JP2015152933A - 監視装置及び監視方法 - Google Patents

監視装置及び監視方法 Download PDF

Info

Publication number
JP2015152933A
JP2015152933A JP2014023247A JP2014023247A JP2015152933A JP 2015152933 A JP2015152933 A JP 2015152933A JP 2014023247 A JP2014023247 A JP 2014023247A JP 2014023247 A JP2014023247 A JP 2014023247A JP 2015152933 A JP2015152933 A JP 2015152933A
Authority
JP
Japan
Prior art keywords
series data
time
monitoring
time series
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014023247A
Other languages
English (en)
Other versions
JP6364800B2 (ja
Inventor
博 田▲崎▼
Hiroshi Tazaki
博 田▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2014023247A priority Critical patent/JP6364800B2/ja
Priority to EP15746639.2A priority patent/EP3106949B1/en
Priority to US15/114,574 priority patent/US10521193B2/en
Priority to CN201580006484.3A priority patent/CN105980941A/zh
Priority to PCT/JP2015/051559 priority patent/WO2015118946A1/ja
Publication of JP2015152933A publication Critical patent/JP2015152933A/ja
Application granted granted Critical
Publication of JP6364800B2 publication Critical patent/JP6364800B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/06Arrangements for sorting, selecting, merging, or comparing data on individual record carriers
    • G06F7/20Comparing separate sets of record carriers arranged in the same sequence to determine whether at least some of the data in one set is identical with that in the other set or sets
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/901Indexing; Data structures therefor; Storage structures
    • G06F16/9024Graphs; Linked lists
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2223/00Indexing scheme associated with group G05B23/00
    • G05B2223/02Indirect monitoring, e.g. monitoring production to detect faults of a system

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Databases & Information Systems (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Automation & Control Theory (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • General Factory Administration (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】監視対象の状態監視を容易に実現でき、異常又はその予兆となる状態変化を適切に検出可能な技術を提供する。【解決手段】監視装置が、監視対象の稼働実績を表す複数の指標それぞれの時系列データを取得する稼働実績取得部と、前記複数の指標それぞれの時系列データをもとに、同じ時点の複数の指標の値を合成して総合指標の時系列データを生成する総合指標生成部と、前記総合指標の時系列データを分析して、前記総合指標の値に有意な変化が現れる点を、前記監視対象の状態の変化点として検出する変化点検出部と、を有する。【選択図】図1

