WO2012090746A1 - 芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法 - Google Patents
芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法 Download PDFInfo
- Publication number
- WO2012090746A1 WO2012090746A1 PCT/JP2011/079301 JP2011079301W WO2012090746A1 WO 2012090746 A1 WO2012090746 A1 WO 2012090746A1 JP 2011079301 W JP2011079301 W JP 2011079301W WO 2012090746 A1 WO2012090746 A1 WO 2012090746A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- aromatic polyester
- aromatic
- pipe
- producing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/123—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/785—Preparation processes characterised by the apparatus used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00094—Jackets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00105—Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
- B01J2219/00108—Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00105—Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
- B01J2219/0011—Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00164—Controlling or regulating processes controlling the flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00245—Avoiding undesirable reactions or side-effects
Definitions
- the present invention relates to an aromatic polyester manufacturing apparatus and an aromatic polyester manufacturing method using the manufacturing apparatus.
- polyester polymers many polymers having various functions such as polybutylene terephthalate (PBT) and polyethylene-2,6-naphthalate (PEN) have been developed and put on the market.
- PBT polybutylene terephthalate
- PEN polyethylene-2,6-naphthalate
- aromatic polyesters that use aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, and aromatic dihydroxy compounds as raw material monomers have attracted attention.
- a thermotropic liquid crystal polyester (LCP) characterized by parallel arrangement of molecular chains has attracted attention because of its excellent fluidity, mechanical strength, and heat resistance.
- polyester for example, in the case of direct polymerization of PBT, there is a method in which terephthalic acid and 1,4-butanediol are first reacted in the presence of an esterification catalyst such as a titanium compound.
- an esterification catalyst such as a titanium compound.
- a distillate containing by-product tetrahydrofuran and water as main components is distilled from the top of a rectifying column installed in an esterification reactor, and then an esterification reaction is performed.
- PBT is obtained by polycondensation reaction.
- Patent Document 1 discloses that a distillate having a content of monohydric alcohol having less than 4 carbon atoms contained in the distillate is 40 ppm by weight or less with respect to tetrahydrofuran in the distillate.
- a method of stably producing PBT by a distillation method having a small reflux ratio in a rectification column having a small number of stages is disclosed.
- aromatic polyesters include aromatic hydroxycarboxylic acids such as parahydroxybenzoic acid, aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl, aromatic dicarboxylic acids such as terephthalic acid, and polyethylene terephthalate (PET).
- Aliphatic polyester is used as the main raw material.
- a phenolic hydroxyl group in a raw material is acylated with a fatty acid anhydride such as acetic anhydride, or a fatty acid ester of a phenolic hydroxyl group is used as a raw material, and then heated (reduced pressure in some cases).
- Patent Document 2 discloses an aromatic copolymer polyester obtained by only melt polymerization having excellent melt fluidity, optical anisotropy and mechanical properties.
- the method for producing the aromatic copolymer polyester is acylation using acetic anhydride and deacetic acid polycondensation.
- an aromatic hydroxycarboxylic acid, an aromatic dihydroxy compound or a fatty acid ester thereof (hereinafter referred to as a raw material monomer and an acylated product thereof) is entrained with a distillate fatty acid.
- a raw material monomer and an acylated product thereof There is a problem of distilling and volatilizing.
- polymerization inhibition occurs due to a shift in the molar ratio between the acyl group and the carboxyl group, the polymerization time is delayed, a polymer having the desired viscosity cannot be obtained, the polymer is colored, or the basic unit of raw material monomers is deteriorated.
- the production of the aromatic polyester may be difficult due to the deposition of the raw material monomers and the acylated product in the distillation pipe or the condenser, resulting in clogging.
- various countermeasures have been proposed.
- Patent Document 3 discloses a method in which a part of the fatty acid to be distilled is refluxed to a reactor.
- a double tube type internal reflux with a baffle plate or a double tube type without a baffle plate is disclosed. It is said that an internal reflux can be used.
- the reason for this is that although the fatty acid to be distilled is usually acetic acid, propionic acid, butyric acid, etc., the vapor pressure is relatively high. This is because a sufficient rectification effect can be obtained by one gas-liquid contact.
- Patent Document 4 discloses a reaction space above the reaction liquid surface when the aromatic polyester raw material is polycondensed within a final reaction temperature range of 300 to 400 ° C. to produce the aromatic polyester in a batch system.
- the temperature of the reactor part in contact with the reactor is kept at 150 to 300 ° C.
- the distillation pipe has a reflux tube and a nozzle protruding into the reaction tank, so that the reflux liquid is not transferred to the inner wall of the reaction tank.
- a method of dropping is disclosed.
- Patent Documents 5, 6, and 7 polycondensation is performed using a polycondensation can provided with a partial condenser composed of a tube-type heat exchanger, the distillate is condensed and the condensate is condensed into a condensation polymerization tank.
- a method for producing an aromatic polyester while being recovered is disclosed.
- Each document further describes a method of using a corrosion-resistant material in the partial condenser (Patent Document 5), and a method of controlling the temperature of the refrigerant in the partial condenser to be equal to or lower than the boiling point of the low boilers distilled from the condensation polymerization tank (Patent Document 5).
