WO2012090492A1 - プロセス監視診断装置 - Google Patents

プロセス監視診断装置 Download PDF

Info

Publication number
WO2012090492A1
WO2012090492A1 PCT/JP2011/007313 JP2011007313W WO2012090492A1 WO 2012090492 A1 WO2012090492 A1 WO 2012090492A1 JP 2011007313 W JP2011007313 W JP 2011007313W WO 2012090492 A1 WO2012090492 A1 WO 2012090492A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
variable
data
monitoring
rate
Prior art date
Application number
PCT/JP2011/007313
Other languages
English (en)
French (fr)
Inventor
理 山中
勝也 横川
明弘 長岩
山本 勝也
由紀夫 平岡
勝実 佐野
稔 佐々木
敏一 橋本
Original Assignee
株式会社 東芝
日本下水道事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 日本下水道事業団 filed Critical 株式会社 東芝
Priority to CN201180062681.9A priority Critical patent/CN103534658B/zh
Publication of WO2012090492A1 publication Critical patent/WO2012090492A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/18PO4-P
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/28CH4
    • C02F2209/285CH4 in the gas phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level

Definitions

  • the present invention relates to a process monitoring / diagnosis apparatus having a diagnosis algorithm capable of detecting a change in state of a process system and a sign of abnormality such as a sewage treatment process, a wastewater treatment process, a sludge digestion process, a water purification process, a water supply / distribution process, and a chemical process.
  • compliance with the effluent water quality standard in the sewage treatment process, securing a predetermined amount of generated energy (methane, hydrogen, etc.) in the sludge digestion process, and water supply and distribution water quality by disinfection and sterilization in the water purification process For example, compliance with standards, achievement of a predetermined target value for the yield of refined products such as petroleum in the petrochemical process, and achievement of a predetermined target value or more for the yield of semiconductor products in the semiconductor manufacturing process.
  • Examples of energy-saving and cost-saving operations include reduction of blower and pump drive power and chemical injection in the sewage treatment process, maximization of generated energy efficiency in the sludge digestion process, and minimization of chemical injection in the water purification process. In the petrochemical process and semiconductor manufacturing process, the yield can be maximized.
  • the process status related to the target performance is monitored so as not to fall into a state where the predetermined target cannot be achieved, and a state change or abnormal state that impedes the achievement of the predetermined target is quickly detected in advance. It is an important operational management point to take measures.
  • the process state related to the target performance and energy savings and cost savings is always kept in a good state, and the process state changes that are likely to deviate from the good state Need to be detected quickly.
  • MSPC Multi-Variate Statistical Process
  • MSPC is sometimes called a chemometrics method, and the most basic and frequently used method among MSPCs is a method based on principal component analysis (PCA). Moreover, monitoring methods using principal component regression (PCR: Principal ⁇ Component ⁇ Regression) and latent variable projection / partial least squares (PLS: Projection Latent Structure / Partial Least Square) etc. Is also used (see Non-Patent Document 1).
  • PCA principal component analysis
  • PLS Projection Latent Structure / Partial Least Square
  • condition monitoring / abnormality diagnosis system When constructing such a condition monitoring / abnormality diagnosis system, first select all of the many measurement variables measured in the target process or some variables necessary for monitoring, and then select the selected measurement. A time series data (stored in a data server or the like) of variables is input offline to construct / identify a monitoring diagnosis model. Then, the time series data of the same measurement variable is input to the constructed monitoring diagnosis model online. Thereafter, for example, in a monitoring method based on PCA, a process state change or abnormality is detected (state change / abnormality detection) according to a predetermined procedure, and a measurement variable that causes the process is estimated (factor separation). After that, usually, the operator who is presented with the detection and factor separation results identifies the true factor of the state change / abnormality and takes a procedure of countermeasures against the situation.
  • SRT sludge residence time
  • PI performance indicators
  • management indices and performance indices are indices that well express certain characteristics of the plant related to plant performance and stable operation, and are useful information for operators and plant managers.
  • the conventional MSPC state monitoring system mainly used in the petrochemical process field is not consistent with plant monitoring based on these management indexes.
  • the management index expresses certain characteristics of the plant well, the change in the management index is very deeply related to the change in the state of the plant, but the conventional MSPC considers such a management index. Not.
  • the process state change is not measured directly from the process measurement variable data, but the measured data is subjected to a non-linear operation, the differential value or integral value of the measurement data, or partial information of the measurement data. It is often possible to monitor the process state more appropriately by monitoring periodic information. For example, in the sewage treatment process field, there is a so-called respiration rate meter for monitoring the activity state of microorganisms, but there are few treatment plants where respiration rate meters are installed, and the dissolved oxygen (DO) concentration is an alternative indicator. By monitoring the differential value (rate of change), the active state of the microorganism may be grasped.
  • water leakage is a problem in the water distribution process, and in order to obtain an estimate of the amount of water leakage, the amount of water leakage is calculated using the water distribution data only during night hours when water purification demand is low. You may get an estimate of As another example, there is a daily fluctuation caused by a person's life pattern in clean water and sewage, and it is better to monitor the process for each time zone to catch a change in the state of the process.
  • the problem to be solved by the present invention is to improve the state monitoring performance by MSPC, that is, it is possible to detect a sign of a state change or abnormal state, and it is easier for the operator to understand by linking the indicator focused on by the operator on monitoring to MSPC
  • An object of the present invention is to provide a process monitoring / diagnosis apparatus capable of monitoring / abnormal diagnosis.
  • the process monitoring diagnostic apparatus of the present invention collects time-series data of a plurality of measurement variables including state quantities and manipulated variables of the target process measured at a predetermined cycle by a plurality of process sensors provided in the target process, A data collection / storing unit for holding, a process model building / supplying unit for building and supplying a process monitoring model using past time series data of a plurality of measurement variables stored in the data collecting / storing, A process monitoring / diagnostic unit that monitors the state of a process using online data extracted from the data collection / storing unit and a process monitoring model constructed by the process model construction / supply unit, and detects state changes and abnormal signs
  • the process model construction / supply unit is a past time-series data of a plurality of measurement variables stored in the data collection / storage.
  • a selected variable determining unit that selects all or some of the variables necessary for constructing the process monitoring model, and a plurality of measurement variables stored in the data collection / storing unit, and the operation of the target process.
  • a variable conversion formula determining unit in which a predetermined conversion formula for obtaining a useful management index and an index useful for early detection of process state changes and abnormal signs is set, and the selection selected by the selected variable determining unit The selected variable obtained by removing abnormal data such as outliers from the time series data of the past conversion variable converted by using the variable and the expression of the variable conversion formula determination unit and the normal time series data of the conversion variable
  • a data normalization parameter determination unit for determining parameters ai and bi for normalizing data by (xi (t) ⁇ ai) / bi, and the normalization parameter Multivariate analysis means represented by principal component analysis (PCA), principal component regression (PCR), and partial least squares (PLS) for data normalized using the normalization parameters determined by the fixed part
  • PCA principal component analysis
  • PCR principal component regression
  • a statistic monitoring unit that generates statistic data based on the statistic generation formula defined by the diagnostic model construction unit and makes it observable, and online statistic data generated by the statistic monitoring unit include And a state change detection unit that detects a change in process state or an abnormality when the threshold value determined by the statistic threshold value setting unit is exceeded.
  • Xi i-th selected variable / transform variable
  • ai constant representing shift for i-th select variable / transform variable (shift parameter)
  • bi constant representing scaling for i-th select variable / transform variable (scaling) Parameter).
  • the process model construction / supply unit further includes a state change factor contribution amount setting unit that estimates a factor when a state change occurs from the selection variable and the conversion variable, and the process monitoring -When the state change detection unit detects a process state change or abnormality, the diagnosis unit estimates a variable that is a factor by a contribution amount calculation set by the state change factor contribution amount setting unit
  • the structure which further has an item (variable) estimation part may be sufficient.
  • variable conversion equation determination unit includes nonlinear conversion (including: product (multiplication) and quotient (division)), differentiation / difference conversion, integration / integration conversion, decimation conversion of a predetermined period, and interpolation of a predetermined period. At least one conversion formula is included from the poration conversion and the management index / performance index conversion.
  • the process measurement variables collected and stored in the data collection / storage unit at a pre-stage of the processing in the selection variable determination unit and the variable selection unit are predetermined in a predetermined time unit T.
  • the process over the period R is shifted so that a process measurement variable is newly generated, and a process for configuring an expanded process measurement variable that is R / T times the number of the original process measurement variables is configured. Also good.
  • the process measurement variables collected and stored in the data collection / storing unit in the previous stage of processing in the selected variable determination unit and the variable selection unit are decomposed / re-processed by discrete wavelet transform.
  • the original process data may be divided into N pieces, and an expanded process measurement variable N times the number of original process measurement variables may be configured.
  • the present invention provides M process monitoring / diagnosis devices each including a data collection / storage unit, a process model construction / supply unit, and a process monitoring / diagnosis unit for each processing unit such as each processing series or each distribution block (M : The number of processing units), and further, it may be configured in a hierarchical type having an overall process monitoring / diagnostic device by MSPC that receives each statistic calculated from each of the M monitoring / diagnostic devices. .
  • the target process is a biological wastewater treatment process such as a sewage treatment process / industrial wastewater process, and sludge residence time (SRT), aerobic tank sludge is used as a conversion formula by the variable conversion formula determination unit.
  • the target process is a sludge treatment process, and as a conversion formula by the variable conversion formula determination unit, a concentration tank surplus sludge mixing rate, a concentrate tank solid matter recovery rate, a concentrate tank HRT, a concentrate tank sludge solid matter retention Time, Concentration tank sludge interface change rate, Centrifugal concentrator centrifugal effect, Centrifugal concentrator screw conveyor and bowl rotation speed differential speed, Pressure / normal pressure concentrator gas-solid ratio, Pressure / normal pressure concentrator floss thickness change rate, Pressure / normal pressure concentrator flotation sludge scraping frequency, digester digestibility, digester digested sludge volume, digester digestion days, digester digestion days / digestion temperature, gas generation rate, methane gas composition ratio, CO2 composition ratio, sulfurization Hydrogen composition ratio, digester solid load, digester organic load, digester organic load / nitrogen load, pH / ORP, pH change rate, ORP change rate, digester effluent SS change rate, temperature change rate
  • the target process is a water purification / supply / distribution process
  • the conversion formula by the variable conversion formula determination unit the sludge amount / coagulant injection amount, the chlorine requirement amount / hypochlorous acid injection amount are defined in advance.
  • FIG. 1 is a functional block diagram showing an embodiment of a process monitoring diagnosis apparatus according to the present invention.
  • FIG. 2 is a system configuration diagram showing a case where the embodiment is applied to a sewage treatment process.
  • FIG. 3 is a system configuration diagram illustrating a sludge treatment process to which the embodiment is applied.
  • FIG. 4 is a system configuration diagram illustrating a water purification / water supply / distribution process to which the embodiment is applied.
  • FIG. 5 is a diagram for explaining an embodiment in which a process considering a process delay is applied in the present invention.
  • FIG. 6 is a block diagram for explaining an embodiment in which discrete wavelet transform is used together in the present invention.
  • FIG. 7 is a block diagram for explaining an embodiment having a hierarchical structure in the present invention.
  • FIG. 1 is a functional block diagram showing an embodiment of a process monitoring diagnosis apparatus according to the present invention.
  • FIG. 2 is a system configuration diagram showing a case where the embodiment is applied to a sewage treatment process.
  • FIG. 8A is a diagram showing Table 1 showing a configuration of a variable conversion equation determination unit for obtaining an index when the present invention is applied to a biological wastewater treatment process.
  • FIG. 8B is a diagram showing Table 1.
  • FIG. 9A is a diagram showing Table 2 showing a configuration of a variable conversion equation determination unit for obtaining an index when the present invention is applied to a sludge concentration / digestion process.
  • FIG. 9B is a diagram showing Table 2.
  • FIG. 9C is a diagram showing Table 2.
  • FIG. 10A is a diagram showing Table 3 showing a configuration of a variable conversion equation determination unit for obtaining an index when the present invention is applied to a water supply, water purification, and water supply / distribution process.
  • FIG. 10B is a diagram showing Table 3.
  • FIG. 1 and 2 show the basic configuration of this embodiment.
  • nitrogen and phosphorus removal which is an example of a biological wastewater treatment process such as a sewage treatment process / industrial wastewater process, is shown.
  • This shows the monitoring system applied to the target advanced sewage treatment process.
  • FIG. 2 a sewage advanced treatment process which is a process to be monitored will be described.
  • the sewage treatment process 1 is configured by sequentially connecting a first sedimentation tank 101, an anaerobic tank 102, an oxygen-free tank 103, an aerobic tank 104, and a final sedimentation tank 105 in series.
  • the ponds and tanks of the sewage treatment process 1 are provided with pumps and sensors described below as actuators and their operation amount sensors. That is, the first settling basin 101 has an excess sludge extraction pump and its extraction flow rate sensor 111, and the aerobic tank 104 has an oxygen supply blower and its supply air flow rate sensor 112.
  • a circulation pump and its circulation flow sensor 113 are provided in the circulation path with the oxygen tank 103, and a return sludge pump and its return flow sensor 114 are further provided in the return path from the final sedimentation tank 105 to the anaerobic tank 102. 105 is provided with an excess sludge extraction pump and its extraction flow rate sensor 115, respectively.
  • the sewage treatment process 1 is provided with the following process sensors. That is, for the inflow pipeline to the first sedimentation basin 101, the rainfall sensor 121 that measures the rainfall in the surrounding area, the sewage inflow sensor 122 that measures the inflow sewage, and the total nitrogen amount contained in the inflow sewage.
  • An inflow TN sensor 123 for measuring, an inflow TP sensor 124 for measuring the total amount of phosphorus contained in the inflowing sewage, and an inflow UV sensor or an inflow COD sensor 125 for measuring the amount of organic matter contained in the inflowing sewage are provided.
  • the anaerobic tank 102 is provided with an anaerobic tank ORP sensor 126 that measures the ORP (oxygen reduction potential) and an anaerobic tank pH sensor 127 that measures pH, and the anaerobic tank 103 measures the ORP.
  • An anaerobic tank ORP sensor 128 and an anoxic tank pH sensor 129 for measuring pH are provided, and the aerobic tank 104 includes a phosphoric acid sensor 1210 for measuring the phosphoric acid concentration and a DO sensor 1211 for measuring the dissolved oxygen concentration. , And an ammonia sensor 1212 for measuring the ammonia concentration.
  • an MLSS sensor 1213 that measures the amount of activated sludge in at least one of the tanks (anaerobic tank 102 in the example in the figure) is also provided with each of the reaction tanks 102 to 104.
  • water temperature sensors 1214 for measuring the water temperature in at least one of these tanks (the oxygen-free tank 103 in the example in the figure) are provided.
  • the final sedimentation basin 105 has an excess sludge SS sensor 1215 that measures the solid concentration of the amount of sludge drawn from here, a discharge SS sensor 1216 that measures the SS concentration of discharged water discharged from here, and a final sedimentation A sludge interface sensor 1217 for measuring the sludge interface level of the pond 105 is provided.
  • the discharge pipe from the final sedimentation basin 105 includes a sewage discharge sensor 1218 that measures the amount of discharged sewage, a discharge TN sensor 1219 that measures the total amount of nitrogen contained in the discharged sewage, and a total phosphorus contained in the discharged sewage.
  • a discharge TP sensor 1220 for measuring the amount and a discharge UV sensor or a discharge COD sensor 1221 for measuring the amount of organic matter contained in the discharged sewage are provided.
  • the various actuators 111 to 115 described above operate at a predetermined cycle, and the operation amount sensors 111 to 115 and the various process sensors 121 to 1221 represented by the same reference numerals measure at a predetermined cycle.
  • 1 and 2 includes a process measurement data collection / storage unit 2, a past data (offline data) extraction unit 3, a process monitoring model construction / supply unit 4, and a current data (online data) extraction unit 5. And a process monitoring / diagnostic unit 6 and a user interface unit 7.
  • the process measurement data collection / storage unit 2 collects and holds process data obtained from the various actuators / operation amount sensors 111 to 115 and the various process sensors 121 to 1221 of the advanced sewage treatment process 1 in a predetermined cycle.
  • the past data extraction unit 3 extracts past data (offline data) from various time series data stored in the process measurement data collection / storage unit 2.
  • the process monitoring model construction / supply unit 4 uses the offline data extracted by the past data extraction unit 3 to construct a process monitoring / diagnosis model offline in advance.
  • the current data extraction unit 5 extracts current data (online data) from various time series data stored in the process measurement data collection / storage unit 2.
  • the process monitoring / diagnostic unit 6 uses the online data extracted by the current data extraction unit 5 and the process monitoring model constructed by the process monitoring model construction / supply unit 4 to monitor the process status, Detect abnormal signs.
  • the user interface unit 7 notifies the plant manager and the operator of information related to the state change or abnormality sign detected by the process monitoring / diagnostic unit 6 and the factor variable candidates.
  • the process monitoring model construction / supply unit 4 includes a selection variable determination unit 41, a variable conversion formula determination unit 42, a normal data extraction unit 43, a normalization parameter determination unit 44, and a diagnostic model construction. It is preferable that a unit 45 and a statistic threshold value setting unit 46 are provided, and further a state change factor contribution amount formula setting unit 47 is provided.
  • the selection variable determination unit 41 is a variable necessary for constructing a process monitoring model from information on past time series data of measurement variables extracted from the process measurement data collection / storage unit 2 through the past data (offline data) extraction unit 3. Determine and select.
  • the variable conversion formula determining unit 42 performs appropriate variable conversion on the measurement variable to quickly detect the state change and abnormality sign of the process monitoring model and provide information easy to understand for the operation management of the operator.
  • the normal data extraction unit 43 removes missing values and obvious abnormal values from the measurement variable selected by the selection variable determination unit 41 and the index generated by the variable conversion formula determination unit 42, and is normal. Extract data only.
  • the normalization parameter determination unit 44 normalizes various selection / conversion variables by (xi (t) -ai) / bi with respect to the selection variables and conversion variables in the normal state extracted by the normal data extraction unit 43. Shift parameter a i and scaling parameter bi are determined.
  • Xi (t) i-th selected / transformed variable
  • ai constant representing shift for i-th selected / transformed variable (shift parameter)
  • bi constant representing scaling for i-th selected / transformed variable (scaling) Parameter).
  • the diagnostic model construction unit 45 performs principal component analysis (PCA), principal component regression (PCR) or partial least squares (PCA) on the normalized data defined by the normalization parameter determination unit 44.
  • PCA principal component analysis
  • PCR principal component regression
  • PCA partial least squares
  • the statistic threshold value setting unit 46 uses the diagnostic model constructed by the diagnostic model construction unit 45 to set a threshold value for determining abnormality / normality for statistical data calculated using past offline data. Set.
  • the state change factor contribution formula setting unit 47 calculates the contribution of each selected / transformed variable to that statistic. Determine the formula to do.
  • the process monitoring / diagnostic unit 6 also includes a variable selection unit 61, a variable conversion unit 62, an outlier removal unit 63, a data normalization unit 64, a statistic monitoring unit 65, as shown in FIG. It is preferable that a state change detection unit 66 and a factor item (variable) estimation unit 67 are further provided.
  • the variable selection unit 61 extracts the selected variable determined by the selection variable determination unit 41 from the current time series data of the measurement variables extracted from the process measurement data collection / storage unit 2 through the current data (online data) extraction unit 6. .
  • the variable conversion unit 62 performs variable conversion on the current time series data using the variable conversion formula determined by the variable conversion formula determination unit 42, and calculates an index.
  • the outlier removal unit 63 removes missing values and outliers from the current data of the measurement variable selected by the variable selection unit 61 and the current index (conversion variable) generated by the variable conversion unit 62.
  • the data normalization unit 64 uses the shift parameter ai and the scaling parameter bi determined by the normalization parameter determination unit 44 for the selected variable and conversion variable in the current normal state extracted by the outlier removal unit 63.
  • the statistic monitoring unit 65 applies these statistics to the current data normalized by the data normalization unit 64 in accordance with the Q statistic determined by the diagnostic model construction unit 45 and the calculation formula of Hotelling's T 2 statistic. Calculate When the statistic monitored by the statistic monitoring unit 65 exceeds the threshold defined by the statistic threshold setting unit 46, the state change detection unit 66 detects a process state change or an abnormal sign.
  • the factor item (variable) estimation unit 67 when the state change detection unit 66 detects a change in the Q statistic or the Hotelling T2 statistic, determines the contribution amount of the selection / conversion variable that becomes the change factor. Calculation is performed according to the formula set by the factor contribution formula setting unit 47, and the selection / conversion variable that is the factor is estimated.
  • the conventional status monitoring system using MSPC does not use management indices and performance indices, which are useful information for operators and plant managers, but includes all items of measurement variables or selected items.
  • a monitoring system was constructed using all data.
  • information useful for plant operation managers and MSPC are linked to improve the state monitoring performance by MSPC, that is, it is possible to detect a sign of a state change or abnormal state. Further, by linking the index that the operator is paying attention to to the MSPC for monitoring, it is possible to perform state monitoring and abnormality diagnosis that are easier for the operator to understand.
  • the characteristic part of the present invention is that, in the embodiment shown in FIGS. 1 and 2, the process monitoring model construction / supply unit 4 is provided with a variable conversion formula determination unit 42, and the process monitoring The variable conversion unit 62 is provided in the diagnosis unit 6 to obtain the various indexes described above and apply them to the MSPC.
  • process information is measured at predetermined intervals by the operation amount sensors 111 to 115 and the various process sensors 121 to 1221. These pieces of measurement information are stored as time series data in accordance with a predetermined format by the process measurement information collection / storage unit 2.
  • the process monitoring model construction / supply unit 4 constructs a process monitoring model by using past process data for a predetermined period extracted by the past data extraction unit 3.
  • the selection variable determination unit 41 determines a selection method of measurement variables necessary for constructing the process monitoring model.
  • the normal sewage treatment process not only the items measured by the operation amount sensors 111 to 115 and the various process sensors 121 to 1221, but also the feedback control target values, measurement variables related to equipment such as blowers and pumps, or over time There are usually thousands of measurement variables, such as the accumulated amount.
  • a process monitoring model can be constructed in principle even if all these measurement variables are input, but the selection method is determined so as to select only the necessary variables.
  • the target value of feedback control usually has little information because it does not change at a constant value over a long period of time. It is preferable not to select a variable that does not have such information because it may deteriorate the diagnostic performance.
  • the integrated amount is a variable that increases monotonously, the process monitoring model cannot be correctly constructed if it is selected as input data for constructing the process monitoring model.
  • the blower or pump flow data that rarely starts up is input as it is, it is 0 in most time zones, so the monitoring model must be constructed correctly. I can't. Further, in order to detect a change in the state of the processing process or an abnormality sign, almost no data on the device side such as the current value of the device and the piping pressure is necessary.
  • the selected variable determining unit 41 selects only the measurement variables necessary for the purpose without selecting the variables as described above. For example, in the case of the process of FIG. 2, the measurement variables measured by the operation amount sensors 111 to 115 and the various process sensors 121 to 1221 are selected.
  • variable conversion formula determination unit 42 is a characteristic part of the present invention, and management indexes and processes useful for the operator for a plurality of measurement variables stored in the data collection / storage unit 2. Determine conversion formulas for indicators useful for early detection of state changes and abnormal signs.
  • variable conversion formulas are summarized in Table 1 shown in FIGS. 8A and 8B.
  • sludge residence time SRT
  • aerobic tank sludge residence time A-SRT
  • hydraulic residence time HRT
  • SRT sludge residence time
  • HRT hydraulic residence time
  • Log (SRT) / water temperature and Log (A-SRT) / water temperature are usually managed so as to be in a linear relationship (similar sewerage maintenance guidelines, second part 2003 version, Japanese sewerage system) Therefore, these indicators can also be used for the same purpose.
  • the amount of surplus sludge generated is an index that is managed by the operator and process manager.
  • sludge conversion coefficients a, b, and c determined by investigating and determining the inflow solubility BOD, the inflow SS, and the MLSS concentration in the reaction tank, respectively, as shown in Table 1. Can be calculated. This index can also be used as an important operation management index.
  • organic substances, nitrogen, phosphorus, etc. are usually measured by various water concentration sensors related to them, but from the viewpoint of processing, it is not a concentration, but a method that manages the load by multiplying the concentration by the treatment amount. Is often appropriate. Therefore, it is preferable to generate indexes such as inflow organic matter load amount, inflow nitrogen load amount, inflow phosphorus load amount, or discharge organic matter load amount, discharge nitrogen load amount, and discharge phosphorus load amount shown in Table 1.
  • the operation management is often performed not only by these load amounts themselves but also by the ratio of the load amounts, in this case, for example, the organic matter-SS load, which is an indicator of the treatment characteristics of the organic matter shown in Table 1, Water area load related to sedimentation characteristics of sedimentation basin is also generated as an index.
