type device.
  • Display device 400C The display device 400C shown in FIG. 14 includes a substrate 301, light emitting elements 430a, 430b, 430c, a capacitance 240, and a transistor 310.
  • the substrate 301 corresponds to the substrate 291 in FIGS. 13A and 13B.
  • the laminated structure 401 from the substrate 301 to the insulating layer 255 corresponds to the substrate 101 in the first embodiment.
  • the transistor 310 is a transistor having a channel forming region on the substrate 301.
  • a semiconductor substrate such as a single crystal silicon substrate can be used.
  • the transistor 310 has a part of the substrate 301, a conductive layer 311, a low resistance region 312, an insulating layer 313, and an insulating layer 314.
  • the conductive layer 311 functions as a gate electrode.
  • the insulating layer 313 is located between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer.
  • the low resistance region 312 is a region where the substrate 301 is doped with impurities and functions as either a source or a drain.
  • the insulating layer 314 is provided so as to cover the side surface of the conductive layer 311 and functions as an insulating layer.
  • an element separation layer 315 is provided between two adjacent transistors 310 so as to be embedded in the substrate 301.
  • an insulating layer 261 is provided so as to cover the transistor 310, and a capacity 240 is provided on the insulating layer 261.
  • the capacity 240 has a conductive layer 241 and a conductive layer 245, and an insulating layer 243 located between them.
  • the conductive layer 241 functions as one electrode of the capacity 240
  • the conductive layer 245 functions as the other electrode of the capacity 240
  • the insulating layer 243 functions as a dielectric of the capacity 240.
  • the conductive layer 241 is provided on the insulating layer 261 and is embedded in the insulating layer 254.
  • the conductive layer 241 is electrically connected to either the source or the drain of the transistor 310 by a plug 271 embedded in the insulating layer 261.
  • the insulating layer 243 is provided so as to cover the conductive layer 241.
  • the conductive layer 245 is provided in a region overlapping the conductive layer 241 via an insulating layer 243.
  • An insulating layer 255 is provided so as to cover the capacity 240, and light emitting elements 430a, 430b, 430c and the like are provided on the insulating layer 255.
  • a protective layer 416 is provided on the light emitting elements 430a, 430b, and 430c, and a substrate 420 is bonded to the upper surface of the protective layer 416 by a resin layer 419.
  • the substrate 420 corresponds to the substrate 292 in FIG. 13A.
  • the pixel electrodes of the light emitting element are electrically connected to one of the source or drain of the transistor 310 by the plug 256 embedded in the insulating layer 255, the conductive layer 241 embedded in the insulating layer 254, and the plug 271 embedded in the insulating layer 261. Is connected.
  • Display device 400D The display device 400D shown in FIG. 15 is mainly different from the display device 400C in that the transistor configuration is different. The description of the same part as that of the display device 400C may be omitted.
  • the transistor 320 is a transistor in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer on which a channel is formed.
  • a metal oxide also referred to as an oxide semiconductor
  • the transistor 320 has a semiconductor layer 321, an insulating layer 323, a conductive layer 324, a pair of conductive layers 325, an insulating layer 326, and a conductive layer 327.
  • the substrate 331 corresponds to the substrate 291 in FIGS. 13A and 13B.
  • the laminated structure 401 from the substrate 331 to the insulating layer 255 corresponds to the substrate 101.
  • An insulating layer 332 is provided on the substrate 331.
  • the insulating layer 332 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 331 into the transistor 320 and oxygen from being desorbed from the semiconductor layer 321 to the insulating layer 332.
  • a film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, in which hydrogen or oxygen is less likely to diffuse than the silicon oxide film, can be used.
  • a conductive layer 327 is provided on the insulating layer 332, and an insulating layer 326 is provided so as to cover the conductive layer 327.
  • the conductive layer 327 functions as a first gate electrode of the transistor 320, and a part of the insulating layer 326 functions as a first gate insulating layer. It is preferable to use an oxide insulating film such as a silicon oxide film for at least a portion of the insulating layer 326 in contact with the semiconductor layer 321.
  • the upper surface of the insulating layer 326 is preferably flattened.
  • the semiconductor layer 321 is provided on the insulating layer 326.
  • the semiconductor layer 321 preferably has a metal oxide (also referred to as an oxide semiconductor) film having semiconductor characteristics. Details of the materials that can be suitably used for the semiconductor layer 321 will be described later.
  • the pair of conductive layers 325 are provided in contact with the semiconductor layer 321 and function as a source electrode and a drain electrode.
  • an insulating layer 328 is provided so as to cover the upper and side surfaces of the pair of conductive layers 325 and the side surfaces of the semiconductor layer 321 and the like, and the insulating layer 264 is provided on the insulating layer 328.
  • the insulating layer 328 functions as a barrier layer that prevents impurities such as water and hydrogen from diffusing from the insulating layer 264 and the like into the semiconductor layer 321 and oxygen from being desorbed from the semiconductor layer 321.
  • the same insulating film as the insulating layer 332 can be used as the insulating layer 332.
  • the insulating layer 328 and the insulating layer 264 are provided with openings that reach the semiconductor layer 321. Inside the opening, the insulating layer 264, the insulating layer 328, the side surfaces of the conductive layer 325, the insulating layer 323 in contact with the upper surface of the semiconductor layer 321 and the conductive layer 324 are embedded.
  • the conductive layer 324 functions as a second gate electrode, and the insulating layer 323 functions as a second gate insulating layer.
  • the upper surface of the conductive layer 324, the upper surface of the insulating layer 323, and the upper surface of the insulating layer 264 are flattened so that their heights are substantially the same, and the insulating layer 329 and the insulating layer 265 are provided to cover them. ..
  • the insulating layer 264 and the insulating layer 265 function as an interlayer insulating layer.
  • the insulating layer 329 functions as a barrier layer that prevents impurities such as water and hydrogen from diffusing from the insulating layer 265 and the like into the transistor 320.
  • the same insulating film as the insulating layer 328 and the insulating layer 332 can be used.
  • the plug 274 that is electrically connected to one of the pair of conductive layers 325 is provided so as to be embedded in the insulating layer 265, the insulating layer 329, and the insulating layer 264.
  • the plug 274 is a conductive layer 274a that covers a part of the side surface of each opening of the insulating layer 265, the insulating layer 329, the insulating layer 264, and the insulating layer 328, and a part of the upper surface of the conductive layer 325, and the conductive layer 274a. It is preferable to have a conductive layer 274b in contact with the upper surface. At this time, it is preferable to use a conductive material as the conductive layer 274a, which is difficult for hydrogen and oxygen to diffuse.
  • the configuration of the insulating layer 254 to the substrate 420 in the display device 400D is the same as that of the display device 400C.
  • Display device 400E The display device 400E shown in FIG. 16 has a configuration in which a transistor 310 having a channel formed on the substrate 301 and a transistor 320 containing a metal oxide are laminated on a semiconductor layer on which the channel is formed. The description of the same parts as those of the display devices 400C and 400D may be omitted.
  • An insulating layer 261 is provided so as to cover the transistor 310, and a conductive layer 251 is provided on the insulating layer 261. Further, an insulating layer 262 is provided so as to cover the conductive layer 251, and a conductive layer 252 is provided on the insulating layer 262. The conductive layer 251 and the conductive layer 252 each function as wiring. Further, an insulating layer 263 and an insulating layer 332 are provided so as to cover the conductive layer 252, and a transistor 320 is provided on the insulating layer 332. Further, an insulating layer 265 is provided so as to cover the transistor 320, and a capacity 240 is provided on the insulating layer 265. The capacitance 240 and the transistor 320 are electrically connected by a plug 274.
  • the transistor 320 can be used as a transistor constituting a pixel circuit. Further, the transistor 310 can be used as a transistor constituting a pixel circuit or a transistor constituting a drive circuit (gate line drive circuit, source line drive circuit) for driving the pixel circuit. Further, the transistor 310 and the transistor 320 can be used as transistors constituting various circuits such as an arithmetic circuit or a storage circuit.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • the light emitting element has an EL layer 23 between a pair of electrodes (electrode 21, electrode 25).
  • the EL layer 23 can be composed of a plurality of layers such as layer 4420, light emitting layer 4411, and layer 4430.
  • the layer 4420 can include, for example, a layer containing a substance having a high electron injectability (electron injection layer) and a layer containing a substance having a high electron transport property (electron transport layer).
  • the light emitting layer 4411 has, for example, a luminescent compound.
  • the layer 4430 can have, for example, a layer containing a substance having a high hole injection property (hole injection layer) and a layer containing a substance having a high hole transport property (hole transport layer).
  • a configuration having a layer 4420, a light emitting layer 4411 and a layer 4430 provided between a pair of electrodes can function as a single light emitting unit, and the configuration of FIG. 17A is referred to as a single structure in the present specification.
  • FIG. 17B is a modification of the EL layer 23 included in the light emitting element 20 shown in FIG. 17A.
  • the light emitting element 20 shown in FIG. 17B includes a layer 4430-1 on the lower electrode 21, a layer 4430-2 on the layer 4430-1, a light emitting layer 4411 on the layer 4430-2, and a light emitting layer. It has a layer 4420-1 on the 4411, a layer 4420-2 on the layer 4420-1 and an upper electrode 25 on the layer 4420-2.
  • the layer 4430-1 functions as a hole injection layer
  • the layer 4430-2 functions as a hole transport layer
  • the layer 4420-1 is an electron. It functions as a transport layer
  • layer 4420-2 functions as an electron injection layer.
  • the layer 4430-1 functions as an electron injection layer
  • the layer 4430-2 functions as an electron transport layer
  • the layer 4420-1 functions as a hole transport layer. It functions as a layer
  • layer 4420-2 functions as a hole injection layer.
  • a configuration in which a plurality of light emitting layers (light emitting layers 4411, 4412, 4413) are provided between the layer 4420 and the layer 4430 is also a variation of the single structure.
  • tandem structure a configuration in which a plurality of light emitting units (EL layers 23a and 23b) are connected in series via an intermediate layer (charge generation layer) 4440 is referred to as a tandem structure in the present specification.
  • the structure shown in FIG. 17D is referred to as a tandem structure, but the structure is not limited to this, and for example, the tandem structure may be referred to as a stack structure.
  • the tandem structure makes it possible to obtain a light emitting element capable of high-luminance light emission.
  • the layer 4420 and the layer 4430 may have a laminated structure composed of two or more layers.
  • SBS Side By Side
  • the power consumption can be reduced in the order of the SBS structure, the tandem structure, and the single structure.
  • the single structure and the tandem structure are suitable because the manufacturing process is simpler than the SBS structure, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
  • the emission color of the light emitting element can be red, green, blue, cyan, magenta, yellow, white, or the like, depending on the material constituting the EL layer 23. Further, the color purity can be further improved by imparting a microcavity structure to the light emitting element.
  • the light emitting element that emits white light has a structure in which the light emitting layer contains two or more kinds of light emitting substances.
  • a light emitting substance may be selected so that the light emission of each of the two or more light emitting substances has a complementary color relationship. For example, by making the emission color of the first light emitting layer and the emission color of the second light emitting layer have a complementary color relationship, it is possible to obtain a light emitting element that emits white light as the entire light emitting element. The same applies to a light emitting element having three or more light emitting layers.
  • the light emitting layer preferably contains two or more light emitting substances such as R (red), G (green), B (blue), Y (yellow), and O (orange).
  • the substance has two or more luminescent substances, and the luminescence of each luminescent substance contains spectral components of two or more colors among R, G, and B.
  • the light emitting element has at least a light emitting layer. Further, as a layer other than the light emitting layer, the light emitting element includes a substance having a high hole injecting property, a substance having a high hole transporting property, a hole blocking material, a substance having a high electron transporting property, an electron blocking material, and a substance having a high electron injecting property. It may further have a layer containing a substance, a bipolar substance (a substance having high electron transport property and hole transport property), and the like.
  • Either a low molecular weight compound or a high molecular weight compound can be used as the light emitting device, and an inorganic compound may be contained.
  • the layers constituting the light emitting device can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the light emitting device can be configured to have one or more of a hole injection layer, a hole transport layer, a hole block layer, an electron block layer, an electron transport layer, and an electron injection layer.
  • the hole injection layer is a layer that injects holes from the anode into the hole transport layer, and is a layer that contains a material having high hole injection properties.
  • the material having high hole injectability include an aromatic amine compound and a composite material containing a hole transporting material and an acceptor material (electron accepting material).
  • the hole transport layer is a layer that transports holes injected from the anode to the light emitting layer by the hole injection layer.
  • the hole transport layer is a layer containing a hole transport material.
  • a hole transporting material a substance having a hole mobility of 1 ⁇ 10-6 cm 2 / Vs or more is preferable. In addition, any substance other than these can be used as long as it is a substance having a higher hole transport property than electrons.
  • the hole-transporting material include materials having high hole-transporting properties such as ⁇ -electron-rich heteroaromatic compounds (for example, carbazole derivatives, thiophene derivatives, furan derivatives, etc.) and aromatic amines (compounds having an aromatic amine skeleton). Is preferable.
  • the electron transport layer is a layer that transports electrons injected from the cathode to the light emitting layer by the electron injection layer.
  • the electron transport layer is a layer containing an electron transport material.
  • As the electron transporting material a substance having an electron mobility of 1 ⁇ 10-6 cm 2 / Vs or more is preferable. In addition, any substance other than these can be used as long as it is a substance having a higher electron transport property than holes.
  • Examples of the electron-transporting material include a metal complex having a quinoline skeleton, a metal complex having a benzoquinolin skeleton, a metal complex having an oxazole skeleton, a metal complex having a thiazole skeleton, and the like, as well as oxadiazole derivatives, triazole derivatives, and imidazole derivatives.
  • ⁇ electron deficiency including oxazole derivative, thiazole derivative, phenanthroline derivative, quinoline derivative having quinoline ligand, benzoquinoline derivative, quinoxalin derivative, dibenzoquinoxaline derivative, pyridine derivative, bipyridine derivative, pyrimidine derivative, and other nitrogen-containing heteroarocyclic compounds
  • a material having high electron transport property such as a type heteroarocyclic compound can be used.
  • the electron injection layer is a layer for injecting electrons from the cathode into the electron transport layer, and is a layer containing a material having high electron injectability.
  • a material having high electron injectability an alkali metal, an alkaline earth metal, or a compound thereof can be used.
  • a composite material containing an electron transporting material and a donor material (electron donating material) can also be used.
  • Examples of the electron injection layer include lithium, cesium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), 8- (quinolinolato) lithium (abbreviation: Liq), 2- (2). -Pyridyl) phenolatrithium (abbreviation: LiPP), 2- (2-pyridyl) -3-pyridinolatolithium (abbreviation: LiPPy), 4-phenyl-2- (2-pyridyl) phenolatrithium (abbreviation: LiPPP) , Lithium oxide (LiO x ), alkali metals such as cesium carbonate, alkaline earth metals, or compounds thereof can be used.
  • a material having electron transportability may be used as the above-mentioned electron injection layer.
  • a compound having an unshared electron pair and an electron-deficient heteroaromatic ring can be used as a material having electron transportability.
  • a compound having at least one of a pyridine ring, a diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and a triazine ring can be used.
  • the minimum empty orbital (LUMO: Lowest Unellad Molecular Orbital) of the organic compound having an unshared electron pair is -3.6 eV or more and -2.3 eV or less.
  • the highest occupied orbital (HOMO: highest occupied molecular orbital) level and LUMO level of an organic compound are determined by CV (cyclic voltammetry), photoelectron spectroscopy, photoabsorption spectroscopy, backlit electron spectroscopy, etc. Can be estimated.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline
  • diquinoxalino [2,3-a: 2', 3'-c] Phenazine (abbreviation: HATNA), 2,4,6-tris [3'-(pyridin-3-yl) biphenyl-3-yl] -1,3 , 5-Triazine (abbreviation: TmPPPyTZ) and the like can be used for organic compounds having unshared electron pairs.
  • Tg glass transition temperature
  • Tg glass transition temperature
  • the light emitting layer is a layer containing a light emitting substance.
  • the light emitting layer can have one or more kinds of light emitting substances.
  • a substance exhibiting a luminescent color such as blue, purple, bluish purple, green, yellowish green, yellow, orange, and red is appropriately used. Further, as the luminescent substance, a substance that emits near-infrared light can also be used.
  • luminescent substances include fluorescent materials, phosphorescent materials, TADF materials, quantum dot materials, and the like.
  • fluorescent material examples include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxalin derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, naphthalene derivatives and the like. Be done.
  • an organic metal complex having a 4H-triazole skeleton, a 1H-triazole skeleton, an imidazole skeleton, a pyrimidine skeleton, a pyrazine skeleton, or a pyridine skeleton (particularly an iridium complex), or a phenylpyridine derivative having an electron-withdrawing group is arranged.
  • examples thereof include an organic metal complex (particularly an iridium complex), a platinum complex, and a rare earth metal complex as a ligand.
  • the light emitting layer may have one or more kinds of organic compounds (host material, assist material, etc.) in addition to the light emitting substance (guest material).
  • organic compounds host material, assist material, etc.
  • guest material As one or more kinds of organic compounds, one or both of a hole transporting material and an electron transporting material can be used. Further, a bipolar material or a TADF material may be used as one or more kinds of organic compounds.
  • the light emitting layer preferably has, for example, a phosphorescent material and a hole transporting material and an electron transporting material which are combinations that easily form an excitation complex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an excitation complex that emits light that overlaps the wavelength of the absorption band on the lowest energy side of the luminescent substance energy transfer becomes smooth and light emission can be obtained efficiently.
  • high efficiency, low voltage drive, and long life of the light emitting device can be realized at the same time.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • FIG. 18A shows an example of a circuit diagram of the pixel unit 70.
  • the pixel unit 70 is composed of two pixels (pixel 70a and pixel 70b). Further, wiring 51a, wiring 51b, wiring 52a, wiring 52b, wiring 52c, wiring 52d, wiring 53a, wiring 53b, wiring 53c and the like are connected to the pixel unit 70.
  • the pixel 70a has a sub-pixel 71a, a sub-pixel 72a, and a sub-pixel 73a.
  • the pixel 70b has a sub-pixel 71b, a sub-pixel 72b, and a sub-pixel 73b.
  • the sub-pixel 71a, the sub-pixel 72a, and the sub-pixel 73a have a pixel circuit 41a, a pixel circuit 42a, and a pixel circuit 43a, respectively.
  • the sub-pixel 71b, the sub-pixel 72b, and the sub-pixel 73b have a pixel circuit 41b, a pixel circuit 42b, and a pixel circuit 43b, respectively.
  • Each sub-pixel has a pixel circuit and a display element 60.
  • the sub-pixel 71a has a pixel circuit 41a and a display element 60.
  • a light emitting element such as an organic EL element is used as the display element 60 is shown.
  • the wiring 51a and the wiring 51b each have a function as a gate wire.
  • the wiring 52a, the wiring 52b, the wiring 52c, and the wiring 52d each have a function as a signal line (also referred to as a data line).
  • the wiring 53a, the wiring 53b, and the wiring 53c have a function of supplying an electric potential to the display element 60.
  • the pixel circuit 41a is electrically connected to the wiring 51a, the wiring 52a, and the wiring 53a.
  • the pixel circuit 42a is electrically connected to the wiring 51b, the wiring 52d, and the wiring 53a.
  • the pixel circuit 43a is electrically connected to the wiring 51a, the wiring 52b, and the wiring 53b.
  • the pixel circuit 41b is electrically connected to the wiring 51b, the wiring 52a, and the wiring 53b.
  • the pixel circuit 42b is electrically connected to the wiring 51a, the wiring 52c, and the wiring 53c.
  • the pixel circuit 43b is electrically connected to the wiring 51b, the wiring 52b, and the wiring 53c.
  • the number of source lines can be halved as compared with the stripe arrangement.
  • the number of terminals of the IC used as the source drive circuit can be reduced by half, and the number of parts can be reduced.
  • a pixel circuit corresponding to the same color it is preferable to connect a pixel circuit corresponding to the same color to one wiring that functions as a signal line.
  • the correction value may differ greatly for each color. Therefore, the correction can be facilitated by making the pixel circuits connected to one signal line all the pixel circuits corresponding to the same color.
  • each pixel circuit has a transistor 61, a transistor 62, and a capacitance element 63.
  • the gate is electrically connected to the wiring 51a
  • one of the source or the drain is electrically connected to the wiring 52a
  • the other of the source or the drain is the gate and the capacitive element of the transistor 62. It is electrically connected to one of the electrodes of 63.
  • one of the source and the drain is electrically connected to one electrode of the display element 60
  • the other of the source and the drain is electrically connected to the other electrode of the capacitance element 63 and the wiring 53a.
  • the other electrode of the display element 60 is electrically connected to the wiring to which the potential V1 is given.
  • the wiring connected to the gate of the transistor 61 As shown in FIG. 18A, the wiring connected to the gate of the transistor 61, the wiring connected to one of the source or drain of the transistor 61, and the wiring connected to the other electrode of the capacitive element 63. It has the same configuration as the pixel circuit 41a except that at least one is different.
  • the transistor 61 has a function as a selection transistor. Further, the transistor 62 is connected in series with the display element 60 and has a function of controlling the current flowing through the display element 60.
  • the capacitive element 63 has a function of holding the potential of the node to which the gate of the transistor 62 is connected. If the leak current in the off state of the transistor 61, the leak current through the gate of the transistor 62, or the like is extremely small, the capacitive element 63 may not be intentionally provided.
  • the transistor 62 has a first gate and a second gate, which are electrically connected to each other, respectively. With the configuration having two gates in this way, the current that can be passed through the transistor 62 can be increased. Particularly in a high-definition display device, the current can be increased without increasing the size of the transistor 62, particularly the channel width, which is preferable.
  • the transistor 62 may have one gate. With such a configuration, the step of forming the second gate becomes unnecessary, so that the step can be simplified as compared with the above. Further, the transistor 61 may have a configuration having two gates. With such a configuration, the size of any transistor can be reduced. Further, the first gate and the second gate of each transistor can be electrically connected to each other. Alternatively, one gate may be electrically connected to the other wiring instead of the other gate. In that case, the threshold voltage of the transistor can be controlled by making the potentials applied to the two gates different.
  • FIG. 18A shows a configuration in which the electrode electrically connected to the transistor 62 of the display element 60 is a cathode and the electrode on the opposite side is an anode.
  • the transistor 62 is an n-channel type transistor. That is, when the transistor 62 is in the ON state, the potential given by the wiring 53a becomes the source potential, so that the current flowing through the transistor 62 can be kept constant regardless of the variation and fluctuation of the resistance of the display element 60.
  • a p-channel type transistor may be used as the transistor included in the pixel circuit.
  • the cathode and the anode of the display element 60 may be reversed.
  • FIG. 18B is a schematic top view showing an example of how to arrange each pixel electrode and each wiring in the display area.
  • the wiring 51a and the wiring 51b are arranged alternately. Further, the wiring 52a, the wiring 52b, and the wiring 52c that intersect with the wiring 51a and the wiring 51b are arranged in this order. Further, the pixel electrodes are arranged in a matrix along the extending direction of the wiring 51a and the wiring 51b.
  • the pixel unit 70 is configured to include pixels 70a and pixels 70b.
  • the pixel 70a has a pixel electrode 91R1, a pixel electrode 91G1, and a pixel electrode 91B1.
  • the pixel 70b has a pixel electrode 91R2, a pixel electrode 91G2, and a pixel electrode 91B2. Further, the display area of one sub-pixel is located inside the pixel electrode of the sub-pixel.
  • the period of arranging the wiring 52a of the pixel unit 70 in the extending direction (also referred to as the first direction) is set to the period P, the extending direction of the wiring 51a or the like (also referred to as the second direction).
  • the period of arrangement in is twice that (period 2P).
  • the period P can be 1 ⁇ m or more and 150 ⁇ m or less, preferably 2 ⁇ m or more and 120 ⁇ m or less, more preferably 3 ⁇ m or more and 100 ⁇ m or less, and further preferably 4 ⁇ m or more and 60 ⁇ m or less. As a result, an extremely high-definition display device can be realized.
  • the pixel electrode 91R1 or the like is provided so as not to overlap with the wiring 52a or the like that functions as a signal line. As a result, it is possible to prevent the brightness of the display element from changing due to the electric noise being transmitted through the capacitance between the wiring 52a or the like and the pixel electrode 91R1 or the like and the potential of the pixel electrode 91R1 or the like fluctuating. ..
  • the pixel electrode 91R1 or the like may be provided so as to overlap with the wiring 51a or the like that functions as a scanning line. As a result, the area of the pixel electrode 91R1 can be increased, so that the aperture ratio can be increased.
  • FIG. 18B shows an example in which a part of the pixel electrode 91R1 is arranged so as to overlap the wiring 51a.
  • the wiring is connected to the pixel circuit of the sub-pixel.
  • the period during which the signal whose potential changes such as the wiring 51a is input corresponds to the period during which the data of the sub-pixel is rewritten, even if the electrical noise is transmitted from the wiring 51a or the like to the pixel electrode via the capacitance. , The brightness of the sub-pixel does not change.
  • FIG. 19A shows an example of the layout of one sub-pixel.
  • the sub-pixel shown in FIG. 19A includes a transistor 61, a transistor 62, and a capacitive element 63.
  • the transistor 62 is a transistor having two gates sandwiching the semiconductor layer.
  • One gate of the wiring 51 and the transistor 62 is formed by the conductive film located at the lowermost side.
  • the gate of the transistor 61, the other gate of the transistor 62, and the like are formed by the conductive film formed after this.