- Patent Document 7 a method of controlling the temperature of the heating medium supplied to the partial condenser so that the temperature of the low boiling point distilled from the partial condenser becomes a predetermined temperature within the range of 115 ° C. to 145 ° C.
- JP 2002-138141 A Japanese Patent Laid-Open No. 4-136027 (Claims) JP-A-1993-271398 (Claims and Figures) International Publication No. 2003/062299 (Claims, Figures) JP 2004-331829 A (Claims and Figures) JP 2006-307006 A (Claims and Figures) JP 2006-299027 A (Claims and Figures)
- the pipe connecting the reaction vessel and the rectification column is often only one distillation pipe. For this reason, the distillate gas and the return liquid that has recirculated in the piping become a countercurrent, leading to an increase in internal pressure. Further, when the amount of liquid or the amount of distillate gas increases, there is a problem that the distillation efficiency is remarkably deteriorated due to loading or flooding phenomenon, resulting in polymerization inhibition. These problems can be improved by increasing the pipe size.
- a valve is installed in the piping at the top of the reaction can, and when discharged from the reaction can, it is sealed and pressurized with nitrogen or the like to increase the efficiency of polymer discharge. In some cases, when the distilling pipe is enlarged, the corrosion-resistant valve using an expensive material is also enlarged, resulting in a problem that the equipment cost is increased.
- a distilling pipe for sending a distillate gas from a reaction vessel to a rectification column and a liquid return pipe for returning a reflux liquid from the rectification column to the reaction tube are also provided.
- this method as in the rectification column of an ester reactor in PET, PBT, etc., it is common to assume distillation with a theoretical plate number of 3 or more and a reflux ratio of 1 or more. Large and expensive anti-corrosion material pipes and valves are installed, which causes a problem of high equipment costs.
- the present invention is an apparatus for producing an aromatic polyester having a reaction can and a rectifying column, wherein a distillation pipe for sending an effluent gas from the reaction can to the rectifying column, and from the rectifying column A liquid return pipe for returning the reflux liquid to the reaction tube, and the ratio of the maximum barrel inner diameter (a) of the reaction can to the pipe inner diameter (b) of the liquid return pipe is 0.012 ⁇ (b) / (A) An apparatus for producing an aromatic polyester satisfying ⁇ 0.12.
- the present invention is also a method for producing an aromatic polyester in which a polymerization reaction is carried out after carrying out an acetylation reaction using the apparatus for producing an aromatic polyester of the present invention.
- a production apparatus and a production method capable of producing an aromatic polyester excellent in heat resistance and color tone efficiently with good polymerization and at low cost.
- FIG. 1 is a conceptual diagram showing an example of an aromatic polyester production apparatus of the present invention.
- the aromatic polyester in the present invention includes aromatic hydroxycarboxylic acid, aromatic dihydroxy compound, aromatic dicarboxylic acid, polyester comprising dioxy unit and dicarbonyl unit, aromatic aminohydroxy compound, aromatic aminocarboxylic acid and derivatives thereof.
- an aromatic polyester having a raw material composition selected from at least one selected from aromatic hydroxycarboxylic acids, aromatic dihydroxy compounds, and aromatic dicarboxylic acids is preferably used. More preferably, it is an aromatic liquid crystalline polyester having a composition appropriately combined so that the polymer exhibits liquid crystallinity.
- examples of the aromatic hydroxycarboxylic acid include p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid.
- Aromatic dihydroxy compounds include 4,4′-dihydroxybiphenyl, hydroquinone, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, t-butylhydroquinone, phenylhydroquinone, methylhydroquinone, 2 , 6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane and 4,4′-dihydroxydiphenyl ether.
- Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4′-dicarboxylic acid, Examples thereof include 2-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylic acid and diphenyl ether dicarboxylic acid.
- polyesters composed of dioxy units and dicarbonyl units include polyethylene terephthalate and oligomers thereof.
- reaction for producing an aromatic polyester in the present invention examples include a reaction for acylating an aromatic hydroxyl group and a reaction for defatty acid polymerization.
- defatty acid polymerization is performed using a raw material in which a hydroxyl group is previously acylated, and an acyl that acylates a hydroxyl group using a hydroxyl group-containing monomer together with an acylating agent as a raw material constituting an aromatic polyester.
- a oxidization reaction and a defatty acid melt polymerization reaction are performed. Of these two, the latter method is preferred.
- defatty acid polymerization it can manufacture by performing deacetic acid polymerization in a molten state, for example.
- the acylating agent used in the present invention is preferably an acylating agent that can be liquid in the range of 120 ° C. or lower. Specifically, acetic anhydride is preferred.
- an acylating agent such as a hydroxyl group-containing compound, a carboxylic acid group-containing compound and acetic anhydride is used to acylate a hydroxyl group, and then deacetic acid polycondensation in a molten state.
- a method in which a part of the hydroxyl group-containing compound is substituted with an acylated compound is preferable.
- a polyester polymer such as polyethylene terephthalate, an oligomer, or a bis ( ⁇ -hydroxyethyl) ester of an aromatic dicarboxylic acid such as bis ( ⁇ -hydroxyethyl) terephthalate.
- the addition amount of acetic anhydride is 1.0 time mole amount or more and 1.5 times mole amount or less with respect to the hydroxyl group in a starting material.
