WO2012086779A1 - 多気筒回転式圧縮機と冷凍サイクル装置 - Google Patents

多気筒回転式圧縮機と冷凍サイクル装置 Download PDF

Info

Publication number
WO2012086779A1
WO2012086779A1 PCT/JP2011/079868 JP2011079868W WO2012086779A1 WO 2012086779 A1 WO2012086779 A1 WO 2012086779A1 JP 2011079868 W JP2011079868 W JP 2011079868W WO 2012086779 A1 WO2012086779 A1 WO 2012086779A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
valve body
cylinder
back chamber
chamber
Prior art date
Application number
PCT/JP2011/079868
Other languages
English (en)
French (fr)
Inventor
平山 卓也
フェルディ モナスリ ジャフェット
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2012549881A priority Critical patent/JP5481568B2/ja
Priority to CN201180051566.1A priority patent/CN103189653B/zh
Publication of WO2012086779A1 publication Critical patent/WO2012086779A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves

Definitions

  • Embodiments of the present invention relate to a multi-cylinder rotary compressor and a refrigeration cycle apparatus that includes the multi-cylinder rotary compressor and constitutes a refrigeration cycle.
  • a multi-cylinder rotary compressor having a plurality of cylinder chambers in the compression mechanism is frequently used.
  • full capacity operation that performs compression action in multiple cylinder chambers at the same time, ability to perform compression action in one cylinder chamber, stop compression action in the other cylinder chamber, and reduce compression work It is advantageous if switching to half operation is possible.
  • the compression mechanism portion of the compressor disclosed in Japanese Patent Special Publication No. 2008-520901 discloses that the tip of one blade (vane) is separated from the roller circumferential surface, and the compression operation in one cylinder chamber is suspended (save) A cylinder deactivation mechanism (mode switching unit) that enables operation) is provided. If the cylinder resting mechanism is not functioned, the full capacity operation (normal operation) is performed in which the compression operation is performed in both cylinder chambers.
  • a back pressure introduction passage suction pressure side connecting pipe
  • a blade back chamber vane chamber
  • a lubricating oil communication passage back pressure adjusting hole
  • a check valve back pressure adjusting valve
  • the lubricating oil in the sealed case also enters the back pressure introduction passage from the lubricating oil communication passage through the blade back chamber. If the operation time continues, the amount of the lubricating oil entering the back pressure introduction passage increases and eventually a so-called fluid diode effect is generated.
  • the problem to be solved by this embodiment is that even when the blade moves in a direction to reduce the volume of the blade back chamber, the lubricant in the blade back chamber easily returns to the inside of the sealed case.
  • the multi-cylinder rotary compressor of this embodiment includes an oil reservoir for lubricating oil in a hermetically sealed case, and houses an electric motor unit and a compression mechanism unit connected to the electric motor unit via a rotating shaft.
  • the compression mechanism section includes a first cylinder and a second cylinder having a cylinder chamber with an intermediate partition plate interposed therebetween.
  • the first roller and the second roller are fitted into an eccentric portion formed on the rotation shaft, and are eccentrically rotated in each cylinder chamber.
  • Each cylinder is partitioned in a state in which the first blade and the tip of the second blade are in contact with the first and second rollers.
  • the first blade is urged so that the elastic member comes into contact with the first roller.
  • the rear end of the second blade is movably accommodated in the blade back chamber.
  • a back pressure introduction passage is communicated with the blade back chamber, and a high pressure or a low pressure is switched and supplied to the blade back chamber to apply a back pressure to the second blade.
  • a check valve mechanism is provided in the lubricating oil communication passage, and when high pressure is introduced from the back pressure introduction passage to the blade back chamber, the lubricating oil communication passage is opened to supply lubricating oil to the blade back chamber, and low pressure is supplied to the blade back chamber. When the oil is introduced, the lubricating oil communication path is closed.
  • the back pressure introduction passage and the lubricating oil communication passage are fluids that flow into the blade back chamber from the back pressure introduction passage when a high pressure is introduced into the blade back chamber and the blade moves in a direction that expands the volume of the blade back chamber.
  • the amount is configured to be larger than the amount of fluid flowing from the blade back chamber to the back pressure introduction passage when the blade moves in a direction to reduce the volume of the blade back chamber.
  • the refrigeration cycle apparatus of the present embodiment includes the multi-cylinder rotary compressor described above, a condenser, an expansion device, and an evaporator, and constitutes a refrigeration cycle.
  • FIG. 1 is a schematic longitudinal sectional view of a cylinder rotary compressor according to the first embodiment.
  • FIG. 2 is an exploded perspective view of a main part of the multi-cylinder rotary compressor.
  • FIG. 3 is an enlarged longitudinal sectional view of a main part of the multi-cylinder rotary compressor.
  • FIG. 4 is a schematic longitudinal sectional view of a multi-cylinder rotary compressor according to the second embodiment.
  • FIG. 5 is a schematic longitudinal sectional view of a multi-cylinder rotary compressor according to the third embodiment.
  • FIG. 6 is a refrigeration cycle configuration diagram of a refrigeration cycle apparatus including a multi-cylinder rotary compressor common to the first to third embodiments.
  • FIG. 1 is a schematic longitudinal sectional view of a multi-cylinder rotary compressor M according to the first embodiment.
  • reference numeral 1 denotes a sealed case.
  • a compression mechanism section 3 is provided at the lower portion of the sealed case 1 and an electric motor section 4 is provided at the upper portion.
  • the electric motor unit 4 and the compression mechanism unit 3 are integrally connected via a rotating shaft 5.
  • the compression mechanism section 3 includes a first cylinder 6A on the upper side and a second cylinder 6B on the lower side.
  • the main bearing 7A is attached and fixed to the upper end surface of the first cylinder 6A
  • the auxiliary bearing 7B is attached and fixed to the lower end surface of the second cylinder 6B.
  • An intermediate partition plate 2 is interposed between the first cylinder 6A and the second cylinder 6B.