  • the treatment may be performed efficiently when the ratio of organic matter: nitrogen: phosphorus is maintained at a predetermined ratio that roughly corresponds to the composition ratio of microorganisms.
  • the anaerobic tank 102 and the anoxic tank 103 are usually provided with an ORP meter 128 and a pH meter 127 in many cases.
  • These ORP meter 128 and pH meter 127 show a strong correlation when there is no significant change in the total ion concentration. Therefore, if the ORP / pH ratio is managed, changes in the ion concentration other than pH are detected. It becomes easy. For example, the concentration of dissolved oxygen in the anaerobic tank 102 and the anoxic tank 103 may increase during rainy weather and the processing may deteriorate. In such a case, since the change in ORP becomes larger than the change in pH, monitoring this ratio can be used for detection of dissolved oxygen contamination.
  • the rate of change of dissolved oxygen (DO) concentration can be considered as a substitute for a microbial respiratory rate meter.
  • Microbial respiration rate monitors the activity state of microorganisms by utilizing the property that dissolved oxygen is reduced when the activity of microorganisms treating sewage is weakened. If the change rate of DO is monitored, the activity state of microorganisms can be monitored.
  • the DO concentration does not change because it is controlled. If the rate of change is monitored, the activity state of the microorganism can be known indirectly. Using the same principle, it is possible to monitor the activity state of specific microorganisms involved in the removal of nitrogen and phosphorus.
  • the rate of change in nitric acid concentration can be monitored.
  • the change rate of the phosphorus concentration in the anaerobic tank and the aerobic tank may be monitored.
  • the pH and ORP may change abruptly when poisoning is mixed or when processing is inhibited, information on the rate of change of pH and ORP is also useful for process monitoring.
  • the water temperature may suddenly decrease during rainy weather or when the snowmelt water flows in. However, since the decrease in the water temperature is an impediment to processing, the water temperature change rate is also an important monitoring item.
  • the integrated amount for a predetermined period often affects the process.
  • the integrated amount of rainfall during a predetermined period is highly likely to affect the performance of phosphorus removal. This is due to the fact that dissolved oxygen is brought into an anaerobic tank and an anaerobic tank due to rain, and that acetic acid-based organic matter necessary for phosphorus removal flows out due to rain. Such effects of rain may appear directly during rainy weather, but may appear for a while after raining. In this case, since the accumulated amount of rain and information on how long the clear sky has continued before is often important, the accumulated rainfall over a predetermined period can be an index.
  • a normal sewage treatment process has a load pattern corresponding to people's life patterns, for example, there may be a case where different load patterns are displayed on holidays such as Sundays and on weekdays.
  • the diagnostic performance may be further improved.
  • extracting Sunday data corresponds to an operation of thinning out (decimating) data on 1st / 7th
  • extracting weekday data corresponds to decimation on 6th / 7th.
  • operations such as zero input for weekday data and zero input for weekday data for Sunday data can be considered.
  • the diagnostic performance of MSPC can be improved by inputting an index obtained by appropriately converting data using decimation and interpolation.
  • variable conversion equations shown in Table 1 for performing various variable conversions that is, nonlinear conversion (including: product (multiplication) and quotient (division)), differentiation / difference conversion, integration / integration conversion, predetermined cycle
  • the function of the variable conversion formula determination unit 42 is to determine a variable return formula for executing at least one conversion from among decimation conversion, interpolation conversion of a predetermined cycle, and management index / performance index conversion.
  • the normal data extraction unit 43 removes missing data and outliers from the offline data extracted by the past data (offline data) extraction unit 3 in order to construct a process monitoring model by MSPC. Extract only useful data for construction.
  • the processing method of the normal data extraction unit 43 a plurality of methods can be considered. At this time, outliers and missing values that are not considered to be actual process values must be removed, but data that deviates from the normal state of the process need not necessarily be strictly removed. Absent.
  • a simple operation of extracting and using median data every hour is also conceivable. Since the residence time of the sewage treatment process is usually several hours to several tens of hours, many outliers and missing values can be removed even with such a simple operation of performing median treatment in units of one hour.
  • Other methods include, for example, using the method of robust statistics, adopting median as the data center value index, and using median absolute deviation (MAD) as the data dispersion index, and from median to MAD.
  • a method of removing data that is more than a predetermined distance is also conceivable.
  • the normalization parameter determination unit 44 determines the values of the shift parameter ai and the scaling parameter bi necessary for normalization.
  • a robust sample and a robust sample standard deviation are used.
  • “robust sample average” and “robust sample standard deviation” are to obtain the sample average and sample standard deviation after removing about several percent of data near the maximum and minimum values of the process data in advance. . If this procedure is followed, the shift parameter and the scaling parameter can be determined as follows, after removing some data near the upper and lower limit values in advance.
  • N the number of cut out data.
  • the aforementioned shift parameter may be the median described above, and the scaling parameter may be the median absolute deviation (MAD).
  • MAD median absolute deviation
  • the diagnostic model construction unit 45 defines a calculation formula for statistics necessary for process monitoring. For example, when PCA is used as the multivariate analysis means, data decomposition is first performed as follows.
  • the statistic threshold value setting unit 46 sets the threshold values of the expressions (3) and (4).
  • This threshold setting value is important for detection of state changes and abnormal signs, so its setting method is important, but since it is not directly related to the present invention, its details are not mentioned, and only a typical setting method is set. Indicates. If there is no prior information for past offline data, the statistical confidence limit value for the Q statistic and the statistical confidence limit value for the Hotel 2 T2 statistic may be used as the default setting method. Yes (C. Rosen “Monitoring Wastewater Treatment Systems”, Lic. Thesis, Dept. of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden (1998)) These can be written as follows:
  • the threshold value of the statistic can be set based on the equations (5) and (6).
  • the state change factor contribution amount setting unit 47 sets the measurement variables and conversion variables determined by the selection variable determination unit 41 and the variable conversion equation determination unit 42 for the statistic defined by the equations (3) and (4). Set the contribution formula. There are a plurality of methods for defining the contribution amount. For example, the contribution amount can be defined as follows.
  • n means the nth variable
  • t is a variable representing a certain time.
  • Expressions (7) and (8) are the actions of the state change factor contribution amount setting unit 47.
  • the process monitoring / diagnosis unit 6 supplies the process monitoring model constructed by the process monitoring model construction / supply unit 4, Process monitoring is performed using this process monitoring model.
  • process monitoring / diagnostic unit 6 In the process monitoring / diagnostic unit 6, first, online data at the time point at which diagnosis is desired (hereinafter referred to as “current” or “current”) is obtained from the data collected by the process measurement information collecting / saving unit 2 as current data (online data). Extraction is performed by the extraction unit 5. The process monitoring / diagnostic unit 6 uses the current data extracted by the current data extraction unit 5 to monitor the process state, and detects any change in the state or indication of an abnormality. . The operation of the process monitoring / diagnostic unit 6 will be described in detail below.
  • the variable selection unit 61 takes out the current data corresponding to the variable determined by the selection by the selection variable determination unit 41.
  • variable conversion unit 62 calculates an index such as a current operation management index from the current data by the variable conversion formula determined by the variable conversion formula determination unit 42.
  • the outlier removal unit 63 performs processing when the current measurement data and index data selected / calculated by the variable selection unit 61 and the variable conversion unit 62 are outliers.
  • a simple process such as holding the zero order only when the data at the corresponding time is missing data may be used.
  • simple median processing of about 3 to 7 steps may be performed before the calculation of the variable selection unit 61 and the variable conversion unit 62. Since the process monitoring / diagnostic unit 6 is in a phase of actually monitoring and diagnosing, the outlier processing is not necessarily essential and may be very simple. Even if outlier processing is not performed, it is diagnosed as an abnormality in later diagnosis. This is the operation of the outlier removal unit 63.
  • variable selection unit 61 and the variable conversion unit 62 select / calculate using the normalization parameter shown in the equation (1) determined by the normalization parameter determination unit 44. Normalize the current measurement data and index data.
  • the measurement data and index data normalized by the data normalization unit 64 are defined by the statistic defined by the diagnostic model construction unit 45, for example, the equations (3) and (4).
  • the current Q statistic and T 2 statistic are monitored by substituting the calculated Q statistic and T 2 statistic into X (t). Since this statistic changes from time to time, it may be monitored in the form of a time series graph (trend graph).
  • the current Q statistic or T 2 statistic exceeds the threshold set by the statistic threshold setting unit 46, for example, the threshold defined by the equations (5) and (6).
  • the threshold defined by the equations (5) and (6).
  • a rule such as notifying the operator when the number of times exceeding the threshold value continues r times may be inserted to avoid frequent alarms.
  • the factor item (variable) estimation unit 67 preferably estimates the measurement variable or index that is the factor. At this time, the contribution amounts of the measurement variable and the index are calculated based on the contribution amount expressions set by the state change factor contribution amount expression setting unit 46, for example, the expressions (7) and (8). Then, for example, by determining in advance the rules listed below as (a), (b), and (c), a measurement variable or index that is considered to be a cause of the state change is estimated, and this is passed through the user interface unit 7 to the operator. Or notify the process manager.
  • the user interface unit 7 shown in FIG. 2 not only presents the abnormality detection result and the factor variable estimation result as described above, but as described above, when the statistical data such as the Q statistic and the T 2 statistic is used.
  • a series graph (trend graph) may be constantly monitored.
  • index data such as an operation management index converted by the variable conversion unit 62 may be constantly monitored as a trend graph.
  • the sludge treatment process 8 which is the target process shown in FIG. 3 has a sewage treatment process as a sludge supply source, which includes a first sedimentation tank 801, a biological reaction tank 802, and a final sedimentation tank 803.
  • a sludge treatment process comprising a centrifugal concentrator 804, a pressure / normal pressure concentrator 805, a sludge concentrator 806, a sludge digester 807, and a dehydrator 808.
  • an initial sedimentation basin sludge flow rate sensor 811 and an initial sedimentation basin sludge concentration sensor 812 are provided.
  • the first sedimentation basin sludge flow rate sensor 811 measures the sludge flow rate discharged from the first sedimentation basin 801 to the sludge concentration tank 806.
  • the first sedimentation basin sludge concentration sensor 812 measures the sludge concentration in the first sedimentation basin 801.
  • concentration tank surplus sludge input sensor 813 for measuring the amount input to the sludge concentration tank 806 and a surplus sludge concentration sensor 814 for measuring the surplus sludge concentration in the final sedimentation tank 803. Is provided.
  • the sludge concentration tank 806 is provided with a sludge concentration tank separation liquid flow sensor 815 for measuring the flow rate and turbidity of the separation liquid discharged from the sludge concentration tank 806, and a sludge concentration tank separation liquid SS sensor 816. Yes. Concentrated sludge flow for measuring the concentration sludge flow rate (sludge digestion tank input sludge amount) and its concentration (sludge digestion tank input sludge concentration) flowing in this pipe from the sludge concentration tank 806 to the sludge digestion tank 807 A sensor 817 and a concentrated sludge concentration sensor 818 are provided. Further, a sludge concentration tank solid concentration sensor 819 for measuring the solid concentration in the sludge concentration tank 806 and a sludge concentration tank interface level sensor 8110 are provided.
  • the centrifugal concentrator 804 also includes a centrifugal concentrator motor output sensor 8111 that measures the motor output, a centrifugal concentrator screw conveyor sensor 8112 that measures the rotational speed of the screw conveyor, and the bowl rotational speed.
  • a centrifugal concentration tank bowl rotation speed sensor 8113 is provided, and a centrifugal concentration tank surplus sludge input amount sensor 8114 for measuring the amount of excess sludge input from the final sedimentation tank 803 to the centrifugal concentration tank 804 is provided.
  • the pressurized / normal pressure concentrating tank 805 includes a pressurized / normal pressure concentrating tank surplus sludge input amount sensor 8115 for measuring the surplus sludge flow rate introduced from the final sedimentation tank 803, and a pressurized / normal pressure concentrating tank 805.
  • the sludge digestion tank 807 has a sludge digester digestion sludge amount sensor 8120 for measuring the amount of sludge digested sludge discharged from the sludge digestion tank 807 and the sludge concentration on the pipe line to the dehydrator 808 in the latter stage, and sludge digestion.
  • a tank digested sludge concentration sensor 8121 is provided, and a sludge digester input organic substance concentration sensor 8122 is provided in the input pipe line from the previous stage.
  • digested sludge organic matter concentration sensor 8123 digested sludge organic matter concentration sensor 8123, digestion temperature sensor 8124 for measuring digested sludge organic matter concentration, digestion temperature, digestion gas generation amount, methane concentration, CO2 concentration, hydrogen sulfide concentration, pH, ORP, respectively.
  • a digestion gas generation amount sensor 8125, a methane concentration sensor 8126, a CO2 concentration sensor 8127, a hydrogen sulfide concentration sensor 8128, a pH sensor 8129, and an ORP sensor 8130 are provided.
  • a desorption liquid SS concentration sensor 8131 in the sludge digestion tank 807 is provided in the circulation line to the first sedimentation tank 801.
  • a dehydrator filtration flow sensor 8132 for measuring the filtration flow rate is provided.
  • variable conversion formula determination unit 42 a management index useful for the operator from various measurement variables collected and stored by the process measurement information collection / storage unit 2, and an index useful for early detection of a process state change or abnormal sign. Determine the conversion formula. Examples of conversion formulas are listed below. These conversion equations are summarized in Table 2 shown in FIGS. 9A, 9B, and 9C.
  • excess sludge from the final settling tank 803 may be concentrated.
  • the excess sludge mixing rate is high, the sedimentation in the sludge concentration tank 806 may be disrupted. Therefore, it is preferable to calculate the excess sludge mixing rate in Table 2 as an index. Further, it is preferable to calculate the concentration rate of solids in the concentration tank as an index for evaluating the treatment efficiency of the sludge concentration tank 806. Furthermore, since the treatment of the sludge concentration tank 806 is managed by the residence time (HRT), calculating the HRT index is useful for operation management of the sludge concentration tank 806.
  • indices useful for operation management of the sludge concentration tank 806 there are a concentrate tank solid load, a sludge solid retention time, and the like. Furthermore, when the sludge concentration deteriorates, it is considered that the sludge interface rapidly rises, so the rate of change of the sludge interface level is an important index for the concentration treatment.
  • a pressure / normal pressure concentrator 805 such as a centrifugal concentrator 804, a pressurized levitation concentrator, or an atmospheric levitation concentrator, instead of the sludge concentration tank 806. May be concentrated.
  • centrifugal concentrator 804 if the centrifugal effect is increased, the concentration of concentrated sludge and the solids recovery rate are increased. However, since power costs are required for this purpose, the centrifugal effect may be monitored with a balance between processing efficiency and energy saving. Also, since the difference in the rotation speed between the screw conveyor and the bowl is related to the concentrated sludge concentration and the solids recovery rate, it is better to monitor this differential speed.
  • the gas-solid ratio is managed as a management index for stably floating sludge.
  • the gas-solid ratio is an important management item as a management index of the pressure / normal pressure concentrator 805.
  • the rate of change in the thickness of the flotation sludge is also an important index.
  • the frequency of flotation sludge scraping is also an important management item for pressurized flotation type concentrators and atmospheric flotation type thickeners.
  • methane gas is recovered as energy by digestion, so the digestibility, digested sludge amount, digestion days, digestion days / digestion temperature, etc. are important management indicators.
  • a more direct index is a gas generation rate, and an index that is a quality index of the generated gas and also a management index is a methane gas composition ratio, a CO2 composition ratio, and a hydrogen sulfide composition ratio.
  • the load is often managed in the same manner as the sewage treatment process, it is preferable to manage the digester solid load, digester organic load, digester nitrogen load, etc.
  • the ratio of organic load and nitrogen load is also an important management item.
  • the ratio of pH and ORP, the rate of change in pH, and the rate of change in ORP are also input to the MSPC as in the sewage treatment process. Furthermore, since it is known that when the SS of the digester detachment liquid rapidly increases, the SS change rate of the detachment liquid may be input to the MSPC. Moreover, since it is conceivable that the gas generation amount changes suddenly at the time of abnormality, the rate of change of the gas generation amount can also be used as an index.
  • sludge is dewatered in the dewatering tank 808, but since the filtration flow rate is important for operation management, the rate of change of the filtration flow rate can be selected as an index.
  • variable conversion formula determination unit 42 determines the operation management index of each sub-process (concentration, digestion, dehydration) and the abnormal sign detection index as described above using the measurement variables of the various process sensors 811 to 8132. .
  • a change in the operation management index that is managed with care by the plant manager is detected in the statistical process monitoring framework by MSPC. It is possible to present diagnostic information useful for sludge treatment plant managers and operators.
  • the process abnormality that is the key in the operation management of the sludge treatment process is input to the MSPC with a cheaper index that captures the change in the state of the process, such as the differential value (difference value) of the measurement variable. Among them, signs of state changes and abnormalities can be detected more quickly and accurately.
  • FIGS. 1 and 4 Next, the embodiment shown in FIGS. 1 and 4 will be described.
  • the monitoring / diagnosis system shown in FIG. 1 is applied to the water purification / distribution process shown in FIG.
  • a landing well 901, a mixing basin 902, a settling basin 903, a filtration basin 904, a water basin 905, and a water basin 906 are sequentially arranged in series. Further, for the filtration basin 904, a drainage basin 907 and a drainage basin 908 for storing the wastewater generated there are provided.
  • a water intake pump 911 for the landing well 901 is provided as an actuator
  • a mixing tank 902 is provided with a stirrer 912
  • a filter 904 is provided with a washing pump 913 for washing with water from the water purification tank 905. It has been.
  • a water pump 914 is provided between the water purification tank 905 and the water reservoir 906, and a water pump 915 is provided between the water reservoir 906 and the water reservoir 906.
  • a return pump 916 is provided between the distribution reservoir 907 and the mixing basin 902, and a concentrator 917 and a dehydrator 918 are provided on the outlet side of the mud basin 908.
  • a water intake flow rate sensor 921 is provided in the pipe line to the landing well 901.
  • the landing well 901 includes a chlorine demand sensor 922, a geosmin concentration sensor 923, a 2MIB concentration sensor 924, a trihalomethane concentration sensor 925, And a TOC sensor 926 is provided.
  • the mixing basin 902 is provided with a hypochlorous acid injection amount sensor 927, a flocculant injection amount sensor 928, a pH adjuster injection amount sensor 929, and an activated carbon injection amount sensor 9210.
  • a sludge extraction amount sensor 9211 and a sludge concentration sensor 9212 are provided in the pipeline from the settling basin 903 to the waste mud basin 908.
  • a residual chlorine concentration sensor 9213 is provided in the filtration basin 904, a water flow rate sensor 9214 is provided on the inlet side of the water reservoir 906, and a water supply flow rate sensor 9215 is provided in the water distribution area.
  • FIGS. 1 and 4 Next, the operation of the embodiment shown in FIGS. 1 and 4 will be described.
  • This embodiment is also different from the above-described embodiment of FIGS. 1 and 2 in the target process, and only the operation of the variable conversion equation determination unit 42 in FIG. 1 is different. Therefore, only the operation of this part will be described.
  • variable conversion formula determination unit 42 converts management indices useful for the operator from the various measurement variables collected / saved by the process measurement information collection / storing part 2 and indices useful for early detection of process state changes and abnormal signs. Determine the formula. Examples of this conversion formula are listed. These conversion equations are summarized in Table 3 shown in FIGS. 10A and 10B.
  • PAC and other flocculants are injected, but sludge is generated by the flocculant.
  • the ratio between the generated sludge amount and the flocculant injection amount is an index for an appropriate injection amount.
  • hypochlorous acid is often injected with respect to the chlorine demand, the ratio between the chlorine demand and the hypochlorous acid injection is also an index.
  • water leakage is a major problem in the distribution pipeline network in the distribution area.
  • the amount of water distribution during night hours when there is not much demand for water may be referred to.
  • decimating not only the amount of water distributed at each time but also the amount of water distributed in a predetermined night time period may be useful for diagnosing the amount of water leakage.
  • daytime time zone data is missing, after extracting the nighttime zone data of a specific day by decimation, the data may be interpolated appropriately to become the data for that day. Good.
  • PI performance indicator
  • JWWA Japan Water Works Association
  • PI performance indicator
  • Some of the PIs can also be operational management indicators that can be calculated from sensors that can be measured online (at least in principle).
  • PI is usually defined in units of years, but if the year unit is changed to a predetermined time unit and monitored, it will be possible to monitor online how PI is changing, and useful management information It can be.
  • the raw water effective utilization rate As PIs that can be monitored online (at least in principle), the raw water effective utilization rate, the delicious water achievement rate seen from the mold odor, the delicious water achievement rate seen from the chlorine odor, the total trihalomethane concentration water quality standard ratio, the organic matter ( TOC) concentration water quality standard ratio, activated carbon input ratio, chemical stockpiles days, fuel Storage days, the supply unit price, YuOsamuritsu, power consumption (per water distribution amount 1 m 3), energy consumption (per water distribution amount 1 m 3), renewable energy utilization, effective utilization rate of water purification soil generated, CO2 emissions (per water distribution amount 1m 3), underground water rate, pump average occupancy rate, leakage rate, water supply number per leakage amount, there is.
  • TOC organic matter
  • MSPC frames can be obtained by capturing process abnormalities that are key to the operation management of water purification and supply / distribution processes by capturing changes in the process state, such as differential values (difference values) of measurement variables, and inputting them into MSPC using cheap indicators. It is possible to detect signs of state changes and abnormalities more quickly and accurately in the workpiece.
  • FIG. 5 shows an embodiment in which a process measurement variable is newly generated by shifting the time over R, and an expanded process measurement variable that is R / T times the number of original process measurement variables is configured. I will explain.
  • This embodiment is characterized in that the processing shown in FIG. 5 is performed immediately after the past data (offline data) extraction unit 3 and immediately after the current data (online data) extraction unit 5. explain.
  • FIG. 5 shows a set of measurement data stored in the process measurement data collection / storage unit 2 as X, and a data set starting at the time t as X (t).
  • X (t ⁇ 1) to X (t ⁇ 7) are described in which the time is shifted from 1 step to 7 steps in a predetermined time unit.
  • decomposition / reconstruction by discrete wavelet transform is performed on the process measurement variables collected and stored in the data collection / storage unit 2 before the selection variable determination unit 41 and variable selection unit 61 shown in FIG.
  • An embodiment in which an original process data is divided into N pieces by applying a digital filter constituted by an algorithm, and an expanded process measurement variable N times the number of original process measurement variables is configured. 6 will be described.
  • This embodiment is also characterized in that the processing shown in FIG. 6 is performed immediately after the past data (offline data) extraction unit 3 and immediately after the current data (online data) extraction unit 5. To do.
  • X (t) is a set of measurement data stored in the process measurement data collection / storage unit 2, and after being subjected to the discrete wavelet transform, the data that has been reconstructed and returned to time-series data is X 1. (t) to X4 (t) are described.
  • the past data (offline data) extraction unit 3 or the current data (online data) extraction unit 5 extracts data from the measurement data stored in the process measurement data collection / storage unit 2 and then selects it.
  • the process of the variable determination part 41, the variable conversion formula determination part 42, the variable selection part 61, and the variable conversion part 62 was implemented. This means that processing is performed using X (t) in FIG.
  • Y (t) [X1 (t) X2 (t)... Xm ( t)] is used to execute the processing of the selected variable determination unit 41, the variable conversion formula determination unit 42, the variable selection unit 61, and the variable conversion unit 62.
  • m 4 in FIG. 6 is not particularly significant, and is determined in advance. Subsequent processing is as in each of the embodiments described above.
  • M process monitoring / diagnosis devices are constructed partially (locally) for each processing unit such as each processing sequence or each distribution block, and each of these M monitoring units is further monitored.
  • An embodiment for performing overall (global) process monitoring / diagnosis by MSPC using each statistic calculated from the diagnostic apparatus as an input will be described with reference to FIG.
  • the series 1 process monitoring / diagnostic apparatus to the series N process monitoring / diagnostic apparatus are the same as those shown in FIG. 1, but the Q statistics calculated by each series monitoring apparatus. It is characterized in that it has an overall process monitoring / diagnostic device that receives the quantity and T 2 statistics.
  • each series of process monitoring / diagnostic apparatuses processes are monitored by the method according to the above-described embodiment described with reference to FIG. 1, but each Q statistic and T 2 statistic are monitored independently.
  • an overall process monitoring / diagnostic apparatus based on MSPC using these statistics as inputs is operating at a higher level.
  • the operation of the overall process monitoring / diagnostic apparatus is exactly the same as that of the above-described embodiment except that the input is the Q statistic and T 2 statistic from each series.
  • any state change is detected by the overall process monitoring / diagnostic device, it is possible to determine in which sequence it was detected using the concept of contribution amount. . If the state change of a specific series, it can be determined that the abnormality is only that series, but if a state change occurs simultaneously in multiple series, it is an abnormality that affects multiple series Can be judged. For example, when the target process is the sewage treatment process shown in FIG. 2, when an operation state of a certain series is more difficult than an operation state of another series, and a state change occurs in the process, the entire process monitoring / diagnosis device The specific amount of the contribution of the detected abnormality is high. On the other hand, when poisonous substances are mixed into the inflowing sewage, the entire series is affected. Therefore, the contribution amount of the abnormality detected by the overall process monitoring / diagnosis apparatus appears in the entire series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