- the amount is preferably 1.05 mol amount or more and 1.2 times mol amount or less.
- reaction temperature and polymerization time in the above production method is shown.
- the starting materials shown above are charged into the reaction system, and the acetylation reaction is carried out at normal temperature or under pressure for 5 minutes to 3 hours at a temperature from normal temperature to 230 ° C.
- the temperature of the acetylation reaction is preferably from 100 ° C. to 200 ° C., more preferably from 130 ° C. to 180 ° C.
- the time for the acetylation reaction is preferably from 10 minutes to 2 hours.
- the temperature is raised to a temperature of 230 ° C. or higher and 350 ° C. or lower, and an initial polymerization reaction is performed with deacetic acid.
- the initial polymerization reaction is carried out at normal pressure, and the temperature is preferably 250 ° C. or higher and 350 ° C. or lower.
- the initial polymerization time is preferably less than 10 hours in the case of a batch system. When the initial polymerization time is 10 hours or more, the entire polymerization cycle is 12 hours or more, and the production efficiency is deteriorated.
- deacetic acid polycondensation is performed in a molten state under reduced pressure while the temperature is raised to 230 ° C. or higher and 370 ° C. or lower.
- the temperature of deacetic acid polycondensation is preferably 250 ° C. or higher and 350 ° C. or lower.
- a preferable aromatic polyester can be obtained by this method.
- the apparatus for producing an aromatic polyester of the present invention includes at least a reaction can, a rectifying tower, a distillation pipe for sending a distillate gas from the reaction tube to the rectifying tower, and a return liquid from the rectifying tower to the reaction can.
- Liquid return piping A specific example of this manufacturing apparatus is shown in FIG. 1 includes a reaction vessel 1, a heating medium jacket 2, a stirring blade 3, a rectification column 4, a distillation pipe 5 for sending a distillation gas from the reaction vessel to the rectification column, and a rectification column.
- a liquid return pipe 6 for returning the reflux liquid to the reaction tube, a distilling pipe 7 from the rectifying column, a condenser (total condenser) 8, a charging port 9, and a discharge port 10 are provided.
- a gas supply port 11 that can be purged or pressurized with nitrogen or the like and valves to the respective pipes are provided as necessary.
- a three-way valve 12 and piping for sending the distillate gas from the rectification tower to the reaction can or outside the system are also provided.
- the reactor can be divided into a pre-reactor and a post-reactor.
- the post-reactor can be equipped with ancillary equipment such as a vacuum pump and an ejector to promote polycondensation under reduced pressure. Also good. Further, it may be a batch production apparatus or a continuous production apparatus.
- the ratio of the maximum barrel inner diameter (a) of the reaction can to the pipe inner diameter (b) of the liquid return pipe is 0.012 ⁇ (b) / (a) ⁇ 0.12. is there.
- (b) / (a) is smaller than 0.012, the return of the reflux liquid is not smooth, the liquid hold-up increases in the rectification column, loading and flooding occur, and the rectification effect is obtained. It will be damaged.
- (b) / (a) is larger than 0.12, a large pipe or a large valve made of a corrosion resistant material is required, resulting in an increase in equipment cost.
- the lower limit of (b) / (a) is preferably 0.02 or more, and more preferably 0.03 or more.
- the upper limit of (b) / (a) is preferably 0.1 or less, and more preferably 0.08 or less.
- the ratio of the pipe inner diameter (b) of the liquid return pipe to the pipe inner diameter (c) of the distilling pipe is (c) / (b ) ⁇ 1.1 is preferable. More preferably, (c) / (b) ⁇ 1.3, and more preferably (c) / (b) ⁇ 1.5.
- the material of the production equipment of the present invention is preferably resistant to corrosion against acetylation reaction solutions and the like.
- Specific examples include SUS316, SUS316L, SUS836L, SUS904L, duplex stainless steel, nickel-molybdenum alloy, impervious graphite, titanium, zirconium, GL, and tantalum.
- an internal refluxer having a jacket for passing a refrigerant to the outside and selected from a single tube with a baffle plate, a packed column, and a plate column is preferably used.
- the reason for having a jacket through which a refrigerant passes is that as a method of efficiently distilling acetic acid while generating internal reflux by cooling and exhibiting a rectification effect, preventing the scattering of raw material monomers and acylated products thereof, This is because a method for controlling the top temperature is preferably used. More specifically, when acetic anhydride is used as the acylating agent, a method of controlling the column top temperature to 110 ° C. or higher and 150 ° C. or lower is preferably used.
- the vapor pressure of the entrained raw material monomers is extremely low with respect to the vapor pressure of the fatty acid distilled during the production, and both the theoretical plate number and the reflux ratio can be sufficiently separated at less than 1. Therefore, the height of the rectifying tube and the column diameter vary depending on the gas distillation rate and the internal structure, but it is possible to install the rectifying tube assuming that the theoretical number of plates and the reflux ratio are 1 or less. preferable.
- the method for producing an aromatic polyester of the present invention is a method for carrying out a polymerization reaction after carrying out an acetylation reaction using the above-described aromatic polyester production apparatus having a reactor and a rectifying tower. By using this method, it is possible to install a general-sized valve without inhibiting the distillation of fatty acids, and to obtain an aromatic polyester excellent in heat resistance and color tone with good polymerization and efficiency. .