  • the rotary shaft 5 penetrates through the cylinders 6A and 6B, and integrally includes a first eccentric portion 5a and a second eccentric portion 5b having the same diameter and a phase difference of about 180 °.
  • Each eccentric part 5a, 5b is assembled so that it may be located in the internal diameter part of cylinder 6A, 6B.
  • the first roller 9a is fitted to the circumferential surface of the first eccentric portion 5a
  • the second roller 9b is fitted to the circumferential surface of the second eccentric portion 5b.
  • the inner diameter portion of the first cylinder 6A is closed by the main bearing 7A and the intermediate partition plate 2 to form a first cylinder chamber Sa.
  • the inner diameter portion of the second cylinder 6B is closed by the intermediate partition plate 2 and the auxiliary bearing 7B, thereby forming a second cylinder chamber Sb.
  • the first cylinder chamber Sa and the second cylinder chamber Sb are designed to have the same diameter and height.
  • the peripheral walls of the first and second rollers 9a and 9b can be moved eccentrically while being in line contact with the peripheral walls of the first and second cylinder chambers Sa and Sb via the lubricating oil film.
  • the respective rollers 9a and 9b are accommodated in the cylinder chambers Sa and Sb.
  • the discharge muffler 8a that is doubled is attached to the main bearing 7A and covers the discharge valve mechanism provided on the main bearing 7A. Each discharge muffler 8a is provided with a discharge hole.
  • a single discharge muffler 8b is attached to the auxiliary bearing 7B and covers a discharge valve mechanism provided in the auxiliary bearing 7B. The discharge muffler 8b is not provided with a discharge hole.
  • the discharge valve mechanism of the main bearing 7A faces the first cylinder chamber Sa, opens when the chamber rises to a predetermined pressure due to the compression action, and discharges compressed gas into the discharge muffler 8a.
  • the discharge valve mechanism of the sub-bearing 7B faces the second cylinder chamber Sb, and opens when the chamber pressure rises to a predetermined pressure due to the compression action, and discharges compressed gas into the discharge muffler 8b.
  • a discharge gas guide path is provided across the auxiliary bearing 7B, the second cylinder 6B, the intermediate partition plate 2, the first cylinder 6A and the main bearing 7A.
  • the discharge gas guide path guides the high-pressure gas discharged from the second cylinder chamber Sb to the lower discharge muffler 8b through the discharge valve mechanism into the upper double discharge muffler 8a.
  • An oil reservoir 14 for collecting lubricating oil is formed on the inner bottom of the sealed case 1.
  • the solid line across the flange portion of the main bearing 7 ⁇ / b> A indicates the oil level of the lubricating oil, and almost all of the compression mechanism portion 3 is immersed in the lubricating oil in the oil reservoir 14.
  • An oil supply passage for supplying lubricating oil is provided across the lower end surface of the rotating shaft 5 and each sliding portion of the compression mechanism portion 3.
  • FIG. 2 is an exploded perspective view showing a part of the compression mechanism section 3 according to the embodiment. Only a main part is schematically shown, and details are omitted.
  • a blade groove 10a is connected to the first cylinder chamber Sa, which is an inner diameter portion, and a first blade back chamber 11a is further provided from the blade groove 10a.
  • a first blade 12a is movably accommodated in the blade groove 10a, and its front end can protrude into and retract from the first blade back chamber 11a.
  • a blade groove 10b is connected to a second cylinder chamber Sb which is an inner diameter portion, and a second blade back chamber 11b is further provided from the blade groove 10b.
  • a second blade 12b is movably accommodated in the blade groove 10b, and its front end can project into and out of the second cylinder chamber Sb, and its rear end can project into and out of the second blade back chamber 11b.
  • the tip portions of the first and second blades 12a and 12b are formed in a substantially arc shape in plan view, and these tip portions protrude into the opposing first and second cylinder chambers Sa and Sb.
  • the first and second rollers 9a and 9b shown in FIG. 1 which are circular in plan view are in line contact with the peripheral walls of the first and second rollers 9a and 9b regardless of their rotation angles.
  • the first cylinder 6A is provided with a lateral hole Wf that communicates the first blade back chamber 11a with the outer peripheral surface of the cylinder 6A, and accommodates a spring member (elastic member) 13.
  • the spring member 13 is interposed between the rear end face of the first blade 12a and the inner peripheral wall of the sealed case 1, and applies an elastic force (back pressure) to the first blade 12a.
  • the differential pressure between the front end and the rear end is influenced by the pressure of the second cylinder chamber Sb and the rear end is affected by the pressure of the second blade back chamber 11b.
  • the back pressure is applied or not applied.
  • FIG. 3 is an enlarged vertical cross-sectional view of the second blade back chamber 11b, which is a main part of the compression mechanism unit 3, and the peripheral part, showing the A part in FIG. 1 in an enlarged manner.
  • a permanent magnet 15 is attached to the rear side peripheral wall of the second blade back chamber 11b.
  • the magnetic force of the permanent magnet 15 is such that the rear end of the blade 12b can be magnetically attracted when the rear end of the second blade 12b comes into contact with the permanent magnet 15 or moves to a very close position. If a certain high pressure is applied, the second blade 12b is easily detached from the permanent magnet 15.
  • the upper surface opening of the second blade back chamber 11b is closed by the intermediate partition plate 2 attached to the upper end surface of the second cylinder 6B.
  • the lower surface opening of the second blade back chamber 11b is provided at a position protruding outward from the peripheral end surface of the flange portion of the auxiliary bearing 7B, and the lower surface opening opens into the sealed case 1 as it is.
  • the lower surface opening of the second blade back chamber 11b is closed by a closing member 16 attached along a part of the outer peripheral wall of the flange portion of the auxiliary bearing 7B. That is, the second blade back chamber 11b is closed by the intermediate partition plate 2 and the closing member 16 to form a sealed structure.