 状態変化や異常状態の予兆検出を可能とし、監視上オペレータが着目している指標とMSPCを結びつけることによりオペレータにとってよりわかりやすい状態監視・異常診断が可能なプロセス監視診断装置を提供する。 複数のプロセスセンサーにより所定の周期で計測される対象プロセスの状態量や操作量からなる複数の計測変数の時系列データを収集し、保持しておくデータ収集・保存部2を有し、この保存された複数の計測変数の過去の時系列データを用いて、プロセス監視モデルを構築し供給するプロセスモデル構築・供給部4と、データ収集・保存部2から抽出されたオンラインデータと前記構築されたプロセス監視モデルを用いてプロセスの状態を監視し、状態変化や異常兆候を検出するプロセス監視・診断部6とを備えてプロセスを監視し診断する。

Description

プロセス監視診断装置
 本発明は下水処理プロセス、排水処理プロセス、汚泥消化プロセス、浄水プロセス、給配水プロセス、化学プロセスなどのプロセス系の状態変化や異常の予兆を検出可能な診断アルゴリズムを有するプロセス監視診断装置に関する。
 下水処理プロセス、汚泥消化プロセス、浄水プロセス、給配水プロセスなどの水処理/水運用プロセスや、石油化学プロセス、或いは半導体製造プロセスなどのプロセスの運転管理では、プロセスの所定目標性能を達成した上で省エネルギ・省コストに繋がる運用が求められる。
 ここで、所定目標性能の例としては、下水処理プロセスでは放流水質基準の遵守、汚泥消化プロセスでは生成エネルギー(メタンや水素など)の所定発生量確保、浄水プロセスでは消毒・殺菌などによる給配水水質基準の遵守、石油化学プロセスでは石油など精製製品歩留まりの所定目標値達成、半導体製造プロセスでは半導体製品歩留まりの所定目標値以上達成などが挙げられる。また、省エネ・省コスト運用の例としては、下水処理プロセスではブロワやポンプの駆動電力や薬品注入量の削減、汚泥消化プロセスでは発生エネルギ-効率の最大化、浄水プロセスでは薬品注入量の最小化、石油化学プロセスや半導体製造プロセスでは歩留まりの最大化などがあげられる。
 これらを実現するためには、所定目標を達成できないような状態に陥らない様に目標性能に関するプロセスの状態を監視し、所定目標の達成を阻害する様な状態変化や異常状態を素早く検知し事前に対策を取ることが重要な運転管理上のポイントとなる。また、所定目標を達成した上で省エネ・省コストにつながる運用を行うためには、目標性能や省エネ・省コストに関するプロセス状態を常に良好な状態に保ち、良好な状態から逸脱しそうなプロセス状態変化を素早く検知する必要がある。
 このようなプロセスの状態変化や異常を診断する方法として、主に石油化学プロセスの分野で発展してきた「多変量統計解析手法」を用いた多変量統計的プロセス監視(MSPC:Multi-Variate Statistical Process Control)と呼ばれる方法が知られている(例えば、非特許文献1、特許文献1、特許文献2、特許文献3参照)。
 MSPCは、ケモメトリクス手法と呼ばれることもあり、MSPCの中で最も基本的であり、かつよく利用される手法として、主成分分析(PCA:Principal Component Analysis)に基づいた方法が広く用いられている。また、PCAに基づく方法を発展させた方法として主成分回帰(PCR:Principal Component Regression)や潜在変数射影法/部分最小二乗法(PLS:Projection to Latent Structure/Partial Least Square)などを用いた監視方法も用いられる(前述の非特許文献1参照)。
 これらの手法は、多数の計測データから多数のプロセスデータ間の相関情報を利用して通常数個の少数の統計量データを生成し、生成された少数の統計量データによってプロセス状態の変化を検出しようという考え方に基づいている。例えば、PCAを用いたMSPCでは、PCAを用いて相関の強いデータ集合(データの部分空間)を生成し、この部分空間内のデータに対する(品質工学分野のタグチ法で用いられるマハラノビス距離に類似する概念の)T統計量と呼ばれる統計量と、各時刻のデータがこの部分空間からどの程度乖離しているかを示すQ統計量と呼ばれる統計量によってプロセスの状態監視を行う。
 このような状態監視/異常診断システムの構築にあたっては、まず、対象となるプロセスで計測されている多数の計測変数の全部あるいは監視に必要となるいくつかの変数を選定した上で、選定した計測変数の(データサーバなどに蓄積された)時系列デ-タをオフラインで入力して監視診断モデルを構築/同定する。そして、構築した監視診断モデルにオンラインで同じ計測変数の時系列デ-タを入力する。その後、例えば、PCAに基づく監視手法では、所定の手順によって、プロセスの状態変化や異常の検出(状態変化/異常検出)を行い、その要因となる計測変数の推定(要因分離)を行う。その後、通常は、検出と要因分離結果を提示されたオペレータが、状態変化/異常の真の要因を特定し、その状況への対策、という手順をとる。
 このようなアドバンストな状態監視・異常診断手法は石油化学プロセス分野などでは先駆的に用いられているが、上下水道プロセスなどの分野ではほとんど普及していない。通常プロセスを運用・運転を管理するプロセス管理者やオペレータは、上記診断システムに利用する計測変数の時系列データをトレンドグラフなどで監視し、トレンドグラフ上でプロセスの状態変化や異常を監視している。また、これに加えて、計測変数やプラントの構造データから計算されるいくつかの管理指標や性能指標を監視している場合も多い。
 例えば、下水処理プロセス分野では、計測変数である汚泥濃度と流量と構造物の容積から計算されるSRT(汚泥滞留時間)と呼ばれる管理指標があり、オペレータはこの管理指標に注目しながら、プラントの運用を行っている。他の例として、上水プロセスの分野では日本水道協会(JWWA)が策定する水道事業ガイドラインではパフォーマンスインディケータ(PI)と呼ばれる性能指標により浄水や給配水プロセスの性能を評価することを提案している。
特開平8-241121号公報 特開2004-303007号公報 特開2007-65883号公報
URL:http://tech.chase-dream.com/spc.html
 このような管理指標や性能指標は、プラントの性能や安定運転にかかわるプラントのある特徴を良く表現した指標であり、オペレータやプラント管理者にとって有用な情報である。しかし、石油化学プロセス分野で主に利用されている従来のMSPCによる状態監視システムは、これらの管理指標によるプラント監視とは整合性のとれたものではない。また、管理指標はプラントのある特徴をうまく表現しているため、管理指標の変化はプラントの状態変化と非常に深い関連を持つにも関わらず、従来のMSPCではこのような管理指標を考慮していない。
 また、プロセスの状態変化は、プロセスの計測変数のデータを直接監視するよりも、計測データに非線形演算を施した値や計測データの微分値や積分値、あるいは、計測データの部分的な情報や周期的な情報を監視する方がより適切にプロセス状態を把握できることも多い。例えば、下水処理プロセス分野では、微生物の活性状態を監視するための呼吸速度計と呼ばれるものがあるが、呼吸速度計を設置している処理場は少なく、代替指標として溶存酸素(DO)濃度の微分値(変化率)を監視することによって、微生物の活性状態を把握する場合もある。もう一つの例として、上水の配水プロセスでは漏水が問題になっており、この漏水量の概算値を把握するために、浄水需要が少ない夜間の時間帯のみの配水量データを用いて漏水量の概算値を把握することがある。他の例としては、上水や下水では人の生活パターンに起因する日変動があり、これを時間帯毎に監視する方がよりよくプロセスの状態変化を捉えられることがある。
 しかし、従来のMSPCでは計測変数の全項目あるいは選択した項目の全データを用いて監視システムを構築していた。
 発明が解決しようとする課題は、MSPCによる状態監視性能の向上、すなわち状態変化や異常状態の予兆検出を可能とし、監視上オペレータが着目している指標とMSPCを結びつけることによりオペレータにとってよりわかりやすい状態監視・異常診断が可能なプロセス監視診断装置を提供することにある。
 本発明のプロセス監視診断装置は、対象プロセスに設けられた複数のプロセスセンサーにより所定の周期で計測される前記対象プロセスの状態量や操作量からなる複数の計測変数の時系列データを収集し、保持しておくデータ収集・保存部と、前記データ収集・保存に保存された複数の計測変数の過去の時系列データを用いて、プロセス監視モデルを構築し供給するプロセスモデル構築・供給部と、前記データ収集・保存部から抽出されたオンラインデータと前記プロセスモデル構築・供給部で構築されたプロセス監視モデルを用いてプロセスの状態を監視し、状態変化や異常兆候を検出するプロセス監視・診断部とを備え、前記プロセスモデル構築・供給部は、前記データ収集・保存に保存された複数の計測変数の過去の時系列データから、前記プロセス監視モデルを構築するために必要となる全変数あるいは一部の変数を選択する選択変数決定部と、前記データ収集・保存部に保存された複数の計測変数から、前記対象プロセスの運転上有用な管理指標やプロセスの状態変化や異常兆候の早期検出に有用な指標を得るための所定の変換式が設定されている変数変換式決定部と、前記選択変数決定部によって選択された選択変数と前記変数変換式決定部の式を用いることによって変換された過去の変換変数の時系列データの中からアウトライアなどの異常データを除去した前記選択変数と前記変換変数の正常時系列データに対して(xi(t)-ai)/biによりデータを正規化するためのパラメータaiとbiを決定するデータ正規化パラメータ決定部と、前記正規化パラメータ決定部によって決定された正規化パラメータを用いて正規化されたデータに対して、主成分分析(PCA)、主成分回帰(PCR)、部分最小2乗法(PLS)に代表される多変量解析手段の一つを利用して、少なくとも一つ以上の診断用統計量データを生成する式を定義する診断モデル構築部と、前記診断モデル構築部で生成する前記一つ以上の診断用統計量データに対する状態の変化を検出するための統計量閾値設定部とを有し、前記プロセス監視・診断部は、前記選択変数決定部で決定した選択変数に対応する現在データを前記データ収集・保存部から順次取り出す変数選択部と、前記変数変換式決定部で決定した変数変換式を用いて前記データ収集・保存部の現在データから現時点の指標を得るための変数変換を行う変数変換部と、前記正規化パラメータ決定部で決定した正規化パラメータを用いて選択された変数及び変換された変数のオンラインデータを正規化するデータ正規化部と、このデータ正規化部で正規化されたオンラインデータから前記診断モデル構築部で定義された統計量生成式に基づいて統計量データを生成しそれを監視可能な状態とする統計量監視部と、統計量監視部で生成されたオンラインの統計量データが前記統計量閾値設定部で決定した閾値を超えた場合にプロセスの状態変化や異常として検出する状態変化検出部とを有することを特徴とする。
 ただし、xi:i番目の選択変数/変換変数、ai:i番目の選択変数/変換変数に対するシフトを表す定数(シフトパラメータ)、bi:i番目の選択変数/変換変数に対するスケーリングを表す定数(スケーリングパラメータ)とする。
 本発明では、前記プロセスモデル構築・供給部は、前記選択変数と前記変換変数の中から状態変化が生じた場合の要因を推定する状態変化要因寄与量式設定部をさらに有し、前記プロセス監視・診断部は、前記状態変化検出部でプロセスの状態変化や異常が検出された場合に、その要因となる変数を前記状態変化要因寄与量式設定部で設定された寄与量演算によって推定する要因項目(変数)推定部をさらに有する構成でもよい。
 また、本発明では、変数変換式決定部には、非線形変換(含:積(掛け算)と商(割り算))、微分/差分変換、積分/積算変換、所定周期のデシメーション変換、所定周期のインターポレーション変換、管理指標/性能指標変換の中から少なくとも一つ以上の変換式を含んでいる。
 また、本発明では、前記選択変数決定部および前記変数選択部での処理の前段において、前記データ収集・保存部に収集・保存されているプロセス計測変数に対して、所定時間単位Tで所定の期間Rに亘る時間をシフトしてプロセス計測変数を新たに生成し、元のプロセス計測変数の個数のR/T倍の拡張されたプロセス計測変数を構成しておく処理が入るように構成してもよい。
 また、本発明では、前記選択変数決定部および前記変数選択部での処理の前段において、前記データ収集・保存部に収集・保存されているプロセス計測変数に対して、離散ウェーブレット変換による分解・再構成アルゴリズムによって構成されるデジタルフィルタを適用することにより元のプロセスデータをN個に分割し、元のプロセス計測変数の個数のN倍の拡張されたプロセス計測変数を構成しておいてもよい。
 また、本発明は、データ収集・保存部、プロセスモデル構築・供給部、及びプロセス監視・診断部から成るプロセス監視診断装置を、処理系列毎や配水ブロック毎などの処理単位毎にM個(M:処理単位の個数)構築し、さらに、このM個の各監視・診断装置から計算される各統計量を入力とするMSPCによる全体のプロセス監視・診断装置を有する階層型に構成してもよい。
 また、本発明では、前記対象プロセスが下水処理プロセス/産業排水プロセスなどの生物学的廃水処理プロセスであり、前記変数変換式決定部による変換式として、汚泥滞留時間(SRT)、好気槽汚泥滞留時間(A-SRT)、水理学的滞留時間(HRT)、Log(SRT)/水温、Log(A-SRT)/水温、余剰汚泥発生量、有機物(COD and/or BOD)負荷量、窒素負荷量、リン負荷量、有機物(BOD and/or COD)-SS負荷、水面積負荷、リン負荷/窒素負荷、有機物負荷/窒素負荷、有機物負荷/リン負荷、pH/ORP、DOの変化率(微分値)、風量の変化率(微分値)、アンモニア濃度変化率、硝酸濃度変化率、リン濃度変化率、pHの変化率、ORPの変化率、汚泥界面の変化率、水温の変化率、所定期間の雨量積算値(積分値)、平日/休日毎の計測データ、のいずれか一つ以上の変換式を有する。
 また、本発明では、対象プロセスが汚泥処理プロセスであり、前記変数変換式決定部による変換式として、濃縮槽余剰汚泥混入率、濃縮槽固形物回収率、濃縮槽HRT、濃縮槽汚泥固形物滞留時間、濃縮槽汚泥界面変化率、遠心濃縮機遠心効果、遠心濃縮機スクリューコンベヤとボウル回転数差速、加圧・常圧濃縮機気固比、加圧・常圧濃縮機フロス厚変化率、加圧・常圧濃縮機浮上汚泥掻きとり頻度、消化槽消化率、消化槽消化汚泥量、消化槽消化日数、消化槽消化日数/消化温度、ガス発生率、メタンガス組成比率、CO2組成比率、硫化水素組成比率、消化槽固形物負荷、消化槽有機物負荷、消化槽有機物負荷/窒素負荷、pH/ORP、pH変化率、ORP変化率、消化槽脱離液SS変化率、温度変化率、ガス発生量変化率、脱水機ろ過流量変化率、のいずれか一つ以上の変換式を有する構成でもよい。
 さらに、本発明では、対象プロセスが浄水・給配水プロセスであり、前記変数変換式決定部による変換式として、汚泥量/凝集剤注入量、塩素要求量/次亜塩素酸注入量、予め定義した夜間時間帯の配水量、予め定義した所定時間毎の配水量あるいは給水量、あるいは、オンライン計測データから計測されるパフォーマンスインディケータ(PI)である、原水有効利用率(%)、カビ臭から見たおいしい水達成率(%)、塩素臭から見たおいしい水達成率(%)、総トリハロメタン濃度水質基準比(%)、有機物(TOC)濃度水質基準比(%)、活性炭投入率(%)、薬品備蓄日数(日)、燃料備蓄日数(日)、供給単価(円/立方メートル)、給水原価(円/立方メートル)、有収率(%)、配水量1立方メートル当たり電力消費量(kWh/立方メートル)、配水量1立方メートル当たり消費エネルギ(MJ/立方メートル)、再生可能エネルギ利用率(%)、浄水発生土の有効利用率(%)、配水量1立方メートル当たり二酸化炭素(CO2)排出量(g・CO2/立方メートル)、地下水率(%)、ポンプ平均稼働率(%)、漏水率(%)、給水件数当たり漏水量(立方メートル/年/件)、のいずれか一つ以上の変換式を有する構成でもよい。
 上記各実施の形態によれば、プラント運転管理者にとって有用な情報とMSPCとを結びつけたことにより、MSPCによる状態監視性能の向上、すなわち状態変化や異常状態の予兆検出を可能とすることができる。また、監視上オペレータが着目している指標とMSPCを結びつけたので、オペレータにとってよりわかりやすい状態監視・異常診断が可能となる。
図1は本発明に係るプロセス監視診断装置の一実施の形態を示す機能ブロック図である。 図2は同上一実施の形態を下水処理プロセスに適用した場合を示すシステム構成図である。 図3は同上一実施の形態が適用される汚泥処理プロセスを説明するシステム構成図である。 図4は同上一実施の形態が適用される浄水・給配水プロセスを説明するシステム構成図である。 図5は本発明においてプロセス遅れを考慮する処理を適用した実施の形態を説明する図である。 図6は本発明において離散ウェーブレット変換を併用する実施の形態を説明するブロック図である。 図7は本発明において階層構造とした実施の形態を説明するブロック図である。 図8Aは本発明を生物学的排水処理プロセスに適用した場合の指標を得るための変数変換式決定部の構成を示す表1を表す図である。 図8Bは同表1を表す図である。 図9Aは本発明を汚泥濃縮・消化プロセスに適用した場合の指標を得るための変数変換式決定部の構成を示す表2を表す図である。 図9Bは同表2を表す図である。 図9Cは同表2を表す図である。 図10Aは本発明を上水・浄水・給配水プロセスに適用した場合の指標を得るための変数変換式決定部の構成を示す表3を表す図である。 図10Bは同表3を表す図である。