  • the conductive film formed after this forms a wiring 52, a source electrode and a drain electrode of each transistor, one electrode of the capacitance element 63, and the like.
  • the wiring 53 and the like are formed by the conductive film formed after this. A part of the wiring 53 functions as the other electrode of the capacitive element 63.
  • FIG. 19B shows an example of the layout of the pixel unit 70 using the sub-pixels illustrated in FIG. 19A.
  • FIG. 19B also clearly shows each pixel electrode (pixel electrode 31a, pixel electrode 31b, pixel electrode 32a, pixel electrode 32b, pixel electrode 33a, pixel electrode 33b) and a display area 22.
  • an extremely high-definition display device can be produced even in a mass production line having a minimum processing dimension of 0.5 ⁇ m or more and 6 ⁇ m or less, typically 1.5 ⁇ m or more and 4 ⁇ m or less. It becomes possible.
  • the specifications of the display panel can be, for example, specifications A, B, or C shown in Table 1 below.
  • a display device having both high definition and high aperture ratio which is exemplified in the first embodiment, can be applied to the display panel.
  • Display panel configuration example Wearable electronic devices such as those for VR and AR can provide 3D images by using parallax. In that case, it is necessary to display the image for the right eye in the field of view of the right eye and the image for the left eye in the field of view of the left eye.
  • the shape of the display unit of the display device may be a horizontally long rectangular shape, but since the pixels provided outside the field of view of the right eye and the left eye do not contribute to the display, black is always displayed in the pixels. It will be.
  • the display unit of the display panel is divided into two areas, one for the right eye and the other for the left eye, and the pixels are not arranged in the outer area that does not contribute to the display.
  • the power consumption required for writing the pixels can be reduced.
  • the load on the source line, gate line, etc. is reduced, it is possible to display at a high frame rate. As a result, a smooth moving image can be displayed, so that the sense of reality can be enhanced.
  • FIG. 20A shows a configuration example of the display panel.
  • a display unit 702L for the left eye and a display unit 702R for the right eye are arranged inside the substrate 701.
  • a drive circuit, wiring, IC, FPC, and the like may be arranged on the substrate 701.
  • the display unit 702L and the display unit 702R shown in FIG. 20A have a square upper surface shape.
  • the upper surface shapes of the display unit 702L and the display unit 702R may be other regular polygons.
  • FIG. 20B shows an example in the case of a regular hexagon
  • FIG. 20C shows an example in the case of a regular octagon
  • FIG. 20D shows an example in the case of a regular decagon
  • FIG. 20E shows an example in the case of a regular dodecagon.
  • An example of a square shape is shown. In this way, by using a polygon having an even number of corners, the shape of the display unit can be made symmetrical.
  • a polygon other than a regular polygon may be used.
  • a regular polygon with rounded corners or a polygon may be used.
  • the straight line portion of the outline of each display unit is not strictly a straight line, and there may be a stepped portion.
  • a straight portion that is not parallel to the pixel arrangement direction has a stepped upper surface shape.
  • the pixel shape is not visually recognized by the user, it can be regarded as a straight line even if the diagonal contour of the display unit is strictly stepped.
  • the curved portion of the outline of the display portion is strictly stepped, this can be regarded as a curved line.
  • FIG. 20F shows an example in which the upper surface shapes of the display unit 702L and the display unit 702R are circular.
  • the upper surface shapes of the display unit 702L and the display unit 702R may be asymmetrical, respectively. Moreover, each of them does not have to be a regular polygon.
  • FIG. 20G shows an example in which the upper surface shapes of the display unit 702L and the display unit 702R are each asymmetrical octagon. Further, FIG. 20H shows an example in the case of a regular heptagon. As described above, even when the upper surface shapes of the display unit 702L and the display unit 702R are asymmetrical, it is preferable that the display unit 702L and the display unit 702R are arranged symmetrically. As a result, it is possible to provide an image without a sense of discomfort.
  • FIG. 20I is an example in which the display unit 702 has a shape in which the two circular display units in FIG. 20F are connected.
  • FIG. 20 (J) is an example in which the display unit 702 has a shape in which the two regular octagonal display units in FIG. 20C are connected.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. It may also contain one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like. ..
  • the metal oxide can be subjected to a chemical vapor deposition (CVD) method such as a sputtering method, an organic metal chemical vapor deposition (MOCVD) method, or an atomic layer deposition (ALD). It can be formed by the Deposition) method or the like.
  • CVD chemical vapor deposition
  • MOCVD organic metal chemical vapor deposition
  • ALD atomic layer deposition
  • the crystal structure of the oxide semiconductor includes amorphous (including compactly atomous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (crowd-aligned crystal), single crystal (single crystal), and single crystal. (Polycrystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Diffraction) spectrum.
  • XRD X-Ray Diffraction
  • it can be evaluated using the XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the shape of the peak of the XRD spectrum is almost symmetrical.
  • the shape of the peak of the XRD spectrum is asymmetrical.
  • the asymmetrical shape of the peaks in the XRD spectrum clearly indicates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peak of the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • a diffraction pattern also referred to as a microelectron diffraction pattern
  • NBED Nano Beam Electron Diffraction
  • halos are observed, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. Therefore, it is presumed that the IGZO film formed at room temperature is neither in a crystalline state nor in an amorphous state, in an intermediate state, and cannot be concluded to be in an amorphous state.
  • oxide semiconductors may be classified differently from the above.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, and the plurality of crystal regions are oriented in a specific direction on the c-axis.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS has indium (In) and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which a layer (hereinafter, In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. There is. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium. In addition, the In layer may contain the element M. The In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and that the bond distance between atoms changes due to the substitution of metal atoms. it is conceivable that.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor that has high crystallinity and no clear grain boundary is confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities, the generation of defects, etc., CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures (so-called thermal budgets) in the manufacturing process. Therefore, when CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • nc-OS may be indistinguishable from a-like OS or amorphous oxide semiconductor depending on the analysis method.
  • a structural analysis is performed on an nc-OS film using an XRD apparatus, a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan.
  • electron beam diffraction also referred to as limited field electron diffraction
  • a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS.
  • a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • CAC-OS in In-Ga-Zn oxide is a region containing Ga as a main component and a part of In as a main component in a material composition containing In, Ga, Zn, and O. Each of the regions is mosaic, and these regions are randomly present. Therefore, it is presumed that CAC-OS has a structure in which metal elements are non-uniformly distributed.
  • CAC-OS can be formed by a sputtering method, for example, under the condition that the substrate is not intentionally heated.
  • a sputtering method one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as the film forming gas. good.
  • the lower the flow rate ratio of the oxygen gas to the total flow rate of the film-forming gas at the time of film formation is preferable.
  • the flow rate ratio of the oxygen gas to the total flow rate of the film-forming gas at the time of film formation is preferably 0% or more and less than 30%. Is preferably 0% or more and 10% or less.
  • EDX Energy Dispersive X-ray spectroscopy
  • the first region is a region having higher conductivity than the second region. That is, when the carrier flows through the first region, conductivity as a metal oxide is exhibited. Therefore, high field effect mobility ( ⁇ ) can be realized by distributing the first region in the metal oxide in a cloud shape.
  • the second region is a region having higher insulating properties than the first region. That is, the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the function (On / Off). Function) can be added to CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on -current (Ion), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on -current
  • high field effect mobility
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor with high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm -3 or less, preferably 1 ⁇ 10 15 cm -3 or less, more preferably 1 ⁇ 10 13 cm -3 or less, more preferably 1 ⁇ 10 11 cm ⁇ . It is 3 or less, more preferably less than 1 ⁇ 10 10 cm -3 , and more than 1 ⁇ 10 -9 cm -3 .
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon near the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • defect levels may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, and more preferably 1 ⁇ 10 18 atoms / cm 3 or less. , More preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , and more preferably 5 ⁇ 10 18 atoms / cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • the electronic device of the present embodiment has a display device of one aspect of the present invention.
  • the display device according to one aspect of the present invention can be easily increased in definition, resolution, and size. Therefore, the display device of one aspect of the present invention can be used for the display unit of various electronic devices.
  • the display device of one aspect of the present invention can be manufactured at a low cost, the manufacturing cost of the electronic device can be reduced.
  • Electronic devices include, for example, electronic devices with relatively large screens such as television devices, desktop or notebook personal computers, monitors for computers, digital signage, and large game machines such as pachinko machines, as well as digital devices. Examples include cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, mobile information terminals, sound reproduction devices, and the like.
  • the display device of one aspect of the present invention can increase the definition, it can be suitably used for an electronic device having a relatively small display unit.
  • Such electronic devices include wearable devices that can be worn on the head, such as wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, and glasses-type AR devices. Equipment and the like can be mentioned.
  • wearable devices include a device for SR (Substitutional Reality) and a device for MR (Mixed Reality).
  • the display device of one aspect of the present invention includes HD (number of pixels 1280 ⁇ 720), FHD (number of pixels 1920 ⁇ 1080), WQHD (number of pixels 2560 ⁇ 1440), WQXGA (number of pixels 2560 ⁇ 1600), 4K2K (number of pixels). It is preferable to have an extremely high resolution such as 3840 ⁇ 2160) and 8K4K (number of pixels 7680 ⁇ 4320). In particular, it is preferable to set the resolution to 4K2K, 8K4K, or higher.
  • the pixel density (definition) in the display device of one aspect of the present invention is preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, more preferably 3000 ppi or more, and more preferably 5000 ppi or more. Is more preferable, and 7,000 ppi or more is further preferable.
  • a display device having such a high resolution or high definition it is possible to further enhance the sense of presence and depth in an electronic device for personal use such as a portable type or a home use.
  • the electronic device of the present embodiment can be incorporated along the inner wall or outer wall of a house or building, or the curved surface of the interior or exterior of an automobile.
  • the electronic device of this embodiment may have an antenna.
  • the display unit can display images, information, and the like.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of the present embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage). , Power, radiation, flow rate, humidity, gradient, vibration, odor or infrared, including the ability to detect, detect, or measure).
  • the electronic device of this embodiment can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, a function to execute various software (programs), wireless communication. It can have a function, a function of reading a program or data recorded on a recording medium, and the like.
  • the electronic device 6500 shown in FIG. 21A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display unit 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • the display unit 6502 has a touch panel function.
  • a display device can be applied to the display unit 6502.
  • FIG. 21B is a schematic cross-sectional view including the end portion of the housing 6501 on the microphone 6506 side.
  • a translucent protective member 6510 is provided on the display surface side of the housing 6501, and the display panel 6511, the optical member 6512, the touch sensor panel 6513, and the printed circuit board are provided in the space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 by an adhesive layer (not shown).
  • a part of the display panel 6511 is folded back in the area outside the display unit 6502, and the FPC 6515 is connected to the folded back part.
  • IC6516 is mounted on FPC6515.
  • the FPC6515 is connected to a terminal provided on the printed circuit board 6517.
  • a flexible display (flexible display device) can be applied to the display panel 6511. Therefore, an extremely lightweight electronic device can be realized. Further, since the display panel 6511 is extremely thin, it is possible to mount a large-capacity battery 6518 while suppressing the thickness of the electronic device. Further, by folding back a part of the display panel 6511 and arranging the connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device having a narrow frame can be realized.
  • FIG. 22A shows an example of a television device.
  • the display unit 7000 is incorporated in the housing 7101.
  • the configuration in which the housing 7101 is supported by the stand 7103 is shown.
  • a display device can be applied to the display unit 7000.
  • the operation of the television device 7100 shown in FIG. 22A can be performed by the operation switch provided in the housing 7101 and the separate remote control operation machine 7111.
  • the display unit 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display unit 7000 with a finger or the like.
  • the remote controller 7111 may have a display unit that displays information output from the remote controller 7111.
  • the channel and volume can be operated by the operation keys or the touch panel provided on the remote controller 7111, and the image displayed on the display unit 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts.
  • information communication is performed in one direction (from sender to receiver) or in two directions (between sender and receiver, or between recipients, etc.). It is also possible.
  • FIG. 22B shows an example of a notebook personal computer.
  • the notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display unit 7000 is incorporated in the housing 7211.
  • a display device can be applied to the display unit 7000.
  • 22C and 22D show an example of digital signage.
  • the digital signage 7300 shown in FIG. 22C has a housing 7301, a display unit 7000, a speaker 7303, and the like. Further, it may have an LED lamp, an operation key (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like.
  • FIG. 22D is a digital signage 7400 attached to a columnar pillar 7401.
  • the digital signage 7400 has a display unit 7000 provided along the curved surface of the pillar 7401.
  • the display device of one aspect of the present invention can be applied to the display unit 7000.
  • the wider the display unit 7000 the more information that can be provided at one time can be increased. Further, the wider the display unit 7000 is, the easier it is for people to see it, and for example, the advertising effect of the advertisement can be enhanced.
  • the touch panel By applying the touch panel to the display unit 7000, not only the image or moving image can be displayed on the display unit 7000, but also the user can operate it intuitively, which is preferable. Further, when it is used for providing information such as route information or traffic information, usability can be improved by intuitive operation.
  • the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 or the information terminal 7411 such as a smartphone owned by the user by wireless communication.
  • the information of the advertisement displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, by operating the information terminal 7311 or the information terminal 7411, the display of the display unit 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can be made to execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). As a result, an unspecified number of users can participate in and enjoy the game at the same time.
  • FIG. 23A is a diagram showing the appearance of the camera 8000 with the finder 8100 attached.
  • the camera 8000 has a housing 8001, a display unit 8002, an operation button 8003, a shutter button 8004, and the like.
  • a removable lens 8006 is attached to the camera 8000.
  • the lens 8006 and the housing 8001 may be integrated.
  • the camera 8000 can take an image by pressing the shutter button 8004 or touching the display unit 8002 that functions as a touch panel.
  • the housing 8001 has a mount having electrodes, and in addition to the finder 8100, a strobe device or the like can be connected.
  • the finder 8100 has a housing 8101, a display unit 8102, a button 8103, and the like.
  • the housing 8101 is attached to the camera 8000 by a mount that engages with the mount of the camera 8000.
  • the finder 8100 can display an image or the like received from the camera 8000 on the display unit 8102.
  • Button 8103 has a function as a power button or the like.
  • the display device of one aspect of the present invention can be applied to the display unit 8002 of the camera 8000 and the display unit 8102 of the finder 8100.
  • the camera 8000 with a built-in finder may be used.
  • FIG. 23B is a diagram showing the appearance of the head-mounted display 8200.
  • the head-mounted display 8200 has a mounting unit 8201, a lens 8202, a main body 8203, a display unit 8204, a cable 8205, and the like. Further, the mounting portion 8201 has a built-in battery 8206.
  • the cable 8205 supplies electric power from the battery 8206 to the main body 8203.
  • the main body 8203 is provided with a wireless receiver or the like, and the received video information can be displayed on the display unit 8204. Further, the main body 8203 is provided with a camera, and information on the movement of the user's eyeball or eyelid can be used as an input means.
  • the mounting portion 8201 may be provided with a plurality of electrodes capable of detecting the current flowing with the movement of the user's eyeball at a position where it touches the user, and may have a function of recognizing the line of sight. Further, it may have a function of monitoring the pulse of the user by the current flowing through the electrode. Further, the mounting unit 8201 may have various sensors such as a temperature sensor, a pressure sensor, and an acceleration sensor, and has a function of displaying the biometric information of the user on the display unit 8204 and a movement of the user's head. At the same time, it may have a function of changing the image displayed on the display unit 8204.
  • a display device can be applied to the display unit 8204.
  • the head-mounted display 8300 includes a housing 8301, a display unit 8302, a band-shaped fixture 8304, and a pair of lenses 8305.
  • the user can visually recognize the display of the display unit 8302 through the lens 8305. It is preferable that the display unit 8302 is arranged in a curved shape because the user can feel a high sense of presence. Further, by visually recognizing another image displayed in a different area of the display unit 8302 through the lens 8305, it is possible to perform three-dimensional display or the like using parallax.
  • the configuration is not limited to the configuration in which one display unit 8302 is provided, and two display units 8302 may be provided and one display unit may be arranged for one eye of the user.
  • a display device can be applied to the display unit 8302.
  • the display device of one aspect of the present invention can also realize extremely high definition. For example, even when the display is magnified and visually recognized by using the lens 8305 as shown in FIG. 23E, it is difficult for the user to visually recognize the pixels. That is, the display unit 8302 can be used to make the user visually recognize a highly realistic image.
  • FIG. 23F is a diagram showing the appearance of the goggle-type head-mounted display 8400.
  • the head-mounted display 8400 has a pair of housings 8401, a mounting portion 8402, and a cushioning member 8403.
  • a display unit 8404 and a lens 8405 are provided in the pair of housings 8401, respectively. By displaying different images on the pair of display units 8404, it is possible to perform three-dimensional display using parallax.
  • the user can visually recognize the display unit 8404 through the lens 8405.
  • the lens 8405 has a focus adjustment mechanism, and the focus adjustment mechanism can adjust the position of the lens 8405 according to the eyesight of the user.
  • the display unit 8404 is preferably a square or a horizontally long rectangle. As a result, the sense of presence can be enhanced.
  • the mounting portion 8402 has plasticity and elasticity so that it can be adjusted according to the size of the user's face and does not slip off. Further, it is preferable that a part of the mounting portion 8402 has a vibration mechanism that functions as a bone conduction earphone. As a result, you can enjoy video and audio just by wearing it without the need for separate audio equipment such as earphones and speakers.
  • the housing 8401 may have a function of outputting voice data by wireless communication.
  • the mounting portion 8402 and the cushioning member 8403 are portions that come into contact with the user's face (forehead, cheeks, etc.). When the cushioning member 8403 is in close contact with the user's face, light leakage can be prevented and the immersive feeling can be further enhanced.
  • the cushioning member 8403 is preferably made of a soft material so that when the user wears the head-mounted display 8400, it comes into close contact with the user's face. For example, materials such as rubber, silicone rubber, urethane, and sponge can be used.
  • a gap is unlikely to occur between the user's face and the cushioning member 8403, and light leakage is suitably prevented. Can be done. Further, it is preferable to use such a material because it is soft to the touch and does not make the user feel cold when worn in a cold season or the like.
  • the electronic devices shown in FIGS. 24A to 24F include a housing 9000, a display unit 9001, a speaker 9003, an operation key 9005 (including a power switch or an operation switch), a connection terminal 9006, and a sensor 9007 (force, displacement, position, speed). Detects acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemicals, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared rays , Including the function of detecting or measuring), microphone 9008, and the like.
  • the electronic devices shown in FIGS. 24A to 24F have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, etc., a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing a program or data recorded on a recording medium, and the like.
  • the functions of electronic devices are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device even if the electronic device is provided with a camera or the like, it has a function of shooting a still image or a moving image and saving it on a recording medium (external or built in the camera), a function of displaying the shot image on a display unit, and the like. good.
  • a display device can be applied to the display unit 9001.
  • FIGS. 24A to 24F Details of the electronic devices shown in FIGS. 24A to 24F will be described below.
  • FIG. 24A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as, for example, a smartphone.
  • the mobile information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like. Further, the mobile information terminal 9101 can display character and image information on a plurality of surfaces thereof.
  • FIG. 24A shows an example in which three icons 9050 are displayed. Further, the information 9051 indicated by the broken line rectangle can be displayed on the other surface of the display unit 9001. Examples of information 9051 include notification of incoming calls such as e-mail, SNS, and telephone, titles such as e-mail and SNS, sender name, date and time, time, remaining battery level, and antenna reception strength. Alternatively, an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 24B is a perspective view showing a mobile information terminal 9102.
  • the mobile information terminal 9102 has a function of displaying information on three or more surfaces of the display unit 9001.
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can check the information 9053 displayed at a position that can be observed from above the mobile information terminal 9102 with the mobile information terminal 9102 stored in the chest pocket of the clothes. The user can check the display without taking out the mobile information terminal 9102 from the pocket, and can determine, for example, whether or not to receive a call.
  • FIG. 24C is a perspective view showing a wristwatch-type mobile information terminal 9200.
  • the mobile information terminal 9200 can be used as, for example, a smart watch (registered trademark).
  • the display unit 9001 is provided with a curved display surface, and can display along the curved display surface. It is also possible to make a hands-free call by communicating the mobile information terminal 9200 with, for example, a headset capable of wireless communication.
  • the mobile information terminal 9200 can also perform data transmission and charge with other information terminals by means of the connection terminal 9006.
  • the charging operation may be performed by wireless power supply.
  • FIG. 24D to 24F are perspective views showing a foldable mobile information terminal 9201. Further, FIG. 24D is a perspective view of the mobile information terminal 9201 in an unfolded state, FIG. 24F is a folded state, and FIG. 24E is a perspective view of a state in which one of FIGS. 24D and 24F is in the process of changing to the other.
  • the mobile information terminal 9201 is excellent in portability in the folded state, and is excellent in display listability due to a wide seamless display area in the unfolded state.
  • the display unit 9001 included in the mobile information terminal 9201 is supported by three housings 9000 connected by a hinge 9055. For example, the display unit 9001 can be bent with a radius of curvature of 0.1 mm or more and 150 mm or less.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • sample A1 to sample A3 three types of samples (sample A1 to sample A3) were prepared.
  • the light emitting element of the sample A1 has a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a common electrode in this order on a pixel electrode formed on a glass substrate by a vacuum deposition method. It was formed by forming.
  • sample A2 The light emitting element of the sample A2 first formed a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer on a pixel electrode formed on a glass substrate. Subsequently, an aluminum oxide film was formed as a sacrificial layer by the ALD method, and then the aluminum oxide film was removed by a wet etching method using TMAH to expose the electron transport layer. Subsequently, an electron injection layer and a common electrode were sequentially formed on the electron transport layer.
  • sample A3 The light emitting element of the sample A3 first formed a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer on a pixel electrode formed on a glass substrate. Subsequently, a metal oxide film was formed as a sacrificial layer by a sputtering method using In-Ga-Zn oxide as a sputtering target, and then the metal oxide film was removed by a wet etching method using oxalic acid. The electron transport layer was exposed. Subsequently, an electron injection layer and a common electrode were sequentially formed on the electron transport layer.
  • FIG. 25A shows the current-voltage characteristics.
  • the horizontal axis is voltage (V [V]) and the vertical axis is current (I [mA]).
  • V [V] voltage
  • I [mA] current
  • FIG. 25B shows the current efficiency-luminance characteristic.
  • the horizontal axis is luminance (L [cd / m 2 ]) and the vertical axis is current efficiency (h ([cd / A]).
  • h [cd / A]
  • FIG. 25B a sample that does not form a sacrificial layer. The result was that A1 had the highest current efficiency.
  • the sample A2 in which the sacrificial layer was formed by the ALD method had a higher current efficiency than the sample A3 in which the sacrificial layer was formed by the sputtering method.
  • the ALD method can suppress the film formation damage to the EL layer by using the ALD method rather than the sputtering method as the film forming method of the sacrificial layer directly formed on the EL layer (electron transport layer). ..
  • Display device 101 Substrate 110 111: Pixel electrode 111C: Connection electrode 112: EL layer 113: Common electrode 114: EL layer 115: Optical adjustment layer 121: Protective layer 122: Air gap 130: Connection part 131: Insulation layer 143: Resist mask 144: Sacrificial film 145: Sacrificial layer 146: Protective film 147: Protective layer

