WO2022180482A1 - 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法 - Google Patents

表示装置、表示モジュール、電子機器、及び、表示装置の作製方法 Download PDF

Info

Publication number
WO2022180482A1
WO2022180482A1 PCT/IB2022/051358 IB2022051358W WO2022180482A1 WO 2022180482 A1 WO2022180482 A1 WO 2022180482A1 IB 2022051358 W IB2022051358 W IB 2022051358W WO 2022180482 A1 WO2022180482 A1 WO 2022180482A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
insulating
display device
sacrificial
Prior art date
Application number
PCT/IB2022/051358
Other languages
English (en)
French (fr)
Inventor
池田隆之
岡崎健一
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202280015465.7A priority Critical patent/CN116889100A/zh
Priority to JP2023501690A priority patent/JPWO2022180482A1/ja
Priority to US18/277,091 priority patent/US20240099070A1/en
Priority to KR1020237028056A priority patent/KR20230148161A/ko
Publication of WO2022180482A1 publication Critical patent/WO2022180482A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Definitions

  • One embodiment of the present invention relates to a display device, a display module, and an electronic device.
  • One embodiment of the present invention relates to a method for manufacturing a display device.
  • one embodiment of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention include semiconductor devices, display devices, light-emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices (e.g., touch sensors), input/output devices (e.g., touch panels), The method of driving them or the method of manufacturing them can be mentioned as an example.
  • display devices are expected to be applied to various uses.
  • applications of large display devices include home television devices (also referred to as televisions or television receivers), digital signage (digital signage), and PID (Public Information Display).
  • home television devices also referred to as televisions or television receivers
  • digital signage digital signage
  • PID Public Information Display
  • mobile information terminals such as smart phones and tablet terminals with touch panels are being developed.
  • Devices that require high-definition display devices include, for example, virtual reality (VR), augmented reality (AR), alternative reality (SR), and mixed reality (MR) ) are being actively developed.
  • VR virtual reality
  • AR augmented reality
  • SR alternative reality
  • MR mixed reality
  • a light-emitting device having a light-emitting device As a display device, for example, a light-emitting device having a light-emitting device (also referred to as a light-emitting element) has been developed.
  • a light-emitting device also referred to as an EL device or EL element
  • EL the phenomenon of electroluminescence
  • EL is a DC constant-voltage power supply that can easily be made thin and light, can respond quickly to an input signal, and It is applied to a display device.
  • Patent Document 1 discloses a display device for VR using an organic EL device (also referred to as an organic EL element).
  • an island-shaped light-emitting layer can be formed by a vacuum evaporation method using a metal mask (also referred to as a shadow mask).
  • a metal mask also referred to as a shadow mask.
  • island-like structures are formed due to various influences such as precision of the metal mask, misalignment between the metal mask and the substrate, bending of the metal mask, and broadening of the contour of the deposited film due to vapor scattering.
  • the shape and position of the light-emitting layer in (1) deviate from the design, it is difficult to increase the definition and aperture ratio of the display device.
  • the layer profile may be blurred and the edge thickness may be reduced. In other words, the thickness of the island-shaped light-emitting layer may vary depending on the location.
  • the manufacturing yield will be low due to low dimensional accuracy of the metal mask and deformation due to heat or the like.
  • An object of one embodiment of the present invention is to provide a high-definition display device.
  • An object of one embodiment of the present invention is to provide a high-resolution display device.
  • An object of one embodiment of the present invention is to provide a large-sized display device.
  • An object of one embodiment of the present invention is to provide a small display device.
  • An object of one embodiment of the present invention is to provide a highly reliable display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a high-definition display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a high-resolution display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a large-sized display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a small display device.
  • An object of one embodiment of the present invention is to provide a highly reliable method for manufacturing a display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing a display device with high yield.
  • One aspect of the present invention has a first insulating layer, a second insulating layer, a first conductive layer, a second conductive layer, a first light emitting device, and a second light emitting device, and a first
  • the insulating layer, the first conductive layer, and the second conductive layer have the same or substantially the same height of their upper surfaces, and the first light emitting device has the first pixel electrode on the first conductive layer.
  • a first light-emitting layer on the first pixel electrode; a common electrode on the first light-emitting layer; and the second light-emitting device has a second pixel electrode on the second conductive layer.
  • a second light-emitting layer on the second pixel electrode and a common electrode on the second light-emitting layer, wherein the second insulating layer comprises the first pixel electrode, the second pixel electrode, A display device covering respective sides of a first light-emitting layer and a second light-emitting layer.
  • the above display device preferably further has a third insulating layer.
  • the second insulating layer comprises an inorganic material.
  • the third insulating layer contains an organic material, and through the second insulating layer, the first pixel electrode, the second pixel electrode, the first light emitting layer, and the second light emitting layer. preferably overlaps the side of the
  • the first light emitting device has a common layer between the first light emitting layer and the common electrode.
  • the second light emitting device preferably has a common layer between the second light emitting layer and the common electrode.
  • the common layer preferably has at least one of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • One aspect of the present invention has a first insulating layer, a second insulating layer, a first conductive layer, a second conductive layer, a first light emitting device, and a second light emitting device, and a first
  • the insulating layer, the first conductive layer, and the second conductive layer have the same or substantially the same height of their upper surfaces, and the first light emitting device has the first pixel electrode on the first conductive layer.
  • the second light emitting device comprising: a second pixel electrode on the second conductive layer; a third light emitting unit on the second pixel electrode; a second charge generating layer on the unit; a fourth light emitting unit on the second charge generating layer; a common electrode on the fourth light emitting unit; a pixel electrode, a second pixel electrode, a first charge generation layer, and a second charge generation layer.
  • the above display device preferably further has a third insulating layer.
  • the second insulating layer comprises an inorganic material.
  • the third insulating layer contains an organic material and includes the first pixel electrode, the second pixel electrode, the first charge generation layer, and the second charge generation layer via the second insulation layer. preferably overlap each side of the .
  • the first light emitting device has a common layer between the second light emitting unit and the common electrode.
  • the second light emitting device preferably has a common layer between the fourth light emitting unit and the common electrode.
  • the common layer preferably has at least one of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • the first light emitting device and the second light emitting device emit different colors of light.
  • the above display device preferably further includes a first colored layer and a second colored layer that transmit lights of different colors.
  • the first light emitting device and the second light emitting device preferably emit white light.
  • Light emitted from the first light-emitting device is preferably extracted to the outside of the display device through the first colored layer.
  • Light emitted from the second light-emitting device is preferably extracted to the outside of the display device via the second colored layer.
  • the first insulating layer preferably has recesses.
  • a second insulating layer is preferably positioned over the recess.
  • a third insulating layer is preferably located on the second insulating layer.
  • One aspect of the present invention is a display module having a display device having any of the above configurations, and a connector such as a flexible printed circuit (hereinafter referred to as FPC) or TCP (tape carrier package) attached.
  • FPC flexible printed circuit
  • TCP tape carrier package
  • a display module such as a display module in which an integrated circuit (IC) is mounted by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
  • One embodiment of the present invention is an electronic device including the display module described above and at least one of a housing, a battery, a camera, a speaker, and a microphone.
  • a conductive film is formed over an insulating surface, a first layer is formed over the conductive film, a first sacrificial layer is formed over the first layer, and the first layer is formed. and the first sacrificial layer are processed to expose part of the conductive film, a second layer is formed over the first sacrificial layer and the conductive film, and a second layer is formed over the second layer.
  • a sacrificial layer is formed, the second layer and the second sacrificial layer are processed to expose part of the conductive film, and the conductive film is processed to form a first pixel electrode overlapping with the first sacrificial layer.
  • a second pixel electrode overlapping with the second sacrificial layer is formed, and at least the side surface of the first pixel electrode, the side surface of the second pixel electrode, the side surface of the first layer, the side surface of the second layer, and the side surface of the second layer are formed.
  • first insulating film covering the side and top surfaces of the first sacrificial layer and the side and top surfaces of the second sacrificial layer, and processing the first insulating film to form at least the first pixel electrode; forming a first insulating layer covering the side surface, the side surface of the second pixel electrode, the side surface of the first layer, and the side surface of the second layer; removing the first sacrificial layer and the second sacrificial layer; and forming a common electrode over the first layer and the second layer.
  • a conductive film is formed over an insulating surface, a first layer is formed over the conductive film, a first sacrificial layer is formed over the first layer, and a first sacrificial layer is formed over the first layer. and the first sacrificial layer are processed to expose part of the conductive film, a second layer is formed over the first sacrificial layer and the conductive film, and a second layer is formed over the second layer. 2 sacrificial layers are formed, the second layer and the second sacrificial layer are processed to expose part of the conductive film, and the conductive film is processed to form the first sacrificial layer overlapping with the first sacrificial layer.
  • a pixel electrode and a second pixel electrode overlapping the second sacrificial layer are formed, and an inorganic material is used to form at least a side surface of the first pixel electrode, a side surface of the second pixel electrode, a side surface of the first layer, forming a first insulating film covering the side surfaces of the second layer, the side surfaces and the top surface of the first sacrificial layer, and the side surfaces and the top surface of the second sacrificial layer;
  • a second insulating film over the film and processing the first insulating film and the second insulating film, at least the side surface of the first pixel electrode, the side surface of the second pixel electrode, and the first layer are formed.
  • first insulating layer and a second insulating layer on the first insulating layer covering the side surfaces of the and the second layer; forming a first sacrificial layer and a second sacrificial layer; is removed and a common electrode is formed on the first layer and the second layer.
  • a first conductive layer overlapping with at least one of the first sacrificial layer and the second sacrificial layer is formed, and a second conductive layer is formed so as to have an opening overlapping with the first conductive layer.
  • a common electrode may be formed over the first conductive layer.
  • the second insulating film may be formed using a photosensitive resin as an organic material.
  • At least part of the region of the common electrode outside the region overlapping with the first conductive layer may be removed.
  • first sacrificial film and a second sacrificial film on the first sacrificial film as a first sacrificial layer and forming a first resist mask on the second sacrificial film After forming a first sacrificial film and a second sacrificial film on the first sacrificial film as a first sacrificial layer and forming a first resist mask on the second sacrificial film, The second sacrificial film is processed using the first resist mask, the first resist mask is removed, and the processed second sacrificial film is used as a hard mask to process the first sacrificial film.
  • the first layer may be processed using the processed first sacrificial film as a hard mask.
  • the conductive film may be processed using the first sacrificial layer and the second sacrificial layer as hard masks.
  • recesses may be formed in the insulating surface.
  • a first conductive film having a recess and a second conductive film over the first conductive film are formed, and after forming a fourth layer in the recess of the first conductive film, A second conductive film may be formed over the first conductive film and the fourth layer.
  • An organic material may be used to form the fourth layer.
  • One embodiment of the present invention can provide a high-definition display device.
  • One embodiment of the present invention can provide a high-resolution display device.
  • One embodiment of the present invention can provide a large-sized display device.
  • a small display device can be provided.
  • One embodiment of the present invention can provide a highly reliable display device.
  • a method for manufacturing a high-definition display device can be provided.
  • a method for manufacturing a high-resolution display device can be provided.
  • a method for manufacturing a large display device can be provided.
  • a method for manufacturing a small display device can be provided.
  • a highly reliable method for manufacturing a display device can be provided.
  • a method for manufacturing a display device with high yield can be provided.
  • FIG. 1A is a top view showing an example of a display device.
  • FIG. 1B is a cross-sectional view showing an example of a display device;
  • FIG. 2A is a top view showing an example of a display device.
  • FIG. 2B is a cross-sectional view showing an example of the display device.
  • 3A to 3E are top views showing examples of pixels.
  • 4A to 4E are top views showing examples of pixels.
  • 5A to 5G are top views showing examples of pixels.
  • 6A to 6D are top views showing examples of pixels.
  • 7A to 7C are schematic diagrams showing examples of electronic devices.
  • 8A to 8D are top views showing examples of pixels.
  • 8E to 8G are cross-sectional views showing an example of the display device.
  • 9A to 9E are top views illustrating an example of a method for manufacturing a display device.
  • 10A to 10C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 11A to 11C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 12A to 12C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 13A to 13C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 14A to 14C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 15A and 15B are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 16A to 16E are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 17A to 17F are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 18A to 18C are cross-sectional views showing examples of display devices.
  • 19A and 19B are cross-sectional views showing examples of display devices.
  • 20A and 20B are cross-sectional views showing examples of display devices.
  • 21A and 21B are cross-sectional views showing an example of a display device.
  • 22A and 22B are cross-sectional views showing an example of a display device.
  • FIG. 23 is a perspective view showing an example of a display device;
  • FIG. 23 is a perspective view showing an example of a display device; FIG.
  • 24A is a cross-sectional view showing an example of a display device
  • 24B and 24C are cross-sectional views showing examples of transistors.
  • FIG. 25 is a cross-sectional view showing an example of a display device.
  • 26A and 26B are perspective views showing an example of a display module.
  • FIG. 27 is a cross-sectional view showing an example of a display device.
  • FIG. 28 is a cross-sectional view showing an example of a display device.
  • FIG. 29 is a cross-sectional view showing an example of a display device.
  • FIG. 30A is a block diagram showing an example of a display device.
  • 30B to 30D are diagrams showing examples of pixel circuits.
  • 31A to 31D are diagrams illustrating examples of transistors.
  • 32A and 32B are diagrams illustrating examples of electronic devices.
  • 33A and 33B are diagrams illustrating examples of electronic devices.
  • 34A and 34B are diagrams illustrating examples of electronic devices.
  • 35A to 35D are diagrams showing examples of electronic devices.
  • 36A to 36G are diagrams showing examples of electronic devices.
  • film and “layer” can be interchanged depending on the case or situation.
  • conductive layer can be changed to the term “conductive film.”
  • insulating film can be changed to the term “insulating layer”.
  • a conductive film is formed and a first layer (an EL layer or part of an EL layer) including a light-emitting layer that emits light of a first color can be formed. ) is formed over the first layer, a first sacrificial layer is formed on the first layer. Then, a first resist mask is formed over the first sacrificial layer, and the first layer and the first sacrificial layer are processed using the first resist mask, thereby forming an island-shaped first layer.
  • a second layer (which can be called an EL layer or part of an EL layer) including a light-emitting layer that emits light of a second color is formed as a second sacrificial layer. and an island shape using a second resist mask.
  • the island-shaped EL layer is not formed using a metal mask having a fine pattern, but after the EL layer is formed over the entire surface. Formed by processing. Therefore, it is possible to realize a high-definition display device or a display device with a high aperture ratio, which has hitherto been difficult to achieve. Furthermore, since the EL layer can be separately formed for each color, a display device with extremely vivid, high-contrast, and high-quality display can be realized.
  • a sacrificial layer (which may also be referred to as a mask layer) over the EL layer, damage to the EL layer during the manufacturing process of the display device can be reduced, and the reliability of the light-emitting device can be improved.
  • the gap can be narrowed to 500 nm or less, 200 nm or less, 100 nm or less, or even 50 nm or less.
  • the aperture ratio can be brought close to 100%.
  • the aperture ratio can be 50% or more, 60% or more, 70% or more, 80% or more, or even 90% or more, and less than 100%.
  • the pattern of the EL layer itself (which can also be called a processing size) can be made much smaller than when a metal mask is used.
  • the thickness of the EL layer varies between the center and the edge, so the effective area that can be used as the light emitting region is smaller than the area of the EL layer. Become.
  • the manufacturing method described above since a film having a uniform thickness is processed, an island-shaped EL layer can be formed with a uniform thickness. Therefore, almost the entire area of even a fine pattern can be used as a light emitting region. Therefore, a display device having both high definition and high aperture ratio can be manufactured.
  • the sacrificial layer remaining on each EL layer is used as a hard mask to process the conductive film, whereby pixel electrodes can be formed. Since there is no need to separately provide a mask for forming island-shaped pixel electrodes, the manufacturing cost of the display device can be reduced. In addition, since it is not necessary to provide an insulating layer covering the edge of the pixel electrode between the pixel electrode and the EL layer, the distance between adjacent light emitting devices can be made very narrow. Therefore, it is possible to achieve high definition or high resolution of the display device. Moreover, a mask for forming the insulating layer is not required, and the manufacturing cost of the display device can be reduced.
  • the first layer and the second layer each include at least a light-emitting layer, and preferably consist of a plurality of layers. Specifically, it is preferable to have one or more layers on the light-emitting layer. By providing another layer between the light-emitting layer and the sacrificial layer, the light-emitting layer can be prevented from being exposed to the outermost surface during the manufacturing process of the display device, and damage to the light-emitting layer can be reduced. This can improve the reliability of the light emitting device. Therefore, each of the first layer and the second layer preferably has a light-emitting layer and a carrier-transporting layer (electron-transporting layer or hole-transporting layer) on the light-emitting layer.
  • a carrier-transporting layer electron-transporting layer or hole-transporting layer
  • a light-emitting device that emits light of different colors, it is not necessary to separately form all the layers constituting the EL layer, and some of the layers can be formed in the same process.
  • the sacrificial layer is removed, and the remaining layers forming the EL layer are shared.
  • An electrode also referred to as an upper electrode
  • a carrier injection layer and a common electrode can be formed in common for each color light emitting device.
  • the carrier injection layer is often a layer with relatively high conductivity among the EL layers.
  • the light-emitting device may be short-circuited when the carrier injection layer comes into contact with the side surface of a part of the EL layer formed like an island or the side surface of the pixel electrode. Note that even in the case where the carrier injection layer is provided in an island shape and the common electrode is formed in common for the light emitting devices of each color, the common electrode is in contact with the side surface of the EL layer or the side surface of the pixel electrode, so that light emission is prevented. The device may short out.
  • the display device of one embodiment of the present invention includes an insulating layer that covers the side surface of the island-shaped light-emitting layer and the side surface of the pixel electrode.
  • a display device of one embodiment of the present invention includes a pixel electrode functioning as an anode, and an island-shaped hole-injection layer, a hole-transport layer, a light-emitting layer, and an electron layer provided in this order on the pixel electrode. a transport layer, an insulating layer provided so as to cover each side surface of the pixel electrode, the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer; and the electron injection provided on the electron transport layer. and a common electrode overlying the electron injection layer and functioning as a cathode.
  • a display device of one embodiment of the present invention includes a pixel electrode functioning as a cathode, and an island-shaped electron-injection layer, an electron-transport layer, a light-emitting layer, and a positive electrode which are provided in this order over the pixel electrode.
  • a hole transport layer, an insulating layer provided to cover side surfaces of the pixel electrode, the electron injection layer, the electron transport layer, the light emitting layer, and the hole transport layer; It has a hole injection layer and a common electrode provided on the hole injection layer and functioning as an anode.
  • a display device of one embodiment of the present invention includes a pixel electrode, a first light-emitting unit over the pixel electrode, a charge-generation layer (also referred to as an intermediate layer) over the first light-emitting unit, and a second light-emitting unit; an insulating layer provided to cover side surfaces of the pixel electrode, the first light-emitting unit, the charge generation layer, and the second light-emitting unit; and a common electrode.
  • a common layer may be provided between the light emitting devices of each color between the second light emitting unit and the common electrode.
  • a hole-injection layer, an electron-injection layer, a charge-generating layer, or the like is often a layer having relatively high conductivity among the EL layers.
  • the side surfaces of these layers are covered with the insulating layer; therefore, contact with a common electrode or the like can be suppressed. Therefore, short-circuiting of the light-emitting device can be suppressed, and the reliability of the light-emitting device can be improved.
  • a highly reliable display device with high definition or resolution can be manufactured.
  • a special pixel arrangement method such as the pentile method
  • there is no need to artificially increase the definition. device can be realized.
  • a display device with a so-called stripe arrangement in which R, G, and B are arranged in one direction and a resolution of 500 ppi or more, 1000 ppi or more, or 2000 ppi or more, further 3000 ppi or more, and furthermore 5000 ppi or more can do.
  • the insulating layer may have a single layer structure or a laminated structure.
  • the first insulating layer is formed in contact with the EL layer, it is preferably formed using an inorganic insulating material.
  • ALD atomic layer deposition
  • the inorganic insulating layer is formed using a sputtering method, a chemical vapor deposition (CVD) method, or a plasma enhanced CVD (PECVD) method, which has a higher film formation rate than the ALD method. preferably formed. Accordingly, a highly reliable display device can be manufactured with high productivity.
  • the second insulating layer is preferably formed using an organic material so as to planarize the concave portion formed in the first insulating layer.
  • an aluminum oxide film formed by an ALD method can be used as the first insulating layer, and a photosensitive organic resin film can be used as the second insulating layer.
  • an insulating layer having a single-layer structure may be formed.
  • the insulating layer can be used as a protective insulating layer of the EL layer.
  • the reliability of the display device can be improved.
  • the insulating layer can be filled between adjacent EL layers to planarize the EL layers. Thereby, the coverage of the common electrode (upper electrode) formed over the EL layer and the insulating layer can be improved.
  • [Configuration example 1 of display device] 1A and 1B show a display device of one embodiment of the present invention.
  • FIG. 1A A top view of the display device 100 is shown in FIG. 1A.
  • the display device 100 has a display section in which a plurality of pixels 110 are arranged in a matrix, and a connection section 140 outside the display section.
  • the connection portion 140 can also be called a cathode contact portion.
  • a stripe arrangement is applied to the pixels 110 shown in FIG. 1A.
  • the pixel 110 shown in FIG. 1A is composed of three sub-pixels, sub-pixels 110a, 110b, and 110c.
  • the sub-pixels 110a, 110b, 110c each have light emitting devices that emit different colors of light.
  • the sub-pixels 110a, 110b, and 110c include sub-pixels of three colors of red (R), green (G), and blue (B), and three colors of yellow (Y), cyan (C), and magenta (M). sub-pixels and the like.
  • the top surface shape of the sub-pixel shown in FIG. 1A corresponds to the top surface shape of the light emitting region.
  • the circuit layout forming the sub-pixels is not limited to the range of the sub-pixels shown in FIG. 1A, and may be arranged outside the sub-pixels.
  • some or all of the transistors included in sub-pixel 110a may be located outside of sub-pixel 110a shown in FIG. 1A.
  • the transistor that sub-pixel 110a has may have a portion located within sub-pixel 110b and a portion located within sub-pixel 110c.
  • the sub-pixels 110a, 110b, and 110c have the same or approximately the same aperture ratio (size, which can also be called the size of the light emitting region), but one embodiment of the present invention is not limited to this.
  • the aperture ratios of the sub-pixels 110a, 110b, and 110c can be determined as appropriate.
  • the sub-pixels 110a, 110b, and 110c may have different aperture ratios, or two or more aperture ratios may be equal or substantially equal.
  • FIG. 1A shows an example in which sub-pixels of different colors are arranged side by side in the X direction and sub-pixels of the same color are arranged side by side in the Y direction. Sub-pixels of different colors may be arranged side by side in the Y direction, and sub-pixels of the same color may be arranged side by side in the X direction.
  • FIG. 1A shows an example in which the connection portion 140 is positioned below the display portion in a top view, but the present invention is not particularly limited.
  • the connecting portion 140 may be provided at least one of the upper side, the right side, the left side, and the lower side of the display portion when viewed from above, and may be provided so as to surround the four sides of the display portion.
  • the number of connection parts 140 may be singular or plural.
  • FIG. 1B shows a cross-sectional view along the dashed-dotted line X1-X2 in FIG. 1A.
  • the display device 100 includes light emitting devices 130a, 130b, and 130c provided on a layer 101 including transistors, and protective layers 131 and 132 covering these light emitting devices.
  • a substrate 120 is bonded onto the protective layer 132 with a resin layer 122 .
  • An insulating layer 125 and an insulating layer 127 on the insulating layer 125 are provided in a region between adjacent light emitting devices.
  • a display device of one embodiment of the present invention is a top emission type in which light is emitted in a direction opposite to a substrate over which a light-emitting device is formed, and light is emitted toward a substrate over which a light-emitting device is formed.
  • a bottom emission type bottom emission type
  • a double emission type dual emission type in which light is emitted from both sides may be used.
  • the layer 101 including transistors for example, a stacked-layer structure in which a plurality of transistors are provided over a substrate and an insulating layer is provided to cover the transistors can be applied.
  • the layer 101 containing transistors may have recesses between adjacent light emitting devices.
  • recesses may be provided in the insulating layer located on the outermost surface of the layer 101 including the transistor.
  • FIG. 3 A structural example of the layer 101 including a transistor will be described later in Embodiments 3 and 4.
  • Light emitting devices 130a, 130b, 130c each emit different colors of light.
  • Light-emitting devices 130a, 130b, and 130c are preferably a combination that emits three colors of light, red (R), green (G), and blue (B), for example.
  • light emitting devices 130a, 130b, and 130c for example, OLEDs (Organic Light Emitting Diodes) or QLEDs (Quantum-dot Light Emitting Diodes) are preferably used.
  • Light-emitting substances (also referred to as light-emitting materials) included in the light-emitting device include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescent materials), and substances that exhibit thermally activated delayed fluorescence (thermally activated delayed fluorescence). delayed fluorescence (TADF) materials) and the like.
  • TADF material a material in which a singlet excited state and a triplet excited state are in thermal equilibrium may be used.
  • TADF material has a short emission lifetime (excitation lifetime), it is possible to suppress a decrease in efficiency in a high-luminance region of a light-emitting device.
  • an inorganic compound quantum dot material, etc. may be used as a light-emitting substance included in the light-emitting device.
  • a light-emitting device has an EL layer between a pair of electrodes.
  • one of a pair of electrodes may be referred to as a pixel electrode and the other may be referred to as a common electrode.
  • one electrode functions as an anode and the other electrode functions as a cathode.
  • the pixel electrode functions as an anode and the common electrode functions as a cathode will be described below as an example.
  • the light-emitting device 130a includes a pixel electrode 111a on the layer 101 including a transistor, an island-shaped first layer 113a on the pixel electrode 111a, a fifth layer 114 on the island-shaped first layer 113a, and a third layer 113a on the pixel electrode 111a. and a common electrode 115 on 5 layers 114 .
  • the first layer 113a and the fifth layer 114 can be collectively called an EL layer.
  • the structure of the light-emitting device of this embodiment is not particularly limited, and may be a single structure or a tandem structure. Note that a configuration example of the light-emitting device will be described later in Embodiment Mode 2.
  • the light-emitting device 130b includes a pixel electrode 111b on the layer 101 including a transistor, an island-shaped second layer 113b on the pixel electrode 111b, a fifth layer 114 on the island-shaped second layer 113b, and a third layer 114 on the pixel electrode 111b. and a common electrode 115 on 5 layers 114 .
  • the second layer 113b and the fifth layer 114 can be collectively called an EL layer.
  • the light-emitting device 130c includes a pixel electrode 111c on the layer 101 including a transistor, an island-shaped third layer 113c on the pixel electrode 111c, a fifth layer 114 on the island-shaped third layer 113c, and a third layer 113c on the pixel electrode 111c. and a common electrode 115 on 5 layers 114 .
  • the third layer 113c and the fifth layer 114 can be collectively called EL layers.
  • Light-emitting devices of each color share the same film as a common electrode.
  • a common electrode shared by the light-emitting devices of each color is electrically connected to the conductive layer provided in the connection portion 140 .
  • a conductive film that transmits visible light is used for the electrode on the light extraction side of the pixel electrode and the common electrode.
  • a conductive film that reflects visible light is preferably used for the electrode on the side from which light is not extracted.
  • indium tin oxide also referred to as In—Sn oxide, ITO
  • In—Si—Sn oxide also referred to as ITSO
  • indium zinc oxide In—Zn oxide
  • In—W— Zn oxide alloys containing aluminum (aluminum alloys) such as alloys of aluminum, nickel and lanthanum (Al-Ni-La), as well as alloys of silver and magnesium, alloys of silver, palladium and copper (Ag-Pd- Cu, also referred to as APC) and other silver-containing alloys.
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above e.g., lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium
  • Yb rare earth metal
  • an alloy containing an appropriate combination thereof, graphene, or the like can be used.
  • the light-emitting device preferably employs a micro-optical resonator (microcavity) structure. Therefore, one of the pair of electrodes of the light-emitting device preferably has an electrode (semi-transmissive/semi-reflective electrode) that is transparent and reflective to visible light, and the other is an electrode that is reflective to visible light ( reflective electrode). Since the light-emitting device has a microcavity structure, the light emitted from the light-emitting layer can be resonated between both electrodes, and the light emitted from the light-emitting device can be enhanced.
  • microcavity micro-optical resonator
  • the semi-transmissive/semi-reflective electrode can have a laminated structure of a reflective electrode and an electrode (also referred to as a transparent electrode) having transparency to visible light.
  • the light transmittance of the transparent electrode is set to 40% or more.
  • the light-emitting device preferably uses an electrode having a transmittance of 40% or more for visible light (light with a wavelength of 400 nm or more and less than 750 nm).
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the first layer 113a, the second layer 113b, and the third layer 113c are each provided in an island shape.
  • the first layer 113a, the second layer 113b, and the third layer 113c each have a light-emitting layer.
  • the first layer 113a, the second layer 113b, and the third layer 113c preferably have light-emitting layers that emit light of different colors.
  • a light-emitting layer is a layer containing a light-emitting substance.
  • the emissive layer can have one or more emissive materials.
  • a substance exhibiting emission colors such as blue, purple, violet, green, yellow-green, yellow, orange, and red is used as appropriate.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • Examples of light-emitting substances include fluorescent materials, phosphorescent materials, TADF materials, and quantum dot materials.
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. be done.
  • Examples of phosphorescent materials include organometallic complexes (especially iridium complexes) having a 4H-triazole skeleton, 1H-triazole skeleton, imidazole skeleton, pyrimidine skeleton, pyrazine skeleton, or pyridine skeleton, and phenylpyridine derivatives having an electron-withdrawing group.
  • organometallic complexes especially iridium complexes
  • platinum complexes, rare earth metal complexes, etc. which are used as ligands, can be mentioned.
  • the light-emitting layer may contain one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • One or both of a hole-transporting material and an electron-transporting material can be used as the one or more organic compounds.
  • Bipolar materials or TADF materials may also be used as one or more organic compounds.
  • the light-emitting layer preferably includes, for example, a phosphorescent material and a combination of a hole-transporting material and an electron-transporting material that easily form an exciplex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the absorption band on the lowest energy side of the light-emitting substance energy transfer becomes smooth and light emission can be efficiently obtained. With this configuration, high efficiency, low-voltage driving, and long life of the light-emitting device can be realized at the same time.
  • the first layer 113a, the second layer 113b, and the third layer 113c are layers other than the light-emitting layer, which are a substance with a high hole-injection property and a substance with a high hole-transport property (also called a hole-transport material). ), hole-blocking material, highly electron-transporting substance (also referred to as electron-transporting material), highly electron-injecting substance, electron-blocking material, or bipolar substance (highly electron- and hole-transporting It may further have a layer containing a substance (also referred to as a bipolar material).
  • the first layer 113a, the second layer 113b, and the third layer 113c are respectively a hole-injecting layer, a hole-transporting layer, a hole-blocking layer, an electron-blocking layer, an electron-transporting layer, and an electron layer. It may have one or more of the injection layers.
  • the layer commonly formed in the light-emitting devices of each color includes one of a hole-injection layer, a hole-transport layer, a hole-blocking layer, an electron-blocking layer, an electron-transporting layer, and an electron-injecting layer. More than one can apply.
  • a carrier injection layer (hole injection layer or electron injection layer) may be formed as the fifth layer 114 .
  • all layers of the EL layer may be formed separately for each color. In other words, the EL layer does not have to have a layer that is commonly formed for the light-emitting devices of each color.
  • Each of the first layer 113a, the second layer 113b, and the third layer 113c preferably has a light-emitting layer and a carrier transport layer over the light-emitting layer.
  • the hole-injecting layer is a layer that injects holes from the anode to the hole-transporting layer, and contains a substance having a high hole-injecting property.
  • Substances with high hole-injection properties include aromatic amine compounds and composite materials containing a hole-transporting material and an acceptor material (electron-accepting material).
  • the hole-transporting layer is a layer that transports the holes injected from the anode through the hole-injecting layer to the light-emitting layer.
  • a hole-transporting layer is a layer containing a hole-transporting material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these can be used as long as they have a higher hole-transport property than electron-transport property.
  • hole-transporting materials include ⁇ -electron-rich heteroaromatic compounds (e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.), aromatic amines (compounds having an aromatic amine skeleton), and other substances with high hole-transporting properties. is preferred.
  • ⁇ -electron-rich heteroaromatic compounds e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.
  • aromatic amines compounds having an aromatic amine skeleton
  • other substances with high hole-transporting properties is preferred.
  • the electron-transporting layer is a layer that transports electrons injected from the cathode through the electron-injecting layer to the light-emitting layer.
  • the electron-transporting layer is a layer containing an electron-transporting material.
  • an electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these substances can be used as long as they have a higher electron-transport property than hole-transport property.
  • electron-transporting materials include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, ⁇ -electrons including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a substance having a high electron-transport property such as a deficient heteroaromatic compound can be used.
  • the electron injection layer is a layer that injects electrons from the cathode to the electron transport layer, and is a layer that contains a substance with high electron injection properties.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used as the substance with a high electron-injecting property.
  • a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used as the substance with high electron-injecting properties.
  • the electron injection layer examples include lithium, cesium, ytterbium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF x , X is an arbitrary number), and 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2-pyridyl)phenoratritium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatritium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)pheno Alkali metals such as latolithium (abbreviation: LiPPP), lithium oxide (LiO x ), cesium carbonate, alkaline earth metals, or compounds thereof can be used.
  • the electron injection layer may have a laminated structure of two or more layers. As the laminated structure, for example, lithium fluoride can be used for the first layer and ytterbium can be used for the second layer.
  • an electron-transporting material may be used as the electron injection layer.
  • a compound having a lone pair of electrons and an electron-deficient heteroaromatic ring can be used as the electron-transporting material.
  • a compound having at least one of a pyridine ring, diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and triazine ring can be used.
  • the lowest unoccupied molecular orbital (LUMO) of the organic compound having an unshared electron pair is preferably ⁇ 3.6 eV or more and ⁇ 2.3 eV or less.
  • CV cyclic voltammetry
  • photoelectron spectroscopy optical absorption spectroscopy
  • inverse photoelectron spectroscopy etc. are used to determine the highest occupied molecular orbital (HOMO: Highest Occupied Molecular Orbital) level and LUMO level of an organic compound. can be estimated.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • HATNA diquinoxalino [2,3-a:2′,3′-c]phenazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3 , 5-triazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3 , 5-triazine
  • a charge generation layer is provided between two light-emitting units.
  • the charge generation layer has at least a charge generation region.
  • the charge-generating layer has a function of injecting electrons into one of the two light-emitting units and holes into the other when a voltage is applied between the pair of electrodes.
  • the charge generation layer has at least a charge generation region, as described above.
  • the charge generation region preferably contains an acceptor material, for example, preferably contains a hole transport material and an acceptor material applicable to the hole injection layer described above.
  • the charge generation layer preferably has a layer containing a substance having a high electron injection property.
  • This layer can also be called an electron injection buffer layer.
  • the electron injection buffer layer is preferably provided between the charge generation region and the electron transport layer. Since the injection barrier between the charge generation region and the electron transport layer can be relaxed by providing the electron injection buffer layer, electrons generated in the charge generation region can be easily injected into the electron transport layer.
  • the electron injection buffer layer preferably contains an alkali metal or an alkaline earth metal, and can be configured to contain, for example, an alkali metal compound or an alkaline earth metal compound.
  • the electron injection buffer layer preferably has an inorganic compound containing an alkali metal and oxygen, or an inorganic compound containing an alkaline earth metal and oxygen. Lithium (Li 2 O), etc.) is more preferred.
  • the above materials applicable to the electron injection layer can be preferably used.
  • the charge generation layer preferably has a layer containing a substance having a high electron transport property. Such layers may also be referred to as electron relay layers.
  • the electron relay layer is preferably provided between the charge generation region and the electron injection buffer layer. If the charge generation layer does not have an electron injection buffer layer, the electron relay layer is preferably provided between the charge generation region and the electron transport layer.
  • the electron relay layer has a function of smoothly transferring electrons by preventing interaction between the charge generation region and the electron injection buffer layer (or electron transport layer).
  • a phthalocyanine-based material such as copper (II) phthalocyanine (abbreviation: CuPc), or a metal complex having a metal-oxygen bond and an aromatic ligand.
  • charge generation region electron injection buffer layer, and electron relay layer may not be clearly distinguished depending on their cross-sectional shape, characteristics, or the like.
  • the charge generation layer may contain a donor material instead of the acceptor material.
  • the charge-generating layer may have a layer containing an electron-transporting material and a donor material, which are applicable to the electron-injecting layer described above.
  • Either a low-molecular-weight compound or a high-molecular-weight compound can be used in the light-emitting device, and an inorganic compound may be included.
  • Each of the layers constituting the light-emitting device can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the fifth layer 114 (or common electrode 115) is in contact with any side surface of the pixel electrodes 111a, 111b, 111c, the first layer 113a, the second layer 113b, and the third layer 113c. It is possible to suppress the short circuit of the light emitting device.
  • the insulating layer 125 preferably covers at least side surfaces of the pixel electrodes 111a, 111b, and 111c. Furthermore, the insulating layer 125 preferably covers the side surfaces of the first layer 113a, the second layer 113b, and the third layer 113c. The insulating layer 125 can be in contact with side surfaces of the pixel electrodes 111a, 111b, and 111c, the first layer 113a, the second layer 113b, and the third layer 113c.
  • the insulating layer 127 is provided on the insulating layer 125 so as to fill the recess formed in the insulating layer 125 .
  • the insulating layer 127 can overlap with side surfaces of the pixel electrodes 111a, 111b, and 111c, the first layer 113a, the second layer 113b, and the third layer 113c with the insulating layer 125 interposed therebetween. can.
  • one of the insulating layer 125 and the insulating layer 127 may be omitted.
  • the insulating layer 127 can be in contact with side surfaces of the first layer 113a, the second layer 113b, and the third layer 113c.
  • the insulating layer 127 can be provided over the layer 101 including the transistor so as to fill between the EL layers of each light emitting device.
  • the fifth layer 114 and the common electrode 115 are provided over the first layer 113 a , the second layer 113 b , the third layer 113 c , the insulating layer 125 and the insulating layer 127 .
  • a step is caused between a region where the pixel electrode and the EL layer are provided and a region where the pixel electrode and the EL layer are not provided (a region between the light emitting devices). ing. Since the display device of one embodiment of the present invention includes the insulating layer 125 and the insulating layer 127, the steps can be planarized, and the coverage of the fifth layer 114 and the common electrode 115 can be improved. Therefore, it is possible to suppress a connection failure due to step disconnection of the common electrode 115 . Alternatively, it is possible to prevent the common electrode 115 from being locally thinned due to a step and increasing the electrical resistance.
  • discontinuity refers to a phenomenon in which a layer, film, or electrode is divided due to the shape of a formation surface (for example, a step).
  • the heights of the upper surface of the insulating layer 125 and the upper surface of the insulating layer 127 are adjusted to the heights of the first layer 113a and the second layer 113b, respectively. , and the height of at least one top surface of the third layer 113c.
  • the upper surface of the insulating layer 127 preferably has a flat shape, and may have a convex portion or a concave portion.
  • the insulating layer 125 has regions that are in contact with the side surfaces of the first layer 113a, the second layer 113b, and the third layer 113c. It functions as a protective insulating layer for layer 113c.
  • impurities oxygen, moisture, or the like
  • It can be an expensive display device.
  • the width (thickness) of the insulating layer 125 in the region in contact with the side surfaces of the first layer 113a, the second layer 113b, and the third layer 113c in a cross-sectional view is large, the first layer 113a and the second layer 113a have a large width (thickness). A gap between the layer 113b and the third layer 113c is increased, and the aperture ratio is lowered in some cases.
  • the width (thickness) of the insulating layer 125 is small, the effect of suppressing the intrusion of impurities into the inside from the side surfaces of the first layer 113a, the second layer 113b, and the third layer 113c is small.
  • the width (thickness) of the insulating layer 125 in the region in contact with the side surfaces of the first layer 113a, the second layer 113b, and the third layer 113c is preferably 3 nm or more and 200 nm or less, more preferably 3 nm or more and 150 nm or less. It is preferably 5 nm or more and 150 nm or less, further preferably 5 nm or more and 100 nm or less, further preferably 10 nm or more and 100 nm or less, further preferably 10 nm or more and 50 nm or less.
  • Insulating layer 125 can be an insulating layer comprising an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the insulating layer 125 may have a single-layer structure or a laminated structure.
  • the oxide insulating film includes a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, and an oxide film.
  • Examples include a hafnium film and a tantalum oxide film.
  • Examples of the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • As the oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • aluminum oxide is preferable because it has a high etching selectivity with respect to the EL layer and has a function of protecting the EL layer during formation of the insulating layer 127 described later.
  • an inorganic insulating film such as an aluminum oxide film, a hafnium oxide film, or a silicon oxide film formed by an ALD method to the insulating layer 125, the insulating layer 125 with few pinholes and an excellent function of protecting the EL layer can be obtained. can be formed.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen. point to the material.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. indicates
  • a sputtering method, a CVD method, a PLD method, an ALD method, or the like can be used to form the insulating layer 125 .
  • the insulating layer 125 is preferably formed by an ALD method with good coverage.
  • the insulating layer 127 provided on the insulating layer 125 has a function of planarizing the concave portions of the insulating layer 125 formed between adjacent light emitting devices. In other words, the presence of the insulating layer 127 has the effect of improving the flatness of the surface on which the common electrode 115 is formed.
  • an insulating layer containing an organic material can be preferably used.
  • acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene-based resin, phenolic resin, and precursors of these resins are applied. can do.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used for the insulating layer 127 .
  • a photosensitive resin can be used as the insulating layer 127 .
  • a photoresist may be used as the photosensitive resin.
  • a positive material or a negative material can be used for the photosensitive resin.
  • the difference between the height of the upper surface of the insulating layer 127 and the height of the upper surface of any one of the first layer 113a, the second layer 113b, and the third layer 113c is, for example, 0 of the thickness of the insulating layer 127. 0.5 times or less is preferable, and 0.3 times or less is more preferable. Further, for example, the insulating layer 127 may be provided so that the top surface of any one of the first layer 113 a , the second layer 113 b , and the third layer 113 c is higher than the top surface of the insulating layer 127 .
  • the insulating layer 127 may be provided so that the top surface of the insulating layer 127 is higher than the top surface of the light-emitting layer included in the first layer 113a, the second layer 113b, or the third layer 113c. good.
  • protective layers 131, 132 over the light emitting devices 130a, 130b, 130c.
  • the reliability of the light-emitting device can be improved.
  • the conductivity of the protective layers 131 and 132 does not matter. At least one of an insulating film, a semiconductor film, and a conductive film can be used for the protective layers 131 and 132 .
  • the protective layers 131 and 132 have an inorganic film, deterioration of the light-emitting devices is prevented by preventing oxidation of the common electrode 115 and suppressing impurities (moisture, oxygen, etc.) from entering the light-emitting devices 130a, 130b, and 130c. can be suppressed, and the reliability of the display device can be improved.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the oxide insulating film include a silicon oxide film, an aluminum oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, a hafnium oxide film, a tantalum oxide film, and the like.
  • nitride insulating film examples include a silicon nitride film and an aluminum nitride film.
  • oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • Each of the protective layers 131 and 132 preferably has a nitride insulating film or a nitride oxide insulating film, and more preferably has a nitride insulating film.
  • In the protective layers 131 and 132 In—Sn oxide (also referred to as ITO), In—Zn oxide, Ga—Zn oxide, Al—Zn oxide, or indium gallium zinc oxide (In—Ga— An inorganic film containing Zn oxide, IGZO, or the like can also be used.
  • the inorganic film preferably has a high resistance, and specifically, preferably has a higher resistance than the common electrode 115 .
  • the inorganic film may further contain nitrogen.
  • the protective layers 131 and 132 When the light emitted from the light-emitting device is taken out through the protective layers 131 and 132, the protective layers 131 and 132 preferably have high visible light transmittance.
  • ITO, IGZO, and aluminum oxide are preferable because they are inorganic materials with high transparency to visible light.
  • the protective layers 131 and 132 for example, a stacked structure of an aluminum oxide film and a silicon nitride film over the aluminum oxide film, a stacked structure of an aluminum oxide film and an IGZO film over the aluminum oxide film, or the like is used. can be used. By using the stacked structure, entry of impurities (water, oxygen, or the like) into the EL layer can be suppressed.
  • the protective layers 131 and 132 may have organic films.
  • the protective layer 132 may have both organic and inorganic films.
  • the protective layer 131 and the protective layer 132 may be formed using different deposition methods.
  • the protective layer 131 may be formed using an ALD method
  • the protective layer 132 may be formed using a sputtering method.
  • Edges of the upper surfaces of the pixel electrodes 111a, 111b, and 111c are not covered with an insulating layer. Therefore, the interval between adjacent light emitting devices can be made very narrow. Therefore, a high-definition or high-resolution display device can be obtained.
  • a device manufactured using a metal mask or FMM may be referred to as a device with an MM (metal mask) structure.
  • a device manufactured without using a metal mask or FMM may be referred to as a device with an MML (metal maskless) structure.
  • SBS Side By Side
  • the material and structure can be optimized for each light-emitting device, so the degree of freedom in selecting the material and structure increases, and it becomes easy to improve luminance and reliability.
  • a light-emitting device capable of emitting white light is sometimes referred to as a white light-emitting device.
  • a white light emitting device can be combined with a colored layer (for example, a color filter) to realize a full-color display device.
  • light-emitting devices can be broadly classified into a single structure and a tandem structure.
  • a single-structure device preferably has one light-emitting unit between a pair of electrodes, and the light-emitting unit preferably includes one or more light-emitting layers.
  • light-emitting layers may be selected such that the colors of light emitted from the two light-emitting layers are in a complementary color relationship. For example, by making the luminescent color of the first luminescent layer and the luminescent color of the second luminescent layer have a complementary color relationship, it is possible to obtain a configuration in which the entire light emitting device emits white light.
  • the light-emitting device as a whole may emit white light by combining the light-emitting colors of the three or more light-emitting layers.
  • a device with a tandem structure preferably has two or more light-emitting units between a pair of electrodes, and each light-emitting unit includes one or more light-emitting layers.
  • each light-emitting unit includes one or more light-emitting layers.
  • a structure in which white light emission is obtained by combining light from the light emitting layers of a plurality of light emitting units may be employed. Note that the structure for obtaining white light emission is the same as the structure of the single structure. Note that in a tandem structure device, it is preferable to provide a charge generation layer between a plurality of light emitting units.
