WO2012090746A1 - 芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法 - Google Patents

芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法 Download PDF

Info

Publication number
WO2012090746A1
WO2012090746A1 PCT/JP2011/079301 JP2011079301W WO2012090746A1 WO 2012090746 A1 WO2012090746 A1 WO 2012090746A1 JP 2011079301 W JP2011079301 W JP 2011079301W WO 2012090746 A1 WO2012090746 A1 WO 2012090746A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
aromatic polyester
aromatic
pipe
producing
Prior art date
Application number
PCT/JP2011/079301
Other languages
English (en)
French (fr)
Inventor
松本道吉
宮内邦彦
梅津秀之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020137006332A priority Critical patent/KR101790379B1/ko
Priority to CN201180049909.0A priority patent/CN103154080B/zh
Priority to JP2012501064A priority patent/JP5811084B2/ja
Priority to US13/996,798 priority patent/US20130296524A1/en
Publication of WO2012090746A1 publication Critical patent/WO2012090746A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00108Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects

Definitions

  • the present invention relates to an aromatic polyester manufacturing apparatus and an aromatic polyester manufacturing method using the manufacturing apparatus.
  • polyester polymers many polymers having various functions such as polybutylene terephthalate (PBT) and polyethylene-2,6-naphthalate (PEN) have been developed and put on the market.
  • PBT polybutylene terephthalate
  • PEN polyethylene-2,6-naphthalate
  • aromatic polyesters that use aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, and aromatic dihydroxy compounds as raw material monomers have attracted attention.
  • a thermotropic liquid crystal polyester (LCP) characterized by parallel arrangement of molecular chains has attracted attention because of its excellent fluidity, mechanical strength, and heat resistance.
  • polyester for example, in the case of direct polymerization of PBT, there is a method in which terephthalic acid and 1,4-butanediol are first reacted in the presence of an esterification catalyst such as a titanium compound.
  • an esterification catalyst such as a titanium compound.
  • a distillate containing by-product tetrahydrofuran and water as main components is distilled from the top of a rectifying column installed in an esterification reactor, and then an esterification reaction is performed.
  • PBT is obtained by polycondensation reaction.
  • Patent Document 1 discloses that a distillate having a content of monohydric alcohol having less than 4 carbon atoms contained in the distillate is 40 ppm by weight or less with respect to tetrahydrofuran in the distillate.
  • a method of stably producing PBT by a distillation method having a small reflux ratio in a rectification column having a small number of stages is disclosed.
  • aromatic polyesters include aromatic hydroxycarboxylic acids such as parahydroxybenzoic acid, aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl, aromatic dicarboxylic acids such as terephthalic acid, and polyethylene terephthalate (PET).
  • Aliphatic polyester is used as the main raw material.
  • a phenolic hydroxyl group in a raw material is acylated with a fatty acid anhydride such as acetic anhydride, or a fatty acid ester of a phenolic hydroxyl group is used as a raw material, and then heated (reduced pressure in some cases).
  • Patent Document 2 discloses an aromatic copolymer polyester obtained by only melt polymerization having excellent melt fluidity, optical anisotropy and mechanical properties.
  • the method for producing the aromatic copolymer polyester is acylation using acetic anhydride and deacetic acid polycondensation.
  • an aromatic hydroxycarboxylic acid, an aromatic dihydroxy compound or a fatty acid ester thereof (hereinafter referred to as a raw material monomer and an acylated product thereof) is entrained with a distillate fatty acid.
  • a raw material monomer and an acylated product thereof There is a problem of distilling and volatilizing.
  • polymerization inhibition occurs due to a shift in the molar ratio between the acyl group and the carboxyl group, the polymerization time is delayed, a polymer having the desired viscosity cannot be obtained, the polymer is colored, or the basic unit of raw material monomers is deteriorated.
  • the production of the aromatic polyester may be difficult due to the deposition of the raw material monomers and the acylated product in the distillation pipe or the condenser, resulting in clogging.
  • various countermeasures have been proposed.
  • Patent Document 3 discloses a method in which a part of the fatty acid to be distilled is refluxed to a reactor.
  • a double tube type internal reflux with a baffle plate or a double tube type without a baffle plate is disclosed. It is said that an internal reflux can be used.
  • the reason for this is that although the fatty acid to be distilled is usually acetic acid, propionic acid, butyric acid, etc., the vapor pressure is relatively high. This is because a sufficient rectification effect can be obtained by one gas-liquid contact.
  • Patent Document 4 discloses a reaction space above the reaction liquid surface when the aromatic polyester raw material is polycondensed within a final reaction temperature range of 300 to 400 ° C. to produce the aromatic polyester in a batch system.
  • the temperature of the reactor part in contact with the reactor is kept at 150 to 300 ° C.
  • the distillation pipe has a reflux tube and a nozzle protruding into the reaction tank, so that the reflux liquid is not transferred to the inner wall of the reaction tank.
  • a method of dropping is disclosed.
  • Patent Documents 5, 6, and 7 polycondensation is performed using a polycondensation can provided with a partial condenser composed of a tube-type heat exchanger, the distillate is condensed and the condensate is condensed into a condensation polymerization tank.
  • a method for producing an aromatic polyester while being recovered is disclosed.
  • Each document further describes a method of using a corrosion-resistant material in the partial condenser (Patent Document 5), and a method of controlling the temperature of the refrigerant in the partial condenser to be equal to or lower than the boiling point of the low boilers distilled from the condensation polymerization tank (Patent Document 5).
  • Patent Document 7 a method of controlling the temperature of the heating medium supplied to the partial condenser so that the temperature of the low boiling point distilled from the partial condenser becomes a predetermined temperature within the range of 115 ° C. to 145 ° C.
  • JP 2002-138141 A Japanese Patent Laid-Open No. 4-136027 (Claims) JP-A-1993-271398 (Claims and Figures) International Publication No. 2003/062299 (Claims, Figures) JP 2004-331829 A (Claims and Figures) JP 2006-307006 A (Claims and Figures) JP 2006-299027 A (Claims and Figures)
  • the pipe connecting the reaction vessel and the rectification column is often only one distillation pipe. For this reason, the distillate gas and the return liquid that has recirculated in the piping become a countercurrent, leading to an increase in internal pressure. Further, when the amount of liquid or the amount of distillate gas increases, there is a problem that the distillation efficiency is remarkably deteriorated due to loading or flooding phenomenon, resulting in polymerization inhibition. These problems can be improved by increasing the pipe size.
  • a valve is installed in the piping at the top of the reaction can, and when discharged from the reaction can, it is sealed and pressurized with nitrogen or the like to increase the efficiency of polymer discharge. In some cases, when the distilling pipe is enlarged, the corrosion-resistant valve using an expensive material is also enlarged, resulting in a problem that the equipment cost is increased.
  • a distilling pipe for sending a distillate gas from a reaction vessel to a rectification column and a liquid return pipe for returning a reflux liquid from the rectification column to the reaction tube are also provided.
  • this method as in the rectification column of an ester reactor in PET, PBT, etc., it is common to assume distillation with a theoretical plate number of 3 or more and a reflux ratio of 1 or more. Large and expensive anti-corrosion material pipes and valves are installed, which causes a problem of high equipment costs.
  • the present invention is an apparatus for producing an aromatic polyester having a reaction can and a rectifying column, wherein a distillation pipe for sending an effluent gas from the reaction can to the rectifying column, and from the rectifying column A liquid return pipe for returning the reflux liquid to the reaction tube, and the ratio of the maximum barrel inner diameter (a) of the reaction can to the pipe inner diameter (b) of the liquid return pipe is 0.012 ⁇ (b) / (A) An apparatus for producing an aromatic polyester satisfying ⁇ 0.12.
  • the present invention is also a method for producing an aromatic polyester in which a polymerization reaction is carried out after carrying out an acetylation reaction using the apparatus for producing an aromatic polyester of the present invention.