Abstract

高精細化が容易な表示装置の作製方法を提供する。高い表示品位と、高い精細度を兼ね備える表示装置を提供する。 第1の画素電極上に第1のEL膜を成膜し、第1のEL膜、及び第1の電極を覆って、第1の犠牲膜を形成し、第1の犠牲膜及び第1のEL膜をエッチングして、第1の画素電極上に第1のEL層を形成する。その後、第1の犠牲膜を除去して第1の電極を露出させる。さらに、第1のEL層と、第1の電極上に共通電極を形成する。第1のEL膜はドライエッチングによりエッチングし、第1の犠牲膜はウェットエッチングにより除去する。

Description

表示装置、及び表示装置の作製方法
 本発明の一態様は、表示装置に関する。本発明の一態様は、表示装置の作製方法に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
 近年、ディスプレイパネルの高精細化が求められている。高精細なディスプレイパネルが要求される機器としては、例えばスマートフォン、タブレット端末、ノート型コンピュータなどがある。また、テレビジョン装置、モニタ装置などの据え置き型のディスプレイ装置においても、高解像度化に伴い高精細化が求められている。さらに、最も高い精細度が要求される機器としては、例えば、仮想現実(VR:Virtual Reality)、または拡張現実(AR:Augmented Reality)向けの機器がある。
 また、ディスプレイパネルに適用可能な表示装置としては、代表的には液晶表示装置、有機EL(Electro Luminescence)素子、発光ダイオード(LED:Light Emitting Diode)等の発光素子を備える発光装置、電気泳動方式などにより表示を行う電子ペーパなどが挙げられる。
 例えば、有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層を、挟持したものである。この素子に電圧を印加することにより、発光性の有機化合物から発光を得ることができる。このような有機EL素子が適用された表示装置は、液晶表示装置等で必要であったバックライトが不要なため、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。例えば、有機EL素子を用いた表示装置の一例が、特許文献1に記載されている。
特開2002−324673号公報
 本発明の一態様は、高精細化が容易な表示装置、及びその作製方法を提供することを課題の一とする。本発明の一態様は、高い表示品位と、高い精細度を兼ね備える表示装置を提供することを課題の一とする。本発明の一態様は、コントラストの高い表示装置を提供することを課題の一とする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一とする。
 本発明の一態様は、新規な構成を有する表示装置、または表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、上述した表示装置を歩留まりよく製造する方法を提供することを課題の一とする。本発明の一態様は、先行技術の問題点の少なくとも一を少なくとも軽減することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
 本発明の一態様は、表示装置の作製方法であって、第1の画素電極、第2の画素電極、及び第1の電極を形成する第1の工程と、第1の画素電極及び第2の画素電極上に、第1のEL膜を成膜する第2の工程と、第1のEL膜、及び第1の電極を覆って、第1の犠牲膜を形成する第3の工程と、第1の犠牲膜及び第1のEL膜をエッチングして、第2の画素電極を露出させ、且つ、第1の画素電極上に第1のEL層と、当該第1のEL層上、及び第1の電極上の第1の犠牲層と、を形成する第4の工程と、第1の画素電極上、及び第2の画素電極上に、第2のEL膜を成膜する第5の工程と、第2のEL膜、及び第1の電極を覆って、第2の犠牲膜を形成する第6の工程と、第2の犠牲膜及び第2のEL膜をエッチングして、第2の画素電極上の第2のEL層と、当該第2のEL層上の第2の犠牲層と、を形成する第7の工程と、第1の犠牲層、及び第2の犠牲層を除去し、第1のEL層、第2のEL層、及び第1の電極を露出させる第8の工程と、第1のEL層及び第2のEL層上に、共通層を形成する第9の工程と、共通層及び第1の電極上に接して、共通電極を形成する第10の工程と、を有する。
 また、上記において、第1のEL膜、第2のEL膜、及び共通層は、遮蔽マスクを用いた蒸着法により形成することが好ましい。
 また、上記において、第1の画素電極と第2の画素電極とを複数有することが好ましい。このとき、第1の画素電極と、第2の画素電極は、第1の方向に並べて配置され、複数の第1の画素電極は、第1の方向と交差する第2の方向に並べて配置されることが好ましい。さらに、第10の工程のあとに、共通電極、共通層、及び第1のEL層の、隣接する2つの第1の画素電極の間に位置する部分を、それぞれエッチングにより除去する第11の工程を有することが好ましい。
 また、上記において、第1の工程と、第2の工程との間に、隣接する2つの第1の画素電極の間に、絶縁層を形成する第12の工程を有することが好ましい。さらに、第11の工程において、絶縁層上に位置する共通電極、共通層、及び第1のEL層をエッチングし、且つ、絶縁層の一部をエッチングして絶縁層に凹部を形成することが好ましい。
 また、上記いずれかにおいて、第1の犠牲膜と第2の犠牲膜は、同一の金属膜、合金膜、金属酸化物膜、半導体膜、または無機絶縁膜を含むことが好ましい。また、第4の工程において、第1のEL膜は、酸素を主成分に含まないエッチングガスを用いたドライエッチングによりエッチングされることが好ましい。さらに、第8の工程において、第1の犠牲層及び第2の犠牲層は、水酸化テトラメチルアンモニウム水溶液、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いたウェットエッチングにより除去されることが好ましい。特に、第1の犠牲膜と第2の犠牲膜が、酸化アルミニウムを含むことが好ましい。
 また、上記いずれかにおいて、第3の工程と第4の工程との間に、ハードマスクを形成する第13の工程を有することが好ましい。さらに、第4の工程において、ハードマスクを用いて第1の犠牲膜をエッチングした後、ハードマスクと第1のEL膜とを同一処理にてエッチングすることが好ましい。
 また、上記いずれかにおいて、第1のEL層及び第2のEL層は、それぞれ帯状の上面形状となるように加工されることが好ましい。
 また、上記いずれかにおいて、第10の工程より後に、共通電極上に、保護層を形成する第14の工程を有することが好ましい。
 また、本発明の他の一態様は、複数の第1の発光素子と、複数の第2の発光素子と、を有する表示装置である。第1の発光素子は、第1の画素電極と、第1のEL層と、共通層と、共通電極と、を有する。第2の発光素子は、第2の画素電極と、第2のEL層と、共通層と、共通電極と、を有する。2つの第1の画素電極の間、2つの第2の画素電極の間、及び第1の画素電極と第2の画素電極との間に、絶縁層を有する。第1の発光素子と、第2の発光素子とは、第1の方向に配列する。複数の第1の発光素子、及び複数の第2の発光素子は、それぞれ第1の方向と交差する第2の方向に配列する。共通層、及び共通電極は、第1の方向に延びる帯状の形状を有する。また、第1のEL層、共通層、及び共通電極は、隣接する2つの第1の画素電極の間において、絶縁層と重なる端部を有する。
 本発明の一態様によれば、高精細化が容易な表示装置、及びその作製方法を提供できる。または、高い表示品位と、高い精細度を兼ね備える表示装置を提供できる。または、コントラストの高い表示装置を提供できる。または、信頼性の高い表示装置を提供できる。
 また、本発明の一態様によれば、新規な構成を有する表示装置、または表示装置の作製方法を提供できる。または、上述した表示装置を歩留まりよく製造する方法を提供できる。本発明の一態様によれば、先行技術の問題点の少なくとも一を少なくとも軽減することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
図1A乃至図1Dは、表示装置の構成例を示す図である。
図2A乃至図2Fは、表示装置の作製方法例を示す図である。
図3A乃至図3Fは、表示装置の作製方法例を示す図である。
図4A乃至図4Cは、表示装置の作製方法例を示す図である。
図5A乃至図5Dは、表示装置の構成例を示す図である。
図6A乃至図6Eは、表示装置の作製方法例を示す図である。
図7A乃至図7Cは、表示装置の構成例を示す図である。
図8A乃至図8Cは、表示装置の構成例を示す図である。
図9A乃至図9Cは、表示装置の構成例を示す図である。
図10は、表示装置の一例を示す斜視図である。
図11A及び図11Bは、表示装置の一例を示す断面図である。
図12Aは、表示装置の一例を示す断面図である。図12Bは、トランジスタの一例を示す断面図である。
図13A及び図13Bは、表示モジュールの一例を示す斜視図である。
図14は、表示装置の一例を示す断面図である。
図15は、表示装置の一例を示す断面図である。
図16は、表示装置の一例を示す断面図である。
図17A乃至図17Dは、発光素子の構成例を示す図である。
図18A及び図18Bは、表示装置の構成例を示す図である。
図19A及び図19Bは、表示装置の構成例を示す図である。
図20A乃至図20Jは、表示装置の構成例を示す図である。
図21A及び図21Bは、電子機器の一例を示す図である。
図22A乃至図22Dは、電子機器の一例を示す図である。
図23A乃至図23Fは、電子機器の一例を示す図である。
図24A乃至図24Fは、電子機器の一例を示す図である。
図25A及び図25Bは、実施例に係る測定結果である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 なお、本明細書で説明する各図において、各構成要素の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
 なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
 また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」または「絶縁層」という用語は、「導電膜」または「絶縁膜」という用語に相互に交換することが可能な場合がある。
 なお、本明細書において、EL層とは発光素子の一対の電極間に設けられ、少なくとも発光性の物質を含む層(発光層とも呼ぶ)、または発光層を含む積層体を示すものとする。
 本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
 また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
(実施の形態1)
 本実施の形態では、本発明の一態様の表示装置の構成例、及び表示装置の作製方法例について説明する。
 本発明の一態様は、発光素子(発光デバイスともいう)を有する表示装置である。表示装置は、少なくとも異なる色の光を発する2つの発光素子を有する。発光素子は、それぞれ一対の電極と、その間にEL層を有する。発光素子は、有機EL素子(有機電界発光素子)であることが好ましい。異なる色を発する2つ以上の発光素子は、それぞれ異なる材料を含むEL層を有する。例えば、それぞれ赤色(R)、緑色(G)、または青色(B)の光を発する3種類の発光素子を有することで、フルカラーの表示装置を実現できる。
 ここで、異なる色の発光素子間で、EL層を作り分ける場合、メタルマスクなどのシャドーマスクを用いた蒸着法により形成することが知られている。しかしながら、この方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の有機膜の形状及び位置に設計からのずれが生じるため、表示装置の高精細化、及び高開口率化が困難である。そのため、ペンタイル配列などの特殊な画素配列方式を適用することなどにより、疑似的に精細度(画素密度ともいう)を高める対策が取られていた。
 本発明の一態様は、EL層をメタルマスクなどのシャドーマスクを用いることなく、微細なパターンに加工する。これにより、これまで実現が困難であった高い精細度と、大きな開口率を有する表示装置を実現できる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を実現できる。
 本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いるデバイスをMM(メタルマスク)構造と呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いないデバイスをMML(メタルマスクレス)構造と呼称する場合がある。
 ここでは、簡単のために、2色の発光素子のEL層を作り分ける場合について説明する。まず、2つの画素電極を覆って、第1のEL膜と、第1の犠牲膜とを積層して形成する。続いて、第1の犠牲膜上であって、一方の画素電極(第1の画素電極)と重なる位置にレジストマスクを形成する。続いて、レジストマスク、第1の犠牲膜の一部、及び第1のEL膜の一部をエッチングする。このとき、他方の画素電極(第2の画素電極)を露出させた時点で、エッチングを終了する。これにより、第1の画素電極上には、帯状または島状に加工された第1のEL膜の一部(第1のEL層ともいう)と、その上に犠牲膜の一部(第1の犠牲層ともいう)を形成することができる。
 続いて、第2のEL膜と、第2の犠牲膜とを積層して形成する。そして、第2の画素電極と重なる位置にレジストマスクを形成する。続いて、上記と同様にレジストマスク、第2の犠牲膜の一部、及び第2のEL膜の一部をエッチングする。これにより、第1の画素電極上には第1のEL層及び第1の犠牲層が、第2の画素電極上には第2のEL層及び第2の犠牲層が、それぞれ設けられた状態となる。このようにして、第1のEL層と第2のEL層を作り分けることができる。最後に、第1の犠牲層及び第2の犠牲層を除去し、第1のEL層と第2のEL層を露出させたのち、共通電極を形成することで、二色の発光素子を作り分けることができる。
 さらに、上記工程を繰り返すことで、三色以上の発光素子のEL層を作り分けることができ、三色、または四色以上の発光素子を有する表示装置を実現できる。
 ここで、共通電極に電位を供給するために、画素電極と同一面上に電極(第1の電極、接続電極などともいう)を設け、当該共通電極と電気的に接続される構成とすることができる。当該接続電極は、画素が設けられる表示部の外側に配置される。ここで、上記第1のEL膜のエッチング時に、接続電極の上面がエッチングに曝されることを防ぐため、接続電極上にも、第1の犠牲層を設けることが好ましい。また、第2のEL膜のエッチング時にも同様に、接続電極上に第2の犠牲層を設けることが好ましい。接続電極上に設けられた第1の犠牲層及び第2の犠牲層は、第1のEL層上の第1の犠牲層、及び第2のEL層上の第2の犠牲層と同時にエッチングにより除去することができる。
 異なる色のEL層の間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法によれば、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで間隔を狭めることもできる。これにより、2つの発光素子間に存在しうる非発光領域の面積を大幅に縮小することができ、開口率を100%に近づけることが可能となる。例えば、開口率は、50%以上、60%以上、70%以上、80%以上、さらには90%以上であって、100%未満を実現することもできる。
 さらに、EL層自体のパターンについても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、パターンの中央と端で厚さのばらつきが生じるため、パターン全体の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工することでパターンを形成するため、パターン内で厚さを均一にでき、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、上記作製方法によれば、高い精細度と高い開口率を兼ね備えることができる。
 このように、上記作製方法によれば、微細な発光素子を集積した表示装置を実現することができるため、例えばペンタイル方式などの特殊な画素配列方式を適用し、疑似的に精細度を高める必要が無いため、R、G、Bをそれぞれ一方向に配列させた、いわゆるストライプ配置で、且つ、500ppi以上、1000ppi以上、または2000ppi以上、さらには3000ppi以上、さらには5000ppi以上の精細度の表示装置を実現することができる。
 以下では、本発明の一態様の表示装置の、より具体的な構成例及び作製方法例について、図面を参照して説明する。
[構成例1]
 図1Aに、本発明の一態様の表示装置100の上面概略図を示す。表示装置100は、赤色を呈する発光素子110R、緑色を呈する発光素子110G、及び青色を呈する発光素子110Bをそれぞれ複数有する。図1Aでは、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。
 発光素子110R、発光素子110G、及び発光素子110Bは、それぞれマトリクス状に配列している。図1Aは、一方向に同一の色の発光素子が配列する、いわゆるストライプ配列を示している。なお、発光素子の配列方法はこれに限られず、デルタ配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列を用いることもできる。
 発光素子110R、発光素子110G、及び発光素子110Bは、X方向に配列している。また、X方向と交差するY方向には、同じ色の発光素子が配列している。
 発光素子110R、発光素子110G、及び発光素子110Bとしては、OLED(Organic Light Emitting Diode)、またはQLED(Quantum−dot Light Emitting Diode)などのEL素子を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)などが挙げられる。
 図1Bは、図1A中の一点鎖線A1−A2に対応する断面概略図であり、図1Cは、一点鎖線B1−B2に対応する断面概略図である。
 図1Bには、発光素子110R、発光素子110G、及び発光素子110Bの断面を示している。発光素子110Rは、画素電極111R、EL層112R、EL層114、及び共通電極113を有する。発光素子110Gは、画素電極111G、EL層112G、EL層114、及び共通電極113を有する。発光素子110Bは、画素電極111B、EL層112B、EL層114、及び共通電極113を有する。EL層114と共通電極113は、発光素子110R、発光素子110G、及び発光素子110Bに共通に設けられる。EL層114は、共通層ともいうことができる。
 発光素子110Rが有するEL層112Rは、少なくとも赤色の波長域に強度を有する光を発する発光性の有機化合物を有する。発光素子110Gが有するEL層112Gは、少なくとも緑色の波長域に強度を有する光を発する発光性の有機化合物を有する。発光素子110Bが有するEL層112Bは、少なくとも青色の波長域に強度を有する光を発する発光性の有機化合物を有する。
 EL層112R、EL層112G、及びEL層112Bは、それぞれ発光性の有機化合物を含む層(発光層)のほかに、電子注入層、電子輸送層、正孔注入層、及び正孔輸送層のうち、一以上を有していてもよい。EL層114は、発光層を有さない構成とすることができる。例えば、EL層114は、電子注入層、電子輸送層、正孔注入層、及び正孔輸送層のうち、一以上を有する。
 画素電極111R、画素電極111G、及び画素電極111Bは、それぞれ発光素子毎に設けられている。また、共通電極113及びEL層114は、各発光素子に共通な一続きの層として設けられている。各画素電極と共通電極113のいずれか一方に可視光に対して透光性を有する導電膜を用い、他方に反射性を有する導電膜を用いる。各画素電極を透光性、共通電極113を反射性とすることで、下面射出型(ボトムエミッション型)の表示装置とすることができ、反対に各画素電極を反射性、共通電極113を透光性とすることで、上面射出型(トップエミッション型)の表示装置とすることができる。なお、各画素電極と共通電極113の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示装置とすることもできる。
 画素電極111R、画素電極111G、及び画素電極111Bの端部を覆って、絶縁層131が設けられている。絶縁層131の端部は、テーパー形状であることが好ましい。なお、絶縁層131は不要であれば設けなくてもよい。
 EL層112R、EL層112G、及びEL層112Bは、それぞれ画素電極の上面に接する領域と、絶縁層131の表面に接する領域と、を有する。また、EL層112R、EL層112G、及びEL層112Bの端部は、絶縁層131上に位置する。
 図1Bに示すように、異なる色の発光素子間において、2つのEL層の間に隙間が設けられている。このように、EL層112R、EL層112G、及びEL層112Gが、互いに接しないように設けられていることが好ましい。これにより、隣接する2つのEL層を介して電流が流れ、意図しない発光が生じることを好適に防ぐことができる。そのため、コントラストを高めることができ、表示品位の高い表示装置を実現できる。
 図1Cに示すように、Y方向において、EL層112Rが一続きとなるように、EL層112Rが帯状に形成されている。EL層112Rなどを帯状に形成することで、これらを分断するためのスペースが不要となり、発光素子間の非発光領域の面積を縮小できるため、開口率を高めることができる。なお、図1Cでは一例として発光素子110Rの断面を示しているが、発光素子110G及び発光素子110Bについても同様の形状とすることができる。
 共通電極113上には、発光素子110R、発光素子110G、及び発光素子110Bを覆って、保護層121が設けられている。保護層121は、上方から各発光素子に水などの不純物が拡散することを防ぐ機能を有する。
 保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造または積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜または窒化物膜が挙げられる。または、保護層121としてインジウムガリウム酸化物、インジウムガリウム亜鉛酸化物などの半導体材料を用いてもよい。
 また、保護層121として、無機絶縁膜と、有機絶縁膜の積層膜を用いることもできる。例えば、一対の無機絶縁膜の間に、有機絶縁膜を挟んだ構成とすることが好ましい。さらに有機絶縁膜が平坦化膜として機能することが好ましい。これにより、有機絶縁膜の上面を平坦なものとすることができるため、その上の無機絶縁膜の被覆性が向上し、バリア性を高めることができる。また、保護層121の上面が平坦となるため、保護層121の上方に構造物(例えばカラーフィルタ、タッチセンサの電極、またはレンズアレイなど)を設ける場合に、下方の構造に起因する凹凸形状の影響を軽減できるため好ましい。
 また、図1Aには、共通電極113と電気的に接続する接続電極111Cを示している。接続電極111Cには、共通電極113に供給するための電位(例えばアノード電位、またはカソード電位)が与えられる。接続電極111Cは、発光素子110Rなどが配列する表示領域の外に設けられる。また図1Aには、共通電極113を破線で示している。
 接続電極111Cは、表示領域の外周に沿って設けることができる。例えば、表示領域の外周の一辺に沿って設けられていてもよいし、表示領域の外周の2辺以上にわたって設けられていてもよい。すなわち、表示領域の上面形状が長方形である場合には、接続電極111Cの上面形状は、帯状、L字状、コの字状(角括弧状)、または四角形などとすることができる。
 図1Dは、図1A中の一点鎖線C1−C2に対応する断面概略図である。図1Dには、接続電極111Cと共通電極113とが電気的に接続する接続部130を示している。接続部130では、接続電極111C上に共通電極113が接して設けられ、共通電極113を覆って保護層121が設けられている。また、接続電極111Cの端部を覆って絶縁層131が設けられている。
[作製方法例1]
 以下では、本発明の一態様の表示装置の作製方法の一例について、図面を参照して説明する。ここでは、上記構成例で示した表示装置100を例に挙げて説明する。図2A乃至図3Fは、以下で例示する表示装置の作製方法の、各工程における断面概略図である。また図2A等では、右側に接続部130及びその近傍における断面概略図を合わせて示している。
 なお、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、または熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
 また、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