  • the white light emitting device when comparing the white light emitting device (single structure or tandem structure) and the light emitting device having the SBS structure, the light emitting device having the SBS structure can consume less power than the white light emitting device. If it is desired to keep power consumption low, it is preferable to use a light-emitting device with an SBS structure. On the other hand, the white light emitting device is preferable because the manufacturing process is simpler than that of the SBS structure light emitting device, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
  • the distance between the light-emitting devices can be reduced.
  • the distance between light-emitting devices, the distance between EL layers, or the distance between pixel electrodes is less than 10 ⁇ m, 5 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, 500 nm or less, 200 nm or less, 100 nm or less, or 90 nm or less. , 70 nm or less, 50 nm or less, 30 nm or less, 20 nm or less, 15 nm or less, or 10 nm or less.
  • the space between the side surface of the first layer 113a and the side surface of the second layer 113b or the space between the side surface of the second layer 113b and the side surface of the third layer 113c is 1 ⁇ m or less. , preferably has a region of 0.5 ⁇ m (500 nm) or less, and more preferably has a region of 100 nm or less.
  • a light shielding layer may be provided on the surface of the substrate 120 on the resin layer 122 side.
  • various optical members can be arranged outside the substrate 120 .
  • optical members include polarizing plates, retardation plates, light diffusion layers (diffusion films, etc.), antireflection layers, light collecting films, and the like.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. are arranged on the outside of the substrate 120.
  • an antistatic film that suppresses adhesion of dust
  • a water-repellent film that prevents adhesion of dirt
  • a hard coat film that suppresses the occurrence of scratches due to use
  • a shock absorption layer, etc. are arranged.
  • Glass, quartz, ceramic, sapphire, resin, metal, alloy, semiconductor, or the like can be used for the substrate 120 .
  • a material that transmits the light is used for the substrate on the side from which the light from the light-emitting device is extracted.
  • a flexible material is used for the substrate 120, the flexibility of the display device can be increased and a flexible display can be realized.
  • a polarizing plate may be used as the substrate 120 .
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyethersulfone (PES) resins.
  • polyamide resin nylon, aramid, etc.
  • polysiloxane resin cycloolefin resin
  • polystyrene resin polyamideimide resin
  • polyurethane resin polyvinyl chloride resin
  • polyvinylidene chloride resin polypropylene resin
  • PTFE polytetrafluoroethylene
  • ABS resin cellulose nanofiber, etc.
  • glass having a thickness that is flexible may be used.
  • a substrate having high optical isotropy is preferably used as the substrate of the display device.
  • a substrate with high optical isotropy has small birefringence (it can be said that the amount of birefringence is small).
  • the absolute value of the retardation (retardation) value of the substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • Films with high optical isotropy include triacetylcellulose (TAC, also called cellulose triacetate) films, cycloolefin polymer (COP) films, cycloolefin copolymer (COC) films, and acrylic films.
  • TAC triacetylcellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • the film when a film is used as the substrate, the film may absorb water, which may cause a change in shape such as wrinkling of the display panel. Therefore, it is preferable to use a film having a low water absorption rate as the substrate. For example, it is preferable to use a film with a water absorption of 1% or less, more preferably 0.1% or less, and even more preferably 0.01% or less.
  • various curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • These adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
  • a material with low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • materials that can be used for conductive layers such as various wirings and electrodes constituting display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, Examples include metals such as tantalum and tungsten, and alloys containing these metals as main components. A film containing these materials can be used as a single layer or as a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or alloy materials containing such metal materials can be used.
  • a nitride of the metal material eg, titanium nitride
  • it is preferably thin enough to have translucency.
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a laminated film of a silver-magnesium alloy and indium tin oxide because the conductivity can be increased.
  • conductive layers such as various wirings and electrodes that constitute a display device, and conductive layers (conductive layers functioning as pixel electrodes or common electrodes) of light-emitting devices.
  • Examples of insulating materials that can be used for each insulating layer include resins such as acrylic resins and epoxy resins, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
  • a pixel can have four types of sub-pixels.
  • FIG. 2A shows a top view of the display device 100.
  • the display device 100 has a display section in which a plurality of pixels 110 are arranged in a matrix, and a connection section 140 outside the display section.
  • the pixel 110 shown in FIG. 2A is composed of four types of sub-pixels: sub-pixels 110a, 110b, 110c, and 110d.
  • sub-pixels 110a, 110b, 110c, and 110d can each have a light emitting device that emits light of a different color.
  • the sub-pixels 110a, 110b, 110c, and 110d include sub-pixels of four colors of R, G, B, and white (W), sub-pixels of four colors of R, G, B, and Y, R, G, B, and red.
  • W white
  • IR external light
  • FIG. 2A shows an example in which one pixel 110 is composed of two rows and three columns.
  • the pixel 110 has three sub-pixels (sub-pixels 110a, 110b, 110c) in the upper row (first row) and three sub-pixels 110d in the lower row (second row).
  • pixel 110 has sub-pixels 110a and 110d in the left column (first column), sub-pixels 110b and 110d in the center column (second column), and sub-pixels 110b and 110d in the middle column (second column).
  • a column (third column) has a sub-pixel 110c and a sub-pixel 110d.
  • FIG. 2A by aligning the arrangement of the sub-pixels in the upper row and the lower row, it is possible to efficiently remove dust and the like that may occur in the manufacturing process. Therefore, a display device with high display quality can be provided.
  • FIG. 2B shows a cross-sectional view along the dashed-dotted line X3-X4 in FIG. 2A.
  • the configuration shown in FIG. 2B is similar to that of FIG. 1B, except that it has a light emitting device 130d. Therefore, the description of the same parts as in FIG. 1B is omitted.
  • the display device 100 includes light emitting devices 130a, 130b, 130c, and 130d provided on a layer 101 including transistors, and protective layers 131 and 132 provided to cover these light emitting devices.
  • a substrate 120 is bonded onto the protective layer 132 with a resin layer 122 .
  • Insulating layers 125 and 127 are provided in regions between adjacent light emitting devices.
  • Light emitting devices 130a, 130b, 130c, 130d each emit different colors of light.
  • the light emitting devices 130a, 130b, 130c, and 130d are preferably a combination of emitting four colors of light, for example red (R), green (G), blue (B), and white (W).
  • the light-emitting device 130d includes a pixel electrode 111d on the layer 101 including a transistor, a fourth island-shaped layer 113d on the pixel electrode 111d, a fifth layer 114 on the fourth island-shaped layer 113d, and a fourth layer 114d on the fourth island-shaped layer 113d. and a common electrode 115 on 5 layers 114 .
  • the fourth layer 113d and the fifth layer 114 can be collectively called an EL layer.
  • the three sub-pixels 110d may each independently have a light emitting device 130d, or may share one light emitting device 130d. That is, the pixel 110 may have one light emitting device 130d, or three.
  • the arrangement of sub-pixels includes, for example, a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, and a pentile arrangement.
  • top surface shapes of sub-pixels include triangles, quadrilaterals (including rectangles and squares), polygons such as pentagons, shapes with rounded corners, ellipses, and circles.
  • the top surface shape of the sub-pixel corresponds to the top surface shape of the light emitting region of the light emitting device.
  • the pixel 110 shown in FIG. 3A is composed of three sub-pixels, sub-pixels 110a, 110b and 110c.
  • the sub-pixel 110a may be the blue sub-pixel B
  • the sub-pixel 110b may be the red sub-pixel R
  • the sub-pixel 110c may be the green sub-pixel G.
  • FIG. 4A the sub-pixel 110a may be the blue sub-pixel B
  • the sub-pixel 110b may be the red sub-pixel R
  • the sub-pixel 110c may be the green sub-pixel G.
  • the pixel 110 shown in FIG. 3B includes a subpixel 110a having a substantially trapezoidal top surface shape with rounded corners, a subpixel 110b having a substantially triangular top surface shape with rounded corners, and a substantially square or substantially hexagonal top surface shape with rounded corners. and a sub-pixel 110c having Also, the sub-pixel 110a has a larger light emitting area than the sub-pixel 110b.
  • the shape and size of each sub-pixel can be determined independently. For example, sub-pixels with more reliable light emitting devices can be smaller in size.
  • sub-pixel 110a may be green sub-pixel G
  • sub-pixel 110b may be red sub-pixel R
  • sub-pixel 110c may be blue sub-pixel B, as shown in FIG. 4B.
  • FIG. 3C shows an example in which pixels 124a having sub-pixels 110a and 110b and pixels 124b having sub-pixels 110b and 110c are alternately arranged.
  • sub-pixel 110a may be red sub-pixel R
  • sub-pixel 110b may be green sub-pixel G
  • sub-pixel 110c may be blue sub-pixel B, as shown in FIG. 4C.
  • Pixel 124a, 124b shown in Figures 3D and 3E have a delta arrangement applied.
  • Pixel 124a has two sub-pixels (sub-pixels 110a and 110b) in the upper row (first row) and one sub-pixel (sub-pixel 110c) in the lower row (second row).
  • Pixel 124b has one sub-pixel (sub-pixel 110c) in the upper row (first row) and two sub-pixels (sub-pixels 110a and 110b) in the lower row (second row).
  • sub-pixel 110a may be red sub-pixel R
  • sub-pixel 110b may be green sub-pixel G
  • sub-pixel 110c may be blue sub-pixel B, as shown in FIG. 4D.
  • FIG. 3D is an example in which each sub-pixel has a substantially rectangular top surface shape with rounded corners
  • FIG. 3E is an example in which each sub-pixel has a circular top surface shape.
  • the top surface shape of the sub-pixel may be a polygonal shape with rounded corners, an elliptical shape, a circular shape, or the like.
  • the EL layer is processed into an island shape using a resist mask.
  • the resist film formed on the EL layer needs to be cured at a temperature lower than the heat resistance temperature of the EL layer. Therefore, depending on the heat resistance temperature of the EL layer material and the curing temperature of the resist material, curing of the resist film may be insufficient.
  • a resist film that is insufficiently hardened may take a shape away from the desired shape during processing.
  • the top surface shape of the EL layer may be a polygon with rounded corners, an ellipse, or a circle. For example, when a resist mask having a square top surface is formed, a resist mask having a circular top surface is formed, and the EL layer may have a circular top surface.
  • a technique for correcting the mask pattern in advance so that the design pattern and the transfer pattern match.
  • OPC Optical Proximity Correction
  • a pattern for correction is added to a corner portion of a figure on a mask pattern.
  • pixel 110 to which the stripe arrangement shown in FIG. 1A is applied for example, as shown in FIG. 110c can be a blue sub-pixel B;
  • a stripe arrangement is applied to the pixels 110 shown in FIGS. 5A to 5C.
  • FIG. 5A is an example in which each sub-pixel has a rectangular top surface shape
  • FIG. 5B is an example in which each sub-pixel has a top surface shape connecting two semicircles and a rectangle
  • FIG. This is an example where the sub-pixel has an elliptical top surface shape.
  • a matrix arrangement is applied to the pixels 110 shown in FIGS. 5D to 5F.
  • FIG. 5D is an example in which each sub-pixel has a square top surface shape
  • FIG. 5E is an example in which each sub-pixel has a substantially square top surface shape with rounded corners
  • FIG. which have a circular top shape.
  • the pixel 110 shown in FIGS. 5A-5F consists of four sub-pixels, sub-pixels 110a, 110b, 110c and 110d.
  • the sub-pixels 110a, 110b, 110c, 110d have light emitting devices that emit different colors of light.
  • sub-pixels 110a, 110b, 110c, and 110d can be red, green, blue, and white sub-pixels, respectively.
  • subpixels 110a, 110b, 110c, and 110d can be red, green, blue, and white subpixels, respectively.
  • subpixels 110a, 110b, 110c, and 110d can be red, green, blue, and infrared emitting subpixels, respectively.
  • FIG. 5G shows an example in which one pixel 110 is composed of 2 rows and 3 columns.
  • the pixel 110 has three sub-pixels (sub-pixels 110a, 110b, 110c) in the upper row (first row) and one sub-pixel (sub-pixel 110d) in the lower row (second row).
  • sub-pixel 110a in the left column (first column), sub-pixel 110b in the middle column (second column), and sub-pixel 110b in the right column (third column). It has pixels 110c and sub-pixels 110d over these three columns.
  • the pixel 110 shown in FIGS. 2A and 5G for example, as shown in FIGS. can be the blue sub-pixel B and the sub-pixel 110d can be the white sub-pixel W.
  • An electronic device including the display device of one embodiment of the present invention can have one or both of a flashlight function using the subpixel W and a lighting function using the subpixel W.
  • the white light emitted by the sub-pixel W may be light with high instantaneous brightness such as flash light or strobe light, or light with high color rendering properties such as reading light.
  • the color temperature of the white light may be lowered.
  • the white light can be a light bulb color (e.g., 2500K or more and less than 3250K) or a warm white color (3250K or more and less than 3800K), so that the light source can be easy on the eyes of the user.
  • the strobe light function can be realized, for example, by repeating light emission and non-light emission in a short cycle.
  • the flashlight function can be realized by, for example, a configuration that generates a flash of light by instantaneously discharging using the principle of an electric double layer or the like.
  • the electronic device 70 when the electronic device 70 is provided with a camera function, by using a strobe light function or a flashlight function, the electronic device 70 can take an image even at night as shown in FIG. 7A.
  • the display device 100 included in the electronic device 70 functions as a surface light source, and shadows are less likely to occur on the subject, so that a clear image can be captured.
  • the strobe light function or flash light function can be used not only at night.
  • the color temperature of white light emission may be increased.
  • the color temperature of the light emitted from the electronic device 70 may be white (3800K or more and less than 4500K), neutral white (4500K or more and less than 5500K), or daylight color (5500K or more and less than 7100K).
  • the flash when the flash emits light that is more intense than necessary, there are cases in which portions of the image that originally have varying degrees of brightness become white (so-called blown out highlights). On the other hand, if the flash light emission is too weak, the dark portions of the image may become solid black (so-called black saturation).
  • the light emitting device included in the sub-pixel may be configured to adjust the amount of light to an optimum level. That is, it can be said that the electronic device 70 has a function as an exposure meter.
  • the strobe light function and the flash light function can be used for crime prevention or self-defense.
  • the thug can be frightened by causing the electronic device 70 to emit light toward the thug.
  • the display device 100 included in the electronic device 70 is a surface light source, even if the orientation of the display device 100 is slightly deviated, the luminescence of the display device 100 can be seen in the thug's field of view.
  • the electronic device 70 may emit a sound such as a relatively loud buzzing sound in order to call for help from the surroundings. By uttering a sound near the thug's face, it is possible to frighten the thug not only with the light but also with the sound, which is preferable.
  • an electronic device 70 capable of emitting light with high color rendering properties may be used as a reading light.
  • electronic device 70 is secured to desk 74 using supports 72 .
  • the electronic device 70 can be used as a reading lamp.
  • the display device 100 included in the electronic device 70 functions as a surface light source, it is difficult for the object (the book in FIG. 7C) to be shaded, and since the distribution of the reflected light from the object is gentle, the light is less likely to be reflected. This improves the visibility of the target and makes it easier to see.
  • the emission spectrum of a light-emitting device that emits white light is broad, blue light is also relatively reduced. For this reason, it is possible to reduce eye strain and the like of the user of the electronic device 70 .
  • the configuration of the support 72 is not limited to that shown in FIG. 7C. Arms or movable parts may be appropriately provided so that the range of motion is widened as much as possible. Further, in FIG. 7C, the support 72 holds the electronic device 70 in a sandwiched manner, but the present invention is not limited to this. For example, a configuration using a magnet, a suction cup, or the like as appropriate may be employed.
  • White is preferable as the luminescent color for the above lighting applications.
  • the practitioner can select one or more of the most suitable luminescent colors, such as white, blue, purple, blue-violet, green, yellow-green, yellow, orange, and red. You can also select one or more of the most suitable luminescent colors, such as white, blue, purple, blue-violet, green, yellow-green, yellow, orange, and red. You can also select one or more of the most suitable luminescent colors, such as white, blue, purple, blue-violet, green, yellow-green, yellow, orange, and red. You can also select one or more of the most suitable luminescent colors, such as white, blue, purple, blue-violet, green, yellow-green, yellow, orange, and red. You can also select one or more of the most suitable luminescent colors, such as white, blue, purple, blue-violet, green, yellow-green, yellow, orange, and red. You can also select one or more of the most suitable luminescent colors, such as white, blue
  • a display device of one embodiment of the present invention may include a light-receiving device in a pixel.
  • sub-pixels included in the pixel 110 shown in FIG. 2A three may be configured to have light-emitting devices, and the remaining one may be configured to include light-receiving devices.
  • a pn-type or pin-type photodiode can be used as the light receiving device.
  • a light-receiving device functions as a photoelectric conversion device (also referred to as a photoelectric conversion element) that detects light incident on the light-receiving device and generates an electric charge. The amount of charge generated from the light receiving device is determined based on the amount of light incident on the light receiving device.
  • organic photodiode having a layer containing an organic compound as the light receiving device.
  • Organic photodiodes can be easily made thinner, lighter, and larger, and have a high degree of freedom in shape and design, so that they can be applied to various display devices.
  • an organic EL device is used as the light-emitting device and an organic photodiode is used as the light-receiving device.
  • An organic EL device and an organic photodiode can be formed on the same substrate. Therefore, an organic photodiode can be incorporated in a display device using an organic EL device.
  • a light receiving device has an active layer that functions at least as a photoelectric conversion layer between a pair of electrodes.
  • one of a pair of electrodes may be referred to as a pixel electrode and the other may be referred to as a common electrode.
  • sub-pixels 110a, 110b, and 110c may be R, G, and B sub-pixels
  • sub-pixel 110d may be a sub-pixel having a light receiving device.
  • the fourth layer 113d has at least an active layer.
  • one electrode functions as an anode and the other electrode functions as a cathode.
  • the light-receiving device can be driven by applying a reverse bias between the pixel electrode and the common electrode, thereby detecting light incident on the light-receiving device, generating electric charge, and extracting it as a current.
  • the pixel electrode may function as a cathode and the common electrode may function as an anode.
  • a manufacturing method similar to that for the light-emitting device can also be applied to the light-receiving device.
  • the island-shaped active layer (also called photoelectric conversion layer) of the light receiving device is not formed using a fine metal mask, but is formed by forming a film that will become the active layer over the surface and then processing it. Therefore, the island-shaped active layer can be formed with a uniform thickness. Further, by providing the sacrificial layer over the active layer, the damage to the active layer during the manufacturing process of the display device can be reduced, and the reliability of the light receiving device can be improved.
  • a layer shared by the light-receiving device and the light-emitting device may have different functions in the light-emitting device and in the light-receiving device. Components are sometimes referred to herein based on their function in the light emitting device.
  • a hole-injecting layer functions as a hole-injecting layer in light-emitting devices and as a hole-transporting layer in light-receiving devices.
  • an electron-injecting layer functions as an electron-injecting layer in light-emitting devices and as an electron-transporting layer in light-receiving devices.
  • a layer shared by the light-receiving device and the light-emitting device may have the same function in the light-emitting device as in the light-receiving device.
  • a hole-transporting layer functions as a hole-transporting layer in both a light-emitting device and a light-receiving device
  • an electron-transporting layer functions as an electron-transporting layer in both a light-emitting device and a light-receiving device.
  • the active layer of the light receiving device contains a semiconductor.
  • the semiconductor include inorganic semiconductors such as silicon and organic semiconductors including organic compounds.
  • an organic semiconductor is used as the semiconductor included in the active layer.
  • the light-emitting layer and the active layer can be formed by the same method (for example, a vacuum deposition method), and a manufacturing apparatus can be shared, which is preferable.
  • Electron-accepting organic semiconductor materials such as fullerenes ( eg, C60 fullerene, C70 fullerene, etc.) and fullerene derivatives can be used as n-type semiconductor materials for the active layer.
  • Fullerenes have a soccer ball-like shape, which is energetically stable.
  • Fullerene has both deep (low) HOMO and LUMO levels. Since fullerene has a deep LUMO level, it has an extremely high electron-accepting property (acceptor property).
  • acceptor property electron-acceptor property
  • C60 fullerene and C70 fullerene have a wide absorption band in the visible light region.
  • C70 fullerene has a larger ⁇ -electron conjugated system than C60 fullerene and has a wide absorption band in the long wavelength region. preferable.
  • [6,6]-Phenyl-C71-butylic acid methyl ester (abbreviation: PC70BM), [6,6]-Phenyl-C61-butylic acid methyl ester (abbreviation: PC60BM), 1′, 1′′,4′,4′′-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2′,3′,56,60:2′′,3′′][5,6]fullerene- C60 (abbreviation: ICBA) etc. are mentioned.
  • Materials for the n-type semiconductor include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, Oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, naphthalene derivatives, anthracene derivatives, coumarin derivatives, rhodamine derivatives, triazine derivatives, quinone derivatives, etc. is mentioned.
  • Materials for the p-type semiconductor of the active layer include copper (II) phthalocyanine (CuPc), tetraphenyldibenzoperiflanthene (DBP), zinc phthalocyanine (ZnPc), tin ( II) electron-donating organic semiconductor materials such as phthalocyanine (SnPc) and quinacridone;
  • Examples of p-type semiconductor materials include carbazole derivatives, thiophene derivatives, furan derivatives, and compounds having an aromatic amine skeleton.
  • materials for p-type semiconductors include naphthalene derivatives, anthracene derivatives, pyrene derivatives, triphenylene derivatives, fluorene derivatives, pyrrole derivatives, benzofuran derivatives, benzothiophene derivatives, indole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, indolocarbazole derivatives, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, quinacridone derivatives, polyphenylenevinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, polythiophene derivatives and the like.
  • the HOMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the HOMO level of the electron-accepting organic semiconductor material.
  • the LUMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the LUMO level of the electron-accepting organic semiconductor material.
  • a spherical fullerene as the electron-accepting organic semiconductor material and an organic semiconductor material having a nearly planar shape as the electron-donating organic semiconductor material. Molecules with similar shapes tend to gather together, and when molecules of the same type aggregate, the energy levels of the molecular orbitals are close to each other, so the carrier transportability can be enhanced.
  • the active layer is preferably formed by co-depositing an n-type semiconductor and a p-type semiconductor.
  • the active layer may be formed by laminating an n-type semiconductor and a p-type semiconductor.
  • the light-receiving device further includes, as layers other than the active layer, a layer containing a highly hole-transporting substance, a highly electron-transporting substance, a bipolar substance (substances having high electron-transporting and hole-transporting properties), or the like. may have.
  • the layer is not limited to the above, and may further include a layer containing a highly hole-injecting substance, a hole-blocking material, a highly electron-injecting substance, an electron-blocking material, or the like.
  • Either a low-molecular-weight compound or a high-molecular-weight compound can be used for the light-receiving device, and an inorganic compound may be included.
  • the layers constituting the light-receiving device can be formed by methods such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, and a coating method.
  • hole-transporting materials include polymer compounds such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS), molybdenum oxide, and copper iodide (CuI).
  • Inorganic compounds such as can be used.
  • an inorganic compound such as zinc oxide (ZnO) can be used as the electron-transporting material.
  • 6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1 ,3-diyl]]polymer (abbreviation: PBDB-T) or a polymer compound such as a PBDB-T derivative can be used.
  • a method of dispersing an acceptor material in PBDB-T or a PBDB-T derivative can be used.
  • three or more kinds of materials may be mixed in the active layer.
  • a third material may be mixed in addition to the n-type semiconductor material and the p-type semiconductor material.
  • the third material may be a low-molecular compound or a high-molecular compound.
  • a display device including a light-emitting device and a light-receiving device in a pixel
  • contact or proximity of an object can be detected while displaying an image.
  • some sub-pixels exhibit light as a light source, some other sub-pixels perform light detection, and the remaining sub-pixels You can also display images with
  • light-emitting devices are arranged in matrix in the display portion, and an image can be displayed on the display portion.
  • light receiving devices are arranged in a matrix in the display section, and the display section has one or both of an imaging function and a sensing function in addition to an image display function.
  • the display part can be used for an image sensor or a touch sensor. That is, by detecting light on the display portion, an image can be captured, or proximity or contact of an object (a finger, hand, pen, or the like) can be detected.
  • the display device of one embodiment of the present invention can use a light-emitting device as a light source of a sensor. Therefore, it is not necessary to provide a light receiving portion and a light source separately from the display device, and the number of parts of the electronic device can be reduced.
  • the light-receiving device when an object reflects (or scatters) light emitted by a light-emitting device included in the display portion, the light-receiving device can detect the reflected light (or scattered light).
  • the reflected light or scattered light.
  • imaging or touch detection is possible.
  • the display device can capture an image using the light receiving device.
  • the display device of this embodiment can be used as a scanner.
  • an image sensor can be used to acquire biometric data such as fingerprints and palm prints. That is, the biometric authentication sensor can be incorporated in the display device.
  • the biometric authentication sensor can be incorporated into the display device.
  • the display device can detect proximity or contact of an object using the light receiving device.
  • the pixels shown in FIGS. 8A and 8B have sub-pixels G, sub-pixels B, sub-pixels R, and sub-pixels PS.
  • a stripe arrangement is applied to the pixels shown in FIG. 8A.
  • a matrix arrangement is applied to the pixels shown in FIG. 8B.
  • the pixels shown in FIGS. 8C and 8D have sub-pixel G, sub-pixel B, sub-pixel R, sub-pixel PS, and sub-pixel IRS.
  • FIG. 8C and 8D show examples in which one pixel is provided over two rows and three columns.
  • Three sub-pixels (sub-pixel G, sub-pixel B, and sub-pixel R) are provided in the upper row (first row).
  • three sub-pixels (one sub-pixel PS and two sub-pixels IRS) are provided in the lower row (second row).
  • two sub-pixels are provided in the lower row (second row).
  • FIG. 8C by aligning the arrangement of the sub-pixels in the upper row and the lower row, it is possible to efficiently remove dust that may be generated in the manufacturing process. Therefore, a display device with high display quality can be provided.
  • the layout of sub-pixels is not limited to the configurations shown in FIGS. 8A to 8D.
  • Sub-pixel R has a light-emitting device that emits red light.
  • Sub-pixel G has a light-emitting device that emits green light.
  • Sub-pixel B has a light-emitting device that emits blue light.
  • the sub-pixels PS and sub-pixels IRS each have a light receiving device.
  • the wavelength of light detected by the sub-pixels PS and IRS is not particularly limited.
  • the two sub-pixels IRS may each have an independent light receiving device, or may have one light receiving device in common. That is, the pixel 110 shown in FIG. 8C can be configured to have one light receiving device for the subpixel PS and one or two light receiving devices for the subpixel IRS.
  • the light receiving area of the sub-pixel PS is smaller than the light receiving area of the sub-pixel IRS.
  • the sub-pixels PS can be used to capture images for personal authentication using a fingerprint, palm print, iris, pulse shape (including vein shape and artery shape), face, or the like.
  • the light-receiving device included in the sub-pixel PS preferably detects visible light, and preferably detects one or more of colors such as blue, purple, blue-violet, green, yellow-green, yellow, orange, and red. . Also, the light receiving device included in the sub-pixel PS may detect infrared light.
  • the sub-pixel IRS can be used for a touch sensor (also called a direct touch sensor) or a near-touch sensor (also called a hover sensor, a hover touch sensor, a non-contact sensor, or a touchless sensor).
  • the sub-pixel IRS can appropriately determine the wavelength of light to be detected according to the application.
  • sub-pixel IRS preferably detects infrared light. This enables touch detection even in dark places.
  • a touch sensor or near-touch sensor can detect the proximity or contact of an object (such as a finger, hand, or pen).
  • a touch sensor can detect an object by direct contact between the display device and the object. Also, the near-touch sensor can detect the object even if the object does not touch the display device. For example, it is preferable that the display device can detect the object when the distance between the display device and the object is 0.1 mm or more and 300 mm or less, preferably 3 mm or more and 50 mm or less. With this structure, the display device can be operated without direct contact with the object, in other words, the display device can be operated without contact. With the above configuration, the risk of staining or scratching the display device can be reduced, or the object can be displayed without directly touching the stain (for example, dust or virus) attached to the display device. It becomes possible to operate the device.
  • the stain for example, dust or virus
  • the display device of one embodiment of the present invention can have a variable refresh rate.
  • the power consumption can be reduced by adjusting the refresh rate (for example, in the range of 1 Hz to 240 Hz) according to the content displayed on the display device.
  • the drive frequency of the touch sensor or the near-touch sensor may be changed according to the refresh rate. For example, when the refresh rate of the display device is 120 Hz, the driving frequency of the touch sensor or the near-touch sensor can be higher than 120 Hz (typically 240 Hz). With this structure, low power consumption can be achieved and the response speed of the touch sensor or the near touch sensor can be increased.
  • the display device 100 shown in FIGS. 8E to 8G has, between substrates 351 and 359, a layer 353 having light receiving devices, a functional layer 355, and a layer 357 having light emitting devices.
  • the functional layer 355 has circuitry for driving the light receiving device and circuitry for driving the light emitting device.
  • the functional layer 355 can be provided with switches, transistors, capacitors, resistors, wirings, terminals, and the like. Note that in the case of driving the light-emitting device and the light-receiving device by a passive matrix method, a structure in which the switch and the transistor are not provided may be employed.
  • a finger 352 touching the display device 100 reflects light emitted by a light-emitting device in a layer 357 having a light-emitting device, so that a light-receiving device in a layer 353 having a light-receiving device reflects the light.
  • Detect light Thereby, it is possible to detect that the finger 352 touches the display device 100 .
  • FIGS. 8F and 8G it may have a function of detecting or imaging an object that is close to (not in contact with) the display device.
  • FIG. 8F shows an example of detecting a finger of a person
  • FIG. 8G shows an example of detecting information around, on the surface of, or inside the human eye (number of blinks, eyeball movement, eyelid movement, etc.).
  • the sub-pixels PS are provided in all the pixels included in the display device.
  • the sub-pixel IRS used for a touch sensor or a near-touch sensor does not require high precision compared to detection using the sub-pixel PS, so it is sufficient if it is provided in some pixels of the display device. .
  • the detection speed can be increased.
  • the display device of one embodiment of the present invention can have two functions in addition to the display function by mounting two types of light-receiving devices in one pixel. Multi-functionalization is possible. For example, it is possible to realize a high-definition imaging function and a sensing function such as a touch sensor or a near-touch sensor. In addition, by combining a pixel equipped with two types of light receiving devices and a pixel with another configuration, the functions of the display device can be further increased. For example, a light-emitting device that emits infrared light, or a pixel having various sensor devices can be used.
  • FIGS. 9A to 9E are top views showing the manufacturing method of the display device.
  • 10A to 10C show side by side a cross-sectional view taken along the dashed line X1-X2 in FIG. 1A and a cross-sectional view taken along the line Y1-Y2.
  • 11 to 15 and 16A are similar to FIG. 16B to 16D show cross-sectional views along the dashed-dotted line X1-X2 in FIG. 1A.
  • FIG. 16E shows a cross-sectional view along the dashed-dotted line Y1-Y2 in FIG. 1A.
  • 17A to 17F are enlarged views showing the cross-sectional structure of the insulating layer 127 and its surroundings.
  • the thin films (insulating films, semiconductor films, conductive films, etc.) that make up the display device are formed using a sputtering method, a CVD method, a vacuum deposition method, a pulsed laser deposition (PLD) method, an ALD method, or the like. can do.
  • CVD methods include PECVD and thermal CVD.
  • one of the thermal CVD methods is the metal organic CVD (MOCVD) method.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) that make up the display device can be applied by spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife, slit coating, roll coating, It can be formed by methods such as curtain coating and knife coating.
  • a vacuum process such as a vapor deposition method and a solution process such as a spin coating method or an inkjet method can be used for manufacturing a light-emitting device.
  • vapor deposition methods include physical vapor deposition (PVD) such as sputtering, ion plating, ion beam vapor deposition, molecular beam vapor deposition, and vacuum vapor deposition, and chemical vapor deposition (CVD).
  • the functional layers (hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, etc.) included in the EL layer may be formed by a vapor deposition method (vacuum vapor deposition method, etc.), a coating method (dip coating method, die coat method, bar coat method, spin coat method, spray coat method, etc.), printing method (inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letterpress printing) method, gravure method, or micro contact method, etc.).
  • a vapor deposition method vacuum vapor deposition method, etc.
  • a coating method dip coating method, die coat method, bar coat method, spin coat method, spray coat method, etc.
  • printing method inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letterpress printing) method, gravure method, or micro contact method, etc.
  • a photolithography method or the like can be used when processing a thin film forming a display device.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • an island-shaped thin film may be directly formed by a film formation method using a shielding mask such as a metal mask.
  • the photolithography method there are typically the following two methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
  • the other is a method of forming a photosensitive thin film, then performing exposure and development to process the thin film into a desired shape.
  • the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture thereof.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • extreme ultraviolet (EUV: Extreme Ultra-violet) light or X-rays may be used.
  • An electron beam can also be used instead of the light used for exposure. The use of extreme ultraviolet light, X-rays, or electron beams is preferable because extremely fine processing is possible.
  • a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • a dry etching method, a wet etching method, a sandblasting method, or the like can be used for etching the thin film.
  • a conductive film 111 is formed over the layer 101 including the transistor.
  • a first layer 113A is formed on the conductive film 111, a first sacrificial layer 118A is formed on the first layer 113A, and a second sacrificial layer 119A is formed on the first sacrificial layer 118A. do.
  • the end of the first layer 113A on the connecting portion 140 side is located inside the end of the first sacrificial layer 118A.
  • a mask for defining a film formation area also referred to as an area mask or a rough metal mask to distinguish it from a fine metal mask
  • the first layer 113A, the first sacrificial layer 118A, and the first layer 118A can be formed. 2 of the sacrificial layer 119A can be changed.
  • a light-emitting device is formed using a resist mask. By combining with an area mask as described above, a light-emitting device can be manufactured through a relatively simple process.
  • the conductive film 111 is a layer that becomes the pixel electrodes 111a, 111b, and 111c and the conductive layer 123 by being processed later. Therefore, the above structure applicable to the pixel electrode can be applied to the conductive film 111 .
  • a sputtering method or a vacuum evaporation method can be used to form the conductive film 111, for example.
  • the first layer 113A is a layer that later becomes the first layer 113a. Therefore, the above-described structure applicable to the first layer 113a can be applied.
  • the first layer 113A can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the first layer 113A is preferably formed using an evaporation method.
  • a premixed material may be used in deposition using a vapor deposition method. In this specification and the like, a premix material is a composite material in which a plurality of materials are blended or mixed in advance.
  • the first layer 113A and the second layer 113B and the third layer 113C formed in later steps are films having high resistance to processing conditions. Specifically, a film having a high etching selectivity with respect to various EL layers is used.
  • Sputtering can be used to form the first sacrificial layer 118A and the second sacrificial layer 119A, for example.
  • the first sacrificial layer 118A formed on and in contact with the EL layer is preferably formed using a formation method that causes less damage to the EL layer than the second sacrificial layer 119A.
  • first sacrificial layer 118A and the second sacrificial layer 119A are formed at a temperature lower than the heat-resistant temperature of the EL layer (typically, 200° C. or lower, preferably 100° C. or lower, more preferably 80° C. or lower). Form.
  • a film that can be removed by a wet etching method is preferably used for the first sacrificial layer 118A and the second sacrificial layer 119A.
  • damage to the first layer 113A during processing of the first sacrificial layer 118A and the second sacrificial layer 119A can be reduced as compared with the case of using the dry etching method.
  • a film having a high etching selectivity with respect to the second sacrificial layer 119A is preferably used for the first sacrificial layer 118A.
  • each layer constituting the EL layer (a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc.) is difficult to process.
  • various sacrificial layers are difficult to process in the process of processing each layer constituting the EL layer. It is desirable to select the material of the sacrificial layer, the processing method, and the processing method of the EL layer in consideration of these factors.
  • the sacrificial layer is formed to have a two-layer structure of the first sacrificial layer and the second sacrificial layer is shown; It may have a laminated structure.
  • an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film can be used.
  • first sacrificial layer 118A and the second sacrificial layer 119A for example, gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and A metallic material such as tantalum or an alloy material containing the metallic material can be used. In particular, it is preferable to use a low melting point material such as aluminum or silver.
  • a metal material capable of blocking ultraviolet light for one or both of the first sacrificial layer 118A and the second sacrificial layer 119A, irradiation of the EL layer with ultraviolet light can be suppressed. It is preferable because it can suppress the deterioration of
  • a metal oxide such as an In--Ga--Zn oxide can be used for the first sacrificial layer 118A and the second sacrificial layer 119A.
  • an In--Ga--Zn oxide film can be formed using a sputtering method.
  • indium oxide, In-Zn oxide, In-Sn oxide, indium titanium oxide (In-Ti oxide), indium tin zinc oxide (In-Sn-Zn oxide), indium titanium zinc oxide ( In--Ti--Zn oxide), indium gallium tin-zinc oxide (In--Ga--Sn--Zn oxide), or the like can be used.
  • indium tin oxide containing silicon or the like can be used.
  • element M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium
  • M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium
  • first sacrificial layer 118A and the second sacrificial layer 119A various inorganic insulating films that can be used for the protective layers 131 and 132 can be used.
  • an oxide insulating film is preferable because it has higher adhesion to the EL layer than a nitride insulating film.
  • an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide can be used for the first sacrificial layer 118A and the second sacrificial layer 119A.
  • an aluminum oxide film can be formed using the ALD method. Use of the ALD method is preferable because damage to the base (especially the EL layer or the like) can be reduced.
  • an inorganic insulating film e.g., aluminum oxide film
  • an In--Ga--Zn film formed using a sputtering method is used as the first sacrificial layer 118A.
  • An oxide film can be used as the first sacrificial layer 118A.
  • a material that can be dissolved in a solvent that is chemically stable with respect to at least the uppermost layer of the first layer 113A may be used.
  • a material that dissolves in water or alcohol can be suitably used for the first sacrificial layer 118A or the second sacrificial layer 119A.
  • the first sacrificial layer 118A and the second sacrificial layer 119A are formed by spin coating, dip coating, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, knife coating, and the like. It may be formed using a wet film formation method.
  • Polyvinyl alcohol PVA
  • polyvinyl butyral polyvinylpyrrolidone
  • polyethylene glycol polyglycerin
  • pullulan polyethylene glycol
  • polyglycerin polyglycerin
  • pullulan polyethylene glycol
  • water-soluble cellulose polyglycerin
  • pullulan polyethylene glycol
  • water-soluble cellulose polyglycerin
  • pullulan polyethylene glycol
  • water-soluble cellulose water-soluble cellulose
  • alcohol-soluble polyamide resin or the like.
  • Organic materials may also be used.
  • a resist mask 190a is formed on the second sacrificial layer 119A.
  • a resist mask can be formed by applying a photosensitive resin (photoresist), followed by exposure and development.
  • the resist mask may be manufactured using either a positive resist material or a negative resist material.
  • the resist mask 190a is provided at a position that overlaps with a region that will later become the sub-pixel 110a.
  • one island pattern is preferably provided for one sub-pixel 110a.
  • one belt-like pattern may be formed for a plurality of sub-pixels 110a arranged in a row (in the Y direction in FIG. 9A).
  • the resist mask 190a is preferably provided also at a position that overlaps with a region that will later become the connecting portion 140 (see FIGS. 9A and 10B). Accordingly, a region of the conductive film 111 that will later become the conductive layer 123 can be prevented from being damaged during the manufacturing process of the display device.
  • part of the second sacrificial layer 119A is removed to form a second sacrificial layer 119a (FIG. 10C).
  • the second sacrificial layer 119a remains in the region that will become the sub-pixel 110a later and the region that will become the connection portion 140 later.
  • etching the second sacrificial layer 119A it is preferable to use etching conditions with a high selectivity so that the first sacrificial layer 118A is not removed by the etching.
  • the EL layer is not exposed in the processing of the second sacrificial layer 119A, there is a wider selection of processing methods than in the processing of the first sacrificial layer 118A. Specifically, deterioration of the EL layer can be suppressed even when an etching gas containing oxygen is used in processing the second sacrificial layer 119A.
  • the resist mask 190a is removed (FIG. 10C).
  • the resist mask 190a can be removed by ashing using oxygen plasma.
  • the resist mask 190a may be removed by wet etching.
  • the first sacrificial layer 118A is located on the outermost surface and the first layer 113A is not exposed, it is possible to suppress damage to the first layer 113A in the step of removing the resist mask 190a. can be done.
  • the second sacrificial layer 119a is used as a hard mask to partially remove the first sacrificial layer 118A to form the first sacrificial layer 118a.
  • the first sacrificial layer 118A and the second sacrificial layer 119A can be processed by wet etching or dry etching, respectively.
  • the first sacrificial layer 118A and the second sacrificial layer 119A are preferably processed by anisotropic etching.
  • a wet etching method By using the wet etching method, damage to the first layer 113A during processing of the first sacrificial layer 118A and the second sacrificial layer 119A can be reduced as compared with the case of using the dry etching method.
  • a wet etching method for example, a developer, a tetramethylammonium hydroxide (TMAH) aqueous solution, dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a chemical solution using a mixed liquid thereof can be used. preferable.
  • TMAH tetramethylammonium hydroxide
  • deterioration of the first layer 113A can be suppressed by not using an oxygen-containing gas as an etching gas.
  • a gas containing a noble gas such as CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , or He is used for etching. Gases are preferred.
  • the first sacrificial layer 118A when an aluminum oxide film formed by ALD is used as the first sacrificial layer 118A, the first sacrificial layer 118A can be processed by dry etching using CHF 3 and He.
  • the second sacrificial layer 119A is processed by a wet etching method using diluted phosphoric acid. can be done.
  • part of the first layer 113A is removed to form the first layer 113a.
  • a laminated structure of a first layer 113a, a first sacrificial layer 118a, and a second sacrificial layer 119a is formed on the conductive film 111 in the region corresponding to the sub-pixel 110a. remain.
  • a layered structure of the first sacrificial layer 118a and the second sacrificial layer 119a remains over the conductive film 111.
  • regions of the first layer 113A, the first sacrificial layer 118A, and the second sacrificial layer 119A that do not overlap with the resist mask 190a can be removed.
  • part of the first layer 113A may be removed using the resist mask 190a. After that, the resist mask 190a may be removed.
  • the next step may be performed without removing the resist mask 190a.
  • the sacrificial layer not only the sacrificial layer but also the resist mask can be used as a mask when the conductive film 111 is processed in a later step.
  • processing of the conductive film 111 may be easier than in the case where only a sacrificial layer is used as a hard mask.
  • the processing conditions of the conductive film 111, the material of the sacrificial layer, the material of the conductive film, and the like can be widened.
  • the processing of the first layer 113A is preferably performed by anisotropic etching.
  • Anisotropic dry etching is particularly preferred.
  • wet etching may be used.
  • deterioration of the first layer 113A can be suppressed by not using an oxygen-containing gas as an etching gas.
  • a gas containing oxygen may be used as the etching gas.
  • the etching gas contains oxygen, the etching speed can be increased. Therefore, etching can be performed under low power conditions while maintaining a sufficiently high etching rate. Therefore, damage to the first layer 113A can be suppressed. Furthermore, problems such as adhesion of reaction products that occur during etching can be suppressed.
  • a dry etching method for example, H 2 , CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , or noble gases such as He and Ar (also referred to as noble gases) It is preferable to use a gas containing one or more of these as the etching gas.
  • a gas containing one or more of these and oxygen is preferably used as an etching gas.
  • oxygen gas may be used as the etching gas.
  • a gas containing H 2 and Ar or a gas containing CF 4 and He can be used as the etching gas.
  • a gas containing CF 4 , He, and oxygen can be used as the etching gas.
  • a second layer 113B is formed over the second sacrificial layer 119a and the conductive film 111, and a first sacrificial layer 118B is formed over the second layer 113B.
  • a second sacrificial layer 119B is formed on the first sacrificial layer 118B.
  • the end portion of the second layer 113B on the connection portion 140 side is located inside (the display portion side) the end portion of the first sacrificial layer 118B. do.
  • the second layer 113B is a layer that later becomes the second layer 113b.
  • the second layer 113b emits light of a different color than the first layer 113a.
  • the structure, materials, and the like that can be applied to the second layer 113b are the same as those of the first layer 113a.
  • the second layer 113B can be deposited using a method similar to that of the first layer 113A.
  • the first sacrificial layer 118B can be formed using a material applicable to the first sacrificial layer 118A.
  • the second sacrificial layer 119B can be formed using a material applicable to the second sacrificial layer 119A.
  • a resist mask 190b is formed on the second sacrificial layer 119B.
  • the resist mask 190b is provided at a position overlapping with a region that will later become the sub-pixel 110b.
  • one island pattern is preferably provided for one sub-pixel 110b.
  • one belt-like pattern may be formed for a plurality of sub-pixels 110b arranged in a row.
  • the resist mask 190b may also be provided at a position that overlaps with a region that becomes the connection portion 140 later.
  • part of the second sacrificial layer 119B is removed to form a second sacrificial layer 119b.
  • the second sacrificial layer 119b remains in regions that will later become the sub-pixels 110b.
  • the resist mask 190b is removed. Then, using the second sacrificial layer 119b as a hard mask, part of the first sacrificial layer 118B is removed to form the first sacrificial layer 118b.
  • the second sacrificial layer 119b and the first sacrificial layer 118b are used as a hard mask to partially remove the second layer 113B to form the second layer 113b.
  • a laminated structure of a second layer 113b, a first sacrificial layer 118b, and a second sacrificial layer 119b is formed on the conductive film 111 in the region corresponding to the sub-pixel 110b. remain.
  • a layered structure of the first sacrificial layer 118a and the second sacrificial layer 119a remains over the conductive film 111.
  • regions of the second layer 113B, the first sacrificial layer 118B, and the second sacrificial layer 119B that do not overlap with the resist mask 190b can be removed.
  • a method applicable to processing the first layer 113A, the first sacrificial layer 118A, and the second sacrificial layer 119A can be used.
  • a third layer 113C is formed on the second sacrificial layer 119a, the second sacrificial layer 119b, and the conductive film 111, and a first layer 113C is formed on the third layer 113C.
  • a sacrificial layer 118C is formed, and a second sacrificial layer 119C is formed on the first sacrificial layer 118C.
  • the end of the third layer 113C on the connection portion 140 side is located inside (the display portion side) the end of the first sacrificial layer 118C. do.
  • the third layer 113C is a layer that later becomes the third layer 113c.
  • the third layer 113c emits a different color of light than the first layer 113a and the second layer 113b.
  • the structure, materials, and the like that can be applied to the third layer 113c are the same as those of the first layer 113a.
  • the third layer 113C can be deposited using a method similar to that of the first layer 113A.
  • the first sacrificial layer 118C can be formed using a material applicable to the first sacrificial layer 118A.
  • the second sacrificial layer 119C can be formed using a material applicable to the second sacrificial layer 119A.
  • a resist mask 190c is formed on the second sacrificial layer 119C.
  • the resist mask 190c is provided at a position that overlaps with the region that will later become the sub-pixel 110c.
  • one island pattern is preferably provided for one sub-pixel 110c.
  • one belt-like pattern may be formed for a plurality of sub-pixels 110c arranged in a line.
  • the resist mask 190c may also be provided at a position that overlaps with a region that becomes the connection portion 140 later.
  • part of the second sacrificial layer 119C is removed to form a second sacrificial layer 119c.
  • the second sacrificial layer 119c remains in a region that will later become the sub-pixel 110c.
  • the resist mask 190c is removed. Then, using the second sacrificial layer 119c as a hard mask, part of the first sacrificial layer 118C is removed to form the first sacrificial layer 118c.
  • the second sacrificial layer 119c and the first sacrificial layer 118c are used as hard masks to partially remove the third layer 113C to form the third layer 113c.
  • a laminated structure of a third layer 113c, a first sacrificial layer 118c, and a second sacrificial layer 119c is formed on the conductive film 111 in the region corresponding to the sub-pixel 110c. remain.
  • a layered structure of the first sacrificial layer 118a and the second sacrificial layer 119a remains over the conductive film 111.
  • regions of the third layer 113C, the first sacrificial layer 118C, and the second sacrificial layer 119C that do not overlap with the resist mask 190c can be removed.
  • a method applicable to processing the first layer 113A, the first sacrificial layer 118A, and the second sacrificial layer 119A can be used.
  • the side surfaces of the first layer 113a, the second layer 113b, and the third layer 113c are preferably perpendicular or substantially perpendicular to the formation surface.
  • the angle formed by the surface to be formed and these side surfaces be 60 degrees or more and 90 degrees or less.
  • the conductive film 111 is processed to form the pixel electrode 111a. , 111b, 111c, and a conductive layer 123 are formed.
  • part of the layer 101 including the transistor (specifically, the insulating layer located on the outermost surface) is processed to form a recess in some cases.
  • the recess is provided in the layer 101 including the transistor will be described as an example, but the recess may not be provided.
  • one of the first sacrificial layers 118a, 118b, and 118c and one of the second sacrificial layers 119a, 119b, and 119c are connected to the connection portion 140. is preferably provided. Any two or all of the first sacrificial layers 118 a , 118 b , 118 c and any two or all of the second sacrificial layers 119 a , 119 b , 119 c may be provided in the connecting portion 140 .
  • the sacrificial layer in the connection portion 140 By providing the sacrificial layer in the connection portion 140, a region of the conductive film 111 which is to be the conductive layer 123 can be prevented from being damaged during the manufacturing process of the display device. Therefore, it is preferable to form the first sacrificial layer 118a and the second sacrificial layer 119a with the fastest manufacturing process.
  • the conductive film 111 can be processed by a wet etching method or a dry etching method.
  • the conductive film 111 is preferably processed by anisotropic etching.
  • pixel electrodes 111a, 111b, 111c, a conductive layer 123, a first layer 113a, a second layer 113b, a third layer 113c, and first sacrificial layers 118a, 118b, 118c are formed.
  • the second sacrificial layers 119a, 119b, and 119c are formed.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used.
  • oxide insulating films include silicon oxide films, aluminum oxide films, magnesium oxide films, gallium oxide films, germanium oxide films, yttrium oxide films, zirconium oxide films, lanthanum oxide films, neodymium oxide films, hafnium oxide films, and tantalum oxide films.