  • the closing member 16 is made of cast iron, or is made of SMF type 3 (iron-carbon based sintered alloy) or SMF type 4 (iron-carbon-copper based sintered alloy). That is, in order to manufacture the closing member 16, a material that can reliably manufacture a complicated internal structure by molding is selected.
  • a valve body support member 17 is attached to the lower surface of the closing member 16 via a fixture 18.
  • the valve body support member 17 is formed from the same material as the synthetic resin material or the closing member 16. However, when the same material as the closing member 16 is selected, it is necessary to cover a part with a thick film to some extent, which is made of a synthetic resin material as will be described later.
  • a back pressure introduction passage H described later is provided in the closing member 16 and the valve body support member 17, a back pressure introduction passage H described later is provided, a lubricating oil communication passage J is provided, and a check valve mechanism G is further provided.
  • the back pressure introduction path H includes a vertical hole portion 20 that is provided from the upper surface of the closing member 16, which is the bottom surface of the second blade back chamber 11 b, to the lower part over approximately half of the thickness of the closing member 16 plate,
  • the small-diameter hole portion 21 communicates with the lower end portion of the vertical hole portion 20 in an axial direction orthogonal to the axial direction of the vertical hole portion 20, and communicates along the same axial direction as the small-diameter hole portion 21. It consists of a connection hole 22.
  • the diameter of the small-diameter hole 21 is smaller than the diameter of the vertical hole 20 (approximately half), and the diameter of the connection hole 22 is larger than the diameter of the vertical hole 20.
  • the connection hole 22 opens at the (right) side end face of the closing member 16 and is connected to a pressure control pipe P1 that penetrates the sealed case 1 and extends to the inside.
  • the lubricating oil communication path J communicates with the vertical hole portion 20 and the lower end portion of the vertical hole portion 20, and is aligned with the axial direction of the vertical hole portion 20 and extends downward.
  • the valve hole 25 having a tapered section (conical frustum shape) formed at the lower end of the guide hole 24 and the oil passage that is a space provided in the valve body support member 17 in communication with the valve hole 25.
  • the hole 26 is formed.
  • the vertical hole portion 20 extends downward from the bottom surface of the second blade back chamber 11b within a predetermined length, and is shared by the back pressure introduction passage H and the lubricating oil communication passage J. Formed as a passage.
  • the back pressure introduction passage H is formed by the small-diameter hole portion 21 and the connection hole 22 extending in the axial direction perpendicular to the vertical hole portion 20 from the middle portion of the vertical hole portion (common passage) 20. Further, the lubricating oil communication path J is configured by the guide hole 24, the valve hole 25, and the oil conduction hole 26 extending downward from the lower end of the vertical hole 20.
  • the check valve mechanism G is provided at the extended end of the lubricating oil communication passage J.
  • the diameter of the guide hole 24 of the lubricating oil communication path J is slightly smaller than the diameter of the vertical hole 20, and the valve hole 25 is formed so that the diameter increases from the lower end of the guide hole 24.
  • the oil conduction hole 26 is provided in a direction orthogonal to the axial direction of the vertical hole portion 20, the guide hole portion 24, and the valve hole portion 25, and opens at both left and right end surfaces of the valve body support member 17.
  • the back pressure introduction passage H Since the diameter of the small-diameter hole portion 21 constituting the back pressure introduction passage H is formed to be extremely smaller than the diameter of the guide hole portion 24 constituting the lubricating oil communication passage J, the back pressure introduction passage H is lubricated.
  • the cross section of the oil communication passage J is much smaller than the cross section of the valve hole 25.
  • the check valve mechanism G uses the guide hole 24 constituting the lubricating oil communication path J as a valve hole, and uses a circumferential surface with a tapered cross section of the valve hole 25 as a valve seat.
  • the valve body support member 17 is supported by a valve body support hole (valve body support portion) 28 provided between the oil conduction hole 26 which is the upper end surface of the valve body support member 17 and the lower end surface, and the valve body support hole 28. And the valve body 30.
  • valve seat which is the valve hole portion 25, is provided in the upper portion of the valve body 30, and the cross-sectional shape is a diameter-expanding shape from the upper end portion to the lower end portion, and the cross-sectional taper shape (conical shape) gradually expands downward.
  • the valve body support hole 28 is provided in the lower part of the valve body 30, and the cross-sectional shape has a reduced diameter from the upper end portion to the lower end portion, and has a cross-sectional taper shape gradually narrowing downward.
  • valve body 30 In a state where the valve body 30 is supported by the valve body support hole 28, the center of gravity of the valve body 30 is located below the upper end opening surface of the valve body support hole 28.
  • the taper angle ⁇ of the valve seat (valve hole portion 25) is larger than the taper angle ⁇ of the valve body support hole 28, and the lower end surface diameter of the valve hole portion 25 is the upper end surface diameter of the valve body support hole 28. Is bigger than.
  • valve body 30 In both the lower end surface diameter of the valve hole portion 25 and the upper end surface diameter of the valve body support hole 28, that is, the diameter of the valve hole portion 25 and the end portion on the valve body 30 side of the valve body support hole 28 is the valve body. It is formed larger than the diameter of 30.
  • the valve body 30 is a spherical magnetic material made of steel (metal).
  • a balance groove 29 is provided along a part of the peripheral wall of the valve body support hole 28 along the taper angle.
  • a permanent magnet piece 19 is attached to the lower end surface of the valve body support member 17.
  • a part of the permanent magnet piece 19 protrudes from the lower end opening surface of the valve body support hole 28 and is adjusted in position so as to contact a part of the peripheral wall of the valve body 30 supported by the valve body support hole 28. Yes. That is, the permanent magnet piece 19 is magnetically attracted to the valve body 30 to restrict minute vertical movement of the valve body 30.
  • valve body 30 constituting the check valve mechanism G has a spherical shape
  • the shape is not limited to this, and the cross-sectional taper shape (frustum shape) may be used.
  • the closing member 16 a part of the flange portion of the auxiliary bearing 7 ⁇ / b> B is formed to be large, and the lower surface opening portion of the second blade back chamber 11 b is closed by this flange portion so that the back pressure introduction passage H and the like are formed. You may prepare.