 以下、本発明によるプロセス監視診断装置の一実施の形態について、図面を用いて詳細に説明する。
 図1及び図2は、この実施の形態の基本的な構成を示しており、対象プロセスとして、下水処理プロセス/産業排水プロセスなどの生物学的廃水処理プロセスの一例である、窒素およびリン除去を目的とした下水高度処理プロセスに適用した監視システムを想定して示したものである。始めに、図2において、監視対象プロセスである下水高度処理プロセスを説明する。
 下水処理プロセス1は、最初沈澱池101、嫌気槽102、無酸素槽103、好気槽104、及び最終沈澱池105を順次直列に連結して構成されている。この下水処理プロセス1の上記各池及び槽には、以下に説明するポンプ及びセンサーがアクチュエータおよびその操作量センサーとして設けられている。すなわち、最初沈澱池101には余剰汚泥引き抜きポンプおよびその引き抜き流量センサー111が、好気槽104には酸素を供給するブロワおよびその供給空気流量センサー112が、この好気槽104とその前段の無酸素槽103との循環路には循環ポンプおよびその循環流量センサー113が、最終沈殿池105から嫌気槽102への返送路には返送汚泥ポンプおよびその返送流量センサー114が、さらに、この最終沈澱池105には、余剰汚泥引き抜きポンプおよびその引き抜き流量センサー115が、それぞれ設けられている。
 また、この下水処理プロセス1には以下に示すプロセスセンサーがそれぞれ設けられている。すなわち、最初沈殿池101への流入管路に対しては、その周辺領域の降雨量を測定する雨量センサー121、流入下水量を計測する下水流入量センサー122、流入下水に含まれる全窒素量を計測する流入TNセンサー123、流入下水に含まれる全リン量を計測する流入TPセンサー124、及び流入下水に含まれる有機物量を計測する流入UVセンサーあるいは流入CODセンサー125、がそれぞれ設けられている。
 また、嫌気槽102には、そのORP(酸素還元電位)を計測する嫌気槽ORPセンサー126、及びpHを計測する嫌気槽pHセンサー127が設けられ、無酸素槽103には、そのORPを計測する無酸素槽ORPセンサー128、及びpHを計測する無酸素槽pHセンサー129が設けられ、好気槽104には、そのリン酸濃度を計測するリン酸センサー1210、溶存酸素濃度を計測するDOセンサー1211、及びアンモニア濃度を計測するアンモニアセンサー1212、がそれぞれ設けられている。
 また、上記各反応槽102~104に対しては、それらの少なくとも1ヶ所の槽(図の例では嫌気槽102)で活性汚泥量を計測するMLSSセンサー1213が、同じく、各反応槽102~104に対して、それらの少なくとも1ヶ所の槽(図の例では無酸素槽103)で水温を計測する水温センサー1214が、それぞれ設けられている。
 また、最終沈澱池105には、ここから引き抜かれる汚泥量の固形物濃度を計測する余剰汚泥SSセンサー1215と、ここから放流される放流水のSS濃度を計測する放流SSセンサー1216 と、最終沈殿池105の汚泥界面レベルを計測する汚泥界面センサー1217とが、それぞれ設けられている。
 さらに、最終沈殿池105からの放流管には、放流下水量を計測する下水放流量センサー1218と、放流下水に含まれる全窒素量を計測する放流TNセンサー1219と、放流下水に含まれる全リン量を計測する放流TPセンサー1220と、放流下水に含まれる有機物量を計測する放流UVセンサーあるいは放流CODセンサー1221とがそれぞれ設けられている。
 上述した各種アクチュエータ111~115は、所定の周期で動作しており、同じ符号で表すその操作量センサー111~115と各種プロセスセンサー121~1221は所定の周期で計測を行っている。
 図1および図2で示すプロセス監視診断装置は、プロセス計測データ収集・保存部2、過去データ(オフラインデータ)抽出部3、プロセス監視モデル構築・供給部4、現在データ(オンラインデータ)抽出部5、プロセス監視・診断部6、及びユーザインターフェース部7から構成される。
 プロセス計測データ収集・保存部2は、下水高度処理プロセス1の各種アクチュエータ/操作量センサー111~115及び各種プロセスセンサー121~1221から所定の周期で得られるプロセスデータを収集し保持する。過去データ抽出部3は、プロセス計測データ収集・保存部2に保存された各種時系列データの中から、過去データ(オフラインデータ)を抽出する。 プロセス監視モデル構築・供給部4は、過去データ抽出部3で抽出されたオフラインデータを用いて予めプロセスの監視・診断モデルをオフラインで構築する。現在データ抽出部5は、プロセス計測データ収集・保存部2に保存された各種時系列データの中から、現在データ(オンラインデータ)を抽出する。プロセス監視・診断部6は、現在データ抽出部5で抽出されたオンラインデータと、プロセス監視モデル構築・供給部4で構築されたプロセス監視モデルを用いて、プロセスの状態を監視し、状態変化や異常兆候を検出する。ユーザインターフェース部7は、プロセス監視・診断部6によって検出された状態変化や異常兆候とその要因変数候補に関する情報をプラント管理者やオペレータに通知する。
  プロセス監視モデル構築・供給部4は、図1で示すように、選択変数決定部41と、変数変換式決定部42と、正常データ抽出部43と、正規化パラメータ決定部44と、診断モデル構築部45と、統計量閾値設定部46とを備え、さらに状態変化要因寄与量式設定部47を備えていることが好ましい。
 選択変数決定部41は、プロセス計測データ収集・保存部2から過去データ(オフラインデータ)抽出部3を通して抽出された計測変数の、過去の時系列データの情報から、プロセス監視モデル構築に必要な変数を決定し選択する。変数変換式決定部42は、プロセス監視モデルの状態変化や異常兆候を素早い検出と、オペレータの運転管理にとって理解しやすい情報を提供することを目的に、計測変数に適切な変数変換を施して新たな変換変数(指標)を生成する。正常データ抽出部43は、選択変数決定部41で選択された計測変数と、変数変換式決定部42で生成された指標との中から、欠測値や明白な異常値を除去して正常なデータのみを抽出する。正規化パラメータ決定部44は、正常データ抽出部43で取り出した正常状態の選択変数と変換変数に対して、 (xi(t) -ai)/biによって各種の選択/変換変数を正規化する式のシフトパラメータaiとスケーリングパラメータbiを決定する。
 なお、xi(t) :i番目の選択/変換変数、ai:i番目の選択/変換変数に対するシフトを表す定数(シフトパラメータ)、bi:i番目の選択/変換変数に対するスケーリングを表す定数(スケーリングパラメータ)、である。
 診断モデル構築部45は、正規化パラメータ決定部44で定義した正規化データに対して、主成分分析(PCA:Principal Component Analysis)、主成分回帰(PCR: Principal Component Regression)あるいは部分最小2乗法(PLS:Partial Least Squares)などの多変量解析手段を施すことによってローディング行列(負荷行列)とスコア行列とを求め、これらを用いて定義されるQ統計量およびHotellingのT統計量を計算するための計算式(モデル)を設定する。統計量閾値設定部46は、診断モデル構築部45で構築した診断モデルを用いて、過去のオフラインデータを用いて計算した統計量データに対して、その異常・正常の判断を行うための閾値を設定する。状態変化要因寄与量式設定部47は、Q統計量やHotellingのT2統計量が、統計量閾値設定部46の閾値を超えた場合に、その統計量に対する各選択/変換変数の寄与量を計算するための式を決定する。
 また、プロセス監視・診断部6は、同じく図1で示すとおり、変数選択部61と、変数変換部62と、アウトライア除去部63と、データ正規化部64と、統計量監視部65と、状態変化検出部66とを備え、さらに要因項目(変数)推定部67を備えていることが好ましい。
 変数選択部61は、プロセス計測データ収集・保存部2から現在データ(オンラインデータ)抽出部6を通して抽出された計測変数の現時点の時系列データから、選択変数決定部41で決定した選択変数を取り出す。変数変換部62は、変数変換式決定部42で決定した変数変換式を用いて、現時点の時系列データに対して変数変換を行い、指標を算出する。アウトライア除去部63は、変数選択部61で選択された計測変数の現在のデータと、変数変換部62で生成された現在の指標(変換変数)とから、欠測値やアウトライアを除去する。データ正規化部64は、アウトライア除去部63で取り出した現在の正常状態の選択変数と変換変数に対して、正規化パラメータ決定部44で決定した、シフトパラメータaiとスケーリングパラメータbiとを用いて正規化を行う。統計量監視部65は、データ正規化部64で正規化された現在のデータに対して、診断モデル構築部45で決定したQ統計量およびHotellingのT統計量の計算式に従ってこれらの統計量を計算する。状態変化検出部66は、統計量監視部65で監視されている統計量が、統計量閾値設定部46で定義した閾値を超えた場合に、プロセスの状態変化や異常兆候を検出する。要因項目(変数)推定部67は、状態変化検出部66でQ統計量やHotellingのT2統計量の変化が検出された場合に、その変化要因となる選択/変換変数の寄与量を、状態変化要因寄与量式設定部47で設定した式に従って計算し、要因となる選択/変換変数を推定する。
 ここで、従来のMSPCによる状態監視システムは、前述のように、オペレータやプラント管理者にとって有用な情報である管理指標や性能指標を用いたものではなく、計測変数の全項目あるいは選択した項目の全データを用いて監視システムを構築していた。
 そこで、本発明では、プラント運転管理者にとって有用な情報とMSPCとを結びつけることにより、MSPCによる状態監視性能の向上、すなわち状態変化や異常状態の予兆検出を可能とする。また、監視上オペレータが着目している指標とMSPCを結びつけることにより、オペレータにとってよりわかりやすい状態監視・異常診断を可能としている。
 そして、これらを実現するために、本発明の特徴部分は、この図1及び図2で示した実施の形態では、プロセス監視モデル構築・供給部4に変数変換式決定部42を設け、プロセス監視診断部6に変数変換部62を設けて、上述した各種の指標を得、それらをMSPCに適用したことにある。
 次に、上述した実施の形態の作用を説明する。
 まず、下水高度処理プロセス1では、操作量センサー111~115と、各種プロセスセンサー121~1221によって、所定の周期でプロセスの情報が計測されている。これらの計測情報は、プロセス計測情報収集・保存部2によって、予め決められたフォーマットに従って時系列データとして保存されている。
 本発明において、プロセス監視および診断装置を構築する際は、まず、このプロセス計測情報収集・保存部2に保存されている、所定の期間にわたる過去のプロセスデータを、過去データ抽出部3で抽出する。この過去データ抽出部3で抽出した所定の期間に亘る過去のプロセスデータを用いて、プロセス監視モデル構築・供給部4ではプロセス監視モデルを構築する。
 このプロセス監視モデル構築・供給部4において、選択変数決定部41では、プロセス監視モデルを構築するために必要な計測変数の選択方法を決定する。通常下水処理プロセスでは、操作量センサー111~115と各種プロセスセンサー121~1221とで計測されている項目だけでなく、フィードバック制御の目標値やブロワやポンプなどの機器に関する計測変数、あるいは、時間と共に積算されている積算量など、通常数千項目にもおよぶ計測変数が存在する。多変量統計的プロセス監視手法では、これらの全ての計測変数を入力してもプロセス監視モデルを原理的には構築できるが、必要な変数のみを選択するように選択方法を決定する。
 例えば、フィードバック制御の目標値などは通常長期に亘って一定値で変化しないためほとんど情報を持っていない。このような情報を持っていない変数を入力するとかえって診断性能を劣化させる場合があるため選定しない方が好ましい。また、積算量などは単調に増加する変数であるため、プロセス監視モデル構築用の入力データとして選定すると、プロセス監視モデルが正しく構築できない。また、複数のポンプやブロワが用意されているようなケースで、稀にしか起動しないブロワやポンプの流量データをそのまま入力すると、ほとんどの時間帯において0であるため、監視モデルを正しく構築することができない。また、処理プロセスの状態変化や異常兆候を検出するためには、機器の電流値や配管圧力などの機器側のデータはほとんど必要ではない。
 したがって、選択変数決定部41では、上述のような変数は選択せず、目的に対して必要な計測変数のみを選定する。例えば、図2のプロセスの場合、操作量センサー111~115と各種プロセスセンサー121~1221とで計測されている計測変数を選定する。
 変数変換式決定部42は、前述したように、本発明の特徴部分となるもので、データ収集・保存部2に保存された複数の計測変数に対して、運転員にとって有用な管理指標やプロセスの状態変化や異常兆候の早期検出に有用な指標の変換式を決定する。
 以下、変換式の例を列挙する。なお、以下に示す変数変換式は図8A,図8Bで示す表1にまとめられている。
 運転管理指標の例として、表1の汚泥滞留時間(SRT)や好気槽汚泥滞留時間(A-SRT)、あるいは水理学的滞留時間(HRT)についてみる。これらは、操作量センサー111~115と各種プロセスセンサー121~1221で計測される変数のいくつかを用いて計算することができる。これらの指標は下水処理プロセスの運用では常に管理しているものであり、プロセス管理者やオペレータはこの指標を参考にして運転を行っている(下水道維持管理指針 後編2003年度版、日本下水道協会、参照)。したがって、この指標をMSPCによるプロセス監視の入力情報として用いると、この指標に何らかの変化が生じた場合、後述するMSPCの統計量の変化として検出されることになる。さらに、表1に示すようにLog(SRT)/水温やLog(A-SRT)/水温は、通常直線関係になる様に管理されている(同じく、下水道維持管理指針 後編2003年度版、日本下水道協会、参照)ため、これらの指標も同じ目的で用いることができる。
 その他、余剰汚泥の発生量もオペレータやプロセス管理者が管理する指標である。この発生量の概算値は、表1に示すように流入溶解性BODと流入SSと反応槽のMLSS濃度に対して、それぞれ予め調査して決定しておく汚泥転換係数a,b,cを用いて計算できる。この指標も重要な運転管理指標として用いることができる。
 また、通常は有機物、窒素、リンなどは、これらに関連する各種水質濃度センサーで計測されているが、処理という観点からは濃度ではなく、濃度に処理量を掛け合わせた負荷量で管理する方が適切であることも多い。そのため、表1に示す、流入有機物負荷量、流入窒素負荷量、流入リン負荷量、あるいは放流有機物負荷量、放流窒素負荷量、放流リン負荷量などの指標も生成しておくことが好ましい。
 また、これらの負荷量そのものだけではなく、負荷量の比率で運転管理を行うことも多いため、この場合には、例えば、表1に示した有機物の処理特性の指標である有機物-SS負荷や沈殿池の沈降特性に関わる水面積負荷も指標として生成しておく。また、窒素やリンの除去を目的とした高度処理プロセスでは、有機物:窒素:リンの比率が微生物の組成比におおよそ対応する所定の割合に保たれている場合に処理が効率的行われることが知られている。このため、これらの負荷比率、すなわちリン負荷/窒素負荷、有機物負荷/窒素負荷、有機物負荷/リン負荷の指標として生成しておけば、リンや窒素の除去性能の目安として用いることができる。
 また、嫌気槽102や無酸素槽103には通常ORP計128やpH計127が設置されていることが多い。これらORP計128とpH計127は、総イオン濃度にあまり大きな変化が無い場合には強い相関を示すため、ORP/pHの比率を管理しておくと、pH以外のイオン濃度の変化を検出しやすくなる。例えば、雨天時などに嫌気槽102や無酸素槽103の溶存酸素濃度が上がり処理が悪化することがある。このような場合にはpHの変化と比較してORPの変化が大きくなるため、この比率を監視すると溶存酸素混入の検出に役だてることができる。
 さらに、操作量センサー111~115と各種プロセスセンサー121~1221で計測されている計測変数の中には、計測変数の値だけでなくその変化率(差分、微分)の情報がプロセスの運転管理にとって重要な場合がある。例えば、溶存酸素(DO)濃度の変化率は、微生物の呼吸速度計の代用として考えることができる。微生物の呼吸速度計は下水を処理する微生物の活性が弱まった場合に消費する溶存酸素が減少するという性質を利用して微生物の活性状態を監視するものであるが、呼吸速度計を使わなくてもDOの変化率を監視しておけば、微生物の活性状態を監視することができる。
 一方、処理場ではDO濃度を一定値に保つ様に曝気風量を制御していることも多いため、このような場合には、DO濃度は制御されているため変化しないが、その代りに風量の変化率を監視しておけば微生物の活性状態を間接的に知ることができる。同様の原理を用いれば、窒素やリンの除去にかかわる特定の微生物の活性状態も監視することができる。