  • the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • a metal oxide film such as an indium gallium zinc oxide film may be used.
  • the insulating film 125A preferably has a function as a barrier insulating film against at least one of water and oxygen.
  • the insulating film 125A preferably has a function of suppressing diffusion of at least one of water and oxygen.
  • the insulating film 125A preferably has a function of capturing or fixing at least one of water and oxygen (also referred to as gettering).
  • a barrier insulating film means an insulating film having a barrier property.
  • the term "barrier property" refers to a function of suppressing diffusion of a corresponding substance (also referred to as low permeability).
  • the corresponding substance has a function of capturing or fixing (also called gettering).
  • the insulating film 125A has the barrier insulating film function or the gettering function described above, so that it is possible to suppress the intrusion of impurities (typically, water or oxygen) that can diffuse into each light-emitting device from the outside. configuration. With such a structure, a highly reliable display device can be provided.
  • impurities typically, water or oxygen
  • an insulating film 127A is formed on the insulating film 125A.
  • the insulating film 127A is preferably formed so as to have an opening at a position overlapping with the conductive layer 123 (connection portion 140).
  • the insulating film 127A can be patterned by, for example, applying a photosensitive resin and performing exposure and development.
  • the insulating film 127A may be formed so as to have openings at positions overlapping with the pixel electrodes 111a, 111b, and 111c.
  • An organic material can be used for the insulating film 127A.
  • organic materials include acrylic resins, polyimide resins, epoxy resins, imide resins, polyamide resins, polyimideamide resins, silicone resins, siloxane resins, benzocyclobutene resins, phenolic resins, and precursors of these resins. be done.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used.
  • a photosensitive resin can be used for the insulating film 127A.
  • a photoresist may be used as the photosensitive resin.
  • a positive material or a negative material can be used for the photosensitive resin.
  • the method for forming the insulating film 127A is not particularly limited, and examples thereof include wet processes such as spin coating, dip coating, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, and knife coating. can be formed using the film formation method of In particular, it is preferable to form the insulating film 127A by spin coating.
  • the insulating film 125A and the insulating film 127A are preferably formed by a formation method that causes less damage to the EL layer.
  • the insulating film 125A is formed in contact with the side surface of the EL layer, it is preferably formed by a formation method that causes less damage to the EL layer than the insulating film 127A.
  • the insulating film 125A and the insulating film 127A are each formed at a temperature lower than the heat resistance temperature of the EL layer (typically, 200° C. or lower, preferably 100° C. or lower, more preferably 80° C. or lower).
  • the insulating film 125A an aluminum oxide film can be formed using the ALD method.
  • the use of the ALD method is preferable because film formation damage can be reduced and a film with high coverage can be formed.
  • the insulating layer 125 and the insulating layer 127 are formed by processing the insulating film 125A and the insulating film 127A.
  • the insulating layer 127 is formed in contact with the side surface of the insulating layer 125 and the upper surface of the recess.
  • the insulating layer 125 (furthermore, the insulating layer 127) is provided so as to cover side surfaces of the pixel electrodes 111a, 111b, and 111c.
  • the insulating layer 125 and the insulating layer 127 are preferably provided so as to cover side surfaces of the first layer 113a, the second layer 113b, and the third layer 113c.
  • films formed later can be prevented from coming into contact with the side surfaces of these layers, and short-circuiting of the light-emitting device can be prevented.
  • damage to the first layer 113a, the second layer 113b, and the third layer 113c in a later step can be suppressed.
  • the entire side surfaces of the pixel electrodes 111a, 111b, and 111c are covered with the insulating layer 125 and the insulating layer. It is possible and preferable to cover with the layer 127 .
  • the insulating film 125A is preferably processed by a dry etching method.
  • the insulating film 125A is preferably processed by anisotropic etching.
  • the insulating film 125A can be processed using an etching gas that can be used for processing the first sacrificial layer 118A and the second sacrificial layer 119A.
  • the insulating film 127A is preferably processed by, for example, ashing using oxygen plasma.
  • the first sacrificial layers 118a, 118b, 118c and the second sacrificial layers 119a, 119b, 119c are removed.
  • the first layer 113a is exposed on the pixel electrode 111a
  • the second layer 113b is exposed on the pixel electrode 111b
  • the third layer 113c is exposed on the pixel electrode 111c.
  • the conductive layer 123 is exposed. Note that part of the first sacrificial layers 118a, 118b, and 118c and the second sacrificial layers 119a, 119b, and 119c may remain. For example, a region of the sacrificial layer that overlaps with the insulating layer 125 may remain in the connecting portion 140 or the like (see FIG. 14B).
  • the height of the top surface of the insulating layer 125 and the top surface of the insulating layer 127 match or substantially match the height of the top surface of at least one of the first layer 113a, the second layer 113b, and the third layer 113c. is preferred.
  • the upper surface of the insulating layer 127 preferably has a flat shape, and may have a convex portion or a concave portion.
  • the same method as in the sacrificial layer processing step can be used.
  • the first layer 113a, the second layer 113b, and the first layer 113a, the second layer 113b, and the second layer 113b are more easily removed when the first sacrificial layer and the second sacrificial layer are removed than when the dry etching method is used. Damage to the third layer 113c can be reduced.
  • the first sacrificial layer and the second sacrificial layer may be removed in separate steps or may be removed in the same step.
  • first sacrificial layer and the second sacrificial layer may be removed by dissolving them in a solvent such as water or alcohol.
  • Alcohols include ethyl alcohol, methyl alcohol, isopropyl alcohol (IPA), glycerin, and the like.
  • drying treatment may be performed in order to remove water contained in the EL layer and water adsorbed to the surface of the EL layer.
  • heat treatment can be performed in an inert gas atmosphere or a reduced pressure atmosphere.
  • the heat treatment can be performed at a substrate temperature of 50° C. to 200° C., preferably 60° C. to 150° C., more preferably 70° C. to 120° C.
  • a reduced-pressure atmosphere is preferable because drying can be performed at a lower temperature.
  • a fifth layer 114 is formed to cover the insulating layers 125 and 127, the first layer 113a, the second layer 113b, and the third layer 113c.
  • the end of the fifth layer 114 on the side of the connecting portion 140 is located inside (on the display portion side) the connecting portion 140, and the fifth layer Conductive layer 123 remains exposed after forming 114 .
  • the connection portion 140 may be provided with the fifth layer 114 depending on the level of conductivity of the fifth layer 114 .
  • the fifth layer 114 can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like. Also, the fifth layer 114 may be formed using a premixed material.
  • the insulating layer 125 and the insulating layer 127 are not provided, one of the pixel electrodes 111a, 111b, and 111c may be in contact with the fifth layer 114.
  • FIG. Contact of these layers may short out the light emitting device, such as when the fifth layer 114 is highly conductive.
  • the insulating layers 125 and 127 cover the side surfaces of the first layer 113a, the second layer 113b, the third layer 113c, and the pixel electrodes 111a, 111b, and 111c. Therefore, contact of the fifth layer 114 with high conductivity with these layers can be suppressed, and short-circuiting of the light-emitting device can be suppressed. This can improve the reliability of the light emitting device.
  • a common electrode 115 is formed over the fifth layer 114 and the conductive layer 123. Then, as shown in FIG. 14C, a common electrode 115 is formed over the fifth layer 114 and the conductive layer 123. Then, as shown in FIG. 14C, a common electrode 115 is formed over the fifth layer 114 and the conductive layer 123. Then, as shown in FIG. 14C, a common electrode 115 is formed over the fifth layer 114 and the conductive layer 123. Then, as shown in FIG.
  • common electrode 115 Materials that can be used for the common electrode 115 are as described above.
  • a sputtering method or a vacuum deposition method can be used.
  • a film formed by an evaporation method and a film formed by a sputtering method may be stacked.
  • a protective layer 131 is formed over the common electrode 115 and a protective layer 132 is formed over the protective layer 131 . Furthermore, by bonding the substrate 120 onto the protective layer 132 using the resin layer 122, the display device 100 shown in FIG. 1B can be manufactured.
  • the protective layers 131 and 132 Materials and film formation methods that can be used for the protective layers 131 and 132 are as described above. Methods for forming the protective layers 131 and 132 include a vacuum deposition method, a sputtering method, a CVD method, an ALD method, and the like. The protective layer 131 and the protective layer 132 may be films formed using different film formation methods. In addition, each of the protective layers 131 and 132 may have a single-layer structure or a laminated structure.
  • a mask for defining the film formation area may be used when forming the common electrode 115 .
  • the common electrode 115 processing step shown in FIGS. 15A and 15B is performed, and then the protective layer 131 forming step is performed. It's okay.
  • a resist mask 190d is formed on the common electrode 115 as shown in FIGS. 15A and 9E. There is a portion where the resist mask 190d is not provided at the end on the Y2 side in FIG. 15A. As shown in FIG. 9E, the resist mask 190d is provided in a region overlapping each sub-pixel and the connection portion 140. As shown in FIG. In other words, the region where the resist mask 190d is not provided is located outside the connection portion 140 (on the side opposite to the display portion).
  • a portion of the common electrode 115 is removed using a resist mask 190d. As described above, the common electrode 115 can be processed.
  • a method for manufacturing a display device of one embodiment of the present invention includes a metal mask with a high-definition pattern for forming an island-shaped EL layer, a mask for forming an island-shaped pixel electrode, and an end portion of the pixel electrode. Since it is not necessary to use a mask for forming an insulating layer covering the , the number of masks and the cost can be reduced.
  • the fifth layer 114 is not provided, and a common electrode is formed so as to cover the insulating layers 125 and 127, the first layer 113a, the second layer 113b, and the third layer 113c. 115 may be formed. That is, in a light-emitting device that emits light of different colors, all the layers constituting the EL layer may be separately manufactured. At this time, the EL layers of each light-emitting device are all formed in an island shape.
  • the insulating layers 125 and 127 cover the side surfaces of the first layer 113a, the second layer 113b, the third layer 113c, and the pixel electrodes 111a, 111b, and 111c. Therefore, contact of the common electrode 115 with these layers can be suppressed, and short-circuiting of the light-emitting device can be suppressed. This can improve the reliability of the light emitting device.
  • the layer including the transistor when a part of the layer 101 including the transistor (specifically, the insulating layer located on the outermost surface) is not processed when the conductive film 111 is processed, the layer including the transistor is not processed. 101 may not be recessed.
  • the insulating layer 125 may not be provided.
  • the insulating layer 127 it is preferable to use an organic material that causes less damage to the first layer 113a, the second layer 113b, and the third layer 113c.
  • the insulating layer 127 is preferably made of an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin.
  • 17A to 17F show cross-sectional structures of a region 139 including the insulating layer 127 and its periphery.
  • FIG. 17A shows an example in which the first layer 113a and the second layer 113b have different thicknesses.
  • the height of the top surface of the insulating layer 125 matches or substantially matches the height of the top surface of the first layer 113a on the side of the first layer 113a, and the height of the top surface of the second layer 113b on the side of the second layer 113b. Matches or roughly matches height.
  • the upper surface of the insulating layer 127 has a gentle slope with a higher surface on the side of the first layer 113a and a lower surface on the side of the second layer 113b.
  • the insulating layers 125 and 127 may have a flat portion aligned with the top surface of one of the adjacent EL layers.
  • the top surface of the insulating layer 127 has a region higher than the top surface of the first layer 113a and the top surface of the second layer 113b.
  • the upper surface of the insulating layer 127 has a gently bulging convex shape toward the center.
  • the insulating layer 127 has a region higher than the upper surface of the first layer 113a and the upper surface of the second layer 113b. Also, in the region 139, the display device 100 has at least one of the first sacrificial layer 118a and the second sacrificial layer 119a. Also, in the region 139, the display device 100 has at least one of the first sacrificial layer 118b and the second sacrificial layer 119b. An insulating layer 125 is located on the sacrificial layer and an insulating layer 127 is located on the insulating layer 125 . The insulating layer 127 has a portion overlapping with the first layer 113a with the sacrificial layer interposed therebetween and a portion overlapping with the second layer 113b with the sacrificial layer interposed therebetween.
  • the top surface of the insulating layer 127 has a region that is lower than the top surface of the first layer 113a and the top surface of the second layer 113b.
  • the upper surface of the insulating layer 127 has a shape that is gently recessed toward the center.
  • the top surface of the insulating layer 125 has a higher area than the top surface of the first layer 113a and the top surface of the second layer 113b. That is, the insulating layer 125 protrudes from the formation surface of the fifth layer 114 to form a convex portion.
  • the insulating layer 125 when the insulating layer 125 is formed so as to be aligned or substantially aligned with the height of the sacrificial layer, the insulating layer 125 may be formed in a protruding shape, as shown in FIG. 17E.
  • the top surface of insulating layer 125 has a region that is lower than the top surface of first layer 113a and the top surface of second layer 113b. That is, the insulating layer 125 forms a concave portion on the formation surface of the fifth layer 114 .
  • various shapes can be applied to the insulating layers 125 and 127 .
  • the island-shaped EL layer is not formed using a fine metal mask, but is formed by forming an EL layer over one surface and then processing the EL layer. Therefore, the island-shaped EL layer can be formed with a uniform thickness. Then, a high-definition display device or a display device with a high aperture ratio can be realized.
  • each EL layer can be manufactured with a configuration (material, film thickness, etc.) suitable for each color light-emitting device. Thereby, a light-emitting device with good characteristics can be produced.
  • a display device of one embodiment of the present invention includes an insulating layer that covers side surfaces of the pixel electrode, the light-emitting layer, and the carrier-transport layer.
  • the EL layer is processed in a state in which the light-emitting layer and the carrier-transport layer are stacked, so that the display device has a structure in which damage to the light-emitting layer is reduced.
  • the insulating layer suppresses contact between the pixel electrode and the carrier injection layer or the common electrode, thereby suppressing short-circuiting of the light-emitting device.
  • the display device 500 shown in FIGS. 18A to 18C has a light emitting device 550R that emits red light, a light emitting device 550G that emits green light, and a light emitting device 550B that emits blue light.
  • a light-emitting device 550R shown in FIGS. 18A and 18B has a light-emitting unit 512R_1 between a pair of electrodes (electrodes 501 and 502). Similarly, light emitting device 550G has light emitting unit 512G_1 and light emitting device 550B has light emitting unit 512B_1.
  • each of the light emitting devices 550R, 550G, and 550B shown in FIGS. 18A and 18B is a single light emitting device having one light emitting unit.
  • a light-emitting device 550R shown in FIG. 18C has a structure in which two light-emitting units (light-emitting unit 512R_1 and light-emitting unit 512R_2) are stacked between a pair of electrodes (electrode 501 and electrode 502) with a charge generation layer 531 interposed therebetween. .
  • the light emitting device 550G has a light emitting unit 512G_1 and a light emitting unit 512G_2
  • the light emitting device 550B has a light emitting unit 512B_1 and a light emitting unit 512B_2.
  • each of the light emitting devices 550R, 550G, and 550B shown in FIG. 18C is a tandem structure light emitting device having two light emitting units.
  • a configuration in which a plurality of light-emitting units are connected in series via the charge generation layer 531, such as the light-emitting device 550R, the light-emitting device 550G, and the light-emitting device 550B shown in FIG. 18C, is referred to as a tandem structure in this specification.
  • a structure having one light-emitting unit between a pair of electrodes is called a single structure.
  • the tandem structure it is called a tandem structure, but it is not limited to this, and for example, the tandem structure may be called a stack structure.
  • the tandem structure enables a light-emitting device capable of emitting light with high luminance.
  • the tandem structure can reduce the current required to obtain the same luminance as compared with the single structure, so reliability can be improved.
  • an SBS side-by-side
  • the display device 500 shown in FIG. 18C has a tandem structure light emitting device and has an SBS structure. Therefore, it is possible to have both the merit of the tandem structure and the merit of the SBS structure.
  • the display device 500 shown in FIG. 18C may be called a two-stage tandem structure because it has a structure in which two light-emitting units are formed in series. Further, in the two-stage tandem structure of the light-emitting device 550R shown in FIG. 18C, the structure is such that the second light-emitting unit having the red light-emitting layer is stacked on the first light-emitting unit having the red light-emitting layer. .
  • the structure is such that the second light-emitting unit having the green light-emitting layer is stacked on the first light-emitting unit having the green light-emitting layer
  • the two-stage tandem structure of the light-emitting device 550B has a structure in which a second light-emitting unit having a blue light-emitting layer is stacked on a first light-emitting unit having a blue light-emitting layer.
  • the electrode 501 functions as a pixel electrode and is provided for each light emitting device.
  • the electrode 502 functions as a common electrode and is commonly provided for a plurality of light emitting devices.
  • the light-emitting unit has at least one light-emitting layer.
  • the number of light-emitting layers that the light-emitting unit has does not matter, and can be one layer, two layers, three layers, or four or more layers.
  • the light-emitting unit 512R_1 includes a layer 521, a layer 522, a light-emitting layer 523R, a layer 524, and the like.
  • FIG. 18A shows an example in which the light-emitting unit 512R_1 has a layer 525
  • FIG. 18B shows an example in which the light-emitting unit 512R_1 does not have the layer 525 and the layer 525 is provided in common among the light-emitting devices.
  • layer 525 can be referred to as a common layer.
  • the light-emitting unit 512R_2 includes a layer 522, a light-emitting layer 523R, a layer 524, and the like. Note that FIG. 18C shows an example in which the layer 525 is provided as a common layer, but the layer 525 may be provided for each light emitting device. That is, the layer 525 may be included in the light emitting unit 512R_2.
  • the layer 521 includes, for example, a layer containing a highly hole-injecting substance (hole-injection layer).
  • the layer 522 includes, for example, a layer containing a substance with a high hole-transport property (hole-transport layer).
  • the layer 524 includes, for example, a layer containing a highly electron-transporting substance (electron-transporting layer).
  • the layer 525 includes, for example, a layer containing a highly electron-injecting substance (electron-injection layer).
  • layer 521 may have an electron-injection layer
  • layer 522 may have an electron-transport layer
  • layer 524 may have a hole-transport layer
  • layer 525 may have a hole-injection layer.
  • the layer 522, the light-emitting layer 523R, and the layer 524 may have the same configuration (material, film thickness, etc.) in the light-emitting unit 512R_1 and the light-emitting unit 512R_2, or may have different configurations.
  • the present invention is not limited to this.
  • the layer 521 has a function of both a hole-injection layer and a hole-transport layer, or when the layer 521 has a function of both an electron-injection layer and an electron-transport layer , the layer 522 may be omitted.
  • the charge generation layer 531 has a function of injecting electrons into one of the light-emitting unit 512R_1 and the light-emitting unit 512R_2 and injecting holes into the other when a voltage is applied between the electrodes 501 and 502. have.
  • the charge generation layer 531 has at least a charge generation region.
  • the light-emitting layer 523R included in the light-emitting device 550R includes a light-emitting substance that emits red light
  • the light-emitting layer 523G included in the light-emitting device 550G includes a light-emitting substance that emits green light
  • 523B has a luminescent material that exhibits blue emission.
  • the light-emitting device 550G and the light-emitting device 550B each have a configuration in which the light-emitting layer 523R of the light-emitting device 550R is replaced with a light-emitting layer 523G and a light-emitting layer 523B, and other configurations are the same as those of the light-emitting device 550R. .
  • the layers 521, 522, 524, and 525 may have the same configuration (material, film thickness, etc.) or different configurations in the light-emitting devices of each color.
  • the light-emitting unit 512R_1, the light-emitting unit 512G_1, and the light-emitting unit 512B_1 can be formed as island-shaped layers. That is, the layer 113 shown in FIGS. 18A and 18B corresponds to the first layer 113a, the second layer 113b, or the third layer 113c shown in FIG. 1B and the like.
  • the light-emitting unit 512R_1, the charge generation layer 531, and the light-emitting unit 512R_2 can be formed as island-shaped layers.
  • the light-emitting unit 512G_1, the charge generation layer 531, and the light-emitting unit 512G_2 can be formed as island-shaped layers.
  • the light-emitting unit 512B_1, the charge generation layer 531, and the light-emitting unit 512B_2 can be formed as island-shaped layers. That is, the layer 113 shown in FIG. 18C corresponds to the first layer 113a, the second layer 113b, or the third layer 113c shown in FIG. 1B and the like.
  • layer 525 corresponds to fifth layer 114 shown in FIG. 1B.
  • the light-emitting material of the light-emitting layer is not particularly limited.
  • the light-emitting layer 523R included in the light-emitting unit 512R_1 includes a phosphorescent material
  • the light-emitting layer 523R included in the light-emitting unit 512R_2 includes a phosphorescent material
  • the light-emitting layer 523G included in the light-emitting unit 512G_1 includes
  • the light-emitting layer 523G of the light-emitting unit 512G_2 contains a fluorescent material
  • the light-emitting layer 523B of the light-emitting unit 512B_1 contains a fluorescent material
  • the light-emitting layer 523B of the light-emitting unit 512B_2 contains It can be configured to have a fluorescent material.
  • the light-emitting layer 523R included in the light-emitting unit 512R_1 includes a phosphorescent material
  • the light-emitting layer 523R included in the light-emitting unit 512R_2 includes a phosphorescent material
  • the light-emitting layer 523G included in the light-emitting unit 512G_1 includes The light-emitting layer 523G of the light-emitting unit 512G_2 contains a phosphorescent material
  • the light-emitting layer 523B of the light-emitting unit 512B_1 contains a fluorescent material
  • the light-emitting layer 523B of the light-emitting unit 512B_2 contains It can be configured to have a fluorescent material.
  • the display device of one embodiment of the present invention may have a structure in which all the light-emitting layers are made of a fluorescent material, or a structure in which all the light-emitting layers are made of a phosphorescent material.
  • the light-emitting layer 523R of the light-emitting unit 512R_1 is made of a phosphorescent material and the light-emitting layer 523R of the light-emitting unit 512R_2 is made of a fluorescent material, or the light-emitting layer 523R of the light-emitting unit 512R_1 is made of a fluorescent material.
  • a phosphorescent material may be used for the light-emitting layer 523R included in the light-emitting unit 512R_2, that is, a structure in which the light-emitting layer in the first stage and the light-emitting layer in the second stage are formed using different materials.
  • the description here is made for the light-emitting unit 512R_1 and the light-emitting unit 512R_2, the same configuration can be applied to the light-emitting unit 512G_1 and the light-emitting unit 512G_2, and the light-emitting unit 512B_1 and the light-emitting unit 512B_2. can.
  • a display device 500 shown in FIGS. 19A and 19B has a plurality of light emitting devices 550W that emit white light.
  • a colored layer 545R that transmits red light, a colored layer 545G that transmits green light, or a colored layer 545B that transmits blue light is provided on each light emitting device 550W.
  • the colored layer 545R, the colored layer 545G, and the colored layer 545B are preferably provided over the light-emitting device 550W with the protective layer 540 interposed therebetween.
  • a light-emitting device 550W shown in FIG. 19A has a light-emitting unit 512W between a pair of electrodes (electrodes 501 and 502).
  • the light-emitting device 550W shown in FIG. 19A is a single-structure light-emitting device having one light-emitting unit.
  • the light-emitting unit 512W includes a layer 521, a layer 522, a light-emitting layer 523Q_1, a light-emitting layer 523Q_2, a light-emitting layer 523Q_3, a layer 524, and the like. Further, the light-emitting device 550W has a layer 525 and the like between the light-emitting unit 512W and the electrode 502. FIG. Note that the layer 525 can also be considered part of the light emitting unit 512W.
  • white light emission can be obtained from the light-emitting device 550W by selecting the light-emitting layers such that the light emission of the light-emitting layers 523Q_1, 523Q_2, and 523Q_3 has a complementary color relationship.
  • the light emitting unit 512W has three light emitting layers is shown here, the number of light emitting layers is not limited, and may be, for example, two layers.
  • the light-emitting device 550W shown in FIG. 19A has a configuration in which the light-emitting layer 523R of the light-emitting device 550R shown in FIG. 18B is replaced with light-emitting layers 523Q_1 to 523Q_3. is.
  • a light-emitting device 550W shown in FIG. 19B has a structure in which two light-emitting units (light-emitting unit 512Q_1 and light-emitting unit 512Q_2) are stacked between a pair of electrodes (electrode 501 and electrode 502) with a charge generation layer 531 interposed therebetween. .
  • the light-emitting unit 512Q_1 includes layers 521, 522, a light-emitting layer 523Q_1, a layer 524, and the like.
  • the light-emitting unit 512Q_2 includes a layer 522, a light-emitting layer 523Q_2, a layer 524, and the like.
  • the light-emitting device 550W has a layer 525 and the like between the light-emitting unit 512Q_2 and the electrode 502. FIG. Note that the layer 525 can also be considered part of the light emitting unit 512Q_2.
  • white light emission can be obtained from the light-emitting device 550W by selecting light-emitting layers such that light emitted from the light-emitting layers 523Q_1 and 523Q_2 has a complementary color relationship.
  • each of the light-emitting units 512Q_1 and 512Q_2 has one light-emitting layer
  • the number of light-emitting layers in each light-emitting unit does not matter.
  • the light emitting units 512Q_1 and 512Q_2 may have different numbers of light emitting layers.
  • one light-emitting unit may have two light-emitting layers and the other light-emitting unit may have one light-emitting layer.
  • a light-emitting device 550W shown in FIG. 19B has a configuration in which the light-emitting layer 523R of the light-emitting device 550R shown in FIG. 18C is replaced with a light-emitting layer 523Q_1 and the like, and other configurations are the same as those of the light-emitting device 550R.
  • the display device 500 shown in FIGS. 20 to 22 includes a light-emitting device 550R that emits red light, a light-emitting device 550G that emits green light, a light-emitting device 550B that emits blue light, and a light-emitting device 550W that emits white light. have.
  • the display device shown in FIGS. 20A and 20B is an example in which a light emitting device 550W that emits white light is provided in addition to the light emitting devices 550R, 550G, and 550B shown in FIG. 18B.
  • the display device shown in FIG. 21A is an example in which a light emitting device 550W that emits white light is provided in addition to the light emitting devices 550R, 550G, and 550B shown in FIG. 18C.
  • a light-emitting device 550W shown in FIGS. 20A and 21A has two light-emitting units (light-emitting unit 512Q_1 and light-emitting unit 512Q_2) stacked between a pair of electrodes (electrode 501 and electrode 502) with a charge generation layer 531 interposed therebetween. have a configuration.
  • a light-emitting device 550W illustrated in FIG. 20B has three light-emitting units (light-emitting unit 512Q_1, light-emitting unit 512Q_2, and light-emitting unit 512Q_3) stacked between a pair of electrodes (electrode 501 and electrode 502) with a charge generation layer 531 interposed therebetween. configuration.
  • the light-emitting unit 512Q_1 includes layers 521, 522, a light-emitting layer 523Q_1, a layer 524, and the like.
  • the light-emitting unit 512Q_2 includes a layer 522, a light-emitting layer 523Q_2, a layer 524, and the like.
  • the light-emitting unit 512Q_3 includes a layer 522, a light-emitting layer 523Q_3, a layer 524, and the like.
  • white light emission can be obtained from the light-emitting device 550W by selecting light-emitting layers such that light emitted from the light-emitting layers 523Q_1 and 523Q_2 has a complementary color relationship.
  • white light emission can be obtained from the light-emitting device 550W by selecting light-emitting layers such that the light emission of the light-emitting layers 523Q_1, 523Q_2, and 523Q_3 has a complementary color relationship. .
  • the light-emitting device 550W has a configuration in which the light-emitting layer 523R of the light-emitting device 550R is replaced with a light-emitting layer 523Q_1 or the like, and other configurations are the same as those of the light-emitting device 550R.
  • the light-emitting device 550R that emits red light
  • the light-emitting device 550G that emits green light
  • the light-emitting device 550B that emits blue light
  • the light-emitting device 550W that emits white light
  • a light-emitting device 550R has a light-emitting unit 512R_3 stacked on a light-emitting unit 512R_2 with a charge generation layer 531 interposed therebetween.
  • the light-emitting unit 512R_3 includes a layer 522, a light-emitting layer 523R, a layer 524, and the like.
  • a configuration similar to that of the light emitting unit 512R_2 can be applied to the light emitting unit 512R_3.
  • FIG. 22A shows an example in which a light emitting device 550W that emits white light is provided in addition to the light emitting devices 550R, 550G, and 550B shown in FIG. 18A.
  • a light-emitting device 550W shown in FIG. 22A has a structure in which n light-emitting units (n is an integer of 2 or more) are stacked between a pair of electrodes (electrodes 501 and 502) with a charge generation layer 531 interposed therebetween. .
  • the light-emitting device 550W has n light-emitting units from the light-emitting unit 512Q_1 to the light-emitting unit 512Q_n, and the light from these light-emitting units has a complementary color relationship, so that white light can be emitted.
  • the light emitting device 550R emitting red light, the light emitting device 550G emitting green light, the light emitting device 550B emitting blue light, and the light emitting device 550W emitting white light are all n light emitting units. (n is an integer of 2 or more) are stacked.
  • the light-emitting device 550R has n light-emitting units, light-emitting units 512R_1 to 512R_n, each having a light-emitting layer that emits red light.
  • the light-emitting device 550G has n light-emitting units from light-emitting unit 512G_1 to light-emitting unit 512G_n, each having a light-emitting layer that emits green light.
  • the light-emitting device 550B has n light-emitting units from light-emitting unit 512B_1 to light-emitting unit 512B_n each having a light-emitting layer that emits blue light.
  • the luminance obtained from the light-emitting device with the same amount of current can be increased according to the number of stacked layers.
  • the current required to obtain the same luminance can be reduced, so the power consumption of the light-emitting device can be reduced according to the number of stacked layers.
  • the display device of this embodiment can be a high-resolution display device or a large-sized display device. Therefore, the display device of the present embodiment includes a relatively large screen such as a television device, a desktop or notebook personal computer, a computer monitor, a digital signage, a large game machine such as a pachinko machine, or the like. In addition to electronic devices, it can be used for display portions of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and sound reproducing devices.
  • FIG. 23 shows a perspective view of the display device 100A
  • FIG. 24A shows a cross-sectional view of the display device 100A.
  • the display device 100A has a configuration in which a substrate 152 and a substrate 151 are bonded together.
  • the substrate 152 is clearly indicated by dashed lines.
  • the display device 100A includes a display portion 162, a circuit 164, wirings 165, and the like.
  • FIG. 23 shows an example in which an IC 173 and an FPC 172 are mounted on the display device 100A. Therefore, the configuration shown in FIG. 23 can also be said to be a display module including the display device 100A, an IC (integrated circuit), and an FPC.
  • a scanning line driver circuit can be used.
  • the wiring 165 has a function of supplying signals and power to the display portion 162 and the circuit 164 .
  • the signal and power are input to the wiring 165 from the outside through the FPC 172 or input to the wiring 165 from the IC 173 .
  • FIG. 23 shows an example in which an IC 173 is provided on a substrate 151 by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
  • a COG Chip On Glass
  • COF Chip On Film
  • the IC 173 for example, an IC having a scanning line driver circuit or a signal line driver circuit can be applied.
  • the display device 100A and the display module may be configured without an IC.
  • the IC may be mounted on the FPC by the COF method or the like.
  • FIG. 24A shows an example of a cross-section of the display device 100A when part of the region including the FPC 172, part of the circuit 164, part of the display section 162, and part of the region including the end are cut. show.
  • the display device 100A illustrated in FIG. 24A includes a transistor 201 and a transistor 205, a light-emitting device 130a that emits red light, a light-emitting device 130b that emits green light, and a light-emitting device 130b that emits blue light. It has a device 130c and the like.
  • the three sub-pixels include sub-pixels of three colors of R, G, and B, yellow ( Y), cyan (C), and magenta (M) sub-pixels.
  • the four sub-pixels include R, G, B, and white (W) sub-pixels, and R, G, B, and Y four-color sub-pixels. be done.
  • the light-emitting devices 130a, 130b, and 130c each have a structure similar to the laminated structure shown in FIG. 1B, except that they have conductive layers (conductive layers 126a, 126b, and 126c) between the pixel electrodes and the EL layers.
  • Light emitting device 130a has conductive layer 126a
  • light emitting device 130b has conductive layer 126b
  • light emitting device 130c has conductive layer 126c.
  • Embodiment 1 can be referred to for details of the light-emitting device.
  • a fifth layer 114 is provided over the first layer 113a, the second layer 113b, the third layer 113c, and the insulating layers 125 and 127, and the common electrode 115 is provided over the fifth layer 114.
  • a protective layer 131 is provided on each of the light emitting devices 130a, 130b, and 130c.
  • a protective layer 132 is provided on the protective layer 131 .
  • the protective layer 132 and the substrate 152 are adhered via the adhesive layer 142 .
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to sealing the light-emitting device.
  • the space between substrates 152 and 151 is filled with an adhesive layer 142 to apply a solid sealing structure.
  • the space may be filled with an inert gas (such as nitrogen or argon) to apply a hollow sealing structure.
  • the adhesive layer 142 may be provided so as not to overlap the light emitting device.
  • the space may be filled with a resin different from the adhesive layer 142 provided in a frame shape.
  • the pixel electrodes 111a, 111b, and 111c are connected to the conductive layer 222b of the transistor 205 through openings provided in the insulating layer 214, respectively.
  • Concave portions are formed in the pixel electrodes 111 a , 111 b , and 111 c so as to cover openings provided in the insulating layer 214 .
  • a layer 128 is preferably embedded in the recess. It is preferable to form a conductive layer 126a over the pixel electrode 111a and the layer 128, form a conductive layer 126b over the pixel electrode 111b and the layer 128, and form a conductive layer 126c over the pixel electrode 111c and the layer 128.
  • the conductive layers 126a, 126b, and 126c can also be called pixel electrodes.
  • the layer 128 has a function of planarizing the concave portions of the pixel electrodes 111a, 111b, and 111c.
  • unevenness of the surface on which the EL layer is formed can be reduced, and coverage can be improved.
  • a region overlapping with can also be used as a light-emitting region. Thereby, the aperture ratio of the pixel can be increased.
  • Layer 128 may be an insulating layer or a conductive layer.
  • Various inorganic insulating materials, organic insulating materials, and conductive materials can be used as appropriate for layer 128 .
  • layer 128 is preferably formed using an insulating material.
  • an insulating layer containing an organic material can be preferably used.
  • an acrylic resin, a polyimide resin, an epoxy resin, a polyamide resin, a polyimideamide resin, a siloxane resin, a benzocyclobutene resin, a phenol resin, precursors of these resins, or the like can be applied.
  • a photosensitive resin can be used as the layer 128 .
  • a positive material or a negative material can be used for the photosensitive resin.
  • the layer 128 can be formed only through the steps of exposure and development, and the influence of dry etching, wet etching, or the like on the surfaces of the pixel electrodes 111a, 111b, and 111c can be reduced. can. Further, when the layer 128 is formed using a negative photosensitive resin, the layer 128 can be formed using the same photomask (exposure mask) used for forming the opening of the insulating layer 214 in some cases. be.
  • a conductive layer 126 a is provided over the pixel electrode 111 a and the layer 128 .
  • the conductive layer 126 a has a first region in contact with the top surface of the pixel electrode 111 a and a second region in contact with the top surface of the layer 128 . It is preferable that the height of the top surface of the pixel electrode 111a in contact with the first region and the height of the top surface of the layer 128 in contact with the second region match or substantially match.
  • the conductive layer 126b is provided over the pixel electrode 111b and over the layer 128 .
  • the conductive layer 126 b has a first region in contact with the top surface of the pixel electrode 111 b and a second region in contact with the top surface of the layer 128 .
  • the height of the top surface of the pixel electrode 111b in contact with the first region and the height of the top surface of the layer 128 in contact with the second region are preferably the same or substantially the same.
  • a conductive layer 126 c is provided over the pixel electrode 111 c and the layer 128 .
  • the conductive layer 126 c has a first region in contact with the top surface of the pixel electrode 111 c and a second region in contact with the top surface of the layer 128 .
  • the height of the top surface of the pixel electrode 111c in contact with the first region and the height of the top surface of the layer 128 in contact with the second region are preferably the same or substantially the same.
  • the pixel electrodes contain a material that reflects visible light
  • the common electrode 115 (which can also be called a counter electrode) contains a material that transmits visible light.
  • the display device 100A is of a top emission type. Light emitted by the light emitting device is emitted to the substrate 152 side. A material having high visible light transmittance is preferably used for the substrate 152 .
  • a stacked structure from the substrate 151 to the insulating layer 214 corresponds to the layer 101 including the transistor in Embodiment 1.
  • FIG. 1 A stacked structure from the substrate 151 to the insulating layer 214 corresponds to the layer 101 including the transistor in Embodiment 1.
  • Both the transistor 201 and the transistor 205 are formed over the substrate 151 . These transistors can be made with the same material and the same process.
  • An insulating layer 211 , an insulating layer 213 , an insulating layer 215 , and an insulating layer 214 are provided in this order over the substrate 151 .
  • Part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • Part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • An insulating layer 215 is provided over the transistor.
  • An insulating layer 214 is provided over the transistor and functions as a planarization layer. Note that the number of gate insulating layers and the number of insulating layers covering a transistor are not limited, and each may have a single layer or two or more layers.
  • a material into which impurities such as water and hydrogen are difficult to diffuse is preferably used for at least one insulating layer that covers the transistor. This allows the insulating layer to function as a barrier layer. With such a structure, diffusion of impurities from the outside into the transistor can be effectively suppressed, and the reliability of the display device can be improved.
  • An inorganic insulating film is preferably used for each of the insulating layers 211 , 213 , and 215 .
  • the inorganic insulating film for example, a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used.
  • two or more of the insulating films described above may be laminated and used.
  • the organic insulating film preferably has openings near the ends of the display device 100A. As a result, it is possible to prevent impurities from entering through the organic insulating film from the end portion of the display device 100A.
  • the organic insulating film may be formed so that the edges of the organic insulating film are located inside the edges of the display device 100A so that the organic insulating film is not exposed at the edges of the display device 100A.
  • An organic insulating film is suitable for the insulating layer 214 that functions as a planarization layer.
  • materials that can be used for the organic insulating film include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like.
  • the insulating layer 214 may have a laminated structure of an organic insulating film and an inorganic insulating film. The outermost layer of the insulating layer 214 preferably functions as an etching protection film.
  • the insulating layer 214 may be provided with recesses during processing of the pixel electrode 111a, the conductive layer 126a, or the like.
  • An opening is formed in the insulating layer 214 in a region 228 shown in FIG. 24A.
  • the transistors 201 and 205 include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, conductive layers 222a and 222b functioning as sources and drains, a semiconductor layer 231, and an insulating layer functioning as a gate insulating layer. It has a layer 213 and a conductive layer 223 that functions as a gate. Here, the same hatching pattern is applied to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231 .
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231 .
  • the structure of the transistor included in the display device of this embodiment there is no particular limitation on the structure of the transistor included in the display device of this embodiment.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • the transistor structure may be either a top-gate type or a bottom-gate type.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistors 201 and 205 .
  • a transistor may be driven by connecting two gates and applying the same signal to them.
  • the threshold voltage of the transistor may be controlled by applying a potential for controlling the threshold voltage to one of the two gates and applying a potential for driving to the other.
  • the crystallinity of a semiconductor material used for a transistor is not particularly limited, either. (semiconductors having A single crystal semiconductor or a crystalline semiconductor is preferably used because deterioration of transistor characteristics can be suppressed.
  • a semiconductor layer of a transistor preferably includes a metal oxide (also referred to as an oxide semiconductor).
  • the display device of this embodiment preferably uses a transistor including a metal oxide for a channel formation region (hereinafter referred to as an OS transistor).
  • the semiconductor layer of the transistor may comprise silicon. Examples of silicon include amorphous silicon and crystalline silicon (low-temperature polysilicon, monocrystalline silicon, etc.).
  • the semiconductor layer includes, for example, indium and M (M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, one or more selected from hafnium, tantalum, tungsten, and magnesium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) (also referred to as IGZO) is preferably used for the semiconductor layer.
  • the In atomic ratio in the In-M-Zn oxide is preferably equal to or higher than the M atomic ratio.
  • the transistors included in the circuit 164 and the transistors included in the display portion 162 may have the same structure or different structures.
  • the plurality of transistors included in the circuit 164 may all have the same structure, or may have two or more types.
  • the structures of the plurality of transistors included in the display portion 162 may all be the same, or may be of two or more types.
  • 24B and 24C show other configuration examples of the transistor.
  • the transistor 209 and the transistor 210 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231 having a channel formation region 231i and a pair of low-resistance regions 231n, and one of the pair of low-resistance regions 231n.
  • a conductive layer 222a connected to a pair of low-resistance regions 231n, a conductive layer 222b connected to the other of a pair of low-resistance regions 231n, an insulating layer 225 functioning as a gate insulating layer, a conductive layer 223 functioning as a gate, and an insulating layer 215 covering the conductive layer 223 have
  • the insulating layer 211 is located between the conductive layer 221 and the channel formation region 231i.
  • the insulating layer 225 is located at least between the conductive layer 223 and the channel formation region 231i.
  • an insulating layer 218 may be provided to cover the transistor.
  • the transistor 209 illustrated in FIG. 24B illustrates an example in which the insulating layer 225 covers the top surface and side surfaces of the semiconductor layer 231 .
  • the conductive layers 222a and 222b are connected to the low-resistance region 231n through openings provided in the insulating layers 225 and 215, respectively.
  • One of the conductive layers 222a and 222b functions as a source and the other functions as a drain.
  • the insulating layer 225 overlaps with the channel formation region 231i of the semiconductor layer 231 and does not overlap with the low resistance region 231n.
  • the insulating layer 215 is provided to cover the insulating layer 225 and the conductive layer 223, and the conductive layers 222a and 222b are connected to the low resistance regions 231n through openings in the insulating layer 215, respectively.
  • a connection portion 204 is provided in a region of the substrate 151 where the substrate 152 does not overlap.
  • the wiring 165 is electrically connected to the FPC 172 via the conductive layer 166 and the connecting layer 242 .
  • the conductive layer 166 includes a conductive film obtained by processing the same conductive film as the pixel electrodes 111a, 111b, and 111c and a conductive film obtained by processing the same conductive film as the conductive layers 126a, 126b, and 126c. , which is a laminated structure.
  • the conductive layer 166 is exposed on the upper surface of the connecting portion 204 . Thereby, the connecting portion 204 and the FPC 172 can be electrically connected via the connecting layer 242 .
  • a light shielding layer 117 is preferably provided on the surface of the substrate 152 on the substrate 151 side.
  • various optical members can be arranged outside the substrate 152 .
  • optical members include polarizing plates, retardation plates, light diffusion layers (diffusion films, etc.), antireflection layers, light collecting films, and the like.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. are arranged on the outside of the substrate 152.
  • an antistatic film that suppresses adhesion of dust
  • a water-repellent film that prevents adhesion of dirt
  • a hard coat film that suppresses the occurrence of scratches due to use
  • a shock absorption layer, etc. are arranged.
  • the protective layers 131 and 132 that cover the light-emitting device By providing the protective layers 131 and 132 that cover the light-emitting device, impurities such as water can be prevented from entering the light-emitting device, and the reliability of the light-emitting device can be improved.
  • the insulating layer 215 and the protective layer 131 or 132 are in contact with each other through the opening of the insulating layer 214 in the region 228 near the edge of the display device 100A.
  • the inorganic insulating films are in contact with each other. This can prevent impurities from entering the display section 162 from the outside through the organic insulating film. Therefore, the reliability of the display device 100A can be improved.
  • Glass, quartz, ceramic, sapphire, resin, metal, alloy, semiconductor, or the like can be used for the substrates 151 and 152, respectively.
  • a material that transmits the light is used for the substrate on the side from which the light from the light-emitting device is extracted.
  • the flexibility of the display device can be increased.
  • a polarizing plate may be used as the substrate 151 or the substrate 152 .
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyether resins are used, respectively.
  • PES resin Sulfone (PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofiber, or the like can be used.
  • PES polyamide resin
  • aramid polysiloxane resin
  • polystyrene resin polyamideimide resin
  • polyurethane resin polyvinyl chloride resin
  • polyvinylidene chloride resin polypropylene resin
  • PTFE resin polytetrafluoroethylene
  • ABS resin cellulose nanofiber, or the like
  • One or both of the substrates 151 and 152 may be made of glass having a thickness sufficient to be flexible.
  • a substrate having high optical isotropy is preferably used as the substrate of the display device.
  • a substrate with high optical isotropy has small birefringence (it can be said that the amount of birefringence is small).
  • the absolute value of the retardation (retardation) value of the substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • Films with high optical isotropy include triacetylcellulose (TAC, also called cellulose triacetate) films, cycloolefin polymer (COP) films, cycloolefin copolymer (COC) films, and acrylic films.
  • TAC triacetylcellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • the film when a film is used as the substrate, the film may absorb water, which may cause a change in shape such as wrinkling of the display panel. Therefore, it is preferable to use a film having a low water absorption rate as the substrate. For example, it is preferable to use a film with a water absorption of 1% or less, more preferably 0.1% or less, and even more preferably 0.01% or less.
  • various curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • These adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
  • a material with low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • connection layer 242 an anisotropic conductive film (ACF), an anisotropic conductive paste (ACP), or the like can be used.
  • ACF anisotropic conductive film
  • ACP anisotropic conductive paste
  • materials that can be used for conductive layers such as various wirings and electrodes constituting display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, Examples include metals such as tantalum and tungsten, and alloys containing these metals as main components. A film containing these materials can be used as a single layer or as a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or alloy materials containing such metal materials can be used.
  • a nitride of the metal material eg, titanium nitride
  • it is preferably thin enough to have translucency.
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a laminated film of a silver-magnesium alloy and indium tin oxide because the conductivity can be increased.
  • conductive layers such as various wirings and electrodes that constitute a display device, and conductive layers (conductive layers functioning as pixel electrodes or common electrodes) of light-emitting devices.
  • Examples of insulating materials that can be used for each insulating layer include resins such as acrylic resins and epoxy resins, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
  • Display device 100B A display device 100B shown in FIG. 25 is mainly different from the display device 100A in that it is of a bottom emission type. Note that the description of the same parts as those of the display device 100A will be omitted.
  • Light emitted by the light emitting device is emitted to the substrate 151 side.
  • a material having high visible light transmittance is preferably used for the substrate 151 .
  • the material used for the substrate 152 may or may not be translucent.
  • a light-blocking layer 117 is preferably formed between the substrate 151 and the transistor 201 and between the substrate 151 and the transistor 205 .
  • FIG. 25 shows an example in which a light-blocking layer 117 is provided over a substrate 151 , an insulating layer 153 is provided over the light-blocking layer 117 , and transistors 201 and 205 and the like are provided over the insulating layer 153 .
  • the display device of this embodiment can be a high-definition display device. Therefore, the display device of the present embodiment includes, for example, information terminals (wearable devices) such as a wristwatch type and a bracelet type, devices for VR such as a head-mounted display, devices for AR such as glasses, and the like. It can be used for the display part of wearable equipment.
  • information terminals wearable devices
  • VR such as a head-mounted display
  • AR such as glasses
  • Display module A perspective view of the display module 280 is shown in FIG. 26A.
  • the display module 280 has a display device 100C and an FPC 290 .
  • the display device included in the display module 280 is not limited to the display device 100C, and may be a display device 100D or a display device 100E, which will be described later.
  • the display module 280 has substrates 291 and 292 .
  • the display module 280 has a display section 281 .
  • the display unit 281 is an area for displaying an image in the display module 280, and is an area where light from each pixel provided in the pixel unit 284, which will be described later, can be visually recognized.
  • FIG. 26B shows a perspective view schematically showing the configuration on the substrate 291 side.
  • a circuit section 282 , a pixel circuit section 283 on the circuit section 282 , and a pixel section 284 on the pixel circuit section 283 are stacked on the substrate 291 .
  • a terminal portion 285 for connecting to the FPC 290 is provided on a portion of the substrate 291 that does not overlap with the pixel portion 284 .
  • the terminal portion 285 and the circuit portion 282 are electrically connected by a wiring portion 286 composed of a plurality of wirings.
  • the pixel section 284 has a plurality of periodically arranged pixels 284a. An enlarged view of one pixel 284a is shown on the right side of FIG. 26B. Pixel 284a has light-emitting devices 130a, 130b, and 130c that emit light of different colors. Multiple light emitting devices can be arranged in a stripe arrangement as shown in FIG. 26B. In addition, various light emitting device arrangement methods such as delta arrangement or pentile arrangement can be applied.
  • the pixel circuit section 283 has a plurality of pixel circuits 283a arranged periodically.
  • One pixel circuit 283a is a circuit that controls light emission of three light emitting devices included in one pixel 284a.
  • One pixel circuit 283a may have a structure in which three circuits for controlling light emission of one light emitting device are provided.
  • the pixel circuit 283a can have at least one selection transistor, one current control transistor (driving transistor), and a capacitive element for each light emitting device. At this time, a gate signal is input to the gate of the selection transistor, and a source signal is input to either the source or the drain of the selection transistor. This realizes an active matrix display device.
  • the circuit section 282 has a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 .
  • a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 For example, it is preferable to have one or both of a gate line driver circuit and a source line driver circuit.
  • at least one of an arithmetic circuit, a memory circuit, a power supply circuit, and the like may be provided.
  • the FPC 290 functions as wiring for supplying a video signal, power supply potential, or the like to the circuit section 282 from the outside. Also, an IC may be mounted on the FPC 290 .
  • the aperture ratio (effective display area ratio) of the display portion 281 is can be very high.
  • the aperture ratio of the display section 281 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, more preferably 60% or more and 95% or less.
  • the pixels 284a can be arranged at an extremely high density, and the definition of the display portion 281 can be extremely high.
  • the pixels 284a may be arranged with a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and still more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less. preferable.