- the aromatic polyester obtained by the production apparatus of the present invention can contain an inorganic filler as necessary to obtain an aromatic polyester resin composition.
- an inorganic filler Fillers, such as a fibrous form, plate shape, powder form, a granular form, can be used.
- Fillers such as a fibrous form, plate shape, powder form, a granular form, can be used.
- examples thereof include fibers, alumina fibers, silica fibers, titanium oxide fibers, and silicon carbide fibers.
- the aromatic polyester obtained by the production apparatus of the present invention is added to an antioxidant and a heat stabilizer (for example, hindered phenol, hydroquinone, phosphites and substituted products thereof), an ultraviolet absorber (for example, resorcinol, salicylate, benzoate).
- a heat stabilizer for example, hindered phenol, hydroquinone, phosphites and substituted products thereof
- an ultraviolet absorber for example, resorcinol, salicylate, benzoate.
- Triazoles, benzophenones, etc.), lubricants and mold release agents montanic acid and its salts, its esters, their half esters, stearyl alcohol, stearamide, polyethylene wax, etc.
- dyes for example, nigrosine
- pigments for example, cadmium sulfide, phthalocyanine, etc.
- the composition can be obtained by melt-kneading at a temperature of 180 ° C. or higher and 370 ° C. or lower using a Banbury mixer, rubber roll machine, kneader, single-screw or twin-screw extruder.
- the aromatic polyester resin composition thus obtained can be molded by a normal molding method such as injection molding, extrusion molding or compression molding.
- This molded product has excellent mechanical strength, heat resistance, and hydrolysis resistance, so it can be processed into 3D molded products, sheets, container pipes, etc. It is extremely useful for automobile parts.
- it since it is excellent in a color tone, it can be set as the outstanding colored molded article by mix
- Example 1 The manufacturing equipment shown in FIG. 1 was used.
- This production equipment consists of a heating medium jacket for heating, a reaction can having a stirring blade (bore inner diameter (a): 1500 mm, volume: 3 m 3 ), a rectifying tower (single tube with a water cooling jacket with a baffle plate installed inside, Column diameter: 200 mm, height: 3000 mm, hereinafter referred to as rectifying tower A), distillation pipe for sending distilled gas from the reaction can to the rectifying tower (pipe inner diameter (c): 125 mm, with valve), A liquid return pipe (tube inner diameter (b): 80 mm, with a valve) for returning the reflux liquid from the rectification column to the reaction tube is provided, and a condenser (totally contractor) is provided.
- a stirring blade bore inner diameter (a): 1500 mm, volume: 3 m 3
- rectifying tower A single tube with a water cooling jacket with a baffle plate installed inside, Column diameter: 200 mm, height:
- a reaction vessel was charged with 795 kg of p-hydroxybenzoic acid, 271 kg of 6-hydroxy-2-naphthoic acid, and 772 kg of acetic anhydride, and reacted at 145 ° C. for 2 hours with stirring in a nitrogen gas atmosphere. During this time, all the distillate cooled by the condenser was returned to the reaction vessel. Next, the temperature is raised to 330 ° C. under normal pressure over 6 hours, and cooling water is passed through the rectifying column to keep the top temperature at 150 ° C. or lower, and all the distillate is distilled out of the system. I let you.
- the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
- Example 2 Manufacture with the same apparatus as in Example 1 except that the rectifying column A is changed to a rectifying column B (a packed column with a water-cooled jacket packed with 1/2 inch Raschig ring, tower diameter: 300 mm, height: 2500 mm) Equipment was used. A reaction vessel was charged with 763 kg of p-hydroxybenzoic acid, 129 kg of 4,4′-dihydroxybiphenyl, 115 kg of terephthalic acid, 133 kg of polyethylene terephthalate having an intrinsic viscosity of about 0.6 dl / g, and 775 kg of acetic anhydride, under a nitrogen gas atmosphere The mixture was reacted at 145 ° C. for 2 hours with stirring.
- a rectifying column B a packed column with a water-cooled jacket packed with 1/2 inch Raschig ring, tower diameter: 300 mm, height: 2500 mm
- the produced aromatic polyester had a Tm (melting point) of 326 ° C. and a melt viscosity of 13 Pa ⁇ s.
- the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
- Example 3 The polycondensation and pelletization were carried out under the same apparatus and the same conditions as in Example 2 except that the liquid return pipe was changed to a pipe inner diameter (b) having a valve: 25 mm.
- the produced aromatic polyester had a Tm (melting point) of 326 ° C. and a melt viscosity of 14 Pa ⁇ s.
- the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
- Example 4 Polymerization was carried out in the same apparatus as in Example 1, except that the distillation pipe was a pipe inner diameter (c) having a valve: 80 mm. The temperature rise to 330 ° C. required 8 hours. Thereafter, vacuum polycondensation, discharge, and pelletizing were performed under the same conditions.
- the produced aromatic polyester has a Tm (melting point) of 320 ° C., a high temperature flow tester (orifice 0.5 ⁇ ⁇ 10 mm), a temperature measured at 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s. The viscosity was 20 Pa ⁇ s.