 また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。それ以外に、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
 フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
 フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光、X線などを用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
 薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
〔基板101の準備〕
 基板101としては、少なくとも後の熱処理に耐えうる程度の耐熱性を有する基板を用いることができる。基板101として、絶縁性基板を用いる場合には、ガラス基板、石英基板、サファイア基板、セラミック基板、有機樹脂基板などを用いることができる。また、シリコン、炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板などの半導体基板を用いることができる。
 特に、基板101として、上記半導体基板または絶縁性基板上に、トランジスタなどの半導体素子を含む半導体回路が形成された基板を用いることが好ましい。当該半導体回路は、例えば画素回路、ゲート線駆動回路(ゲートドライバ)、ソース線駆動回路(ソースドライバ)などを構成していることが好ましい。また、上記に加えて演算回路、記憶回路などが構成されていてもよい。
〔画素電極111R、111G、111B、接続電極111Cの形成〕
 続いて、基板101上に画素電極111R、画素電極111G、画素電極111B、及び接続電極111Cを形成する。まず画素電極となる導電膜を成膜し、フォトリソグラフィ法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後、レジストマスクを除去することで、画素電極111R、画素電極111G、及び画素電極111Bを形成することができる。
 各画素電極として可視光に対して反射性を有する導電膜を用いる場合、可視光の波長域全域での反射率ができるだけ高い材料(例えば銀またはアルミニウムなど)を適用することが好ましい。これにより、発光素子の光取り出し効率を高められるだけでなく、色再現性を高めることができる。
〔絶縁層131の形成〕
 続いて、画素電極111R、画素電極111G、及び画素電極111Bの端部を覆って、絶縁層131を形成する(図2A)。絶縁層131としては、有機絶縁膜または無機絶縁膜を用いることができる。絶縁層131は、後のEL膜の段差被覆性を向上させるために、端部をテーパー形状とすることが好ましい。特に、有機絶縁膜を用いる場合には、感光性の材料を用いると、露光及び現像の条件により端部の形状を制御しやすいため好ましい。
〔EL膜112Rfの形成〕
 続いて、画素電極111R、画素電極111G、画素電極111B、及び絶縁層131上に、後にEL層112RとなるEL膜112Rfを成膜する。
 EL膜112Rfは、少なくとも発光性の化合物を含む膜を有する。このほかに、電子注入層、電子輸送層、電荷発生層、正孔輸送層、または正孔注入層として機能する膜のうち、一以上が積層された構成としてもよい。EL膜112Rfは、例えば蒸着法、スパッタリング法、またはインクジェット法等により形成することができる。なおこれに限られず、上述した成膜方法を適宜用いることができる。
 一例としては、EL膜112Rfとして、正孔注入層、正孔輸送層、発光層、電子輸送層が、この順で積層された積層膜とすることが好ましい。このとき、後に形成するEL層114としては、電子注入層を有する膜を用いることができる。特に、発光層を覆って電子輸送層を設けることで、後のフォトリソグラフィ工程などにより発光層がダメージを受けることを抑制することができ、信頼性の高い発光素子を作製することができる。さらに、EL膜112Rf等に用いる電子輸送層と、後のEL層114に用いる電子注入層とに、同じ有機化合物を含む層を用いることで、これらの接合を良好なものとし、発光効率が高く、信頼性の高い発光素子を実現できる。例えば、電子輸送層に電子輸送性の有機化合物を用い、電子注入層に、当該有機化合物と金属とを含む材料を用いることができる。
 EL膜112Rfは、接続電極111C上に設けないように形成することが好ましい。例えば、EL膜112Rfを蒸着法(またはスパッタリング法)により形成する場合、接続電極111CにEL膜112Rfが成膜されないように、遮蔽マスクを用いて形成することが好ましい。
〔犠牲膜144aの形成〕
 続いて、EL膜112Rfを覆って犠牲膜144aを形成する。また、犠牲膜144aは、接続電極111Cの上面に接して設けられる。
 犠牲膜144aは、EL膜112Rfなどの各EL膜のエッチング処理に対する耐性の高い膜、すなわちエッチングの選択比の大きい膜を用いることができる。また、犠牲膜144aには、後述する保護膜146aなどの保護膜とのエッチングの選択比の大きい膜を用いることができる。さらに、犠牲膜144aは、各EL膜へのダメージの少ないウェットエッチング法により除去可能な膜を用いることができる。
 犠牲膜144aとしては、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜などの無機膜を用いることができる。犠牲膜144aは、スパッタリング法、蒸着法、CVD法、ALD法などの各種成膜方法により形成することができる。
 犠牲膜144aとしては、例えば金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタルなどの金属材料、または該金属材料を含む合金材料を用いることができる。特に、アルミニウムまたは銀などの低融点材料を用いることが好ましい。
 また、犠牲膜144aとしては、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも表記する)などの金属酸化物を用いることができる。さらに、酸化インジウム、インジウム亜鉛酸化物(In−Zn酸化物)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)などを用いることができる。またはシリコンを含むインジウムスズ酸化物などを用いることもできる。
 なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)を用いた場合にも適用できる。特に、Mは、ガリウム、アルミニウム、またはイットリウムから選ばれた一種または複数種とすることが好ましい。
 また、犠牲膜144aとしては、酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの無機絶縁材料を用いることができる。
 また、犠牲膜144aとして、少なくともEL膜112Rfの最上部に位置する膜に対して、化学的に安定な溶媒に溶解しうる材料を用いることが好ましい。特に、水またはアルコールに溶解する材料を、犠牲膜144aに好適に用いることができる。犠牲膜144aを成膜する際には、水またはアルコールなどの溶媒に溶解させた状態で、湿式の成膜方法で塗布した後に、溶媒を蒸発させるための加熱処理を行うことが好ましい。このとき、減圧雰囲気下での加熱処理を行うことで、低温且つ短時間で溶媒を除去できるため、EL膜112Rfへの熱的なダメージを低減することができ、好ましい。
 犠牲膜144aの形成に用いることのできる湿式の成膜方法としては、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコートなどがある。
 犠牲膜144aとしては、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いることができる。
〔保護膜146aの形成〕
 続いて、犠牲膜144a上に、保護膜146aを形成する(図2B)。
 保護膜146aは、後に犠牲膜144aをエッチングする際のハードマスクとして用いる膜である。また、後の保護膜146aの加工時には、犠牲膜144aが露出する。したがって、犠牲膜144aと保護膜146aとは、互いにエッチングの選択比の大きい膜の組み合わせを選択する。そのため、犠牲膜144aのエッチング条件、及び保護膜146aのエッチング条件に応じて、保護膜146aに用いることのできる膜を選択することができる。
 例えば、保護膜146aのエッチングに、フッ素を含むガス(フッ素系ガスともいう)を用いたドライエッチングを用いる場合には、シリコン、窒化シリコン、酸化シリコン、タングステン、チタン、モリブデン、タンタル、窒化タンタル、モリブデンとニオブを含む合金、またはモリブデンとタングステンを含む合金などを、保護膜146aに用いることができる。ここで、上記フッ素系ガスを用いたドライエッチングに対して、エッチングの選択比を大きくとれる(すなわち、エッチング速度を遅くできる)膜としては、IGZO、ITOなどの金属酸化物膜などがあり、これを犠牲膜144aに用いることができる。
 なお、これに限られず、保護膜146aは、様々な材料の中から、犠牲膜144aのエッチング条件、及び保護膜146aのエッチング条件に応じて、選択することができる。例えば、上記犠牲膜144aに用いることのできる膜の中から選択することもできる。
 また、保護膜146aとしては、例えば窒化物膜を用いることができる。具体的には、窒化シリコン、窒化アルミニウム、窒化ハフニウム、窒化チタン、窒化タンタル、窒化タングステン、窒化ガリウム、窒化ゲルマニウムなどの窒化物を用いることもできる。
 または、保護膜146aとして、酸化物膜を用いることができる。代表的には、酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウムなどの酸化物膜または酸窒化物膜を用いることもできる。
 また、保護膜146aとして、EL膜112Rfなどに用いることのできる有機膜を用いてもよい。例えば、EL膜112Rf、EL膜112Gf、またはEL膜112Bf(図示しない)に用いる有機膜と同じ膜を、保護膜146aに用いることができる。このような有機膜を用いることで、EL膜112Rfなどと成膜装置を共通に用いることができるため、好ましい。
〔レジストマスク143aの形成〕
 続いて、保護膜146a上であって、画素電極111Rと重なる位置、及び接続電極111Cと重なる位置に、それぞれレジストマスク143aを形成する(図2C)。
 レジストマスク143aは、ポジ型のレジスト材料、またはネガ型のレジスト材料など、感光性の樹脂を含むレジスト材料を用いることができる。
 ここで、保護膜146aを有さずに、犠牲膜144a上にレジストマスク143aを形成する場合、犠牲膜144aにピンホールなどの欠陥が存在すると、レジスト材料の溶媒によって、EL膜112Rfが溶解してしまう恐れがある。保護膜146aを用いることで、このような不具合が生じることを防ぐことができる。
 なお、犠牲膜144aにピンホールなどの欠陥が生じにくい膜を用いる場合には、保護膜146aを用いずに、犠牲膜144a上に直接、レジストマスク143aを形成してもよい。
〔保護膜146aのエッチング〕
 続いて、保護膜146aの、レジストマスク143aに覆われない一部をエッチングにより除去し、帯状の保護層147aを形成する。このとき同時に、接続電極111C上にも保護層147aが形成される。
 保護膜146aのエッチングの際、犠牲膜144aが当該エッチングにより除去されないように、選択比の高いエッチング条件を用いることが好ましい。保護膜146aのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチングを用いることで、保護膜146aのパターンが縮小することを抑制できる。
〔レジストマスク143aの除去〕
 続いて、レジストマスク143aを除去する(図2D)。
 レジストマスク143aの除去は、ウェットエッチングまたはドライエッチングにより行うことができる。特に、酸素ガスをエッチングガスに用いたドライエッチング(プラズマアッシングともいう)により、レジストマスク143aを除去することが好ましい。
 このとき、レジストマスク143aの除去は、EL膜112Rfが犠牲膜144aに覆われた状態で行われるため、EL膜112Rfへの影響が抑制されている。特に、EL膜112Rfが酸素に触れると、電気特性に悪影響を及ぼす場合があるため、プラズマアッシングなどの、酸素ガスを用いたエッチングを行う場合には好適である。
〔犠牲膜144aのエッチング〕
 続いて、保護層147aをマスクとして用いて、犠牲膜144aの保護層147aに覆われない一部をエッチングにより除去し、帯状の犠牲層145aを形成する(図2E)。このとき同時に、接続電極111C上にも犠牲層145aが形成される。
 犠牲膜144aのエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチング法を用いると、パターンの縮小を抑制できるため好ましい。
〔EL膜112Rf、保護層147aのエッチング〕
 続いて、保護層147aをエッチングすると同時に、犠牲層145aに覆われないEL膜112Rfの一部をエッチングにより除去し、帯状のEL層112Rを形成する(図2F)。このとき同時に、接続電極111C上の保護層147aも除去される。
 EL膜112Rfと、保護層147aとを同一処理によりエッチングすることで、工程を簡略化することができ、表示装置の作製コストを削減することができるため好ましい。
 特にEL膜112Rfのエッチングには、酸素を主成分に含まないエッチングガスを用いたドライエッチングを用いることが好ましい。これにより、EL膜112Rfの変質を抑制し、信頼性の高い表示装置を実現できる。酸素を主成分に含まないエッチングガスとしては、例えばCF、C、SF、CHF、Cl、HO、BCl、HまたはHeなどの貴ガスが挙げられる。また、上記ガスと、酸素を含まない希釈ガスとの混合ガスをエッチングガスに用いることができる。
 なお、EL膜112Rfのエッチングと、保護層147aのエッチングを、別々に行ってもよい。このとき、EL膜112Rfを先にエッチングしてもよいし、保護層147aを先にエッチングしてもよい。
 この時点において、EL層112Rと、接続電極111Cが、犠牲層145aに覆われた状態となる。
〔EL膜112Gfの形成〕
 続いて、犠牲層145a、絶縁層131、画素電極111G、画素電極111B上に、後にEL層112GとなるEL膜112Gfを成膜する。このとき、上記EL膜112Rfと同様に、接続電極111C上にはEL膜112Gfを設けないことが好ましい。
 EL膜112Gfの形成方法については、上記EL膜112Rfの記載を援用できる。
〔犠牲膜144bの形成〕
 続いて、EL膜112Gf上に、犠牲膜144bを形成する。犠牲膜144bは、上記犠牲膜144aと同様の方法で形成することができる。特に、犠牲膜144bは、犠牲膜144aと同一材料を用いることが好ましい。
 このとき同時に、接続電極111C上において、犠牲層145aを覆って犠牲膜144aが形成される。
〔保護膜146bの形成〕
 続いて、犠牲膜144b上に、保護膜146bを形成する。保護膜146bは、上記保護膜146aと同様の方法で形成することができる。特に、保護膜146bは、上記保護膜146aと同一材料を用いることが好ましい。
〔レジストマスク143bの形成〕
 続いて、保護膜146b上であって、画素電極111Gと重なる領域、及び接続電極111Cと重なる領域に、レジストマスク143bを形成する(図3A)。
 レジストマスク143bは、上記レジストマスク143aと同様の方法で形成することができる。
〔保護膜146bのエッチング〕
 続いて、保護膜146bの、レジストマスク143bに覆われない一部をエッチングにより除去し、帯状の保護層147bを形成する(図3B)。このとき同時に、接続電極111C上にも保護層147bが形成される。
 保護膜146bのエッチングについては、上記保護膜146aの記載を援用することができる。
〔レジストマスク143bの除去〕
 続いて、レジストマスク143bを除去する。レジストマスク143bの除去は、上記レジストマスク143aの記載を援用することができる。
〔犠牲膜144bのエッチング〕
 続いて、保護層147bをマスクとして用いて、犠牲膜144bの保護層147bに覆われない一部をエッチングにより除去し、帯状の犠牲層145bを形成する。このとき同時に、接続電極111C上にも犠牲層145bが形成される。接続電極111C上には、犠牲層145aと犠牲層145bとが積層される。
 犠牲膜144bのエッチングは、上記犠牲膜144aの記載を援用することができる。
〔EL膜112Gf、保護層147bのエッチング〕
 続いて、保護層147bをエッチングすると同時に、犠牲層145bに覆われないEL膜112Gfの一部をエッチングにより除去し、帯状のEL層112Gを形成する(図3C)。このとき同時に、接続電極111C上の保護層147bも除去される。
 EL膜112Gf及び保護層147bのエッチングは、上記EL膜112Rf及び保護層147aの記載を援用することができる。
 このとき、EL層112Rは、犠牲層145aに保護されているため、EL膜112Gfのエッチング工程の際にダメージを受けることを防ぐことができる。
 このようにして、帯状のEL層112Rと、帯状のEL層112Gとを、高い位置精度で作り分けることができる。
〔EL層112Bの形成〕
 以上の工程を、EL膜112Bf(図示しない)に対して行うことで、島状のEL層112Bと、島状の犠牲層145cとを形成することができる(図3D)。
 すなわち、EL層112Gの形成後、EL膜112Bf、犠牲膜144c、保護膜146c、及びレジストマスク143c(いずれも図示しない)を順に形成する。続いて、保護膜146cをエッチングして保護層147c(図示しない)を形成した後に、レジストマスク143cを除去する。続いて、犠牲膜144cをエッチングして犠牲層145cを形成する。その後、保護層147cと、EL膜112Bfをエッチングして、帯状のEL層112Bを形成する。
 また、EL層112Bの形成後、同時に接続電極111C上にも、犠牲層145cが形成される。接続電極111C上には、犠牲層145a、犠牲層145b、及び犠牲層145cが積層される。
〔犠牲層の除去〕
 続いて、犠牲層145a、犠牲層145b、及び犠牲層145cを除去し、EL層112R、EL層112G、及びEL層112Bの上面を露出させる(図3E)。このとき同時に、接続電極111Cの上面も露出される。
 犠牲層145a、犠牲層145b、及び犠牲層145cは、ウェットエッチングまたはドライエッチングにより除去することができる。このとき、EL層112R、EL層112G、及びEL層112Bにできるだけダメージを与えない方法を用いることが好ましい。特に、ウェットエッチング法を用いることが好ましい。例えば、水酸化テトラメチルアンモニウム水溶液(TMAH)、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いたウェットエッチングを用いることが好ましい。
 または、犠牲層145a、犠牲層145b、及び犠牲層145cを、水またはアルコールなどの溶媒に溶解させることで除去することが好ましい。ここで、犠牲層145a、犠牲層145b、及び犠牲層145cを溶解しうるアルコールとしては、エチルアルコール、メチルアルコール、イソプロピルアルコール(IPA)、またはグリセリンなど、様々なアルコールを用いることができる。
 犠牲層145a、犠牲層145b、及び犠牲層145cを除去した後に、EL層112R、EL層112G、及びEL層112Bの内部に含まれる水、及び表面に吸着する水を除去するため、乾燥処理を行うことが好ましい。例えば、不活性ガス雰囲気または減圧雰囲気下における加熱処理を行うことが好ましい。加熱処理は、基板温度として50℃以上200℃以下、好ましくは60℃以上150℃以下、より好ましくは70℃以上120℃以下の温度で行うことができる。減圧雰囲気とすることで、より低温で乾燥が可能であるため好ましい。
 このようにして、EL層112R、EL層112G、及びEL層112Bを作り分けることができる。
〔EL層114の形成〕
 続いて、EL層112R、EL層112G、及びEL層112Bを覆ってEL層114を成膜する。
 EL層114は、EL膜112Rfなどと同様の方法で成膜することができる。蒸着法によりEL層114を成膜する場合には、EL層114が接続電極111C上に成膜されないように、遮蔽マスクを用いて成膜することが好ましい。
〔共通電極113の形成〕
 続いて、EL層114及び接続電極111Cを覆って共通電極113を形成する(図3F)。
 共通電極113は、蒸着法またはスパッタリング法などの成膜方法により形成することができる。または、蒸着法で形成した膜と、スパッタリング法で形成した膜を積層させてもよい。このとき、EL層114が成膜される領域を包含するように、共通電極113を形成することが好ましい。すなわち、EL層114の端部が、共通電極113と重畳する構成とすることができる。共通電極113は、遮蔽マスクを用いて形成することが好ましい。
 共通電極113は、表示領域外において、接続電極111Cと電気的に接続される。
〔保護層の形成〕
 続いて、共通電極113上に、保護層121を形成する。保護層121に用いる無機絶縁膜の成膜には、スパッタリング法、PECVD法、またはALD法を用いることが好ましい。特にALD法は、段差被覆性に優れ、ピンホールなどの欠陥が生じにくいため、好ましい。また、有機絶縁膜の成膜には、インクジェット法を用いると、所望のエリアに均一な膜を形成できるため好ましい。
 以上により、図1B及び図1Cに示す表示装置100を作製することができる。
 なお、上記では、共通電極113とEL層114とを、異なる上面形状となるように形成した場合について示したが、これらを上面形状が一致するように、同じ領域に形成してもよい。
 図4Aには、上記において、犠牲層を除去した後の断面概略図を示している。続いて、図4Bに示すように、EL層114と、共通電極113とを、同一の遮蔽マスクを用いて、または遮蔽マスクを用いることなく形成する。これにより、異なる遮蔽マスクを用いる場合に比べて、製造コストを低減できる。
 このとき、図4Bに示すように、接続部130では、接続電極111Cと共通電極113との間に、EL層114が挟持された構成となる。このとき、EL層114としては、できるだけ電気抵抗の低い材料を用いることが好ましい。または、できるだけ薄く形成することで、EL層114の厚さ方向の電気抵抗を低減することが好ましい。例えば、EL層114として、厚さ1nm以上5nm以下、好ましくは1nm以上3nm以下の電子注入性または正孔注入性の材料を用いることで、接続電極111Cと共通電極113との間の電気抵抗を無視できる程度に小さくできる場合がある。
 続いて、図4Cに示すように、保護層121を形成する。このとき、図4Cに示すように、保護層121を、共通電極113の端部、及びEL層114の端部を覆って設けることが好ましい。これにより、EL層114、及びEL層114と共通電極113の界面に、外部から水または酸素などの不純物が拡散することを効果的に防ぐことができる。
 以上が、表示装置の作製方法例についての説明である。
[構成例2]
 以下では、上記構成例1とは一部の構成が異なる表示装置の構成例について説明する。以下では上記と重複する部分については説明を省略する場合がある。
 図5A乃至図5Dに示す表示装置100Aは、EL層114及び共通電極113の形状が異なる点で、上記表示装置100と主に相違している。
 図5Cに示すように、Y方向の断面において、2つの発光素子110Rの間で、EL層112R、EL層114、及び共通電極113が分離されている。言い換えると、EL層112R、EL層114、及び共通電極113は、絶縁層131と重なる部分に端部を有する。
 また、保護層121は、絶縁層131と重なる領域において、EL層112R、EL層114、及び共通電極113のそれぞれの側面を覆って設けられている。
 また、図5Cに示すように、絶縁層131の上面の一部には、凹部が形成されていてもよい。このとき、絶縁層131の凹部の表面に沿って、保護層121が接して設けられていることが好ましい。これにより、絶縁層131と保護層121との接触面積が増大し、これらの密着性が向上するため好ましい。
 図5Aには、共通電極113とEL層114の輪郭を破線で示している。図5Aに示すように、共通電極113とEL層114は、それぞれ長手方向がX方向と平行な帯状の上面形状を有する。一方、図5B及び図5Cに示すように、EL層112Rは島状の形状を有する。
 なお、ここでは示さないが、発光素子110G及び発光素子110Bに関しても同様の構成とすることができる。
[作製方法例2]
 以下では、上記表示装置100Aの作製方法例について説明する。なお、以下では上記作製方法例1と重複する部分についてはこれを援用し、説明を省略する。ここで例示する作製方法例は、上記作製方法例1の、共通電極113の形成工程以降の工程が異なる。
 図6A乃至図6Dには、以下で例示する各工程における断面概略図を示している。ここでは、図5Aにおける一点鎖線B3−B4に対応する断面と、一点鎖線C3−C4に対応する断面とを、並べて示している。