  • a production apparatus and a production method capable of producing an aromatic polyester excellent in heat resistance and color tone efficiently with good polymerization and at low cost.
  • FIG. 1 is a conceptual diagram showing an example of an aromatic polyester production apparatus of the present invention.
  • the aromatic polyester in the present invention includes aromatic hydroxycarboxylic acid, aromatic dihydroxy compound, aromatic dicarboxylic acid, polyester comprising dioxy unit and dicarbonyl unit, aromatic aminohydroxy compound, aromatic aminocarboxylic acid and derivatives thereof.
  • an aromatic polyester having a raw material composition selected from at least one selected from aromatic hydroxycarboxylic acids, aromatic dihydroxy compounds, and aromatic dicarboxylic acids is preferably used. More preferably, it is an aromatic liquid crystalline polyester having a composition appropriately combined so that the polymer exhibits liquid crystallinity.
  • examples of the aromatic hydroxycarboxylic acid include p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid.
  • Aromatic dihydroxy compounds include 4,4′-dihydroxybiphenyl, hydroquinone, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, t-butylhydroquinone, phenylhydroquinone, methylhydroquinone, 2 , 6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane and 4,4′-dihydroxydiphenyl ether.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4′-dicarboxylic acid, Examples thereof include 2-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylic acid and diphenyl ether dicarboxylic acid.
  • polyesters composed of dioxy units and dicarbonyl units include polyethylene terephthalate and oligomers thereof.
  • reaction for producing an aromatic polyester in the present invention examples include a reaction for acylating an aromatic hydroxyl group and a reaction for defatty acid polymerization.
  • defatty acid polymerization is performed using a raw material in which a hydroxyl group is previously acylated, and an acyl that acylates a hydroxyl group using a hydroxyl group-containing monomer together with an acylating agent as a raw material constituting an aromatic polyester.
  • a oxidization reaction and a defatty acid melt polymerization reaction are performed. Of these two, the latter method is preferred.
  • defatty acid polymerization it can manufacture by performing deacetic acid polymerization in a molten state, for example.
  • the acylating agent used in the present invention is preferably an acylating agent that can be liquid in the range of 120 ° C. or lower. Specifically, acetic anhydride is preferred.
  • an acylating agent such as a hydroxyl group-containing compound, a carboxylic acid group-containing compound and acetic anhydride is used to acylate a hydroxyl group, and then deacetic acid polycondensation in a molten state.
  • a method in which a part of the hydroxyl group-containing compound is substituted with an acylated compound is preferable.
  • a polyester polymer such as polyethylene terephthalate, an oligomer, or a bis ( ⁇ -hydroxyethyl) ester of an aromatic dicarboxylic acid such as bis ( ⁇ -hydroxyethyl) terephthalate.
  • the addition amount of acetic anhydride is 1.0 time mole amount or more and 1.5 times mole amount or less with respect to the hydroxyl group in a starting material.
  • the amount is preferably 1.05 mol amount or more and 1.2 times mol amount or less.
  • reaction temperature and polymerization time in the above production method is shown.
  • the starting materials shown above are charged into the reaction system, and the acetylation reaction is carried out at normal temperature or under pressure for 5 minutes to 3 hours at a temperature from normal temperature to 230 ° C.
  • the temperature of the acetylation reaction is preferably from 100 ° C. to 200 ° C., more preferably from 130 ° C. to 180 ° C.
  • the time for the acetylation reaction is preferably from 10 minutes to 2 hours.
  • the temperature is raised to a temperature of 230 ° C. or higher and 350 ° C. or lower, and an initial polymerization reaction is performed with deacetic acid.
  • the initial polymerization reaction is carried out at normal pressure, and the temperature is preferably 250 ° C. or higher and 350 ° C. or lower.
  • the initial polymerization time is preferably less than 10 hours in the case of a batch system. When the initial polymerization time is 10 hours or more, the entire polymerization cycle is 12 hours or more, and the production efficiency is deteriorated.
  • deacetic acid polycondensation is performed in a molten state under reduced pressure while the temperature is raised to 230 ° C. or higher and 370 ° C. or lower.
  • the temperature of deacetic acid polycondensation is preferably 250 ° C. or higher and 350 ° C. or lower.
  • a preferable aromatic polyester can be obtained by this method.
  • the apparatus for producing an aromatic polyester of the present invention includes at least a reaction can, a rectifying tower, a distillation pipe for sending a distillate gas from the reaction tube to the rectifying tower, and a return liquid from the rectifying tower to the reaction can.
  • Liquid return piping A specific example of this manufacturing apparatus is shown in FIG. 1 includes a reaction vessel 1, a heating medium jacket 2, a stirring blade 3, a rectification column 4, a distillation pipe 5 for sending a distillation gas from the reaction vessel to the rectification column, and a rectification column.
  • a liquid return pipe 6 for returning the reflux liquid to the reaction tube, a distilling pipe 7 from the rectifying column, a condenser (total condenser) 8, a charging port 9, and a discharge port 10 are provided.
  • a gas supply port 11 that can be purged or pressurized with nitrogen or the like and valves to the respective pipes are provided as necessary.
  • a three-way valve 12 and piping for sending the distillate gas from the rectification tower to the reaction can or outside the system are also provided.
  • the reactor can be divided into a pre-reactor and a post-reactor.
  • the post-reactor can be equipped with ancillary equipment such as a vacuum pump and an ejector to promote polycondensation under reduced pressure. Also good. Further, it may be a batch production apparatus or a continuous production apparatus.
  • the ratio of the maximum barrel inner diameter (a) of the reaction can to the pipe inner diameter (b) of the liquid return pipe is 0.012 ⁇ (b) / (a) ⁇ 0.12. is there.
  • (b) / (a) is smaller than 0.012, the return of the reflux liquid is not smooth, the liquid hold-up increases in the rectification column, loading and flooding occur, and the rectification effect is obtained. It will be damaged.
  • (b) / (a) is larger than 0.12, a large pipe or a large valve made of a corrosion resistant material is required, resulting in an increase in equipment cost.
  • the lower limit of (b) / (a) is preferably 0.02 or more, and more preferably 0.03 or more.
  • the upper limit of (b) / (a) is preferably 0.1 or less, and more preferably 0.08 or less.
  • the ratio of the pipe inner diameter (b) of the liquid return pipe to the pipe inner diameter (c) of the distilling pipe is (c) / (b ) ⁇ 1.1 is preferable. More preferably, (c) / (b) ⁇ 1.3, and more preferably (c) / (b) ⁇ 1.5.
  • the material of the production equipment of the present invention is preferably resistant to corrosion against acetylation reaction solutions and the like.
  • Specific examples include SUS316, SUS316L, SUS836L, SUS904L, duplex stainless steel, nickel-molybdenum alloy, impervious graphite, titanium, zirconium, GL, and tantalum.
  • an internal refluxer having a jacket for passing a refrigerant to the outside and selected from a single tube with a baffle plate, a packed column, and a plate column is preferably used.
  • the reason for having a jacket through which a refrigerant passes is that as a method of efficiently distilling acetic acid while generating internal reflux by cooling and exhibiting a rectification effect, preventing the scattering of raw material monomers and acylated products thereof, This is because a method for controlling the top temperature is preferably used. More specifically, when acetic anhydride is used as the acylating agent, a method of controlling the column top temperature to 110 ° C. or higher and 150 ° C. or lower is preferably used.
  • the vapor pressure of the entrained raw material monomers is extremely low with respect to the vapor pressure of the fatty acid distilled during the production, and both the theoretical plate number and the reflux ratio can be sufficiently separated at less than 1. Therefore, the height of the rectifying tube and the column diameter vary depending on the gas distillation rate and the internal structure, but it is possible to install the rectifying tube assuming that the theoretical number of plates and the reflux ratio are 1 or less. preferable.