 つまり、アンモニアを硝酸に変化させる硝化菌の活性状態を見るためにはアンモニア濃度の変化率を監視すればよく、硝酸を窒素ガスに還元する脱窒菌の活性状態を見るには硝酸濃度の変化率を監視すればよい。リンを除去するリン蓄積性微生物の活性状態を監視するためには、嫌気槽および好気槽でのリン濃度の変化率を監視すればよい。さらに、毒物の混入などや処理の阻害時にはpHやORPが急激に変化する場合があるため、pHやORPの変化率の情報もプロセス監視にとって有用である。また、雨天時や雪解け水の流入時などには水温が急激に低下することがあるが、水温の低下は処理の阻害要因となるため、水温変化率も重要な監視項目となる。
 一方、このような変化率の情報とは逆に所定期間の積算量がプロセスに影響を与える場合も多い。例えば、所定期間の雨量の積算量は特にリン除去の性能に影響を与える可能性が高い。これは、雨によって嫌気槽や無酸素槽への溶存酸素の持ち込みがあることや、雨によってリン除去に必要となる酢酸系の有機物が流出してしまうことなどによる。このような雨の影響は雨天時に直接現れる場合もあるが、雨天後しばらくたって現れる場合もある。この場合、雨天の積算量やそれ以前にどれくらいの期間晴天時が継続していたかという情報が重要となる場合が多いため、所定期間にわたる積算雨量は一つの指標となりうる。
 また、通常下水処理プロセスは人々の生活パターンに対応した負荷パターンを持つため、例えば、日曜日などの休日と平日で異なる負荷パターンを示す場合がある。このような場合、休日/平日のデータを各々別のものとして取り出てMSPCの入力とすると診断性能をより向上させられる可能性がある。例えば、日曜日のデータを取り出すのは1日/7日でデータを間引く(デシメーション)する操作に対応し、平日のデータを取り出すのは6日/7日のデシメーションに対応する。一方、データを連続的に供給するためには日曜データに対しては、平日はゼロ入力とし、平日データに対しては日曜をゼロ入力とするというような操作が考えられ、これらは補間(インターポレーション)操作に対応する。従って、このように適切にデシメーションとインターポレーションを利用してデータを変換した指標を入力するとMSPCの診断性能を向上させられることが期待できる。
 このように、各種の変数変換を行う表1に示した変数変換式、すなわち、非線形変換(含:積(掛け算)と商(割り算))、微分/差分変換、積分/積算変換、所定周期のデシメーション変換、所定周期のインターポレーション変換、管理指標/性能指標変換の中から少なくとも一つ以上の変換を実行する変数返還式を決定する部分が変数変換式決定部42の作用である。
 次に、正常データ抽出部43は、MSPCによるプロセス監視モデルを構築するために、過去データ(オフラインデータ)抽出部3で抽出したオフラインデータから、欠測データやアウトライアを除去し、プロセス監視モデル構築に有用なデータのみを取り出す。この正常データ抽出部43の処理方法としては複数の方法が考えられる。この際、実際のプロセスの値とは考えられないようなアウトライアや欠測値は必ず除去する必要があるが、プロセスの状態が通常状態から乖離しているデータは必ずしも厳密に除去する必要はない。
 具体的には、例えば、所定周期での計測が1分などの比較的速い周期であるような場合には、1時間毎のメジアンデータを取り出して用いると言った単純な操作も考えられる。通常下水処理プロセスの滞留時間は数時間~十数時間なので、このような1時間単位のメジアン処理を行うという単純な操作でも多くのアウトライアや欠測値を除去することができる。その他の方法としては、例えば、ロバスト統計の方法を用いて、データの中心値指標としてメジアンを採用し、データのばらつき指標としてメジアン絶対偏差(MAD:Median Absolute Deviation)を用いて、メジアンからMADの所定倍以上離れているデータを除去するという様な方法も考えられる。
 次に、正規化パラメータ決定部44では、正規化に必要となるシフトパラメータaiと、スケーリングパラメータbiの値を決定する。
 例えば、ロバスト標本とロバスト標本標準偏差を用いる。ここで、「ロバスト標本平均」や「ロバスト標本標準偏差」とは、予めプロセスデータの最大値及び最小値付近の数パーセント程度のデータを取り除いた上で標本平均と標本標準偏差を求めることである。この手順に従えば、予め上下限値付近のいくつかのデータを除いた上で、シフトパラメータとスケーリングパラメータとを次式のように定めることができる。
  ai=1/N*Σk=1xi(k)
  bi=Σk=1(xi(k)-ai)/(N-1)
                           ・・・(1)
 ただし、Nは切り出したデータ数である。
 あるいは、先述のシフトパラメータを先述のメジアンとし、スケーリングパラメータをメジアン絶対偏差(MAD)とすることもできる。
 診断モデル構築部45は、プロセス監視に必要となる統計量の計算式を定義する。例えば、多変量解析手段としてPCAを用いる場合には、まず次のようにデータ分解を行う。
Figure JPOXMLDOC01-appb-M000001
 このように分解したデータに対して、ローディング行列Pを用いてQ統計量やHotellingのT統計量を計算する計算式を以下の様に定義する。
 Q統計量:
  Q(x(t))=x(t)(I-PP)x(t)   ・・・(3)
HotellingのT統計量:
Figure JPOXMLDOC01-appb-M000002
 統計量閾値設定部46では、(3)式と(4)式の閾値を設定する。この閾値の設定値は、状態変化や異常兆候の検出に大きく関わるため、その設定方法は重要であるが、本発明とは直接関係ないため、その詳細については触れず、典型的な設定方法のみを示す。もし、過去のオフラインデータに対して何ら事前情報が無い場合には、デフォルトの設定法として、Q統計量の統計的信頼限界値とHotellingのT統計量に関する統計的信頼限界値を用いることができる(C.Rosen “Monitoring Wastewater Treatment Systems"、 Lic.Thesis、 Dept. of Industrial Electrical Engineering and Automation、 Lund University、 Lund、 Sweden (1998))
 これらは、以下の様に書くことができる。
Figure JPOXMLDOC01-appb-M000003
 このように(5)式や(6)式に基づいて統計量の閾値を設定することができる。
 その他の方法としては、例えば、ロバスト統計量として先述のメジアンMEとメジアン絶対偏差(MAD)を用いてQ統計量とT統計量に対してME±k*MAD(kはパラメータ)の範囲外のデータを除去したうえで、除去されたQ統計量やHotellingのT統計量の最大値を閾値あるいは、最大値から上位α%(α:パラメータ)の値を閾値として決定する。このような方法で閾値を設定する手段が統計量閾値設定部46の機能である。
 状態変化要因寄与量式設定部47は、(3)式や(4)式で定義された統計量に対する、選択変数決定部41および変数変換式決定部42で決定された計測変数および変換変数の寄与量の定義式を設定する。寄与量の定義方法も複数あるが、例えば、以下の様に定義することができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、nはn番目変数という意味であり、tはある時刻を表す変数である。(7)式および(8)式が状態変化要因寄与量式設定部47の作用である。
 上記の手順に従って、プロセス監視モデル構築・供給部4でプロセス監視モデルを構築した後、プロセス監視・診断部6では、プロセス監視モデル構築・供給部4で構築したプロセス監視モデルを供給してもらい、このプロセス監視モデルを用いてプロセスの監視を行う。
 プロセス監視・診断部6では、まず、診断を行いたい時点(以下現時点あるいは現在という)のオンラインデータを、プロセス計測情報収集・保存部2で収集しているデータの中から現在データ(オンラインデータ)抽出部5で抽出する。プロセス監視・診断部6は、この現在データ抽出部5で抽出した現在データを用いてプロセス状態の監視を行い、状態に変化があったり異常の兆候が認められたりした場合にはそれを検出する。このプロセス監視・診断部6での作用を、以下詳細に説明する。
 変数選択部61は、選択変数決定部41で選択すると決定した変数に対応する現時点のデータを取り出す。
 同様に、変数変換部62は、変数変換式決定部42で決定した変数変換式によって、現在データから現時点の運転管理指標などの指標を算出する。
 アウトライア除去部63では、変数選択部61と変数変換部62とで選択/計算された現時点の計測データおよび指標データに対し、それがアウトライアである場合の処理を行う。この処理としては、例えば、該当時刻のデータが欠測データである場合にのみ零次ホールドするなどの簡単な処理で良い。あるいは、変数選択部61と変数変換部62の計算を行う前に3~7ステップ程度の簡単なメジアン処理を施すものであってもよい。プロセス監視・診断部6は実際に監視と診断を行うフェーズであるため、このアウトライア処理は、必ずしも必須ではなくごく簡単なものでよい。仮に、アウトライア処理がされていなくても後の診断で異常と診断されるため。これがアウトライア除去部63の作用である。
 次に、データ正規化部64では、正規化パラメータ決定部44で決定した、例えば(1)式に示した正規化パラメータを用いて、変数選択部61と変数変換部62で選択/計算された現時点の計測データおよび指標データを正規化する。
 次に、統計量監視部65では、データ正規化部64で正規化された計測データと指標データを、診断モデル構築部45で定義した統計量、例えば(3)式と(4)式で定義したQ統計量とT統計量のX(t)に代入することによって、現時点のQ統計量とT統計量を監視する。この統計量は時間の経過と共に時々刻々と変化するので、時系列グラフ(トレンドグラフ)の様な形で監視してもよい。
 次に、状態変化検出部66では、現時点のQ統計量あるいはT統計量が、統計量閾値設定部46で設定した閾値、例えば(5)式と(6)式で定義した閾値を超えた場合に、プロセスに状態変化が生じたと判断し、その旨を、図2で示したユーザインターフェース部7を通してオペレータあるいはプロセス管理者に通知する。この場合、例えば、閾値を超える回数が連続してr回続いた場合にオペレータに通知する、などのルールを入れてアラームの頻発を避けるようにしておいてもよい。
 状態変化検出部66でプロセスの状態変化が検出された場合には、要因項目(変数)推定部67で、その要因となる計測変数あるいは指標を推定することが好ましい。この際、状態変化要因寄与量式設定部46で設定した寄与量式、例えば(7)式と(8)式に基づいて計測変数および指標の寄与量を各々計算する。そして、例えば、以下に(a)(b)(c)として列挙するルールを予め決めておくことによって、状態変化の要因と考えられる計測変数あるいは指標を推定し、これをユーザインターフェース部7を通してオペレータあるいはプロセス管理者に通知する。
(a)寄与量の最も大きいものを状態変化要因変数とする。 
(b)寄与量の大きいものから順に3個を状態変化要因変数とする。 
(c)寄与量の値が、寄与量の平均±k*寄与量の標準偏差(k:パラメータ)を超えたものを状態変化要因変数とする。
 図2で示したユーザインターフェース部7では、上述の様に異常の検出結果と要因変数推定結果を提示するだけでなく、先述したとおり、Q統計量やT統計量などの統計量データの時系列グラフ(トレンドグラフ)を常に監視できるようにしておいてもよい。また、変数変換部62で変換された運転管理指標などの指標データについてもトレンドグラフとして常に監視できるようにしておいてもよい。
 このように図1及び図2で示した実施の形態では、下水処理プロセスにおいて、プラント管理者が常に気を配って管理している運転管理指標(SRTや負荷比)などの変化を、MSPCによる統計的プロセス監視のフレームワークの中で検出することができ、プラント管理者やオペレータにとって有用な診断情報を提示できる。すなわち、下水処理プロセスの運転管理においてカギとなるプロセスの異常を、計測変数の微分値(差分値)や積分値(積算値)あるいは平日/休日毎の計測変数など、よりプロセスの状態変化を捉え安い指標でMSPCに入力することによって、MSPCのフレームワークの中で、状態変化や異常の兆候をより素早く的確に検出することができる。
 次に、図3で示す汚泥処理システムに、図1で示す監視・診断システムを適用した場合の実施の形態を説明する。
 図3に示す対象プロセスである汚泥処理プロセス8は、最初沈澱池801と、生物反応槽802と、最終沈澱池803とで構成された、汚泥の供給元となる下水処理プロセスを有する。また、これらから発生した汚泥を処理するために、遠心濃縮装置804と、加圧/常圧濃縮装置805と、汚泥濃縮槽806と、汚泥消化槽807と、脱水機808とからなる汚泥処理プロセスを有する。
 さらに、プロセスセンサーとして、最初沈澱池801に対しては、最初沈澱池汚泥流量センサー811と、最初沈殿池汚泥濃度センサー812とが設けられている。最初沈澱池汚泥流量センサー811は、最初沈澱池801から汚泥濃縮槽806へ排出される汚泥流量を計測する。また、最初沈殿池汚泥濃度センサー812は、最初沈澱池801における汚泥濃度を計測する。
 また、最終沈殿池803に対しては、汚泥濃縮槽806への投入量を計測する濃縮槽余剰汚泥投入量センサー813と、最終沈殿池803における余剰汚泥濃度を計測する余剰汚泥濃度センサー814とが設けられている。
 汚泥濃縮槽806に対しては、その汚泥濃縮槽806から排出される分離液の流量と濁度を計測する汚泥濃縮槽分離液流量センサー815と、汚泥濃縮槽分離液SSセンサー816が設けられている。また、この汚泥濃縮槽806から汚泥消化槽807への管路には、ここに流れる濃縮汚泥流量(汚泥消化槽投入汚泥量)とその濃度(汚泥消化槽投入汚泥濃度)を計測する濃縮汚泥流量センサー817と、濃縮汚泥濃度センサー818とが設けられている。さらに、この汚泥濃縮槽806における固形物濃度を計測する汚泥濃縮槽固形物濃度センサー819と、汚泥濃縮槽界面レベルセンサー8110とが設けられている。
 また、遠心濃縮槽804には、その電動機出力を計測する遠心濃縮槽電動機出力センサー8111と、そのスクリューコンベヤの回転数を計測する遠心濃縮槽スクリューコンベヤ回転数センサー8112と、そのボウル回転数を計測する遠心濃縮槽ボウル回転数センサー8113が設けられ、さらに、最終沈殿池803から遠心濃縮槽804へ投入される余剰汚泥投入量を計測する遠心濃縮槽余剰汚泥投入量センサー8114が設けられている、
 また、加圧・常圧濃縮槽805には、最終沈殿池803から投入される余剰汚泥流量を計測する加圧・常圧濃縮槽余剰汚泥投入量センサー8115と、加圧・常圧濃縮槽805における加圧・常圧水量、フロス厚、浮上汚泥濃度、浮上汚泥かきとり厚さをそれぞれ計測する加圧・常圧水量センサー8116、フロス厚センサー8117、浮上汚泥濃度センサー8118、及び浮上汚泥かきとり厚さセンサー8119がそれぞれ設けられている、
 また、汚泥消化槽807には、後段の脱水機808への管路に、汚泥消化槽807から排出された消化汚泥の量と汚泥濃度を計測する汚泥消化槽消化汚泥量センサー8120と、汚泥消化槽消化汚泥濃度センサー8121とが設けられ、前段からの投入管路には汚泥消化槽投入有機物濃度センサー8122が設けられている。また、この汚泥消化槽807における、消化汚泥有機物濃度、消化温度、消化ガス発生量、メタン濃度、CO2濃度、硫化水素濃度、pH、ORPをそれぞれ計測する消化汚泥有機物濃度センサー8123、消化温度センサー8124、消化ガス発生量センサー8125、メタン濃度センサー8126、CO2濃度センサー8127、硫化水素濃度センサー8128、pHセンサー8129、及びORPセンサー8130が設けられている。さらに、最初沈殿池801への循環管路には、この汚泥消化槽807での脱離液SS濃度センサー8131が設けられている。
 また、脱水機808に対しては、そのろ過流量を計測する脱水機ろ過流量センサー8132が設けられている。
 次に、この図1及び図3で示す実施の形態の作用を説明する。この実施の形態では、前述した図1及び図2の実施の形態とは対象プロセスが異なるため、図1における変数変換式決定部42の作用のみが相違する。したがって、この部分の作用のみを説明する。
 変数変換式決定部42では、プロセス計測情報収集・保存部2で収集・保存された各種計測変数から運転員にとって有用な管理指標や、プロセスの状態変化や異常兆候の早期検出に有用な指標の変換式を決定する。以下、変換式の例を列挙する。なお、これらの変換式は図9A、図9B、図9Cで示す表2にまとめられている。
 例えば、汚泥濃縮槽806では最初沈殿池801からの汚泥に加えて最終沈殿池803からの余剰汚泥の濃縮を行うことがある。この場合、余剰汚泥の混入率が高いと汚泥濃縮槽806での沈降がわるくなることがある。従って、表2の余剰汚泥混入率を指標として計算しておくとよい。また、汚泥濃縮槽806の処理効率を評価する指標として濃縮槽固形物回収率も計算しておくとよい。さらに、汚泥濃縮槽806の処理は滞留時間(HRT)によって管理されるため、HRTの指標も計算しておくと汚泥濃縮槽806の運転管理に役立つ。同様に汚泥濃縮槽806の運転管理に役立つ指標として、濃縮槽固形物負荷、汚泥固形物滞留時間などがある。さらに、汚泥濃縮が悪くなる場合には汚泥界面が急上昇することが考えられるので、汚泥界面レベルの変化率は濃縮処理の重要な指標となる。