Description

本発明は、監視対象の状態を監視し、異常を検出するための技術に関する。
従来より、多数のセンサから得られるデータをモニタし、生産設備の異常検知やその原因特定などを行う監視装置が提案されている(特許文献1〜3参照)。しかし、従来の監視装置は、監視対象にセンサを設置することが前提のため、監視対象の構成に特化した設計にならざるを得ないし、また既存設備に導入する際に設備の改造などのコストが発生するという問題がある。さらに、多数のセンサから収集されるデータを異常検知やメンテナンスに役立てるには、監視対象の構成やセンシングに関する専門的知識が必要とされる。
特開2013−088828号公報 特開2011−059790号公報 特開2009−294146号公報
本発明は上記実情に鑑みなされたものであり、監視対象の状態監視を容易に実現でき、異常又はその予兆となる状態変化を適切に検出可能な技術を提供することを目的とする。
請求項1に係る監視装置は、監視対象の稼働実績を表す複数の指標それぞれの時系列データを取得する稼働実績取得部と、前記複数の指標それぞれの時系列データをもとに、同じ時点の複数の指標の値を合成して総合指標の時系列データを生成する総合指標生成部と、前記総合指標の時系列データを分析して、前記総合指標の値に有意な変化が現れる点を、前記監視対象の状態の変化点として検出する変化点検出部と、を有することを特徴とする。
「監視対象の稼働実績」とは、監視対象の内部動作ではなく、監視対象の外側より観測し得る監視対象のアウトプット(出力、成果)を意味する。例えば、監視対象が生産設備の場合、生産設備の稼働実績は、生産設備の稼働履歴(稼働及び停止の時間的な記録など)、品質履歴(良品と不良品の数、良品率など)、生産計画(操業開始〜終了の時刻、計画停止の開始〜終了の時刻など)などから観測でき、稼働実績を表す指標としては、例えば、時間稼働率、性能稼働率、良品率などを用いることができる。
請求項1に係る監視装置によれば、監視対象の稼働実績を観測するだけで、監視対象の状態監視を実現できる。また、複数の指標を合成した総合指標を用いて変化点検出を行うので、個々の指標だけでは評価しづらい監視対象の状態変化を適切に検出することが可能となる。しかも、センサなどの観測系を監視対象内に設置することが必須でなくなるため、監視装置の汎用性・適用性・拡張性が高くなるという利点もある。
請求項2に係る監視装置は、前記変化点検出部により前記監視対象の状態の変化点が検出された場合に、前記複数の指標の時系列データと前記総合指標の時系列データを分析して、前記複数の指標のうちから、前記変化点における前記総合指標の変化に対する寄与度が大きい1以上の指標を、前記監視対象の状態変化の原因に関連する注目指標として選択する要因分析部をさらに有することを特徴とする。請求項2に係る監視装置によれば、時
系列データを分析し、総合指標の変化に対する寄与度の大きさで注目指標の特定を行うことで、個々の指標だけでは判定しづらい異常の原因を容易に且つ適切に選び出すことができる。
請求項3に係る監視装置は、前記注目指標に関する情報を出力する情報提供部をさらに有することを特徴とする。請求項3に係る監視装置によれば、監視対象の状態変化の原因を特定するために有用な情報をユーザに提供することができる。よって、専門的知識をもたない者でも問題の把握やその対処を容易に実施できる。
請求項4に係る監視装置は、前記情報提供部は、前記注目指標の時系列データのグラフを出力することを特徴とする。請求項4に係る監視装置によれば、監視対象の状態変化の原因を特定するために有用な情報をユーザに提供することができる。よって、専門的知識をもたない者でも問題の把握やその対処を容易に実施できる。
請求項5に係る監視装置は、前記要因分析部は、前記注目指標の時系列データの変動傾向を分析し、その変動傾向に基づき前記監視対象の状態変化の原因として想定される要因事象を推定することを特徴とする。請求項5に係る監視装置によれば、監視対象の状態変化の原因を自動で特定することができる。
請求項6に係る監視装置は、前記情報提供部は、前記推定された要因事象に関する情報を出力することを特徴とする。請求項6に係る監視装置によれば、監視対象の状態変化の原因を特定するために有用な情報をユーザに提供することができる。よって、専門的知識をもたない者でも問題の把握やその対処を容易に実施できる。
請求項7に係る監視装置は、前記要因事象への対処のための処理を実行する処理実行部をさらに有することを特徴とする。請求項7に係る監視装置によれば、監視対象に生じた問題を自動で解決することが可能となる。
請求項8に係る監視方法は、コンピュータが、監視対象の稼働実績を表す複数の指標それぞれの時系列データを取得する稼働実績取得ステップと、コンピュータが、前記複数の指標それぞれの時系列データをもとに、同じ時点の複数の指標の値を合成して総合指標の時系列データを生成する総合指標生成ステップと、コンピュータが、前記総合指標の時系列データを分析して、前記総合指標の値に有意な変化が現れる点を、前記監視対象の状態の変化点として検出する変化点検出ステップと、を有することを特徴とする。
請求項8に係る監視方法によれば、監視対象の稼働実績を観測するだけで、監視対象の状態監視を実現できる。また、複数の指標を合成した総合指標を用いて変化点検出を行うので、個々の指標だけでは評価しづらい監視対象の状態変化を適切に検出することが可能となる。しかも、センサなどの観測系を監視対象内に設置することが必須でなくなるという利点もある。
請求項9に係るプログラムは、請求項8に記載の監視方法の各ステップをコンピュータに実行させることを特徴とする。
本発明によれば、監視対象の状態監視を容易に実現でき、異常又はその予兆となる状態変化を適切に検出することができる。
従来の一般的な監視装置と本実施形態の監視装置とのアプローチの違いを説明する図。 監視システムの機能ブロック図。 稼働履歴データと、品質履歴データと、生産計画情報の一例。 稼働実績取得部及び総合指標生成部の処理フローを示すフローチャート。 稼働実績指標と総合指標の時系列データの一例。 変化点検出部及び異常要因分析部の処理フローを示すフローチャート。 分析結果記憶部に蓄積された分析結果のデータの一例。 要因事象テーブル記憶部に格納されている要因事象テーブルの一例。 情報提供部により出力される情報出力画面の一例。 情報提供部により出力される情報出力画面の一例。 情報提供部により出力される情報出力画面の一例。
本発明の実施形態に係る監視装置は、監視対象の状態を常時監視して、異常又はその予兆の検知、異常の要因分析などを行う技術に関するものである。本実施形態の監視装置の特徴の一つは、監視対象の稼働実績を表す複数の指標の時系列データを、状態監視や異常・予兆の検知に利用する点にある。この特徴に関し、従来の一般的な監視装置と本実施形態の監視装置とのアプローチの違いを図1に模式的に示す。
従来の監視装置では、図1(B)のように、監視対象に対し各種のセンサを設置し、監視対象それ自体の動作に関わる物理量(センシングデータ)をモニタするという手法が採られるのが一般的である。例えば、温度センサによってヒータや温調制御の不具合を検知したり、電圧の変化をモニタしてアクチュエータの過負荷を検知したりと、目的に応じて様々な手段が存在する。この従来手法は、監視対象の各部の動作の異常を直接的に検知できるという利点がある反面、次のような課題がある。第一は、監視装置の汎用性の低さ(適用範囲の狭さ)である。監視対象の構成や動作、何をセンシングするかといった条件に応じて、センサの種類、設置箇所、センシングデータの処理方法、異常検知のロジックなどがまったく違ってくるため、監視対象に合わせて監視装置を設計せざるを得ないからである。第二は、既存設備に対する適用性・拡張性の低さである。例えば、既存の製造設備に対して新たな監視装置を導入したいと希望しても、センサの取り付けが物理的に困難であったり、既存設備の改造に相当のコストを要する場合には、導入が難しい。第三は、センシングに関する専門的知識が要求される点である。すなわち、個々のセンサが監視対象内のどの部分のどのような物理量を観測しているのか、また、個々のセンシングデータの値がどのような意味を表すのかを正しく理解していなければ、異常の要因推定や適切な対処をとることができない。
これに対し、本実施形態の監視装置では、図1(A)のように、監視対象の稼働実績をモニタし分析することで、監視対象の内部的な異常又はその予兆を推測する。この手法の利点は、第一に、稼働実績を監視対象の外側より観測するだけでよいので、従来手法のように観測系を監視対象内に設置することが必須でない点である。よって、あらゆる監視対象に適用可能な高い汎用性・柔軟性を有するとともに、既存設備に対する後付けや拡張も容易である(なお、センサの設置は必須でないが、必要に応じてセンサを補助的に設置しても構わない。)。第二に、センシングに関する専門的知識が要求されないという利点もある。