  • a display module 280 Since such a display module 280 has extremely high definition, it can be suitably used for equipment for VR such as a head-mounted display, or equipment for glasses-type AR. For example, even in the case of a configuration in which the display portion of the display module 280 is viewed through a lens, the display module 280 has an extremely high-definition display portion 281, so pixels cannot be viewed even if the display portion is enlarged with the lens. , a highly immersive display can be performed. Moreover, the display module 280 is not limited to this, and can be suitably used for electronic equipment having a relatively small display unit. For example, it can be suitably used for a display part of a wearable electronic device such as a wristwatch.
  • Display device 100C A display device 100C illustrated in FIG.
  • the substrate 301 corresponds to the substrate 291 in FIGS. 26A and 26B.
  • a stacked structure from the substrate 301 to the insulating layer 255b corresponds to the layer 101 including the transistor in Embodiment 1.
  • FIG. 1 A stacked structure from the substrate 301 to the insulating layer 255b corresponds to the layer 101 including the transistor in Embodiment 1.
  • a transistor 310 has a channel formation region in the substrate 301 .
  • the substrate 301 for example, a semiconductor substrate such as a single crystal silicon substrate can be used.
  • Transistor 310 includes a portion of substrate 301 , conductive layer 311 , low resistance region 312 , insulating layer 313 and insulating layer 314 .
  • the conductive layer 311 functions as a gate electrode.
  • An insulating layer 313 is located between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer.
  • the low-resistance region 312 is a region in which the substrate 301 is doped with impurities and functions as either a source or a drain.
  • the insulating layer 314 is provided to cover the side surface of the conductive layer 311 .
  • a device isolation layer 315 is provided between two adjacent transistors 310 so as to be embedded in the substrate 301 .
  • An insulating layer 261 is provided to cover the transistor 310 and a capacitor 240 is provided over the insulating layer 261 .
  • the capacitor 240 has a conductive layer 241, a conductive layer 245, and an insulating layer 243 positioned therebetween.
  • the conductive layer 241 functions as one electrode of the capacitor 240
  • the conductive layer 245 functions as the other electrode of the capacitor 240
  • the insulating layer 243 functions as the dielectric of the capacitor 240 .
  • the conductive layer 241 is provided over the insulating layer 261 and embedded in the insulating layer 254 .
  • Conductive layer 241 is electrically connected to one of the source or drain of transistor 310 by plug 271 embedded in insulating layer 261 .
  • An insulating layer 243 is provided over the conductive layer 241 .
  • the conductive layer 245 is provided in a region overlapping with the conductive layer 241 with the insulating layer 243 provided therebetween.
  • An insulating layer 255a is provided to cover the capacitor 240, an insulating layer 255b is provided on the insulating layer 255a, and the light emitting devices 130a, 130b, 130c, etc. are provided on the insulating layer 255b.
  • This embodiment shows an example in which light-emitting devices 130a, 130b, and 130c have a structure similar to the laminated structure shown in FIG. 1B. Side surfaces of the pixel electrodes 111a, 111b, 111c, the first layer 113a, the second layer 113b, and the third layer 113c are covered with insulating layers 125, 127, respectively.
  • a fifth layer 114 is provided over the first layer 113a, the second layer 113b, the third layer 113c, and the insulating layers 125 and 127, and the common electrode 115 is provided over the fifth layer 114.
  • a protective layer 131 is provided on the light emitting devices 130a, 130b, and 130c.
  • a protective layer 132 is provided on the protective layer 131 , and a substrate 120 is bonded onto the protective layer 132 with a resin layer 122 .
  • Embodiment 1 can be referred to for details of the components from the light emitting device to the substrate 120 .
  • Substrate 120 corresponds to substrate 292 in FIG. 26A.
  • various inorganic insulating films such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film can be preferably used.
  • an oxide insulating film or an oxynitride insulating film such as a silicon oxide film, a silicon oxynitride film, or an aluminum oxide film is preferably used.
  • a nitride insulating film or a nitride oxide insulating film such as a silicon nitride film or a silicon nitride oxide film is preferably used.
  • a silicon oxide film as the insulating layer 255a and a silicon nitride film as the insulating layer 255b.
  • the insulating layer 255b preferably functions as an etching protection film.
  • a nitride insulating film or a nitride oxide insulating film may be used as the insulating layer 255a, and an oxide insulating film or an oxynitride insulating film may be used as the insulating layer 255b.
  • an example in which the insulating layer 255b is provided with the recessed portion is shown; however, the insulating layer 255b may not be provided with the recessed portion.
  • the pixel electrode of the light emitting device is connected to one of the source or drain of transistor 310 by plugs 256 embedded in insulating layers 255a, 255b, conductive layers 241 embedded in insulating layers 254, and plugs 271 embedded in insulating layers 261. is electrically connected to The height of the upper surface of the insulating layer 255b and the height of the upper surface of the plug 256 match or substantially match.
  • Various conductive materials can be used for the plug.
  • the height of A and the height of B match or approximately match includes the case where the height of A and the height of B match, and the height of A and This includes the case where there is a difference between the height of A and the height of B due to a manufacturing error when manufacturing so that the height of B is the same.
  • the insulating layer 261 is formed, an opening is provided in the insulating layer 261, a conductive layer that becomes the plug 271 is formed so as to fill the opening, and then planarization is performed using a chemical mechanical polishing (CMP) method or the like.
  • CMP chemical mechanical polishing
  • Display device 100D A display device 100D shown in FIG. 28 is mainly different from the display device 100C in that the configuration of transistors is different. Note that the description of the same parts as those of the display device 100C may be omitted.
  • the transistor 320 is a transistor (OS transistor) in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • OS transistor a transistor in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • the transistor 320 has a semiconductor layer 321 , an insulating layer 323 , a conductive layer 324 , a pair of conductive layers 325 , an insulating layer 326 , and a conductive layer 327 .
  • the substrate 331 corresponds to the substrate 291 in FIGS. 26A and 26B.
  • a stacked structure from the substrate 331 to the insulating layer 255b corresponds to the layer 101 including the transistor in Embodiment 1.
  • An insulating layer 332 is provided over the substrate 331 .
  • the insulating layer 332 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 331 into the transistor 320 and oxygen from the semiconductor layer 321 toward the insulating layer 332 side.
  • a film into which hydrogen or oxygen is less likely to diffuse than a silicon oxide film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, can be used.
  • a conductive layer 327 is provided over the insulating layer 332 and an insulating layer 326 is provided to cover the conductive layer 327 .
  • the conductive layer 327 functions as a first gate electrode of the transistor 320, and part of the insulating layer 326 functions as a first gate insulating layer.
  • An oxide insulating film such as a silicon oxide film is preferably used for at least a portion of the insulating layer 326 that is in contact with the semiconductor layer 321 .
  • the upper surface of the insulating layer 326 is preferably planarized.
  • the semiconductor layer 321 is provided over the insulating layer 326 .
  • the semiconductor layer 321 preferably includes a metal oxide (also referred to as an oxide semiconductor) film having semiconductor characteristics. Details of materials that can be suitably used for the semiconductor layer 321 will be described later.
  • a pair of conductive layers 325 is provided on and in contact with the semiconductor layer 321 and functions as a source electrode and a drain electrode.
  • An insulating layer 328 is provided to cover the top surface and side surfaces of the pair of conductive layers 325 , the side surface of the semiconductor layer 321 , and the like, and the insulating layer 264 is provided over the insulating layer 328 .
  • the insulating layer 328 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the semiconductor layer 321 from the insulating layer 264 or the like and oxygen from leaving the semiconductor layer 321 .
  • an insulating film similar to the insulating layer 332 can be used as the insulating layer 328.
  • An opening reaching the semiconductor layer 321 is provided in the insulating layer 328 and the insulating layer 264 .
  • the insulating layer 323 and the conductive layer 324 are buried in contact with the side surfaces of the insulating layer 264 , the insulating layer 328 , and the conductive layer 325 and the top surface of the semiconductor layer 321 .
  • the conductive layer 324 functions as a second gate electrode, and the insulating layer 323 functions as a second gate insulating layer.
  • the top surface of the conductive layer 324, the top surface of the insulating layer 323, and the top surface of the insulating layer 264 are planarized so that their heights are the same or substantially the same, and the insulating layers 329 and 265 are provided to cover them. ing.
  • the insulating layers 264 and 265 function as interlayer insulating layers.
  • the insulating layer 329 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the transistor 320 from the insulating layer 265 or the like.
  • an insulating film similar to the insulating layers 328 and 332 can be used.
  • a plug 274 electrically connected to one of the pair of conductive layers 325 is provided so as to be embedded in the insulating layers 265 , 329 , and 264 .
  • the plug 274 includes a conductive layer 274a that covers the side surfaces of the openings of the insulating layers 265, the insulating layers 329, the insulating layers 264, and the insulating layer 328 and part of the top surface of the conductive layer 325, and the conductive layer 274a. It is preferable to have a conductive layer 274b in contact with the top surface. At this time, a conductive material into which hydrogen and oxygen are difficult to diffuse is preferably used for the conductive layer 274a.
  • the configuration from the insulating layer 254 to the substrate 120 in the display device 100D is similar to that of the display device 100C.
  • a display device 100E illustrated in FIG. 29 has a structure in which a transistor 310 in which a channel is formed over a substrate 301 and a transistor 320 including a metal oxide in a semiconductor layer in which the channel is formed are stacked. Note that descriptions of portions similar to those of the display devices 100C and 100D may be omitted.
  • An insulating layer 261 is provided to cover the transistor 310 , and a conductive layer 251 is provided over the insulating layer 261 .
  • An insulating layer 262 is provided to cover the conductive layer 251 , and the conductive layer 252 is provided over the insulating layer 262 .
  • the conductive layers 251 and 252 each function as wirings.
  • An insulating layer 263 and an insulating layer 332 are provided to cover the conductive layer 252 , and the transistor 320 is provided over the insulating layer 332 .
  • An insulating layer 265 is provided to cover the transistor 320 and a capacitor 240 is provided over the insulating layer 265 . Capacitor 240 and transistor 320 are electrically connected by plug 274 .
  • the transistor 320 can be used as a transistor forming a pixel circuit. Further, the transistor 310 can be used as a transistor forming a pixel circuit or a transistor forming a driver circuit (a gate line driver circuit or a source line driver circuit) for driving the pixel circuit. Further, the transistors 310 and 320 can be used as transistors included in various circuits such as an arithmetic circuit and a memory circuit.
  • One embodiment of the present invention is a display device including a light-emitting device and a pixel circuit.
  • the display device can realize a full-color display device, for example, by having three types of light-emitting devices that respectively emit red (R), green (G), and blue (B) light.
  • a transistor including silicon in a semiconductor layer in which a channel is formed for all transistors included in a pixel circuit that drives a light-emitting device.
  • silicon include monocrystalline silicon, polycrystalline silicon, and amorphous silicon.
  • a transistor including low temperature poly silicon (LTPS) in a semiconductor layer hereinafter also referred to as an LTPS transistor.
  • the LTPS transistor has high field effect mobility and good frequency characteristics.
  • a circuit that needs to be driven at a high frequency (for example, a source driver circuit) can be formed over the same substrate as the display portion. This makes it possible to simplify the external circuit mounted on the display device and reduce the component cost and the mounting cost.
  • At least one of the transistors included in the pixel circuit is preferably a transistor including a metal oxide (hereinafter also referred to as an oxide semiconductor) as a semiconductor in which a channel is formed (hereinafter also referred to as an OS transistor).
  • OS transistors have extremely high field effect mobility compared to amorphous silicon.
  • an OS transistor has extremely low source-drain leakage current (hereinafter also referred to as an off-state current) in an off state, and can retain charge accumulated in a capacitor connected in series with the transistor for a long time. is possible. Further, by using the OS transistor, power consumption of the display device can be reduced.
  • an OS transistor is preferably used as a transistor that functions as a switch for controlling conduction/non-conduction between wirings
  • an LTPS transistor is preferably used as a transistor that controls current.
  • one of the transistors provided in the pixel circuit functions as a transistor for controlling current flowing through the light emitting device and can also be called a driving transistor.
  • One of the source and drain of the driving transistor is electrically connected to the pixel electrode of the light emitting device.
  • An LTPS transistor is preferably used as the driving transistor. This makes it possible to increase the current flowing through the light emitting device in the pixel circuit.
  • the other transistor provided in the pixel circuit functions as a switch for controlling selection/non-selection of the pixel and can also be called a selection transistor.
  • the gate of the selection transistor is electrically connected to the gate line, and one of the source and the drain is electrically connected to the source line (signal line).
  • An OS transistor is preferably used as the selection transistor.
  • FIG. 30A shows a block diagram of the display device 10. As shown in FIG.
  • the display device 10 includes a display section 11, a drive circuit section 12, a drive circuit section 13, and the like.
  • the display unit 11 has a plurality of pixels 30 arranged in a matrix.
  • Pixel 30 has sub-pixel 21R, sub-pixel 21G, and sub-pixel 21B.
  • the sub-pixel 21R, sub-pixel 21G, and sub-pixel 21B each have a light-emitting device functioning as a display device.
  • the pixel 30 is electrically connected to the wiring GL, the wiring SLR, the wiring SLG, and the wiring SLB.
  • the wiring SLR, the wiring SLG, and the wiring SLB are each electrically connected to the driver circuit portion 12 .
  • the wiring GL is electrically connected to the drive circuit section 13 .
  • the drive circuit section 12 functions as a source line drive circuit (also referred to as a source driver), and the drive circuit section 13 functions as a gate line drive circuit (also referred to as a gate driver).
  • the wiring GL functions as a gate line, and the wiring SLR, the wiring SLG, and the wiring SLB each function as a source line.
  • the sub-pixel 21R has a light-emitting device that emits red light.
  • Sub-pixel 21G has a light-emitting device that emits green light.
  • Sub-pixel 21B has a light-emitting device that emits blue light. Accordingly, the display device 10 can perform full-color display.
  • pixel 30 may have sub-pixels with light-emitting devices that exhibit other colors of light. For example, in addition to the three sub-pixels described above, the pixel 30 may have a sub-pixel having a light-emitting device that emits white light, a sub-pixel that has a light-emitting device that emits yellow light, or the like.
  • the wiring GL is electrically connected to the sub-pixels 21R, 21G, and 21B arranged in the row direction (the extending direction of the wiring GL).
  • the wiring SLR, the wiring SLG, and the wiring SLB are electrically connected to the sub-pixels 21R, 21G, or 21B (not shown) arranged in the column direction (the direction in which the wiring SLR and the like extend). .
  • FIG. 30B shows an example of a circuit diagram of the pixel 21 that can be applied to the sub-pixel 21R, sub-pixel 21G, and sub-pixel 21B.
  • Pixel 21 comprises transistor M1, transistor M2, transistor M3, capacitor C1, and light emitting device EL.
  • a wiring GL and a wiring SL are electrically connected to the pixel 21 .
  • the wiring SL corresponds to one of the wiring SLR, the wiring SLG, and the wiring SLB shown in FIG. 30A.
  • the transistor M1 has a gate electrically connected to the wiring GL, one of its source and drain electrically connected to the wiring SL, and the other electrically connected to one electrode of the capacitor C1 and the gate of the transistor M2. be.
  • the transistor M2 has one of its source and drain electrically connected to the wiring AL, and the other of its source and drain connected to one electrode of the light-emitting device EL, the other electrode of the capacitor C1, and one of the source and drain of the transistor M3. electrically connected.
  • the transistor M3 has a gate electrically connected to the wiring GL and the other of its source and drain electrically connected to the wiring RL.
  • the other electrode of the light emitting device EL is electrically connected to the wiring CL.
  • a data potential is applied to the wiring SL.
  • a selection signal is applied to the wiring GL.
  • the selection signal includes a potential that makes the transistor conductive and a potential that makes the transistor non-conductive.
  • a reset potential is applied to the wiring RL.
  • An anode potential is applied to the wiring AL.
  • a cathode potential is applied to the wiring CL.
  • the anode potential is higher than the cathode potential.
  • the reset potential applied to the wiring RL can be set to a potential such that the potential difference between the reset potential and the cathode potential is smaller than the threshold voltage of the light emitting device EL.
  • the reset potential can be a potential higher than the cathode potential, the same potential as the cathode potential, or a potential lower than the cathode potential.
  • Transistor M1 and transistor M3 function as switches.
  • the transistor M2 functions as a transistor for controlling the current flowing through the light emitting device EL.
  • the transistor M1 functions as a selection transistor and the transistor M2 functions as a driving transistor.
  • LTPS transistors are preferably used for all of the transistors M1 to M3.
  • OS transistor for the transistors M1 and M3
  • LTPS transistor for the transistor M2.
  • all of the transistors M1 to M3 may be OS transistors.
  • one or more of the plurality of transistors included in the driver circuit portion 12 and the plurality of transistors included in the driver circuit portion 13 can be an LTPS transistor, and the other transistors can be OS transistors.
  • the transistors provided in the display portion 11 can be OS transistors
  • the transistors provided in the driver circuit portion 12 and the driver circuit portion 13 can be LTPS transistors.
  • the OS transistor a transistor including an oxide semiconductor for a semiconductor layer in which a channel is formed can be used.
  • the semiconductor layer includes, for example, indium and M (M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, one or more selected from hafnium, tantalum, tungsten, and magnesium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium, gallium, and zinc (also referred to as IGZO) is preferably used for the semiconductor layer of the OS transistor.
  • an oxide containing indium, tin, and zinc is preferably used.
  • oxides containing indium, gallium, tin, and zinc are preferably used.
  • a transistor including an oxide semiconductor which has a wider bandgap and a lower carrier concentration than silicon can achieve extremely low off-state current. Therefore, with the small off-state current, charge accumulated in the capacitor connected in series with the transistor can be held for a long time. Therefore, it is preferable to use a transistor including an oxide semiconductor, particularly for the transistor M1 and the transistor M3 which are connected in series to the capacitor C1.
  • a transistor including an oxide semiconductor as the transistor M1 and the transistor M3
  • the charge held in the capacitor C1 can be prevented from leaking through the transistor M1 or the transistor M3. Further, since the charge held in the capacitor C1 can be held for a long time, a still image can be displayed for a long time without rewriting the data of the pixel 21 .
  • transistors are shown as n-channel transistors in FIG. 30B, p-channel transistors can also be used.
  • each transistor included in the pixel 21 is preferably formed side by side on the same substrate.
  • a transistor having a pair of gates that overlap with each other with a semiconductor layer interposed therebetween can be used.
  • a structure in which the pair of gates are electrically connected to each other and supplied with the same potential is advantageous in that the on-state current of the transistor is increased and the saturation characteristics are improved.
  • a potential for controlling the threshold voltage of the transistor may be applied to one of the pair of gates.
  • the stability of the electrical characteristics of the transistor can be improved.
  • one gate of the transistor may be electrically connected to a wiring to which a constant potential is applied, or may be electrically connected to its own source or drain.
  • a pixel 21 shown in FIG. 30C is an example in which a transistor having a pair of gates is applied to the transistor M1 and the transistor M3. A pair of gates of the transistor M1 and the transistor M3 are electrically connected to each other. With such a structure, the period for writing data to the pixel 21 can be shortened.
  • a pixel 21 shown in FIG. 30D is an example in which a transistor having a pair of gates is applied to the transistor M2 in addition to the transistors M1 and M3. A pair of gates of the transistor M2 are electrically connected.
  • Transistor configuration example An example of a cross-sectional structure of a transistor that can be applied to the display device will be described below.
  • FIG. 31A is a cross-sectional view including transistor 410.
  • FIG. 31A is a cross-sectional view including transistor 410.
  • a transistor 410 is a transistor provided over the substrate 401 and using polycrystalline silicon for a semiconductor layer.
  • transistor 410 corresponds to transistor M2 of pixel 21 . That is, FIG. 31A is an example in which one of the source and drain of transistor 410 is electrically connected to conductive layer 431 of the light emitting device.
  • the transistor 410 includes a semiconductor layer 411, an insulating layer 412, a conductive layer 413, and the like.
  • the semiconductor layer 411 has a channel formation region 411i and a low resistance region 411n.
  • Semiconductor layer 411 comprises silicon.
  • Semiconductor layer 411 preferably comprises polycrystalline silicon.
  • Part of the insulating layer 412 functions as a gate insulating layer.
  • Part of the conductive layer 413 functions as a gate electrode.
  • the semiconductor layer 411 can also have a structure containing a metal oxide exhibiting semiconductor characteristics (also referred to as an oxide semiconductor).
  • the transistor 410 can be called an OS transistor.
  • the low resistance region 411n is a region containing an impurity element.
  • the transistor 410 is an n-channel transistor, phosphorus, arsenic, or the like may be added to the low-resistance region 411n.
  • boron, aluminum, or the like may be added to the low resistance region 411n.
  • the impurity described above may be added to the channel formation region 411i.
  • An insulating layer 421 is provided over the substrate 401 .
  • the semiconductor layer 411 is provided over the insulating layer 421 .
  • the insulating layer 412 is provided to cover the semiconductor layer 411 and the insulating layer 421 .
  • the conductive layer 413 is provided over the insulating layer 412 so as to overlap with the semiconductor layer 411 .
  • An insulating layer 422 is provided to cover the conductive layer 413 and the insulating layer 412 .
  • a conductive layer 414 a and a conductive layer 414 b are provided over the insulating layer 422 .
  • the conductive layers 414 a and 414 b are electrically connected to the low-resistance region 411 n through openings provided in the insulating layers 422 and 412 .
  • Part of the conductive layer 414a functions as one of the source and drain electrodes, and part of the conductive layer 414b functions as the other of the source and drain electrodes.
  • An insulating layer 423 is provided to cover the conductive layers 414 a , 414 b , and the insulating layer 422 .
  • a conductive layer 431 functioning as a pixel electrode is provided over the insulating layer 423 .
  • the conductive layer 431 is provided over the insulating layer 423 and is electrically connected to the conductive layer 414 b through an opening provided in the insulating layer 423 .
  • an EL layer and a common electrode can be stacked over the conductive layer 431 .
  • FIG. 31B shows a transistor 410a having a pair of gate electrodes.
  • a transistor 410a illustrated in FIG. 31B is mainly different from FIG. 31A in that a conductive layer 415 and an insulating layer 416 are included.
  • the conductive layer 415 is provided over the insulating layer 421 .
  • An insulating layer 416 is provided to cover the conductive layer 415 and the insulating layer 421 .
  • the semiconductor layer 411 is provided so that at least a channel formation region 411i overlaps with the conductive layer 415 with the insulating layer 416 interposed therebetween.
  • part of the conductive layer 413 functions as a first gate electrode and part of the conductive layer 415 functions as a second gate electrode.
  • part of the insulating layer 412 functions as a first gate insulating layer, and part of the insulating layer 416 functions as a second gate insulating layer.
  • the conductive layer 413 and the conductive layer 413 are electrically conductive in a region (not shown) through openings provided in the insulating layers 412 and 416 .
  • the layer 415 may be electrically connected.
  • a conductive layer is formed through openings provided in the insulating layers 422, 412, and 416 in a region (not shown).
  • the conductive layer 414a or the conductive layer 414b and the conductive layer 415 may be electrically connected.
  • the transistor 410 illustrated in FIG. 31A or the transistor 410a illustrated in FIG. 31B can be used. At this time, the transistor 410a may be used for all the transistors forming the pixel 21, the transistor 410 may be used for all the transistors, or the transistor 410a and the transistor 410 may be used in combination. .
  • FIG. 31C A cross-sectional schematic diagram including transistor 410a and transistor 450 is shown in FIG. 31C.
  • Structure Example 1 can be used for the transistor 410a. Note that although an example using the transistor 410a is shown here, a structure including the transistors 410 and 450 may be employed, or a structure including all of the transistors 410, 410a, and 450 may be employed.
  • a transistor 450 is a transistor in which a metal oxide is applied to a semiconductor layer.
  • the configuration shown in FIG. 31C is an example in which, for example, the transistor 450 corresponds to the transistor M1 of the pixel 21 and the transistor 410a corresponds to the transistor M2. That is, FIG. 31C shows an example in which one of the source and drain of the transistor 410a is electrically connected to the conductive layer 431.
  • FIG. 31C shows an example in which one of the source and drain of the transistor 410a is electrically connected to the conductive layer 431.
  • FIG. 31C shows an example in which the transistor 450 has a pair of gates.
  • the transistor 450 includes a conductive layer 455, an insulating layer 422, a semiconductor layer 451, an insulating layer 452, a conductive layer 453, and the like.
  • a portion of conductive layer 453 functions as a first gate of transistor 450 and a portion of conductive layer 455 functions as a second gate of transistor 450 .
  • part of the insulating layer 452 functions as a first gate insulating layer of the transistor 450 and part of the insulating layer 422 functions as a second gate insulating layer of the transistor 450 .
  • a conductive layer 455 is provided over the insulating layer 412 .
  • An insulating layer 422 is provided to cover the conductive layer 455 .
  • the semiconductor layer 451 is provided over the insulating layer 422 .
  • the insulating layer 452 is provided to cover the semiconductor layer 451 and the insulating layer 422 .
  • the conductive layer 453 is provided over the insulating layer 452 and has regions that overlap with the semiconductor layer 451 and the conductive layer 455 .
  • An insulating layer 426 is provided to cover the insulating layer 452 and the conductive layer 453 .
  • a conductive layer 454 a and a conductive layer 454 b are provided over the insulating layer 426 .
  • the conductive layers 454 a and 454 b are electrically connected to the semiconductor layer 451 through openings provided in the insulating layers 426 and 452 .
  • Part of the conductive layer 454a functions as one of the source and drain electrodes, and part of the conductive layer 454b functions as the other of the source and drain electrodes.
  • An insulating layer 423 is provided to cover the conductive layers 454 a , 454 b , and the insulating layer 426 .
  • the conductive layers 414a and 414b electrically connected to the transistor 410a are preferably formed by processing the same conductive film as the conductive layers 454a and 454b.
  • the conductive layer 414a, the conductive layer 414b, the conductive layer 454a, and the conductive layer 454b are formed on the same plane (that is, in contact with the upper surface of the insulating layer 426) and contain the same metal element. showing.
  • the conductive layers 414 a and 414 b are electrically connected to the low-resistance region 411 n through the insulating layers 426 , 452 , 422 , and openings provided in the insulating layer 412 . This is preferable because the manufacturing process can be simplified.
  • the conductive layer 413 functioning as the first gate electrode of the transistor 410a and the conductive layer 455 functioning as the second gate electrode of the transistor 450 are preferably formed by processing the same conductive film.
  • FIG. 31C shows a configuration in which the conductive layer 413 and the conductive layer 455 are formed on the same surface (that is, in contact with the upper surface of the insulating layer 412) and contain the same metal element. This is preferable because the manufacturing process can be simplified.
  • the insulating layer 452 functioning as a first gate insulating layer of the transistor 450 covers the edge of the semiconductor layer 451.
  • the transistor 450a shown in FIG. It may be processed so that the top surface shape matches or substantially matches that of the layer 453 .
  • the phrase “the upper surface shapes are approximately the same” means that at least part of the contours of the stacked layers overlap.
  • the upper layer and the lower layer may be processed with the same mask pattern or partially with the same mask pattern. Strictly speaking, however, the contours do not overlap, and the upper layer may be located inside the lower layer, or the upper layer may be located outside the lower layer.
  • transistor 410a corresponds to the transistor M2 and is electrically connected to the pixel electrode
  • the present invention is not limited to this.
  • the transistor 450 or the transistor 450a may correspond to the transistor M2.
  • transistor 410a may correspond to transistor M1, transistor M3, or some other transistor.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to these, aluminum, gallium, yttrium, tin and the like are preferably contained. In addition, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, etc. may be contained. .
  • the metal oxide is formed by chemical vapor deposition (CVD) such as sputtering, metal organic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD). It can be formed by a layer deposition method or the like.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • Crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystal. (polycrystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • it can be evaluated using an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also called a thin film method or a Seemann-Bohlin method.
  • the peak shape of the XRD spectrum is almost symmetrical.
  • the peak shape of the XRD spectrum is left-right asymmetric.
  • the asymmetric shape of the peaks in the XRD spectra demonstrates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peaks in the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a nanobeam electron diffraction pattern) observed by nano beam electron diffraction (NBED).
  • a diffraction pattern also referred to as a nanobeam electron diffraction pattern
  • NBED nano beam electron diffraction
  • a halo is observed in the diffraction pattern of a quartz glass substrate, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. Therefore, it is presumed that the IGZO film deposited at room temperature is neither crystalline nor amorphous, but in an intermediate state and cannot be concluded to be in an amorphous state.
  • oxide semiconductors may be classified differently from the above when their structures are focused. For example, oxide semiconductors are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors. Examples of non-single-crystal oxide semiconductors include the above CAAC-OS and nc-OS. Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, amorphous-like oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the ab plane direction.
  • each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystalline region is less than 10 nm.
  • the size of the crystal region may be about several tens of nanometers.
  • CAAC-OS contains indium (In) and oxygen.
  • a tendency to have a layered crystal structure also referred to as a layered structure in which a layer (hereinafter referred to as an In layer) and a layer containing the element M, zinc (Zn), and oxygen (hereinafter referred to as a (M, Zn) layer) are stacked.
  • the (M, Zn) layer may contain indium.
  • the In layer contains the element M.
  • the In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • a plurality of bright points are observed in the electron beam diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with respect to the spot of the incident electron beam that has passed through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is basically a hexagonal lattice, but the unit lattice is not always regular hexagon and may be non-regular hexagon. Moreover, the distortion may have a lattice arrangement such as a pentagon or a heptagon. Note that in CAAC-OS, no clear crystal grain boundary can be observed even near the strain. That is, it can be seen that the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because the CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the substitution of metal atoms. it is conceivable that.
  • a crystal structure in which clear grain boundaries are confirmed is called a so-called polycrystal.
  • a grain boundary becomes a recombination center, traps carriers, and is highly likely to cause a decrease in on-current of a transistor, a decrease in field-effect mobility, and the like. Therefore, a CAAC-OS in which no clear grain boundaries are observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor.
  • a structure containing Zn is preferable for forming a CAAC-OS.
  • In--Zn oxide and In--Ga--Zn oxide are preferable because they can suppress the generation of grain boundaries more than In oxide.
  • a CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries. Therefore, it can be said that the decrease in electron mobility due to grain boundaries is less likely to occur in CAAC-OS.
  • a CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS is also stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, the use of the CAAC-OS for the OS transistor makes it possible to increase the degree of freedom in the manufacturing process.
  • nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has minute crystals.
  • the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also called a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • an nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
  • an nc-OS film is subjected to structural analysis using an XRD apparatus, out-of-plane XRD measurement using ⁇ /2 ⁇ scanning does not detect a peak indicating crystallinity.
  • an nc-OS film is subjected to electron beam diffraction (also referred to as selected area electron beam diffraction) using an electron beam with a probe diameter larger than that of nanocrystals (for example, 50 nm or more), a diffraction pattern such as a halo pattern is obtained. is observed.
  • an nc-OS film is subjected to electron diffraction (also referred to as nanobeam electron diffraction) using an electron beam with a probe diameter close to or smaller than the size of a nanocrystal (for example, 1 nm or more and 30 nm or less)
  • an electron beam diffraction pattern is obtained in which a plurality of spots are observed within a ring-shaped area centered on the direct spot.
  • An a-like OS is an oxide semiconductor having a structure between an nc-OS and an amorphous oxide semiconductor.
  • An a-like OS has void or low density regions. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS. In addition, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called mosaic or patch.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In—Ga—Zn oxide are represented by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS.
  • the second region is a region in which [Ga] is larger than [Ga] in the CAC-OS composition.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region containing indium oxide, indium zinc oxide, or the like as a main component.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • the CAC-OS in the In—Ga—Zn oxide means a region containing Ga as a main component and a region containing In as a main component in a material structure containing In, Ga, Zn, and O. Each region is a mosaic, and refers to a configuration in which these regions exist randomly. Therefore, CAC-OS is presumed to have a structure in which metal elements are unevenly distributed.
  • a CAC-OS can be formed, for example, by a sputtering method under conditions in which the substrate is not heated.
  • a sputtering method one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. good.
  • an inert gas typically argon
  • oxygen gas typically argon
  • a nitrogen gas may be used as a deposition gas. good.
  • the lower the flow rate ratio of the oxygen gas to the total flow rate of the film formation gas during film formation, the better. is preferably 0% or more and 10% or less.
  • an EDX mapping obtained using energy dispersive X-ray spectroscopy shows that a region containing In as a main component It can be confirmed that the (first region) and the region (second region) containing Ga as the main component are unevenly distributed and have a mixed structure.
  • the first region is a region with higher conductivity than the second region. That is, when carriers flow through the first region, conductivity as a metal oxide is developed. Therefore, by distributing the first region in the form of a cloud in the metal oxide, a high field effect mobility ( ⁇ ) can be realized.
  • the second region is a region with higher insulation than the first region.
  • the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulation caused by the second region act in a complementary manner to provide a switching function (turning ON/OFF). functions) can be given to the CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have various structures and each has different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • an oxide semiconductor with low carrier concentration is preferably used for a transistor.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm ⁇ 3 or less, preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ 10 13 cm ⁇ 3 or less, more preferably 1 ⁇ 10 11 cm ⁇ 3 or less. 3 or less, more preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear and may behave like a fixed charge. Therefore, a transistor whose channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms/cm 3 , preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less. , more preferably 5 ⁇ 10 17 atoms/cm 3 or less.
  • the oxide semiconductor reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, hydrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 1 ⁇ 10 19 atoms/cm 3 , more preferably less than 5 ⁇ 10 18 atoms/cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • the electronic devices of this embodiment each include the display device of one embodiment of the present invention in a display portion.
  • the display device of one embodiment of the present invention can easily have high definition and high resolution. Therefore, it can be used for display portions of various electronic devices.
  • Examples of electronic devices include televisions, desktop or notebook personal computers, monitors for computers, digital signage, large game machines such as pachinko machines, and other electronic devices with relatively large screens. Examples include cameras, digital video cameras, digital photo frames, mobile phones, mobile game machines, mobile information terminals, and sound reproducing devices.
  • the display device of one embodiment of the present invention can have high definition, it can be suitably used for an electronic device having a relatively small display portion.
  • electronic devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • wearable devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • a wearable device that can be attached to a part is exemplified.
  • a display device of one embodiment of the present invention includes HD (1280 ⁇ 720 pixels), FHD (1920 ⁇ 1080 pixels), WQHD (2560 ⁇ 1440 pixels), WQXGA (2560 ⁇ 1600 pixels), 4K (2560 ⁇ 1600 pixels), 3840 ⁇ 2160) and 8K (7680 ⁇ 4320 pixels).
  • the resolution it is preferable to set the resolution to 4K, 8K, or higher.
  • the pixel density (definition) of the display device of one embodiment of the present invention is preferably 100 ppi or more, preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, and 3000 ppi or more.
  • the display device can support various screen ratios such as 1:1 (square), 4:3, 16:9, 16:10.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage , power, radiation, flow, humidity, gradient, vibration, odor or infrared).
  • the electronic device of this embodiment can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display, touch panel functions, functions to display calendars, dates or times, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • FIGS. 32A, 32B, 33A, and 33B An example of a wearable device that can be worn on the head will be described with reference to FIGS. 32A, 32B, 33A, and 33B.
  • These wearable devices have one or both of the function of displaying AR content and the function of displaying VR content.
  • these wearable devices may have a function of displaying SR or MR content in addition to AR and VR.
  • the electronic device has a function of displaying content such as AR, VR, SR, and MR, it is possible to enhance the immersive feeling of the user.
  • Electronic device 700A shown in FIG. 32A and electronic device 700B shown in FIG. It has a control section (not shown), an imaging section (not shown), a pair of optical members 753 , a frame 757 and a pair of nose pads 758 .
  • the display device of one embodiment of the present invention can be applied to the display panel 751 . Therefore, the electronic device can display images with extremely high definition.
  • Each of the electronic devices 700A and 700B can project an image displayed on the display panel 751 onto the display area 756 of the optical member 753 . Since the optical member 753 has translucency, the user can see the image displayed in the display area superimposed on the transmitted image visually recognized through the optical member 753 . Therefore, the electronic device 700A and the electronic device 700B are electronic devices capable of AR display.
  • the electronic device 700A and the electronic device 700B may be provided with a camera capable of capturing an image of the front as an imaging unit. Further, the electronic devices 700A and 700B each include an acceleration sensor such as a gyro sensor to detect the orientation of the user's head and display an image corresponding to the orientation in the display area 756. You can also
  • the communication unit has a wireless communication device, and can supply a video signal or the like by the wireless communication device.
  • a connector to which a cable to which a video signal and a power supply potential are supplied may be provided.
  • the electronic device 700A and the electronic device 700B are provided with batteries, and can be charged wirelessly and/or wiredly.
  • the housing 721 may be provided with a touch sensor module.
  • the touch sensor module has a function of detecting that the outer surface of the housing 721 is touched.
  • the touch sensor module can detect a user's tap operation or slide operation and execute various processes. For example, it is possible to perform processing such as pausing or resuming a moving image by a tap operation, and fast-forward or fast-reverse processing can be performed by a slide operation. Further, by providing a touch sensor module for each of the two housings 721, the range of operations can be expanded.
  • Various touch sensors can be applied as the touch sensor module.
  • various methods such as a capacitance method, a resistive film method, an infrared method, an electromagnetic induction method, a surface acoustic wave method, and an optical method can be adopted.
  • a photoelectric conversion device (also referred to as a photoelectric conversion element) can be used as a light receiving device (also referred to as a light receiving element).
  • a light receiving device also referred to as a light receiving element.
  • an inorganic semiconductor and an organic semiconductor can be used for the active layer of the photoelectric conversion device.
  • Electronic device 800A shown in FIG. 33A and electronic device 800B shown in FIG. It has a pair of imaging units 825 and a pair of lenses 832 .
  • the display device of one embodiment of the present invention can be applied to the display portion 820 . Therefore, the electronic device can display images with extremely high definition. This allows the user to feel a high sense of immersion.
  • the display unit 820 is provided inside the housing 821 at a position where it can be viewed through the lens 832 . By displaying different images on the pair of display portions 820, three-dimensional display using parallax can be performed.
  • Each of the electronic device 800A and the electronic device 800B can be said to be an electronic device for VR.
  • a user wearing electronic device 800 ⁇ /b>A or electronic device 800 ⁇ /b>B can view an image displayed on display unit 820 through lens 832 .
  • the electronic device 800A and the electronic device 800B each have a mechanism that can adjust the left and right positions of the lens 832 and the display unit 820 so that they are optimally positioned according to the position of the user's eyes. preferably. Further, it is preferable to have a mechanism for adjusting focus by changing the distance between the lens 832 and the display portion 820 .
  • Mounting portion 823 allows the user to mount electronic device 800A or electronic device 800B on the head.
  • the shape is illustrated as a temple of spectacles (also referred to as a joint, a temple, etc.), but the shape is not limited to this.
  • the mounting portion 823 may be worn by the user, and may be, for example, a helmet-type or band-type shape.
  • the imaging unit 825 has a function of acquiring external information. Data acquired by the imaging unit 825 can be output to the display unit 820 . An image sensor can be used for the imaging unit 825 . Also, a plurality of cameras may be provided so as to be able to deal with a plurality of angles of view such as telephoto and wide angle.
  • a distance measuring sensor capable of measuring the distance to an object
  • the imaging unit 825 is one aspect of the detection unit.
  • the detection unit for example, an image sensor or a distance image sensor such as lidar (LIDAR Light Detection and Ranging) can be used.
  • lidar LIDAR Light Detection and Ranging
  • the electronic device 800A may have a vibration mechanism that functions as bone conduction earphones.
  • a vibration mechanism that functions as bone conduction earphones.
  • one or more of the display portion 820, the housing 821, and the mounting portion 823 can be provided with the vibration mechanism.
  • the user can enjoy video and audio simply by wearing the electronic device 800A without the need for separate audio equipment such as headphones, earphones, or speakers.
  • Each of the electronic device 800A and the electronic device 800B may have an input terminal.
  • the input terminal can be connected to a cable that supplies a video signal from a video output device or the like, power for charging a battery provided in the electronic device, or the like.
  • An electronic device of one embodiment of the present invention may have a function of wirelessly communicating with the earphone 750 .
  • Earphone 750 has a communication unit (not shown) and has a wireless communication function.
  • the earphone 750 can receive information (eg, audio data) from the electronic device by wireless communication function.
  • electronic device 700A shown in FIG. 32A has a function of transmitting information to earphone 750 by a wireless communication function.
  • electronic device 800A shown in FIG. 33A has a function of transmitting information to earphone 750 by a wireless communication function.
  • the electronic device may have an earphone section.
  • Electronic device 700B shown in FIG. 32B has earphone section 727 .
  • the earphone section 727 and the control section can be configured to be wired to each other.
  • a part of the wiring connecting the earphone section 727 and the control section may be arranged inside the housing 721 or the mounting section 723 .
  • electronic device 800B shown in FIG. 33B has earphone section 827.
  • the earphone unit 827 and the control unit 824 can be configured to be wired to each other.
  • a part of the wiring connecting the earphone section 827 and the control section 824 may be arranged inside the housing 821 or the mounting section 823 .
  • the earphone section 827 and the mounting section 823 may have magnets. Accordingly, the earphone section 827 can be fixed to the mounting section 823 by magnetic force, which is preferable because it facilitates storage.
  • the electronic device may have an audio output terminal to which earphones, headphones, or the like can be connected. Also, the electronic device may have one or both of an audio input terminal and an audio input mechanism.
  • the voice input mechanism for example, a sound collecting device such as a microphone can be used.
  • the electronic device may function as a so-called headset.
  • the electronic device of one embodiment of the present invention includes both glasses type (electronic device 700A, electronic device 700B, etc.) and goggle type (electronic device 800A, electronic device 800B, etc.). preferred.
  • the electronic device of one embodiment of the present invention can transmit information to the earphone by wire or wirelessly.
  • An electronic device 6500 illustrated in FIG. 34A is a personal digital assistant that can be used as a smart phone.
  • An electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • a display portion 6502 has a touch panel function.
  • the display device of one embodiment of the present invention can be applied to the display portion 6502 .
  • FIG. 34B is a schematic cross-sectional view including the end of housing 6501 on the microphone 6506 side.
  • a light-transmitting protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, and a printer are placed in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 with an adhesive layer (not shown).
  • a portion of the display panel 6511 is folded back in a region outside the display portion 6502, and the FPC 6515 is connected to the folded portion.
  • An IC6516 is mounted on the FPC6515.
  • the FPC 6515 is connected to terminals provided on the printed circuit board 6517 .
  • the flexible display of one embodiment of the present invention can be applied to the display panel 6511 . Therefore, an extremely lightweight electronic device can be realized. In addition, since the display panel 6511 is extremely thin, the thickness of the electronic device can be reduced and the large-capacity battery 6518 can be mounted. In addition, by folding back part of the display panel 6511 and arranging a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
  • FIG. 35A shows an example of a television device.
  • a television set 7100 has a display portion 7000 incorporated in a housing 7101 .
  • a configuration in which a housing 7101 is supported by a stand 7103 is shown.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • the operation of the television apparatus 7100 shown in FIG. 35A can be performed by operation switches included in the housing 7101 and a separate remote controller 7111 .
  • the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like.
  • the remote controller 7111 may have a display section for displaying information output from the remote controller 7111 .
  • a channel and a volume can be operated with operation keys or a touch panel provided in the remote controller 7111 , and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts. Also, by connecting to a wired or wireless communication network via a modem, one-way (from the sender to the receiver) or two-way (between the sender and the receiver, or between the receivers, etc.) information communication. is also possible.
  • FIG. 35B shows an example of a notebook personal computer.
  • a notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • the display portion 7000 is incorporated in the housing 7211 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • FIG. 35C and FIG. 35D An example of digital signage is shown in FIG. 35C and FIG. 35D.
  • a digital signage 7300 illustrated in FIG. 35C includes a housing 7301, a display portion 7000, speakers 7303, and the like. Furthermore, it can have an LED lamp, an operation key (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like.
  • FIG. 35D is a digital signage 7400 mounted on a cylindrical post 7401.
  • FIG. A digital signage 7400 has a display section 7000 provided along the curved surface of a pillar 7401 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 in FIGS. 35C and 35D.
  • the display portion 7000 As the display portion 7000 is wider, the amount of information that can be provided at one time can be increased. In addition, the wider the display unit 7000, the more conspicuous it is, and the more effective the advertisement can be, for example.
  • a touch panel By applying a touch panel to the display portion 7000, not only an image or a moving image can be displayed on the display portion 7000 but also the user can intuitively operate the display portion 7000, which is preferable. Further, when used for providing information such as route information or traffic information, usability can be enhanced by intuitive operation.
  • the digital signage 7300 or 7400 can cooperate with an information terminal 7311 or 7411 such as a smartphone possessed by the user through wireless communication.
  • advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411 .
  • display on the display portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or 7411 as an operation means (controller). This allows an unspecified number of users to simultaneously participate in and enjoy the game.
  • the electronic device shown in FIGS. 36A to 36G includes a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), connection terminals 9006, sensors 9007 (force, displacement, position, speed , acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared rays function), a microphone 9008, and the like.
  • the display device of one embodiment of the present invention can be applied to the display portion 9001 in FIGS. 36A to 36G.
  • the electronic devices shown in FIGS. 36A-36G have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display the date or time, a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing programs or data recorded on a recording medium, and the like. Note that the functions of the electronic device are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device is equipped with a camera, etc., and has the function of capturing still images or moving images and storing them in a recording medium (external or built into the camera), or the function of displaying the captured image on the display unit, etc. good.
  • FIG. 36A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as a smart phone, for example.
  • the portable information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display text and image information on its multiple surfaces.
  • FIG. 36A shows an example in which three icons 9050 are displayed.
  • Information 9051 indicated by a dashed rectangle can also be displayed on another surface of the display portion 9001 . Examples of the information 9051 include notification of incoming e-mail, SNS, telephone call, title of e-mail or SNS, sender name, date and time, remaining battery power, radio wave intensity, and the like.
  • an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 36B is a perspective view showing the mobile information terminal 9102.
  • the portable information terminal 9102 has a function of displaying information on three or more sides of the display portion 9001 .
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can confirm the information 9053 displayed at a position where the mobile information terminal 9102 can be viewed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in the chest pocket of the clothes.
  • the user can check the display without taking out the portable information terminal 9102 from the pocket, and can determine, for example, whether to receive a call.
  • FIG. 36C is a perspective view showing the tablet terminal 9103.
  • the tablet terminal 9103 can execute various applications such as mobile phone, e-mail, reading and creating text, playing music, Internet communication, and computer games.
  • the tablet terminal 9103 has a display portion 9001, a camera 9002, a microphone 9008, and a speaker 9003 on the front of the housing 9000, operation keys 9005 as operation buttons on the left side of the housing 9000, and connection terminals on the bottom. 9006.
  • FIG. 36D is a perspective view showing a wristwatch-type personal digital assistant 9200.
  • the mobile information terminal 9200 can be used as a smart watch (registered trademark), for example.
  • the display portion 9001 has a curved display surface, and display can be performed along the curved display surface.
  • the mobile information terminal 9200 can also make hands-free calls by mutual communication with a headset capable of wireless communication, for example.
  • the portable information terminal 9200 can transmit data to and from another information terminal through the connection terminal 9006, and can be charged. Note that the charging operation may be performed by wireless power supply.
  • FIG. 36E-36G are perspective views showing a foldable personal digital assistant 9201.
  • FIG. 36E is a state in which the portable information terminal 9201 is unfolded
  • FIG. 36G is a state in which it is folded
  • FIG. 36F is a perspective view in the middle of changing from one of FIGS. 36E and 36G to the other.
  • the portable information terminal 9201 has excellent portability in the folded state, and has excellent display visibility due to a seamless wide display area in the unfolded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by hinges 9055 .
  • the display portion 9001 can be bent with a curvature radius of 0.1 mm or more and 150 mm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