 このような指標を表2で示す計算式により計測データを用いて演算すれば汚泥濃縮槽806に対する運転管理がより適切となる。
 また、余剰汚泥は濃縮しにくい場合があるため、汚泥濃縮槽806ではなく、遠心濃縮装置804や加圧浮上濃縮機、常圧浮上濃縮機などの加圧・常圧濃縮装置805を用いて機械的に濃縮する場合がある。
 遠心濃縮装置804では、遠心効果を増せば濃縮汚泥濃度や固形物回収率が高くなるが、そのためには電力コストがかかるので、処理効率と省エネのバランスで遠心効果を監視することがある。また、また、スクリューコンベヤとボウルの回転数の差は濃縮汚泥濃度や固形物回収率と関係するため、この差速も監視しておく方が良い。
 また、加圧浮上式濃縮機や常圧浮上式濃縮機では、安定に汚泥を浮上させるための管理指標として気固比が管理されている。このため、気固比は加圧・常圧濃縮装置805の管理指標としては重要な管理項目である。また、加圧浮上式濃縮機や常圧浮上式濃縮機では汚泥を浮上させ、それをかきとって回収するため浮上汚泥(フロス)の厚さの変化率も重要な指標となる。また、浮上汚泥のかきとり頻度も加圧浮上式濃縮機や常圧浮上式濃縮機の重要な管理項目である。
 したがって、このような指標を表2で示す計算式により計測データを用いて演算すれば遠心濃縮装置804や加圧・常圧濃縮装置805に対する運転管理がより適切となる。
 汚泥消化槽807では、消化によってメタンガスをエネルギとして回収するため、消化率、消化汚泥量、消化日数、消化日数/消化温度などは重要な管理指標となる。また、より直接的な指標としてはガス発生率があり、さらに発生したガスの品質指標であると同時に管理指標にもなる指標としてはメタンガス組成比率、CO2組成比率、硫化水素組成比率がある。さらに、下水処理プロセスと同様に負荷量で管理することも多いため、消化槽固形物負荷量、消化槽有機物負荷量、消化槽窒素負荷量なども管理しておくことが好ましく、消化の処理に影響する指標としては有機物負荷と窒素負荷の比率も重要な管理項目となる。また、異常の診断の目的としては、下水処理プロセスと同様にpHとORPの比率やpH変化率、ORP変化率もMSPCの入力としておくことが好ましい。さらに、消化槽脱離液のSSが急上昇する場合は異常状態であることが知られているので、脱離液のSS変化率もMSPCの入力にしてよい。また、異常時にはガス発生量が急変することが考えられるので、ガス発生量の変化率も指標とすることができる。
 最後に脱水槽808では、汚泥を脱水するが、ろ過流速が運転管理上重要であるためろ過流量の変化率を指標として選定することができる。
 上述したような汚泥処理プロセスの各サブプロセス(濃縮、消化、脱水)の運転管理指標や異常兆候の検出指標を各種プロセスセンサー811~8132による計測変数を用いて変数変換式決定部42で決定する。
 この実施の形態によれば、汚泥処理プロセスの各サブプロセスにおいて、プラント管理者が気を配って管理している運転管理指標の変化をMSPCによる統計的プロセス監視のフレームワークの中で検出することができ、汚泥処理プラント管理者やオペレータにとって有用な診断情報を提示できる。また、汚泥処理プロセスの運転管理においてカギとなるプロセスの異常を、計測変数の微分値(差分値)など、よりプロセスの状態変化を捉え安い指標でMSPCに入力することによって、MSPCのフレームワークの中で、状態変化や異常の兆候をより素早く的確に検出することができる。
 次に、図1及び図4で示す実施の形態を説明する。この実施の形態は、図4で示す浄水・給配水プロセスに、図1で示す監視・診断システムを適用している。
 図4に示す対象プロセスである浄水・給配水プロセスは、着水井901、混和池902、沈殿池903、ろ過池904、浄水池905、及び配水池906を、順次直列に配置している。また、上記ろ過池904に対しては、排水池907と、そこで生じた排泥を貯留する排泥池908とが設けられている。
 また、アクチュエータとして、着水井901に対する取水ポンプ911が設けられ、混和池902には攪拌機912が設けられ、ろ過池904に対しては浄水池905の水により洗浄を行うための洗浄ポンプ913が設けられている。また、この浄水池905から配水池906までの間に送水ポンプ914が設けられ、さらに配水池906配水区までの間に配水ポンプ915が設けられている。また、配水池907から混和池902までの間に返送ポンプ916が設けられ排泥池908の出側には濃縮機917と、脱水機918とが設けられている。
 さらに、プロセスセンサーとして、着水井901への管路には取水流量センサー921が設けられ、この着水井901には塩素要求量センサー922、ジェオスミン濃度センサー923、2MIB濃度センサー924、トリハロメタン濃度センサー925、及びTOCセンサー926が設けられている。また、混和池902には、次亜塩素酸注入量センサー927、凝集剤注入量センサー928、pH調整剤注入量センサー929、及び活性炭注入量センサー9210が設けられている。また、沈殿池903から排泥池908までの管路には汚泥引抜量センサー9211と、汚泥濃度センサー9212が設けられている。さらに、ろ過池904には残留塩素濃度センサー9213が設けられ、配水池906の入り側には配水流量センサー9214が設けられ、配水区には給水流量量センサー9215が設けられている。
 次に、この図1及び図4で示す実施の形態の作用を説明する。この実施の形態も、前述した図1及び図2の実施の形態とは対象プロセスが異なるため、図1における変数変換式決定部42の作用のみが相違点である。したがって、この部分の作用のみを説明する。
 変数変換式決定部42では、プロセス計測情報収集・保存部2で収集・保存された各種計測変数から運転員にとって有用な管理指標やプロセスの状態変化や異常兆候の早期検出に有用な指標の変換式を決定する。この変換式の例を列挙する。なお、これら変換式は図10A、図10Bで示す表3にまとめられている。
 浄水場では、PACなどの凝集剤注入を行うが、凝集剤により汚泥が発生する。この発生汚泥量と凝集剤注入量の比率は適正な注入量のための一つの指標となる。同様に塩素要求量に対して次亜塩素酸を注入することが多いため、塩素要求量と次亜塩素酸注入量の比率も一つの指標となる。
 一方、配水区における配水管路網では漏水が大きな問題となっている。この漏水量の概算値を評価する場合は、水の需要があまりない夜間時間帯の配水量を参考にすることがある。この場合、各時刻の配水量だけでなく所定の夜間時間帯の配水量をデシメーションしておけば漏水量の診断に役立つ可能性がある。また、昼間の時間帯のデータが欠落する場合には、ある特定日の夜間時間帯データをデシメーションによって抽出した後、そのデータをその日のデータになる様に適切にインターポレーションしておいてもよい。すなわち、アップサンプラの考え方を利用して、例えば、夜間8時間の時間帯データを抽出した場合、3点毎に同じデータでインターポレーションすることにすれば8×3=24時間分のデータを生成することができる。このようにして夜間時間帯配水量を一つの指標データとできる。また、水の需要は人々の生活パターンに合わせた日変動を持つため、所定時間毎の配水量などの計測データも有用になることがある。同様に平日/休日毎の計測データも有用な指標となり得る。
 また、浄水・給配水プロセスでは、日本水道協会(JWWA)が性能指標(PI:Performance Indicator)を公表しており、浄水・給配水プロセスはPIによって管理される場合も多い。PIの中のいくつかはオンラインで(少なくとも原理的に)計測可能なセンサーから計算できる運転管理指標となりうる指標も存在する。PIは通常年単位で定義されているが、年単位を所定の時間単位に変更して監視することにすればPIがどのように推移しているかがオンラインで監視できることになり、有用な管理情報となりうる。このようにオンライン監視が(少なくとも原理的に)可能なPIとして、原水有効利用率、カビ臭から見たおいしい水達成率、塩素臭からみたおいしい水達成率、総トリハロメタン濃度水質基準比、有機物(TOC)濃度水質基準比、活性炭投入率、薬品備蓄日数、燃料備蓄日数、供給単価、有収率、電力消費量(配水量1mあたり)、エネルギ消費量(配水量1mあたり)、再生可能エネルギ利用率、浄水発生土の有効利用率、CO2排出量(配水量1mあたり)、地下水率、ポンプ平均稼働率、漏水率、給水件数あたり漏水量、がある。
 これらの指標は、プロセスセンサー921~9215による計測値から表3で示した計算式により計算できる。但し、電力量やCO2発生量は通常計測していない場合が多いので、ポンプなど機器の流量とスペックから換算する。
 この実施の形態によれば、浄水・給配水プロセスにおいて、浄水処理プロセスの性能指標や運転管理指標の変化をMSPCによる統計的プロセス監視のフレームワークの中で検出することができ、上水プラント管理者やオペレータにとって有用な診断情報を提示できる。また、浄水・給配水プロセスの運転管理においてカギとなるプロセスの異常を、計測変数の微分値(差分値)など、よりプロセスの状態変化を捉え安い指標でMSPCに入力することによって、MSPCのフレームワークの中で、状態変化や異常の兆候をより素早く的確に検出することができる。
 次に、図1で示した選択変数決定部41および変数選択部61の前に、データ収集・保存部2に収集・保存されているプロセス計測変数に対して、所定時間単位Tで所定の期間Rに亘る時間をシフトしてプロセス計測変数を新たに生成し、元のプロセス計測変数の個数のR/T倍の拡張されたプロセス計測変数を構成しておく実施の形態を、図5を用いて説明する。
 この実施の形態は、過去データ(オフラインデータ)抽出部3の直後、および現在データ(オンラインデータ)抽出部5の直後に、図5に記載の処理が入る点が特徴であるため、この部分について説明する。
 図5は、プロセス計測データ収集・保存部2に保存された計測データの集合をXとし、その時刻tを先頭とするデータセットをX(t)と記載したものである。図6では、時刻を所定の時間単位で1ステップから7ステップずらしたX(t-1)~X(t-7)まで記載してある。
 前述した各実施の形態では、プロセス計測データ収集・保存部2に保存された計測データから、過去データ(オフラインデータ)抽出部3あるいは現在データ(オンラインデータ)抽出部5でデータを抽出した後、選択変数決定部41や変数変換式決定部42、あるいは変数選択部61や変数変換部62の処理を実施していた。これは、図6においてX(t)を用いて処理することを意味している。一方、本実施の形態では、X(t)の代わりに拡張された計測変数:Y(t)=[X(t) X(t-1) ・・・X(t-M)] を用いて、選択変数決定部41や変数変換式決定部42、あるいは変数選択部61や変数変換部62の処理を実施する。ここで、t-Mは、ではM=7となっているが特に意味を持つわけではなく、予め決めておく。その後の処理は、各実施の形態のとおりである。
 このようにすると、プロセスの滞留時間などに伴う時間遅れが明確に存在するようなプロセスであっても、プロセスの時間遅れを考慮して、前述した各実施の形態と同様の効果をあげることができる。
 次に、図1で示した選択変数決定部41および変数選択部61の前に、データ収集・保存部2に収集・保存されているプロセス計測変数に対して、離散ウェーブレット変換による分解・再構成アルゴリズムによって構成されるデジタルフィルタを適用することにより元のプロセスデータをN個に分割し、元のプロセス計測変数の個数のN倍の拡張されたプロセス計測変数を構成しておく実施の形態を図6により説明する。
 この実施の形態も、過去データ(オフラインデータ)抽出部3の直後、および現在データ(オンラインデータ)抽出部5の直後に、図6で示す処理が入る点が特徴であるため、この部分について説明する。
 図6では、プロセス計測データ収集・保存部2に保存された計測データの集合をX(t)とし、これに離散ウェーブレット変換を施したあとに再構成して時系列データに戻したデータをX1(t)~X4(t)と記載してある。
 前述の実施の形態では、プロセス計測データ収集・保存部2に保存された計測データから、過去データ(オフラインデータ)抽出部3あるいは現在データ(オンラインデータ)抽出部5でデータを抽出した後、選択変数決定部41や変数変換式決定部42、あるいは変数選択部61や変数変換部62の処理を実施していた。これは、図6においてX(t)を用いて処理することを意味している。
 これに対して、本実施の形態では、X(t)の代わりに離散ウェーブレット変換によって周波数毎に分解された計測変数:Y(t)=[X1(t) X2(t) ・・・Xm(t)] を用いて、選択変数決定部41や変数変換式決定部42、あるいは変数選択部61や変数変換部62の処理を実施する。ここで、図6ではm=4となっているが特に意味を持つわけではなく、予め決めておく。その後の処理は、前述した各実施の形態のとおりである。
 このようにすると、複数のプロセス計測変数の変化速度にばらつきがあったり、速い変化と遅い変化が混在するような非定常な変動が多い場合でも、変化速度の違いや非定常性を考慮して前述の各実施の形態と同様の効果をあげることができる。
 次に、プロセス監視・診断装置を、処理系列毎や配水ブロック毎などの処理単位毎にM個(M:処理単位の個数)部分的(ローカル)に構築し、さらに、このM個の各監視・診断装置から計算される各統計量を入力とするMSPCによる全体の(グローバルな)プロセス監視・診断を行う実施の形態を図7を用いて説明する。
 図7において、系列1のプロセス監視・診断装置~系列Nのプロセス監視・診断装置は、各々図1で示した装置と同一のものであるが、各々の系列の監視装置で計算されるQ統計量およびT統計量を入力とする全体プロセス監視・診断装置を有している点に特徴がある。
 この実施の形態についても、前述の実施の形態と異なる特徴的な点の作用を、以下説明する。
 各々の系列のプロセス監視・診断装置では図1で説明した前述の実施の形態に準ずる方法によってプロセスが監視されているが、各々のQ統計量やT統計量を独立に監視していることに加えて、これらの統計量を入力とするMSPCによる全体プロセス監視・診断装置が上位で動作している。この全体プロセス監視・診断装置の作用は、入力が各系列からのQ統計量とT統計量である点以外は、前述の実施の形態の作用と全く同様である。
 この全体プロセス監視・診断装置を持つことにより、もし全体プロセス監視・診断装置で何らかの状態変化が検出された場合、それがどの系列で検出されたかを寄与量の考え方を用いて判断することができる。仮に、ある特定の系列の状態変化であれば、その系列のみの異常であると判断できるが、複数の系列に同時に状態変化が生じている場合には、複数の系列に影響する異常であることが判断できる。例えば、対象プロセスが図2で示した下水処理プロセスである場合、ある系列の運転状態が他の系列の運転状態よりわるく、プロセスに状態変化が生じた場合には、全体プロセス監視・診断装置によって検出された異常の寄与量はその特定の系列が高くなる。一方、流入下水に毒物が混入した場合には、全系列に影響するため、全体プロセス監視・診断装置によって検出された異常の寄与量は全系列に現れることになる。
 このように構成したことにより、プロセスが処理系列毎に管理されていたり、配水ブロック毎に管理されていたり、あるいは処理プロセスが連絡管や連結管などでネットワーク状に連携して運用されている場合であっても、処理単位毎に前述した各実施の形態と同様の効果をあげることができる。また、全体プロセス監視・診断装置を有することにより、処理単位毎の状態変化なのかプロセス全体におよぶ状態変化なのかを同時に判断することができ、プラント全体を見渡したプロセス監視・診断が可能になる。
 このように、上下水プラントなどのプロセス監視において、通常プラント管理者やオペレータが管理している運転管理指標やプラントの性能指標の変化をMSPCによる統計的プロセス監視のフレームワークの中で検出することができ、プラント管理者やオペレータにとって有用な診断情報を提示できる。
 また、上下水プラントなどのプロセスの運転管理において、カギとなるプロセスの異常を、計測変数の微分値(差分値)、計測変数の積分値(積算値)、計測変数同時の積や比率、計測データからの特徴的データの抽出など、よりプロセスの状態変化を捉え安い指標をMSPCに入力することによって、MSPCのフレームワークの中で、状態変化や異常の兆候をより素早く的確に検出することができ、プラント運転管理者にとって有用な気づきのツールを提供することができる。
  2…プロセス計測データ収集・保存部
  3…過去データ(オフラインデータ)抽出部
  4…プロセス監視モデル構築・供給部
  5…現在データ(オンラインデータ)抽出部
  6…プロセス監視・診断部
  41…選択変数決定部
  42…変数変換式決定部
  43…正常データ抽出部
  44…正規化パラメータ決定部
  45…診断モデル構築部
  46…統計量しきい値設定部
  47…状態変化要因寄与量式設定部
  61…変数選択部
  62…変数変換部
  63…アウトライア除去部
  64…データ正規化部
  65…統計量監視部
  66…状態変化検出部
  67…要因項目(変数)推定部