以下、本発明の好ましい実施形態として、FA(Factory Automation)の生産設備の状態監視を行う監視システムを例にあげ、具体的な構成の一例について説明する。
<システムの構成>
生産現場においては、生産に関わる各種設備を安全かつ正常に稼働させるため、設備の
状態を常に監視し、必要に応じて適切な対処をとることで、故障、事故、その他の不具合の発生を未然に防ぐ作業が不可欠である(このような活動は予防保全と呼ばれる)。本実施形態の監視システムは、生産設備の異常又はその予兆の検知、異常の要因分析、分析結果の提示などのツールを提供し、予防保全の適切な実施を支援するためのシステムである。
図2に、監視システムの機能ブロックを示す。監視システム1は、稼働時間取得部10、品質情報取得部11、生産計画情報取得部12、稼働実績取得部13、総合指標生成部14、変化点検出部15、異常要因分析部16、情報提供部17などの機能を有している。また、監視システム1は、データ記憶手段として、稼働履歴記憶部20、品質履歴記憶部21、生産計画記憶部22、稼働実績記憶部23、総合指標記憶部24、リスク記憶部25、分析結果記憶部26、要因事象テーブル記憶部27などを有している。
監視システム1は、CPU(中央演算処理装置)、主記憶装置(メモリ)、補助記憶装置(ハードディスク、半導体ディスクなど)、入力装置(キーボード、マウス、タッチパネルなど)、表示装置(液晶モニタなど)、通信IFを有する汎用のコンピュータシステムにより構成可能である。図2に示した各機能ブロックは、CPUが補助記憶装置に格納されたプログラムを主記憶装置にロードし実行することにより実現されるものである。各記憶部20〜26は補助記憶装置のなかに設けられる。なお、本実施形態では一台のコンピュータにより監視システムを構成した例を示したが、複数台のコンピュータで構成してもよいし、機能ブロックや記憶部のうちの全部又は一部をネットワーク上のサーバが担当する構成でもよい。いわゆるクラウドコンピューティングやグリッドコンピューティングの形態を採用することもできる。
稼働時間取得部10は、生産設備2から稼働時間情報を取得する機能である。稼働時間情報とは、生産設備2の稼働及び停止の時間的な記録である。例えば、稼働時間取得部10は、所定の時間間隔(数秒から数十秒に一回など)で生産設備2のステイタス(稼働中か停止中か)を取得してもよいし、稼働の開始・終了や異常停止・再開などのステイタスが切り替わるタイミングでステイタスを取得してもよい。取得した稼働時間情報は、稼働履歴記憶部20に格納される。図3(A)は、稼働履歴記憶部20に格納された稼働履歴データの一例である。この例では、日時(ステイタスが切り替わった日時)とステイタスとを対応付けたデータが時系列に記録されている。
品質情報取得部11は、生産設備2から品質情報を取得する機能である。品質情報とは、生産設備2で生産された製品の品質に関する記録である。例えば、製品毎に良品か不良品かを記録した情報でもよいし、単位時間当たりの良品と不良品の数又は良品率を記録した情報でもよい。取得した品質情報は、品質履歴記憶部21に格納される。図3(B)は、品質履歴記憶部21に格納された品質履歴データの一例である。この例では、分単位の良品数と不良品数が時系列に記録されている。
生産計画情報取得部12は、生産設備2から生産計画情報を取得する機能である。生産計画情報とは、生産設備2の生産計画、具体的には、日ごとの操業開始〜終了の時刻、計画停止の開始〜終了の時刻を記録した情報である。取得した生産計画情報は、生産計画記憶部22に格納される。図3(C)は、生産計画記憶部22に格納された生産計画情報の一例である。
稼働実績取得部13は、稼働履歴、品質履歴、及び生産計画をもとに、生産設備2の稼働実績の時系列データを生成する機能である。本実施形態では、稼働実績を表す指標として、「時間稼働率」、「性能稼働率」、「良品率」の三つの指標を用いる。時間稼働率は、生産設備2が正常に稼働した時間の割合を表す指標であり、性能稼働率は、生産設備2
が実際に生産を行った時間の割合を表す指標であり、良品率は、生産設備2の良品の割合を表す指標である。これらの時系列データは稼働実績記憶部23に格納される。
総合指標生成部14は、稼働実績を表す三つの指標の時系列データを合成して総合指標である「設備総合効率」の時系列データを生成する機能である。設備総合効率の時系列データは総合指標記憶部24に格納される。
変化点検出部15は、設備総合効率の時系列データを分析して、設備総合効率の値に有意な変化が現れる点を、生産設備2の状態の変化点として検出する機能である。検出した変化点の情報(トリガ情報)は、異常要因分析部16に引き渡される。
異常要因分析部16は、生産設備2の状態の変化点が検出された場合に、直近の所定期間における各指標の時系列データを分析して、時間稼働率、性能稼働率、良品率の三つの指標のうちから、上記変化点における設備総合効率の変化に対する寄与度が大きい1以上の指標を注目指標として選択する機能である。この注目指標が、生産設備2の状態変化の要因への関連性が高い指標である。異常要因分析部16の分析結果は分析結果記憶部26に格納される。
情報提供部17は、予防保全に役立つ情報をユーザに提示する機能である。情報提供部17は、監視システム1が備える表示装置に情報を表示してもよいし、情報を作業者端末や生産設備2などの外部装置に送信してもよい。
<監視処理>
次に、監視システム1の具体的な動作について説明する。
(1)稼働実績及び設備総合効率の時系列データの生成
図4に、稼働実績取得部13及び総合指標生成部14の処理フローの一例を示す。図4の処理は、時刻tにおける稼働実績(時間稼働率、性能稼働率、良品率)と設備総合効率の値を計算する処理である。この処理を所定の時間間隔Δt毎に実行することで、ステップ幅Δtの時系列データが生成される。Δtの値は、要求されるモニタリング間隔(生産設備2の状態をどのくらいの頻度で監視すべきか)に応じて設定すればよい。本実施形態では、Δt=10分に設定する。また、時刻tにおける稼働実績と設備総合効率の値は、時刻tの直近の所定期間p分のデータ(つまり、時刻t−pから時刻pまでのデータ)を用いて計算される。pの値は任意であるが、pの値を小さくすると時系列データにノイズが多くなるため変化点の誤検出が増え、pの値を大きくとると時系列データが平滑化され変化点検出の感度が悪くなるおそれがあるので、誤検出と感度のバランスに基づいて適当な値に設定するとよい。本実施形態では、p=60分に設定する。以降の説明では、単位期間pと呼ぶ。
まず、稼働実績取得部13が、稼働履歴記憶部20、品質履歴記憶部21、生産計画記憶部22からそれぞれ、単位期間p分の稼働履歴、単位期間p分の品質履歴、今日の生産計画のデータを読み込む(ステップS40)。そして、稼働実績取得部13が、これらのデータをもとに、時刻tの時間稼働率、性能稼働率、及び良品率を計算する(ステップS41〜S43)。
本実施形態では、それぞれ以下のように定義する。
時間稼働率=稼働時間÷操業時間
性能稼働率=正味稼働時間÷操業時間
良品率=良品数÷生産数
ただし、単位期間p内のデータを用いるため、
操業時間=単位期間p−単位期間p内の計画停止時間
稼働時間=操業時間−単位期間p内の異常停止時間
正味稼働時間=稼働時間−単位期間p内の手直し停止時間
生産数=単位期間p内に生産された総数
良品数=生産数−単位期間p内に発生した不良品の数
とする。
なお、異常停止とは、生産設備2の異常による停止をいい、原因究明、修理、交換などのため長時間の停止を伴うものである。また、手直し停止とは、生産設備2の正常稼働中の停止をいい、ワークの除去やリセットなど短時間の簡単な処置で再開するものをさす(チョコ停とも呼ばれる)。生産設備2から取得する稼働時間情報のステイタスとして、異常停止か手直し停止かの情報を含めてもよいが、本実施形態では単純に停止時間の長さで異常停止(5分以上の停止)か手直し停止(5分未満の停止)かを区別する。
時間稼働率、性能稼働率、良品率はいずれも0以上1以下の値をとり、1に近いほど良い値である。計算された時間稼働率、性能稼働率、良品率の値は、時刻t、生産設備2のIDとともに、稼働実績記憶部23内の時系列データに追加される(ステップS44)。図5(A)に、稼働実績記憶部23内に蓄積された稼働実績指標の時系列データの一例を示す。
続いて、総合指標生成部14が、稼働実績記憶部23から時刻tの時間稼働率、性能稼働率、良品率のデータを読み込む(ステップS45)。そして、下記式により設備総合効率の値を求める(ステップS46)。