 上記作製方法例1と同様に、共通電極113の形成まで順に行う(図6A)。
 続いて、共通電極113上に複数のレジストマスク143dを形成する。レジストマスク143dは、X方向に延在する帯状の上面形状を有するように形成する。レジストマスク143dは、画素電極111Rと重畳する。また、レジストマスク143dは、絶縁層131上に端部が設けられている。
 続いて、共通電極113、EL層114、EL層112R、EL層112G(図示しない)、及びEL層112B(図示しない)の、レジストマスク143dに覆われていない部分をエッチングにより除去する(図6C)。これにより、それまで全ての画素電極を覆って一続きに設けられていた共通電極113とEL層114は、上記エッチングによりスリットが形成されることによって分断され、複数の帯状の共通電極113と、EL層114が形成される。
 エッチングはドライエッチングにより行うことが好ましい。例えば、エッチングガスを切り替えることによって、大気に曝すことなく連続して、共通電極113、EL層114、及びEL層112Rなどを順にエッチングすることが好ましい。さらに、酸素を主成分として含有しないガスを、エッチングガスに用いることが好ましい。
 共通電極113、EL層114、及びEL層112Rなどのエッチングの際に、絶縁層131の一部がエッチングされ、図6Cに示すように、絶縁層131の上部に凹部が形成されてもよい。または、絶縁層131のレジストマスク143dに覆われない部分がエッチングされ、2つに分断される場合もある。
 続いて、レジストマスク143dを除去する。レジストマスク143dの除去は、ウェットエッチングまたはドライエッチングにより行うことができる。
 続いて、保護層121を形成する(図6D)。保護層121は、共通電極113の側面、EL層114の側面、EL層112Rの側面を覆って設けられる。また、保護層121は、絶縁層131の上面に接して設けられることが好ましい。
 また、図6Eに示すように、保護層121の形成時に、絶縁層131の上方に、空隙(隙間、空間などともいう)122が形成される場合がある。空隙122は、減圧状態であってもよいし、大気圧であってもよい。また、空気、窒素、貴ガスなどのガス、または、保護層121の成膜に用いる成膜ガスなどを含んでいてもよい。
 以上が、表示装置100Aの作製方法例についての説明である。
 なお、ここでは共通電極113上に、レジストマスク143dを直接形成したが、共通電極113上に、ハードマスクとして機能する膜を設けてもよい。このとき、レジストマスク143dをマスクとして、ハードマスクを形成し、レジストマスクを除去した後に、ハードマスクをマスクとして、共通電極113、EL層114、及びEL層112Rなどをエッチングすることができる。なお、このときハードマスクは除去してもよいし、残存させてもよい。
[変形例]
 以下では、上記とは一部の構成が異なる例について説明する。なお以下では、上記と重複する部分についてはこれを援用し、説明を省略する。
〔変形例1〕
 図7A及び図7Bに、表示装置100Bの断面概略図を示す。表示装置100Bの上面図は、図1Aと同様である。図7Aは、X方向の断面に相当し、図7Bは、Y方向の断面に相当する。
 表示装置100Bは、共通層であるEL層114を有していない点で、上記表示装置100と主に相違している。
 共通電極113は、EL層112R、EL層112G、及びEL層112Bの上面に接して設けられている。EL層114を設けないことにより、発光素子110R、発光素子110G、及び発光素子110Bを、それぞれ全く異なる積層構造とすることが可能となり、材料の選択肢が増えるため、設計の自由度を高めることができる。
 図7Cに示す表示装置100Cは、上記表示装置100Aと同様に、共通電極113の、絶縁層131と重なる領域に、X方向に延在するスリットを形成した場合の例である。表示装置100Cにおいて、保護層121は、共通電極113の側面、EL層112Rの側面、及び絶縁層131の上面に接して設けられている。
〔変形例2〕
 図8A、図8Bに示す表示装置100Dは、発光素子の構成が異なる点で、上記表示装置100と主に相違している。
 発光素子110Rは、画素電極111RとEL層112Rとの間に、光学調整層115Rを有する。発光素子110Gは、画素電極111GとEL層112Gとの間に、光学調整層115Gを有する。発光素子110Bは、画素電極111BとEL層112Bとの間に、光学調整層115Bを有する。
 さらに、光学調整層115R、光学調整層115G、及び光学調整層115Bは、それぞれ可視光に対して透光性を有する。光学調整層115R、光学調整層115G、及び光学調整層115Bは、それぞれ厚さが異なる。これにより、発光素子毎に光路長を異ならせることができる。
 ここで、画素電極111R、画素電極111G、及び画素電極111Bに、可視光に対して反射性を有する導電膜を用い、共通電極113に、可視光に対して反射性及び透光性を有する導電膜を用いる。これにより、各発光素子は、いわゆるマイクロキャビティ構造(微小共振器構造)が実現され、特定の波長の光が強められる。これにより、色純度が高められた表示装置を実現することができる。
 各光学調整層としては、可視光に対して透光性を有する、導電性材料を用いることができる。例えば、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛、シリコンを含むインジウム錫酸化物、シリコンを含むインジウム亜鉛酸化物などの導電性酸化物を用いることができる。
 各光学調整層は、画素電極111R、画素電極111G、及び画素電極111Bを形成した後であって、EL膜112Rf等を形成する前に、形成することができる。各光学調整層は、それぞれ厚さの異なる導電膜を用いてもよいし、薄いものから順に、単層構造、2層構造、3層構造などとしてもよい。
 また、図8Cに示す表示装置100Eは、上記表示装置100Aに、光学調整層を適用した場合の例である。図8Cでは、Y方向に並べて配置された2つの発光素子110Gの断面を示している。
〔変形例3〕
 図9A及び図9Bに示す表示装置100Fは、光学調整層を有さない点で、上記表示装置100Dと主に相違している。
 表示装置100Fでは、EL層112R、EL層112G、及びEL層112Bの厚さにより、マイクロキャビティ構造を実現した例である。このような構成とすることで、光学調整層を別途設ける必要が無いため、工程を簡略化できる。
 例えば表示装置100Cでは、最も波長の長い光を発する発光素子110RのEL層112Rが最も厚く、最も波長の短い光を発する発光素子110BのEL層112Bが最も薄い。なお、これに限られず、各発光素子が発する光の波長、発光素子を構成する層の光学特性、及び発光素子の電気特性などを考慮して、各EL層の厚さを調整することができる。
 また、図9Cに示す表示装置100Gは、上記表示装置100AのEL層の厚さを異ならせて、マイクロキャビティ構造を実現した例である。図9Cでは、Y方向に並べて配置された2つの発光素子110Gの断面を示している。
 以上が変形例についての説明である。
 なお、上記変形例2及び変形例3では、EL層114を用いる例を示したが、EL層114を設けない構成としてもよい。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、本発明の一態様の表示装置の構成例について説明する。
 本実施の形態の表示装置は、高解像度の表示装置または大型な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、スマートフォン、腕時計型端末、タブレット端末、携帯情報端末、音響再生装置の表示部に用いることができる。
[表示装置400A]
 図10に、表示装置400Aの斜視図を示し、図11Aに、表示装置400Aの断面図を示す。
 表示装置400Aは、基板452と基板451とが貼り合わされた構成を有する。図10では、基板452を破線で明示している。
 表示装置400Aは、表示部462、回路464、配線465等を有する。図10では表示装置400AにIC473及びFPC472が実装されている例を示している。そのため、図10に示す構成は、表示装置400A、IC(集積回路)、及びFPCを有する表示モジュールということもできる。
 回路464としては、例えば走査線駆動回路を用いることができる。
 配線465は、表示部462及び回路464に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC472を介して外部から配線465に入力されるか、またはIC473から配線465に入力される。
 図10では、COG(Chip On Glass)方式またはCOF(Chip on Film)方式等により、基板451にIC473が設けられている例を示す。IC473は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置400A及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
 図11Aに、表示装置400Aの、FPC472を含む領域の一部、回路464の一部、表示部462の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
 図11Aに示す表示装置400Aは、基板451と基板452の間に、トランジスタ201、トランジスタ205、赤色の光を発する発光素子430a、緑色の光を発する発光素子430b、及び、青色の光を発する発光素子430c等を有する。
 発光素子430a、発光素子430b、及び発光素子430cには、実施の形態1で例示した発光素子を適用することができる。
 ここで、表示装置の画素が、互いに異なる色を発する発光素子を有する副画素を3種類有する場合、当該3つの副画素としては、R、G、Bの3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。当該副画素を4つ有する場合、当該4つの副画素としては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素などが挙げられる。
 保護層416と基板452は接着層442を介して接着されている。発光素子の封止には、固体封止構造または中空封止構造などが適用できる。図11Aでは、基板452、接着層442、及び基板451に囲まれた空間443が、不活性ガス(窒素またはアルゴンなど)で充填されており、中空封止構造が適用されている。接着層442は、発光素子と重ねて設けられていてもよい。また、基板452、接着層442、及び基板451に囲まれた空間443を、接着層442とは異なる樹脂で充填してもよい。
 発光素子430a、430b、430cは、画素電極とEL層との間に光学調整層を有する。発光素子430aは光学調整層426aを有し、発光素子430bは光学調整層426bを有し、発光素子430cは光学調整層426cを有する。発光素子の詳細は実施の形態1を参照できる。
 画素電極411a、411b、411cは、それぞれ、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。
 画素電極及び光学調整層の端部は、絶縁層421によって覆われている。画素電極は可視光を反射する材料を含み、対向電極(共通電極)は可視光を透過する材料を含む。
 発光素子が発する光は、基板452側に射出される。基板452には、可視光に対する透過性が高い材料を用いることが好ましい。
 トランジスタ201及びトランジスタ205は、いずれも基板451上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
 基板451上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
 トランジスタを覆う絶縁層の少なくとも一層に、水及び水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
 絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
 ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置400Aの端部近傍に開口を有することが好ましい。これにより、表示装置400Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置400Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置400Aの端部に有機絶縁膜が露出しないようにしてもよい。
 平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
 図11Aに示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部462に不純物が入り込むことを抑制できる。従って、表示装置400Aの信頼性を高めることができる。
 トランジスタ201及びトランジスタ205は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
 本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
 トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
 トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、単結晶半導体、または単結晶以外の結晶性を有する半導体(微結晶半導体、多結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。単結晶半導体または結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
 トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
 半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
 特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
 半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
 例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inを4としたとき、Gaが1以上3以下であり、Znが2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inを5としたときに、Gaが0.1より大きく2以下であり、Znが5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inを1としたときに、Gaが0.1より大きく2以下であり、Znが0.1より大きく2以下である場合を含む。
 回路464が有するトランジスタと、表示部462が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路464が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部462が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
 基板451の、基板452が重ならない領域には、接続部204が設けられている。接続部204では、配線465が導電層466及び接続層242を介してFPC472と電気的に接続されている。導電層466は、画素電極と同一の導電膜を加工して得られた導電膜と、光学調整層と同一の導電膜を加工して得られた導電膜と、の積層構造である例を示す。接続部204の上面では、導電層466が露出している。これにより、接続部204とFPC472とを接続層242を介して電気的に接続することができる。
 基板452の基板451側の面には、遮光層417を設けることが好ましい。また、基板452の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板452の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
 発光素子を覆う保護層416を設けることで、発光素子に水などの不純物が入り込むことを抑制し、発光素子の信頼性を高めることができる。
 表示装置400Aの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層416とが互いに接することが好ましい。特に、絶縁層215が有する無機絶縁膜と保護層416が有する無機絶縁膜とが互いに接することが好ましい。これにより、有機絶縁膜を介して外部から表示部462に不純物が入り込むことを抑制することができる。従って、表示装置400Aの信頼性を高めることができる。
 図11Bに、保護層416が3層構造である例を示す。図11Bにおいて、保護層416は、発光素子430c上の無機絶縁層416aと、無機絶縁層416a上の有機絶縁層416bと、有機絶縁層416b上の無機絶縁層416cと、を有する。
 無機絶縁層416aの端部と無機絶縁層416cの端部は、有機絶縁層416bの端部よりも外側に延在し、互いに接している。そして、無機絶縁層416aは、絶縁層214(有機絶縁層)の開口を介して、絶縁層215(無機絶縁層)と接する。これにより、絶縁層215と保護層416とで、発光素子を囲うことができるため、発光素子の信頼性を高めることができる。
 このように、保護層416は、有機絶縁膜と無機絶縁膜との積層構造であってもよい。このとき、有機絶縁膜の端部よりも無機絶縁膜の端部を外側に延在させることが好ましい。
 基板451及び基板452には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光素子からの光を取り出す側の基板には、該光を透過する材料を用いる。基板451及び基板452に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板451または基板452として偏光板を用いてもよい。
 基板451及び基板452としては、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板451及び基板452の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
 なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
 光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
 光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
 また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
 接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラール)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
 接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
 トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
 また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料、または、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、または、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層、及び、発光素子が有する導電層(画素電極または共通電極として機能する導電層)にも用いることができる。
 各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
[表示装置400B]
 図12Aに、表示装置400Bの断面図を示す。表示装置400Bの斜視図は表示装置400A(図10)と同様である。図12Aには、表示装置400Bの、FPC472を含む領域の一部、回路464の一部、及び、表示部462の一部をそれぞれ切断したときの断面の一例を示す。図12Aでは、表示部462のうち、特に、緑色の光を発する発光素子430bと青色の光を発する発光素子430cを含む領域を切断したときの断面の一例を示す。なお、表示装置400Aと同様の部分については説明を省略することがある。
 図12Aに示す表示装置400Bは、基板453と基板454の間に、トランジスタ202、トランジスタ210、発光素子430b、及び発光素子430c等を有する。
 基板454と保護層416とは接着層442を介して接着されている。接着層442は、発光素子430b及び発光素子430cそれぞれと重ねて設けられており、表示装置400Bには、固体封止構造が適用されている。
 基板453と絶縁層212とは接着層455によって貼り合わされている。
 表示装置400Bの作製方法としては、まず、絶縁層212、各トランジスタ、各発光素子等が設けられた作製基板と、遮光層417が設けられた基板454と、を接着層442によって貼り合わせる。そして、作製基板を剥離し露出した面に基板453を貼ることで、作製基板上に形成した各構成要素を、基板453に転置する。基板453及び基板454は、それぞれ、可撓性を有することが好ましい。これにより、表示装置400Bの可撓性を高めることができる。
 絶縁層212には、それぞれ、絶縁層211、絶縁層213、及び絶縁層215に用いることができる無機絶縁膜を用いることができる。
 画素電極は、絶縁層214に設けられた開口を介して、トランジスタ210が有する導電層222bと接続されている。導電層222bは、絶縁層215及び絶縁層225に設けられた開口を介して、低抵抗領域231nと接続される。トランジスタ210は、発光素子の駆動を制御する機能を有する。
 画素電極の端部は、絶縁層421によって覆われている。
 発光素子430b、430cが発する光は、基板454側に射出される。基板454には、可視光に対する透過性が高い材料を用いることが好ましい。
 基板453の、基板454が重ならない領域には、接続部204が設けられている。接続部204では、配線465が導電層466及び接続層242を介してFPC472と電気的に接続されている。導電層466は、画素電極と同一の導電膜を加工して得ることができる。これにより、接続部204とFPC472とを接続層242を介して電気的に接続することができる。
 トランジスタ202及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、導電層223とチャネル形成領域231iとの間に位置する。
 導電層222a及び導電層222bは、それぞれ、絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
 図12Aでは、絶縁層225が半導体層の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。
 一方、図12Bに示すトランジスタ209では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、図12Bに示す構造を作製できる。図12Bでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。さらに、トランジスタを覆う絶縁層218を設けてもよい。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
 本実施の形態では、上記とは異なる表示装置の構成例について説明する。
 本実施の形態の表示装置は、高精細な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、腕時計型、ブレスレット型などの情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器など、頭部に装着可能なウェアラブル機器の表示部に用いることができる。
[表示モジュール]
 図13Aに、表示モジュール280の斜視図を示す。表示モジュール280は、表示装置400Cと、FPC290と、を有する。なお、表示モジュール280が有する表示装置は表示装置400Cに限られず、後述する表示装置400Dまたは表示装置400Eであってもよい。
 表示モジュール280は、基板291及び基板292を有する。表示モジュール280は、表示部281を有する。表示部281は、表示モジュール280における画像を表示する領域であり、後述する画素部284に設けられる各画素からの光を視認できる領域である。
 図13Bに、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部282と、回路部282上の画素回路部283と、画素回路部283上の画素部284と、が積層されている。また、基板291上の画素部284と重ならない部分に、FPC290と接続するための端子部285が設けられている。端子部285と回路部282とは、複数の配線により構成される配線部286により電気的に接続されている。