  • the pressure control pipe P1 and the back pressure introduction passage H constitute a part of a blade back pressure control mechanism (pressure switching means) K described later.
  • the blade back pressure control mechanism K selects and guides the high pressure gas (discharge pressure) or the low pressure gas (suction pressure) to the second blade back chamber 11b, and the pressure of the back pressure on the rear end portion of the second blade 12b. It controls switching.
  • a discharge refrigerant pipe P is connected to the upper end of the sealed case 1 constituting the multi-cylinder rotary compressor M.
  • the refrigerant pipe P is sequentially connected to devices constituting the heat pump refrigeration cycle, and is connected to an upper end portion of an accumulator 32 that is attached and fixed to the sealed case 1 via a fixture 31.
  • the lower end of the accumulator 32 and the sealed case 1 are connected via a refrigerant pipe Pa for suction.
  • the refrigerant pipe Pa passes through the sealed case 1 and is connected to the peripheral end surface of the intermediate partition plate 2.
  • the intermediate partition plate 2 is provided with a branch guide path (not shown) that branches into a bifurcated shape from the peripheral surface portion to which the refrigerant pipe Pa is connected in the axial direction.
  • One branch guide path communicates with the first cylinder chamber Sa, and the other branch guide path communicates with the second cylinder chamber Sb. Therefore, the accumulator 32 and the first cylinder chamber Sa and the second cylinder chamber Sb in the multi-cylinder rotary compressor M are always in communication.
  • the pressure control pipe P1 extends to a position above the upper ends of the sealed case 1 and the accumulator 32, and a pressure switching valve 33 described later is provided at this end.
  • the pressure switching valve 33 uses a four-way switching valve used in an air conditioner equipped with a heat pump refrigeration cycle capable of switching between cooling and heating operations, thereby reducing costs.
  • a first branch pipe (high pressure pipe) 35 is branched from the refrigerant pipe P connected to the upper end of the sealed case 1, and this is connected to the first port pa of the pressure switching valve 33.
  • the pressure control pipe P1 is connected to the second port pb, and a second branch pipe (low pressure pipe) 36 branched from the refrigerant pipe P on the refrigerant introduction side of the accumulator 32 is connected to the third port pc. Is done.
  • the fourth port pd is always closed by the plug 37.
  • the inverted U-shaped valve 38 accommodated therein includes a position where the third port pc and the fourth port pd communicate with each other as shown in the figure, and a position where the second port pb and the fourth port pd as shown with a two-dot chain line. 3 is switched electromagnetically to a position where it communicates with the third port pc.
  • the first port pa is always open and the fourth port Pd is always closed.
  • the first port pa and the second port pb communicate directly, and the third port pc and the fourth port pd communicate via the inverted U-shaped valve 38. .
  • the fourth port pd is blocked by the plug 37, only the communication between the first port pa and the second port pb remains.
  • the blade back pressure control mechanism K includes the pressure switching valve 33, the pressure control pipe P1, the first branch pipe 35 and the second branch pipe 36, and the back pressure introduction passage H provided in the closing member 16.
  • the high pressure and the low pressure can be switched and guided to the second blade back chamber 11b, and the back pressure can be applied to the second blade 12b.
  • FIG. 6 is a configuration diagram of the heat pump refrigeration cycle when the refrigeration cycle apparatus is applied to the air conditioner R.
  • the blade back pressure control mechanism K described above is omitted.
  • a four-way switching valve 50 is connected to the refrigerant pipe P connected to the multi-cylinder rotary compressor M, and the four-way switching valve 50 is connected to the outdoor heat exchanger 51, the expansion device 52, and the indoor heat exchanger 53.
  • the indoor heat exchanger 53 is connected to the accumulator 32 via the four-way switching valve 50, and is further connected to the multi-cylinder rotary compressor M by the suction refrigerant pipe Pa, which is not shown here.
  • the gas refrigerant compressed by the multi-cylinder rotary compressor M and discharged to the refrigerant pipe P as will be described later is indicated by a solid line arrow from the four-way switching valve 50. Then, it is led to the outdoor heat exchanger 51, exchanges heat with the outside air, condenses, and turns into liquid refrigerant. That is, the outdoor heat exchanger 51 functions as a condenser.
  • the liquid refrigerant led out from the outdoor heat exchanger 51 is guided to the expansion device 52 and adiabatically expands. Then, it is guided to the indoor heat exchanger 53 and evaporates by exchanging heat with the indoor air blown here, and takes away the latent heat of evaporation from the indoor air to perform an indoor cooling action. That is, the indoor heat exchanger 53 becomes an evaporator.
  • the evaporative refrigerant derived from the indoor heat exchanger 53 is sucked into the multi-cylinder rotary compressor M through the four-way switching valve 50, compressed as described above, and circulated through the refrigeration cycle.
  • the four-way switching valve 50 When the heating operation is selected, the four-way switching valve 50 is switched, and the gas refrigerant discharged from the multi-cylinder rotary compressor M to the refrigerant pipe P passes through the four-way switching valve 50 and the indoor heat exchanger 53 as indicated by a broken line arrow.
  • the heat is exchanged with room air to condense.
  • the indoor air absorbs the heat of condensation of the indoor heat exchanger 53 serving as a condenser, so that the temperature rises and an indoor heating action is obtained.
  • the liquid refrigerant led out from the indoor heat exchanger 53 is led to the expansion device 52, adiabatically expands and led to the outdoor heat exchanger 51 to evaporate.
  • the evaporative refrigerant derived from the outdoor heat exchanger 51 which is an evaporator, is sucked into the multi-cylinder rotary compressor M from the four-way switching valve 50, compressed as described above, and circulated through the refrigeration cycle.
  • the above-described refrigeration cycle during the cooling operation is configured, and the inverted U-shaped valve 38 housed in the pressure switching valve 33 of the blade back pressure control mechanism K is switched. That is, the pressure switching valve 33 is controlled so that the second port pb and the third port pc communicate with each other as shown by a two-dot chain line in FIG.