Claims (9)

  1.  対象プロセスに設けられた複数のプロセスセンサーにより所定の周期で計測される前記対象プロセスの状態量や操作量からなる複数の計測変数の時系列データを収集し、保持しておくデータ収集・保存部と、
     前記データ収集・保存に保存された複数の計測変数の過去の時系列データを用いて、プロセス監視モデルを構築し供給するプロセスモデル構築・供給部と、
     前記データ収集・保存部から抽出されたオンラインデータと前記プロセスモデル構築・供給部で構築されたプロセス監視モデルを用いてプロセスの状態を監視し、状態変化や異常兆候を検出するプロセス監視・診断部とを備え、
     前記プロセスモデル構築・供給部は、
     前記データ収集・保存に保存された複数の計測変数の過去の時系列データから、前記プロセス監視モデルを構築するために必要となる全変数あるいは一部の変数を選択する選択変数決定部と、
     前記データ収集・保存部に保存された複数の計測変数から、前記対象プロセスの運転上有用な管理指標やプロセスの状態変化や異常兆候の早期検出に有用な指標を得るための所定の変換式が設定されている変数変換式決定部と、
     前記選択変数決定部によって選択された選択変数と前記変数変換式決定部の式を用いることによって変換された過去の変換変数の時系列データの中からアウトライアなどの異常データを除去した前記選択変数と前記変換変数の正常時系列データに対して(xi(t)-ai)/biによりデータを正規化するためのパラメータaiとbiを決定するデータ正規化パラメータ決定部と、
     前記正規化パラメータ決定部によって決定した正規化パラメータを用いて正規化されたデータに対して、主成分分析(PCA)、主成分回帰(PCR)、部分最小2乗法(PLS)に代表される多変量解析手段の一つを利用して、少なくとも一つ以上の診断用統計量データを生成する式を定義する診断モデル構築部と、
     前記診断モデル構築部で生成する前記一つ以上の診断用統計量データに対する状態の変化を検出するための統計量閾値設定部とを有し、
     前記プロセス監視・診断部は、
     前記選択変数決定部で決定した選択変数に対応する現在データを前記データ収集・保存部から順次取り出す変数選択部と、
     前記変数変換式決定部で決定した変数変換式を用いて前記データ収集・保存部の現在データから現時点の指標を得るための変数変換を行う変数変換部と、
     前記正規化パラメータ決定部で決定した正規化パラメータを用いて選択された変数及び変換された変数のオンラインデータを正規化するデータ正規化部と、
     このデータ正規化部で正規化されたオンラインデータから前記診断モデル構築部で定義された統計量生成式に基づいて統計量データを生成しそれを監視可能な状態とする統計量監視部と、
     統計量監視部で生成されたオンラインの統計量データが前記統計量閾値設定部で決定された閾値を超えた場合にプロセスの状態変化や異常として検出する状態変化検出部とを有する
     ことを特徴とするプロセス監視診断装置。
      ただし、xi:i番目の選択変数/変換変数、ai:i番目の選択変数/変換変数に対するシフトを表す定数(シフトパラメータ)、bi:i番目の選択変数/変換変数に対するスケーリングを表す定数(スケーリングパラメータ)とする。
  2.  前記プロセスモデル構築・供給部は、前記選択変数と前記変換変数の中から状態変化が生じた場合の要因を推定する状態変化要因寄与量式設定部をさらに有し、
     前記プロセス監視・診断部は、前記状態変化検出部でプロセスの状態変化や異常が検出された場合に、その要因となる変数を前記状態変化要因寄与量式設定部で設定された寄与量演算によって推定する要因項目(変数)推定部をさらに有する
     ことを特徴とする請求項1に記載のプロセス監視診断装置。
  3.  変数変換式決定部には、非線形変換(含:積(掛け算)と商(割り算))、微分/差分変換、積分/積算変換、所定周期のデシメーション変換、所定周期のインターポレーション変換、管理指標/性能指標変換の中から少なくとも一つ以上の変換式を含むことを特徴とする請求項1に記載のプロセス監視診断装置。
  4.  前記選択変数決定部および前記変数選択部での処理の前段において、前記データ収集・保存部に収集・保存されているプロセス計測変数に対して、所定時間単位Tで所定の期間Rに亘る時間をシフトしてプロセス計測変数を新たに生成し、元のプロセス計測変数の個数のR/T倍の拡張されたプロセス計測変数を構成しておく処理が入ることを特徴とする請求項1に記載のプロセス監視診断装置。
  5.  前記選択変数決定部および前記変数選択部での処理の前段において、前記データ収集・保存部に収集・保存されているプロセス計測変数に対して、離散ウェーブレット変換による分解・再構成アルゴリズムによって構成されるデジタルフィルタを適用することにより元のプロセスデータをN個に分割し、元のプロセス計測変数の個数のN倍の拡張されたプロセス計測変数を構成しておくことを特徴とする請求項1に記載のプロセス監視診断装置。
  6.  請求項1に記載のデータ収集・保存部、プロセスモデル構築・供給部、及びプロセス監視・診断部から成るプロセス監視診断装置を、処理系列毎や配水ブロック毎などの処理単位毎にM個(M:処理単位の個数)構築し、さらに、このM個の各監視・診断装置から計算される各統計量を入力とするMSPCによる全体のプロセス監視・診断装置を有することを特徴とする階層型のプロセス監視診断装置。
  7.  前記対象プロセスが下水処理プロセス/産業排水プロセスなどの生物学的廃水処理プロセスであり、
     前記変数変換式決定部による変換式として、汚泥滞留時間(SRT)、好気槽汚泥滞留時間(A-SRT)、水理学的滞留時間(HRT)、Log(SRT)/水温、Log(A-SRT)/水温、余剰汚泥発生量、有機物(COD and/or BOD)負荷量、窒素負荷量、リン負荷量、有機物(BOD and/or COD)-SS負荷、水面積負荷、リン負荷/窒素負荷、有機物負荷/窒素負荷、有機物負荷/リン負荷、pH/ORP、DOの変化率(微分値)、風量の変化率(微分値)、アンモニア濃度変化率、硝酸濃度変化率、リン濃度変化率、pHの変化率、ORPの変化率、汚泥界面の変化率、水温の変化率、所定期間の雨量積算値(積分値)、平日/休日毎の計測データ、のいずれか一つ以上の変換式を有する
     ことを特徴とする請求項1乃至請求項5のいずれかに記載のプロセス監視診断装置。
  8.  対象プロセスが汚泥処理プロセスであり、
     前記変数変換式決定部による変換式として、濃縮槽余剰汚泥混入率、濃縮槽固形物回収率、濃縮槽HRT、濃縮槽汚泥固形物滞留時間、濃縮槽汚泥界面変化率、遠心濃縮機遠心効果、遠心濃縮機スクリューコンベヤとボウル回転数差速、加圧・常圧濃縮機気固比、加圧・常圧濃縮機フロス厚変化率、加圧・常圧濃縮機浮上汚泥掻きとり頻度、消化槽消化率、消化槽消化汚泥量、消化槽消化日数、消化槽消化日数/消化温度、ガス発生率、メタンガス組成比率、CO2組成比率、硫化水素組成比率、消化槽固形物負荷、消化槽有機物負荷、消化槽有機物負荷/窒素負荷、pH/ORP、pH変化率、ORP変化率、消化槽脱離液SS変化率、温度変化率、ガス発生量変化率、脱水機ろ過流量変化率、のいずれか一つ以上の変換式を有する
     ことを特徴とする請求項1乃至請求項5のいずれかに記載のプロセス監視診断装置。
  9.  対象プロセスが浄水・給配水プロセスであり、
     前記変数変換式決定部による変換式として、汚泥量/凝集剤注入量、塩素要求量/次亜塩素酸注入量、予め定義した夜間時間帯の配水量、予め定義した所定時間毎の配水量あるいは給水量、あるいは、オンライン計測データから計測されるパフォーマンスインディケータ(PI)である、原水有効利用率(%)、カビ臭から見たおいしい水達成率(%)、塩素臭から見たおいしい水達成率(%)、総トリハロメタン濃度水質基準比(%)、有機物(TOC)濃度水質基準比(%)、活性炭投入率(%)、薬品備蓄日数(日)、燃料備蓄日数(日)、供給単価(円/立方メートル)、給水原価(円/立方メートル)、有収率(%)、配水量1立方メートル当たり電力消費量(kWh/立方メートル)、配水量1立方メートル当たり消費エネルギ(MJ/立方メートル)、再生可能エネルギ利用率(%)、浄水発生土の有効利用率(%)、配水量1立方メートル当たり二酸化炭素(CO2)排出量(g・CO2/立方メートル)、地下水率(%)、ポンプ平均稼働率(%)、漏水率(%)、給水件数当たり漏水量(立方メートル/年/件)、のいずれか一つ以上の変換式を有する
     ことを特徴とする請求項1乃至請求項5のいずれかに記載のプロセス監視診断装置。
PCT/JP2011/007313 2010-12-28 2011-12-27 プロセス監視診断装置 WO2012090492A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180062681.9A CN103534658B (zh) 2010-12-28 2011-12-27 工序监视诊断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-293048 2010-12-28
JP2010293048A JP5793299B2 (ja) 2010-12-28 2010-12-28 プロセス監視診断装置