設備総合効率=時間稼働率×性能稼働率×良品率
総合指標である設備総合効率も0以上1以下の値をとり、1に近いほど良い値である。計算された設備総合効率の値は、時刻t、生産設備2のIDとともに、総合指標記憶部24内の時系列データに追加される(ステップS47)。図5(B)に、総合指標記憶部24内に蓄積された総合指標の時系列データの一例を示す。
(2)変化点検出及び要因分析
図6に、変化点検出部15及び異常要因分析部16の処理フローの一例を示す。図6の処理は、設備総合効率の時系列データをもとに時刻tにおける状態変化を検出し、検出した状態変化の要因を分析する処理である。図6の処理は、設備総合効率の時系列データが更新されるたびに実行するとよい(本実施形態の場合は、モニタリング間隔Δt=10分)。
まず、変化点検出部15が、総合指標記憶部24から設備総合効率の時系列データを読み込む(ステップS60)。変化点検出には、時刻t以前の全てのデータを用いてもよいし、所定期間分のデータ(例えば数日分、数週間分など)や当日のデータなど一部のデータだけを用いてもよい。
変化点検出部15は、時系列データを分析して、時刻tより前の設備総合効率の値に対する、時刻tの設備総合効率の値の変化度合を表すスコアを計算する(ステップS61)。時系列データから変化点を検出するアルゴリズムには様々なものが提案されており、ここではいずれのアルゴリズムを用いてもよい。例えば、時刻tより前の時系列データの平均値と時刻tの値との差(絶対値)をスコアとしてもよい。また、t検定などの統計的検定手法や、データ発生の確率モデルとしてサンプリング法を用いたベイズ的変化点検出法
などを用いて、時刻tの値の出現確率を計算し、これをスコアとしてもよい。また、ARモデルなどの時系列モデルを用いて過去データから求めた時刻tの推定値と実際の値との差(絶対値)をスコアとしてもよい。また、設備総合効率の時系列データを周波数分解し、所定の周波数成分の強度をスコアとして用いてもよい。
このスコアは、生産設備2に異常が発生するリスクの大きさを表す指標ととらえることができる。ステップS61で求めた時刻tのスコアは、リスク情報として、リスク記憶部25に記録される(ステップS62)。
続いて、変化点検出部15は、ステップS61で求めたスコアを閾値と比較し、スコアが閾値を超えている場合に時刻tを「変化点」と判定する(ステップS63)。スコアが閾値を超えている場合、つまり、設備総合効率の時系列データに有意な変化が認められる場合には、生産設備2に何らかの異常が生じた又は生じようとしている蓋然性が高い。よって、ステップS63にて変化点が検出されたら、これをトリガとして、異常要因の分析へと進む。
異常要因分析部16は、総合指標記憶部24から設備総合効率の時系列データを読み込むとともに、稼働実績記憶部23から時間稼働率、性能稼働率、良品率それぞれの時系列データを読み込む(ステップS64)。異常要因の分析には、トリガ(時刻t)以前の全ての時系列データを用いてもよいし、所定期間分のデータ(例えば、数週分、数月分など)だけを用いてもよい。
次に、異常要因分析部16は、設備総合効率、時間稼働率、性能稼働率、良品率の時系列データを分析し、時間稼働率、性能稼働率、良品率の三つの指標のうちから、トリガ(時刻t)における設備総合効率の変化に対する寄与度が大きい指標を注目指標として選択する(ステップS65)。このとき、寄与度の最も大きい一つの指標だけを注目指標に選んでもよいし、寄与度が所定の閾値よりも大きい複数の指標を注目指標に選んでもよい。
各指標の寄与度の評価にはどのようなアルゴリズムを用いてもよい。一例を挙げると、回帰分析によって設備総合効率に対する各指標の偏回帰係数を計算し、偏回帰係数の絶対値を各指標の設備総合効率に対する寄与度としてもよい。あるいは、設備総合効率の時系列データを周波数分解したものと指標の時系列データを周波数分解したものとの内積を当該指標の寄与度と扱うこともできる。なお、指標ごとに寄与度を評価するのではなく、複数の指標の組ごとに寄与度を評価することもできる。例えば、複数の指標の時系列データを合成した合成時系列データを作成し、設備総合効率の時系列データと合成時系列データを用いて、合成指標の偏回帰係数や内積を計算すればよい。
続いて、異常要因分析部16は、抽出された注目指標の時系列データをさらに分析し、トリガ(時刻t)における注目指標の変化が、「トレンド」、「突発」、「周期」のいずれの変動傾向をもつものかを判定する(ステップS66)。トレンドとは、値がほぼ線形に変化(単調増加、単調減少など)することであり、突発とは、値が特異的に変化することであり、周期とは、値が一定の規則をもって増減することをいう。
異常要因分析部16の分析結果は分析結果記憶部26に格納される(ステップS67)。図7(A)に、分析結果記憶部26に蓄積された分析結果のデータの一例を示す。分析結果には、トリガID、トリガの発生日時、生産設備2のID、注目指標を示すフラグ、注目指標の変動傾向などの情報が含まれている。図7(A)の1行目の分析結果によれば、ID:Aの生産設備において、2013年9月10日の11時25分00秒に状態変化が検出されたこと、その変化の原因と考えられる注目指標は時間稼働率であり、トレンド型の変動傾向を示していた、ということが分かる。図7(B)は、分析結果の変形例を示
し、一つのトリガに対し複数の注目指標が抽出された場合に、注目指標ごとの寄与度の大きさの順位を分析結果に記録するようにしている。
図8は、要因事象テーブル記憶部27に格納されている要因事象テーブルの一例である。要因事象テーブルは、「指標の種類」と「変動傾向」と想定される「要因事象」とを対応付けたテーブルであり、情報提供部17が分析結果を出力する際に参照される。図8の例では、「時間稼働率」が「トレンド」型の変動傾向を示す場合の要因事象として「部品の摩耗」、「性能稼働率」が「周期」型の変動傾向を示す場合の要因事象として「工程間連携の問題」が対応付けられている。
(3)分析結果の出力