  • a refrigerant pipe P communicating from the indoor heat exchanger 53 to the accumulator 32, a second branch pipe 36, a pressure switching valve 33, a pressure control pipe P1, a back pressure introduction passage H, and a second blade back chamber 11b are provided. It becomes a communication state.
  • the check valve mechanism G operates as will be described later, and the valve body 30 is fitted into the valve hole portion 25 which is a valve seat as shown by a two-dot chain line in FIG.
  • an operation signal is sent to the motor unit 4 and the rotary shaft 5 is driven to rotate.
  • the first and second rollers 9a and 9b move eccentrically in the respective cylinder chambers Sa and Sb.
  • the first blade 12a is pressed and urged by the spring member 13, and the tip end portion slidably contacts the peripheral wall of the roller 9a to bisect the inside of the first cylinder chamber Sa.
  • the low-pressure refrigerant gas evaporated in the indoor heat exchanger 53 is guided from the accumulator 32 to the refrigerant pipe Pa on the suction side, and is guided to the two branch guide paths provided in the intermediate partition plate 2 of the multi-cylinder rotary compressor M. The Then, the air is sucked into the first cylinder chamber Sa and the second cylinder chamber Sb from the respective branch guide paths.
  • the low-pressure gas refrigerant filling the second blade back chamber 11b applies a low-pressure back pressure to the rear end portion of the second blade 12b.
  • the tip of the second blade 12b facing the second cylinder chamber Sb is in a low pressure atmosphere, and the rear end of the second blade 12b facing the second blade back chamber 11b is also in a low pressure atmosphere. No differential pressure is generated between the front and rear ends of 12b.
  • the tip of the second blade 12b does not protrude into the second cylinder chamber Sb and maintains its position.
  • the second roller 9b fitted to the eccentric portion 5b of the rotary shaft 5 continues to idle, and no compression action is performed in the second cylinder chamber Sb. That is, in the second cylinder chamber Sb, a cylinder resting operation state is set.
  • the first blade 12 a receives the elastic force of the spring member 13.
  • the tip of the blade 12a abuts on the peripheral wall of the first roller 9a, and divides the first cylinder chamber Sa into two chambers, a compression chamber and a suction chamber.
  • the roller 9a moves eccentrically, the volume on the compression chamber side decreases, and the sucked gas is gradually compressed to increase the pressure.
  • the discharge valve mechanism When the pressure is increased to a predetermined pressure, the discharge valve mechanism is opened and the high pressure gas is discharged to the discharge mufflers 8a and 8b. Further, it is guided into the sealed case 1 and fills here.
  • the filled high-pressure gas refrigerant in the hermetic case 1 is discharged to the refrigerant pipe P, constitutes a refrigeration cycle as described above, and performs an indoor cooling action.
  • the inside of the sealed case 1 is filled with the high-pressure gas compressed in the first cylinder chamber Sa and is in a high-pressure atmosphere.
  • the lubricating oil in the oil reservoir 14 formed at the inner bottom of the sealed case 1 is also in a high pressure state, and the valve body 30 constituting the check valve mechanism G receives a high pressure.
  • a low-pressure gas refrigerant is guided to the back pressure introduction passage H.
  • valve hole 25 As a boundary, the vertical hole portion 20 that is a shared passage with the lubricating oil communication passage J, the guide hole portion 24 are in a low pressure atmosphere, and the valve body support hole 28 is in a high pressure atmosphere. is there.
  • the valve body 30 is a steel ball and has a certain amount of weight, it floats under the influence of high pressure, and is received and fitted into the valve hole 25 as shown by a two-dot chain line in FIG. Accordingly, the lubricating oil communication path J is closed.
  • the U-shaped valve 38 of the pressure switching valve 33 is switched to the solid line position in FIG. 1, and the first port pa and the second port pb are communicated. Therefore, the refrigerant pipe P on the discharge side connected to the sealed case 1, the first branch pipe 35, the pressure switching valve 33, the pressure control pipe P 1, the back pressure introduction passage H of the closing member 16 and the second pressure pipe 2.
  • the blade back chamber 11b communicates.
  • the low-pressure gas refrigerant evaporated in the indoor heat exchanger 53 is guided from the accumulator 32 to the refrigerant pipe Pa on the suction side, and is sucked into the first cylinder chamber Sa and the second cylinder chamber Sb through the branch guide path.
  • the gas refrigerant whose pressure has been increased by the compression action as described above is filled in the sealed case 1.
  • the high-pressure gas refrigerant is guided from the sealed case 1 to the refrigerant pipe P on the discharge side and circulates in the above-described refrigeration cycle.
  • a part of the high-pressure gas refrigerant is diverted from the refrigerant pipe P to the first branch pipe 35, and the pressure switching valve 33, the pressure control pipe P1, and the back pressure introduction passage H of the closing member 16 to the second blade back chamber 11b. be introduced.
  • the rear end of the second blade 12b receives a high back pressure, while the tip of the second blade 12b faces the second cylinder chamber Sb and is in a low pressure atmosphere. Differential pressure is generated at the end. Therefore, the second blade 12b that has been magnetically attracted by the permanent magnet 15 so far is easily separated from the permanent magnet 15 and urged toward the tip.
  • the blade groove 10b reciprocates while the tip of the second blade 12b is in contact with the peripheral surface of the second roller 9b.
  • the second blade 12b bisects the second cylinder chamber Sb into a compression chamber and a suction chamber, and a compression action is performed.
  • the first cylinder chamber Sa and the second cylinder chamber Sb are simultaneously compressed to perform full capacity operation.
  • the high-pressure gas refrigerant is guided to the back pressure introduction passage H, while the lubricating oil in the oil reservoir 14 is also affected by the high-pressure gas refrigerant that fills the sealed case 1. Accordingly, the valve body 30 that has entered the valve hole portion 25 and closed the valve seat during the half-capacity operation is changed to a high pressure atmosphere at the upper and lower portions thereof, and is therefore submerged by its own weight and supported by the valve body support hole 28. Is done.