 画素部284は、周期的に配列した複数の画素284aを有する。図13Bの右側に、1つの画素284aの拡大図を示している。画素284aは、発光色が互いに異なる発光素子430a、430b、430cを有する。複数の発光素子は、図13Bに示すようにストライプ配列で配置してもよい。ストライプ配列は、高密度に画素回路を配列することが出来るため、高精細な表示装置を提供できる。また、デルタ配列、ペンタイル配列など様々な配列方法を適用することができる。
 画素回路部283は、周期的に配列した複数の画素回路283aを有する。
 1つの画素回路283aは、1つの画素284aが有する3つの発光素子の発光を制御する回路である。1つの画素回路283aは、1つの発光素子の発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路283aは、1つの発光素子につき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースまたはドレインの一方にはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。
 回路部282は、画素回路部283の各画素回路283aを駆動する回路を有する。例えば、ゲート線駆動回路、及び、ソース線駆動回路の一方または双方を有することが好ましい。このほか、演算回路、メモリ回路、及び電源回路等の少なくとも一つを有していてもよい。
 FPC290は、外部から回路部282にビデオ信号または電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。
 表示モジュール280は、画素部284の下側に画素回路部283及び回路部282の一方または双方が積層された構成とすることができるため、表示部281の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部281の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素284aを極めて高密度に配置することが可能で、表示部281の精細度を極めて高くすることができる。例えば、表示部281には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素284aが配置されることが好ましい。
 このような表示モジュール280は、極めて高精細であることから、ヘッドマウントディスプレイなどのVR向け機器、またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール280の表示部を視認する構成の場合であっても、表示モジュール280は極めて高精細な表示部281を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール280はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計型の機器などの装着型の電子機器の表示部に好適に用いることができる。
[表示装置400C]
 図14に示す表示装置400Cは、基板301、発光素子430a、430b、430c、容量240、及び、トランジスタ310を有する。
 基板301は、図13A及び図13Bにおける基板291に相当する。基板301から絶縁層255までの積層構造401が、実施の形態1における基板101に相当する。
 トランジスタ310は、基板301にチャネル形成領域を有するトランジスタである。基板301としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ310は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、及び、絶縁層314を有する。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層314は、導電層311の側面を覆って設けられ、絶縁層として機能する。
 また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられている。
 また、トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に容量240が設けられている。
 容量240は、導電層241と、導電層245と、これらの間に位置する絶縁層243を有する。導電層241は容量240の一方の電極として機能し、導電層245は容量240の他方の電極として機能し、絶縁層243は容量240の誘電体として機能する。
 導電層241は絶縁層261上に設けられ、絶縁層254に埋め込まれている。導電層241は、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられている。
 容量240を覆って、絶縁層255が設けられ、絶縁層255上に発光素子430a、430b、430c等が設けられている。発光素子430a、430b、430c上には保護層416が設けられており、保護層416の上面には、樹脂層419によって基板420が貼り合わされている。基板420は、図13Aにおける基板292に相当する。
 発光素子の画素電極は、絶縁層255に埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、及び、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。
[表示装置400D]
 図15に示す表示装置400Dは、トランジスタの構成が異なる点で、表示装置400Cと主に相違する。なお、表示装置400Cと同様の部分については説明を省略することがある。
 トランジスタ320は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタである。
 トランジスタ320は、半導体層321、絶縁層323、導電層324、一対の導電層325、絶縁層326、及び、導電層327を有する。
 基板331は、図13A及び図13Bにおける基板291に相当する。基板331から絶縁層255までの積層構造401が、基板101に相当する。基板331としては、絶縁性基板または半導体基板を用いることができる。
 基板331上に、絶縁層332が設けられている。絶縁層332は、基板331から水または水素などの不純物がトランジスタ320に拡散すること、及び半導体層321から絶縁層332側に酸素が脱離することを防ぐバリア層として機能する。絶縁層332としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
 絶縁層332上に導電層327が設けられ、導電層327を覆って絶縁層326が設けられている。導電層327は、トランジスタ320の第1のゲート電極として機能し、絶縁層326の一部は、第1のゲート絶縁層として機能する。絶縁層326の少なくとも半導体層321と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層326の上面は、平坦化されていることが好ましい。
 半導体層321は、絶縁層326上に設けられる。半導体層321は、半導体特性を有する金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。半導体層321に好適に用いることのできる材料の詳細については後述する。
 一対の導電層325は、半導体層321上に接して設けられ、ソース電極及びドレイン電極として機能する。
 また、一対の導電層325の上面及び側面、並びに半導体層321の側面等を覆って絶縁層328が設けられ、絶縁層328上に絶縁層264が設けられている。絶縁層328は、半導体層321に絶縁層264等から水または水素などの不純物が拡散すること、及び半導体層321から酸素が脱離することを防ぐバリア層として機能する。絶縁層328としては、上記絶縁層332と同様の絶縁膜を用いることができる。
 絶縁層328及び絶縁層264に、半導体層321に達する開口が設けられている。当該開口の内部において、絶縁層264、絶縁層328、及び導電層325の側面、並びに半導体層321の上面に接する絶縁層323と、導電層324とが埋め込まれている。導電層324は、第2のゲート電極として機能し、絶縁層323は第2のゲート絶縁層として機能する。
 導電層324の上面、絶縁層323の上面、及び絶縁層264の上面は、それぞれ高さが概略一致するように平坦化処理され、これらを覆って絶縁層329及び絶縁層265が設けられている。
 絶縁層264及び絶縁層265は、層間絶縁層として機能する。絶縁層329は、トランジスタ320に絶縁層265等から水または水素などの不純物が拡散することを防ぐバリア層として機能する。絶縁層329としては、上記絶縁層328及び絶縁層332と同様の絶縁膜を用いることができる。
 一対の導電層325の一方と電気的に接続するプラグ274は、絶縁層265、絶縁層329、及び絶縁層264に埋め込まれるように設けられている。ここで、プラグ274は、絶縁層265、絶縁層329、絶縁層264、及び絶縁層328のそれぞれの開口の側面、及び導電層325の上面の一部を覆う導電層274aと、導電層274aの上面に接する導電層274bとを有することが好ましい。このとき、導電層274aとして、水素及び酸素が拡散しにくい導電材料を用いることが好ましい。
 表示装置400Dにおける、絶縁層254から基板420までの構成は、表示装置400Cと同様である。
[表示装置400E]
 図16に示す表示装置400Eは、基板301にチャネルが形成されるトランジスタ310と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320とが積層された構成を有する。なお、表示装置400C、400Dと同様の部分については説明を省略することがある。
 トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に導電層251が設けられている。また導電層251を覆って絶縁層262が設けられ、絶縁層262上に導電層252が設けられている。導電層251及び導電層252は、それぞれ配線として機能する。また、導電層252を覆って絶縁層263及び絶縁層332が設けられ、絶縁層332上にトランジスタ320が設けられている。また、トランジスタ320を覆って絶縁層265が設けられ、絶縁層265上に容量240が設けられている。容量240とトランジスタ320とは、プラグ274により電気的に接続されている。
 トランジスタ320は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ310は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ310及びトランジスタ320は、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。
 このような構成とすることで、発光素子の直下に画素回路だけでなく駆動回路等を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示装置を小型化することが可能となる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
 本実施の形態では、本発明の一態様である表示装置に用いることができる発光素子(発光デバイスともいう)について説明する。
<発光素子の構成例>
 図17Aに示すように、発光素子は、一対の電極(電極21、電極25)の間に、EL層23を有する。EL層23は、層4420、発光層4411、層4430などの複数の層で構成することができる。層4420は、例えば電子注入性の高い物質を含む層(電子注入層)および電子輸送性の高い物質を含む層(電子輸送層)などを有することができる。発光層4411は、例えば発光性の化合物を有する。層4430は、例えば正孔注入性の高い物質を含む層(正孔注入層)および正孔輸送性の高い物質を含む層(正孔輸送層)を有することができる。
 一対の電極間に設けられた層4420、発光層4411および層4430を有する構成は単一の発光ユニットとして機能することができ、本明細書では図17Aの構成をシングル構造と呼ぶ。
 また、図17Bは、図17Aに示す発光素子20が有するEL層23の変形例である。具体的には、図17Bに示す発光素子20は、下部電極21上の層4430−1と、層4430−1上の層4430−2と、層4430−2上の発光層4411と、発光層4411上の層4420−1と、層4420−1上の層4420−2と、層4420−2上の上部電極25と、を有する。例えば、下部電極21を陽極とし、上部電極25を陰極とした場合、層4430−1が正孔注入層として機能し、層4430−2が正孔輸送層として機能し、層4420−1が電子輸送層として機能し、層4420−2が電子注入層として機能する。または、下部電極21を陰極とし、上部電極25を陽極とした場合、層4430−1が電子注入層として機能し、層4430−2が電子輸送層として機能し、層4420−1が正孔輸送層として機能し、層4420−2が正孔注入層として機能する。このような層構造とすることで、発光層4411に効率よくキャリアを注入し、発光層4411内におけるキャリアの再結合の効率を高めることが可能となる。
 なお、図17Cに示すように層4420と層4430との間に複数の発光層(発光層4411、4412、4413)が設けられる構成もシングル構造のバリエーションである。
 また、図17Dに示すように、複数の発光ユニット(EL層23a、23b)が中間層(電荷発生層)4440を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。なお、本明細書等においては、図17Dに示すような構成をタンデム構造として呼称するが、これに限定されず、例えば、タンデム構造をスタック構造と呼んでもよい。なお、タンデム構造とすることで、高輝度発光が可能な発光素子とすることができる。
 なお、図17C、及び図17Dにおいても、図17Bに示すように、層4420と、層4430とは、2層以上の層からなる積層構造としてもよい。
 また、発光素子ごとに、発光色(ここでは青(B)、緑(G)、および赤(R))を作り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。
 また、上述のシングル構造、及びタンデム構造と、SBS構造と、を比較した場合、SBS構造、タンデム構造、及びシングル構造の順で消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造を用いると好適である。一方で、シングル構造、及びタンデム構造は、製造プロセスがSBS構造よりも簡単であるため、製造コストを低くすることができる、または製造歩留まりを高くすることができるため、好適である。
 発光素子の発光色は、EL層23を構成する材料によって、赤、緑、青、シアン、マゼンタ、黄または白などとすることができる。また、発光素子にマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。
 白色の光を発する発光素子は、発光層に2種類以上の発光物質を含む構成とすることが好ましい。白色発光を得るには、2以上の発光物質の各々の発光が補色の関係となるような発光物質を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光素子全体として白色発光する発光素子を得ることができる。また、発光層を3つ以上有する発光素子の場合も同様である。
 発光層には、R(赤)、G(緑)、B(青)、Y(黄)、O(橙)等の発光を示す発光物質を2以上含むことが好ましい。または、発光物質を2以上有し、それぞれの発光物質の発光は、R、G、Bのうち2以上の色のスペクトル成分を含むことが好ましい。
 ここで、発光素子の具体的な構成例について説明する。
 発光素子は少なくとも発光層を有する。また、発光素子は、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子ブロック材料、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
 発光デバイスには低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
 例えば、発光デバイスは、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち1層以上を有する構成とすることができる。
 正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物、及び、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料などが挙げられる。
 正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
 電子輸送層は、電子注入層によって、陰極から注入された電子を発光層に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
 電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
 電子注入層としては、例えば、リチウム、セシウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはこれらの化合物を用いることができる。
 または、上述の電子注入層としては、電子輸送性を有する材料を用いてもよい。例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を、電子輸送性を有する材料に用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも一つを有する化合物を用いることができる。
 なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)が、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:highest occupied Molecular Orbital)準位及びLUMO準位を見積もることができる。
 例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移点温度(Tg)を備え、耐熱性に優れる。
 発光層は、発光物質を含む層である。発光層は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
 発光物質としては、蛍光材料、燐光材料、TADF材料、量子ドット材料などが挙げられる。
 蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。
 燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
 発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性材料及び電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
 発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
 本実施の形態では、高精細な表示装置について説明する。
[画素回路の構成例]
 以下では、高精細な表示装置に適した画素、及びその配列方法の例について説明する。
 図18Aに、画素ユニット70の回路図の例を示す。画素ユニット70は、2つの画素(画素70a及び画素70b)で構成される。また画素ユニット70には、配線51a、配線51b、配線52a、配線52b、配線52c、配線52d、配線53a、配線53b、配線53c等が接続されている。
 画素70aは、副画素71a、副画素72a、及び副画素73aを有する。画素70bは、副画素71b、副画素72b、及び副画素73bを有する。副画素71a、副画素72a、及び副画素73aは、それぞれ画素回路41a、画素回路42a、及び画素回路43aを有する。また副画素71b、副画素72b、及び副画素73bは、それぞれ画素回路41b、画素回路42b、及び画素回路43bを有する。
 各々の副画素は、画素回路と表示素子60を有する。例えば副画素71aは、画素回路41aと表示素子60を有する。ここでは、表示素子60として、有機EL素子等の発光素子を用いた場合を示す。
 配線51a及び配線51bは、それぞれゲート線としての機能を有する。配線52a、配線52b、配線52c、及び配線52dは、それぞれ信号線(データ線ともいう)としての機能を有する。また配線53a、配線53b、及び配線53cは、表示素子60に電位を供給する機能を有する。
 画素回路41aは、配線51a、配線52a、及び配線53aと電気的に接続されている。画素回路42aは、配線51b、配線52d、及び配線53aと電気的に接続されている。画素回路43aは、配線51a、配線52b、及び配線53bと電気的に接続されている。画素回路41bは、配線51b、配線52a、及び配線53bと電気的に接続されている。画素回路42bは、配線51a、配線52c、及び配線53cと電気的に接続されている。画素回路43bは、配線51b、配線52b、及び配線53cと電気的に接続されている。
 図18Aに示すように、1つの画素に2本のゲート線が接続される構成とすることで、反対にソース線の本数を、ストライプ配置と比べて半分にすることができる。これにより、ソース駆動回路として用いるICの端子数を半分に減らすことが可能となり、部品点数を削減することができる。
 また、信号線として機能する1本の配線には、同じ色に対応した画素回路を接続する構成とすることが好ましい。例えば、画素間の輝度のばらつきを補正するために電位が調整された信号を当該配線に供給する場合、補正値は色ごとに大きく異なる場合がある。そのため、1本の信号線に接続される画素回路を、全て同じ色に対応した画素回路とすることで、補正を容易にすることができる。
 また各々の画素回路は、トランジスタ61と、トランジスタ62と、容量素子63と、を有している。例えば画素回路41aにおいて、トランジスタ61は、ゲートが配線51aと電気的に接続し、ソース又はドレインの一方が配線52aと電気的に接続し、ソース又はドレインの他方がトランジスタ62のゲート、及び容量素子63の一方の電極と電気的に接続している。トランジスタ62は、ソース又はドレインの一方が表示素子60の一方の電極と電気的に接続し、ソース又はドレインの他方が容量素子63の他方の電極、及び配線53aと電気的に接続している。表示素子60の他方の電極は、電位V1が与えられる配線と電気的に接続している。
 なお、他の画素回路については、図18Aに示すようにトランジスタ61のゲートが接続する配線、トランジスタ61のソース又はドレインの一方が接続する配線、及び容量素子63の他方の電極が接続する配線の少なくとも一つが異なる以外は、画素回路41aと同様の構成を有する。
 図18Aにおいて、トランジスタ61は選択トランジスタとしての機能を有する。またトランジスタ62は、表示素子60と直列接続され、表示素子60に流れる電流を制御する機能を有する。容量素子63は、トランジスタ62のゲートが接続されるノードの電位を保持する機能を有する。なお、トランジスタ61のオフ状態におけるリーク電流、及びトランジスタ62のゲートを介したリーク電流等が極めて小さい場合には、容量素子63を意図的に設けなくてもよい。
 ここで、図18Aに示すように、トランジスタ62はそれぞれ電気的に接続された第1のゲートと第2のゲートを有する構成とすることが好ましい。このように2つのゲートを有する構成とすることで、トランジスタ62の流すことのできる電流を増大させることができる。特に高精細の表示装置においては、トランジスタ62のサイズ、特にチャネル幅を大きくすることなく当該電流を増大させることができるため好ましい。
 なお、トランジスタ62が1つのゲートを有する構成としてもよい。このような構成とすることで、第2のゲートを形成する工程が不要となるため、上記に比べて工程を簡略化できる。また、トランジスタ61が2つのゲートを有する構成としてもよい。このような構成とすることで、いずれのトランジスタもサイズを小さくすることができる。また、各トランジスタの第1のゲートと第2のゲートがそれぞれ電気的に接続する構成とすることができる。または、一方のゲートが他方のゲートではなく、他の配線と電気的に接続する構成としてもよい。その場合、2つのゲートに与える電位を異ならせることにより、トランジスタのしきい値電圧を制御することができる。
 また、表示素子60の一対の電極のうち、トランジスタ62と電気的に接続する電極が、画素電極に相当する。ここで、図18Aでは、表示素子60のトランジスタ62と電気的に接続する電極を陰極、反対側の電極を陽極とした構成を示している。このような構成は、トランジスタ62がnチャネル型のトランジスタの場合に特に有効である。すなわち、トランジスタ62がオン状態のとき、配線53aにより与えられる電位がソース電位となるため、表示素子60の抵抗のばらつき及び変動によらず、トランジスタ62に流れる電流を一定とすることができる。また、画素回路が有するトランジスタとして、pチャネル型のトランジスタを用いてもよい。また、表示素子60の陰極と陽極を逆にしてもよい。