- Example 1 Polymerization was carried out using the same apparatus as in Example 1 except that the reactor and the rectifying column were connected by a single pipe having an inner diameter of 80 mm, but the temperature rise to 330 ° C. required 12 hours. Sex deteriorated. Thereafter, vacuum polycondensation, discharge, and pelletizing were performed under the same conditions. Since there is only one pipe connecting the reactor and the rectifying tower, the equipment cost of the pipe and the valve is reduced, but the produced aromatic polyester is dark brown and the color tone deteriorates, and Tm (melting point) is The temperature decreased to 317 ° C., and the melt viscosity also decreased to 15 Pa ⁇ s.
- the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s. In addition, after the completion, a large amount of white matter was deposited inside the tube condenser.
- Example 2 Example 2 except that the distillation pipe is changed to a pipe inner diameter (c) having a valve: 250 mm, and the liquid return pipe is changed to a pipe inner diameter (b) having a valve: 250 mm liquid return pipe.
- Polycondensation and pelletization were performed in the same apparatus and under the same conditions.
- the produced aromatic polyester had a Tm (melting point) of 326 ° C. and a melt viscosity of 13 Pa ⁇ s. This is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
- Example 3 Example 2 except that the distilling pipe is changed to a pipe inner diameter (c) having a valve: 100 mm, and the liquid return pipe is changed to a pipe returning diameter (b) having a valve: 15 mm.
- Polymerization was carried out using the same apparatus as described above, but the temperature rise to 330 ° C. required 10 hours, and the polymerizability deteriorated. Thereafter, vacuum polycondensation, discharge, and pelletizing were performed under the same conditions.
- the produced aromatic polyester deteriorated in brown and color tone, Tm (melting point) decreased to 318 ° C., and the melt viscosity also decreased to 10 Pa ⁇ s.
- the melt viscosity is a value measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 330 ° C., a residence time of 5 minutes, and a shear rate of 1000 / s.
- ⁇ marks in the table represent materials used as raw materials.
- Example 2 the raw material was changed to a four-component system, but the produced aromatic polyester was excellent in heat resistance and color tone. Although the equipment cost was slightly higher as much as the rectifying tower was used as a packed tower, the valve size was general-purpose and the overall equipment cost was low.
- Example 3 the inner diameter of the liquid return pipe was changed more finely than in Example 2, but the distillation efficiency was good, and it could be produced efficiently with a short initial polymerization reaction time. Moreover, the produced aromatic polyester was excellent in heat resistance and color tone.
- Example 4 since (c) / (b) was less than 1.1, the flow of the distillate gas was not slightly smooth, and the deacetic acid polymerization time up to 330 ° C. at which acetic acid was almost completely distilled was slightly longer. It was.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
本発明における芳香族ポリエステルとは、芳香族ヒドロキシカルボン酸、芳香族ジヒドロキシ化合物、芳香族ジカルボン酸、ジオキシ単位とジカルボニル単位からなるポリエステル、芳香族アミノヒドロキシ化合物、芳香族アミノカルボン酸およびそれらの誘導体などが挙げられる。特に、芳香族ヒドロキシカルボン酸類、芳香族ジヒドロキシ化合物類、芳香族ジカルボン酸類から1種以上選ばれた原料組成より成る芳香族ポリエステルが好ましく用いられる。さらに好ましくは、ポリマーが液晶性を示すよう適宜組み合わせた組成より成る芳香族液晶性ポリエステルである。