情報提供部17によって生成される情報出力画面の一例を示す。
図9(A)は基本画面である。上段のグラフ90は、総合指標記憶部24に蓄積されたデータをもとに生成される、設備総合効率の時系列グラフである。横軸が時間、縦軸が設備総合効率の値(OEE:overall equipment effectiveness)を示している。このグラ
フ90を監視することで、生産設備全体の状態の変化をとらえることができる。中段のグラフ91は、リスク記憶部25に蓄積されたデータをもとに生成される、異常発生リスクの時系列グラフである。横軸が時間、縦軸がリスクの大きさを示している。このグラフ91をみることで、生産設備2の状態が安定しているかどうかをとらえることができる。下段のグラフ92は、稼働実績記憶部23に蓄積されたデータをもとに生成される、時間稼働率、性能稼働率、良品率それぞれの時系列グラフである。横軸が時間、縦軸が効率を示している。
図9(B)は、変化点が検出されたときの表示例を示している。設備総合効率の時系列グラフ90の該当箇所が網掛け表示され、状態変化が発生した時点が明示される。さらに、分析結果記憶部26内の分析結果をもとに、状態変化の原因と考えられる注目指標に関する情報も提示される。図9(B)の例は、時間稼働率が注目指標として選択された例であり、画面下に「時間稼働率の低下が原因で効率が低下しています」というメッセージ93が表示されている。
図10は、図9(B)の画面で「要因分析」ボタン94が押されたときに表示される画面の一例である。「要因分析」が押されると、情報提供部17は、稼働実績記憶部23から注目指標の時系列データを読み込み、注目指標の時系列グラフを生成するとともに、分析結果のデータ(図7(A))と要因事象テーブル(図8)をもとに、注目指標の変動傾向とそこから推測される要因事象を示す情報を生成する。図10の例では、時間稼働率の時系列グラフ100とともに「トレンド型のため、部品の摩耗の可能性があります」という情報101が表示されている。
この画面上において「稼働劣化」タブ102、「性能劣化」タブ103、「品質劣化」タブ104を押すと、表示する指標を切り替えることができる。ただし、注目指標でない(状態変化の原因でない)指標へは切り替えできないようにするとよい。「詳細確認」ボタン105を押すと、要因事象に関連するさらに詳しい情報が表示される。例えば図11(A)の例では、生産設備2の該当箇所の振動や音などの観測データが表示されている。このような観測データを確認することで、生産設備2の異常の有無を確認することができる。「部品手配」ボタン106や「メンテ手配」ボタン107を押すと、部品やメンテナンスの手配を補助する画面が表示される。図11(B)の例では、部品の種類ごとに発注先がリストされており、発注個数を入力して「発注」ボタン110を押すと部品の手配が可能になっている。
さらに進んで、監視システム1が、要因事象に応じた適切な対処を実行する処理実行部を有してもよい。具体的には、要因事象テーブルのなかに、要因事象ごとに、監視システム1が実行する処理を定義しておく。そして、注目指標の時系列データを分析することで要因事象が特定されたら、処理実行部が該当する処理を起動するのである。例えば、設備の不具合に対して、部品の発注やメンテナンスの手配(電子メールや電話による担当者への通知)を自動で行うとか、設備の緊急停止や縮退運転などの対処があり得る。
<本システムの利点>
以上述べた本システムによれば、生産設備2の稼働実績(時間稼働率、性能稼働率、良品率)を観測するだけで、生産設備2の状態監視を実現できる。また、複数の指標を合成した総合指標(設備総合効率)を用いて変化点検出を行うので、個々の指標だけでは評価しづらい生産設備2の状態変化を適切に検出することが可能となる。また、時系列データを分析し、総合指標の変化に対する寄与度の大きさで注目指標の特定を行うことで、個々の指標だけでは判定しづらい異常の原因を容易に且つ適切に選び出すことができる。さらに、注目指標の時系列データ、変動傾向、要因事象など、生産設備2の状態変化の原因を特定するのに有用な情報をユーザに提供するので、専門的知識をもたない者でも問題の把握やその対処を容易に実施できるようになる。しかも、センサなどの観測系を生産設備2に設置することが必須でなくなるため、監視システム1の汎用性・適用性・拡張性が高くなるという利点もある。
<変形例>
上述した実施形態の構成は本発明の一具体例を示したものにすぎず、本発明の範囲を限定する趣旨のものではない。本発明はその技術思想を逸脱しない範囲において、種々の具体的構成を採り得るものである。
例えば、上記実施形態では、時間稼働率・性能稼働率・良品率の三つの指標を掛け合わせた総合指標を用いて生産設備の状態監視を行ったが、指標の種類や監視対象はこれに限られず、稼働実績(アウトプット)を観測可能な対象であれば、あらゆる監視対象に本発明を適用可能である。例えば、複数の生産設備から構成される工程や生産ライン全体を監視対象に設定することもできるし、複数の生産ラインを有する工場全体を監視対象に選ぶこともできる。またFA以外の分野(例えば農場など)の状態監視にも適用可能である。稼働実績として取得する指標の種類及び数、並びに、総合指標の求め方は、監視対象や監視目的に応じて適宜設計することができる。例えば、上記実施形態では時間当たりの稼働実績を評価したが、代わりに、消費エネルギー当たりの稼働実績を指標として用いてもよい。すなわち、単位エネルギー当たりの稼働時間や性能や品質などを稼働実績ととらえるのである。
1:監視システム
2:生産設備
10:稼働時間取得部、11:品質情報取得部、12:生産計画情報取得部、13:稼働実績取得部、14:総合指標生成部、15:変化点検出部、16:異常要因分析部、17:情報提供部
20:稼働履歴記憶部、21:品質履歴記憶部、22:生産計画記憶部、23:稼働実績記憶部、24:総合指標記憶部、25:リスク記憶部、26:分析結果記憶部、27:要因事象テーブル記憶部