  • the method for producing an aromatic polyester of the present invention is a method for carrying out a polymerization reaction after carrying out an acetylation reaction using the above-described aromatic polyester production apparatus having a reactor and a rectifying tower. By using this method, it is possible to install a general-sized valve without inhibiting the distillation of fatty acids, and to obtain an aromatic polyester excellent in heat resistance and color tone with good polymerization and efficiency. .
  • the aromatic polyester obtained by the production apparatus of the present invention can contain an inorganic filler as necessary to obtain an aromatic polyester resin composition.
  • an inorganic filler Fillers, such as a fibrous form, plate shape, powder form, a granular form, can be used.
  • Fillers such as a fibrous form, plate shape, powder form, a granular form, can be used.
  • examples thereof include fibers, alumina fibers, silica fibers, titanium oxide fibers, and silicon carbide fibers.
  • the aromatic polyester obtained by the production apparatus of the present invention is added to an antioxidant and a heat stabilizer (for example, hindered phenol, hydroquinone, phosphites and substituted products thereof), an ultraviolet absorber (for example, resorcinol, salicylate, benzoate).
  • a heat stabilizer for example, hindered phenol, hydroquinone, phosphites and substituted products thereof
  • an ultraviolet absorber for example, resorcinol, salicylate, benzoate.
  • Triazoles, benzophenones, etc.), lubricants and mold release agents montanic acid and its salts, its esters, their half esters, stearyl alcohol, stearamide, polyethylene wax, etc.
  • dyes for example, nigrosine
  • pigments for example, cadmium sulfide, phthalocyanine, etc.
  • the composition can be obtained by melt-kneading at a temperature of 180 ° C. or higher and 370 ° C. or lower using a Banbury mixer, rubber roll machine, kneader, single-screw or twin-screw extruder.
  • the aromatic polyester resin composition thus obtained can be molded by a normal molding method such as injection molding, extrusion molding or compression molding.
  • This molded product has excellent mechanical strength, heat resistance, and hydrolysis resistance, so it can be processed into 3D molded products, sheets, container pipes, etc. It is extremely useful for automobile parts.
  • it since it is excellent in a color tone, it can be set as the outstanding colored molded article by mix
  • Example 1 The manufacturing equipment shown in FIG. 1 was used.
  • This production equipment consists of a heating medium jacket for heating, a reaction can having a stirring blade (bore inner diameter (a): 1500 mm, volume: 3 m 3 ), a rectifying tower (single tube with a water cooling jacket with a baffle plate installed inside, Column diameter: 200 mm, height: 3000 mm, hereinafter referred to as rectifying tower A), distillation pipe for sending distilled gas from the reaction can to the rectifying tower (pipe inner diameter (c): 125 mm, with valve), A liquid return pipe (tube inner diameter (b): 80 mm, with a valve) for returning the reflux liquid from the rectification column to the reaction tube is provided, and a condenser (totally contractor) is provided.
  • a stirring blade bore inner diameter (a): 1500 mm, volume: 3 m 3
  • rectifying tower A single tube with a water cooling jacket with a baffle plate installed inside, Column diameter: 200 mm, height:
  • a reaction vessel was charged with 795 kg of p-hydroxybenzoic acid, 271 kg of 6-hydroxy-2-naphthoic acid, and 772 kg of acetic anhydride, and reacted at 145 ° C. for 2 hours with stirring in a nitrogen gas atmosphere. During this time, all the distillate cooled by the condenser was returned to the reaction vessel. Next, the temperature is raised to 330 ° C. under normal pressure over 6 hours, and cooling water is passed through the rectifying column to keep the top temperature at 150 ° C. or lower, and all the distillate is distilled out of the system. I let you.
  • the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
  • Example 2 Manufacture with the same apparatus as in Example 1 except that the rectifying column A is changed to a rectifying column B (a packed column with a water-cooled jacket packed with 1/2 inch Raschig ring, tower diameter: 300 mm, height: 2500 mm) Equipment was used. A reaction vessel was charged with 763 kg of p-hydroxybenzoic acid, 129 kg of 4,4′-dihydroxybiphenyl, 115 kg of terephthalic acid, 133 kg of polyethylene terephthalate having an intrinsic viscosity of about 0.6 dl / g, and 775 kg of acetic anhydride, under a nitrogen gas atmosphere The mixture was reacted at 145 ° C. for 2 hours with stirring.
  • a rectifying column B a packed column with a water-cooled jacket packed with 1/2 inch Raschig ring, tower diameter: 300 mm, height: 2500 mm
  • the produced aromatic polyester had a Tm (melting point) of 326 ° C. and a melt viscosity of 13 Pa ⁇ s.
  • the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
  • Example 3 The polycondensation and pelletization were carried out under the same apparatus and the same conditions as in Example 2 except that the liquid return pipe was changed to a pipe inner diameter (b) having a valve: 25 mm.
  • the produced aromatic polyester had a Tm (melting point) of 326 ° C. and a melt viscosity of 14 Pa ⁇ s.
  • the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
  • Example 4 Polymerization was carried out in the same apparatus as in Example 1, except that the distillation pipe was a pipe inner diameter (c) having a valve: 80 mm. The temperature rise to 330 ° C. required 8 hours. Thereafter, vacuum polycondensation, discharge, and pelletizing were performed under the same conditions.
  • the produced aromatic polyester has a Tm (melting point) of 320 ° C., a high temperature flow tester (orifice 0.5 ⁇ ⁇ 10 mm), a temperature measured at 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s. The viscosity was 20 Pa ⁇ s.
  • Example 1 Polymerization was carried out using the same apparatus as in Example 1 except that the reactor and the rectifying column were connected by a single pipe having an inner diameter of 80 mm, but the temperature rise to 330 ° C. required 12 hours. Sex deteriorated. Thereafter, vacuum polycondensation, discharge, and pelletizing were performed under the same conditions. Since there is only one pipe connecting the reactor and the rectifying tower, the equipment cost of the pipe and the valve is reduced, but the produced aromatic polyester is dark brown and the color tone deteriorates, and Tm (melting point) is The temperature decreased to 317 ° C., and the melt viscosity also decreased to 15 Pa ⁇ s.
  • the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s. In addition, after the completion, a large amount of white matter was deposited inside the tube condenser.
  • Example 2 Example 2 except that the distillation pipe is changed to a pipe inner diameter (c) having a valve: 250 mm, and the liquid return pipe is changed to a pipe inner diameter (b) having a valve: 250 mm liquid return pipe.
  • Polycondensation and pelletization were performed in the same apparatus and under the same conditions.
  • the produced aromatic polyester had a Tm (melting point) of 326 ° C. and a melt viscosity of 13 Pa ⁇ s. This is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
  • Example 3 Example 2 except that the distilling pipe is changed to a pipe inner diameter (c) having a valve: 100 mm, and the liquid return pipe is changed to a pipe returning diameter (b) having a valve: 15 mm.
  • Polymerization was carried out using the same apparatus as described above, but the temperature rise to 330 ° C. required 10 hours, and the polymerizability deteriorated. Thereafter, vacuum polycondensation, discharge, and pelletizing were performed under the same conditions.
  • the produced aromatic polyester deteriorated in brown and color tone, Tm (melting point) decreased to 318 ° C., and the melt viscosity also decreased to 10 Pa ⁇ s.
  • the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
  • ⁇ marks in the table represent materials used as raw materials.
  • Example 2 the raw material was changed to a four-component system, but the produced aromatic polyester was excellent in heat resistance and color tone. Although the equipment cost was slightly higher as much as the rectifying tower was used as a packed tower, the valve size was general-purpose and the overall equipment cost was low.
  • Example 3 the inner diameter of the liquid return pipe was changed more finely than in Example 2, but the distillation efficiency was good, and it could be produced efficiently with a short initial polymerization reaction time. Moreover, the produced aromatic polyester was excellent in heat resistance and color tone.
  • Example 4 since (c) / (b) was less than 1.1, the flow of the distillate gas was not slightly smooth, and the deacetic acid polymerization time up to 330 ° C. at which acetic acid was almost completely distilled was slightly longer. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 本発明は、反応缶、精留塔、反応缶から精留塔へ留出ガスを送るための留出配管、および精留塔から反応管へ還流液を戻すための液戻り配管を有し、反応缶の最大胴内径(a)と液戻り配管の管内径(b)の比が、0.012≦(b)/(a)≦0.12である芳香族ポリエステルの製造装置である。 本発明により、効率的な精留効果が得られ、耐熱性、色調に優れた芳香族ポリエステルを、重合性よく効率的にかつ安価に製造するのに好適な製造装置が提供される。