本発明において芳香族ポリエステルを製造するための反応としては、芳香族ヒドロキシル基をアシル化する反応、および脱脂肪酸重合を行う反応が挙げられる。この場合、ヒドロキシル基があらかじめアシル化された原料を用いて脱脂肪酸重合する場合と、芳香族ポリエステルを構成する原料としてヒドロキシル基含有単量体をアシル化剤とともに用い、ヒドロキシル基をアシル化するアシル化反応と脱脂肪酸溶融重合反応を行う場合とがある。この2つのうち後者の方法が好ましい。脱脂肪酸重合としては、例えば、溶融状態で脱酢酸重合を行なうことにより製造することができる。
本発明の芳香族ポリエステルの製造装置は、少なくとも反応缶、精留搭、反応管から精留搭へ留出ガスを送るための留出配管、および精留搭から反応缶へ還流液を戻すための液戻り配管を備えている。この製造装置の具体例を図1に示す。図1の製造装置は、反応缶1、加熱用熱媒ジャケット2、攪拌翼3、精留塔4、反応缶から精留塔へ留出ガスを送るための留出配管5、精留塔から反応管へ還流液を戻すための液戻り配管6、精留塔からの留出配管7、コンデンサー(全縮器)8、仕込み口9、吐出口10を備えている。また、必要に応じて、窒素等によるパージや加圧ができるガス供給口11や、それぞれの配管へのバルブも備えている。また、必要に応じて、精留搭から出る留出ガスを反応缶または系外へ送るための三方弁12や配管も備えている。さらに、必要に応じて、反応缶は前反応缶と後反応缶に分かれていても良く、後反応缶では真空ポンプやエゼクター等の減圧用付帯設備を装備し減圧下で重縮合を促進しても良い。また、回分式製造装置であっても、連続製造装置であっても良い。
本発明における精留塔4の具体例としては、外部に冷媒を通すジャケットを有し、じゃま板付き単管、充填塔、棚段塔から選ばれる内部還流器が好ましく用いられる。冷媒を通すジャケットを有する理由は、冷却により内部還流を発生させ、精留効果を発現させて原料モノマ-類とそのアシル化物の飛散を防止しつつ効率的に酢酸を留出させる手法として、塔頂温度を制御する方法が好ましく用いられるからである。より具体的にはアシル化剤として無水酢酸を使用する場合は、塔頂温度を110℃以上150℃以下に制御する手法が好ましく用いられる。
本発明の芳香族ポリエステルの製造方法は、上述した反応缶と精留塔を有する芳香族ポリエステル製造装置を用いてアセチル化反応を行った後、重合反応を行う方法である。この方法を用いることにより、脂肪酸の留出を阻害せず、汎用的なサイズのバルブが設置でき、重合性よく効率的で安価に、耐熱性、色調に優れた芳香族ポリエステルを得ることができる。
本発明の製造装置で得られた芳香族ポリエステルに、必要に応じて無機充填材を含有して、芳香族ポリエステル樹脂組成物を得ることができる。無機充填剤としては、特に限定されるものではないが、繊維状、板状、粉末状、粒状などの充填剤を使用することができる。具体的には、例えばガラス繊維、PAN系やピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維などの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、などが挙げられる。
図1に示す製造設備を用いた。この製造設備は、加熱用熱媒ジャケット、攪拌翼を有する反応缶(胴部内径(a):1500mm、容積:3m3)、精留塔(内部にじゃま板を設置した水冷ジャケット付き単管、塔径:200mm、高さ:3000mm。以下、精留搭Aとする)、反応缶から精留塔へ留出ガスを送るための留出配管(管内径(c):125mm、バルブ有り)、精留塔から反応管へ還流液を戻すための液戻り配管(管内径(b):80mm、バルブ有り)、コンデンサー(全縮器)を備えている。反応缶にp-ヒドロキシ安息香酸795Kg、6-ヒドロキシ-2-ナフトエ酸を271Kg、および無水酢酸772Kgを仕込み、窒素ガス雰囲気下、攪拌しながら145℃で2時間反応させた。この間コンデンサーで冷却した留出液は全て反応缶へ戻した。次に、常圧下、330℃まで6時間かけて昇温し、精留塔へは冷却水を通水し塔頂温度を150℃以下に保持しつつ、留出液は全て系外へ留出させた。その後、さらに重合温度を330℃に保持しつつ2時間で133Paに減圧し、さらに30分間反応を継続した後、重縮合を完了させた。次に、各バルブを閉止し、反応容器内を窒素で0.1MPaに加圧し、直径3mmの円形吐出口を複数有する口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
この芳香族ポリエステルは、Tm(融点)は320℃、溶融粘度は20Pa・sであった。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
精留搭Aを、精留塔B(1/2inchラシヒリングを充填した水冷ジャケット付き充填塔、塔径:300mm、高さ:2500mm)に変更する以外は実施例1と同様の装置を備えた製造設備を用いた。反応缶にp-ヒドロキシ安息香酸763Kg、4,4’-ジヒドロキシビフェニル129Kg、テレフタル酸115kg、固有粘度が約0.6dl/gのポリエチレンテレフタレ-ト133Kg及び無水酢酸775Kgを仕込み、窒素ガス雰囲気下、攪拌しながら145℃で2時間反応させた。この間コンデンサーで冷却した留出液は全て反応缶へ戻した。次に、常圧下、330℃まで6時間かけて昇温し、精留塔へは冷却水を通水し塔頂温度を150℃以下に保持しつつ、留出液は全て系外へ留出させた。その後、さらに重合温度を330℃に保持しつつ2時間で133Paに減圧し、さらに30分間反応を継続した後、重縮合を完了させた。次に、各バルブを閉止し、反応容器内を窒素で0.1MPaに加圧し、直径3mmの円形吐出口を複数有する口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
製造された芳香族ポリエステルはTm(融点)は326℃、溶融粘度は13Pa・sであった。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
液戻り配管を、バルブを有する管内径(b):25mmの液戻り配管に変更する以外は実施例2と同様の装置、同様の条件で重縮合、ペレタイズを行った。
製造された芳香族ポリエステルはTm(融点)は326℃、溶融粘度は14Pa・sであった。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
留出配管を、バルブを有する管内径(c):80mmの留出配管にした以外は、実施例1と同様の装置で重合を行った。330℃までの昇温は8時間を要した。その後は、同様の条件で減圧重縮合、吐出、ペレタイズを行った。
製造された芳香族ポリエステルは、Tm(融点)は320℃、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した溶融粘度が20Pa・sであった。
反応缶と精留塔とを一本の管内径80mmの配管で接続した以外は、実施例1と同様の装置で重合を行ったが、330℃までの昇温は12時間を要し、重合性が悪化した。その後は、同様の条件で減圧重縮合、吐出、ペレタイズを行った。
反応缶と精留搭とを接続する配管が一本であるため、配管とバルブを合わせた設備費は安くなるものの、製造された芳香族ポリエステルは茶褐色と色調が悪化し、Tm(融点)は317℃と低下し、溶融粘度についても15Pa・sと低下した。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。また、終了後には、チューブ型コンデンサー内部に多量の白色物の析出が見られた。