Claims (9)

  1. 監視対象の稼働実績を表す複数の指標それぞれの時系列データを取得する稼働実績取得部と、
    前記複数の指標それぞれの時系列データをもとに、同じ時点の複数の指標の値を合成して総合指標の時系列データを生成する総合指標生成部と、
    前記総合指標の時系列データを分析して、前記総合指標の値に有意な変化が現れる点を、前記監視対象の状態の変化点として検出する変化点検出部と、
    を有することを特徴とする監視装置。
  2. 前記変化点検出部により前記監視対象の状態の変化点が検出された場合に、前記複数の指標の時系列データと前記総合指標の時系列データを分析して、前記複数の指標のうちから、前記変化点における前記総合指標の変化に対する寄与度が大きい1以上の指標を、前記監視対象の状態変化の原因に関連する注目指標として選択する要因分析部をさらに有する
    ことを特徴とする請求項1に記載の監視装置。
  3. 前記注目指標に関する情報を出力する情報提供部をさらに有する
    ことを特徴とする請求項2に記載の監視装置。
  4. 前記情報提供部は、前記注目指標の時系列データのグラフを出力する
    ことを特徴とする請求項3に記載の監視装置。
  5. 前記要因分析部は、前記注目指標の時系列データの変動傾向を分析し、その変動傾向に基づき前記監視対象の状態変化の原因として想定される要因事象を推定する
    ことを特徴とする請求項3又は4に記載の監視装置。
  6. 前記情報提供部は、前記推定された要因事象に関する情報を出力する
    ことを特徴とする請求項5に記載の監視装置。
  7. 前記要因事象への対処のための処理を実行する処理実行部をさらに有する
    ことを特徴とする請求項5又は6に記載の監視装置。
  8. コンピュータが、監視対象の稼働実績を表す複数の指標それぞれの時系列データを取得する稼働実績取得ステップと、
    コンピュータが、前記複数の指標それぞれの時系列データをもとに、同じ時点の複数の指標の値を合成して総合指標の時系列データを生成する総合指標生成ステップと、
    コンピュータが、前記総合指標の時系列データを分析して、前記総合指標の値に有意な変化が現れる点を、前記監視対象の状態の変化点として検出する変化点検出ステップと、を有することを特徴とする監視方法。
  9. 請求項8に記載の監視方法の各ステップをコンピュータに実行させることを特徴とするプログラム。
JP2014023247A 2014-02-10 2014-02-10 監視装置及び監視方法 Active JP6364800B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014023247A JP6364800B2 (ja) 2014-02-10 2014-02-10 監視装置及び監視方法
EP15746639.2A EP3106949B1 (en) 2014-02-10 2015-01-21 Monitoring system and monitoring method
US15/114,574 US10521193B2 (en) 2014-02-10 2015-01-21 Monitoring system and monitoring method
CN201580006484.3A CN105980941A (zh) 2014-02-10 2015-01-21 监视装置及监视方法
PCT/JP2015/051559 WO2015118946A1 (ja) 2014-02-10 2015-01-21 監視装置及び監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023247A JP6364800B2 (ja) 2014-02-10 2014-02-10 監視装置及び監視方法