Description

芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法
 本発明は芳香族ポリエステルの製造装置と、その製造装置を用いた芳香族ポリエステルの製造方法に関する。
 近年、プラスチックの高性能化に対する要求がますます高まっている。ポリエステル系ポリマーについても、ポリブチレンテレフタレート(PBT)、ポリエチレン-2,6-ナフタレート(PEN)等、種々の機能を有するポリマ-が数多く開発され市場に供されている。ポリエステル系ポリマーの中でも原料モノマーに芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類および芳香族ジヒドロキ化合物類を使用する芳香族ポリエステルが注目されている。特に、分子鎖の平行な配列を特徴とするサーモトロピック液晶ポリエステル(LCP)が、優れた流動性、機械的強度、耐熱性を有する点で注目されている。
 従来、ポリエステルを製造する方法として、例えばPBTの直接重合法の場合、まずテレフタル酸と1,4-ブタンジオールを、チタン化合物等のエステル化反応触媒の存在下に反応させる方法がある。この方法では、エステル化反応缶に設置した精留塔の塔頂から、副生テトラヒドロフランと水とを主成分とする留出液を留出させてエステル化反応を行い、次いで、重縮合反応缶内で重縮合反応させることによりPBTが得られる。例えば、特許文献1には、留出液に含有される炭素数4未満の1価アルコールの含有量が留出液中のテトラヒドロフランに対して40重量ppm以下の留出液とすることにより、理論段数の少ない精留塔で還流比の小さい蒸留法によって、安定にPBTを製造する方法が開示されている。
 一方、芳香族ポリエステルは、パラヒドロキシ安息香酸等の芳香族ヒドロキシカルボン酸、4,4’-ジヒドロキシビフェニル等の芳香族ジヒドロキシ化合物、テレフタル酸等の芳香族ジカルボン酸、さらにポリエチレンテレフタレート(PET)等の含脂肪族ポリエステルを主な原料として用いる。芳香族ポリエステルの製造方法としては、まず無水酢酸等の脂肪酸無水物で原料中のフェノール性水酸基をアシル化し、またはフェノール性水酸基の脂肪酸エステルを原料に用い、次に加熱下(場合により減圧する)でアシル化の際に副生した脂肪酸及び/またはエステル交換で生成した脂肪酸を留出除去させながら重合する方法が一般的である。例えば、特許文献2には、優れた溶融流動性、光学異方性と機械物性を併せ持つ溶融重合のみで得られた芳香族共重合ポリエステルが開示されている。この芳香族共重合ポリエステルの製造方法は、無水酢酸を用いたアシル化と脱酢酸重縮合である。
 しかしながら、このような芳香族ポリエステルの製造方法では、留出する脂肪酸と同伴して芳香族ヒドロキシカルボン酸、芳香族ジヒドロキシ化合物あるいはそれらの脂肪酸エステル(以下、原料モノマ-類とそのアシル化物という)が留出、揮散するという問題点がある。この結果、アシル基とカルボキシル基のモル比ずれによる重合阻害が起こり、重合時間が遅延する、目的の粘度の重合物が得られない、ポリマーが着色する、あるいは原料モノマー類の原単位が悪化するといった問題が起こる。さらには、留出配管やコンデンサー内で原料モノマー類とそのアシル化物が析出し閉塞に至ることにより、芳香族ポリエステルの製造そのものが困難となる場合もある。そこで、これらの問題点を解決するために、種々の対策が提案されている。
 特許文献3には、留出する脂肪酸の一部を反応器に還流させる方法が開示されており、その手段として、じゃま板付き二重管型内部還流器や、じゃま板無しの二重管型内部還流器を用いることができるとされている。この理由は、留出する脂肪酸は通常酢酸、プロピオン酸、酪酸等で比較的蒸気圧が高いが、LCP等の主原料としては通常融点が80℃以上の化合物を使用するため蒸気圧(昇華圧)が低く、1回の気液接触で十分な精留効果が得られるためである。
 また、特許文献4には、芳香族ポリエステル用原料を最終反応温度が300~400℃の範囲内で重縮合して芳香族ポリエステルをバッチ式で製造する際に、反応液面より上の反応空間に接する反応装置部分の温度を150~300℃に保ち、さらに留出管が還流器および反応槽内に突出したノズルを有することにより、還流液を反応槽内壁に伝わせることなく反応混合物中に落下させる方法が開示されている。
 また、特許文献5、6、7には、チューブ型熱交換器よりなる分縮器を設けた重縮合缶を用いて重縮合を行い、留出物を分縮して凝縮物を縮重合槽に回収しながら芳香族ポリエステルを製造する方法が開示されている。それぞれの文献には、さらに、分縮器に耐食性材質を用いる方法(特許文献5)、分縮器の冷媒の温度を縮重合槽から留出する低沸物の沸点以下に制御する方法(特許文献6)、または分縮器から留出する低沸分の温度を115℃~145℃の範囲内の所定温度になるように分縮器に供給する熱媒温度を制御する方法(特許文献7)が開示されている。
特開2002-138141号公報(特許請求の範囲、図) 特開4-136027号公報(特許請求の範囲) 特開1993-271398号公報(特許請求の範囲、図) 国際公開第2003/062299号(請求の範囲、図) 特開2004-331829号公報(特許請求の範囲、図) 特開2006-307006号公報(特許請求の範囲、図) 特開2006-299027号公報(特許請求の範囲、図)
 しかし、従来の方法では、反応缶と精留塔を連結する配管が留出配管一本のみであることが多い。そのため、配管内で留出ガスと還流した戻り液が向流となり内圧上昇を招いてしまう。さらに、液量や留出ガス量が増加した場合は、ローディングやフラッディング現象によって留出効率が著しく悪化し、結果として重合阻害を生じるという問題がある。これらの問題は、配管サイズを大型化することによって改善することはできる。しかしながら、芳香族ポリエステルを液相重合で製造する場合には、反応缶上部の配管にバルブを設置し、反応缶からの吐出時に密閉化して窒素等で加圧することによりポリマーの排出を効率化する場合があり、留出配管を大型化すると、高価な材質を用いた耐食性のバルブについても大型化することになり、設備費が高くなる問題がある。
 また、従来の方法には、反応缶から精留塔へ留出ガスを送る留出配管、および精留塔から反応管へ還流液を戻す液戻り配管を併設する方法もある。しかしながら、この方法では、PETやPBT等におけるエステル反応缶の精留塔と同様に、理論段数3段以上、環流比1以上の蒸留を想定している場合が一般的であり、やはり配管サイズが大きく、高価な耐食材質の配管やバルブを設置することになり、設備費が高くなる問題点がある。
 本発明者らは前記課題を解決するために検討した結果、芳香族ポリエステルを製造する際に留出する脂肪酸の蒸気圧に対し、同伴する原料モノマー類の蒸気圧は極めて低く、理論段数、還流比ともに1未満で十分に分離できるという結論を得た。そして、この結論に着目し、反応缶から精留塔へ留出ガスを送るための留出配管、および精留塔から反応管へ還流液を戻すための液戻り配管を併設するとともに、液戻り配管の管内径を反応缶の最大胴内径に対し一定範囲の比率とすることにより、脂肪酸の留出を阻害せず、汎用的なサイズのバルブが設置でき、効率的で安価な芳香族ポリエステル製造装置が得られることを見出した。