[画素電極の配置方法例]
 図18Bは、表示領域における各画素電極と、各配線の配置方法の例を示す上面概略図である。配線51aと配線51bとは交互に配列している。また配線51a及び配線51bと交差する配線52a、配線52b、及び配線52cが、この順で配列している。また、各画素電極は、配線51a及び配線51bの延伸方向に沿ってマトリクス状に配列している。
 画素ユニット70は、画素70aと画素70bを含んで構成されている。画素70aは、画素電極91R1、画素電極91G1、及び画素電極91B1を有する。画素70bは、画素電極91R2、画素電極91G2、及び画素電極91B2を有する。また1つの副画素の表示領域は、その副画素が有する画素電極の内側に位置する。
 図18Bに示すように、画素ユニット70の配線52a等の延伸方向(第1の方向ともいう)に配列する周期を周期Pとしたとき、配線51a等の延伸方向(第2の方向ともいう)に配列する周期は、その2倍(周期2P)であることが好ましい。これにより、歪みのない表示を行うことができる。ここで、周期Pは、1μm以上150μm以下、好ましくは2μm以上120μm以下、より好ましくは3μm以上100μm以下、さらに好ましくは、4μm以上60μm以下とすることができる。これにより、極めて高精細な表示装置を実現できる。
 例えば画素電極91R1等は信号線として機能する配線52a等と重ならないように設けられていることが好ましい。これにより、配線52a等と画素電極91R1等との間の容量を介して電気的ノイズが伝わり、画素電極91R1等の電位が変動することで、表示素子の輝度が変化してしまうことを抑制できる。
 また、画素電極91R1等は走査線として機能する配線51a等と重なって設けられていてもよい。これにより、画素電極91R1の面積を大きくすることができるため、開口率を高めることができる。図18Bでは、画素電極91R1の一部が配線51aと重なるように配置されている例を示している。
 ある副画素の画素電極91R1等と、走査線として機能する配線51a等とを重ねて配置する場合、その副画素の画素回路と接続する配線であることが好ましい。例えば、配線51a等の電位が変化する信号が入力される期間は、当該副画素のデータを書き換える期間に相当するため、配線51a等から画素電極に容量を介して電気的ノイズが伝わったとしても、副画素の輝度が変化することがない。
[画素レイアウトの例1]
 以下では、画素ユニット70のレイアウトの一例について説明する。
 図19Aには、1つの副画素のレイアウトの例を示している。ここでは見やすくするため、画素電極を形成する前の状態における例を示している。図19Aに示す副画素は、トランジスタ61、トランジスタ62、及び容量素子63を有する。トランジスタ62は、半導体層を挟む2つのゲートを有するトランジスタである。
 最も下側に位置する導電膜により、配線51とトランジスタ62の一方のゲートなどが形成されている。これよりも後に形成される導電膜により、トランジスタ61のゲート及びトランジスタ62のもう一方のゲートなどが形成されている。これよりも後に形成される導電膜により、配線52、各トランジスタのソース電極及びドレイン電極、並びに容量素子63の一方の電極などが形成されている。これよりも後に形成される導電膜により、配線53等が形成されている。配線53の一部は、容量素子63のもう一方の電極として機能する。
 図19Bには、図19Aで例示した副画素を用いた画素ユニット70のレイアウトの一例を示している。図19Bには、各画素電極(画素電極31a、画素電極31b、画素電極32a、画素電極32b、画素電極33a、画素電極33b)と、表示領域22も明示している。
 ここでは、配線51aと電気的に接続する3つの副画素と、配線51bと電気的に接続する3つの副画素は、それぞれ左右対称となっている例を示している。これにより、配線52a等の延伸方向に向かって同じ色の副画素をジグザグに配列し、且つ、これら副画素が信号線として機能する一つの配線に接続する構成としたとき、副画素内の配線の長さなどを揃えることができるため、副画素間の輝度のばらつきを抑制することができる。
 このような画素レイアウトを用いることにより、例えば最小加工寸法が0.5μm以上6μm以下、代表的には1.5μm以上4μm以下である量産ラインであっても、極めて高精細な表示装置を作製することが可能となる。
[表示パネルの仕様について]
 表示パネルの仕様としては、例えば下記表1で示す、仕様A、仕様B、または仕様Cのようにすることができる。
Figure JPOXMLDOC01-appb-T000001
 上記表示パネルには、実施の形態1で例示した、高い精細度と高い開口率が両立された表示装置を適用することができる。
[表示パネルの構成例]
 VR向け、AR向けなどの装着型の電子機器では、視差を用いることで3D画像を提供することができる。その場合、右目用の画像を右目の視界内に、左目用の画像を左目の視界内に、それぞれ表示する必要がある。ここで、表示装置の表示部の形状として、横長の矩形形状としてもよいが、右目及び左目の視界の外側に設けられる画素は、表示に寄与しないため、当該画素には常に黒色が表示されることとなる。
 そこで、表示パネルの表示部として、右目用と左目用の2つの領域に分け、表示に寄与しない外側の領域には画素を配置しない構成とすることが好ましい。これにより、画素の書き込みに要する消費電力を低減できる。また、ソース線、ゲート線などの負荷が小さくなるため、フレームレートの高い表示が可能となる。これにより、滑らかな動画を表示できるため、現実感を高めることができる。
 図20Aには、表示パネルの構成例を示している。図20Aでは、基板701の内側に、左目用の表示部702Lと、右目用の表示部702Rが配置されている。なお、基板701上には、表示部702L、表示部702Rのほかに、駆動回路、配線、IC、FPCなどが配置されていてもよい。
 図20Aに示す表示部702L、表示部702Rは、正方形の上面形状を有している。
 また、表示部702L、表示部702Rの上面形状は、他の正多角形であってもよい。図20Bは、正六角形とした場合の例を示し、図20Cは、正八角形とした場合の例を示し、図20Dは、正十角形とした場合の例を示し、図20Eは、正十二角形とした場合の例を示している。このように、角が偶数個である多角形を用いることで、表示部の形状を左右対称にすることができる。なお、正多角形ではない多角形を用いてもよい。また、角の丸い正多角形、または多角形を用いてもよい。
 なお、マトリクス状に配置された画素により表示部を構成するため、各表示部の輪郭の直線部分は、厳密には直線にはならず、階段状である部分が存在しうる。特に、画素の配列方向と平行でない直線部分では、階段状の上面形状となる。ただし、ユーザには画素の形状が視認されない状態で視聴されるため、表示部の斜めの輪郭が厳密には階段状であっても、直線とみなすことができる。同様に表示部の輪郭の曲線部分が厳密には階段状であったとしても、これを曲線とみなすことができる。
 また、図20Fは、表示部702L、表示部702Rの上面形状を円とした場合の例を示している。
 また、表示部702L、表示部702Rの上面形状は、それぞれ左右非対称であってもよい。また、それぞれ正多角形でなくてもよい。
 図20Gには、表示部702L、表示部702Rの上面形状を、それぞれ左右非対称な八角形とした場合の例を示している。また、図20Hには、正七角形とした場合の例を示している。このように、表示部702L、表示部702Rの上面形状を、それぞれ左右非対称な形状とした場合でも、表示部702Lと表示部702Rとは、左右対称に配置することが好ましい。これにより、違和感のない画像を提供することができる。
 上記では、表示部を2つに分ける構成について説明したが、一続きの形状としてもよい。
 図20Iは、表示部702が、図20Fにおける2つの円形の表示部を繋げた形状を有する例である。また、図20(J)は、表示部702が、図20Cにおける2つの正八角形の表示部を繋げた形状を有する例である。
 以上が、表示パネルの構成例についての説明である。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
 また、金属酸化物は、スパッタリング法、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの化学気相成長(CVD:Chemical Vapor Deposition)法、または原子層堆積(ALD:Atomic Layer Deposition)法などにより形成することができる。
<結晶構造の分類>
 酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(polycrystal)等が挙げられる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。
 例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜または基板は非晶質状態であるとは言えない。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OS、または非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
 また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
 従って、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
 また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンまたは炭素の濃度と、酸化物半導体との界面近傍のシリコンまたは炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態7)
 本実施の形態では、本発明の一態様の電子機器について図21乃至図24を用いて説明する。
 本実施の形態の電子機器は、本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化、高解像度化、大型化のそれぞれが容易である。したがって、本発明の一態様の表示装置は、様々な電子機器の表示部に用いることができる。
 また、本発明の一態様の表示装置は、低いコストで作製できるため、電子機器の製造コストを低減することができる。
 電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
 特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば腕時計型、ブレスレット型などの情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。また、ウェアラブル機器としては、SR(Substitutional Reality)向け機器、及び、MR(Mixed Reality)向け機器も挙げられる。
 本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K2K(画素数3840×2160)、8K4K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K2K、8K4K、又はそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度または高い精細度を有する表示装置を用いることで、携帯型または家庭用途などのパーソナルユースの電子機器において、臨場感及び奥行き感などをより高めることが可能となる。
 本実施の形態の電子機器は、家屋もしくはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。
 本実施の形態の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像及び情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
 本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)を有していてもよい。
 本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
 図21Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
 電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
 表示部6502に、本発明の一態様の表示装置を適用することができる。
 図21Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
 筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
 保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
 表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
 表示パネル6511には本発明の一態様のフレキシブルディスプレイ(可撓性を有する表示装置)を適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
 図22Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図22Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
 なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
 図22Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図22C及び図22Dに、デジタルサイネージの一例を示す。
 図22Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
 図22Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
 図22C及び図22Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
 表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
 表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
 また、図22C及び図22Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
 また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
 図23Aは、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
 カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。なお、カメラ8000は、レンズ8006と筐体8001とが一体となっていてもよい。
 カメラ8000は、シャッターボタン8004を押す、またはタッチパネルとして機能する表示部8002をタッチすることにより撮像することができる。
 筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
 ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
 筐体8101は、カメラ8000のマウントと係合するマウントにより、カメラ8000に取り付けられている。ファインダー8100はカメラ8000から受信した映像等を表示部8102に表示させることができる。
 ボタン8103は、電源ボタン等としての機能を有する。
 カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。なお、ファインダーが内蔵されたカメラ8000であってもよい。
 図23Bは、ヘッドマウントディスプレイ8200の外観を示す図である。
 ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリ8206が内蔵されている。
 ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した映像情報を表示部8204に表示させることができる。また、本体8203はカメラを備え、使用者の眼球またはまぶたの動きの情報を入力手段として用いることができる。
 また、装着部8201には、使用者に触れる位置に、使用者の眼球の動きに伴って流れる電流を検知可能な複数の電極が設けられ、視線を認識する機能を有していてもよい。また、当該電極に流れる電流により、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能、使用者の頭部の動きに合わせて表示部8204に表示する映像を変化させる機能などを有していてもよい。
 表示部8204に、本発明の一態様の表示装置を適用することができる。
 図23C乃至図23Eは、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
 使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると、使用者が高い臨場感を感じることができるため好ましい。また、表示部8302の異なる領域に表示された別の画像を、レンズ8305を通して視認することで、視差を用いた3次元表示等を行うこともできる。なお、表示部8302を1つ設ける構成に限られず、表示部8302を2つ設け、使用者の片方の目につき1つの表示部を配置してもよい。
 表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、極めて高い精細度を実現することも可能である。例えば、図23Eのようにレンズ8305を用いて表示を拡大して視認される場合でも、使用者に画素が視認されにくい。つまり、表示部8302を用いて、使用者に現実感の高い映像を視認させることができる。
 図23Fは、ゴーグル型のヘッドマウントディスプレイ8400の外観を示す図である。ヘッドマウントディスプレイ8400は、一対の筐体8401と、装着部8402と、緩衝部材8403と、を有する。一対の筐体8401内には、それぞれ、表示部8404及びレンズ8405が設けられる。一対の表示部8404に互いに異なる画像を表示させることで、視差を用いた3次元表示を行うことができる。
 使用者は、レンズ8405を通して表示部8404を視認することができる。レンズ8405はピント調整機構を有し、ピント調整機構は使用者の視力に応じてレンズ8405の位置を調整することができる。表示部8404は、正方形または横長の長方形であることが好ましい。これにより、臨場感を高めることができる。
 装着部8402は、使用者の顔のサイズに応じて調整でき、かつ、ずれ落ちることのないよう、可塑性及び弾性を有することが好ましい。また、装着部8402の一部は、骨伝導イヤフォンとして機能する振動機構を有していることが好ましい。これにより、別途イヤフォン、スピーカなどの音響機器を必要とせず、装着しただけで映像と音声を楽しむことができる。なお、筐体8401内に、無線通信により音声データを出力する機能を有していてもよい。
 装着部8402と緩衝部材8403は、使用者の顔(額、頬など)に接触する部分である。緩衝部材8403が使用者の顔と密着することにより、光漏れを防ぐことができ、より没入感を高めることができる。緩衝部材8403は、使用者がヘッドマウントディスプレイ8400を装着した際に使用者の顔に密着するよう、柔らかな素材を用いることが好ましい。例えばゴム、シリコーンゴム、ウレタン、スポンジなどの素材を用いることができる。また、スポンジ等の表面を布、革(天然皮革または合成皮革)、などで覆ったものを用いると、使用者の顔と緩衝部材8403との間に隙間が生じにくく光漏れを好適に防ぐことができる。また、このような素材を用いると、肌触りが良いことに加え、寒い季節などに装着した際に、使用者に冷たさを感じさせないため好ましい。緩衝部材8403または装着部8402などの、使用者の肌に触れる部材は、取り外し可能な構成とすると、クリーニングまたは交換が容易となるため好ましい。
 図24A乃至図24Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)、マイクロフォン9008、等を有する。
 図24A乃至図24Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
 表示部9001に、本発明の一態様の表示装置を適用することができる。
 図24A乃至図24Fに示す電子機器の詳細について、以下説明を行う。
 図24Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図24Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メール、SNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
 図24Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
 図24Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200を、例えば無線通信可能なヘッドセットと相互通信させることによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
 図24D乃至図24Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図24Dは携帯情報端末9201を展開した状態、図24Fは折り畳んだ状態、図24Eは図24Dと図24Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
 本実施例では、犠牲層の発光素子への影響について調査した結果を示す。
 本実施例では、3種類の試料(試料A1乃至試料A3)を作製した。
〔試料A1〕
 試料A1が有する発光素子は、ガラス基板上に形成された画素電極上に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、および共通電極を順に真空蒸着法により形成することにより、形成した。
〔試料A2〕
 試料A2が有する発光素子は、まず、ガラス基板上に形成された画素電極上に、正孔注入層、正孔輸送層、発光層、電子輸送層を形成した。続いて、犠牲層として酸化アルミニウム膜をALD法により形成した後、TMAHを用いたウェットエッチング法により当該酸化アルミニウム膜を除去し、電子輸送層を露出させた。続いて、電子輸送層上に、電子注入層、及び共通電極を順に形成した。
〔試料A3〕
 試料A3が有する発光素子は、まずガラス基板上に形成された画素電極上に、正孔注入層、正孔輸送層、発光層、電子輸送層を形成した。続いて、犠牲層として金属酸化物膜を、In−Ga−Zn酸化物をスパッタリングターゲットに用いたスパッタリング法により形成した後、シュウ酸を用いたウェットエッチング法により当該金属酸化物膜を除去し、電子輸送層を露出させた。続いて、電子輸送層上に電子注入層、及び共通電極を順に形成した。
 試料A1乃至試料A3において、犠牲層以外の各層の材料、厚さ、及び成膜条件等は同じとした。
〔測定結果〕
 試料A1乃至試料A3について、電流−電圧特性、及び電流効率特性を評価した。
 図25Aに、電流−電圧特性を示す。図25Aにおいて、横軸は電圧(V[V])であり、縦軸は電流(I[mA])である。図25Aに示すように、試料A1と試料A2との差は小さいことが分かった。また、試料A3は、試料A1と比較して、高電圧化することが確認できた。
 図25Bに、電流効率−輝度特性を示す。図25Bにおいて、横軸は輝度(L[cd/m])であり、縦軸は電流効率(h([cd/A])である。図25Bに示すように、犠牲層を形成しない試料A1が最も電流効率が高い結果となった。ALD法で犠牲層を形成した試料A2では、スパッタリング法で犠牲層を形成した試料A3よりも電流効率が高い結果となった。
 以上のことから、EL層(電子輸送層)上に直接形成する犠牲層の成膜方法としては、スパッタリング法よりもALD法を用いるほうが、EL層への成膜ダメージを抑制できることが確認できた。
100:表示装置 101:基板 110 111:画素電極 111C:接続電極 112:EL層 113:共通電極 114:EL層 115:光学調整層 121:保護層 122:空隙 130:接続部 131:絶縁層 143:レジストマスク 144:犠牲膜 145:犠牲層 146:保護膜 147:保護層