留出配管を、バルブを有する管内径(c):250mmの留出配管に、また液戻り配管を、バルブを有する管内径(b):250mmの液戻り配管に変更する以外は実施例2と同様の装置、同様の条件で重縮合、ペレタイズを行った。
製造された芳香族ポリエステルはTm(融点)は326℃、溶融粘度は13Pa・sであった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
留出配管を、バルブを有する管内径(c):100mmの留出配管に、また、液戻り配管を、バルブを有する管径(b):15mmの液戻り配管に変更する以外は実施例2と同様の装置で重合を行ったが、330℃までの昇温は10時間を要し、重合性が悪化した。その後は、同様の条件で減圧重縮合、吐出、ペレタイズを行った。
製造された芳香族ポリエステルは茶褐色と色調が悪化し、Tm(融点)は318℃と低下し、溶融粘度についても10Pa・sと低下した。溶融粘度は、高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度330℃、滞留時間5分、剪断速度1000/sで測定した値である。
得られたペレットを、高化式フローテスター(オリフィス0.5φ×10mm)を用い、滞留時間5分の粘度測定時と同一の温度で30分滞留させ、溶融粘度を測定し、滞留中の粘度保持率を下記式により評価した。滞留5分の溶融粘度は各実施例、比較例中に記載した。
・粘度保持率=(滞留時間30分の溶融粘度/滞留5分の溶融粘度)×100(%)。
得られたペレットを、スガ試験器(株)製SMカラーコンピューター装置を用いて明るみ(L値)を測定した。
2 加熱用熱媒ジャケット
3 攪拌翼
4 精留塔
5 留出配管
6 液戻り配管
7 精留塔からの留出配管
8 コンデンサー(全縮器)
9 仕込み口
10 吐出口
11 ガス(窒素)供給口
12 三方弁
Claims (5)
- 反応缶と精留塔とを有する芳香族ポリエステルの製造装置であって、前記反応缶から前記精留塔へ留出ガスを送るための留出配管、および前記精留塔から前記反応管へ還流液を戻すための液戻り配管を有し、前記反応缶の最大胴内径(a)と前記液戻り配管の管内径(b)の比が、0.012≦(b)/(a)≦0.12である、芳香族ポリエステルの製造装置。
- 前記液戻り配管の管内径(b)と前記留出配管の管内径(c)の比が、(c)/(b)≧1.1である、請求項1の芳香族ポリエステルの製造装置。
- 前記精留塔が、外部に冷媒を通すジャケットを有し、じゃま板付き単管、充填塔または棚段塔から選ばれる内部還流器である、請求項1または2の芳香族ポリエステルの製造装置。
- 芳香族ポリエステルの原料モノマー類が、芳香族ヒドロキシカルボン酸類、芳香族ジカルボン酸類および芳香族ジヒドロキシ化合物類からなる群より選ばれる少なくとも1種である、請求項1~3のいずれかの芳香族ポリエステルの製造装置。
- 請求項1~4のいずれかの芳香族ポリエステルの製造装置を用いてアセチル化反応を行った後、重合反応を行う、芳香族ポリエステルの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137006332A KR101790379B1 (ko) | 2010-12-27 | 2011-12-19 | 방향족 폴리 에스테르의 제조 장치, 및 방향족 폴리 에스테르의 제조 방법 |
CN201180049909.0A CN103154080B (zh) | 2010-12-27 | 2011-12-19 | 芳香族聚酯的制造装置以及芳香族聚酯的制造方法 |
JP2012501064A JP5811084B2 (ja) | 2010-12-27 | 2011-12-19 | 芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法 |
US13/996,798 US20130296524A1 (en) | 2010-12-27 | 2011-12-19 | Apparatus for producing aromatic polyester and process for producing aromatic polyester |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-289988 | 2010-12-27 | ||
JP2010289988 | 2010-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090746A1 true WO2012090746A1 (ja) | 2012-07-05 |
Family
ID=46382857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/079301 WO2012090746A1 (ja) | 2010-12-27 | 2011-12-19 | 芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130296524A1 (ja) |
JP (1) | JP5811084B2 (ja) |
KR (1) | KR101790379B1 (ja) |
CN (1) | CN103154080B (ja) |
TW (1) | TWI501991B (ja) |
WO (1) | WO2012090746A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101794387B1 (ko) * | 2010-12-27 | 2017-11-06 | 도레이 카부시키가이샤 | 액정성 폴리에스테르 수지의 제조 방법, 및 액정성 폴리에스테르 수지의 제조 장치 |
CN107570085A (zh) * | 2017-08-30 | 2018-01-12 | 华南理工大学 | 一种酚羟基脂肪酸乳化剂及其制备方法与应用 |
BG67456B1 (bg) * | 2019-11-05 | 2022-08-15 | "Кемикал Иновейшън" ООД | Инсталация за полимеризация с интегриран в нея комбиниран абсорбционно-дифузионен и абсорбционно-кондензационен блок и нейното приложение за получаване на полимери и съполимери |
CN111944686A (zh) * | 2020-09-17 | 2020-11-17 | 江苏汉肽生物医药有限公司 | 一种用于制备多肽的酶解炉 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161421A (en) * | 1980-05-15 | 1981-12-11 | Toray Ind Inc | Production of polyester |
JPH0726002A (ja) * | 1993-07-07 | 1995-01-27 | Toray Ind Inc | ポリエステルの製造方法 |
JP2002138141A (ja) * | 2000-08-24 | 2002-05-14 | Mitsubishi Chemicals Corp | ポリブチレンテレフタレートの製造方法 |