 すなわち、本発明は、反応缶と精留塔とを有する芳香族ポリエステルの製造装置であって、前記反応缶から前記精留塔へ流出ガスを送るための留出配管、および前記精留塔から前記反応管へ還流液を戻すための液戻り配管を有し、前記反応缶の最大胴内径(a)と前記液戻り配管の管内径(b)の比が、0.012≦(b)/(a)≦0.12である芳香族ポリエステルの製造装置である。
 また、本発明は、本発明の芳香族ポリエステルの製造装置を用いてアセチル化反応を行った後、重合反応を行う芳香族ポリエステルの製造方法である。
 本発明によって、耐熱性、色調に優れた芳香族ポリエステルを、重合性よく効率的に、かつ安価に製造することができる製造装置と製造方法が提供される。
図1は本発明の芳香族ポリエステル製造装置の一例を示す概念図である。
 以下、本発明の芳香族ポリエステル製造装置について説明する。
 [芳香族ポリエステル]
 本発明における芳香族ポリエステルとは、芳香族ヒドロキシカルボン酸、芳香族ジヒドロキシ化合物、芳香族ジカルボン酸、ジオキシ単位とジカルボニル単位からなるポリエステル、芳香族アミノヒドロキシ化合物、芳香族アミノカルボン酸およびそれらの誘導体などが挙げられる。特に、芳香族ヒドロキシカルボン酸類、芳香族ジヒドロキシ化合物類、芳香族ジカルボン酸類から1種以上選ばれた原料組成より成る芳香族ポリエステルが好ましく用いられる。さらに好ましくは、ポリマーが液晶性を示すよう適宜組み合わせた組成より成る芳香族液晶性ポリエステルである。
 上記において、芳香族ヒドロキシカルボン酸としては、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸などが挙げられる。
 芳香族ジヒドロキシ化合物としては、4,4´-ジヒドロキシビフェニル、ハイドロキノン、3,3´,5,5´-テトラメチル-4,4´-ジヒドロキシビフェニル、t-ブチルハイドロキノン、フェニルハイドロキノン、メチルハイドロキノン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,2-ビス(4-ヒドロキシフェニル)プロパンおよび4,4´-ジヒドロキシジフェニルエーテルなどが挙げられる。
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、4,4´-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4´-ジカルボン酸、1,2-ビス(2-クロルフェノキシ)エタン-4,4´-ジカルボン酸およびジフェニルエーテルジカルボン酸などが挙げられる。
 ジオキシ単位とジカルボニル単位からなるポリエステルとしては、ポリエチレンテレフタレートあるいはそのオリゴマーが挙げられる。
 芳香族液晶性ポリエステルの構造単位を構成し、原料となり得る芳香族ヒドロキシカルボン酸あるいはその誘導体、ジヒドロキシ化合物あるいはその誘導体、芳香族ジカルボン酸あるいはその誘導体は多くの場合常温で固体であり、これらを粉末状として用いることが好ましい。また、ジオキシ単位とジカルボニル単位からなるポリエステルは、常温で固体であるが、通常はペレット状あるいはそれを粉砕した粉末状で用いられる。
 [反応]
 本発明において芳香族ポリエステルを製造するための反応としては、芳香族ヒドロキシル基をアシル化する反応、および脱脂肪酸重合を行う反応が挙げられる。この場合、ヒドロキシル基があらかじめアシル化された原料を用いて脱脂肪酸重合する場合と、芳香族ポリエステルを構成する原料としてヒドロキシル基含有単量体をアシル化剤とともに用い、ヒドロキシル基をアシル化するアシル化反応と脱脂肪酸溶融重合反応を行う場合とがある。この2つのうち後者の方法が好ましい。脱脂肪酸重合としては、例えば、溶融状態で脱酢酸重合を行なうことにより製造することができる。
 本発明で使用するアシル化剤としては、120℃以下の範囲で液状となりうるアシル化剤であることが好ましい。具体的には無水酢酸が好ましい。
 芳香族ポリエステルを製造する具体的な方法としては、例えばヒドロキシル基含有化合物、カルボン酸基含有化合物および無水酢酸などのアシル化剤を用い、ヒドロキシル基をアシル化した後、溶融状態で脱酢酸重縮合を行なう方法や、この方法においてヒドロキシル基含有化合物の一部をアシル化した化合物に置換した方法などがある。特に、下記(1)または(2)で代表されるような方法が好ましい。
 (1)p-ヒドロキシ安息香酸などの芳香族ヒドロキシカルボン酸、4,4´-ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物、テレフタル酸、イソフタル酸などの芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、溶融状態で脱酢酸重縮合反応によって製造する方法。
 (2)ポリエチレンテレフタレートなどのポリエステルのポリマー、オリゴマーまたはビス(β-ヒドロキシエチル)テレフタレートなど芳香族ジカルボン酸のビス(β-ヒドロキシエチル)エステルの存在下で(1)の方法により製造する方法。
 さらに上記製造方法(1)または(2)における具体的条件を挙げれば、無水酢酸の添加量は、出発原料中のヒドロキシル基に対して1.0倍モル量以上1.5倍モル量以下であることが好ましい。特に1.05モル量以上1.2倍モル量以下であることが好ましい。
 上記製造方法の反応温度および重合時間の一例を示す。上記に示した出発原料を反応系に仕込み、通常温度から230℃の温度で5分以上3時間以下の間、常圧下または加圧下でアセチル化反応を行う。アセチル化反応の温度は100℃以上200℃以下が好ましく、130℃以上180℃以下がさらに好ましい。アセチル化反応の時間は10分以上2時間以下が好ましい。アセチル化反応の後、230℃以上350℃以下の温度まで昇温し、脱酢酸を伴いながら初期重合反応を行う。初期重合反応は常圧で行い、温度は250℃以上350℃以下が好ましい。また初期重合時間は回分式の場合10時間未満が好ましい。初期重合時間が10時間以上になると、全体の重合サイクルが12時間以上となり生産効率が悪くなってしまう。次に、230℃以上370℃以下の温度まで昇温しつつ、減圧下、溶融状態で脱酢酸重縮合する。脱酢酸重縮合の温度は250℃以上350℃以下が好ましい。この方法により好ましい芳香族ポリエステルを得ることができる。
 これらの重縮合反応は無触媒でも進行するが、(イ)酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどの金属化合物を触媒として添加するか、あるいは(ロ)触媒および色調改良剤として効果のある次亜リン酸ナトリウム、次亜リン酸カリウムなどの化合物を添加した方が好ましい場合もある。これらの触媒および添加剤を添加する場合には、液晶性樹脂100質量部に対して(イ)は0.001質量部~1質量部、(ロ)については0.001質量部~5質量部を添加することが好ましい。
 [製造装置]