Claims (10)

  1.  第1の画素電極、第2の画素電極、及び第1の電極を形成する第1の工程と、
     前記第1の画素電極及び前記第2の画素電極上に、第1のEL膜を成膜する第2の工程と、
     前記第1のEL膜、及び前記第1の電極を覆って、第1の犠牲膜を形成する第3の工程と、
     前記第1の犠牲膜及び前記第1のEL膜をエッチングして、前記第2の画素電極を露出させ、且つ、前記第1の画素電極上に第1のEL層と、前記第1のEL層上、及び前記第1の電極上の第1の犠牲層と、を形成する、第4の工程と、
     前記第1の画素電極上、及び前記第2の画素電極上に、第2のEL膜を成膜する第5の工程と、
     前記第2のEL膜、及び前記第1の電極を覆って、第2の犠牲膜を形成する第6の工程と、
     前記第2の犠牲膜及び前記第2のEL膜をエッチングして、前記第2の画素電極上の第2のEL層と、前記第2のEL層上の第2の犠牲層と、を形成する、第7の工程と、
     前記第1の犠牲層、及び前記第2の犠牲層を除去し、前記第1のEL層、前記第2のEL層、及び前記第1の電極を露出させる第8の工程と、
     前記第1のEL層及び前記第2のEL層上に、共通層を形成する第9の工程と、
     前記共通層及び前記第1の電極上に接して、共通電極を形成する第10の工程と、を有する、
     表示装置の作製方法。
  2.  請求項1において、
     前記第1のEL膜、前記第2のEL膜、及び前記共通層は、遮蔽マスクを用いた蒸着法により形成する、
     表示装置の作製方法。
  3.  請求項1または請求項2において、
     前記第1の画素電極と前記第2の画素電極とを複数有し、
     前記第1の画素電極と、前記第2の画素電極は、第1の方向に並べて配置され、
     複数の前記第1の画素電極は、前記第1の方向と交差する第2の方向に並べて配置され、
     前記第10の工程のあとに、
     前記共通電極、前記共通層、及び前記第1のEL層の、隣接する2つの前記第1の画素電極の間に位置する部分を、それぞれエッチングにより除去する、第11の工程を有する、
     表示装置の作製方法。
  4.  請求項3において、
     前記第1の工程と、前記第2の工程との間に、隣接する2つの前記第1の画素電極の間に、絶縁層を形成する、第12の工程を有し、
     前記第11の工程において、前記絶縁層上に位置する前記共通電極、前記共通層、及び前記第1のEL層をエッチングし、且つ、前記絶縁層の一部をエッチングして前記絶縁層に凹部を形成する、
     表示装置の作製方法。
  5.  請求項1乃至請求項4のいずれか一において、
     前記第1の犠牲膜と前記第2の犠牲膜は、同一の金属膜、合金膜、金属酸化物膜、半導体膜、または無機絶縁膜を含み、
     前記第4の工程において、前記第1のEL膜は、酸素を主成分に含まないエッチングガスを用いたドライエッチングによりエッチングされ、
     前記第8の工程において、前記第1の犠牲層及び前記第2の犠牲層は、水酸化テトラメチルアンモニウム水溶液、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いたウェットエッチングにより除去される、
     表示装置の作製方法。
  6.  請求項5において、
     前記第1の犠牲膜及び前記第2の犠牲膜は、酸化アルミニウムを含む、
     表示装置の作製方法。
  7.  請求項1乃至請求項6のいずれか一において、
     前記第3の工程と前記第4の工程との間に、ハードマスクを形成する第13の工程を有し、
     前記第4の工程において、前記ハードマスクを用いて前記第1の犠牲膜をエッチングした後、前記ハードマスクと前記第1のEL膜とを同一処理にてエッチングする、
     表示装置の作製方法。
  8.  請求項1乃至請求項7のいずれか一において、
     前記第1のEL層及び前記第2のEL層は、それぞれ帯状の上面形状となるように加工される、
     表示装置の作製方法。
  9.  請求項1乃至請求項8のいずれか一において、
     前記第10の工程より後に、
     前記共通電極上に、保護層を形成する第14の工程と、を有する、
     表示装置の作製方法。
  10.  複数の第1の発光素子と、複数の第2の発光素子と、を有する表示装置であって、
     前記第1の発光素子は、第1の画素電極と、第1のEL層と、共通層と、共通電極と、を有し、
     前記第2の発光素子は、第2の画素電極と、第2のEL層と、前記共通層と、前記共通電極と、を有し、
     2つの前記第1の画素電極の間、2つの前記第2の画素電極の間、及び前記第1の画素電極と前記第2の画素電極との間に、絶縁層を有し、
     前記第1の発光素子と、前記第2の発光素子とは、第1の方向に配列し、
     複数の前記第1の発光素子、及び複数の前記第2の発光素子は、それぞれ前記第1の方向と交差する第2の方向に配列し、
     前記共通層、及び前記共通電極は、前記第1の方向に延びる帯状の形状を有し、
     前記第1のEL層、前記共通層、及び前記共通電極は、隣接する2つの前記第1の画素電極の間において、前記絶縁層と重なる端部を有する、
     表示装置。
PCT/IB2022/050074 2021-01-14 2022-01-06 表示装置、及び表示装置の作製方法 WO2022153145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022574862A JPWO2022153145A1 (ja) 2021-01-14 2022-01-06
CN202280008885.2A CN116745832A (zh) 2021-01-14 2022-01-06 显示装置及显示装置的制造方法
US18/270,751 US20240065026A1 (en) 2021-01-14 2022-01-06 Display device and method for manufacturing display device
KR1020237022792A KR20230129020A (ko) 2021-01-14 2022-01-06 표시 장치 및 표시 장치의 제작 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021004540 2021-01-14
JP2021-004540 2021-01-14

Publications (1)

Publication Number Publication Date
WO2022153145A1 true WO2022153145A1 (ja) 2022-07-21

Family

ID=82448229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/050074 WO2022153145A1 (ja) 2021-01-14 2022-01-06 表示装置、及び表示装置の作製方法

Country Status (5)

Country Link
US (1) US20240065026A1 (ja)
JP (1) JPWO2022153145A1 (ja)
KR (1) KR20230129020A (ja)
CN (1) CN116745832A (ja)
WO (1) WO2022153145A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026704A (ja) * 2005-07-12 2007-02-01 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
JP2010275598A (ja) * 2009-05-29 2010-12-09 Seiko Epson Corp 蒸着マスク、及び蒸着マスクの製造方法
JP2018521459A (ja) * 2015-06-29 2018-08-02 アイメック・ヴェーゼットウェーImec Vzw 有機層の高分解能パターニングのための方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG118118A1 (en) 2001-02-22 2006-01-27 Semiconductor Energy Lab Organic light emitting device and display using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026704A (ja) * 2005-07-12 2007-02-01 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
JP2010275598A (ja) * 2009-05-29 2010-12-09 Seiko Epson Corp 蒸着マスク、及び蒸着マスクの製造方法
JP2018521459A (ja) * 2015-06-29 2018-08-02 アイメック・ヴェーゼットウェーImec Vzw 有機層の高分解能パターニングのための方法

Also Published As

Publication number Publication date
CN116745832A (zh) 2023-09-12
JPWO2022153145A1 (ja) 2022-07-21
KR20230129020A (ko) 2023-09-05
US20240065026A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
WO2022153150A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2022153145A1 (ja) 表示装置、及び表示装置の作製方法
WO2022153118A1 (ja) 表示装置の作製方法
WO2022162485A1 (ja) 表示装置
WO2022162486A1 (ja) 表示装置
WO2022162491A1 (ja) 表示装置
WO2022185149A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022162501A1 (ja) 表示装置
WO2022185150A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022175774A1 (ja) 表示装置および表示装置の作製方法
WO2022248962A1 (ja) 表示装置、表示モジュール、及び、電子機器
WO2022144666A1 (ja) 表示装置の作製方法
WO2022172115A1 (ja) 表示装置
WO2022162492A1 (ja) 表示装置
WO2023281344A1 (ja) 表示装置
WO2022259077A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022180482A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022172128A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2023281352A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2022189883A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023073481A1 (ja) 表示装置、及び表示装置の作製方法
WO2022157595A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2022162496A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2023037198A1 (ja) 表示装置
WO2022153139A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574862

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18270751

Country of ref document: US

Ref document number: 202280008885.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739221

Country of ref document: EP

Kind code of ref document: A1