JP2004331829A (ja) * | 2003-05-08 | 2004-11-25 | Sumitomo Chem Co Ltd | 芳香族ポリエステルの製造法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05271398A (ja) * | 1992-03-27 | 1993-10-19 | Kawasaki Steel Corp | 芳香族液晶ポリエステルの製造方法 |
JP2006299027A (ja) * | 2005-04-19 | 2006-11-02 | Sumitomo Chemical Co Ltd | 芳香族ポリエステルの製造方法 |
-
2011
- 2011-12-19 KR KR1020137006332A patent/KR101790379B1/ko active IP Right Grant
- 2011-12-19 JP JP2012501064A patent/JP5811084B2/ja active Active
- 2011-12-19 WO PCT/JP2011/079301 patent/WO2012090746A1/ja active Application Filing
- 2011-12-19 CN CN201180049909.0A patent/CN103154080B/zh active Active
- 2011-12-19 US US13/996,798 patent/US20130296524A1/en not_active Abandoned
- 2011-12-26 TW TW100148586A patent/TWI501991B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161421A (en) * | 1980-05-15 | 1981-12-11 | Toray Ind Inc | Production of polyester |
JPH0726002A (ja) * | 1993-07-07 | 1995-01-27 | Toray Ind Inc | ポリエステルの製造方法 |
JP2002138141A (ja) * | 2000-08-24 | 2002-05-14 | Mitsubishi Chemicals Corp | ポリブチレンテレフタレートの製造方法 |
JP2004331829A (ja) * | 2003-05-08 | 2004-11-25 | Sumitomo Chem Co Ltd | 芳香族ポリエステルの製造法 |
Also Published As
Publication number | Publication date |
---|---|
KR101790379B1 (ko) | 2017-10-26 |
CN103154080A (zh) | 2013-06-12 |
JP5811084B2 (ja) | 2015-11-11 |
KR20140009118A (ko) | 2014-01-22 |
US20130296524A1 (en) | 2013-11-07 |
TWI501991B (zh) | 2015-10-01 |
CN103154080B (zh) | 2014-09-24 |
TW201237062A (en) | 2012-09-16 |
JPWO2012090746A1 (ja) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI475068B (zh) | 全芳香族聚酯及聚酯樹脂組成物 | |
JP4681268B2 (ja) | 全芳香族液晶ポリエステル樹脂の製造方法 | |
JP6920924B2 (ja) | 液晶ポリエステル樹脂 | |
TWI549989B (zh) | Liquid crystal polyester amide, liquid crystal polyesteramide resin composition and molded body | |
JP2003206342A (ja) | 液晶性ポリエステルおよびその製造方法 | |
JP2010037474A (ja) | 全芳香族ポリエステル及びポリエステル樹脂組成物 | |
KR101757308B1 (ko) | 유동성이 향상된 전방향족 폴리에스테르 수지의 제조방법 및 이에 따라 제조된 전방향족 폴리에스테르 | |
JP2009127024A (ja) | 全芳香族ポリエステル及びポリエステル樹脂組成物 | |
JP5811084B2 (ja) | 芳香族ポリエステルの製造装置、および芳香族ポリエステルの製造方法 | |
WO2019198665A1 (ja) | 液晶ポリエステル樹脂、その製造方法およびそれからなる成形品 | |
JP2012214736A (ja) | 液晶ポリエステルの製造方法 | |
US20140088287A1 (en) | Production method for liquid crystal polyester | |
CN109796584B (zh) | 一种芳香族热致液晶聚合物的制备系统和制备方法 | |
CN105860036A (zh) | 一种液晶聚酯以及由其组成的模塑组合物和其应用 | |
KR20120100628A (ko) | 전방향족 액정 폴리에스테르 수지의 제조방법과 그 방법에 의해 제조된 수지, 및 상기 수지를 포함하는 컴파운드 | |
US8916673B2 (en) | Process for producing liquid crystalline polyester resin and apparatus for producing liquid crystalline polyester resin | |
JP4576644B2 (ja) | 芳香族液晶性ポリエステルおよびその製造方法 | |
JP2009127025A (ja) | 全芳香族ポリエステル及びポリエステル樹脂組成物 | |
JPH02127424A (ja) | 芳香族ポリエステルの製造方法 | |
JP2013075990A (ja) | 液晶性ポリマー、成形体および液晶性ポリマーの製造方法 | |
JP2019183041A (ja) | 液晶ポリエステル樹脂、その製造方法およびそれからなる成形品 | |
JP2013007005A (ja) | 液晶ポリエステルの製造方法 | |
JP2000281795A (ja) | 液晶性樹脂の重合装置および液晶性樹脂の製造方法 | |
JP2838118B2 (ja) | 芳香族ポリエステルの製造方法 | |
CN115449061A (zh) | 全芳香族液晶聚酯树脂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180049909.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012501064 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853598 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137006332 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13996798 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11853598 Country of ref document: EP Kind code of ref document: A1 |