 本発明の芳香族ポリエステルの製造装置は、少なくとも反応缶、精留搭、反応管から精留搭へ留出ガスを送るための留出配管、および精留搭から反応缶へ還流液を戻すための液戻り配管を備えている。この製造装置の具体例を図1に示す。図1の製造装置は、反応缶1、加熱用熱媒ジャケット2、攪拌翼3、精留塔4、反応缶から精留塔へ留出ガスを送るための留出配管5、精留塔から反応管へ還流液を戻すための液戻り配管6、精留塔からの留出配管7、コンデンサー(全縮器)8、仕込み口9、吐出口10を備えている。また、必要に応じて、窒素等によるパージや加圧ができるガス供給口11や、それぞれの配管へのバルブも備えている。また、必要に応じて、精留搭から出る留出ガスを反応缶または系外へ送るための三方弁12や配管も備えている。さらに、必要に応じて、反応缶は前反応缶と後反応缶に分かれていても良く、後反応缶では真空ポンプやエゼクター等の減圧用付帯設備を装備し減圧下で重縮合を促進しても良い。また、回分式製造装置であっても、連続製造装置であっても良い。
 本発明の芳香族ポリエステルの製造装置は、反応缶の最大胴内径(a)と液戻り配管の管内径(b)の比が、0.012≦(b)/(a)≦0.12である。(b)/(a)が0.012よりも小さい場合には、還流液の戻りがスムーズではなく、精留塔内で液のホールドアップが増加しローディングやフラッディングが発生して精留効果が損なわれてしまう。(b)/(a)が0.12よりも大きい場合には、耐食性材質の大型配管や大型バルブが必要となり設備費が増大してしまう。還流液をスムーズに反応缶へ戻すために、(b)/(a)の下限は0.02以上が好ましく、0.03以上がより好ましい。また、液戻り配管を細くし設備費を抑える観点で、(b)/(a)の上限は0.1以下が好ましく、0.08以下がより好ましい。
 さらに、留出ガスの流れをスムーズなものとし反応缶内圧上昇を抑えるために、液戻り配管の管内径(b)と留出配管の管内径(c)の比が、(c)/(b)≧1.1であることが好ましい。より好ましくは、(c)/(b)≧1.3、さらに好ましくは(c)/(b)≧1.5である。(c)/(b)の比が大きいほど留出ガスの流れがスムーズになるので、(c)/(b)の比の上限は特に規定する必要はないが、設置できる配管の大きさを考慮すれば現実的な上限は10以下である。
 本発明の製造設備の材質はアセチル化反応溶液等に対して耐腐食性であることが好ましい。具体的にはSUS316、SUS316L、SUS836L、SUS904L、2相ステンレス、ニッケル-モリブデン系合金、不浸透黒鉛、チタン、ジルコニウム、GLおよびタンタル等が例示される。
 [精留塔]
 本発明における精留塔4の具体例としては、外部に冷媒を通すジャケットを有し、じゃま板付き単管、充填塔、棚段塔から選ばれる内部還流器が好ましく用いられる。冷媒を通すジャケットを有する理由は、冷却により内部還流を発生させ、精留効果を発現させて原料モノマ-類とそのアシル化物の飛散を防止しつつ効率的に酢酸を留出させる手法として、塔頂温度を制御する方法が好ましく用いられるからである。より具体的にはアシル化剤として無水酢酸を使用する場合は、塔頂温度を110℃以上150℃以下に制御する手法が好ましく用いられる。
 本発明における芳香族ポリエステルでは、製造する際に留出する脂肪酸の蒸気圧に対し、同伴する原料モノマー類の蒸気圧は極めて低く、理論段数、還流比ともに1未満で十分に分離できる。したがって、精留管の高さおよび塔径については、ガスの留出速度および内部構造によっても異なるが、理論段数、環流比ともに最大で1を目安に運転することを想定して設置することが好ましい。
 [製造方法]
 本発明の芳香族ポリエステルの製造方法は、上述した反応缶と精留塔を有する芳香族ポリエステル製造装置を用いてアセチル化反応を行った後、重合反応を行う方法である。この方法を用いることにより、脂肪酸の留出を阻害せず、汎用的なサイズのバルブが設置でき、重合性よく効率的で安価に、耐熱性、色調に優れた芳香族ポリエステルを得ることができる。
 [用途]
 本発明の製造装置で得られた芳香族ポリエステルに、必要に応じて無機充填材を含有して、芳香族ポリエステル樹脂組成物を得ることができる。無機充填剤としては、特に限定されるものではないが、繊維状、板状、粉末状、粒状などの充填剤を使用することができる。具体的には、例えばガラス繊維、PAN系やピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維などの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、などが挙げられる。
 本発明の製造装置で得られた芳香族ポリエステルに、酸化防止剤および熱安定剤(たとえばヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、紫外線吸収剤(たとえばレゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、滑剤および離型剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(たとえばニグロシンなど)および顔料(たとえば硫化カドミウム、フタロシアニンなど)を含む着色剤、結晶核剤、可塑剤、難燃剤、などを必要に応じて含有して、芳香族ポリエステル樹脂組成物を得ることができる。
 これらを含有する方法としては、溶融混練することが好ましい。溶融混練には公知の方法を用いることができる。たとえば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用い、180℃以上370℃以下の温度で溶融混練して組成物を得ることができる。
 このようにして得られる芳香族ポリエステル樹脂組成物は、射出成形、押出成形、圧縮成形など通常の成形方法で成形することができる。この成形品は、優れた機械的強度、耐熱性、耐加水分解性を有しているので、三次元成形品、シート、容器パイプなどに加工することができ、電気・電子部品、精密部品、自動車部品などに極めて有用である。具体的には、各種ギヤー、各種ケース、センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケーススイッチコイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、ハウジング、半導体、等の部品として広く使用することができる。また、色調に優れるため、着色剤を配合することにより、優れた着色成形品とすることができる。
 次に実施例により、芳香族ポリエステルの製造装置と製造方法を具体的に説明する。ただし、本発明はこれらの実施例に限定はされない。
 (実施例1)
 図1に示す製造設備を用いた。この製造設備は、加熱用熱媒ジャケット、攪拌翼を有する反応缶(胴部内径(a):1500mm、容積:3m)、精留塔(内部にじゃま板を設置した水冷ジャケット付き単管、塔径:200mm、高さ:3000mm。以下、精留搭Aとする)、反応缶から精留塔へ留出ガスを送るための留出配管(管内径(c):125mm、バルブ有り)、精留塔から反応管へ還流液を戻すための液戻り配管(管内径(b):80mm、バルブ有り)、コンデンサー(全縮器)を備えている。反応缶にp-ヒドロキシ安息香酸795Kg、6-ヒドロキシ-2-ナフトエ酸を271Kg、および無水酢酸772Kgを仕込み、窒素ガス雰囲気下、攪拌しながら145℃で2時間反応させた。この間コンデンサーで冷却した留出液は全て反応缶へ戻した。次に、常圧下、330℃まで6時間かけて昇温し、精留塔へは冷却水を通水し塔頂温度を150℃以下に保持しつつ、留出液は全て系外へ留出させた。その後、さらに重合温度を330℃に保持しつつ2時間で133Paに減圧し、さらに30分間反応を継続した後、重縮合を完了させた。次に、各バルブを閉止し、反応容器内を窒素で0.1MPaに加圧し、直径3mmの円形吐出口を複数有する口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