Publications (2)

Publication Number Publication Date
JP2015152933A true JP2015152933A (ja) 2015-08-24
JP6364800B2 JP6364800B2 (ja) 2018-08-01

Family

ID=53777753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023247A Active JP6364800B2 (ja) 2014-02-10 2014-02-10 監視装置及び監視方法

Country Status (5)

Country Link
US (1) US10521193B2 (ja)
EP (1) EP3106949B1 (ja)
JP (1) JP6364800B2 (ja)
CN (1) CN105980941A (ja)
WO (1) WO2015118946A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052015A1 (ja) * 2016-09-14 2018-03-22 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
KR20180083810A (ko) 2017-01-13 2018-07-23 아즈빌주식회사 시계열 데이터 처리 장치 및 처리 방법
JP2018185678A (ja) * 2017-04-26 2018-11-22 株式会社日立製作所 運用計画立案装置、運用制御システム、および、運用計画立案方法
CN109426921A (zh) * 2017-09-05 2019-03-05 欧姆龙株式会社 信息处理装置及信息处理方法
JP2019159853A (ja) * 2018-03-14 2019-09-19 i Smart Technologies株式会社 生産管理装置、生産管理システム、および生産管理方法
JPWO2018122962A1 (ja) * 2016-12-27 2019-10-31 株式会社Fuji 基板生産ラインの稼動情報モニタリングシステム
JP2020527787A (ja) * 2018-04-11 2020-09-10 平安科技(深▲せん▼)有限公司Ping An Technology (Shenzhen) Co.,Ltd. 感染症の予測方法、コンピュータ装置及び不揮発性読み取り可能な記憶媒体
JP2021060723A (ja) * 2019-10-04 2021-04-15 株式会社エヌ・ティ・ティ・データ 監視条件決定装置、監視条件決定方法、及びプログラム
JP2021081761A (ja) * 2019-11-14 2021-05-27 株式会社日立製作所 分析システムおよび分析方法
WO2023013145A1 (ja) * 2021-08-04 2023-02-09 Jswアクティナシステム株式会社 レーザ照射装置、情報処理方法、プログラム、及び学習モデルの生成方法
WO2023140079A1 (ja) * 2022-01-20 2023-07-27 ソニーグループ株式会社 情報処理装置、情報処理方法、およびプログラム
JP2023170715A (ja) * 2022-05-19 2023-12-01 株式会社日立製作所 システム分析装置及びシステム分析方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212552A1 (ja) * 2016-06-07 2017-12-14 三菱電機株式会社 データ処理装置、データ処理方法及びデータ処理プログラム
US10839076B2 (en) 2016-12-21 2020-11-17 3D Signals Ltd. Detection of cyber machinery attacks
JP2019040435A (ja) * 2017-08-25 2019-03-14 アズビル株式会社 調節計および劣化位置検出方法
JP6740270B2 (ja) 2018-02-27 2020-08-12 三菱重工業株式会社 工場評価装置、工場評価方法、およびプログラム
US10916259B2 (en) * 2019-01-06 2021-02-09 3D Signals Ltd. Extracting overall equipment effectiveness by analysis of a vibro-acoustic signal
CN110688365A (zh) * 2019-09-18 2020-01-14 华泰证券股份有限公司 金融时间序列的合成方法、装置和存储介质
JP7446771B2 (ja) 2019-10-30 2024-03-11 株式会社東芝 可視化データ生成装置、可視化データ生成システム、及び可視化データ生成方法
JP7473410B2 (ja) * 2020-07-07 2024-04-23 株式会社日立製作所 作業指示装置、作業指示システムおよび作業指示方法
JP7481976B2 (ja) 2020-09-16 2024-05-13 株式会社東芝 異常スコア算出装置、異常スコア算出方法およびプログラム
KR20230108260A (ko) * 2020-11-16 2023-07-18 스미도모쥬기가이고교 가부시키가이샤 표시장치, 제어장치, 제어방법 및 컴퓨터프로그램
US20240053737A1 (en) * 2020-12-18 2024-02-15 Fanuc Corporation Central management device, and method for controlling central management device
JP7524145B2 (ja) 2021-08-19 2024-07-29 株式会社東芝 データ処理装置、方法及びプログラム
JPWO2023233745A1 (ja) * 2022-06-01 2023-12-07
WO2023233927A1 (ja) * 2022-06-03 2023-12-07 オムロン株式会社 異常検知装置、異常検知方法およびプログラム
CN116777251B (zh) * 2023-08-24 2023-10-31 山东希尔康泰药业有限公司 一种基于全流程的药剂制备工序监测分析系统
CN117590793B (zh) * 2024-01-19 2024-03-26 中建安装集团有限公司 一种基于物联网的水厂水处理一体化监控系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105285A (ja) * 1993-10-06 1995-04-21 Fuji Electric Co Ltd 製造ライン稼動状況モニタリングシステム
JP2005149006A (ja) * 2003-11-13 2005-06-09 Toshiba Corp プロセス管理装置
JP2007165721A (ja) * 2005-12-15 2007-06-28 Omron Corp プロセス異常分析装置及びプログラム
WO2011142026A1 (ja) * 2010-05-14 2011-11-17 株式会社日立製作所 時系列データ管理装置、システム、方法、およびプログラム
WO2012090492A1 (ja) * 2010-12-28 2012-07-05 株式会社 東芝 プロセス監視診断装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123085A (ja) * 1998-10-16 2000-04-28 Omron Corp データ集計処理装置およびデータ集計処理用プログラムが記録された記録媒体
JP4218363B2 (ja) * 2003-02-10 2009-02-04 トヨタ自動車株式会社 生産ライン解析装置
JP2004280505A (ja) * 2003-03-17 2004-10-07 Renesas Technology Corp 製造装置の処理能力検証装置
US20050288915A1 (en) * 2004-06-28 2005-12-29 Graniteedge Networks Determining event causality including employment of causal chains
JP2007094794A (ja) * 2005-09-29 2007-04-12 Yokogawa Electric Corp 制御ループ診断装置
US20090009408A1 (en) * 2006-06-21 2009-01-08 Broadcom Corporation Integrated circuit with bonding wire antenna structure and methods for use therewith
JP2008112209A (ja) * 2006-10-27 2008-05-15 Omron Corp 稼働状態モニタリング装置、稼働状態モニタリング方法、およびプログラム
DE602007001193D1 (de) * 2007-10-09 2009-07-09 Abb Oy Verfahren und System zur Verbesserung der Nutzung einer Produktionsanlage
JP5139162B2 (ja) 2008-06-06 2013-02-06 株式会社総合車両製作所 機械システムの異常検出方法
JP5363927B2 (ja) 2009-09-07 2013-12-11 株式会社日立製作所 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム
JP2011108126A (ja) * 2009-11-20 2011-06-02 Hitachi Ltd 在庫計画作成装置、在庫計画作成方法及び在庫計画作成プログラム
CN201705397U (zh) 2010-03-27 2011-01-12 苏州华瑞能泰发电技术有限公司 火电厂在线汽轮机热耗率监测装置
JP2013088828A (ja) 2011-10-13 2013-05-13 Hitachi Ltd リスク評価を用いた設備定期点検支援システム
CN103472802B (zh) 2013-09-13 2016-08-17 同济大学 风力发电机组智能状态监测终端及其数据处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105285A (ja) * 1993-10-06 1995-04-21 Fuji Electric Co Ltd 製造ライン稼動状況モニタリングシステム
JP2005149006A (ja) * 2003-11-13 2005-06-09 Toshiba Corp プロセス管理装置
JP2007165721A (ja) * 2005-12-15 2007-06-28 Omron Corp プロセス異常分析装置及びプログラム
WO2011142026A1 (ja) * 2010-05-14 2011-11-17 株式会社日立製作所 時系列データ管理装置、システム、方法、およびプログラム
WO2012090492A1 (ja) * 2010-12-28 2012-07-05 株式会社 東芝 プロセス監視診断装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183790B2 (ja) 2016-09-14 2022-12-06 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
JPWO2018052015A1 (ja) * 2016-09-14 2019-06-24 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
WO2018052015A1 (ja) * 2016-09-14 2018-03-22 日本電気株式会社 システムの分析支援装置、システムの分析支援方法及びプログラム
US11455203B2 (en) 2016-09-14 2022-09-27 Nec Corporation Abnormality detection support device, abnormality detection support method, and program
JPWO2018122962A1 (ja) * 2016-12-27 2019-10-31 株式会社Fuji 基板生産ラインの稼動情報モニタリングシステム
KR20180083810A (ko) 2017-01-13 2018-07-23 아즈빌주식회사 시계열 데이터 처리 장치 및 처리 방법
JP2018185678A (ja) * 2017-04-26 2018-11-22 株式会社日立製作所 運用計画立案装置、運用制御システム、および、運用計画立案方法
US11029674B2 (en) 2017-09-05 2021-06-08 Omron Corporation Information processing device and information processing method
CN109426921A (zh) * 2017-09-05 2019-03-05 欧姆龙株式会社 信息处理装置及信息处理方法
JP2019046311A (ja) * 2017-09-05 2019-03-22 オムロン株式会社 情報処理装置および情報処理方法
CN109426921B (zh) * 2017-09-05 2022-03-08 欧姆龙株式会社 信息处理装置及信息处理方法
JP2019159853A (ja) * 2018-03-14 2019-09-19 i Smart Technologies株式会社 生産管理装置、生産管理システム、および生産管理方法
JP7118399B2 (ja) 2018-03-14 2022-08-16 i Smart Technologies株式会社 生産管理装置、生産管理システム、および生産管理方法
JP2020527787A (ja) * 2018-04-11 2020-09-10 平安科技(深▲せん▼)有限公司Ping An Technology (Shenzhen) Co.,Ltd. 感染症の予測方法、コンピュータ装置及び不揮発性読み取り可能な記憶媒体
JP2021060723A (ja) * 2019-10-04 2021-04-15 株式会社エヌ・ティ・ティ・データ 監視条件決定装置、監視条件決定方法、及びプログラム
JP7370044B2 (ja) 2019-10-04 2023-10-27 株式会社Nttデータ 監視条件決定装置、監視条件決定方法、及びプログラム
JP7291061B2 (ja) 2019-11-14 2023-06-14 株式会社日立製作所 分析システムおよび分析方法
JP2021081761A (ja) * 2019-11-14 2021-05-27 株式会社日立製作所 分析システムおよび分析方法
WO2023013145A1 (ja) * 2021-08-04 2023-02-09 Jswアクティナシステム株式会社 レーザ照射装置、情報処理方法、プログラム、及び学習モデルの生成方法
WO2023140079A1 (ja) * 2022-01-20 2023-07-27 ソニーグループ株式会社 情報処理装置、情報処理方法、およびプログラム
JP7411724B2 (ja) 2022-05-19 2024-01-11 株式会社日立製作所 システム分析装置及びシステム分析方法
JP2023170715A (ja) * 2022-05-19 2023-12-01 株式会社日立製作所 システム分析装置及びシステム分析方法