高精細または高解像度の表示装置を提供する。 第1の絶縁層、第2の絶縁層、第1の導電層、第2の導電層、第1の発光デバイス、及び、第2の発光デバイスを有する表示装置である。第1の絶縁層、第1の導電層、及び第2の導電層は、それぞれの上面の高さが一致または概略一致する。第1の発光デバイスは、第1の導電層上の第1の画素電極と、第1の発光層と、共通電極と、を有する。第2の発光デバイスは、第2の導電層上の第2の画素電極と、第2の発光層と、共通電極と、を有する。第2の絶縁層は、第1の画素電極、第2の画素電極、第1の発光層、及び第2の発光層のそれぞれの側面を覆う。

Description

表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
本発明の一態様は、表示装置、表示モジュール、及び、電子機器に関する。本発明の一態様は、表示装置の作製方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサ)、入出力装置(例えば、タッチパネル)、それらの駆動方法、又はそれらの製造方法を一例として挙げることができる。
近年、表示装置は様々な用途への応用が期待されている。例えば、大型の表示装置の用途としては、家庭用のテレビジョン装置(テレビまたはテレビジョン受信機ともいう)、デジタルサイネージ(Digital Signage:電子看板)、及び、PID(Public Information Display)等が挙げられる。また、携帯情報端末として、タッチパネルを備えるスマートフォン及びタブレット端末などの開発が進められている。
また、表示装置の高精細化が求められている。高精細な表示装置が要求される機器として、例えば、仮想現実(VR:Virtual Reality)、拡張現実(AR:Augmented Reality)、代替現実(SR:Substitutional Reality)、及び、複合現実(MR:Mixed Reality)向けの機器が、盛んに開発されている。
表示装置としては、例えば、発光デバイス(発光素子ともいう)を有する発光装置が開発されている。エレクトロルミネッセンス(Electroluminescence、以下ELと記す)現象を利用した発光デバイス(ELデバイス、EL素子ともいう)は、薄型軽量化が容易である、入力信号に対し高速に応答可能である、直流定電圧電源を用いて駆動可能である等の特徴を有し、表示装置に応用されている。
特許文献1には、有機ELデバイス(有機EL素子ともいう)を用いた、VR向けの表示装置が開示されている。
国際公開第2018/087625号
発光色がそれぞれ異なる複数の有機ELデバイスを有する表示装置を作製する場合、発光色が異なる発光層をそれぞれ島状に形成する必要がある。
例えば、メタルマスク(シャドーマスクともいう)を用いた真空蒸着法により、島状の発光層を成膜することができる。しかし、この方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び、蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の発光層の形状及び位置に設計からのずれが生じるため、表示装置の高精細化、及び高開口率化が困難である。また、蒸着の際に、層の輪郭がぼやけて、端部の厚さが薄くなることがある。つまり、島状の発光層は場所によって厚さにばらつきが生じることがある。また、大型、高解像度、または高精細な表示装置を作製する場合、メタルマスクの寸法精度の低さ、及び、熱等による変形により、製造歩留まりが低くなる懸念がある。
また、メタルマスクを用いた真空蒸着法を用いて表示装置を作製する場合、定期的にメタルマスクを洗浄する必要があり、洗浄時に工程が止まってしまう。そのため、少なくとも2ライン以上の製造装置を準備し、一方の製造装置をメンテナンス中に他方の製造装置を用いて製造することが望ましく、量産を考慮すると、製造装置が複数ライン必要となる。したがって、製造装置を導入するための初期投資が非常に大きくなるといった課題がある。
本発明の一態様は、高精細な表示装置を提供することを課題の一つとする。本発明の一態様は、高解像度の表示装置を提供することを課題の一つとする。本発明の一態様は、大型の表示装置を提供することを課題の一つとする。本発明の一態様は、小型の表示装置を提供することを課題の一つとする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一つとする。
本発明の一態様は、高精細な表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、高解像度の表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、大型の表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、小型の表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、信頼性の高い表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、歩留まりの高い表示装置の作製方法を提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1の絶縁層、第2の絶縁層、第1の導電層、第2の導電層、第1の発光デバイス、及び、第2の発光デバイスを有し、第1の絶縁層、第1の導電層、及び第2の導電層は、それぞれの上面の高さが一致または概略一致し、第1の発光デバイスは、第1の導電層上の第1の画素電極と、第1の画素電極上の第1の発光層と、第1の発光層上の共通電極と、を有し、第2の発光デバイスは、第2の導電層上の第2の画素電極と、第2の画素電極上の第2の発光層と、第2の発光層上の共通電極と、を有し、第2の絶縁層は、第1の画素電極、第2の画素電極、第1の発光層、及び第2の発光層のそれぞれの側面を覆う、表示装置である。
上記の表示装置は、さらに、第3の絶縁層を有することが好ましい。第2の絶縁層は、無機材料を有することが好ましい。第3の絶縁層は、有機材料を有し、かつ、第2の絶縁層を介して、第1の画素電極、第2の画素電極、第1の発光層、及び第2の発光層のそれぞれの側面と重なることが好ましい。
第1の発光デバイスは、第1の発光層と共通電極との間に、共通層を有することが好ましい。第2の発光デバイスは、第2の発光層と共通電極との間に、共通層を有することが好ましい。共通層は、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも一つを有することが好ましい。
本発明の一態様は、第1の絶縁層、第2の絶縁層、第1の導電層、第2の導電層、第1の発光デバイス、及び、第2の発光デバイスを有し、第1の絶縁層、第1の導電層、及び第2の導電層は、それぞれの上面の高さが一致または概略一致し、第1の発光デバイスは、第1の導電層上の第1の画素電極と、第1の画素電極上の第1の発光ユニットと、第1の発光ユニット上の第1の電荷発生層と、第1の電荷発生層上の第2の発光ユニットと、第2の発光ユニット上の共通電極と、を有し、第2の発光デバイスは、第2の導電層上の第2の画素電極と、第2の画素電極上の第3の発光ユニットと、第3の発光ユニット上の第2の電荷発生層と、第2の電荷発生層上の第4の発光ユニットと、第4の発光ユニット上の共通電極と、を有し、第2の絶縁層は、第1の画素電極、第2の画素電極、第1の電荷発生層、及び第2の電荷発生層のそれぞれの側面を覆う、表示装置である。
上記の表示装置は、さらに、第3の絶縁層を有することが好ましい。第2の絶縁層は、無機材料を有することが好ましい。第3の絶縁層は、有機材料を有し、かつ、第2の絶縁層を介して、第1の画素電極、第2の画素電極、第1の電荷発生層、及び第2の電荷発生層のそれぞれの側面と重なることが好ましい。
第1の発光デバイスは、第2の発光ユニットと共通電極との間に、共通層を有することが好ましい。第2の発光デバイスは、第4の発光ユニットと共通電極との間に、共通層を有することが好ましい。共通層は、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも一つを有することが好ましい。
第1の発光デバイスと第2の発光デバイスとは、互いに異なる色の光を発することが好ましい。または、上記の表示装置は、さらに、互いに異なる色の光を透過する第1の着色層及び第2の着色層を有することが好ましい。このとき、第1の発光デバイスと第2の発光デバイスとは、白色の光を発することが好ましい。第1の発光デバイスの発光は、第1の着色層を介して、表示装置の外部に取り出されることが好ましい。第2の発光デバイスの発光は、第2の着色層を介して、表示装置の外部に取り出されることが好ましい。
第1の絶縁層は、凹部を有することが好ましい。凹部上に第2の絶縁層が位置することが好ましい。第2の絶縁層上に第3の絶縁層が位置することが好ましい。
本発明の一態様は、上記いずれかの構成の表示装置を有し、フレキシブルプリント回路基板(Flexible Printed Circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられた表示モジュール、またはCOG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等により集積回路(IC)が実装された表示モジュール等の表示モジュールである。
本発明の一態様は、上記の表示モジュールと、筐体、バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有する電子機器である。
本発明の一態様は、絶縁表面上に導電膜を形成し、導電膜上に、第1の層を形成し、第1の層上に、第1の犠牲層を形成し、第1の層及び第1の犠牲層を加工して、導電膜の一部を露出させ、第1の犠牲層上及び導電膜上に、第2の層を形成し、第2の層上に、第2の犠牲層を形成し、第2の層及び第2の犠牲層を加工して、導電膜の一部を露出させ、導電膜を加工することで、第1の犠牲層と重なる第1の画素電極と、第2の犠牲層と重なる第2の画素電極を形成し、少なくとも第1の画素電極の側面、第2の画素電極の側面、第1の層の側面、第2の層の側面、第1の犠牲層の側面及び上面、並びに、第2の犠牲層の側面及び上面を覆う、第1の絶縁膜を形成し、第1の絶縁膜を加工することで、少なくとも第1の画素電極の側面、第2の画素電極の側面、第1の層の側面、及び、第2の層の側面を覆う、第1の絶縁層を形成し、第1の犠牲層及び第2の犠牲層を除去し、第1の層上及び第2の層上に、共通電極を形成する、表示装置の作製方法である。
または、本発明の一態様は、絶縁表面上に導電膜を形成し、導電膜上に、第1の層を形成し、第1の層上に、第1の犠牲層を形成し、第1の層及び第1の犠牲層を加工して、導電膜の一部を露出させ、第1の犠牲層上及び導電膜上に、第2の層を形成し、第2の層上に、第2の犠牲層を形成し、第2の層及び第2の犠牲層を加工して、導電膜の一部を露出させ、導電膜を加工することで、第1の犠牲層と重なる第1の画素電極と、第2の犠牲層と重なる第2の画素電極を形成し、無機材料を用いて、少なくとも第1の画素電極の側面、第2の画素電極の側面、第1の層の側面、第2の層の側面、第1の犠牲層の側面及び上面、並びに、第2の犠牲層の側面及び上面を覆う、第1の絶縁膜を形成し、有機材料を用いて、第1の絶縁膜上に第2の絶縁膜を形成し、第1の絶縁膜及び第2の絶縁膜を加工することで、少なくとも第1の画素電極の側面、第2の画素電極の側面、第1の層の側面、及び、第2の層の側面を覆う、第1の絶縁層と、第1の絶縁層上の第2の絶縁層と、を形成し、第1の犠牲層及び第2の犠牲層を除去し、第1の層上及び第2の層上に、共通電極を形成する、表示装置の作製方法である。
導電膜を加工することで、第1の犠牲層及び第2の犠牲層の少なくとも一方と重なる第1の導電層を形成し、第1の導電層と重なる位置に開口を有するように、第2の絶縁膜を形成し、第1の導電層上に共通電極を形成してもよい。
有機材料として感光性の樹脂を用いて、第2の絶縁膜を形成してもよい。
共通電極を形成した後、共通電極における、第1の導電層と重なる領域よりも外側の領域の少なくとも一部を除去してもよい。
第1の犠牲層として、第1の犠牲膜と、第1の犠牲膜上の第2の犠牲膜と、を形成し、第2の犠牲膜上に、第1のレジストマスクを形成した後、第1のレジストマスクを用いて、第2の犠牲膜を加工し、第1のレジストマスクを除去し、加工された第2の犠牲膜をハードマスクに用いて、第1の犠牲膜を加工し、加工された第1の犠牲膜をハードマスクに用いて、第1の層を加工してもよい。
第1の犠牲層及び第2の犠牲層をハードマスクに用いて、導電膜を加工してもよい。
第1の犠牲層及び第2の犠牲層を除去した後に、第1の層上及び第2の層上に、第3の層を形成し、第3の層上に、共通電極を形成してもよい。
導電膜の加工工程において、絶縁表面に凹部を形成してもよい。
導電膜として、凹部を有する第1の導電膜と、第1の導電膜上の第2の導電膜とを形成し、第1の導電膜の凹部に、第4の層を形成した後、第1の導電膜上及び第4の層上に、第2の導電膜を形成してもよい。有機材料を用いて、第4の層を形成してもよい。
本発明の一態様により、高精細な表示装置を提供できる。本発明の一態様により、高解像度の表示装置を提供できる。本発明の一態様により、大型の表示装置を提供できる。本発明の一態様により、小型の表示装置を提供できる。本発明の一態様により、信頼性の高い表示装置を提供できる。
本発明の一態様により、高精細な表示装置の作製方法を提供できる。本発明の一態様により、高解像度の表示装置の作製方法を提供できる。本発明の一態様により、大型の表示装置の作製方法を提供できる。本発明の一態様により、小型の表示装置の作製方法を提供できる。本発明の一態様により、信頼性の高い表示装置の作製方法を提供できる。本発明の一態様により、歩留まりの高い表示装置の作製方法を提供できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1Aは、表示装置の一例を示す上面図である。図1Bは、表示装置の一例を示す断面図である。
図2Aは、表示装置の一例を示す上面図である。図2Bは、表示装置の一例を示す断面図である。
図3A乃至図3Eは、画素の一例を示す上面図である。
図4A乃至図4Eは、画素の一例を示す上面図である。
図5A乃至図5Gは、画素の一例を示す上面図である。
図6A乃至図6Dは、画素の一例を示す上面図である。
図7A乃至図7Cは、電子機器の一例を示す模式図である。
図8A乃至図8Dは、画素の一例を示す上面図である。図8E乃至図8Gは、表示装置の一例を示す断面図である。
図9A乃至図9Eは、表示装置の作製方法の一例を示す上面図である。
図10A乃至図10Cは、表示装置の作製方法の一例を示す断面図である。
図11A乃至図11Cは、表示装置の作製方法の一例を示す断面図である。
図12A乃至図12Cは、表示装置の作製方法の一例を示す断面図である。
図13A乃至図13Cは、表示装置の作製方法の一例を示す断面図である。
図14A乃至図14Cは、表示装置の作製方法の一例を示す断面図である。
図15A及び図15Bは、表示装置の作製方法の一例を示す断面図である。
図16A乃至図16Eは、表示装置の作製方法の一例を示す断面図である。
図17A乃至図17Fは、表示装置の作製方法の一例を示す断面図である。
図18A乃至図18Cは、表示装置の一例を示す断面図である。
図19A及び図19Bは、表示装置の一例を示す断面図である。
図20A及び図20Bは、表示装置の一例を示す断面図である。
図21A及び図21Bは、表示装置の一例を示す断面図である。
図22A及び図22Bは、表示装置の一例を示す断面図である。
図23は、表示装置の一例を示す斜視図である。
図24Aは、表示装置の一例を示す断面図である。図24B及び図24Cは、トランジスタの一例を示す断面図である。
図25は、表示装置の一例を示す断面図である。
図26A及び図26Bは、表示モジュールの一例を示す斜視図である。
図27は、表示装置の一例を示す断面図である。
図28は、表示装置の一例を示す断面図である。
図29は、表示装置の一例を示す断面図である。
図30Aは、表示装置の一例を示すブロック図である。図30B乃至図30Dは、画素回路の一例を示す図である。
図31A乃至図31Dは、トランジスタの一例を示す図である。
図32A及び図32Bは、電子機器の一例を示す図である。
図33A及び図33Bは、電子機器の一例を示す図である。
図34A及び図34Bは、電子機器の一例を示す図である。
図35A乃至図35Dは、電子機器の一例を示す図である。
図36A乃至図36Gは、電子機器の一例を示す図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置とその作製方法について図1乃至図17を用いて説明する。
本発明の一態様の表示装置の作製方法では、導電膜を形成し、第1の色の光を発する発光層を含む第1の層(EL層、またはEL層の一部、ということができる)を一面に形成した後、第1の層上に第1の犠牲層を形成する。そして、第1の犠牲層上に第1のレジストマスクを形成し、第1のレジストマスクを用いて、第1の層と第1の犠牲層を加工することで、島状の第1の層を形成する。続いて、第1の層と同様に、第2の色の光を発する発光層を含む第2の層(EL層、またはEL層の一部、ということができる)を、第2の犠牲層及び第2のレジストマスクを用いて、島状に形成する。
このように、本発明の一態様の表示装置の作製方法では、島状のEL層は、精細なパターンを有するメタルマスクを用いて形成されるのではなく、EL層を一面に成膜した後に加工することで形成される。したがって、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現することができる。さらに、EL層を各色で作り分けることができるため、極めて鮮やかでコントラストが高く、表示品位の高い表示装置を実現できる。また、EL層上に犠牲層(マスク層と呼称してもよい)を設けることで、表示装置の作製工程中にEL層が受けるダメージを低減し、発光デバイスの信頼性を高めることができる。
隣り合う発光デバイスの間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法によれば、10μm未満、5μm以下、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。また、例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで間隔を狭めることもできる。これにより、2つの発光デバイス間に存在しうる非発光領域の面積を大幅に縮小することができ、開口率を100%に近づけることが可能となる。例えば、開口率は、50%以上、60%以上、70%以上、80%以上、さらには90%以上であって、100%未満を実現することもできる。
また、EL層自体のパターン(加工サイズともいえる)についても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、EL層の中央と端で厚さのばらつきが生じるため、EL層の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工するため、島状のEL層を均一の厚さで形成することができる。したがって、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、高い精細度と高い開口率を兼ね備えた表示装置を作製することができる。
各色の光を発するEL層を形成した後、各EL層上に残存する犠牲層をハードマスクに用いて、上記の導電膜を加工することで、画素電極を形成することができる。画素電極を島状に形成するためのマスクを別途設ける必要が無いため、表示装置の製造コストを削減することができる。また、画素電極とEL層との間に、画素電極の端部を覆う絶縁層を設ける必要が無いため、隣り合う発光デバイスの間隔を極めて狭くすることができる。したがって、表示装置の高精細化、または、高解像度化を図ることができる。また、当該絶縁層を形成するためのマスクも不要となり、表示装置の製造コストを削減することができる。
ここで、第1の層及び第2の層は、それぞれ、少なくとも発光層を含み、好ましくは複数の層からなる。具体的には、発光層上に1層以上の層を有することが好ましい。発光層と犠牲層との間に他の層を有することで、表示装置の作製工程中に発光層が最表面に露出することを抑制し、発光層が受けるダメージを低減することができる。これにより、発光デバイスの信頼性を高めることができる。したがって、第1の層及び第2の層は、それぞれ、発光層と、発光層上のキャリア輸送層(電子輸送層または正孔輸送層)と、を有することが好ましい。
なお、それぞれ異なる色の光を発する発光デバイスにおいて、EL層を構成する全ての層を作り分ける必要はなく、一部の層は同一工程で成膜することができる。本発明の一態様の表示装置の作製方法では、EL層を構成する一部の層を色ごとに島状に形成した後、犠牲層を除去し、EL層を構成する残りの層と、共通電極(上部電極ともいえる)と、を各色の発光デバイスに共通して(一つの膜として)形成する。例えば、キャリア注入層と、共通電極と、を各色の発光デバイスに共通して形成することができる。一方で、キャリア注入層は、EL層の中では、比較的導電性が高い層であることが多い。そのため、キャリア注入層が、島状に形成されたEL層の一部の層の側面、または、画素電極の側面に接することで、発光デバイスがショートする恐れがある。なお、キャリア注入層を島状に設け、共通電極を各色の発光デバイスに共通して形成する場合についても、共通電極と、EL層の側面、または、画素電極の側面とが接することで、発光デバイスがショートする恐れがある。
そこで、本発明の一態様の表示装置は、島状の発光層の側面と、画素電極の側面と、を覆う絶縁層を有する。
これにより、島状に形成されたEL層の少なくとも一部の層、及び、画素電極が、キャリア注入層または共通電極と接することを抑制することができる。したがって、発光デバイスのショートを抑制し、発光デバイスの信頼性を高めることができる。
本発明の一態様の表示装置は、陽極として機能する画素電極と、画素電極上にこの順で設けられた、それぞれ島状の、正孔注入層、正孔輸送層、発光層、及び、電子輸送層と、画素電極、正孔注入層、正孔輸送層、発光層、及び、電子輸送層のそれぞれの側面を覆うように設けられた絶縁層と、電子輸送層上に設けられた電子注入層と、電子注入層上に設けられ、陰極として機能する共通電極と、を有する。
または、本発明の一態様の表示装置は、陰極として機能する画素電極と、画素電極上にこの順で設けられた、それぞれ島状の、電子注入層、電子輸送層、発光層、及び、正孔輸送層と、画素電極、電子注入層、電子輸送層、発光層、及び、正孔輸送層のそれぞれの側面を覆うように設けられた絶縁層と、正孔輸送層上に設けられた正孔注入層と、正孔注入層上に設けられ、陽極として機能する共通電極と、を有する。
または、本発明の一態様の表示装置は、画素電極と、画素電極上の第1の発光ユニットと、第1の発光ユニット上の電荷発生層(中間層ともいう)と、電荷発生層上の第2の発光ユニットと、画素電極、第1の発光ユニット、電荷発生層、及び、第2の発光ユニットのそれぞれの側面を覆うように設けられた絶縁層と、第2の発光ユニット上に設けられた共通電極と、を有する。なお、第2の発光ユニットと共通電極との間に、各色の発光デバイスに共通層が設けられていてもよい。
正孔注入層、電子注入層、または電荷発生層などは、EL層の中では、比較的導電性が高い層であることが多い。本発明の一態様の表示装置では、これらの層の側面が絶縁層で覆われるため、共通電極などと接することを抑制することができる。したがって、発光デバイスのショートを抑制し、発光デバイスの信頼性を高めることができる。
このような構成とすることで、精細度または解像度が高く、信頼性の高い、表示装置を作製することができる。例えばペンタイル方式などの特殊な画素配列方式を適用し、疑似的に精細度を高める必要が無く、1つの画素に3つ以上の副画素を用いた配列方法であっても、極めて高精細な表示装置を実現できる。例えば、R、G、Bをそれぞれ一方向に配列させた、いわゆるストライプ配置で、且つ、500ppi以上、1000ppi以上、または2000ppi以上、さらには3000ppi以上、さらには5000ppi以上の精細度の表示装置を実現することができる。
絶縁層は、単層構造であってもよく、積層構造であってもよい。特に、2層構造の絶縁層を適用することが好ましい。例えば、絶縁層の1層目は、EL層に接して形成されるため、無機絶縁材料を用いて形成することが好ましい。特に、成膜ダメージが小さい原子層堆積(ALD:Atomic Layer Deposition)法を用いて形成することが好ましい。そのほか、ALD法よりも成膜速度が速い、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、または、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法を用いて無機絶縁層を形成することが好ましい。これにより、信頼性の高い表示装置を生産性高く作製することができる。また、絶縁層の2層目は、1層目の絶縁層に形成された凹部を平坦化するように、有機材料を用いて形成することが好ましい。
例えば、絶縁層の1層目に、ALD法により形成した酸化アルミニウム膜を用い、絶縁層の2層目に、感光性の有機樹脂膜を用いることができる。
また、単層構造の絶縁層を形成してもよい。例えば、無機材料を用いた単層構造の絶縁層を形成することで、当該絶縁層をEL層の保護絶縁層として用いることができる。これにより、表示装置の信頼性を高めることができる。また、例えば、有機材料を用いた単層構造の絶縁層を形成することで、隣り合うEL層の間を当該絶縁層で充填し、平坦化することができる。これにより、EL層及び絶縁層上に形成する共通電極(上部電極)の被覆性を高めることができる。
[表示装置の構成例1]
図1A及び図1Bに、本発明の一態様の表示装置を示す。
図1Aに表示装置100の上面図を示す。表示装置100は、複数の画素110がマトリクス状に配置された表示部と、表示部の外側の接続部140と、を有する。接続部140は、カソードコンタクト部と呼ぶこともできる。
図1Aに示す画素110には、ストライプ配列が適用されている。図1Aに示す画素110は、副画素110a、110b、110cの、3つの副画素から構成される。副画素110a、110b、110cは、それぞれ異なる色の光を発する発光デバイスを有する。副画素110a、110b、110cとしては、赤色(R)、緑色(G)、青色(B)の3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。
図1Aに示す副画素の上面形状は、発光領域の上面形状に相当する。
また、副画素を構成する回路レイアウトは、図1Aに示す副画素の範囲に限定されず、その外側に配置されていてもよい。例えば、副画素110aが有するトランジスタの一部または全ては、図1Aに示す副画素110aの範囲外に位置してもよい。例えば、副画素110aが有するトランジスタは、副画素110bの範囲内に位置する部分を有していてもよく、副画素110cの範囲内に位置する部分を有していてもよい。
図1Aでは、副画素110a、110b、110cの開口率(サイズ、発光領域のサイズともいえる)を等しくまたは概略等しく示すが、本発明の一態様はこれに限定されない。副画素110a、110b、110cの開口率は、それぞれ適宜決定することができる。副画素110a、110b、110cの開口率は、それぞれ、異なっていてもよく、2つ以上の開口率が等しいまたは概略等しくてもよい。
図1Aでは、異なる色の副画素がX方向に並べて配置されており、同じ色の副画素が、Y方向に並べて配置されている例を示す。なお、異なる色の副画素がY方向に並べて配置され、同じ色の副画素が、X方向に並べて配置されていてもよい。
図1Aでは、上面視で、接続部140が表示部の下側に位置する例を示すが、特に限定されない。接続部140は、上面視で、表示部の上側、右側、左側、下側の少なくとも一箇所に設けられていればよく、表示部の四辺を囲むように設けられていてもよい。また、接続部140は、単数であっても複数であってもよい。
図1Bに、図1Aにおける一点鎖線X1−X2間の断面図を示す。
図1Bに示すように、表示装置100は、トランジスタを含む層101上に、発光デバイス130a、130b、130cが設けられ、これらの発光デバイスを覆うように保護層131、132が設けられている。保護層132上には、樹脂層122によって基板120が貼り合わされている。また、隣り合う発光デバイスの間の領域には、絶縁層125と、絶縁層125上の絶縁層127と、が設けられている。
本発明の一態様の表示装置は、発光デバイスが形成されている基板とは反対方向に光を射出する上面射出型(トップエミッション型)、発光デバイスが形成されている基板側に光を射出する下面射出型(ボトムエミッション型)、両面に光を射出する両面射出型(デュアルエミッション型)のいずれであってもよい。
トランジスタを含む層101には、例えば、基板に複数のトランジスタが設けられ、これらのトランジスタを覆うように絶縁層が設けられた積層構造を適用することができる。トランジスタを含む層101は、隣り合う発光デバイスの間に凹部を有していてもよい。例えば、トランジスタを含む層101の最表面に位置する絶縁層に凹部が設けられていてもよい。トランジスタを含む層101の構成例は、実施の形態3、4で後述する。
発光デバイス130a、130b、130cは、それぞれ、異なる色の光を発する。発光デバイス130a、130b、130cは、例えば、赤色(R)、緑色(G)、青色(B)の3色の光を発する組み合わせであることが好ましい。
発光デバイス130a、130b、130cとしては、例えば、OLED(Organic Light Emitting Diode)、またはQLED(Quantum−dot Light Emitting Diode)を用いることが好ましい。発光デバイスが有する発光物質(発光材料ともいう)としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)などが挙げられる。なお、TADF材料としては、一重項励起状態と三重項励起状態間が熱平衡状態にある材料を用いてもよい。このようなTADF材料は発光寿命(励起寿命)が短くなるため、発光デバイスにおける高輝度領域での効率低下を抑制することができる。また、発光デバイスが有する発光物質として、無機化合物(量子ドット材料など)を用いてもよい。
発光デバイスは、一対の電極間にEL層を有する。本明細書等では、一対の電極の一方を画素電極と記し、他方を共通電極と記すことがある。
発光デバイスが有する一対の電極のうち、一方の電極は陽極として機能し、他方の電極は陰極として機能する。以下では、画素電極が陽極として機能し、共通電極が陰極として機能する場合を例に挙げて説明する。
発光デバイス130aは、トランジスタを含む層101上の画素電極111aと、画素電極111a上の島状の第1の層113aと、島状の第1の層113a上の第5の層114と、第5の層114上の共通電極115と、を有する。発光デバイス130aにおいて、第1の層113a、及び、第5の層114をまとめてEL層と呼ぶことができる。
本実施の形態の発光デバイスの構成に、特に限定はなく、シングル構造であってもタンデム構造であってもよい。なお、発光デバイスの構成例については、実施の形態2で後述する。
発光デバイス130bは、トランジスタを含む層101上の画素電極111bと、画素電極111b上の島状の第2の層113bと、島状の第2の層113b上の第5の層114と、第5の層114上の共通電極115と、を有する。発光デバイス130bにおいて、第2の層113b、及び、第5の層114をまとめてEL層と呼ぶことができる。
発光デバイス130cは、トランジスタを含む層101上の画素電極111cと、画素電極111c上の島状の第3の層113cと、島状の第3の層113c上の第5の層114と、第5の層114上の共通電極115と、を有する。発光デバイス130cにおいて、第3の層113c、及び、第5の層114をまとめてEL層と呼ぶことができる。
各色の発光デバイスは、共通電極として、同一の膜を共有している。各色の発光デバイスが共通して有する共通電極は、接続部140に設けられた導電層と電気的に接続される。
画素電極と共通電極のうち、光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
発光デバイスの一対の電極(画素電極と共通電極)を形成する材料としては、金属、合金、電気伝導性化合物、及びこれらの混合物などを適宜用いることができる。具体的には、インジウムスズ酸化物(In−Sn酸化物、ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、インジウム亜鉛酸化物(In−Zn酸化物)、In−W−Zn酸化物、アルミニウム、ニッケル、及びランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、並びに、銀とマグネシウムの合金、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)等の銀を含む合金が挙げられる。その他、アルミニウム(Al)、マグネシウム(Mg)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、及びこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属及びこれらを適宜組み合わせて含む合金、グラフェン等を用いることができる。
発光デバイスには、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光デバイスが有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光デバイスから射出される光を強めることができる。
なお、半透過・半反射電極は、反射電極と可視光に対する透過性を有する電極(透明電極ともいう)との積層構造とすることができる。
透明電極の光の透過率は、40%以上とする。例えば、発光デバイスには、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。
第1の層113a、第2の層113b、及び、第3の層113cは、それぞれ、島状に設けられる。第1の層113a、第2の層113b、及び、第3の層113cは、それぞれ、発光層を有する。第1の層113a、第2の層113b、及び、第3の層113cは、それぞれ、異なる色の光を発する発光層を有することが好ましい。
発光層は、発光物質を含む層である。発光層は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
発光物質としては、蛍光材料、燐光材料、TADF材料、量子ドット材料などが挙げられる。
蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。
燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性材料及び電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
第1の層113a、第2の層113b、及び、第3の層113cは、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質(正孔輸送性材料とも記す)、正孔ブロック材料、電子輸送性の高い物質(電子輸送性材料とも記す)、電子注入性の高い物質、電子ブロック材料、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質、バイポーラ性材料とも記す)等を含む層をさらに有していてもよい。
例えば、第1の層113a、第2の層113b、及び、第3の層113cは、それぞれ、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち一つ以上を有していてもよい。
EL層のうち、各色の発光デバイスに共通して形成される層としては、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち一つ以上を適用することができる。例えば、第5の層114として、キャリア注入層(正孔注入層または電子注入層)を形成してもよい。なお、EL層の全ての層を色ごとに作り分けてもよい。つまり、EL層は、各色の発光デバイスに共通して形成される層を有していなくてもよい。
第1の層113a、第2の層113b、及び、第3の層113cは、それぞれ、発光層と、発光層上のキャリア輸送層を有することが好ましい。これにより、表示装置100の作製工程中に、発光層が最表面に露出することを抑制し、発光層が受けるダメージを低減することができる。これにより、発光デバイスの信頼性を高めることができる。
正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、芳香族アミン化合物、及び、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料などが挙げられる。
正孔輸送層は、正孔注入層によって陽極から注入された正孔を、発光層に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い物質が好ましい。
電子輸送層は、電子注入層によって陰極から注入された電子を、発光層に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他、含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い物質を用いることができる。
電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い物質を含む層である。電子注入性の高い物質としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い物質としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
電子注入層としては、例えば、リチウム、セシウム、イッテルビウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF、Xは任意数)、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはこれらの化合物を用いることができる。また、電子注入層としては、2以上の積層構造としてもよい。当該積層構造としては、例えば、1層目にフッ化リチウムを用い、2層目にイッテルビウムを設ける構成とすることができる。
または、電子注入層としては、電子輸送性材料を用いてもよい。例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を、電子輸送性材料に用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも一つを有する化合物を用いることができる。
なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)が、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:Highest Occupied Molecular Orbital)準位及びLUMO準位を見積もることができる。
例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移温度(Tg)を備え、耐熱性に優れる。
また、タンデム構造の発光デバイスを作製する場合、2つの発光ユニットの間に、電荷発生層を設ける。電荷発生層は、少なくとも電荷発生領域を有する。電荷発生層は、一対の電極間に電圧を印加したときに、2つの発光ユニットの一方に電子を注入し、他方に正孔を注入する機能を有する。
電荷発生層は、上述の通り、少なくとも電荷発生領域を有する。電荷発生領域は、アクセプター性材料を含むことが好ましく、例えば、上述の正孔注入層に適用可能な、正孔輸送性材料とアクセプター性材料とを含むことが好ましい。
また、電荷発生層は、電子注入性の高い物質を含む層を有することが好ましい。当該層は、電子注入バッファ層と呼ぶこともできる。電子注入バッファ層は、電荷発生領域と電子輸送層との間に設けられることが好ましい。電子注入バッファ層を設けることで、電荷発生領域と電子輸送層との間の注入障壁を緩和することができるため、電荷発生領域で生じた電子を電子輸送層に容易に注入することができる。
電子注入バッファ層は、アルカリ金属またはアルカリ土類金属を含むことが好ましく、例えば、アルカリ金属の化合物またはアルカリ土類金属の化合物を含む構成とすることができる。具体的には、電子注入バッファ層は、アルカリ金属と酸素とを含む無機化合物、または、アルカリ土類金属と酸素とを含む無機化合物を有することが好ましく、リチウムと酸素とを含む無機化合物(酸化リチウム(LiO)など)を有することがより好ましい。その他、電子注入バッファ層には、上述の電子注入層に適用可能な材料を好適に用いることができる。
電荷発生層は、電子輸送性の高い物質を含む層を有することが好ましい。当該層は、電子リレー層と呼ぶこともできる。電子リレー層は、電荷発生領域と電子注入バッファ層との間に設けられることが好ましい。電荷発生層が電子注入バッファ層を有さない場合、電子リレー層は、電荷発生領域と電子輸送層との間に設けられることが好ましい。電子リレー層は、電荷発生領域と電子注入バッファ層(または電子輸送層)との相互作用を防いで、電子をスムーズに受け渡す機能を有する。
電子リレー層としては、銅(II)フタロシアニン(略称:CuPc)などのフタロシアニン系の材料、または、金属−酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
なお、上述の電荷発生領域、電子注入バッファ層、及び電子リレー層は、断面形状、または特性などによって明確に区別できない場合がある。
なお、電荷発生層は、アクセプター性材料の代わりに、ドナー性材料を有していてもよい。例えば、電荷発生層としては、上述の電子注入層に適用可能な、電子輸送性材料とドナー性材料とを含む層を有していてもよい。
発光ユニットを積層する際、2つの発光ユニットの間に電荷発生層を設けることで、駆動電圧の上昇を抑制することができる。
発光デバイスには低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
画素電極111a、111b、111c、第1の層113a、第2の層113b、及び、第3の層113cのそれぞれの側面は、絶縁層125及び絶縁層127によって覆われている。これにより、第5の層114(または共通電極115)が、画素電極111a、111b、111c、第1の層113a、第2の層113b、及び、第3の層113cのいずれかの側面と接することを抑制し、発光デバイスのショートを抑制することができる。
絶縁層125は、少なくとも画素電極111a、111b、111cの側面を覆うことが好ましい。さらに、絶縁層125は、第1の層113a、第2の層113b、及び、第3の層113cの側面を覆うことが好ましい。絶縁層125は、画素電極111a、111b、111c、第1の層113a、第2の層113b、及び、第3の層113cのそれぞれの側面と接する構成とすることができる。
絶縁層127は、絶縁層125に形成された凹部を充填するように、絶縁層125上に設けられる。絶縁層127は、絶縁層125を介して、画素電極111a、111b、111c、第1の層113a、第2の層113b、及び、第3の層113cのそれぞれの側面と重なる構成とすることができる。
なお、絶縁層125及び絶縁層127のいずれか一方を設けなくてもよい。例えば、絶縁層125を設けない場合、絶縁層127は、第1の層113a、第2の層113b、及び、第3の層113cのそれぞれの側面と接する構成とすることができる。絶縁層127は、各発光デバイスが有するEL層の間を充填するように、トランジスタを含む層101上に設けることができる。
第5の層114及び共通電極115は、第1の層113a、第2の層113b、第3の層113c、絶縁層125、及び絶縁層127上に設けられる。絶縁層125及び絶縁層127を設ける前の段階では、画素電極及びEL層が設けられる領域と、画素電極及びEL層が設けられない領域(発光デバイス間の領域)と、に起因する段差が生じている。本発明の一態様の表示装置は、絶縁層125及び絶縁層127を有することで当該段差を平坦化させることができ、第5の層114及び共通電極115の被覆性を向上させることができる。したがって、共通電極115の段切れによる接続不良を抑制することができる。または、段差によって共通電極115が局所的に薄膜化して電気抵抗が上昇することを抑制することができる。
なお、本明細書等において、段切れとは、層、膜、または電極が、被形成面の形状(例えば段差など)に起因して分断されてしまう現象を示す。
第5の層114及び共通電極115の形成面の平坦性を向上させるために、絶縁層125の上面及び絶縁層127の上面の高さは、それぞれ、第1の層113a、第2の層113b、及び、第3の層113cの少なくとも一つの上面の高さと一致または概略一致することが好ましい。また、絶縁層127の上面は平坦な形状を有することが好ましく、凸部または凹部を有していてもよい。
絶縁層125は、第1の層113a、第2の層113b、及び、第3の層113cの側面と接する領域を有し、第1の層113a、第2の層113b、及び、第3の層113cの保護絶縁層として機能する。絶縁層125を設けることで、第1の層113a、第2の層113b、及び、第3の層113cの側面から内部へ不純物(酸素、水分等)が侵入することを抑制でき、信頼性の高い表示装置とすることができる。
断面視において第1の層113a、第2の層113b、及び、第3の層113cの側面と接する領域における絶縁層125の幅(厚さ)が大きいと、第1の層113a、第2の層113b、及び、第3の層113cの間隔が大きくなり、開口率が低くなってしまう場合がある。また、絶縁層125の幅(厚さ)が小さいと、第1の層113a、第2の層113b、及び、第3の層113cの側面から内部へ不純物が侵入することを抑制する効果が小さくなってしまう場合がある。第1の層113a、第2の層113b、及び、第3の層113cの側面と接する領域における絶縁層125の幅(厚さ)は、3nm以上200nm以下が好ましく、さらには3nm以上150nm以下が好ましく、さらには5nm以上150nm以下が好ましく、さらには5nm以上100nm以下が好ましく、さらには10nm以上100nm以下が好ましく、さらには10nm以上50nm以下が好ましい。絶縁層125の幅(厚さ)を前述の範囲とすることで、高い開口率を有し、かつ信頼性の高い表示装置とすることができる。
絶縁層125は、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。特に、酸化アルミニウムは、エッチングにおいて、EL層との選択比が高く、後述する絶縁層127の形成において、EL層を保護する機能を有するため、好ましい。特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜、酸化シリコン膜などの無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、EL層を保護する機能に優れた絶縁層125を形成することができる。
なお、本明細書などにおいて、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
絶縁層125の形成は、スパッタリング法、CVD法、PLD法、ALD法などを用いることができる。絶縁層125は、被覆性が良好なALD法を用いて形成することが好ましい。
絶縁層125上に設けられる絶縁層127は、隣接する発光デバイス間に形成された絶縁層125の凹部を平坦化する機能を有する。換言すると、絶縁層127を有することで共通電極115の形成面の平坦性を向上させる効果を奏する。絶縁層127としては、有機材料を有する絶縁層を好適に用いることができる。例えば、絶縁層127として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、絶縁層127として、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。また、絶縁層127として、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
絶縁層127の上面の高さと、第1の層113a、第2の層113b、及び、第3の層113cのいずれかの上面の高さとの差が、例えば、絶縁層127の厚さの0.5倍以下が好ましく、0.3倍以下がより好ましい。また例えば、第1の層113a、第2の層113b、及び、第3の層113cのいずれかの上面が絶縁層127の上面よりも高くなるように、絶縁層127を設けてもよい。また、例えば、絶縁層127の上面が、第1の層113a、第2の層113b、または、第3の層113cが有する発光層の上面よりも高くなるように、絶縁層127を設けてもよい。
発光デバイス130a、130b、130c上に保護層131、132を有することが好ましい。保護層131、132を設けることで、発光デバイスの信頼性を高めることができる。
保護層131、132の導電性は問わない。保護層131、132としては、絶縁膜、半導体膜、及び、導電膜の少なくとも一種を用いることができる。
保護層131、132が無機膜を有することで、共通電極115の酸化を防止する、発光デバイス130a、130b、130cに不純物(水分、酸素など)が入り込むことを抑制する、など、発光デバイスの劣化を抑制し、表示装置の信頼性を高めることができる。
保護層131、132には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。
保護層131、132は、それぞれ、窒化絶縁膜または窒化酸化絶縁膜を有することが好ましく、窒化絶縁膜を有することがより好ましい。
また、保護層131、132には、In−Sn酸化物(ITOともいう)、In−Zn酸化物、Ga−Zn酸化物、Al−Zn酸化物、またはインジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOともいう)などを含む無機膜を用いることもできる。当該無機膜は、高抵抗であることが好ましく、具体的には、共通電極115よりも高抵抗であることが好ましい。当該無機膜は、さらに窒素を含んでいてもよい。
発光デバイスの発光を、保護層131、132を介して取り出す場合、保護層131、132は、可視光に対する透過性が高いことが好ましい。例えば、ITO、IGZO、及び、酸化アルミニウムは、それぞれ、可視光に対する透過性が高い無機材料であるため、好ましい。
保護層131、132としては、例えば、酸化アルミニウム膜と、酸化アルミニウム膜上の窒化シリコン膜と、の積層構造、または、酸化アルミニウム膜と、酸化アルミニウム膜上のIGZO膜と、の積層構造などを用いることができる。当該積層構造を用いることで、不純物(水、酸素など)がEL層側に入り込むことを抑制できる。
さらに、保護層131、132は、有機膜を有していてもよい。例えば、保護層132は、有機膜と無機膜の双方を有していてもよい。
保護層131と保護層132とで異なる成膜方法を用いてもよい。具体的には、ALD法を用いて保護層131を形成し、スパッタリング法を用いて保護層132を形成してもよい。
画素電極111a、111b、111cのそれぞれの上面端部は、絶縁層によって覆われていない。そのため、隣り合う発光デバイスの間隔を極めて狭くすることができる。したがって、高精細、または、高解像度の表示装置とすることができる。
本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
なお、本明細書等において、各色の発光デバイス(ここでは青(B)、緑(G)、及び赤(R))で、発光層を作り分ける、または発光層を塗り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。SBS構造は、発光デバイスごとに材料及び構成を最適化することができるため、材料及び構成の選択の自由度が高まり、輝度の向上、信頼性の向上を図ることが容易となる。
また、本明細書等において、白色光を発することのできる発光デバイスを白色発光デバイスと呼ぶ場合がある。なお、白色発光デバイスは、着色層(たとえば、カラーフィルタ)と組み合わせることで、フルカラー表示の表示装置を実現することができる。
また、発光デバイスは、シングル構造と、タンデム構造とに大別することができる。シングル構造のデバイスは、一対の電極間に1つの発光ユニットを有し、当該発光ユニットは、1以上の発光層を含む構成とすることが好ましい。2つの発光層を用いて白色発光を得る場合、2つの発光層の発光色が補色の関係となるような発光層を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する構成を得ることができる。また、3つ以上の発光層を用いて白色発光を得る場合、3つ以上の発光層の発光色が合わさることで、発光デバイス全体として白色発光する構成とすればよい。
タンデム構造のデバイスは、一対の電極間に2以上の複数の発光ユニットを有し、各発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、複数の発光ユニットの発光層からの光を合わせて白色発光が得られる構成とすればよい。なお、白色発光が得られる構成については、シングル構造の構成と同様である。なお、タンデム構造のデバイスにおいて、複数の発光ユニットの間には、電荷発生層を設けると好適である。
また、上述の白色発光デバイス(シングル構造またはタンデム構造)と、SBS構造の発光デバイスと、を比較した場合、SBS構造の発光デバイスは、白色発光デバイスよりも消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造の発光デバイスを用いると好適である。一方で、白色発光デバイスは、製造プロセスがSBS構造の発光デバイスよりも簡単であるため、製造コストを低くすることができる、又は製造歩留まりを高くすることができるため、好適である。
本実施の形態の表示装置は、発光デバイス間の距離を狭くすることができる。具体的には、発光デバイス間の距離、EL層間の距離、または画素電極間の距離を、10μm未満、5μm以下、3μm以下、2μm以下、1μm以下、500nm以下、200nm以下、100nm以下、90nm以下、70nm以下、50nm以下、30nm以下、20nm以下、15nm以下、または10nm以下とすることができる。別言すると、第1の層113aの側面と第2の層113bの側面との間隔、または第2の層113bの側面と第3の層113cの側面との間隔が1μm以下の領域を有し、好ましくは0.5μm(500nm)以下の領域を有し、さらに好ましくは100nm以下の領域を有する。
基板120の樹脂層122側の面には、遮光層を設けてもよい。また、基板120の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板120の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
基板120には、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光デバイスからの光を取り出す側の基板には、該光を透過する材料を用いる。基板120に可撓性を有する材料を用いると、表示装置の可撓性を高め、フレキシブルディスプレイを実現することができる。また、基板120として偏光板を用いてもよい。
基板120としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板120に、可撓性を有する程度の厚さのガラスを用いてもよい。
なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
樹脂層122としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料、または、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、または、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層、及び、発光デバイスが有する導電層(画素電極または共通電極として機能する導電層)にも用いることができる。
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
図2Aに示すように、画素は副画素を4種類有する構成とすることができる。
図2Aに表示装置100の上面図を示す。表示装置100は、複数の画素110がマトリクス状に配置された表示部と、表示部の外側の接続部140と、を有する。
図2Aに示す画素110は、副画素110a、110b、110c、110dの、4種類の副画素から構成される。
例えば、副画素110a、110b、110c、110dは、それぞれ異なる色の光を発する発光デバイスを有する構成とすることができる。副画素110a、110b、110c、110dとしては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素、R、G、B、赤外光(IR)の4つの副画素などが挙げられる。
図2Aでは、1つの画素110が2行3列で構成されている例を示す。画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、3つの副画素110dを有する。言い換えると、画素110は、左の列(1列目)に、副画素110a及び副画素110dを有し、中央の列(2列目)に副画素110b及び副画素110dを有し、右の列(3列目)に副画素110c及び副画素110dを有する。図2Aに示すように、上の行と下の行との副画素の配置を揃える構成とすることで、製造プロセスで生じうるゴミなどを効率よく除去することが可能となる。したがって、表示品位の高い表示装置を提供することができる。
図2Bに、図2Aにおける一点鎖線X3−X4間の断面図を示す。図2Bに示す構成は、発光デバイス130dを有する点以外は、図1Bと同様の構成である。したがって、図1Bと同様の部分については説明を省略する。
図2Bに示すように、表示装置100は、トランジスタを含む層101上に、発光デバイス130a、130b、130c、130dが設けられ、これらの発光デバイスを覆うように保護層131、132が設けられている。保護層132上には、樹脂層122によって基板120が貼り合わされている。また、隣り合う発光デバイスの間の領域には、絶縁層125及び絶縁層127が設けられている。
発光デバイス130a、130b、130c、130dは、それぞれ、異なる色の光を発する。発光デバイス130a、130b、130c、130dは、例えば、赤色(R)、緑色(G)、青色(B)、白色(W)の4色の光を発する組み合わせであることが好ましい。
発光デバイス130dは、トランジスタを含む層101上の画素電極111dと、画素電極111d上の島状の第4の層113dと、島状の第4の層113d上の第5の層114と、第5の層114上の共通電極115と、を有する。発光デバイス130dにおいて、第4の層113d、及び、第5の層114をまとめてEL層と呼ぶことができる。
3つの副画素110dは、それぞれ独立に発光デバイス130dを有していてもよく、1つの発光デバイス130dを共通して有していてもよい。つまり、画素110は、発光デバイス130dを1つ有していてもよく、3つ有していてもよい。
[画素のレイアウト]
次に、図1A及び図2Aとは異なる画素レイアウトについて説明する。副画素の配列に特に限定はなく、様々な方法を適用することができる。副画素の配列としては、例えば、ストライプ配列、Sストライプ配列、マトリクス配列、デルタ配列、ベイヤー配列、ペンタイル配列などが挙げられる。
また、副画素の上面形状としては、例えば、三角形、四角形(長方形、正方形を含む)、五角形などの多角形、これら多角形の角が丸い形状、楕円形、または円形などが挙げられる。ここで、副画素の上面形状は、発光デバイスの発光領域の上面形状に相当する。
図3Aに示す画素110には、Sストライプ配列が適用されている。図3Aに示す画素110は、副画素110a、110b、110cの、3つの副画素から構成される。例えば、図4Aに示すように、副画素110aを青色の副画素Bとし、副画素110bを赤色の副画素Rとし、副画素110cを緑色の副画素Gとしてもよい。
図3Bに示す画素110は、角が丸い略台形の上面形状を有する副画素110aと、角が丸い略三角形の上面形状を有する副画素110bと、角が丸い略四角形または略六角形の上面形状を有する副画素110cと、を有する。また、副画素110aは、副画素110bよりも発光面積が広い。このように、各副画素の形状及びサイズはそれぞれ独立に決定することができる。例えば、信頼性の高い発光デバイスを有する副画素ほど、サイズを小さくすることができる。例えば、図4Bに示すように、副画素110aを緑色の副画素Gとし、副画素110bを赤色の副画素Rとし、副画素110cを青色の副画素Bとしてもよい。
図3Cに示す画素124a、124bには、ペンタイル配列が適用されている。図3Cでは、副画素110a及び副画素110bを有する画素124aと、副画素110b及び副画素110cを有する画素124bと、が交互に配置されている例を示す。例えば、図4Cに示すように、副画素110aを赤色の副画素Rとし、副画素110bを緑色の副画素Gとし、副画素110cを青色の副画素Bとしてもよい。
図3D及び図3Eに示す画素124a、124bは、デルタ配列が適用されている。画素124aは上の行(1行目)に、2つの副画素(副画素110a、110b)を有し、下の行(2行目)に、1つの副画素(副画素110c)を有する。画素124bは上の行(1行目)に、1つの副画素(副画素110c)を有し、下の行(2行目)に、2つの副画素(副画素110a、110b)を有する。例えば、図4Dに示すように、副画素110aを赤色の副画素Rとし、副画素110bを緑色の副画素Gとし、副画素110cを青色の副画素Bとしてもよい。
図3Dは、各副画素が、角が丸い略四角形の上面形状を有する例であり、図3Eは、各副画素が、円形の上面形状を有する例である。
フォトリソグラフィ法では、加工するパターンが微細になるほど、光の回折の影響を無視できなくなるため、露光によりフォトマスクのパターンを転写する際に忠実性が損なわれ、レジストマスクを所望の形状に加工することが困難になる。そのため、フォトマスクのパターンが矩形であっても、角が丸まったパターンが形成されやすい。したがって、副画素の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。
さらに、本発明の一態様の表示装置の作製方法では、レジストマスクを用いてEL層を島状に加工する。EL層上に形成したレジスト膜は、EL層の耐熱温度よりも低い温度で硬化する必要がある。そのため、EL層の材料の耐熱温度及びレジスト材料の硬化温度によっては、レジスト膜の硬化が不十分になる場合がある。硬化が不十分なレジスト膜は、加工時に所望の形状から離れた形状をとることがある。その結果、EL層の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。例えば、上面形状が正方形のレジストマスクを形成しようとした場合に、円形の上面形状のレジストマスクが形成され、EL層の上面形状が円形になることがある。
なお、EL層の上面形状を所望の形状とするために、設計パターンと、転写パターンとが、一致するように、あらかじめマスクパターンを補正する技術(OPC(Optical Proximity Correction:光近接効果補正)技術)を用いてもよい。具体的には、OPC技術では、マスクパターン上の図形コーナー部などに補正用のパターンを追加する。
なお、図1Aに示すストライプ配列が適用された画素110においても、例えば、図4Eに示すように、副画素110aを赤色の副画素Rとし、副画素110bを緑色の副画素Gとし、副画素110cを青色の副画素Bとすることができる。
図5A乃至図5Cに示す画素110は、ストライプ配列が適用されている。
図5Aは、各副画素が、長方形の上面形状を有する例であり、図5Bは、各副画素が、2つの半円と長方形をつなげた上面形状を有する例であり、図5Cは、各副画素が、楕円形の上面形状を有する例である。
図5D乃至図5Fに示す画素110は、マトリクス配列が適用されている。
図5Dは、各副画素が、正方形の上面形状を有する例であり、図5Eは、各副画素が、角が丸い略正方形の上面形状を有する例であり、図5Fは、各副画素が、円形の上面形状を有する例である。
図5A乃至図5Fに示す画素110は、副画素110a、110b、110c、110dの、4つの副画素から構成される。副画素110a、110b、110c、110dは、それぞれ異なる色の光を発する発光デバイスを有する。例えば、副画素110a、110b、110c、110dは、それぞれ、赤色、緑色、青色、白色の副画素とすることができる。例えば、図6A及び図6Bに示すように、副画素110a、110b、110c、110dは、それぞれ、赤色、緑色、青色、白色の副画素とすることができる。または、副画素110a、110b、110c、110dは、それぞれ、赤色、緑色、青色、赤外発光の副画素とすることができる。
図5Gでは、1つの画素110が、2行3列で構成されている例を示す。画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、1つの副画素(副画素110d)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110aを有し、中央の列(2列目)に副画素110bを有し、右の列(3列目)に副画素110cを有し、さらに、この3列にわたって、副画素110dを有する。
なお、図2A及び図5Gに示す画素110において、例えば、図6C及び図6Dに示すように、副画素110aを赤色の副画素Rとし、副画素110bを緑色の副画素Gとし、副画素110cを青色の副画素Bとし、副画素110dを白色の副画素Wとすることができる。
本発明の一態様の表示装置を備える電子機器は、副画素Wを用いたフラッシュライト機能、及び、副画素Wを用いた照明機能の一方または双方を有することができる。
ここで、副画素Wが発する白色の光は、フラッシュライトまたはストロボライトのように瞬間的な輝度が高い光にしてもよいし、読書灯などのように演色性の高い光にしてもよい。なお、白色の光を読書灯などに用いる場合においては、白色発光の色温度を低くすればよい。例えば、白色の光を、電球色(例えば2500K以上3250K未満)、または温白色(3250K以上3800K未満)とすることで、使用者の目に優しい光源とすることができる。
ストロボライト機能は、例えば、短い周期で、発光と非発光とを繰り返す構成で実現することができる。また、フラッシュライト機能は、例えば、電気二重層などの原理を利用して瞬間放電することで、閃光を発生させる構成で実現することができる。
例えば、電子機器70にカメラ機能を設ける場合、ストロボライト機能、またはフラッシュライト機能を利用することで、図7Aに示すように、夜間でも電子機器70で画像を撮影することができる。ここで、電子機器70が有する表示装置100は面光源として機能し、被写体に影が生じにくいため、綺麗な画像を撮影することができる。なお、ストロボライト機能、またはフラッシュライト機能は夜間に限られず、使用することができる。電子機器70にストロボライト機能、またはフラッシュライト機能を設ける場合においては、白色発光の色温度を高くすればよい。例えば、電子機器70から射出される光の色温度を、白色(3800K以上4500K未満)、昼白色(4500K以上5500K未満)、あるいは昼光色(5500K以上7100K未満)とすればよい。
また、フラッシュが必要以上に強い光を発することで、本来明るさの強弱がある部分が画像において白一色になってしまう場合がある(いわゆる白飛び)。一方、フラッシュの発光が弱すぎると、暗い部分が画像において黒一色になってしまう場合がある(いわゆる黒潰れ)。これに対して、表示装置が有する受光デバイスで被写体周囲の明るさを検知することで、副画素が有する発光デバイスが最適な光量に調整できる構成にしてもよい。すなわち、電子機器70は、露出計としての機能を有するともいえる。
また、ストロボライト機能及びフラッシュライト機能は、防犯用途または護身用途などに利用することができる。例えば、図7Bに示すように、暴漢に向けて電子機器70を発光させることで、暴漢を怯ませることができる。また、暴漢に襲われるなどの非常時において、冷静に対処して、発光範囲の狭い護身用ライトの光を暴漢の顔に向けるのは難しい場合がある。これに対して、電子機器70が有する表示装置100は面光源であるため、表示装置100の向きが多少ずれていても、表示装置100の発光を暴漢の視野に入れることができる。
なお、図7Bに示すように、防犯用または護身用のフラッシュライトとして機能させる場合、図7Aに示す夜間撮影時よりも、輝度を大きくすることが好ましい。また、表示装置100を複数回、間欠的に発光させることで、より暴漢を怯ませやすくすることができる。さらに電子機器70は、周囲に助けを求めるために、比較的音量の大きなブザー音などの音声を発してもよい。暴漢の顔の近くで音声を発することで、光だけでなく音声によっても暴漢を怯ませることができるため好適である。
また、副画素Wが有する発光デバイスの発光の演色性を高める場合、当該発光デバイスに含まれる発光層の数、または当該発光層に含まれる発光物質の種類を増やすことが好ましい。これにより、より広い波長に強度を有する、ブロードな発光スペクトルを得ることができ、太陽光に近い、より演色性の高い発光を呈することができる。
例えば、図7Cに示すように、演色性の高い発光が可能な電子機器70を読書灯などに用いてもよい。図7Cでは、電子機器70を、支持体72を用いて机74に固定している。このような支持体72を用いることで、電子機器70を読書灯として利用することができる。電子機器70が有する表示装置100は面光源として機能するため、対象(図7Cでは本)に陰影ができにくく、且つ対象からの反射光の分布が緩やかであるため光が映り込みにくい。これにより、対象の視認性が向上し、見やすくなる。また、白色発光の発光デバイスの発光スペクトルはブロードであるため、相対的にブルーライトも軽減されている。このため、電子機器70の使用者の眼精疲労などを軽減することができる。
なお、支持体72の構成は、図7Cに示すものに限られるものではない。なるべく可動域が広くなるように、適宜アーム、または可動部などを設ければよい。また、図7Cにおいて、支持体72は、電子機器70を挟み込む形で把持しているが、本発明はこれに限られるものではない。例えば、磁石、または吸盤などを適宜用いる構成にしてもよい。
上記の照明用途の発光色としては、白色が好ましい。ただし、照明用途の発光色に、特に限定はなく、白色、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色など、実施者が適宜、最適な発光色を一つまたは複数選択することもできる。
本発明の一態様の表示装置は、画素に、受光デバイスを有していてもよい。
図2Aに示す画素110が有する4種類の副画素のうち、3つを、発光デバイスを有する構成とし、残りの1つを、受光デバイスを有する構成としてもよい。
受光デバイスとしては、例えば、pn型またはpin型のフォトダイオードを用いることができる。受光デバイスは、受光デバイスに入射する光を検出し電荷を発生させる光電変換デバイス(光電変換素子ともいう)として機能する。受光デバイスに入射する光量に基づき、受光デバイスから発生する電荷量が決まる。
特に、受光デバイスとして、有機化合物を含む層を有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な表示装置に適用できる。
本発明の一態様では、発光デバイスとして有機ELデバイスを用い、受光デバイスとして有機フォトダイオードを用いる。有機ELデバイス及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機ELデバイスを用いた表示装置に有機フォトダイオードを内蔵することができる。
受光デバイスは、一対の電極間に少なくとも光電変換層として機能する活性層を有する。本明細書等では、一対の電極の一方を画素電極と記し、他方を共通電極と記すことがある。
例えば、副画素110a、110b、110cが、R、G、Bの3色の副画素であり、副画素110dが、受光デバイスを有する副画素であってもよい。このとき、第4の層113dは、少なくとも活性層を有する。
受光デバイスが有する一対の電極のうち、一方の電極は陽極として機能し、他方の電極は陰極として機能する。以下では、画素電極が陽極として機能し、共通電極が陰極として機能する場合を例に挙げて説明する。受光デバイスは、画素電極と共通電極との間に逆バイアスをかけて駆動することで、受光デバイスに入射する光を検出し、電荷を発生させ、電流として取り出すことができる。または、画素電極が陰極として機能し、共通電極が陽極として機能してもよい。