  • the lubricating oil communication path J is opened, and the lubricating oil in the oil reservoir 14 passes through the oil conduction hole 26 and the second blade through the lubricating oil communication path J including the valve hole 25, the guide hole 24, and the vertical hole 20. Guided to the back chamber 11b, smoothes the reciprocating motion of the second blade 12b.
  • the low pressure gas refrigerant is guided to the pressure control pipe P1 and the back pressure introduction passage H to fill the second blade back chamber 11b and to apply the low pressure back pressure to the second blade 12b.
  • the sealed case 1 is filled with compressed high-pressure gas and is in a high-pressure state, and the lubricating oil collected in the oil reservoir 14 is also affected by the high pressure.
  • the rotating shaft 5 is provided with a lubricating oil supply passage for guiding the lubricating oil collected in the oil reservoir 14 to each sliding portion of the compression mechanism 3, and is affected by the high pressure of the oil reservoir 14. Lubricating oil is guided.
  • the check valve mechanism G acts to close the valve seat, but there is also lubricating oil that enters the second blade back chamber 11b through a clearance.
  • Lubricating oil is guided to the back pressure introduction passage H over time, and there is a high possibility that the lubricating oil will rise in the pressure control pipe P1. Eventually, it is considered that the lubricating oil fills the second blade back chamber 11b, the back pressure introduction passage H, and the pressure control pipe P1 while the half capacity operation is continued. Then, there is a case where the full-capacity operation is switched as it is.
  • full capacity operation may be started under conditions where the outside air is extremely cold.
  • the high-pressure gas refrigerant is guided from the pressure switching valve 33 to the second blade back chamber 11b through the pressure control pipe P1 and the back pressure introduction passage H.
  • the gas refrigerant is continuously supplied in a state where the outside air temperature is extremely low, the gas refrigerant condenses and changes to a liquid refrigerant. That is, it becomes an incompressible fluid similar to the above-described lubricating oil, and this may fill the second blade back chamber 11b, the back pressure introduction passage H, and the pressure control pipe P1.
  • the pressure control pipe P1 the back pressure introduction passage H, and the second blade back chamber 11b are filled with the incompressible fluid, and the operation of the compression mechanism section 3 is accompanied.
  • the gas component evaporates from the incompressible fluid due to heat generation.
  • the second blade 12b moves in the direction of expanding the volume of the second blade back chamber 11b on the second cylinder chamber Sb side, Further, the volume of the blade back chamber on the second blade back chamber 11b side is moved in the direction of reducing.
  • the back pressure introduction passage H and the lubricating oil communication passage J flow into the blade back chamber 11b from the back pressure introduction passage H when the second blade 12b moves in the direction of expanding the volume of the second blade back chamber 11b.
  • the amount of the incompressible fluid is larger than the amount of fluid flowing out to the back pressure introduction passage H when the second blade 12b moves in the direction of reducing the volume of the blade back chamber 11b. Yes.
  • a vertical hole portion 20 that is a shared passage sharing the back pressure introduction passage H and the lubricating oil communication passage J is opened on the lower surface of the second blade back chamber 11b, and this axial direction is defined as the second blade 12b.
  • the small-diameter hole portion 21 is communicated with the vertical hole portion 20, and the axial direction of the small-diameter hole portion 21 is set to a horizontal direction orthogonal to the axial direction of the vertical hole portion 20.
  • the guide hole 24 and the valve hole 25 constituting the lubricating oil communication path J communicate with the lower end portion of the vertical hole portion 20 and extend downward, and the axial directions are aligned in the same vertical direction.
  • the valve body 30 constituting the check valve mechanism G closes the valve hole portion 25 when a low pressure is introduced to the second blade back chamber 11b. Supported by the hole 28, the valve hole 25 is opened.
  • the incompressible fluid in the pressure control pipe P1 is led out from the small diameter hole portion 21 to the second blade back chamber 11b through the vertical hole portion 20. Further, the lubricating oil in the oil reservoir 14 is also guided from the lubricating oil communication passage J to the second blade back chamber 11 b through the vertical hole portion 20.
  • the fluid flows out to the guide hole portion 24 and the small diameter hole portion 21 through the vertical hole portion 20, and the guide hole portion 24 coincides with the flow direction of the fluid flowing through the vertical hole portion 20. Since the cross-sectional area is large, it flows out more than the small-diameter hole 21.
  • the amount of fluid flowing into the blade back chamber 11b from the back pressure introduction passage H is determined by the blade 12b.
  • the back pressure introduction passage H and the lubricating oil communication passage J are configured so that the amount of fluid flowing out from the blade back chamber 11b to the back pressure introduction passage H when moving in the direction of reducing the volume of the fluid is increased.
  • the incompressible fluid made of lubricating oil or liquid refrigerant filling the pressure control pipe P1 and the back pressure introduction passage H quickly and smoothly returns to the oil reservoir 14, and the pressure control pipe P1 and back Problems due to pressure pulsations in the pressure introduction passage H can be avoided, and the oil level can also be prevented from lowering.
  • the valve body support member 17 provided with the valve body support hole 28 was formed of a synthetic resin material.
  • the same material as the closing member 16 is selected for the valve body support member 17, at least the peripheral surface of the valve body support hole 28 is made of a synthetic resin material and covered with a coating having a certain thickness. Therefore, even if the valve body 30 made of steel (metal material) repeatedly collides with the valve body support hole 28, the generation of noise can be reduced.
  • a small permanent magnet piece 19 is attached to the lower end surface of the valve body support member 17, and a part thereof protrudes into the valve body support hole 28.
  • the permanent magnet piece 19 magnetically attracts the valve body 30 which is a steel ball.
  • the valve body 30 constituting the check valve mechanism G is formed into a spherical shape, and a valve body support hole 28 that supports the valve body 30 when the valve hole portion 25 is opened is formed in a tapered shape in a cross section extending upward.