この芳香族ポリエステルは、Tm(融点)は320℃、溶融粘度は20Pa・sであった。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
 (実施例2)
 精留搭Aを、精留塔B(1/2inchラシヒリングを充填した水冷ジャケット付き充填塔、塔径:300mm、高さ:2500mm)に変更する以外は実施例1と同様の装置を備えた製造設備を用いた。反応缶にp-ヒドロキシ安息香酸763Kg、4,4’-ジヒドロキシビフェニル129Kg、テレフタル酸115kg、固有粘度が約0.6dl/gのポリエチレンテレフタレ-ト133Kg及び無水酢酸775Kgを仕込み、窒素ガス雰囲気下、攪拌しながら145℃で2時間反応させた。この間コンデンサーで冷却した留出液は全て反応缶へ戻した。次に、常圧下、330℃まで6時間かけて昇温し、精留塔へは冷却水を通水し塔頂温度を150℃以下に保持しつつ、留出液は全て系外へ留出させた。その後、さらに重合温度を330℃に保持しつつ2時間で133Paに減圧し、さらに30分間反応を継続した後、重縮合を完了させた。次に、各バルブを閉止し、反応容器内を窒素で0.1MPaに加圧し、直径3mmの円形吐出口を複数有する口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
製造された芳香族ポリエステルはTm(融点)は326℃、溶融粘度は13Pa・sであった。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
 (実施例3)
 液戻り配管を、バルブを有する管内径(b):25mmの液戻り配管に変更する以外は実施例2と同様の装置、同様の条件で重縮合、ペレタイズを行った。
製造された芳香族ポリエステルはTm(融点)は326℃、溶融粘度は14Pa・sであった。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
 (実施例4)
 留出配管を、バルブを有する管内径(c):80mmの留出配管にした以外は、実施例1と同様の装置で重合を行った。330℃までの昇温は8時間を要した。その後は、同様の条件で減圧重縮合、吐出、ペレタイズを行った。
製造された芳香族ポリエステルは、Tm(融点)は320℃、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した溶融粘度が20Pa・sであった。 
 (比較例1)
 反応缶と精留塔とを一本の管内径80mmの配管で接続した以外は、実施例1と同様の装置で重合を行ったが、330℃までの昇温は12時間を要し、重合性が悪化した。その後は、同様の条件で減圧重縮合、吐出、ペレタイズを行った。
反応缶と精留搭とを接続する配管が一本であるため、配管とバルブを合わせた設備費は安くなるものの、製造された芳香族ポリエステルは茶褐色と色調が悪化し、Tm(融点)は317℃と低下し、溶融粘度についても15Pa・sと低下した。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。また、終了後には、チューブ型コンデンサー内部に多量の白色物の析出が見られた。
 (比較例2)
 留出配管を、バルブを有する管内径(c):250mmの留出配管に、また液戻り配管を、バルブを有する管内径(b):250mmの液戻り配管に変更する以外は実施例2と同様の装置、同様の条件で重縮合、ペレタイズを行った。
製造された芳香族ポリエステルはTm(融点)は326℃、溶融粘度は13Pa・sであった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
 (比較例3)
 留出配管を、バルブを有する管内径(c):100mmの留出配管に、また、液戻り配管を、バルブを有する管径(b):15mmの液戻り配管に変更する以外は実施例2と同様の装置で重合を行ったが、330℃までの昇温は10時間を要し、重合性が悪化した。その後は、同様の条件で減圧重縮合、吐出、ペレタイズを行った。
製造された芳香族ポリエステルは茶褐色と色調が悪化し、Tm(融点)は318℃と低下し、溶融粘度についても10Pa・sと低下した。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
 実施例1~4および比較例1~3で得られたペレットについて、耐熱性と色調の評価を行った。
 (耐熱性)
 得られたペレットを、高化式フローテスター(オリフィス0.5φ×10mm)を用い、滞留時間5分の粘度測定時と同一の温度で30分滞留させ、溶融粘度を測定し、滞留中の粘度保持率を下記式により評価した。滞留5分の溶融粘度は各実施例、比較例中に記載した。
・粘度保持率=(滞留時間30分の溶融粘度/滞留5分の溶融粘度)×100(%)。
 (色調)
 得られたペレットを、スガ試験器(株)製SMカラーコンピューター装置を用いて明るみ(L値)を測定した。
Figure JPOXMLDOC01-appb-T000001
 表中の○印は、原料として用いたものを表す。
 実施例1~4は、いずれも(b)/(a)が0.012以上0.12以下の範囲内であったので、製造した芳香族ポリエステルは耐熱性、色調に優れていた。また、初期重合反応時間も短く効率的に製造できた。また、設備費も安価であった。また、樹脂組成物としても好適であった。
 実施例2は、原料を4成分系に変えたが、製造した芳香族ポリエステルは耐熱性、色調に優れていた。精留塔を充填塔とした分だけ設備費はやや高くなったが、バルブサイズは汎用的であり、全体的な設備費は安価であった。
 実施例3は、実施例2に比べて液戻り配管の内径を細く変えたが、留出効率は良く、短い初期重合反応時間で効率的に製造できた。また、製造した芳香族ポリエステルは耐熱性、色調に優れていた。
 実施例4は、(c)/(b)が1.1未満であったので、留出ガスの流れがややスムーズではなく、酢酸がほぼ留出し終える330℃までの脱酢酸重合時間が少し長いものであった。
 比較例1は、配管が1本なので設備費は最も安価であったが、配管中でフラッディングが発生し、留出効率が低下した。また、モノマー類の飛散も増加した。製造した芳香族ポリエステルは耐熱性、色調、粘度が悪化した。
 比較例2は、配管を太くしたので、製造した芳香族ポリエステルは耐熱性、色調に優れ、効率的に製造できた。しかし、配管が太いため、バルブの費用が高くなり、全体的な設備費は高くなった。
 比較例3は、実施例3に比べてさらに液戻り配管の内径を細く変えたため、還流液の戻りがスムーズでなくなり、留出効率、環流効果が低下した。また、モノマー類の飛散も増加した。製造した芳香族ポリエステルは耐熱性、色調、粘度が悪化した。
1  反応缶
2  加熱用熱媒ジャケット
3  攪拌翼
4  精留塔
5  留出配管
6  液戻り配管
7  精留塔からの留出配管
8  コンデンサー(全縮器)
9  仕込み口
10 吐出口
11 ガス(窒素)供給口
12 三方弁