Publications (1)

Publication Number Publication Date
WO2012090492A1 true WO2012090492A1 (ja) 2012-07-05

Family

ID=46382624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007313 WO2012090492A1 (ja) 2010-12-28 2011-12-27 プロセス監視診断装置

Country Status (3)

Country Link
JP (1) JP5793299B2 (ja)
CN (1) CN103534658B (ja)
WO (1) WO2012090492A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152933A (ja) * 2014-02-10 2015-08-24 オムロン株式会社 監視装置及び監視方法
EP3315465A1 (en) * 2016-10-28 2018-05-02 Carrier Corporation Method and system for dynamically managing waste water treatment process for optimizing power consumption
CN112016800A (zh) * 2020-07-17 2020-12-01 北京天泽智云科技有限公司 一种基于有效性指标的特征选择方法与系统
CN113239187A (zh) * 2021-04-13 2021-08-10 鹏城实验室 一种基于多层级工业结构知识块划分的监测方法
CN115536088A (zh) * 2022-09-28 2022-12-30 南京晓庄学院 一种基于数据分析的污水生化处理流程优化管控系统
CN117342689A (zh) * 2023-12-06 2024-01-05 安徽新宇环保科技股份有限公司 一种污水厂智能脱氮方法及系统
CN117725542A (zh) * 2024-02-18 2024-03-19 北京林业大学 一种杨树根系微生物状态实时监测方法
CN117964024A (zh) * 2024-04-02 2024-05-03 车泊喜智能科技(山东)有限公司 一种基于人工智能的洗车废水净化处理控制系统

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939439B2 (ja) * 2012-08-09 2016-06-22 株式会社Ihi 異常診断装置
JP5996384B2 (ja) * 2012-11-09 2016-09-21 株式会社東芝 プロセス監視診断装置、プロセス監視診断プログラム
JP6214889B2 (ja) * 2013-03-14 2017-10-18 株式会社東芝 プロセス監視診断装置
KR101581425B1 (ko) * 2014-09-15 2015-12-30 한국외국어대학교 연구산학협력단 제품 제조 공정에서의 이상 감지 방법, 장치 및 기록매체
JP6328036B2 (ja) * 2014-11-28 2018-05-23 三菱電機ビルテクノサービス株式会社 計量メータの状態変化検出装置及びプログラム
JP6530182B2 (ja) * 2014-12-08 2019-06-12 株式会社東芝 プラント監視装置、プラント監視方法、およびプログラム
FI130301B (en) * 2015-01-30 2023-06-09 Metsae Fibre Oy Monitoring of the chemical load on waste water in an industrial process
JP6733164B2 (ja) * 2015-02-26 2020-07-29 富士電機株式会社 プロセス監視装置、プロセス監視方法及びプログラム
JP2016192000A (ja) * 2015-03-31 2016-11-10 横河電機株式会社 業務支援装置及び業務支援方法
JP6501593B2 (ja) * 2015-04-03 2019-04-17 住友化学株式会社 予測ルール生成システム、予測システム、予測ルール生成方法及び予測方法
EP3112959B1 (en) * 2015-06-29 2021-12-22 SUEZ Groupe Method for detecting anomalies in a water distribution system
KR102436629B1 (ko) * 2016-01-28 2022-08-25 한화정밀기계 주식회사 부품 실장기의 공정 라인 오류의 원인을 자동으로 식별하는 방법, 그리고 이에 적용되는 장치
JP6613175B2 (ja) * 2016-03-03 2019-11-27 株式会社日立製作所 異常検出装置、系統安定度監視装置、及びそのシステム
JP6620056B2 (ja) * 2016-03-31 2019-12-11 三菱日立パワーシステムズ株式会社 機器の異常診断方法及び機器の異常診断装置
SG11201808401QA (en) * 2016-04-04 2018-10-30 Boehringer Ingelheim Rcv Gmbh Real time monitoring of product purification
WO2017184073A1 (en) * 2016-04-18 2017-10-26 Sembcorp Industries Ltd System and method for wastewater treatment process control
JP6655847B2 (ja) * 2016-05-26 2020-02-26 メタウォーター株式会社 最終沈澱池からの返送汚泥量・余剰汚泥量の調節方法
EP3575908B1 (en) * 2017-01-25 2021-08-04 NTN Corporation State monitoring method and state monitoring apparatus
JP7019364B2 (ja) * 2017-09-29 2022-02-15 エヌ・ティ・ティ・コミュニケーションズ株式会社 監視装置、監視方法、監視プログラム、表示装置、表示方法および表示プログラム
US11275975B2 (en) * 2017-10-05 2022-03-15 Applied Materials, Inc. Fault detection classification
JP7014686B2 (ja) * 2018-08-06 2022-02-01 三菱パワー株式会社 性能評価装置、性能評価方法及び性能影響度出力方法
CN112955839B (zh) * 2018-10-30 2024-08-20 国立研究开发法人宇宙航空研究开发机构 异常检测装置、异常检测方法和程序
CN109524069B (zh) * 2018-11-09 2021-09-10 南京医渡云医学技术有限公司 医疗数据处理方法、装置、电子设备和存储介质
JP6933630B2 (ja) * 2018-12-06 2021-09-08 ファナック株式会社 処理時間監視装置
TWI734330B (zh) 2019-01-31 2021-07-21 日商住友重機械工業股份有限公司 支援裝置、支援方法及記錄媒體
CN110529746B (zh) * 2019-09-05 2020-12-25 北京化工大学 管道泄漏的检测方法、装置和设备
WO2021059302A2 (en) 2019-09-27 2021-04-01 Tata Consultancy Services Limited Method and system for diagnosing anomaly in a manufacturing plant
WO2022185771A1 (ja) * 2021-03-04 2022-09-09 三菱ケミカルエンジニアリング株式会社 診断装置、診断方法、及び診断プログラム
KR102425177B1 (ko) * 2022-02-18 2022-07-27 주식회사 유앤유 하수처리시설을 관리하기 위한 방법 및 이를 수행하는 스마트 중앙제어 분석시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241121A (ja) * 1995-03-03 1996-09-17 Toshiba Corp プラント異常検知装置
JP2004303007A (ja) * 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp プロセス監視方法
JP2007065883A (ja) * 2005-08-30 2007-03-15 Toshiba Corp プロセス監視装置及びその方法
JP2009199545A (ja) * 2008-02-25 2009-09-03 Toshiba Corp 遠隔監視システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257190A (ja) * 2006-03-22 2007-10-04 Toshiba Corp 総合監視診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241121A (ja) * 1995-03-03 1996-09-17 Toshiba Corp プラント異常検知装置
JP2004303007A (ja) * 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp プロセス監視方法
JP2007065883A (ja) * 2005-08-30 2007-03-15 Toshiba Corp プロセス監視装置及びその方法
JP2009199545A (ja) * 2008-02-25 2009-09-03 Toshiba Corp 遠隔監視システム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152933A (ja) * 2014-02-10 2015-08-24 オムロン株式会社 監視装置及び監視方法
EP3106949A4 (en) * 2014-02-10 2017-09-27 Omron Corporation Monitoring device and monitoring method
US10521193B2 (en) 2014-02-10 2019-12-31 Omron Corporation Monitoring system and monitoring method
EP3315465A1 (en) * 2016-10-28 2018-05-02 Carrier Corporation Method and system for dynamically managing waste water treatment process for optimizing power consumption
CN112016800B (zh) * 2020-07-17 2024-03-08 北京天泽智云科技有限公司 一种基于有效性指标的特征选择方法与系统
CN112016800A (zh) * 2020-07-17 2020-12-01 北京天泽智云科技有限公司 一种基于有效性指标的特征选择方法与系统
CN113239187A (zh) * 2021-04-13 2021-08-10 鹏城实验室 一种基于多层级工业结构知识块划分的监测方法
CN113239187B (zh) * 2021-04-13 2024-05-14 鹏城实验室 一种基于多层级工业结构知识块划分的监测方法
CN115536088A (zh) * 2022-09-28 2022-12-30 南京晓庄学院 一种基于数据分析的污水生化处理流程优化管控系统
CN117342689A (zh) * 2023-12-06 2024-01-05 安徽新宇环保科技股份有限公司 一种污水厂智能脱氮方法及系统
CN117342689B (zh) * 2023-12-06 2024-02-02 安徽新宇环保科技股份有限公司 一种污水厂智能脱氮方法及系统
CN117725542A (zh) * 2024-02-18 2024-03-19 北京林业大学 一种杨树根系微生物状态实时监测方法
CN117725542B (zh) * 2024-02-18 2024-04-12 北京林业大学 一种杨树根系微生物状态实时监测方法
CN117964024A (zh) * 2024-04-02 2024-05-03 车泊喜智能科技(山东)有限公司 一种基于人工智能的洗车废水净化处理控制系统

Also Published As

Publication number Publication date
JP2012141712A (ja) 2012-07-26
JP5793299B2 (ja) 2015-10-14
CN103534658A (zh) 2014-01-22
CN103534658B (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
JP5793299B2 (ja) プロセス監視診断装置
Asadi et al. Wastewater treatment aeration process optimization: A data mining approach
Ly et al. Exploring potential machine learning application based on big data for prediction of wastewater quality from different full-scale wastewater treatment plants
Duran-Ros et al. Effect of filter, emitter and location on clogging when using effluents
Vasilaki et al. A knowledge discovery framework to predict the N2O emissions in the wastewater sector
Yoo et al. Multi‐model statistical process monitoring and diagnosis of a sequencing batch reactor
JP6214889B2 (ja) プロセス監視診断装置
Guerra et al. Impact of operating conditions on permeate flux and process economics for cross flow ceramic membrane ultrafiltration of surface water
JP2012155361A (ja) プロセス監視装置
JP5859866B2 (ja) 監視対象量予測方法及び監視対象量予測装置
Lin et al. UNISON decision framework for hybrid optimization of wastewater treatment and recycle for Industry 3.5 and cleaner semiconductor manufacturing
Guerrini et al. Identifying the performance drivers of wastewater treatment plants through conditional order-m efficiency analysis
Misrol et al. An optimal resource recovery of biogas, water regeneration, and reuse network integrating domestic and industrial sources
JP2007156653A (ja) 水処理プラントの運転管理方法および装置
JP5193884B2 (ja) 上水施設の監視制御システム
Klanderman et al. Case studies in real-time fault isolation in a decentralized wastewater treatment facility
JP2024001315A (ja) プロセス監視装置、プロセス監視方法及びプログラム
WO2013160779A1 (en) Method and system for treating waste material
AU2020103521A4 (en) OMAI- Waste Treatment Systems: AI- Based Programming for Operation and Maintenance of Waste Treatment Systems
JP2003245653A (ja) 処理装置の運転支援方法、水処理装置の運転支援方法及びその装置
Olsson The potential of control and monitoring
JP4141420B2 (ja) 水処理設備の管理装置と水処理設備の管理方法及び管理のためのプログラムが記憶された記録媒体
JP4655447B2 (ja) 水処理装置、水処理方法及び水処理プログラム
JP4088075B2 (ja) 水処理プロセスハイブリッド水質計測装置及びこれを有する水処理システム
JP2005074418A (ja) 淨化水供給施設の監視及び制御ネットワークシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852261

Country of ref document: EP

Kind code of ref document: A1