  • the center of gravity of the valve body 30 is configured to be positioned below the upper end surface of the valve body support hole 28.
  • valve body 30 is accommodated in the valve body support hole 28 without backlash, and noise generation due to minute movement can be prevented. Even if a large fluid force due to the reciprocating motion of the second blade 12b acts on the valve body 30, the center of gravity of the valve body 30 is located below the upper end surface of the valve body support hole 28. The noise caused by the collision sound can be reduced without jumping out from the hole 28.
  • the valve hole portion 25 constituting the check valve mechanism G is used as a valve seat and has a tapered section extending downward, and the opening angle ⁇ is larger than the opening angle ⁇ of the valve body supporting hole 28 having a tapered section extending upward. Largely formed. Therefore, the lower end surface opening area of the valve hole portion 25 is larger than the upper end surface opening area of the valve body supporting hole 28.
  • valve body 30 when the valve body 30 is supported by the valve body support hole 28 and the valve hole portion 25 which is the valve seat is in an open state, the flow passage cross-sectional area of the fluid above the valve body 30 can be increased, and the flow velocity of the fluid Can be reduced, and the fluid force acting on the valve body 30 can be reduced.
  • the opening angle ⁇ of the valve body support hole 28 is small, the valve body 30 is better accommodated, and the valve body retainability can be improved.
  • a balancing groove 29 is provided in a part of the peripheral wall of the valve body support hole 28 constituting the check valve mechanism G from the upper end surface to the lower end surface. Even when the valve body 30 is supported in the valve body support hole 28, the balance groove 29 is a communication path that connects the upper end surface and the lower end surface of the valve body support member 17.
  • valve body 30 even when the valve body 30 is supported by the valve body support hole 28 and the valve hole portion 25 that is the valve seat is opened, the pressure difference between the upper part and the lower part of the valve body 30 is easily balanced.
  • the valve body 30 can be prevented from jumping out from the valve body support hole 28, and the generation of noise due to the collision sound of the valve body 30 can be reduced.
  • the check valve mechanism G is provided with a spherical (or conical) valve body 30, a valve seat (valve hole portion 25) provided at the upper portion of the valve body 30, and a lower portion of the valve seat.
  • the valve body support member 17 includes a valve body support hole 28 that restricts the movement of the valve body 30 when the body 30 opens the valve seat.
  • a valve seat is provided on the closing member 16 that closes the second blade back chamber 11b, and both the closing member 16 and the valve body support member 17 connect the second blade back chamber 11b via the fixture 18. It is attached and fixed to the second cylinder 6B.
  • FIG. 4 is a longitudinal sectional view of a multi-cylinder rotary compressor Ma as a second embodiment.
  • the same components as those in the multi-cylinder rotary compressor M in the first embodiment described above are denoted by the same reference numerals and a new description is omitted.
  • a vertical hole recess 60 constituting a back pressure introduction passage Ha is provided in the intermediate partition plate 2 which is an upper portion of the second blade back chamber 11b, and an opening of the back pressure introduction passage Ha is formed on the upper surface of the blade back chamber 11b. is there.
  • the small-diameter hole 21 communicates in a direction orthogonal to the axial direction of the vertical hole recess 60, and a connection hole 22 to which the pressure control pipe P1 is connected is provided.
  • the closing member 16A provided along the outer peripheral surface of the auxiliary bearing 7B is provided with a vertical hole portion, a guide hole portion, and a valve hole portion, and the valve body support member 17 has an oil conduction hole and The valve body support hole and the valve body supported by the valve body support hole are provided. That is, only the lubricating oil communication passage Ja and the check valve mechanism Ga are provided in the closing member 16a and the valve body support member 17.
  • the operation is the same as that described in the first embodiment. That is, when full capacity operation is performed in a state where the back pressure introduction passage Ha and the pressure control pipe P1 are filled with the incompressible fluid, the valve body 30 constituting the check valve mechanism G is supported by the valve body support hole. The valve hole is opened.
  • the second blade 12b moves in the direction of enlarging the volume of the second blade back chamber 11b on the second cylinder chamber Sb side, the second blade 12b passes through the back pressure introduction passage Ha from the pressure control pipe P1.
  • the incompressible fluid is guided to the blade back chamber 11b, and the lubricating oil in the oil reservoir is guided to the second blade back chamber 11b through the oil conduction hole of the lubricating oil communication passage Ja.
  • the vertical hole recess 60 and the small-diameter hole portion 21 of the back pressure introduction passage Ha are located above the blade back chamber 11b, and the lubricating oil communication passage Ja is located below the blade back chamber 11b.
  • the fluid is easily guided from the back pressure introduction passage Ha side and is not easily guided from the lubricating oil communication passage Ja side.
  • the incompressible fluid filling the second blade back chamber 11b is the lubricating oil communication path. Derived from Ja. At the same time, a part of the incompressible fluid filling the second blade back chamber 11 b is guided from the vertical hole recess 60 to the pressure control pipe P ⁇ b> 1 through the small diameter hole 21.
  • the vertical hole recess 60 and the small-diameter hole 21 of the back pressure introduction passage Ha are located at the upper part of the blade back chamber 11b and the lubricating oil communication passage Ja is located at the lower part of the blade back chamber 11b, Due to the action, the fluid is easy to flow to the lubricating oil communication passage Ja side and is difficult to flow to the back pressure introduction passage Ha side.
  • the axial direction of the vertical hole recess 60 and the small diameter hole portion 21 is provided in a direction orthogonal to each other, and the diameter of the small diameter hole portion 21 is formed so as to be much narrower than that of the vertical hole recess portion 60. Is difficult to flow to the back pressure introduction passage Ha side.
  • the back pressure introduction passage Ha and the lubricating oil communication passage Ja are configured so that the amount of fluid flowing out from the blade back chamber 11b to the back pressure introduction passage Ha when the volume of the chamber 11b is reduced is increased. Is done.