受光デバイスについても、発光デバイスと同様の作製方法を適用することができる。受光デバイスが有する島状の活性層(光電変換層ともいう)は、ファインメタルマスクを用いて形成されるのではなく、活性層となる膜を一面に成膜した後に加工することで形成されるため、島状の活性層を均一の厚さで形成することができる。また、活性層上に犠牲層を設けることで、表示装置の作製工程中に活性層が受けるダメージを低減し、受光デバイスの信頼性を高めることができる。
ここで、受光デバイスと発光デバイスが共通で有する層は、発光デバイスにおける機能と受光デバイスにおける機能とが異なる場合がある。本明細書中では、発光デバイスにおける機能に基づいて構成要素を呼称することがある。例えば、正孔注入層は、発光デバイスにおいて正孔注入層として機能し、受光デバイスにおいて正孔輸送層として機能する。同様に、電子注入層は、発光デバイスにおいて電子注入層として機能し、受光デバイスにおいて電子輸送層として機能する。また、受光デバイスと発光デバイスが共通で有する層は、発光デバイスにおける機能と受光デバイスにおける機能とが同一である場合もある。正孔輸送層は、発光デバイス及び受光デバイスのいずれにおいても、正孔輸送層として機能し、電子輸送層は、発光デバイス及び受光デバイスのいずれにおいても、電子輸送層として機能する。
受光デバイスが有する活性層は、半導体を含む。当該半導体としては、シリコンなどの無機半導体、及び、有機化合物を含む有機半導体が挙げられる。本実施の形態では、活性層が有する半導体として、有機半導体を用いる例を示す。有機半導体を用いることで、発光層と、活性層と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
活性層が有するn型半導体の材料としては、フラーレン(例えばC60フラーレン、C70フラーレン等)、フラーレン誘導体等の電子受容性の有機半導体材料が挙げられる。フラーレンは、サッカーボールのような形状を有し、当該形状はエネルギー的に安定である。フラーレンは、HOMO準位及びLUMO準位の双方が深い(低い)。フラーレンは、LUMO準位が深いため、電子受容性(アクセプター性)が極めて高い。通常、ベンゼンのように、平面にπ電子共役(共鳴)が広がると、電子供与性(ドナー性)が高くなるが、フラーレンは球体形状であるため、π電子が大きく広がっているにも関わらず、電子受容性が高くなる。電子受容性が高いと、電荷分離を高速に効率よく起こすため、受光デバイスとして有益である。C60フラーレン、C70フラーレンともに可視光領域に広い吸収帯を有しており、特にC70フラーレンはC60フラーレンに比べてπ電子共役系が大きく、長波長領域にも広い吸収帯を有するため好ましい。そのほか、フラーレン誘導体としては、[6,6]−Phenyl−C71−butyric acid methyl ester(略称:PC70BM)、[6,6]−Phenyl−C61−butyric acid methyl ester(略称:PC60BM)、1’,1’’,4’,4’’−Tetrahydro−di[1,4]methanonaphthaleno[1,2:2’,3’,56,60:2’’,3’’][5,6]fullerene−C60(略称:ICBA)などが挙げられる。
また、n型半導体の材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、ナフタレン誘導体、アントラセン誘導体、クマリン誘導体、ローダミン誘導体、トリアジン誘導体、キノン誘導体等が挙げられる。
活性層が有するp型半導体の材料としては、銅(II)フタロシアニン(Copper(II)phthalocyanine;CuPc)、テトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)、亜鉛フタロシアニン(Zinc Phthalocyanine;ZnPc)、スズ(II)フタロシアニン(SnPc)、キナクリドン等の電子供与性の有機半導体材料が挙げられる。
また、p型半導体の材料としては、カルバゾール誘導体、チオフェン誘導体、フラン誘導体、芳香族アミン骨格を有する化合物等が挙げられる。さらに、p型半導体の材料としては、ナフタレン誘導体、アントラセン誘導体、ピレン誘導体、トリフェニレン誘導体、フルオレン誘導体、ピロール誘導体、ベンゾフラン誘導体、ベンゾチオフェン誘導体、インドール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、インドロカルバゾール誘導体、ポルフィリン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体、キナクリドン誘導体、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体等が挙げられる。
電子供与性の有機半導体材料のHOMO準位は、電子受容性の有機半導体材料のHOMO準位よりも浅い(高い)ことが好ましい。電子供与性の有機半導体材料のLUMO準位は、電子受容性の有機半導体材料のLUMO準位よりも浅い(高い)ことが好ましい。
電子受容性の有機半導体材料として、球状のフラーレンを用い、電子供与性の有機半導体材料として、平面に近い形状の有機半導体材料を用いることが好ましい。似た形状の分子同士は集まりやすい傾向にあり、同種の分子が凝集すると、分子軌道のエネルギー準位が近いため、キャリア輸送性を高めることができる。
例えば、活性層は、n型半導体とp型半導体と共蒸着して形成することが好ましい。または、活性層は、n型半導体とp型半導体とを積層して形成してもよい。
受光デバイスは、活性層以外の層として、正孔輸送性の高い物質、電子輸送性の高い物質、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。また、上記に限られず、正孔注入性の高い物質、正孔ブロック材料、電子注入性の高い物質、電子ブロック材料などを含む層をさらに有していてもよい。
受光デバイスには低分子化合物及び高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。受光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
例えば、正孔輸送性材料として、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)などの高分子化合物、及び、モリブデン酸化物、ヨウ化銅(CuI)などの無機化合物を用いることができる。また、電子輸送性材料として、酸化亜鉛(ZnO)などの無機化合物を用いることができる。
また、活性層に、ドナーとして機能するPoly[[4,8−bis[5−(2−ethylhexyl)−2−thienyl]benzo[1,2−b:4,5−b’]dithiophene−2,6−diyl]−2,5−thiophenediyl[5,7−bis(2−ethylhexyl)−4,8−dioxo−4H,8H−benzo[1,2−c:4,5−c’]dithiophene−1,3−diyl]]polymer(略称:PBDB−T)、または、PBDB−T誘導体などの高分子化合物を用いることができる。例えば、PBDB−TまたはPBDB−T誘導体にアクセプター材料を分散させる方法などが使用できる。
また、活性層には3種類以上の材料を混合させてもよい。例えば、吸収波長域を拡大する目的で、n型半導体の材料と、p型半導体の材料と、に加えて、第3の材料を混合してもよい。このとき、第3の材料は、低分子化合物でも高分子化合物でもよい。
画素に、発光デバイス及び受光デバイスを有する表示装置では、画素が受光機能を有するため、画像を表示しながら、対象物の接触または近接を検出することができる。例えば、表示装置が有する副画素全てで画像を表示するだけでなく、一部の副画素は、光源としての光を呈し、他の一部の副画素は、光検出を行い、残りの副画素で画像を表示することもできる。
本発明の一態様の表示装置は、表示部に、発光デバイスがマトリクス状に配置されており、当該表示部で画像を表示することができる。また、当該表示部には、受光デバイスがマトリクス状に配置されており、表示部は、画像表示機能に加えて、撮像機能及びセンシング機能の一方または双方を有する。表示部は、イメージセンサまたはタッチセンサに用いることができる。つまり、表示部で光を検出することで、画像を撮像すること、または、対象物(指、手、またはペンなど)の近接もしくは接触を検出することができる。さらに、本発明の一態様の表示装置は、発光デバイスをセンサの光源として利用することができる。したがって、表示装置と別に受光部及び光源を設けなくてもよく、電子機器の部品点数を削減することができる。
本発明の一態様の表示装置では、表示部が有する発光デバイスが発した光を対象物が反射(または散乱)した際、受光デバイスがその反射光(または散乱光)を検出できるため、暗い場所でも、撮像またはタッチ検出が可能である。
受光デバイスをイメージセンサに用いる場合、表示装置は、受光デバイスを用いて、画像を撮像することができる。例えば、本実施の形態の表示装置は、スキャナとして用いることができる。
例えば、イメージセンサを用いて、指紋、掌紋などの生体情報に係るデータを取得することができる。つまり、表示装置に、生体認証用センサを内蔵させることができる。表示装置が生体認証用センサを内蔵することで、表示装置とは別に生体認証用センサを設ける場合に比べて、電子機器の部品点数を少なくでき、電子機器の小型化及び軽量化が可能である。
また、受光デバイスをタッチセンサに用いる場合、表示装置は、受光デバイスを用いて、対象物の近接または接触を検出することができる。
図8A及び図8Bに示す画素は、副画素G、副画素B、副画素R、及び、副画素PSを有する。
図8Aに示す画素には、ストライプ配列が適用されている。図8Bに示す画素には、マトリクス配列が適用されている。
図8C及び図8Dに示す画素は、副画素G、副画素B、副画素R、副画素PS、及び副画素IRSを有する。
図8C及び図8Dでは、1つの画素が、2行3列にわたって設けられている例を示す。上の行(1行目)には、3つの副画素(副画素G、副画素B、副画素R)が設けられている。図8Cでは、下の行(2行目)に、3つの副画素(1つの副画素PSと、2つの副画素IRS)が設けられている。一方、図8Dでは、下の行(2行目)に、2つの副画素(1つの副画素PSと、1つの副画素IRS)が設けられている。図8Cに示すように、上の行と下の行との副画素の配置を揃える構成とすることで、製造プロセスで生じうるゴミなどを効率よく除去することが可能となる。したがって、表示品位の高い表示装置を提供することができる。なお、副画素のレイアウトは図8A乃至図8Dの構成に限られない。
副画素Rは、赤色の光を発する発光デバイスを有する。副画素Gは、緑色の光を発する発光デバイスを有する。副画素Bは、青色の光を発する発光デバイスを有する。
副画素PSと副画素IRSは、それぞれ受光デバイスを有する。副画素PSと副画素IRSが検出する光の波長は特に限定されない。
図8Cにおいて、2つの副画素IRSは、それぞれ独立に受光デバイスを有していてもよく、1つの受光デバイスを共通して有していてもよい。つまり、図8Cに示す画素110は、副画素PS用の受光デバイスを1つ有し、副画素IRS用の受光デバイスを1つまたは2つ有する構成とすることができる。
副画素PSの受光面積は、副画素IRSの受光面積よりも小さい。受光面積が小さいほど、撮像範囲が狭くなり、撮像結果のボケの抑制、及び、解像度の向上が可能となる。そのため、副画素PSを用いることで、副画素IRSを用いる場合に比べて、高精細または高解像度の撮像を行うことができる。例えば、副画素PSを用いて、指紋、掌紋、虹彩、脈形状(静脈形状、動脈形状を含む)、または顔などを用いた個人認証のための撮像を行うことができる。
副画素PSが有する受光デバイスは、可視光を検出することが好ましく、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの色のうち一つまたは複数を検出することが好ましい。また、副画素PSが有する受光デバイスは、赤外光を検出してもよい。
また、副画素IRSは、タッチセンサ(ダイレクトタッチセンサともいう)またはニアタッチセンサ(ホバーセンサ、ホバータッチセンサ、非接触センサ、タッチレスセンサともいう)などに用いることができる。副画素IRSは、用途に応じて、検出する光の波長を適宜決定することができる。例えば、副画素IRSは、赤外光を検出することが好ましい。これにより、暗い場所でも、タッチ検出が可能となる。
ここで、タッチセンサまたはニアタッチセンサは、対象物(指、手、またはペンなど)の近接もしくは接触を検出することができる。
タッチセンサは、表示装置と、対象物とが、直接接することで、対象物を検出できる。また、ニアタッチセンサは、対象物が表示装置に接触しなくても、当該対象物を検出することができる。例えば、表示装置と、対象物との間の距離が0.1mm以上300mm以下、好ましくは3mm以上50mm以下の範囲で表示装置が当該対象物を検出できる構成であると好ましい。当該構成とすることで、表示装置に対象物が直接触れずに操作することが可能となる、別言すると非接触(タッチレス)で表示装置を操作することが可能となる。上記構成とすることで、表示装置に汚れ、または傷がつくリスクを低減することができる、または対象物が表示装置に付着した汚れ(例えば、ゴミ、またはウィルスなど)に直接触れずに、表示装置を操作することが可能となる。
また、本発明の一態様の表示装置は、リフレッシュレートを可変にすることができる。例えば、表示装置に表示されるコンテンツに応じてリフレッシュレートを調整(例えば、1Hz以上240Hz以下の範囲で調整)して消費電力を低減させることができる。また、当該リフレッシュレートに応じて、タッチセンサ、またはニアタッチセンサの駆動周波数を変化させてもよい。例えば、表示装置のリフレッシュレートが120Hzの場合、タッチセンサ、またはニアタッチセンサの駆動周波数を120Hzよりも高い周波数(代表的には240Hz)とする構成とすることができる。当該構成とすることで、低消費電力が実現でき、且つタッチセンサ、またはニアタッチセンサの応答速度を高めることが可能となる。
図8E乃至図8Gに示す表示装置100は、基板351と基板359との間に、受光デバイスを有する層353、機能層355、及び、発光デバイスを有する層357を有する。
機能層355は、受光デバイスを駆動する回路、及び、発光デバイスを駆動する回路を有する。機能層355には、スイッチ、トランジスタ、容量、抵抗、配線、端子などを設けることができる。なお、発光デバイス及び受光デバイスをパッシブマトリクス方式で駆動させる場合には、スイッチ及びトランジスタを設けない構成としてもよい。
例えば、図8Eに示すように、発光デバイスを有する層357において発光デバイスが発した光を、表示装置100に接触した指352が反射することで、受光デバイスを有する層353における受光デバイスがその反射光を検出する。これにより、表示装置100に指352が接触したことを検出することができる。または、図8F及び図8Gに示すように、表示装置に近接している(接触していない)対象物を検出または撮像する機能を有していてもよい。図8Fでは、人の指を検出する例を示し、図8Gでは人の目の周辺、表面、または内部の情報(瞬きの回数、眼球の動き、瞼の動きなど)を検出する例を示す。
1つの画素に、2種類の受光デバイスを搭載することで、表示機能に加えて、2つの機能を追加することができ、表示装置の多機能化が可能となる。
なお、高精細な撮像を行うため、副画素PSは、表示装置が有する全ての画素に設けられていることが好ましい。一方で、タッチセンサまたはニアタッチセンサなどに用いる副画素IRSは、副画素PSを用いた検出に比べて高い精度が求められないため、表示装置が有する一部の画素に設けられていればよい。表示装置が有する副画素IRSの数を、副画素PSの数よりも少なくすることで、検出速度を高めることができる。
以上のように、本発明の一態様の表示装置は、1つの画素に、2種類の受光デバイスを搭載することで、表示機能に加えて、2つの機能を追加することができ、表示装置の多機能化が可能となる。例えば、高精細な撮像機能と、タッチセンサまたはニアタッチセンサなどのセンシング機能と、を実現することができる。また、2種類の受光デバイスを搭載した画素と、別の構成の画素と、を組み合わせることで、表示装置の機能をさらに増やすことができる。例えば、赤外光を発する発光デバイス、または、各種センサデバイスなどを有する画素を用いることができる。
[表示装置の作製方法例]
次に、図9乃至図17を用いて表示装置の作製方法例を説明する。図9A乃至図9Eは、表示装置の作製方法を示す上面図である。図10A乃至図10Cには、図1Aにおける一点鎖線X1−X2間の断面図と、Y1−Y2間の断面図と、を並べて示す。図11乃至図15及び図16Aについても、図10と同様である。図16B乃至図16Dには、図1Aにおける一点鎖線X1−X2間の断面図を示す。図16Eには、図1Aにおける一点鎖線Y1−Y2間の断面図を示す。図17A乃至図17Fには、絶縁層127とその周辺の断面構造を示す拡大図を示す。
表示装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スパッタリング法、CVD法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、ALD法等を用いて形成することができる。CVD法としては、PECVD法、及び、熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
また、表示装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
特に、発光デバイスの作製には、蒸着法などの真空プロセス、及び、スピンコート法、インクジェット法などの溶液プロセスを用いることができる。蒸着法としては、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)、及び、化学蒸着法(CVD法)等が挙げられる。特にEL層に含まれる機能層(正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層など)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、または、マイクロコンタクト法等)などの方法により形成することができる。
また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光、またはX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
まず、図10Aに示すように、トランジスタを含む層101上に、導電膜111を形成する。
そして、導電膜111上に、第1の層113Aを形成し、第1の層113A上に第1の犠牲層118Aを形成し、第1の犠牲層118A上に第2の犠牲層119Aを形成する。
図10Aに示すように、Y1−Y2間の断面図において、第1の層113Aの接続部140側の端部が、第1の犠牲層118Aの端部よりも内側に位置する。例えば、成膜エリアを規定するためのマスク(ファインメタルマスクと区別して、エリアマスク、またはラフメタルマスクなどともいう)を用いることで、第1の層113Aと、第1の犠牲層118A及び第2の犠牲層119Aとで成膜される領域を変えることができる。本発明の一態様においては、レジストマスクを用いて発光デバイスを形成するが、上述のようにエリアマスクと組み合わせることで、比較的簡単なプロセスにて発光デバイスを作製することができる。
導電膜111は、後に加工されることで、画素電極111a、111b、111c、及び、導電層123となる層である。そのため、上述した画素電極に適用可能な構成を導電膜111に適用することができる。導電膜111の形成には、例えば、スパッタリング法または真空蒸着法を用いることができる。
第1の層113Aは、後に、第1の層113aとなる層である。そのため、上述した、第1の層113aに適用可能な構成を適用できる。第1の層113Aは、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。第1の層113Aは、蒸着法を用いて形成することが好ましい。蒸着法を用いた成膜では、プレミックス材料を用いてもよい。なお、本明細書等において、プレミックス材料とは、複数の材料をあらかじめ配合、または混合した複合材料である。
第1の犠牲層118A及び第2の犠牲層119Aには、第1の層113A、及び、後の工程で形成する第2の層113B、第3の層113Cなどの加工条件に対する耐性の高い膜、具体的には、各種EL層とのエッチングの選択比が大きい膜を用いる。
第1の犠牲層118A及び第2の犠牲層119Aの形成には、例えば、スパッタリング法、ALD法(熱ALD法、PEALD法を含む)、CVD法、または真空蒸着法を用いることができる。なお、EL層上に接して形成される第1の犠牲層118Aは、第2の犠牲層119Aよりも、EL層へのダメージが少ない形成方法を用いて形成されることが好ましい。例えば、スパッタリング法よりも、ALD法または真空蒸着法を用いて、第1の犠牲層118Aを形成することが好ましい。また、第1の犠牲層118A及び第2の犠牲層119Aは、EL層の耐熱温度よりも低い温度(代表的には、200℃以下、好ましくは100℃以下、さらに好ましくは80℃以下)で形成する。
第1の犠牲層118A及び第2の犠牲層119Aには、ウェットエッチング法により除去できる膜を用いることが好ましい。ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、第1の犠牲層118A及び第2の犠牲層119Aの加工時に、第1の層113Aに加わるダメージを低減することができる。
また、第1の犠牲層118Aには、第2の犠牲層119Aとのエッチングの選択比の大きい膜を用いることが好ましい。
本実施の形態の表示装置の作製方法における各種犠牲層の加工工程において、EL層を構成する各層(正孔注入層、正孔輸送層、発光層、及び、電子輸送層など)が加工されにくいこと、かつ、EL層を構成する各層の加工工程において、各種犠牲層が加工されにくいことが望ましい。犠牲層の材料、加工方法、及び、EL層の加工方法については、これらを考慮して選択することが望ましい。
なお、本実施の形態では、第1の犠牲層と第2の犠牲層の2層構造で犠牲層を形成する例を示すが、犠牲層は単層構造であってもよく、3層以上の積層構造であってもよい。
第1の犠牲層118A及び第2の犠牲層119Aとしては、それぞれ、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜などの無機膜を用いることができる。
第1の犠牲層118A及び第2の犠牲層119Aには、例えば金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタルなどの金属材料、または該金属材料を含む合金材料を用いることができる。特に、アルミニウムまたは銀などの低融点材料を用いることが好ましい。第1の犠牲層118A及び第2の犠牲層119Aの一方または双方に紫外光を遮蔽することが可能な金属材料を用いることで、EL層に紫外光が照射されることを抑制でき、EL層の劣化を抑制できるため、好ましい。
また、第1の犠牲層118A及び第2の犠牲層119Aには、In−Ga−Zn酸化物などの金属酸化物を用いることができる。第1の犠牲層118Aまたは第2の犠牲層119Aとして、例えば、スパッタリング法を用いて、In−Ga−Zn酸化物膜を形成することができる。さらに、酸化インジウム、In−Zn酸化物、In−Sn酸化物、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)などを用いることができる。またはシリコンを含むインジウムスズ酸化物などを用いることもできる。
なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)を用いてもよい。
また、第1の犠牲層118A及び第2の犠牲層119Aとしては、保護層131、132に用いることができる各種無機絶縁膜を用いることができる。特に、酸化絶縁膜は、窒化絶縁膜に比べてEL層との密着性が高く好ましい。例えば、第1の犠牲層118A及び第2の犠牲層119Aには、酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの無機絶縁材料を用いることができる。第1の犠牲層118Aまたは第2の犠牲層119Aとして、例えば、ALD法を用いて、酸化アルミニウム膜を形成することができる。ALD法を用いることで、下地(特にEL層など)へのダメージを低減できるため好ましい。
例えば、第1の犠牲層118Aとして、ALD法を用いて形成した無機絶縁膜(例えば、酸化アルミニウム膜)を用い、第2の犠牲層119Aとして、スパッタリング法を用いて形成したIn−Ga−Zn酸化物膜を用いることができる。または、第2の犠牲層119Aとして、アルミニウム膜またはタングステン膜を用いてもよい。
第1の犠牲層118A及び第2の犠牲層119Aとして、少なくとも第1の層113Aの最上部に位置する膜に対して化学的に安定な溶媒に、溶解しうる材料を用いてもよい。特に、水またはアルコールに溶解する材料を、第1の犠牲層118Aまたは第2の犠牲層119Aに好適に用いることができる。このような材料の成膜の際には、水またはアルコールなどの溶媒に溶解させた状態で、湿式の成膜方法で塗布した後に、溶媒を蒸発させるための加熱処理を行うことが好ましい。このとき、減圧雰囲気下での加熱処理を行うことで、低温且つ短時間で溶媒を除去できるため、EL層への熱的なダメージを低減することができ、好ましい。
第1の犠牲層118A及び第2の犠牲層119Aは、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコート等の湿式の成膜方法を用いて形成してもよい。
第1の犠牲層118A及び第2の犠牲層119Aには、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。
次に、図10Bに示すように、第2の犠牲層119A上にレジストマスク190aを形成する。レジストマスクは、感光性の樹脂(フォトレジスト)を塗布し、露光及び現像を行うことで形成することができる。
レジストマスクは、ポジ型のレジスト材料及びネガ型のレジスト材料のどちらを用いて作製してもよい。
図9Aに示すように、レジストマスク190aは、後に副画素110aとなる領域と重なる位置に設ける。レジストマスク190aとして、1つの副画素110aに対して、1つの島状のパターンが設けられていることが好ましい。または、レジストマスク190aとして、一列に並ぶ(図9AではY方向に並ぶ)複数の副画素110aに対して1つの帯状のパターンを形成してもよい。
なお、レジストマスク190aは、後に接続部140となる領域と重なる位置にも設けることが好ましい(図9A及び図10B参照)。これにより、導電膜111のうち、後に導電層123となる領域が、表示装置の作製工程中にダメージを受けることを抑制できる。
次に、レジストマスク190aを用いて、第2の犠牲層119Aの一部を除去し、第2の犠牲層119aを形成する(図10C)。第2の犠牲層119aは、後に副画素110aとなる領域と、後に接続部140となる領域と、に残存する。
第2の犠牲層119Aのエッチングの際、第1の犠牲層118Aが当該エッチングにより除去されないように、選択比の高いエッチング条件を用いることが好ましい。また、第2の犠牲層119Aの加工においては、EL層が露出しないため、第1の犠牲層118Aの加工よりも、加工方法の選択の幅は広い。具体的には、第2の犠牲層119Aの加工の際に、エッチングガスに酸素を含むガスを用いた場合でも、EL層の劣化を抑制することができる。
その後、レジストマスク190aを除去する(図10C)。例えば、酸素プラズマを用いたアッシングなどによりレジストマスク190aを除去することができる。または、ウェットエッチングにより、レジストマスク190aを除去してもよい。このとき、第1の犠牲層118Aが最表面に位置し、第1の層113Aは露出していないため、レジストマスク190aの除去工程において、第1の層113Aにダメージが入ることを抑制することができる。また、レジストマスク190aの除去方法の選択の幅を広げることができる。
次に、図11Aに示すように、第2の犠牲層119aをハードマスクに用いて、第1の犠牲層118Aの一部を除去し、第1の犠牲層118aを形成する。
第1の犠牲層118A及び第2の犠牲層119Aは、それぞれ、ウェットエッチング法またはドライエッチング法により加工することができる。第1の犠牲層118A及び第2の犠牲層119Aの加工は、異方性エッチングにより行うことが好ましい。
ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、第1の犠牲層118A及び第2の犠牲層119Aの加工時に、第1の層113Aに加わるダメージを低減することができる。ウェットエッチング法を用いる場合、例えば、現像液、水酸化テトラメチルアンモニウム(TMAH)水溶液、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いた薬液などを用いることが好ましい。
また、ドライエッチング法を用いる場合は、エッチングガスに酸素を含むガスを用いないことで、第1の層113Aの劣化を抑制することができる。ドライエッチング法を用いる場合、例えば、CF、C、SF、CHF、Cl、HO、BCl、またはHeなどの貴ガス(希ガスともいう)を含むガスをエッチングガスに用いることが好ましい。
例えば、第1の犠牲層118Aとして、ALD法を用いて形成した酸化アルミニウム膜を用いる場合、CHFとHeを用いて、ドライエッチング法により第1の犠牲層118Aを加工することができる。また、第2の犠牲層119Aとして、スパッタリング法を用いて形成したIn−Ga−Zn酸化物膜を用いる場合、希釈リン酸を用いて、ウェットエッチング法により第2の犠牲層119Aを加工することができる。
次に、図11Bに示すように、第2の犠牲層119a、第1の犠牲層118aをハードマスクに用いて、第1の層113Aの一部を除去し、第1の層113aを形成する。
これにより、図11Bに示すように、副画素110aに相当する領域では、導電膜111上に、第1の層113a、第1の犠牲層118a、及び、第2の犠牲層119aの積層構造が残存する。また、接続部140に相当する領域では、導電膜111上に第1の犠牲層118aと第2の犠牲層119aとの積層構造が残存する。
以上の工程により、第1の層113A、第1の犠牲層118A、及び、第2の犠牲層119Aの、レジストマスク190aと重なっていない領域を除去することができる。
なお、レジストマスク190aを用いて、第1の層113Aの一部を除去してもよい。その後、レジストマスク190aを除去してもよい。
または、レジストマスク190aを除去せずに、次の工程に進んでもよい。この場合、後の工程で導電膜111を加工する際に、犠牲層だけでなく、レジストマスクもマスクとして使用できる。レジストマスク190a、190b、190cの少なくとも一つを用いて導電膜111を加工することで、犠牲層のみをハードマスクに用いる場合よりも、導電膜111の加工がしやすくなる場合がある。例えば、導電膜111の加工条件、犠牲層の材料、または、導電膜の材料などの選択の幅を広げることができる。
第1の層113Aの加工は、異方性エッチングにより行うことが好ましい。特に、異方性のドライエッチングが好ましい。または、ウェットエッチングを用いてもよい。
ドライエッチング法を用いる場合は、エッチングガスに酸素を含むガスを用いないことで、第1の層113Aの劣化を抑制することができる。
また、エッチングガスに酸素を含むガスを用いてもよい。エッチングガスが酸素を含むことで、エッチングの速度を速めることができる。したがって、エッチング速度を十分な速さに維持しつつ、低パワーの条件でエッチングを行うことができる。そのため、第1の層113Aに与えるダメージを抑制することができる。さらに、エッチング時に生じる反応生成物の付着などの不具合を抑制することができる。
ドライエッチング法を用いる場合、例えば、H、CF、C、SF、CHF、Cl、HO、BCl、またはHe、Arなどの貴ガス(希ガスともいう)のうち、一種以上を含むガスをエッチングガスに用いることが好ましい。または、これらの一種以上と、酸素を含むガスをエッチングガスに用いることが好ましい。または、酸素ガスをエッチングガスに用いてもよい。具体的には、例えば、HとArを含むガス、または、CFとHeを含むガスをエッチングガスに用いることができる。また、例えば、CF、He、及び酸素を含むガスをエッチングガスに用いることができる。
次に、図11Cに示すように、第2の犠牲層119a、及び、導電膜111上に、第2の層113Bを形成し、第2の層113B上に第1の犠牲層118Bを形成し、第1の犠牲層118B上に第2の犠牲層119Bを形成する。
図11Cに示すように、Y1−Y2間の断面図において、第2の層113Bの接続部140側の端部が、第1の犠牲層118Bの端部よりも内側(表示部側)に位置する。
第2の層113Bは、後に、第2の層113bとなる層である。第2の層113bは、第1の層113aと異なる色の光を発する。第2の層113bに適用できる構成及び材料等は、第1の層113aと同様である。第2の層113Bは、第1の層113Aと同様の方法を用いて成膜することができる。
第1の犠牲層118Bは、第1の犠牲層118Aに適用可能な材料を用いて形成することができる。第2の犠牲層119Bは、第2の犠牲層119Aに適用可能な材料を用いて形成することができる。
次に、図11Cに示すように、第2の犠牲層119B上にレジストマスク190bを形成する。
図9Bに示すように、レジストマスク190bは、後に副画素110bとなる領域と重なる位置に設ける。レジストマスク190bとして、1つの副画素110bに対して、1つの島状のパターンが設けられていることが好ましい。または、レジストマスク190bとして、一列に並ぶ複数の副画素110bに対して1つの帯状のパターンを形成してもよい。
レジストマスク190bは、後に接続部140となる領域と重なる位置にも設けてもよい。
次に、レジストマスク190bを用いて、第2の犠牲層119Bの一部を除去し、第2の犠牲層119bを形成する。第2の犠牲層119bは、後に副画素110bとなる領域に残存する。
その後、レジストマスク190bを除去する。そして、第2の犠牲層119bをハードマスクに用いて、第1の犠牲層118Bの一部を除去し、第1の犠牲層118bを形成する。
そして、図12Aに示すように、第2の犠牲層119b、第1の犠牲層118bをハードマスクに用いて、第2の層113Bの一部を除去し、第2の層113bを形成する。
これにより、図12Aに示すように、副画素110bに相当する領域では、導電膜111上に、第2の層113b、第1の犠牲層118b、及び、第2の犠牲層119bの積層構造が残存する。また、接続部140に相当する領域では、導電膜111上に第1の犠牲層118aと第2の犠牲層119aとの積層構造が残存する。
以上の工程により、第2の層113B、第1の犠牲層118B、及び、第2の犠牲層119Bの、レジストマスク190bと重なっていない領域を除去することができる。これらの層の加工には、第1の層113A、第1の犠牲層118A、及び、第2の犠牲層119Aの加工に適用可能な方法を用いることができる。
次に、図12Bに示すように、第2の犠牲層119a、第2の犠牲層119b、及び、導電膜111上に、第3の層113Cを形成し、第3の層113C上に第1の犠牲層118Cを形成し、第1の犠牲層118C上に第2の犠牲層119Cを形成する。
図12Bに示すように、Y1−Y2間の断面図において、第3の層113Cの接続部140側の端部が、第1の犠牲層118Cの端部よりも内側(表示部側)に位置する。
第3の層113Cは、後に、第3の層113cとなる層である。第3の層113cは、第1の層113a及び第2の層113bとは異なる色の光を発する。第3の層113cに適用できる構成及び材料等は、第1の層113aと同様である。第3の層113Cは、第1の層113Aと同様の方法を用いて成膜することができる。
第1の犠牲層118Cは、第1の犠牲層118Aに適用可能な材料を用いて形成することができる。第2の犠牲層119Cは、第2の犠牲層119Aに適用可能な材料を用いて形成することができる。
次に、図12Bに示すように、第2の犠牲層119C上にレジストマスク190cを形成する。
図9Cに示すように、レジストマスク190cは、後に副画素110cとなる領域と重なる位置に設ける。レジストマスク190cとして、1つの副画素110cに対して、1つの島状のパターンが設けられていることが好ましい。または、レジストマスク190cとして、一列に並ぶ複数の副画素110cに対して1つの帯状のパターンを形成してもよい。
レジストマスク190cは、後に接続部140となる領域と重なる位置にも設けてもよい。
次に、レジストマスク190cを用いて、第2の犠牲層119Cの一部を除去し、第2の犠牲層119cを形成する。第2の犠牲層119cは、後に副画素110cとなる領域に残存する。
その後、レジストマスク190cを除去する。そして、第2の犠牲層119cをハードマスクに用いて、第1の犠牲層118Cの一部を除去し、第1の犠牲層118cを形成する。
そして、図12Cに示すように、第2の犠牲層119c、第1の犠牲層118cをハードマスクに用いて、第3の層113Cの一部を除去し、第3の層113cを形成する。
これにより、図12Cに示すように、副画素110cに相当する領域では、導電膜111上に、第3の層113c、第1の犠牲層118c、及び、第2の犠牲層119cの積層構造が残存する。また、接続部140に相当する領域では、導電膜111上に第1の犠牲層118aと第2の犠牲層119aとの積層構造が残存する。
以上の工程により、第3の層113C、第1の犠牲層118C、及び、第2の犠牲層119Cの、レジストマスク190cと重なっていない領域を除去することができる。これらの層の加工には、第1の層113A、第1の犠牲層118A、及び、第2の犠牲層119Aの加工に適用可能な方法を用いることができる。
なお、第1の層113a、第2の層113b、第3の層113cの側面は、それぞれ、被形成面に対して垂直または概略垂直であることが好ましい。例えば、被形成面と、これらの側面との成す角度を、60度以上90度以下とすることが好ましい。
次に、図13Aに示すように、第1の犠牲層118a、118b、118c、及び、第2の犠牲層119a、119b、119cをハードマスクに用いて、導電膜111を加工し、画素電極111a、111b、111c、及び、導電層123を形成する。
導電膜111の加工の際に、トランジスタを含む層101の一部(具体的には、最表面に位置する絶縁層)が加工され、凹部が形成されることがある。以降の説明では、トランジスタを含む層101に凹部が設けられている場合を例に挙げて説明するが、凹部が設けられていなくてもよい。
ここで、導電層123を形成するためには、第1の犠牲層118a、118b、118cのいずれか一つと、第2の犠牲層119a、119b、119cのいずれか一つと、が接続部140に設けられていることが好ましい。第1の犠牲層118a、118b、118cのいずれか二つまたは全てと、第2の犠牲層119a、119b、119cのいずれか二つまたは全てと、が接続部140に設けられていてもよい。犠牲層を接続部140に設けることで、導電膜111のうち、導電層123となる領域が、表示装置の作製工程中にダメージを受けることを抑制できる。したがって、作製工程が最も早い第1の犠牲層118a及び第2の犠牲層119aを形成することが好ましい。
導電膜111は、ウェットエッチング法またはドライエッチング法により加工することができる。導電膜111の加工は、異方性エッチングにより行うことが好ましい。
次に、図13Bに示すように、画素電極111a、111b、111c、導電層123、第1の層113a、第2の層113b、第3の層113c、第1の犠牲層118a、118b、118c、及び、第2の犠牲層119a、119b、119cを覆うように、絶縁膜125Aを形成する。
絶縁膜125Aには、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。また、インジウムガリウム亜鉛酸化物膜などの金属酸化物膜を用いてもよい。
また、絶縁膜125Aは、水及び酸素の少なくとも一方に対するバリア絶縁膜としての機能を有することが好ましい。または、絶縁膜125Aは、水及び酸素の少なくとも一方の拡散を抑制する機能を有することが好ましい。または、絶縁膜125Aは、水及び酸素の少なくとも一方を捕獲、または固着する(ゲッタリングともいう)機能を有することが好ましい。
なお、本明細書等において、バリア絶縁膜とは、バリア性を有する絶縁膜のことを示す。また、本明細書等において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)とする。または、対応する物質を、捕獲、または固着する(ゲッタリングともいう)機能とする。
絶縁膜125Aが、上述のバリア絶縁膜の機能、またはゲッタリング機能を有することで、外部から各発光デバイスに拡散しうる不純物(代表的には、水または酸素)の侵入を抑制することが可能な構成となる。当該構成とすることで、信頼性の優れた表示装置を提供することができる。
次に、図13Cに示すように、絶縁膜125A上に絶縁膜127Aを形成する。
図9Dに示すように、絶縁膜127Aは、導電層123(接続部140)と重なる位置に開口を有するように形成することが好ましい。絶縁膜127Aは、例えば、感光性の樹脂を塗布し、露光及び現像を行うことでパターン形成することができる。
なお、図16Aに示すように、絶縁膜127Aは、画素電極111a、111b、111cと重なる位置にも開口を有するように形成してもよい。
絶縁膜127Aには、有機材料を用いることができる。有機材料としては、例えば、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。また、絶縁膜127Aには、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。また、絶縁膜127Aには、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
絶縁膜127Aの形成方法に特に限定はなく、例えば、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコート等の湿式の成膜方法を用いて形成することができる。特に、スピンコートにより、絶縁膜127Aを形成することが好ましい。
絶縁膜125A及び絶縁膜127Aは、EL層へのダメージが少ない形成方法で成膜されることが好ましい。特に、絶縁膜125Aは、EL層の側面に接して形成されるため、絶縁膜127Aよりも、EL層へのダメージが少ない形成方法で成膜されることが好ましい。また、絶縁膜125A及び絶縁膜127Aは、それぞれ、EL層の耐熱温度よりも低い温度(代表的には、200℃以下、好ましくは100℃以下、さらに好ましくは80℃以下)で形成する。例えば、絶縁膜125Aとして、ALD法を用いて酸化アルミニウム膜を形成することができる。ALD法を用いることで、成膜ダメージを小さくすることができ、また、被覆性の高い膜を成膜可能なため好ましい。
次に、図14Aに示すように、絶縁膜125A及び絶縁膜127Aを加工することで、絶縁層125及び絶縁層127を形成する。絶縁層127は、絶縁層125の側面と凹部上面に接するように形成される。絶縁層125(さらには絶縁層127)は、画素電極111a、111b、111cの側面を覆うように設けられる。これにより、後に形成する膜(EL層を構成する膜、または、共通電極)と、画素電極111a、111b、111cとが接して、発光デバイスがショートすることを抑制できる。さらに、絶縁層125及び絶縁層127は、第1の層113a、第2の層113b、及び、第3の層113cの側面を覆うように設けられることが好ましい。これにより、後に形成する膜がこれらの層の側面と接することを抑制し、発光デバイスがショートすることを抑制できる。また、後の工程において、第1の層113a、第2の層113b、及び、第3の層113cが受けるダメージを抑制することができる。
特に、トランジスタを含む層101の一部(具体的には、最表面に位置する絶縁層)に凹部が設けられていると、画素電極111a、111b、111cの側面全体を、絶縁層125及び絶縁層127で覆うことが可能となり好ましい。
絶縁膜125Aは、ドライエッチング法により加工することが好ましい。絶縁膜125Aの加工は、異方性エッチングにより行うことが好ましい。第1の犠牲層118A及び第2の犠牲層119Aを加工する際に用いることができるエッチングガスを用いて、絶縁膜125Aを加工することができる。
絶縁膜127Aは、例えば、酸素プラズマを用いたアッシングにより加工することが好ましい。
次に、図14Bに示すように、第1の犠牲層118a、118b、118c、及び、第2の犠牲層119a、119b、119cを除去する。これにより、画素電極111a上では第1の層113aが露出し、画素電極111b上では第2の層113bが露出し、画素電極111c上では第3の層113cが露出し、及び、接続部140では、導電層123が露出する。なお、第1の犠牲層118a、118b、118c、及び、第2の犠牲層119a、119b、119cの一部が残存していてもよい。例えば、接続部140等において、犠牲層の、絶縁層125と重なる領域が残存することがある(図14B参照)。
絶縁層125の上面及び絶縁層127の上面の高さは、それぞれ、第1の層113a、第2の層113b、及び、第3の層113cの少なくとも一つの上面の高さと一致または概略一致することが好ましい。また、絶縁層127の上面は平坦な形状を有することが好ましく、凸部または凹部を有していてもよい。
犠牲層の除去工程には、犠牲層の加工工程と同様の方法を用いることができる。特に、ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、第1の犠牲層及び第2の犠牲層を除去する際に、第1の層113a、第2の層113b、及び第3の層113cに加わるダメージを低減することができる。
第1の犠牲層と第2の犠牲層は、別々の工程で除去してもよく、同一の工程で除去してもよい。
また、第1の犠牲層と第2の犠牲層のいずれか一方または双方を、水またはアルコールなどの溶媒に溶解させることで除去してもよい。アルコールとしては、エチルアルコール、メチルアルコール、イソプロピルアルコール(IPA)、またはグリセリンなどが挙げられる。
第1の犠牲層と第2の犠牲層を除去した後に、EL層に含まれる水、及びEL層表面に吸着する水を除去するため、乾燥処理を行ってもよい。例えば、不活性ガス雰囲気または減圧雰囲気下における加熱処理を行うことができる。加熱処理は、基板温度として50℃以上200℃以下、好ましくは60℃以上150℃以下、より好ましくは70℃以上120℃以下の温度で行うことができる。減圧雰囲気とすることで、より低温で乾燥が可能であるため好ましい。
次に、図14Cに示すように、絶縁層125、127、第1の層113a、第2の層113b、及び、第3の層113cを覆うように、第5の層114を形成する。図14Cに示すように、Y1−Y2間の断面図において、第5の層114の接続部140側の端部は、接続部140よりも内側(表示部側)に位置し、第5の層114を形成した後でも導電層123は露出したままである。なお、第5の層114の導電性の高さによっては、接続部140に第5の層114が設けられていてもよい。
第5の層114として用いることができる材料は上述の通りである。第5の層114は、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。また、第5の層114は、プレミックス材料を用いて形成されてもよい。
ここで、絶縁層125及び絶縁層127が設けられていない場合、画素電極111a、111b、111cのいずれかと、第5の層114とが接してしまう恐れがある。これらの層の接触により、第5の層114の導電性が高い場合などには、発光デバイスがショートする恐れがある。しかし、本発明の一態様の表示装置では、絶縁層125、127が、第1の層113a、第2の層113b、第3の層113c、及び、画素電極111a、111b、111cの側面を覆っているため、導電性の高い第5の層114がこれらの層と接することを抑制し、発光デバイスがショートすることを抑制することができる。これにより、発光デバイスの信頼性を高めることができる。
そして、図14Cに示すように、第5の層114上及び導電層123上に共通電極115を形成する。
共通電極115として用いることができる材料は上述の通りである。共通電極115の形成には、例えば、スパッタリング法または真空蒸着法を用いることができる。または、蒸着法で形成した膜と、スパッタリング法で形成した膜を積層させてもよい。
その後、共通電極115上に保護層131を形成し、保護層131上に保護層132を形成する。さらに、樹脂層122を用いて、保護層132上に、基板120を貼り合わせることで、図1Bに示す表示装置100を作製することができる。
保護層131、132に用いることができる材料及び成膜方法は上述の通りである。保護層131、132の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、及び、ALD法などが挙げられる。保護層131と保護層132は、互いに異なる成膜方法を用いて形成された膜であってもよい。また、保護層131、132は、それぞれ、単層構造であってもよく、積層構造であってもよい。
なお、共通電極115の成膜の際には、成膜エリアを規定するためのマスクを用いてもよい。または、共通電極115の成膜に当該マスクを使用せず、図14Cに示す工程の後に、図15A及び図15Bに示す共通電極115の加工工程を行い、その後、保護層131の形成工程に進んでもよい。
図15A及び図9Eに示すように、共通電極115上にレジストマスク190dを形成する。図15AのY2側の端部に、レジストマスク190dが設けられていない部分が存在する。図9Eに示すように、レジストマスク190dは、各副画素及び接続部140と重なる領域に設けられる。つまり、レジストマスク190dが設けられていない領域は、接続部140よりも外側(表示部とは反対側)に位置する。
次に、図15Bに示すように、レジストマスク190dを用いて、共通電極115の一部を除去する。以上により、共通電極115を加工することができる。
なお、レジストマスク190dを用いる場合は、レジストマスク190a、190b、190c、190d、及び、絶縁膜127Aの加工工程が行われるため、上記の一連の作製工程において、5つのフォトマスクを用いることとなる。レジストマスク190dを用いない場合は、レジストマスク190a、190b、190c、及び、絶縁膜127Aの加工工程が行われるため、上記の一連の作製工程において、4つのフォトマスクを用いることとなる一方で、共通電極115の成膜に、成膜エリアを規定するためのマスクを用いることとなる。本発明の一態様の表示装置の作製方法では、島状のEL層を形成するための高精細なパターンのメタルマスクと、画素電極を島状に形成するためのマスクと、画素電極の端部を覆う絶縁層を形成するためのマスクと、を使用する必要がなく、マスクの枚数及びコストを低減することができる。
また、図16Bに示すように、第5の層114を設けず、絶縁層125、127、第1の層113a、第2の層113b、及び、第3の層113cを覆うように、共通電極115を形成してもよい。つまり、それぞれ異なる色の光を発する発光デバイスにおいて、EL層を構成するすべての層が作り分けられていてもよい。このとき、各発光デバイスのEL層は、全て島状に形成される。
ここで、画素電極111a、111b、111cのいずれかと、共通電極115とが接することで、発光デバイスがショートする恐れがある。しかし、本発明の一態様の表示装置では、絶縁層125、127が、第1の層113a、第2の層113b、第3の層113c、及び、画素電極111a、111b、111cの側面を覆っているため、共通電極115がこれらの層と接することを抑制し、発光デバイスがショートすることを抑制することができる。これにより、発光デバイスの信頼性を高めることができる。
また、図16Cに示すように、導電膜111の加工の際に、トランジスタを含む層101の一部(具体的には、最表面に位置する絶縁層)が加工されない場合は、トランジスタを含む層101に凹部が設けられないことがある。
また、図16Dに示すように、絶縁層125を設けなくてもよい。このとき、絶縁層127には、第1の層113a、第2の層113b、及び第3の層113cに与えるダメージの少ない有機材料を用いることが好ましい。例えば、絶縁層127には、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いることが好ましい。
なお、接続部140に第5の層114を設けた場合は、図16Eに示すように、導電層123と共通電極115とが第5の層114を介して電気的に接続される。
図17A乃至図17Fに、絶縁層127とその周辺を含む領域139の断面構造を示す。
図17Aでは、第1の層113aと第2の層113bの厚さが互いに異なる例を示す。絶縁層125の上面の高さは、第1の層113a側では第1の層113aの上面の高さと一致または概略一致しており、第2の層113b側では第2の層113bの上面の高さと一致または概略一致している。そして、絶縁層127の上面は、第1の層113a側が高く、第2の層113b側が低い、なだらかな傾斜を有している。このように、絶縁層125及び絶縁層127の高さは、隣接するEL層の上面の高さと揃っていることが好ましい。または、隣接するEL層のいずれかの上面の高さと揃って、絶縁層127の上面が平坦部を有していてもよい。
図17Bにおいて、絶縁層127の上面は、第1の層113aの上面及び第2の層113bの上面よりも高い領域を有する。また、絶縁層127の上面は、中心に向かって凸状に、なだらかに膨らんだ形状を有する。
図17Cにおいて、絶縁層127が第1の層113aの上面及び第2の層113bの上面より高い領域を有する。また、領域139において、表示装置100は、第1の犠牲層118a及び第2の犠牲層119aの少なくとも一方を有する。また、領域139において、表示装置100は、第1の犠牲層118b及び第2の犠牲層119bの少なくとも一方を有する。犠牲層上に絶縁層125が位置し、絶縁層125上に絶縁層127が位置する。絶縁層127は、犠牲層を介して、第1の層113aと重なる部分と、犠牲層を介して第2の層113bと重なる部分と、を有する。
図17Dにおいて、絶縁層127の上面は、第1の層113aの上面及び第2の層113bの上面よりも低い領域を有する。また、絶縁層127の上面は、中心に向かって凹状に、なだらかに窪んだ形状を有する。
図17Eにおいて、絶縁層125の上面は、第1の層113aの上面及び第2の層113bの上面よりも高い領域を有する。すなわち、第5の層114の被形成面において、絶縁層125が突出し、凸部を形成している。
例えば、犠牲層の高さと揃うまたは概略揃うように絶縁層125を形成する場合には、図17Eに示すように、絶縁層125が突出する形状が形成される場合がある。
図17Fにおいて、絶縁層125の上面は、第1の層113aの上面及び第2の層113bの上面よりも低い領域を有する。すなわち、第5の層114の被形成面において、絶縁層125が凹部を形成している。
このように、絶縁層125及び絶縁層127は様々な形状を適用することができる。
以上のように、本実施の形態の表示装置の作製方法では、島状のEL層は、ファインメタルマスクを用いて形成されるのではなく、EL層を一面に成膜した後に加工することで形成されるため、島状のEL層を均一の厚さで形成することができる。そして、高精細な表示装置または高開口率の表示装置を実現することができる。
各色の発光デバイスを構成する第1の層、第2の層、第3の層はそれぞれ別の工程で形成する。したがって、各EL層を、各色の発光デバイスに適した構成(材料及び膜厚など)で作製することができる。これにより、特性の良好な発光デバイスを作製することができる。
本発明の一態様の表示装置は、画素電極、発光層、及びキャリア輸送層のそれぞれの側面を覆う絶縁層を有する。当該表示装置の作製工程においては、発光層とキャリア輸送層とが積層された状態でEL層が加工されるため、当該表示装置は、発光層に加わるダメージが低減された構成である。また、絶縁層により、画素電極とキャリア注入層または共通電極とが接することが抑制され、発光デバイスがショートすることが抑制された構成である。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置に適用することができる発光デバイスの構成例について図18乃至図22を用いて説明する。
図18A乃至図18Cに示す表示装置500は、赤色の光を発する発光デバイス550R、緑色の光を発する発光デバイス550G、及び青色の光を発する発光デバイス550Bを有する。
図18A及び図18Bに示す発光デバイス550Rは、一対の電極(電極501、電極502)の間に、発光ユニット512R_1を有する。同様に、発光デバイス550Gは発光ユニット512G_1を有し、発光デバイス550Bは発光ユニット512B_1を有する。
つまり、図18A及び図18Bに示す発光デバイス550R、550G、550Bは、それぞれ、1つの発光ユニットを有するシングル構造の発光デバイスである。
図18Cに示す発光デバイス550Rは、一対の電極(電極501、電極502)の間に、電荷発生層531を介して2つの発光ユニット(発光ユニット512R_1、発光ユニット512R_2)が積層された構成を有する。同様に、発光デバイス550Gは発光ユニット512G_1、発光ユニット512G_2を有し、発光デバイス550Bは発光ユニット512B_1、発光ユニット512B_2を有する。
つまり、図18Cに示す発光デバイス550R、550G、550Bは、それぞれ、2つの発光ユニットを有するタンデム構造の発光デバイスである。
図18Cに示す発光デバイス550R、発光デバイス550G、及び発光デバイス550Bのように、複数の発光ユニットが電荷発生層531を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。一方、図18A及び図18Bに示す発光デバイス550R、550G、550Bのように、一対の電極間に1つの発光ユニットを有する構成を、シングル構造と呼ぶ。なお、本明細書等においては、タンデム構造として呼称するが、これに限定されず、例えば、タンデム構造をスタック構造と呼んでもよい。なお、タンデム構造とすることで、高輝度発光が可能な発光デバイスとすることができる。また、タンデム構造は、シングル構造と比べて、同じ輝度を得るために必要な電流を低減できるため、信頼性を高めることができる。
また、図18A乃至図18Cに示す表示装置500のように、発光デバイスごとに発光層を作り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。
図18Cに示す表示装置500は、タンデム構造の発光デバイスを有し、かつ、SBS構造であるといえる。そのため、タンデム構造のメリットと、SBS構造のメリットの両方を併せ持つことができる。なお、図18Cに示す表示装置500は、発光ユニットが直列に2段形成された構造であるため、2段タンデム構造と呼称してもよい。また、図18Cに示す発光デバイス550Rの2段タンデム構造においては、赤色の発光層を有する第1の発光ユニットの上に、赤色の発光層を有する第2の発光ユニットが積層された構造となる。同様に、図18Cに示す発光デバイス550Gの2段タンデム構造においては、緑色の発光層を有する第1の発光ユニットの上に緑色の発光層を有する第2の発光ユニットが積層された構造となり、発光デバイス550Bの2段タンデム構造においては、青色の発光層を有する第1の発光ユニットの上に青色の発光層を有する第2の発光ユニットが積層された構造となる。
電極501は、画素電極として機能し、発光デバイス毎に設けられる。電極502は、共通電極として機能し、複数の発光デバイスに共通に設けられる。
発光ユニットは、少なくとも1層の発光層を有する。発光ユニットが有する発光層の数は問わず、1層、2層、3層、または4層以上とすることができる。
発光ユニット512R_1は、層521、層522、発光層523R、層524等を有する。図18Aは、発光ユニット512R_1が層525を有する例であり、図18Bは、発光ユニット512R_1が層525を有さず、層525が、各発光デバイス間で共通に設けられている例である。このとき、層525を共通層と呼ぶことができる。このように、複数の発光デバイスに1以上の共通層を設けることで、作製工程を簡略化できるため、製造コストを低減することができる。
発光ユニット512R_2は、層522、発光層523R、層524等を有する。なお、図18Cにおいては、層525を共通層として設ける例を示すが、発光デバイスごとに層525を設けてもよい。つまり、層525が発光ユニット512R_2に含まれていてもよい。
層521は、例えば正孔注入性の高い物質を含む層(正孔注入層)などを有する。層522は、例えば正孔輸送性の高い物質を含む層(正孔輸送層)などを有する。層524は、例えば電子輸送性の高い物質を含む層(電子輸送層)などを有する。層525は、例えば電子注入性の高い物質を含む層(電子注入層)などを有する。
または、層521が電子注入層を有し、層522が電子輸送層を有し、層524が正孔輸送層を有し、層525が正孔注入層を有する構成としてもよい。
なお、層522、発光層523R、層524は、発光ユニット512R_1と発光ユニット512R_2とで同一の構成(材料、膜厚など)であってもよく、互いに異なる構成であってもよい。
図18A等においては、層521と、層522と、を分けて明示したがこれに限定されない。例えば、層521が正孔注入層と、正孔輸送層との双方の機能を有する構成とする場合、あるいは層521が電子注入層と、電子輸送層との双方の機能を有する構成とする場合においては、層522を省略してもよい。
また、電荷発生層531は、電極501と電極502との間に電圧を印加したときに、発光ユニット512R_1及び発光ユニット512R_2のうち、一方に電子を注入し、他方に正孔を注入する機能を有する。電荷発生層531は、少なくとも電荷発生領域を有する。
なお、発光デバイス550Rが有する発光層523Rは、赤色の発光を示す発光物質を有し、発光デバイス550Gが有する発光層523Gは緑色の発光を示す発光物質を有し、発光デバイス550Bが有する発光層523Bは、青色の発光を示す発光物質を有する。なお、発光デバイス550G、発光デバイス550Bは、それぞれ、発光デバイス550Rが有する発光層523Rを、発光層523G、発光層523Bに置き換えた構成を有し、そのほかの構成は、発光デバイス550Rと同様である。
なお、層521、層522、層524、層525は、各色の発光デバイスで同一の構成(材料、膜厚など)であってもよく、互いに異なる構成であってもよい。
図18A及び図18Bにおいて、発光ユニット512R_1、発光ユニット512G_1、発光ユニット512B_1を、島状の層として形成することができる。つまり、図18A及び図18Bに示す層113が、図1B等に示す第1の層113a、第2の層113b、または第3の層113cに相当する。
図18Cにおいて、発光ユニット512R_1、電荷発生層531、発光ユニット512R_2を、島状の層として形成することができる。また、発光ユニット512G_1、電荷発生層531、発光ユニット512G_2を、島状の層として形成することができる。発光ユニット512B_1、電荷発生層531、発光ユニット512B_2を、島状の層として形成することができる。つまり、図18Cに示す層113が、図1B等に示す第1の層113a、第2の層113b、または第3の層113cに相当する。
図18B及び図18Cにおいて、層525は、図1Bに示す第5の層114に相当する。
なお、表示装置500において、発光層の発光材料は特に限定されない。例えば、図18Cに示す表示装置500において、発光ユニット512R_1が有する発光層523Rは燐光材料を有し、発光ユニット512R_2が有する発光層523Rは燐光材料を有し、発光ユニット512G_1が有する発光層523Gは蛍光材料を有し、発光ユニット512G_2が有する発光層523Gは蛍光材料を有し、発光ユニット512B_1が有する発光層523Bは蛍光材料を有し、発光ユニット512B_2が有する発光層523Bが有する発光層523Bは蛍光材料を有する構成とすることができる。
または、図18Cに示す表示装置500において、発光ユニット512R_1が有する発光層523Rは燐光材料を有し、発光ユニット512R_2が有する発光層523Rは燐光材料を有し、発光ユニット512G_1が有する発光層523Gは燐光材料を有し、発光ユニット512G_2が有する発光層523Gは燐光材料を有し、発光ユニット512B_1が有する発光層523Bは蛍光材料を有し、発光ユニット512B_2が有する発光層523Bが有する発光層523Bは蛍光材料を有する構成とすることができる。
なお、本発明の一態様の表示装置は、全ての発光層を蛍光材料とする構成、または全ての発光層を燐光材料とする構成としてもよい。
または、図18Cに示す表示装置500において、発光ユニット512R_1が有する発光層523Rを燐光材料とし、発光ユニット512R_2が有する発光層523Rを蛍光材料とする構成、または発光ユニット512R_1が有する発光層523Rを蛍光材料とし、発光ユニット512R_2が有する発光層523Rを燐光材料とする構成、すなわち、1段目の発光層と、2段目の発光層との発光材料を異なる材料で形成する構成としてもよい。なお、ここでの記載については、発光ユニット512R_1、及び発光ユニット512R_2について明示したが、発光ユニット512G_1、及び発光ユニット512G_2、並びに発光ユニット512B_1、及び発光ユニット512B_2についても同様の構成を適用することができる。
図19A及び図19Bに示す表示装置500は、白色の光を発する発光デバイス550Wを複数有する。それぞれの発光デバイス550Wの上には、赤色の光を透過させる着色層545R、緑色の光を透過させる着色層545G、または青色の光を透過させる着色層545Bが設けられる。ここで、着色層545R、着色層545G、及び着色層545Bは、保護層540を介して、発光デバイス550W上に設けられることが好ましい。
図19Aに示す発光デバイス550Wは、一対の電極(電極501、電極502)の間に、発光ユニット512Wを有する。
つまり、図19Aに示す発光デバイス550Wは、1つの発光ユニットを有するシングル構造の発光デバイスである。
発光ユニット512Wは、層521、層522、発光層523Q_1、発光層523Q_2、発光層523Q_3、層524等を有する。また、発光デバイス550Wは、発光ユニット512Wと、電極502との間に層525などを有する。なお、層525を発光ユニット512Wの一部とみなすこともできる。
図19Aに示す発光デバイス550Wにおいて、発光層523Q_1、発光層523Q_2、及び発光層523Q_3の発光が補色の関係となるような発光層を選択することで、発光デバイス550Wから白色発光を得ることができる。なお、ここでは発光ユニット512Wが3層の発光層を有する例を示すが、発光層の数は問わず、例えば、2層であってもよい。
なお、図19Aに示す発光デバイス550Wは、図18Bに示す発光デバイス550Rが有する発光層523Rを、発光層523Q_1乃至発光層523Q_3に置き換えた構成を有し、そのほかの構成は、発光デバイス550Rと同様である。
図19Bに示す発光デバイス550Wは、一対の電極(電極501、電極502)の間に、電荷発生層531を介して2つの発光ユニット(発光ユニット512Q_1、発光ユニット512Q_2)が積層された構成を有する。
発光ユニット512Q_1は、層521、層522、発光層523Q_1、層524等を有する。発光ユニット512Q_2は、層522、発光層523Q_2、層524等を有する。また、発光デバイス550Wは、発光ユニット512Q_2と、電極502との間に層525などを有する。なお、層525を発光ユニット512Q_2の一部とみなすこともできる。
図19Bに示す発光デバイス550Wにおいて、発光層523Q_1と発光層523Q_2の発光が補色の関係となるような発光層を選択することで、発光デバイス550Wから白色発光を得ることができる。なお、ここでは発光ユニット512Q_1、512Q_2がそれぞれ1層の発光層を有する例を示すが、各発光ユニットにおける発光層の数は問わない。例えば、発光ユニット512Q_1、512Q_2は、互いに異なる数の発光層を有していてもよい。例えば、一方の発光ユニットは2層の発光層を有し、他方の発光ユニットは1層の発光層を有していてもよい。
なお、図19Bに示す発光デバイス550Wは、図18Cに示す発光デバイス550Rが有する発光層523Rを、発光層523Q_1等に置き換えた構成を有し、そのほかの構成は、発光デバイス550Rと同様である。
図20乃至図22に示す表示装置500は、赤色の光を発する発光デバイス550R、緑色の光を発する発光デバイス550G、青色の光を発する発光デバイス550B、及び、白色の光を発する発光デバイス550Wを有する。
図20A及び図20Bに示す表示装置は、図18Bに示す発光デバイス550R、550G、550Bに加えて、白色の光を発する発光デバイス550Wを設ける例である。図21Aに示す表示装置は、図18Cに示す発光デバイス550R、550G、550Bに加えて、白色の光を発する発光デバイス550Wを設ける例である。
図20A及び図21Aに示す発光デバイス550Wは、一対の電極(電極501、電極502)の間に、電荷発生層531を介して2つの発光ユニット(発光ユニット512Q_1、発光ユニット512Q_2)が積層された構成を有する。
図20Bに示す発光デバイス550Wは、一対の電極(電極501、電極502)の間に、電荷発生層531を介して3つの発光ユニット(発光ユニット512Q_1、発光ユニット512Q_2、発光ユニット512Q_3)が積層された構成を有する。
発光ユニット512Q_1は、層521、層522、発光層523Q_1、層524等を有する。発光ユニット512Q_2は、層522、発光層523Q_2、層524等を有する。発光ユニット512Q_3は、層522、発光層523Q_3、層524等を有する。
図20A及び図21Aに示す発光デバイス550Wにおいて、発光層523Q_1と発光層523Q_2の発光が補色の関係となるような発光層を選択することで、発光デバイス550Wから白色発光を得ることができる。
図20Bに示す発光デバイス550Wにおいて、発光層523Q_1、発光層523Q_2、及び発光層523Q_3の発光が補色の関係となるような発光層を選択することで、発光デバイス550Wから白色発光を得ることができる。
なお、発光デバイス550Wは、発光デバイス550Rが有する発光層523Rを、発光層523Q_1等に置き換えた構成を有し、そのほかの構成は、発光デバイス550Rと同様である。
図21Bに示す表示装置500は、赤色の光を発する発光デバイス550R、緑色の光を発する発光デバイス550G、青色の光を発する発光デバイス550B、及び、白色の光を発する発光デバイス550Wの全てが、3つの発光ユニットを積層した3段タンデム構造である例である。図21Bにおいて、発光デバイス550Rは、発光ユニット512R_2上にさらに電荷発生層531を介して発光ユニット512R_3が積層されている。発光ユニット512R_3は、層522、発光層523R、層524等を有する。発光ユニット512R_3は、発光ユニット512R_2と同様の構成を適用することができる。また、発光デバイス550Gが有する発光ユニット512G_3、発光デバイス550Bが有する発光ユニット512B_3、発光デバイス550Wが有する発光ユニット512Q_3も同様である。
図22Aでは、図18Aに示す発光デバイス550R、550G、550Bに加えて、白色の光を発する発光デバイス550Wを設ける例である。
図22Aに示す発光デバイス550Wは、一対の電極(電極501、電極502)の間に、電荷発生層531を介してn個の発光ユニット(nは2以上の整数)が積層された構成を有する。発光デバイス550Wは、発光ユニット512Q_1から発光ユニット512Q_nのn個の発光ユニットを有し、これらの発光ユニットからの光が補色の関係となることで、白色光を発することができる。
図22Bでは、赤色の光を発する発光デバイス550R、緑色の光を発する発光デバイス550G、青色の光を発する発光デバイス550B、及び、白色の光を発する発光デバイス550Wの全てが、n個の発光ユニット(nは2以上の整数)が積層された構成を有する。発光デバイス550Rは、それぞれ赤色の光を発する発光層を有する、発光ユニット512R_1から発光ユニット512R_nのn個の発光ユニットを有する。発光デバイス550Gは、それぞれ緑色の光を発する発光層を有する、発光ユニット512G_1から発光ユニット512G_nのn個の発光ユニットを有する。発光デバイス550Bは、それぞれ青色の光を発する発光層を有する、発光ユニット512B_1から発光ユニット512B_nのn個の発光ユニットを有する。