Also Published As

Publication number Publication date
WO2015118946A1 (ja) 2015-08-13
EP3106949A4 (en) 2017-09-27
EP3106949A1 (en) 2016-12-21
EP3106949B1 (en) 2021-09-22
US10521193B2 (en) 2019-12-31
US20160342392A1 (en) 2016-11-24
CN105980941A (zh) 2016-09-28
JP6364800B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6364800B2 (ja) 監視装置及び監視方法
JP5267736B2 (ja) 障害検出装置、障害検出方法およびプログラム記録媒体
JP4832609B1 (ja) 異常予兆診断装置および異常予兆診断方法
JP7221644B2 (ja) 機器故障診断支援システムおよび機器故障診断支援方法
JP2018500709A5 (ja) コンピューティングシステム、プログラムおよび方法
JP6708203B2 (ja) 情報処理装置、情報処理方法、及び、プログラム
JP6540531B2 (ja) 監視装置及び監視装置の制御方法
Blancke et al. A holistic multi-failure mode prognosis approach for complex equipment
JP2009251777A (ja) イベント記録表示装置
JP2016038657A (ja) 診断支援システム及び診断支援方法
JP2018113027A (ja) プロセスの異常状態診断方法および異常状態診断装置
JP2009086896A (ja) コンピュータの障害予測システムおよび障害予測方法
WO2017138239A1 (ja) 監視装置及び監視装置の制御方法
JP5234321B2 (ja) プロセス関連データ表示装置およびプロセス関連データ表示方法
JP5896272B2 (ja) プラント監視制御装置及びプラント監視制御方法
JP6247777B2 (ja) 異常診断装置および異常診断方法
JP2019211919A (ja) 監視装置、監視方法、及びコンピュータプログラム
JP2005071136A (ja) 納期管理支援システム、そのプログラム、そのプログラムを記録した記録媒体および製品の納期管理方法
JP7020835B2 (ja) 監視制御装置、監視制御システム及び表示方法
JP2022076660A (ja) 稼働監視装置、及び稼働監視方法
JP2017076165A (ja) 機器監視装置およびアラート情報管理方法
JP5250963B2 (ja) 監視制御システムにおけるトレンドデータの蓄積・表示方式
Suzuki et al. An anomaly detection system for advanced maintenance services
JP2020083492A (ja) 繰り返し故障防止装置、繰り返し故障防止システム及び繰り返し故障防止方法
JP5839160B2 (ja) プラント情報提供システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6364800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250