Claims (5)

  1.  反応缶と精留塔とを有する芳香族ポリエステルの製造装置であって、前記反応缶から前記精留塔へ留出ガスを送るための留出配管、および前記精留塔から前記反応管へ還流液を戻すための液戻り配管を有し、前記反応缶の最大胴内径(a)と前記液戻り配管の管内径(b)の比が、0.012≦(b)/(a)≦0.12である、芳香族ポリエステルの製造装置。
  2.  前記液戻り配管の管内径(b)と前記留出配管の管内径(c)の比が、(c)/(b)≧1.1である、請求項1の芳香族ポリエステルの製造装置。
  3.  前記精留塔が、外部に冷媒を通すジャケットを有し、じゃま板付き単管、充填塔または棚段塔から選ばれる内部還流器である、請求項1または2の芳香族ポリエステルの製造装置。
  4.  芳香族ポリエステルの原料モノマー類が、芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類および芳香族ジヒドロキシ化合物類からなる群より選ばれる少なくとも1種である、請求項1~3のいずれかの芳香族ポリエステルの製造装置。
  5.  請求項1~4のいずれかの芳香族ポリエステルの製造装置を用いてアセチル化反応を行った後、重合反応を行う、芳香族ポリエステルの製造方法。
PCT/JP2011/079301 2010-12-27 2011-12-19 芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法 WO2012090746A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137006332A KR101790379B1 (ko) 2010-12-27 2011-12-19 방향족 폴리 에스테르의 제조 장치, 및 방향족 폴리 에스테르의 제조 방법
CN201180049909.0A CN103154080B (zh) 2010-12-27 2011-12-19 芳香族聚酯的制造装置以及芳香族聚酯的制造方法
JP2012501064A JP5811084B2 (ja) 2010-12-27 2011-12-19 芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法
US13/996,798 US20130296524A1 (en) 2010-12-27 2011-12-19 Apparatus for producing aromatic polyester and process for producing aromatic polyester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-289988 2010-12-27
JP2010289988 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090746A1 true WO2012090746A1 (ja) 2012-07-05

Family

ID=46382857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079301 WO2012090746A1 (ja) 2010-12-27 2011-12-19 芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法

Country Status (6)

Country Link
US (1) US20130296524A1 (ja)
JP (1) JP5811084B2 (ja)
KR (1) KR101790379B1 (ja)
CN (1) CN103154080B (ja)
TW (1) TWI501991B (ja)
WO (1) WO2012090746A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101794387B1 (ko) * 2010-12-27 2017-11-06 도레이 카부시키가이샤 액정성 폴리에스테르 수지의 제조 방법, 및 액정성 폴리에스테르 수지의 제조 장치
CN107570085A (zh) * 2017-08-30 2018-01-12 华南理工大学 一种酚羟基脂肪酸乳化剂及其制备方法与应用
BG67456B1 (bg) * 2019-11-05 2022-08-15 "Кемикал Иновейшън" ООД Инсталация за полимеризация с интегриран в нея комбиниран абсорбционно-дифузионен и абсорбционно-кондензационен блок и нейното приложение за получаване на полимери и съполимери
CN111944686A (zh) * 2020-09-17 2020-11-17 江苏汉肽生物医药有限公司 一种用于制备多肽的酶解炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161421A (en) * 1980-05-15 1981-12-11 Toray Ind Inc Production of polyester
JPH0726002A (ja) * 1993-07-07 1995-01-27 Toray Ind Inc ポリエステルの製造方法
JP2002138141A (ja) * 2000-08-24 2002-05-14 Mitsubishi Chemicals Corp ポリブチレンテレフタレートの製造方法
JP2004331829A (ja) * 2003-05-08 2004-11-25 Sumitomo Chem Co Ltd 芳香族ポリエステルの製造法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271398A (ja) * 1992-03-27 1993-10-19 Kawasaki Steel Corp 芳香族液晶ポリエステルの製造方法
JP2006299027A (ja) * 2005-04-19 2006-11-02 Sumitomo Chemical Co Ltd 芳香族ポリエステルの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161421A (en) * 1980-05-15 1981-12-11 Toray Ind Inc Production of polyester
JPH0726002A (ja) * 1993-07-07 1995-01-27 Toray Ind Inc ポリエステルの製造方法
JP2002138141A (ja) * 2000-08-24 2002-05-14 Mitsubishi Chemicals Corp ポリブチレンテレフタレートの製造方法
JP2004331829A (ja) * 2003-05-08 2004-11-25 Sumitomo Chem Co Ltd 芳香族ポリエステルの製造法

Also Published As

Publication number Publication date
KR101790379B1 (ko) 2017-10-26
CN103154080A (zh) 2013-06-12
JP5811084B2 (ja) 2015-11-11
KR20140009118A (ko) 2014-01-22
US20130296524A1 (en) 2013-11-07
TWI501991B (zh) 2015-10-01
CN103154080B (zh) 2014-09-24
TW201237062A (en) 2012-09-16
JPWO2012090746A1 (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
TWI475068B (zh) 全芳香族聚酯及聚酯樹脂組成物
JP4681268B2 (ja) 全芳香族液晶ポリエステル樹脂の製造方法
JP6920924B2 (ja) 液晶ポリエステル樹脂
TWI549989B (zh) Liquid crystal polyester amide, liquid crystal polyesteramide resin composition and molded body
JP2003206342A (ja) 液晶性ポリエステルおよびその製造方法
JP2010037474A (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
KR101757308B1 (ko) 유동성이 향상된 전방향족 폴리에스테르 수지의 제조방법 및 이에 따라 제조된 전방향족 폴리에스테르
JP2009127024A (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JP5811084B2 (ja) 芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法
WO2019198665A1 (ja) 液晶ポリエステル樹脂、その製造方法およびそれからなる成形品
JP2012214736A (ja) 液晶ポリエステルの製造方法
US20140088287A1 (en) Production method for liquid crystal polyester
CN109796584B (zh) 一种芳香族热致液晶聚合物的制备系统和制备方法
CN105860036A (zh) 一种液晶聚酯以及由其组成的模塑组合物和其应用
KR20120100628A (ko) 전방향족 액정 폴리에스테르 수지의 제조방법과 그 방법에 의해 제조된 수지, 및 상기 수지를 포함하는 컴파운드
US8916673B2 (en) Process for producing liquid crystalline polyester resin and apparatus for producing liquid crystalline polyester resin
JP4576644B2 (ja) 芳香族液晶性ポリエステルおよびその製造方法
JP2009127025A (ja) 全芳香族ポリエステル及びポリエステル樹脂組成物
JPH02127424A (ja) 芳香族ポリエステルの製造方法
JP2013075990A (ja) 液晶性ポリマー、成形体および液晶性ポリマーの製造方法
JP2019183041A (ja) 液晶ポリエステル樹脂、その製造方法およびそれからなる成形品
JP2013007005A (ja) 液晶ポリエステルの製造方法
JP2000281795A (ja) 液晶性樹脂の重合装置および液晶性樹脂の製造方法
JP2838118B2 (ja) 芳香族ポリエステルの製造方法
CN115449061A (zh) 全芳香族液晶聚酯树脂及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049909.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012501064

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137006332

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13996798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853598

Country of ref document: EP

Kind code of ref document: A1