このように、発光ユニットの積層数を増やすことにより、同じ電流量で発光デバイスから得られる輝度を、積層数に応じて高めることができる。また、発光ユニットの積層数を増やすことにより、同じ輝度を得るために必要な電流を低減できるため、発光デバイスの消費電力を、積層数に応じて低減することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、本発明の一態様の表示装置について図23乃至図25を用いて説明する。
本実施の形態の表示装置は、高解像度な表示装置または大型な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置の表示部に用いることができる。
[表示装置100A]
図23に、表示装置100Aの斜視図を示し、図24Aに、表示装置100Aの断面図を示す。
表示装置100Aは、基板152と基板151とが貼り合わされた構成を有する。図23では、基板152を破線で明示している。
表示装置100Aは、表示部162、回路164、配線165等を有する。図23では表示装置100AにIC173及びFPC172が実装されている例を示している。そのため、図23に示す構成は、表示装置100A、IC(集積回路)、及びFPCを有する表示モジュールということもできる。
回路164としては、例えば走査線駆動回路を用いることができる。
配線165は、表示部162及び回路164に信号及び電力を供給する機能を有する。当該信号及び電力は、外部からFPC172を介して配線165に入力されるか、またはIC173から配線165に入力される。
図23では、COG(Chip On Glass)方式またはCOF(Chip On Film)方式等により、基板151にIC173が設けられている例を示す。IC173は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100A及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
図24Aに、表示装置100Aの、FPC172を含む領域の一部、回路164の一部、表示部162の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図24Aに示す表示装置100Aは、基板151と基板152の間に、トランジスタ201、トランジスタ205、赤色の光を発する発光デバイス130a、緑色の光を発する発光デバイス130b、及び、青色の光を発する発光デバイス130c等を有する。
ここで、表示装置の画素が、互いに異なる色の光を発する発光デバイスを有する副画素を3種類有する場合、当該3つの副画素としては、R、G、Bの3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。当該副画素を4つ有する場合、当該4つの副画素としては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素などが挙げられる。
発光デバイス130a、130b、130cは、画素電極とEL層との間に導電層(導電層126a、126b、126c)を有する点以外は、それぞれ、図1Bに示す積層構造と同様の構造を有する。発光デバイス130aは導電層126aを有し、発光デバイス130bは導電層126bを有し、発光デバイス130cは導電層126cを有する。発光デバイスの詳細は実施の形態1を参照できる。画素電極111a、111b、111c、導電層126a、126b、126c、第1の層113a、第2の層113b、及び、第3の層113cの側面は、それぞれ、絶縁層125、127によって覆われている。第1の層113a、第2の層113b、第3の層113c、及び、絶縁層125、127上に、第5の層114が設けられ、第5の層114上に共通電極115が設けられている。また、発光デバイス130a、130b、130c上にはそれぞれ、保護層131が設けられている。保護層131上には保護層132が設けられている。
保護層132と基板152は接着層142を介して接着されている。発光デバイスの封止には、固体封止構造または中空封止構造などが適用できる。図24Aでは、基板152と基板151との間の空間が、接着層142で充填されており、固体封止構造が適用されている。または、当該空間を不活性ガス(窒素またはアルゴンなど)で充填し、中空封止構造を適用してもよい。このとき、接着層142は、発光デバイスと重ならないように設けられていてもよい。また、当該空間を、枠状に設けられた接着層142とは異なる樹脂で充填してもよい。
画素電極111a、111b、111cは、それぞれ、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。
画素電極111a、111b、111cには、絶縁層214に設けられた開口を覆うように凹部が形成される。当該凹部には、層128が埋め込まれていることが好ましい。そして、画素電極111a及び層128上に導電層126aを形成し、画素電極111b及び層128上に導電層126bを形成し、画素電極111c及び層128上に導電層126cを形成することが好ましい。導電層126a、126b、126cは、画素電極と呼ぶこともできる。
層128は、画素電極111a、111b、111cの凹部を平坦化する機能を有する。層128を設けることで、EL層の被形成面の凹凸を低減し、被覆性を向上することができる。また、画素電極111a、111b、111c及び層128上に、画素電極111a、111b、111cと電気的に接続される導電層126a、126b、126cを設けることで、画素電極111a、111b、111cの凹部と重なる領域も発光領域として使用できる場合がある。これにより、画素の開口率を高めることができる。
層128は、絶縁層であってもよく、導電層であってもよい。層128には、各種無機絶縁材料、有機絶縁材料、及び導電材料を適宜用いることができる。特に、層128は、絶縁材料を用いて形成されることが好ましい。
層128としては、有機材料を有する絶縁層を好適に用いることができる。例えば、層128として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、層128として、感光性の樹脂を用いることができる。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
感光性の樹脂を用いることにより、露光及び現像の工程のみで層128を作製することができ、ドライエッチング、あるいはウェットエッチング等による画素電極111a、111b、111cの表面への影響を低減することができる。また、ネガ型の感光性樹脂を用いて層128を形成することにより、絶縁層214の開口の形成に用いるフォトマスク(露光マスク)と同一のフォトマスクを用いて、層128を形成できる場合がある。
導電層126aは、画素電極111a上及び層128上に設けられる。導電層126aは、画素電極111aの上面に接する第1領域と、層128の上面に接する第2領域と、を有する。第1領域と接する画素電極111aの上面の高さと、第2領域と接する層128の上面の高さは、一致または概略一致することが好ましい。
同様に、導電層126bは、画素電極111b上及び層128上に設けられる。導電層126bは、画素電極111bの上面に接する第1領域と、層128の上面に接する第2領域と、を有する。第1領域と接する画素電極111bの上面の高さと、第2領域と接する層128の上面の高さは、一致または概略一致することが好ましい。
導電層126cは、画素電極111c上及び層128上に設けられる。導電層126cは、画素電極111cの上面に接する第1領域と、層128の上面に接する第2領域と、を有する。第1領域と接する画素電極111cの上面の高さと、第2領域と接する層128の上面の高さは、一致または概略一致することが好ましい。
画素電極は可視光を反射する材料を含み、共通電極115(対向電極と呼ぶこともできる)は可視光を透過する材料を含む。
表示装置100Aは、トップエミッション型である。発光デバイスが発する光は、基板152側に射出される。基板152には、可視光に対する透過性が高い材料を用いることが好ましい。
基板151から絶縁層214までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
トランジスタ201及びトランジスタ205は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
基板151上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
トランジスタを覆う絶縁層の少なくとも一層に、水及び水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置100Aの端部近傍に開口を有することが好ましい。これにより、表示装置100Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置100Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置100Aの端部に有機絶縁膜が露出しないようにしてもよい。
平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。また、絶縁層214を、有機絶縁膜と、無機絶縁膜との積層構造にしてもよい。絶縁層214の最表層は、エッチング保護膜としての機能を有することが好ましい。これにより、画素電極111aまたは導電層126aなどの加工時に、絶縁層214に凹部が形成されることを抑制することができる。または、絶縁層214には、画素電極111aまたは導電層126aなどの加工時に、凹部が設けられてもよい。
図24Aに示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部162に不純物が入り込むことを抑制できる。従って、表示装置100Aの信頼性を高めることができる。
トランジスタ201及びトランジスタ205は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、単結晶半導体、または単結晶半導体以外の結晶性を有する半導体(微結晶半導体、多結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。単結晶半導体、または結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inを4としたとき、Gaが1以上3以下であり、Znが2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inを5としたときに、Gaが0.1より大きく2以下であり、Znが5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inを1としたときに、Gaが0.1より大きく2以下であり、Znが0.1より大きく2以下である場合を含む。
回路164が有するトランジスタと、表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
図24B及び図24Cに、トランジスタの他の構成例を示す。
トランジスタ209及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層231、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、少なくとも導電層223とチャネル形成領域231iとの間に位置する。さらに、トランジスタを覆う絶縁層218を設けてもよい。
図24Bに示すトランジスタ209では、絶縁層225が半導体層231の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
一方、図24Cに示すトランジスタ210では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、図24Cに示す構造を作製できる。図24Cでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。
基板151の、基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166及び接続層242を介してFPC172と電気的に接続されている。導電層166は、画素電極111a、111b、111cと同一の導電膜を加工して得られた導電膜と、導電層126a、126b、126cと同一の導電膜を加工して得られた導電膜と、の積層構造である例を示す。接続部204の上面では、導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
基板152の基板151側の面には、遮光層117を設けることが好ましい。また、基板152の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
発光デバイスを覆う保護層131及び保護層132を設けることで、発光デバイスに水などの不純物が入り込むことを抑制し、発光デバイスの信頼性を高めることができる。
表示装置100Aの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層131または保護層132とが互いに接することが好ましい。特に、無機絶縁膜同士が接することが好ましい。これにより、有機絶縁膜を介して外部から表示部162に不純物が入り込むことを抑制することができる。従って、表示装置100Aの信頼性を高めることができる。
基板151及び基板152には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光デバイスからの光を取り出す側の基板には、該光を透過する材料を用いる。基板151及び基板152に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板151または基板152として偏光板を用いてもよい。
基板151及び基板152としては、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板151及び基板152の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
接着層142としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料、または、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、または、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層、及び、発光デバイスが有する導電層(画素電極または共通電極として機能する導電層)にも用いることができる。
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
[表示装置100B]
図25に示す表示装置100Bは、ボトムエミッション型である点で、表示装置100Aと主に相違する。なお、表示装置100Aと同様の部分については説明を省略する。
発光デバイスが発する光は、基板151側に射出される。基板151には、可視光に対する透過性が高い材料を用いることが好ましい。一方、基板152に用いる材料の透光性は問わない。
基板151とトランジスタ201との間、基板151とトランジスタ205との間には、遮光層117を形成することが好ましい。図25では、基板151上に遮光層117が設けられ、遮光層117上に絶縁層153が設けられ、絶縁層153上にトランジスタ201、205などが設けられている例を示す。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の表示装置について図26乃至図29を用いて説明する。
本実施の形態の表示装置は、高精細な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、腕時計型、ブレスレット型などの情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器など、頭部に装着可能なウェアラブル機器の表示部に用いることができる。
[表示モジュール]
図26Aに、表示モジュール280の斜視図を示す。表示モジュール280は、表示装置100Cと、FPC290と、を有する。なお、表示モジュール280が有する表示装置は表示装置100Cに限られず、後述する表示装置100Dまたは表示装置100Eであってもよい。
表示モジュール280は、基板291及び基板292を有する。表示モジュール280は、表示部281を有する。表示部281は、表示モジュール280における画像を表示する領域であり、後述する画素部284に設けられる各画素からの光を視認できる領域である。
図26Bに、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部282と、回路部282上の画素回路部283と、画素回路部283上の画素部284と、が積層されている。また、基板291上の画素部284と重ならない部分に、FPC290と接続するための端子部285が設けられている。端子部285と回路部282とは、複数の配線により構成される配線部286により電気的に接続されている。
画素部284は、周期的に配列した複数の画素284aを有する。図26Bの右側に、1つの画素284aの拡大図を示している。画素284aは、発光色が互いに異なる発光デバイス130a、130b、130cを有する。複数の発光デバイスは、図26Bに示すようにストライプ配列で配置することができる。また、デルタ配列、または、ペンタイル配列など様々な発光デバイスの配列方法を適用することができる。
画素回路部283は、周期的に配列した複数の画素回路283aを有する。
1つの画素回路283aは、1つの画素284aが有する3つの発光デバイスの発光を制御する回路である。1つの画素回路283aは、1つの発光デバイスの発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路283aは、1つの発光デバイスにつき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースまたはドレインの一方にはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。
回路部282は、画素回路部283の各画素回路283aを駆動する回路を有する。例えば、ゲート線駆動回路、及び、ソース線駆動回路の一方または双方を有することが好ましい。このほか、演算回路、メモリ回路、及び電源回路等の少なくとも一つを有していてもよい。
FPC290は、外部から回路部282にビデオ信号または電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。
表示モジュール280は、画素部284の下側に画素回路部283及び回路部282の一方または双方が重ねて設けられた構成とすることができるため、表示部281の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部281の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素284aを極めて高密度に配置することが可能で、表示部281の精細度を極めて高くすることができる。例えば、表示部281には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素284aが配置されることが好ましい。
このような表示モジュール280は、極めて高精細であることから、ヘッドマウントディスプレイなどのVR向け機器、またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール280の表示部を視認する構成の場合であっても、表示モジュール280は極めて高精細な表示部281を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール280はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計などの装着型の電子機器の表示部に好適に用いることができる。
[表示装置100C]
図27に示す表示装置100Cは、基板301、発光デバイス130a、130b、130c、容量240、及び、トランジスタ310を有する。
基板301は、図26A及び図26Bにおける基板291に相当する。基板301から絶縁層255bまでの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
トランジスタ310は、基板301にチャネル形成領域を有するトランジスタである。基板301としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ310は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、及び、絶縁層314を有する。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層314は、導電層311の側面を覆って設けられる。
また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられている。
また、トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に容量240が設けられている。
容量240は、導電層241と、導電層245と、これらの間に位置する絶縁層243を有する。導電層241は容量240の一方の電極として機能し、導電層245は容量240の他方の電極として機能し、絶縁層243は容量240の誘電体として機能する。
導電層241は絶縁層261上に設けられ、絶縁層254に埋め込まれている。導電層241は、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられている。
容量240を覆って、絶縁層255aが設けられ、絶縁層255a上に絶縁層255bが設けられ、絶縁層255b上に発光デバイス130a、130b、130c等が設けられている。本実施の形態では、発光デバイス130a、130b、130cが、図1Bに示す積層構造と同様の構造を有する例を示す。画素電極111a、111b、111c、第1の層113a、第2の層113b、及び、第3の層113cの側面は、それぞれ、絶縁層125、127によって覆われている。第1の層113a、第2の層113b、第3の層113c、及び、絶縁層125、127上に、第5の層114が設けられ、第5の層114上に共通電極115が設けられている。また、発光デバイス130a、130b、130c上には保護層131が設けられている。保護層131上には保護層132が設けられており、保護層132上には、樹脂層122によって基板120が貼り合わされている。発光デバイスから基板120までの構成要素についての詳細は、実施の形態1を参照することができる。基板120は、図26Aにおける基板292に相当する。
絶縁層255a、255bとしては、それぞれ、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの各種無機絶縁膜を好適に用いることができる。絶縁層255aとしては、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜などの酸化絶縁膜または酸化窒化絶縁膜を用いることが好ましい。絶縁層255bとしては、窒化シリコン膜、窒化酸化シリコン膜などの窒化絶縁膜または窒化酸化絶縁膜を用いることが好ましい。より具体的には、絶縁層255aとして酸化シリコン膜を用い、絶縁層255bとして窒化シリコン膜を用いることが好ましい。絶縁層255bは、エッチング保護膜としての機能を有することが好ましい。または、絶縁層255aとして、窒化絶縁膜または窒化酸化絶縁膜を用い、絶縁層255bとして、酸化絶縁膜または酸化窒化絶縁膜を用いてもよい。本実施の形態では、絶縁層255bに凹部が設けられている例を示すが、絶縁層255bに凹部が設けられていなくてもよい。
発光デバイスの画素電極は、絶縁層255a、255bに埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、及び、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層255bの上面の高さと、プラグ256の上面の高さは、一致または概略一致している。プラグには各種導電材料を用いることができる。
なお、本明細書等において、「Aの高さとBの高さが一致または概略一致する」とは、Aの高さとBの高さが一致している場合を含み、かつ、Aの高さとBの高さが一致するように作製された際の製造上の誤差によりAの高さとBの高さに差が生じている場合を含む。
例えば、絶縁層261を形成し、絶縁層261に開口を設け、当該開口を埋めるようにプラグ271となる導電層を形成した後、化学機械研磨(CMP)法などを用いて平坦化処理を施す。これにより、プラグ271の上面の高さと絶縁層261の上面の高さが一致または概略一致した構成を実現することができる。
[表示装置100D]
図28に示す表示装置100Dは、トランジスタの構成が異なる点で、表示装置100Cと主に相違する。なお、表示装置100Cと同様の部分については説明を省略することがある。
トランジスタ320は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタ(OSトランジスタ)である。
トランジスタ320は、半導体層321、絶縁層323、導電層324、一対の導電層325、絶縁層326、及び、導電層327を有する。
基板331は、図26A及び図26Bにおける基板291に相当する。基板331から絶縁層255bまでの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。基板331としては、絶縁性基板または半導体基板を用いることができる。
基板331上に、絶縁層332が設けられている。絶縁層332は、基板331から水または水素などの不純物がトランジスタ320に拡散すること、及び半導体層321から絶縁層332側に酸素が脱離することを防ぐバリア層として機能する。絶縁層332としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
絶縁層332上に導電層327が設けられ、導電層327を覆って絶縁層326が設けられている。導電層327は、トランジスタ320の第1のゲート電極として機能し、絶縁層326の一部は、第1のゲート絶縁層として機能する。絶縁層326の少なくとも半導体層321と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層326の上面は、平坦化されていることが好ましい。
半導体層321は、絶縁層326上に設けられる。半導体層321は、半導体特性を有する金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。半導体層321に好適に用いることのできる材料の詳細については後述する。
一対の導電層325は、半導体層321上に接して設けられ、ソース電極及びドレイン電極として機能する。
また、一対の導電層325の上面及び側面、並びに半導体層321の側面等を覆って絶縁層328が設けられ、絶縁層328上に絶縁層264が設けられている。絶縁層328は、半導体層321に絶縁層264等から水または水素などの不純物が拡散すること、及び半導体層321から酸素が脱離することを防ぐバリア層として機能する。絶縁層328としては、上記絶縁層332と同様の絶縁膜を用いることができる。
絶縁層328及び絶縁層264に、半導体層321に達する開口が設けられている。当該開口の内部において、絶縁層264、絶縁層328、及び導電層325の側面、並びに半導体層321の上面に接する絶縁層323と、導電層324とが埋め込まれている。導電層324は、第2のゲート電極として機能し、絶縁層323は第2のゲート絶縁層として機能する。
導電層324の上面、絶縁層323の上面、及び絶縁層264の上面は、それぞれ高さが一致または概略一致するように平坦化処理され、これらを覆って絶縁層329及び絶縁層265が設けられている。
絶縁層264及び絶縁層265は、層間絶縁層として機能する。絶縁層329は、トランジスタ320に絶縁層265等から水または水素などの不純物が拡散することを防ぐバリア層として機能する。絶縁層329としては、上記絶縁層328及び絶縁層332と同様の絶縁膜を用いることができる。
一対の導電層325の一方と電気的に接続するプラグ274は、絶縁層265、絶縁層329、及び絶縁層264に埋め込まれるように設けられている。ここで、プラグ274は、絶縁層265、絶縁層329、絶縁層264、及び絶縁層328のそれぞれの開口の側面、及び導電層325の上面の一部を覆う導電層274aと、導電層274aの上面に接する導電層274bとを有することが好ましい。このとき、導電層274aとして、水素及び酸素が拡散しにくい導電材料を用いることが好ましい。
表示装置100Dにおける、絶縁層254から基板120までの構成は、表示装置100Cと同様である。
[表示装置100E]
図29に示す表示装置100Eは、基板301にチャネルが形成されるトランジスタ310と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320とが積層された構成を有する。なお、表示装置100C、100Dと同様の部分については説明を省略することがある。
トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に導電層251が設けられている。また導電層251を覆って絶縁層262が設けられ、絶縁層262上に導電層252が設けられている。導電層251及び導電層252は、それぞれ配線として機能する。また、導電層252を覆って絶縁層263及び絶縁層332が設けられ、絶縁層332上にトランジスタ320が設けられている。また、トランジスタ320を覆って絶縁層265が設けられ、絶縁層265上に容量240が設けられている。容量240とトランジスタ320とは、プラグ274により電気的に接続されている。
トランジスタ320は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ310は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ310及びトランジスタ320は、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。
このような構成とすることで、発光デバイスの直下に画素回路だけでなく駆動回路等を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示装置を小型化することが可能となる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、本発明の一態様の表示装置に適用することのできるトランジスタの構成例について説明する。特に、チャネルが形成される半導体にシリコンを含むトランジスタを用いる場合について説明する。
本発明の一態様は、発光デバイスと、画素回路と、を有する表示装置である。表示装置は、例えば、それぞれ赤色(R)、緑色(G)、または青色(B)の光を発する3種類の発光デバイスを有することで、フルカラーの表示装置を実現できる。
発光デバイスを駆動する画素回路に含まれるトランジスタの全てに、チャネルが形成される半導体層にシリコンを有するトランジスタを用いることが好ましい。シリコンとしては、単結晶シリコン、多結晶シリコン、非晶質シリコンなどが挙げられる。特に、半導体層に低温ポリシリコン(LTPS(Low Temperature Poly Silicon))を有するトランジスタ(以下、LTPSトランジスタともいう)を用いることが好ましい。LTPSトランジスタは、電界効果移動度が高く、周波数特性が良好である。
LTPSトランジスタなどのシリコンを用いたトランジスタを適用することで、高周波数で駆動する必要のある回路(例えばソースドライバ回路)を表示部と同一基板上に作り込むことができる。これにより、表示装置に実装される外部回路を簡略化でき、部品コスト及び実装コストを削減することができる。
また、画素回路に含まれるトランジスタの少なくとも一に、チャネルが形成される半導体に金属酸化物(以下、酸化物半導体ともいう)を有するトランジスタ(以下、OSトランジスタともいう)を用いることが好ましい。OSトランジスタは、非晶質シリコンと比較して電界効果移動度が極めて高い。また、OSトランジスタは、オフ状態におけるソース−ドレイン間のリーク電流(以下、オフ電流ともいう)が著しく小さく、当該トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。また、OSトランジスタを適用することで、表示装置の消費電力を低減することができる。
画素回路に含まれるトランジスタの一部に、LTPSトランジスタを用い、他の一部にOSトランジスタを用いることで、消費電力が低く、駆動能力の高い表示装置を実現することができる。より好適な例としては、配線間の導通、非導通を制御するためのスイッチとして機能するトランジスタなどにOSトランジスタを適用し、電流を制御するトランジスタなどにLTPSトランジスタを適用することが好ましい。
例えば、画素回路に設けられるトランジスタの一は、発光デバイスに流れる電流を制御するためのトランジスタとして機能し、駆動トランジスタとも呼ぶことができる。駆動トランジスタのソース及びドレインの一方は、発光デバイスの画素電極と電気的に接続される。当該駆動トランジスタには、LTPSトランジスタを用いることが好ましい。これにより、画素回路において発光デバイスに流れる電流を大きくできる。
一方、画素回路に設けられるトランジスタの他の一は、画素の選択、非選択を制御するためのスイッチとして機能し、選択トランジスタとも呼ぶことができる。選択トランジスタのゲートはゲート線と電気的に接続され、ソース及びドレインの一方は、ソース線(信号線)と電気的に接続される。選択トランジスタには、OSトランジスタを適用することが好ましい。これにより、フレーム周波数を著しく小さく(例えば1fps以下)しても、画素の階調を維持することができるため、静止画を表示する際にドライバを停止することで、消費電力を低減することができる。
以下では、より具体的な構成例について、図面を参照して説明する。
[表示装置の構成例2]
図30Aに、表示装置10のブロック図を示す。表示装置10は、表示部11、駆動回路部12、駆動回路部13などを有する。
表示部11は、マトリクス状に配置された複数の画素30を有する。画素30は、副画素21R、副画素21G、及び副画素21Bを有する。副画素21R、副画素21G、及び副画素21Bは、それぞれ表示デバイスとして機能する発光デバイスを有する。
画素30は、配線GL、配線SLR、配線SLG、及び配線SLBと電気的に接続されている。配線SLR、配線SLG、及び配線SLBは、それぞれ駆動回路部12と電気的に接続されている。配線GLは、駆動回路部13と電気的に接続されている。駆動回路部12は、ソース線駆動回路(ソースドライバともいう)として機能し、駆動回路部13は、ゲート線駆動回路(ゲートドライバともいう)として機能する。配線GLは、ゲート線として機能し、配線SLR、配線SLG、及び配線SLBは、それぞれソース線として機能する。
副画素21Rは、赤色の光を呈する発光デバイスを有する。副画素21Gは、緑色の光を呈する発光デバイスを有する。副画素21Bは、青色の光を呈する発光デバイスを有する。これにより、表示装置10はフルカラーの表示を行うことができる。なお、画素30は、他の色の光を呈する発光デバイスを有する副画素を有していてもよい。例えば画素30は、上記3つの副画素に加えて、白色の光を呈する発光デバイスを有する副画素、または黄色の光を呈する発光デバイスを有する副画素などを有していてもよい。
配線GLは、行方向(配線GLの延伸方向)に配列する副画素21R、副画素21G、及び副画素21Bと電気的に接続されている。配線SLR、配線SLG、及び配線SLBは、それぞれ、列方向(配線SLR等の延伸方向)に配列する副画素21R、副画素21G、または副画素21B(図示しない)と電気的に接続されている。
〔画素回路の構成例〕
図30Bに、上記副画素21R、副画素21G、及び副画素21Bに適用することのできる画素21の回路図の一例を示す。画素21は、トランジスタM1、トランジスタM2、トランジスタM3、容量C1、及び発光デバイスELを有する。また、画素21には、配線GL及び配線SLが電気的に接続される。配線SLは、図30Aで示した配線SLR、配線SLG、及び配線SLBのうちのいずれかに対応する。
トランジスタM1は、ゲートが配線GLと電気的に接続され、ソース及びドレインの一方が配線SLと電気的に接続され、他方が容量C1の一方の電極、及びトランジスタM2のゲートと電気的に接続される。トランジスタM2は、ソース及びドレインの一方が配線ALと電気的に接続され、ソース及びドレインの他方が発光デバイスELの一方の電極、容量C1の他方の電極、及びトランジスタM3のソース及びドレインの一方と電気的に接続される。トランジスタM3は、ゲートが配線GLと電気的に接続され、ソース及びドレインの他方が配線RLと電気的に接続される。発光デバイスELは、他方の電極が配線CLと電気的に接続される。
配線SLには、データ電位が与えられる。配線GLには、選択信号が与えられる。当該選択信号には、トランジスタを導通状態とする電位と、非導通状態とする電位が含まれる。
配線RLには、リセット電位が与えられる。配線ALには、アノード電位が与えられる。配線CLには、カソード電位が与えられる。画素21において、アノード電位はカソード電位よりも高い電位とする。また、配線RLに与えられるリセット電位は、リセット電位とカソード電位との電位差が、発光デバイスELのしきい値電圧よりも小さくなるような電位とすることができる。リセット電位は、カソード電位よりも高い電位、カソード電位と同じ電位、または、カソード電位よりも低い電位とすることができる。
トランジスタM1及びトランジスタM3は、スイッチとして機能する。トランジスタM2は、発光デバイスELに流れる電流を制御するためのトランジスタとして機能する。例えば、トランジスタM1は選択トランジスタとして機能し、トランジスタM2は、駆動トランジスタとして機能するともいえる。
ここで、トランジスタM1乃至トランジスタM3の全てに、LTPSトランジスタを適用することが好ましい。または、トランジスタM1及びトランジスタM3にOSトランジスタを適用し、トランジスタM2にLTPSトランジスタを適用することが好ましい。
または、トランジスタM1乃至トランジスタM3のすべてに、OSトランジスタを適用してもよい。このとき、駆動回路部12が有する複数のトランジスタ、及び駆動回路部13が有する複数のトランジスタのうち、一以上にLTPSトランジスタを適用し、他のトランジスタにOSトランジスタを適用する構成とすることができる。例えば、表示部11に設けられるトランジスタにはOSトランジスタを適用し、駆動回路部12及び駆動回路部13に設けられるトランジスタにはLTPSトランジスタを適用することもできる。
OSトランジスタとしては、チャネルが形成される半導体層に酸化物半導体を用いたトランジスタを用いることができる。半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。特に、OSトランジスタの半導体層として、インジウム、ガリウム、及び亜鉛を含む酸化物(IGZOとも記す)を用いることが好ましい。または、インジウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。または、インジウム、ガリウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。
シリコンよりもバンドギャップが広く、かつキャリア濃度の低い酸化物半導体を用いたトランジスタは、極めて小さいオフ電流を実現することができる。そのため、その小さいオフ電流により、トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。そのため、特に容量C1に直列に接続されるトランジスタM1及びトランジスタM3には、それぞれ、酸化物半導体が適用されたトランジスタを用いることが好ましい。トランジスタM1及びトランジスタM3として酸化物半導体を有するトランジスタを適用することで、容量C1に保持される電荷が、トランジスタM1またはトランジスタM3を介してリークされることを防ぐことができる。また、容量C1に保持される電荷を長時間に亘って保持できるため、画素21のデータを書き換えることなく、静止画を長期間に亘って表示することが可能となる。
なお、図30Bにおいて、トランジスタをnチャネル型のトランジスタとして表記しているが、pチャネル型のトランジスタを用いることもできる。
また、画素21が有する各トランジスタは、同一基板上に並べて形成されることが好ましい。
画素21が有するトランジスタとして、半導体層を介して重なる一対のゲートを有するトランジスタを適用することができる。
一対のゲートを有するトランジスタにおいて、一対のゲートが互いに電気的に接続され、同じ電位が与えられる構成とすることで、トランジスタのオン電流が高まること、及び飽和特性が向上するといった利点がある。また、一対のゲートの一方に、トランジスタのしきい値電圧を制御する電位を与えてもよい。また、一対のゲートの一方に、定電位を与えることで、トランジスタの電気特性の安定性を向上させることができる。例えば、トランジスタの一方のゲートを、定電位が与えられる配線と電気的に接続する構成としてもよいし、自身のソースまたはドレインと電気的に接続する構成としてもよい。
図30Cに示す画素21は、トランジスタM1及びトランジスタM3に、一対のゲートを有するトランジスタを適用した場合の例である。トランジスタM1及びトランジスタM3は、それぞれ一対のゲートが電気的に接続されている。このような構成とすることで、画素21へのデータの書き込み期間を短縮することができる。
図30Dに示す画素21は、トランジスタM1及びトランジスタM3に加えて、トランジスタM2にも、一対のゲートを有するトランジスタを適用した例である。トランジスタM2は、一対のゲートが電気的に接続されている。トランジスタM2に、このようなトランジスタを適用することで、飽和特性が向上するため、発光デバイスELの発光輝度の制御が容易となり、表示品位を高めることができる。
[トランジスタの構成例]
以下では、上記表示装置に適用することのできるトランジスタの断面構成例について説明する。
〔構成例1〕
図31Aは、トランジスタ410を含む断面図である。
トランジスタ410は、基板401上に設けられ、半導体層に多結晶シリコンを適用したトランジスタである。例えばトランジスタ410は、画素21のトランジスタM2に対応する。すなわち、図31Aは、トランジスタ410のソース及びドレインの一方が、発光デバイスの導電層431と電気的に接続されている例である。
トランジスタ410は、半導体層411、絶縁層412、導電層413等を有する。半導体層411は、チャネル形成領域411i及び低抵抗領域411nを有する。半導体層411は、シリコンを有する。半導体層411は、多結晶シリコンを有することが好ましい。絶縁層412の一部は、ゲート絶縁層として機能する。導電層413の一部は、ゲート電極として機能する。
なお、半導体層411は、半導体特性を示す金属酸化物(酸化物半導体ともいう)を含む構成とすることもできる。このとき、トランジスタ410は、OSトランジスタと呼ぶことができる。
低抵抗領域411nは、不純物元素を含む領域である。例えばトランジスタ410をnチャネル型のトランジスタとする場合には、低抵抗領域411nにリン、ヒ素などを添加すればよい。一方、pチャネル型のトランジスタとする場合には、低抵抗領域411nにホウ素、アルミニウムなどを添加すればよい。また、トランジスタ410のしきい値電圧を制御するため、チャネル形成領域411iに、上述した不純物が添加されていてもよい。
基板401上に、絶縁層421が設けられている。半導体層411は、絶縁層421上に設けられている。絶縁層412は、半導体層411及び絶縁層421を覆って設けられている。導電層413は、絶縁層412上の、半導体層411と重なる位置に設けられている。
また、導電層413及び絶縁層412を覆って絶縁層422が設けられる。絶縁層422上には、導電層414a及び導電層414bが設けられる。導電層414a及び導電層414bは、絶縁層422及び絶縁層412に設けられた開口部において、低抵抗領域411nと電気的に接続されている。導電層414aの一部は、ソース電極及びドレイン電極の一方として機能し、導電層414bの一部は、ソース電極及びドレイン電極の他方として機能する。また、導電層414a、導電層414b、及び絶縁層422を覆って、絶縁層423が設けられている。
絶縁層423上には、画素電極として機能する導電層431が設けられる。導電層431は、絶縁層423上に設けられ、絶縁層423に設けられた開口において、導電層414bと電気的に接続されている。ここでは省略するが、導電層431上には、EL層及び共通電極を積層することができる。
〔構成例2〕
図31Bには、一対のゲート電極を有するトランジスタ410aを示す。図31Bに示すトランジスタ410aは、導電層415、及び絶縁層416を有する点で、図31Aと主に相違している。
導電層415は、絶縁層421上に設けられている。また、導電層415及び絶縁層421を覆って、絶縁層416が設けられている。半導体層411は、少なくともチャネル形成領域411iが、絶縁層416を介して導電層415と重なるように設けられている。
図31Bに示すトランジスタ410aにおいて、導電層413の一部が第1のゲート電極として機能し、導電層415の一部が第2のゲート電極として機能する。またこのとき、絶縁層412の一部が第1のゲート絶縁層として機能し、絶縁層416の一部が第2のゲート絶縁層として機能する。
ここで、第1のゲート電極と、第2のゲート電極とを電気的に接続する場合、図示しない領域において、絶縁層412及び絶縁層416に設けられた開口部を介して導電層413と導電層415とを電気的に接続すればよい。また、第2のゲート電極と、ソースまたはドレインとを電気的に接続する場合、図示しない領域において、絶縁層422、絶縁層412、及び絶縁層416に設けられた開口部を介して、導電層414aまたは導電層414bと、導電層415とを電気的に接続すればよい。
画素21を構成するトランジスタの全てに、LTPSトランジスタを適用する場合、図31Aで例示したトランジスタ410、または図31Bで例示したトランジスタ410aを適用することができる。このとき、画素21を構成する全てのトランジスタに、トランジスタ410aを用いてもよいし、全てのトランジスタにトランジスタ410を適用してもよいし、トランジスタ410aと、トランジスタ410とを組み合わせて用いてもよい。
〔構成例3〕
以下では、半導体層にシリコンが適用されたトランジスタと、半導体層に金属酸化物が適用されたトランジスタの両方を有する構成の例について説明する。
図31Cに、トランジスタ410a及びトランジスタ450を含む、断面概略図を示している。
トランジスタ410aについては、上記構成例1を援用できる。なお、ここではトランジスタ410aを用いる例を示したが、トランジスタ410とトランジスタ450とを有する構成としてもよいし、トランジスタ410、トランジスタ410a、トランジスタ450の全てを有する構成としてもよい。
トランジスタ450は、半導体層に金属酸化物を適用したトランジスタである。図31Cに示す構成は、例えばトランジスタ450が画素21のトランジスタM1に対応し、トランジスタ410aがトランジスタM2に対応する例である。すなわち、図31Cは、トランジスタ410aのソース及びドレインの一方が、導電層431と電気的に接続されている例である。
また、図31Cには、トランジスタ450が一対のゲートを有する例を示している。
トランジスタ450は、導電層455、絶縁層422、半導体層451、絶縁層452、導電層453等を有する。導電層453の一部は、トランジスタ450の第1のゲートとして機能し、導電層455の一部は、トランジスタ450の第2のゲートとして機能する。このとき、絶縁層452の一部はトランジスタ450の第1のゲート絶縁層として機能し、絶縁層422の一部は、トランジスタ450の第2のゲート絶縁層として機能する。
導電層455は、絶縁層412上に設けられている。絶縁層422は、導電層455を覆って設けられている。半導体層451は、絶縁層422上に設けられている。絶縁層452は、半導体層451及び絶縁層422を覆って設けられている。導電層453は、絶縁層452上に設けられ、半導体層451及び導電層455と重なる領域を有する。
また、絶縁層426が絶縁層452及び導電層453を覆って設けられている。絶縁層426上には、導電層454a及び導電層454bが設けられる。導電層454a及び導電層454bは、絶縁層426及び絶縁層452に設けられた開口部において、半導体層451と電気的に接続されている。導電層454aの一部は、ソース電極及びドレイン電極の一方として機能し、導電層454bの一部は、ソース電極及びドレイン電極の他方として機能する。また、導電層454a、導電層454b、及び絶縁層426を覆って、絶縁層423が設けられている。
ここで、トランジスタ410aと電気的に接続する導電層414a及び導電層414bは、導電層454a及び導電層454bと、同一の導電膜を加工して形成することが好ましい。図31Cでは、導電層414a、導電層414b、導電層454a、及び導電層454bが、同一面上に(すなわち絶縁層426の上面に接して)形成され、且つ、同一の金属元素を含む構成を示している。このとき、導電層414a及び導電層414bは、絶縁層426、絶縁層452、絶縁層422、及び絶縁層412に設けられた開口を介して、低抵抗領域411nと電気的に接続する。これにより、作製工程を簡略化できるため好ましい。
また、トランジスタ410aの第1のゲート電極として機能する導電層413と、トランジスタ450の第2のゲート電極として機能する導電層455とは、同一の導電膜を加工して形成することが好ましい。図31Cでは、導電層413と導電層455とが、同一面上に(すなわち絶縁層412の上面に接して)形成され、且つ、同一の金属元素を含む構成を示している。これにより、作製工程を簡略化できるため好ましい。
図31Cでは、トランジスタ450の第1のゲート絶縁層として機能する絶縁層452が、半導体層451の端部を覆う構成としたが、図31Dに示すトランジスタ450aのように、絶縁層452が、導電層453と上面形状が一致または概略一致するように加工されていてもよい。
なお、本明細書等において「上面形状が概略一致」とは、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層が下層の内側に位置すること、または、上層が下層の外側に位置することもあり、この場合も「上面形状が概略一致」という。
なお、ここではトランジスタ410aが、トランジスタM2に対応し、画素電極と電気的に接続する例を示したが、これに限られない。例えば、トランジスタ450またはトランジスタ450aが、トランジスタM2に対応する構成としてもよい。このとき、トランジスタ410aは、トランジスタM1、トランジスタM3、またはその他のトランジスタに対応する。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
また、金属酸化物は、スパッタリング法、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの化学気相成長(CVD:Chemical Vapor Deposition)法、または、原子層堆積(ALD:Atomic Layer Deposition)法などにより形成することができる。
<結晶構造の分類>
酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(polycrystal)等が挙げられる。
なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。
例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜または基板は非晶質状態であるとは言えない。
また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OSまたは非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OSの組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OSの組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
従って、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンまたは炭素の濃度と、酸化物半導体との界面近傍のシリコンまたは炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態7)
本実施の形態では、本発明の一態様の電子機器について、図32乃至図36を用いて説明する。
本実施の形態の電子機器は、表示部に本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化及び高解像度化が容易である。したがって、様々な電子機器の表示部に用いることができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば、腕時計型及びブレスレット型の情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器、及び、MR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。
本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K(画素数3840×2160)、8K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K、8K、またはそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、100ppi以上が好ましく、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度及び高い精細度の一方または双方を有する表示装置を用いることで、携帯型または家庭用途などのパーソナルユースの電子機器において、臨場感及び奥行き感などをより高めることが可能となる。また、本発明の一態様の表示装置の画面比率(アスペクト比)については、特に限定はない。例えば、表示装置は、1:1(正方形)、4:3、16:9、16:10など様々な画面比率に対応することができる。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図32A、図32B及び図33A、図33Bを用いて、頭部に装着可能なウェアラブル機器の一例を説明する。これらウェアラブル機器は、ARのコンテンツを表示する機能、及びVRのコンテンツを表示する機能の一方または双方を有する。なお、これらウェアラブル機器は、AR、VRの他に、SRまたはMRのコンテンツを表示する機能を有していてもよい。電子機器が、AR、VR、SR、MRなどのコンテンツを表示する機能を有することで、使用者の没入感を高めることが可能となる。
図32Aに示す電子機器700A、及び、図32Bに示す電子機器700Bは、それぞれ、一対の表示パネル751と、一対の筐体721と、通信部(図示しない)と、一対の装着部723と、制御部(図示しない)と、撮像部(図示しない)と、一対の光学部材753と、フレーム757と、一対の鼻パッド758と、を有する。
表示パネル751には、本発明の一態様の表示装置を適用することができる。したがって極めて精細度の高い表示が可能な電子機器とすることができる。
電子機器700A、及び、電子機器700Bは、それぞれ、光学部材753の表示領域756に、表示パネル751で表示した画像を投影することができる。光学部材753は透光性を有するため、使用者は光学部材753を通して視認される透過像に重ねて、表示領域に表示された画像を見ることができる。したがって、電子機器700A、及び、電子機器700Bは、それぞれ、AR表示が可能な電子機器である。
電子機器700A、及び、電子機器700Bには、撮像部として、前方を撮像することのできるカメラが設けられていてもよい。また、電子機器700A、及び、電子機器700Bは、それぞれ、ジャイロセンサなどの加速度センサを備えることで、使用者の頭部の向きを検知して、その向きに応じた画像を表示領域756に表示することもできる。
通信部は無線通信機を有し、当該無線通信機により映像信号等を供給することができる。なお、無線通信機に代えて、または無線通信機に加えて、映像信号及び電源電位が供給されるケーブルを接続可能なコネクタを備えていてもよい。
また、電子機器700A、及び、電子機器700Bには、バッテリが設けられており、無線及び有線の一方または双方によって充電することができる。
筐体721には、タッチセンサモジュールが設けられていてもよい。タッチセンサモジュールは、筐体721の外側の面がタッチされることを検出する機能を有する。タッチセンサモジュールにより、使用者のタップ操作またはスライド操作などを検出し、様々な処理を実行することができる。例えば、タップ操作によって動画の一時停止または再開などの処理を実行することが可能となり、スライド操作により、早送りまたは早戻しの処理を実行することなどが可能となる。また、2つの筐体721のそれぞれにタッチセンサモジュールを設けることで、操作の幅を広げることができる。
タッチセンサモジュールとしては、様々なタッチセンサを適用することができる。例えば、静電容量方式、抵抗膜方式、赤外線方式、電磁誘導方式、表面弾性波方式、光学方式等、種々の方式を採用することができる。特に、静電容量方式または光学方式のセンサを、タッチセンサモジュールに適用することが好ましい。
光学方式のタッチセンサを用いる場合には、受光デバイス(受光素子ともいう)として、光電変換デバイス(光電変換素子ともいう)を用いることができる。光電変換デバイスの活性層には、無機半導体及び有機半導体の一方または双方を用いることができる。
図33Aに示す電子機器800A、及び、図33Bに示す電子機器800Bは、それぞれ、一対の表示部820と、筐体821と、通信部822と、一対の装着部823と、制御部824と、一対の撮像部825と、一対のレンズ832と、を有する。
表示部820には、本発明の一態様の表示装置を適用することができる。したがって極めて精細度の高い表示が可能な電子機器とすることができる。これにより、使用者に高い没入感を感じさせることができる。
表示部820は、筐体821の内部の、レンズ832を通して視認できる位置に設けられる。また、一対の表示部820に異なる画像を表示させることで、視差を用いた3次元表示を行うこともできる。
電子機器800A、及び、電子機器800Bは、それぞれ、VR向けの電子機器ということができる。電子機器800Aまたは電子機器800Bを装着した使用者は、レンズ832を通して、表示部820に表示される画像を視認することができる。
電子機器800A、及び、電子機器800Bは、それぞれ、レンズ832及び表示部820が、使用者の目の位置に応じて最適な位置となるように、これらの左右の位置を調整可能な機構を有していることが好ましい。また、レンズ832と表示部820との距離を変えることで、ピントを調整する機構を有していることが好ましい。
装着部823により、使用者は電子機器800Aまたは電子機器800Bを頭部に装着することができる。なお、図33Aなどにおいては、メガネのつる(ジョイント、テンプルなどともいう)のような形状として例示しているがこれに限定されない。装着部823は、使用者が装着できればよく、例えば、ヘルメット型またはバンド型の形状としてもよい。
撮像部825は、外部の情報を取得する機能を有する。撮像部825が取得したデータは、表示部820に出力することができる。撮像部825には、イメージセンサを用いることができる。また、望遠、広角などの複数の画角に対応可能なように複数のカメラを設けてもよい。
なお、ここでは撮像部825を有する例を示したが、対象物の距離を測定することのできる測距センサ(以下、検知部ともよぶ)を設ければよい。すなわち、撮像部825は、検知部の一態様である。検知部としては、例えばイメージセンサ、または、ライダー(LIDAR Light Detection and Ranging)などの距離画像センサを用いることができる。カメラによって得られた画像と、距離画像センサによって得られた画像とを用いることにより、より多くの情報を取得し、より高精度なジェスチャー操作を可能とすることができる。
電子機器800Aは、骨伝導イヤフォンとして機能する振動機構を有していてもよい。例えば、表示部820、筐体821、及び装着部823のいずれか一または複数に、当該振動機構を有する構成を適用することができる。これにより、別途、ヘッドフォン、イヤフォン、またはスピーカなどの音響機器を必要とせず、電子機器800Aを装着しただけで映像と音声を楽しむことができる。
電子機器800A、及び、電子機器800Bは、それぞれ、入力端子を有していてもよい。入力端子には映像出力機器等からの映像信号、及び、電子機器内に設けられるバッテリを充電するための電力等を供給するケーブルを接続することができる。
本発明の一態様の電子機器は、イヤフォン750と無線通信を行う機能を有していてもよい。イヤフォン750は、通信部(図示しない)を有し、無線通信機能を有する。イヤフォン750は、無線通信機能により、電子機器から情報(例えば音声データ)を受信することができる。例えば、図32Aに示す電子機器700Aは、無線通信機能によって、イヤフォン750に情報を送信する機能を有する。また、例えば、図33Aに示す電子機器800Aは、無線通信機能によって、イヤフォン750に情報を送信する機能を有する。
また、電子機器がイヤフォン部を有していてもよい。図32Bに示す電子機器700Bは、イヤフォン部727を有する。例えば、イヤフォン部727と制御部とは、互いに有線接続されている構成とすることができる。イヤフォン部727と制御部とをつなぐ配線の一部は、筐体721または装着部723の内部に配置されていてもよい。
同様に、図33Bに示す電子機器800Bは、イヤフォン部827を有する。例えば、イヤフォン部827と制御部824とは、互いに有線接続されている構成とすることができる。イヤフォン部827と制御部824とをつなぐ配線の一部は、筐体821または装着部823の内部に配置されていてもよい。また、イヤフォン部827と装着部823とがマグネットを有していてもよい。これにより、イヤフォン部827を装着部823に磁力によって固定することができ、収納が容易となり好ましい。
なお、電子機器は、イヤフォンまたはヘッドフォンなどを接続することができる音声出力端子を有していてもよい。また、電子機器は、音声入力端子及び音声入力機構の一方または双方を有していてもよい。音声入力機構としては、例えば、マイクなどの集音装置を用いることができる。電子機器が音声入力機構を有することで、電子機器に、いわゆるヘッドセットとしての機能を付与してもよい。
このように、本発明の一態様の電子機器としては、メガネ型(電子機器700A、及び、電子機器700Bなど)と、ゴーグル型(電子機器800A、及び、電子機器800Bなど)と、のどちらも好適である。
また、本発明の一態様の電子機器は、有線または無線によって、イヤフォンに情報を送信することができる。
図34Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
表示部6502に、本発明の一態様の表示装置を適用することができる。
図34Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
図35Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図35Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者同士など)の情報通信を行うことも可能である。
図35Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図35C、図35Dに、デジタルサイネージの一例を示す。
図35Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図35Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図35C、図35Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図35C、図35Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、使用者が所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数の使用者が同時にゲームに参加し、楽しむことができる。
図36A乃至図36Gに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
図36A乃至図36Gにおいて、表示部9001に、本発明の一態様の表示装置を適用することができる。
図36A乃至図36Gに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図36A乃至図36Gに示す電子機器の詳細について、以下説明を行う。
図36Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図36Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールまたはSNSなどの題名、送信者名、日時、時刻、バッテリの残量、電波強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
図36Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図36Cは、タブレット端末9103を示す斜視図である。タブレット端末9103は、一例として、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲーム等の種々のアプリケーションの実行が可能である。タブレット端末9103は、筐体9000の正面に表示部9001、カメラ9002、マイクロフォン9008、スピーカ9003を有し、筐体9000の左側面には操作用のボタンとしての操作キー9005、底面には接続端子9006を有する。
図36Dは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
図36E乃至図36Gは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図36Eは携帯情報端末9201を展開した状態、図36Gは折り畳んだ状態、図36Fは図36Eと図36Gの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
AL:配線、CL:配線、GL:配線、IRS:副画素、PS:副画素、RL:配線、SL:配線、SLB:配線、SLG:配線、SLR:配線、10:表示装置、11:表示部、12:駆動回路部、13:駆動回路部、21B:副画素、21G:副画素、21R:副画素、21:画素、30:画素、70:電子機器、72:支持体、74:机、100A:表示装置、100B:表示装置、100C:表示装置、100D:表示装置、100E:表示装置、100:表示装置、101:層、110a:副画素、110b:副画素、110c:副画素、110d:副画素、110:画素、111a:画素電極、111b:画素電極、111c:画素電極、111d:画素電極、111:導電膜、113A:第1の層、113a:第1の層、113B:第2の層、113b:第2の層、113C:第3の層、113c:第3の層、113d:第4の層、113:層、114:第5の層、115:共通電極、117:遮光層、118A:第1の犠牲層、118a:第1の犠牲層、118B:第1の犠牲層、118b:第1の犠牲層、118C:第1の犠牲層、118c:第1の犠牲層、119A:第2の犠牲層、119a:第2の犠牲層、119B:第2の犠牲層、119b:第2の犠牲層、119C:第2の犠牲層、119c:第2の犠牲層、120:基板、122:樹脂層、123:導電層、124a:画素、124b:画素、125A:絶縁膜、125:絶縁層、126a:導電層、126b:導電層、126c:導電層、127A:絶縁膜、127:絶縁層、128:層、130a:発光デバイス、130b:発光デバイス、130c:発光デバイス、130d:発光デバイス、131:保護層、132:保護層、139:領域、140:接続部、142:接着層、151:基板、152:基板、153:絶縁層、162:表示部、164:回路、165:配線、166:導電層、172:FPC、173:IC、190a:レジストマスク、190b:レジストマスク、190c:レジストマスク、190d:レジストマスク、201:トランジスタ、204:接続部、205:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、228:領域、231i:チャネル形成領域、231n:低抵抗領域、231:半導体層、240:容量、241:導電層、242:接続層、243:絶縁層、245:導電層、251:導電層、252:導電層、254:絶縁層、255a:絶縁層、255b:絶縁層、256:プラグ、261:絶縁層、262:絶縁層、263:絶縁層、264:絶縁層、265:絶縁層、271:プラグ、274a:導電層、274b:導電層、274:プラグ、280:表示モジュール、281:表示部、282:回路部、283a:画素回路、283:画素回路部、284a:画素、284:画素部、285:端子部、286:配線部、290:FPC、291:基板、292:基板、301:基板、310:トランジスタ、311:導電層、312:低抵抗領域、313:絶縁層、314:絶縁層、315:素子分離層、320:トランジスタ、321:半導体層、323:絶縁層、324:導電層、325:導電層、326:絶縁層、327:導電層、328:絶縁層、329:絶縁層、331:基板、332:絶縁層、351:基板、352:指、353:層、355:機能層、357:層、359:基板、401:基板、410a:トランジスタ、410:トランジスタ、411i:チャネル形成領域、411n:低抵抗領域、411:半導体層、412:絶縁層、413:導電層、414a:導電層、414b:導電層、415:導電層、416:絶縁層、421:絶縁層、422:絶縁層、423:絶縁層、426:絶縁層、431:導電層、450a:トランジスタ、450:トランジスタ、451:半導体層、452:絶縁層、453:導電層、454a:導電層、454b:導電層、455:導電層、500:表示装置、501:電極、502:電極、512B_1:発光ユニット、512B_2:発光ユニット、512B_3:発光ユニット、512B_n:発光ユニット、512G_1:発光ユニット、512G_2:発光ユニット、512G_3:発光ユニット、512G_n:発光ユニット、512Q_1:発光ユニット、512Q_2:発光ユニット、512Q_3:発光ユニット、512Q_n:発光ユニット、512R_1:発光ユニット、512R_2:発光ユニット、512R_3:発光ユニット、512R_n:発光ユニット、512W:発光ユニット、521:層、522:層、523B:発光層、523G:発光層、523Q_1:発光層、523Q_2:発光層、523Q_3:発光層、523R:発光層、524:層、525:層、531:電荷発生層、540:保護層、545B:着色層、545G:着色層、545R:着色層、550B:発光デバイス、550G:発光デバイス、550R:発光デバイス、550W:発光デバイス、700A:電子機器、700B:電子機器、721:筐体、723:装着部、727:イヤフォン部、750:イヤフォン、751:表示パネル、753:光学部材、756:表示領域、757:フレーム、758:鼻パッド、800A:電子機器、800B:電子機器、820:表示部、821:筐体、822:通信部、823:装着部、824:制御部、825:撮像部、827:イヤフォン部、832:レンズ、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、9000:筐体、9001:表示部、9002:カメラ、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9103:タブレット端末、9200:携帯情報端末、9201:携帯情報端末

Claims (22)

  1.  第1の絶縁層、第2の絶縁層、第1の導電層、第2の導電層、第1の発光デバイス、及び、第2の発光デバイスを有し、
     前記第1の絶縁層、前記第1の導電層、及び前記第2の導電層は、それぞれの上面の高さが一致または概略一致し、
     前記第1の発光デバイスは、前記第1の導電層上の第1の画素電極と、前記第1の画素電極上の第1の発光層と、前記第1の発光層上の共通電極と、を有し、
     前記第2の発光デバイスは、前記第2の導電層上の第2の画素電極と、前記第2の画素電極上の第2の発光層と、前記第2の発光層上の前記共通電極と、を有し、
     前記第2の絶縁層は、前記第1の画素電極、前記第2の画素電極、前記第1の発光層、及び前記第2の発光層のそれぞれの側面を覆う、表示装置。
  2.  請求項1において、
     第3の絶縁層を有し、
     前記第2の絶縁層は、無機材料を有し、
     前記第3の絶縁層は、有機材料を有し、かつ、前記第2の絶縁層を介して、前記第1の画素電極、前記第2の画素電極、前記第1の発光層、及び前記第2の発光層のそれぞれの側面と重なる、表示装置。
  3.  請求項1または2において、
     前記第1の発光デバイスは、前記第1の発光層と前記共通電極との間に、共通層を有し、
     前記第2の発光デバイスは、前記第2の発光層と前記共通電極との間に、前記共通層を有し、
     前記共通層は、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも一つを有する、表示装置。
  4.  第1の絶縁層、第2の絶縁層、第1の導電層、第2の導電層、第1の発光デバイス、及び、第2の発光デバイスを有し、
     前記第1の絶縁層、前記第1の導電層、及び前記第2の導電層は、それぞれの上面の高さが一致または概略一致し、
     前記第1の発光デバイスは、前記第1の導電層上の第1の画素電極と、前記第1の画素電極上の第1の発光ユニットと、前記第1の発光ユニット上の第1の電荷発生層と、前記第1の電荷発生層上の第2の発光ユニットと、前記第2の発光ユニット上の共通電極と、を有し、
     前記第2の発光デバイスは、前記第2の導電層上の第2の画素電極と、前記第2の画素電極上の第3の発光ユニットと、前記第3の発光ユニット上の第2の電荷発生層と、前記第2の電荷発生層上の第4の発光ユニットと、前記第4の発光ユニット上の前記共通電極と、を有し、
     前記第2の絶縁層は、前記第1の画素電極、前記第2の画素電極、前記第1の電荷発生層、及び前記第2の電荷発生層のそれぞれの側面を覆う、表示装置。
  5.  請求項4において、
     第3の絶縁層を有し、
     前記第2の絶縁層は、無機材料を有し、
     前記第3の絶縁層は、有機材料を有し、かつ、前記第2の絶縁層を介して、前記第1の画素電極、前記第2の画素電極、前記第1の電荷発生層、及び前記第2の電荷発生層のそれぞれの側面と重なる、表示装置。
  6.  請求項4または5において、
     前記第1の発光デバイスは、前記第2の発光ユニットと前記共通電極との間に、共通層を有し、
     前記第2の発光デバイスは、前記第4の発光ユニットと前記共通電極との間に、前記共通層を有し、
     前記共通層は、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも一つを有する、表示装置。
  7.  請求項1乃至6のいずれか一において、
     前記第1の発光デバイスと前記第2の発光デバイスとは、互いに異なる色の光を発する、表示装置。
  8.  請求項1乃至6のいずれか一において、
     互いに異なる色の光を透過する第1の着色層及び第2の着色層を有し、
     前記第1の発光デバイスと前記第2の発光デバイスとは、白色の光を発し、
     前記第1の発光デバイスの発光は、前記第1の着色層を介して、前記表示装置の外部に取り出され、
     前記第2の発光デバイスの発光は、前記第2の着色層を介して、前記表示装置の外部に取り出される、表示装置。
  9.  請求項2または5において、
     前記第1の絶縁層は、凹部を有し、
     前記凹部上に前記第2の絶縁層が位置し、
     前記第2の絶縁層上に前記第3の絶縁層が位置する、表示装置。
  10.  請求項1乃至9のいずれか一に記載の表示装置と、
     コネクタ及び集積回路のうち少なくとも一方と、を有する、表示モジュール。
  11.  請求項10に記載の表示モジュールと、
     筐体、バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有する、電子機器。
  12.  絶縁表面上に導電膜を形成し、
     前記導電膜上に、第1の層を形成し、
     前記第1の層上に、第1の犠牲層を形成し、
     前記第1の層及び前記第1の犠牲層を加工して、前記導電膜の一部を露出させ、
     前記第1の犠牲層上及び前記導電膜上に、第2の層を形成し、
     前記第2の層上に、第2の犠牲層を形成し、
     前記第2の層及び前記第2の犠牲層を加工して、前記導電膜の一部を露出させ、
     前記導電膜を加工することで、前記第1の犠牲層と重なる第1の画素電極と、前記第2の犠牲層と重なる第2の画素電極を形成し、
     少なくとも前記第1の画素電極の側面、前記第2の画素電極の側面、前記第1の層の側面、前記第2の層の側面、前記第1の犠牲層の側面及び上面、並びに、前記第2の犠牲層の側面及び上面を覆う、第1の絶縁膜を形成し、
     前記第1の絶縁膜を加工することで、少なくとも前記第1の画素電極の側面、前記第2の画素電極の側面、前記第1の層の側面、及び、前記第2の層の側面を覆う、第1の絶縁層を形成し、
     前記第1の犠牲層及び前記第2の犠牲層を除去し、
     前記第1の層上及び前記第2の層上に、共通電極を形成する、表示装置の作製方法。
  13.  絶縁表面上に導電膜を形成し、
     前記導電膜上に、第1の層を形成し、
     前記第1の層上に、第1の犠牲層を形成し、
     前記第1の層及び前記第1の犠牲層を加工して、前記導電膜の一部を露出させ、
     前記第1の犠牲層上及び前記導電膜上に、第2の層を形成し、
     前記第2の層上に、第2の犠牲層を形成し、
     前記第2の層及び前記第2の犠牲層を加工して、前記導電膜の一部を露出させ、
     前記導電膜を加工することで、前記第1の犠牲層と重なる第1の画素電極と、前記第2の犠牲層と重なる第2の画素電極を形成し、
     無機材料を用いて、少なくとも前記第1の画素電極の側面、前記第2の画素電極の側面、前記第1の層の側面、前記第2の層の側面、前記第1の犠牲層の側面及び上面、並びに、前記第2の犠牲層の側面及び上面を覆う、第1の絶縁膜を形成し、
     有機材料を用いて、前記第1の絶縁膜上に第2の絶縁膜を形成し、
     前記第1の絶縁膜及び前記第2の絶縁膜を加工することで、少なくとも前記第1の画素電極の側面、前記第2の画素電極の側面、前記第1の層の側面、及び、前記第2の層の側面を覆う、第1の絶縁層と、前記第1の絶縁層上の第2の絶縁層と、を形成し、
     前記第1の犠牲層及び前記第2の犠牲層を除去し、
     前記第1の層上及び前記第2の層上に、共通電極を形成する、表示装置の作製方法。
  14.  請求項13において、
     前記導電膜を加工することで、前記第1の犠牲層及び前記第2の犠牲層の少なくとも一方と重なる第1の導電層を形成し、
     前記第1の導電層と重なる位置に開口を有するように、前記第2の絶縁膜を形成し、
     前記第1の導電層上に前記共通電極を形成する、表示装置の作製方法。
  15.  請求項13または14において、
     前記有機材料として感光性の樹脂を用いて、前記第2の絶縁膜を形成する、表示装置の作製方法。
  16.  請求項14において、
     前記共通電極を形成した後、前記共通電極における、前記第1の導電層と重なる領域よりも外側の領域の少なくとも一部を除去する、表示装置の作製方法。
  17.  請求項12乃至16のいずれか一において、
     前記第1の犠牲層として、第1の犠牲膜と、前記第1の犠牲膜上の第2の犠牲膜と、を形成し、
     前記第2の犠牲膜上に、第1のレジストマスクを形成した後、前記第1のレジストマスクを用いて、前記第2の犠牲膜を加工し、
     前記第1のレジストマスクを除去し、
     前記加工された第2の犠牲膜をハードマスクに用いて、前記第1の犠牲膜を加工し、
     前記加工された第1の犠牲膜をハードマスクに用いて、前記第1の層を加工する、表示装置の作製方法。
  18.  請求項12乃至17のいずれか一において、
     前記第1の犠牲層及び前記第2の犠牲層をハードマスクに用いて、前記導電膜を加工する、表示装置の作製方法。
  19.  請求項12乃至18のいずれか一において、
     前記第1の犠牲層及び前記第2の犠牲層を除去した後に、前記第1の層上及び前記第2の層上に、第3の層を形成し、
     前記第3の層上に、前記共通電極を形成する、表示装置の作製方法。
  20.  請求項12乃至19のいずれか一において、
     前記導電膜の加工工程において、前記絶縁表面に凹部を形成する、表示装置の作製方法。
  21.  請求項12乃至20のいずれか一において、
     前記導電膜として、凹部を有する第1の導電膜と、前記第1の導電膜上の第2の導電膜とを形成し、
     前記第1の導電膜の凹部に、第4の層を形成した後、前記第1の導電膜上及び前記第4の層上に、前記第2の導電膜を形成する、表示装置の作製方法。
  22.  請求項21において、
     有機材料を用いて、前記第4の層を形成する、表示装置の作製方法。
PCT/IB2022/051358 2021-02-25 2022-02-16 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法 WO2022180482A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280015465.7A CN116889100A (zh) 2021-02-25 2022-02-16 显示装置、显示模块、电子设备及显示装置的制造方法
JP2023501690A JPWO2022180482A1 (ja) 2021-02-25 2022-02-16
US18/277,091 US20240099070A1 (en) 2021-02-25 2022-02-16 Display apparatus, display module, electronic device, and method of manufacturing display apparatus
KR1020237028056A KR20230148161A (ko) 2021-02-25 2022-02-16 표시 장치, 표시 모듈, 전자 기기, 및 표시 장치의제작 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-028841 2021-02-25
JP2021028841 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022180482A1 true WO2022180482A1 (ja) 2022-09-01

Family

ID=83048805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/051358 WO2022180482A1 (ja) 2021-02-25 2022-02-16 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法

Country Status (5)

Country Link
US (1) US20240099070A1 (ja)
JP (1) JPWO2022180482A1 (ja)
KR (1) KR20230148161A (ja)
CN (1) CN116889100A (ja)
WO (1) WO2022180482A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077191A (ja) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd 表示装置
JP2001345179A (ja) * 2000-03-27 2001-12-14 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2012238580A (ja) * 2011-04-28 2012-12-06 Canon Inc 有機el表示装置の製造方法
JP2014082133A (ja) * 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd 発光装置
JP2018025802A (ja) * 2016-08-11 2018-02-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. カラーフィルタ、及びそれを含む表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076045A (ko) 2016-11-10 2019-07-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 표시 장치의 구동 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077191A (ja) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd 表示装置
JP2001345179A (ja) * 2000-03-27 2001-12-14 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2012238580A (ja) * 2011-04-28 2012-12-06 Canon Inc 有機el表示装置の製造方法
JP2014082133A (ja) * 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd 発光装置
JP2018025802A (ja) * 2016-08-11 2018-02-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. カラーフィルタ、及びそれを含む表示装置

Also Published As

Publication number Publication date
JPWO2022180482A1 (ja) 2022-09-01
US20240099070A1 (en) 2024-03-21
KR20230148161A (ko) 2023-10-24
CN116889100A (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
WO2022180482A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022180468A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022185150A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022189878A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022185149A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022189883A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022189882A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022200914A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022224080A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022175789A1 (ja) 表示装置
WO2023100022A1 (ja) 表示装置、及び表示装置の作製方法
US20240138223A1 (en) Display apparatus, display module, electronic device, and method of manufacturing display apparatus
WO2023281347A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2022175775A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2023073491A1 (ja) 有機化合物の酸素付加体を低減する方法、電子デバイスの作製方法および表示装置の作製方法
US20240138204A1 (en) Display apparatus, display module, electronic device, and method of manufacturing display apparatus
WO2023002297A1 (ja) 表示装置、及び表示装置の作製方法
WO2023275654A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2023285907A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022259069A1 (ja) 表示装置及び表示システム
WO2023126742A1 (ja) 表示装置、及び表示装置の作製方法
WO2022238806A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023002279A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
CN116918454A (zh) 显示装置、显示模块、电子设备及显示装置的制造方法
JP2022183111A (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023501690

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18277091

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280015465.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759035

Country of ref document: EP

Kind code of ref document: A1