  • a vertical hole recess 60 constituting the back pressure introduction passage Ha is provided in the intermediate partition plate 2 which is the upper part of the second blade back chamber 11b and is opened. Therefore, a gas such as a gas refrigerant easily escapes to the back pressure introduction passage Ha such as the vertical hole recess 60.
  • the lubricating oil is always supplied to the second blade back chamber 11b and the blade groove, it is possible to prevent the performance from being lowered and the sliding performance from being deteriorated.
  • FIG. 5 is a longitudinal sectional view of a multi-cylinder rotary compressor Mb as a third embodiment.
  • the same components as those in the multi-cylinder rotary compressor M in the first embodiment described above are denoted by the same reference numerals, and new description is omitted.
  • the first cylinder 6A is attached to the lower side of the intermediate partition plate 2 and the second cylinder 6B is attached to the upper side. Therefore, the first cylinder 6A is provided with the first cylinder chamber Sa, the first roller 9a is accommodated, and a blade groove (not shown) and the first blade back chamber are connected in series, so that the first blade Is movably accommodated.
  • a spring member is interposed between the rear end portion of the first blade and the inner peripheral wall of the sealing case 1 so that the blade front end portion is in line contact with the first roller 9a.
  • the second cylinder chamber Sb is formed in the first cylinder 6B, and the second roller 9b is accommodated. Further, a blade groove and a second blade back chamber 11b are connected to the second cylinder chamber Sb, and the second blade 12b is movably accommodated. The permanent magnet is attached to the back side of the second blade back chamber 11b.
  • the closing member 16b is provided along a part of the peripheral wall of the flange portion of the main bearing 7A attached to the upper surface of the second cylinder 6B.
  • the closing member 16b closes the upper surface opening of the second blade back chamber 11b.
  • the lower surface opening of the second blade back chamber 11b is closed by the intermediate partition plate 2, and the blade back chamber 11b forms a sealed structure.
  • a vertical axial recess 60 is provided from the lower end surface of the closing member 16b to the vicinity of the upper end and opens on the upper surface of the second blade back chamber 11b.
  • the small-diameter hole portion 21 is provided in communication with the horizontal axial direction orthogonal to the axial direction of the vertical hole recess 60, and the connection hole 22 is provided along the same axial direction as the small-diameter hole portion 21. .
  • the end of the pressure control pipe P1 provided through the sealing case 1 is connected to the connection hole 22 from the outside of the sealing case 1.
  • the back pressure introduction passage Hb is constituted by the connection hole 22, the small diameter hole portion 21 and the vertical hole recess 60, and the pressure switching valve 33 is provided in the pressure control pipe P1 communicating with the back pressure introduction passage Hb.
  • a pressure control mechanism K is configured.
  • the vertical hole portion 20, the guide hole portion 24, and the valve hole portion 25 extend from the upper end surface to the lower end surface of the intermediate partition plate 2.
  • These hole portions 20, 24, and 25 are provided at a portion facing the vertical hole recess portion 60 provided in the closing member 16b with the second blade back chamber 11b interposed therebetween.
  • the first cylinder 6A is provided with an oil conduction hole 26 and a valve body support hole 28 at a portion facing the valve hole portion 25, and the valve body 30 is supported by the valve body support hole 28. Therefore, the valve hole portion 25 provided in the intermediate partition plate 2 serves as a valve seat for the valve body 30, and the valve body support hole 28 is provided on the lower side of the valve seat.
  • the lubricating oil communication passage Jb is formed in the intermediate partition plate 2 and the first cylinder 6A, and the check valve mechanism Gb is provided.
  • the dimensional shapes of the components of the lubricating oil communication passage Jb and the check valve mechanism Gb may be almost the same as those described in the first embodiment.
  • the gas refrigerant guided from the accumulator 32 through the refrigerant pipe Pa on the suction side is branched in the intermediate partition plate 2 to be divided into the first cylinder chamber Sa and the second cylinder chamber.
  • Sb the structure led to Sb, it is not limited to this.
  • two suction refrigerant pipes may be extended from the accumulator 32 so as to directly communicate with the first cylinder chamber Sa and the second cylinder chamber Sb.
  • first cylinder chamber Sa and the second cylinder chamber Sb have been described as having the same excluded volume, the present invention is not limited to this, and even when the excluded volumes are different from each other, an equivalent effect is obtained. Is obtained.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.
  • an improvement in reliability can be obtained by suppressing the fluid diode effect, and a low-noise multi-cylinder rotary compressor and the refrigeration cycle efficiency can be improved by including the multi-cylinder rotary compressor.
  • a refrigeration cycle apparatus is obtained.

Abstract

 多気筒回転式圧縮機(M)において圧縮機構部(3)は、第2のブレード(12b)後端部を移動自在に収容するブレード背室(11b)に背圧導入通路(H)を連通する。ブレード背室(11b)と油溜り部(14)とを連通する潤滑油連通路(J)に逆止弁機構(G)を設け、背圧導入通路(H)からブレード背室(11b)に高圧が導入されたときに潤滑油連通路(J)を開き、ブレード背室(11b)に低圧が導入されたときに閉じる。背圧導入通路(H)と潤滑油連通路(J)は、ブレード背室(11b)に高圧が導入され、第2のブレード(12b)がブレード背室(11b)の容積を拡大する方向に移動したときに背圧導入通路(H)からブレード背室(11b)に流入する流体の量が、第2のブレード(12b)がブレード背室(11b)の容積を縮小する方向に移動したときにブレード背室(11b)から背圧導入通路(H)に流出する流体の量よりも多くなるように構成する。

Description

多気筒回転式圧縮機と冷凍サイクル装置
 本発明の実施形態は、多気筒回転式圧縮機と、この多気筒回転式圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。
 冷凍サイクル装置では、圧縮機構部に複数のシリンダ室を備えた多気筒回転式圧縮機が多用される。この種の圧縮機において、複数のシリンダ室で同時に圧縮作用を行う全能力運転と、一方のシリンダ室で圧縮作用をなし、他方のシリンダ室では圧縮作用を停止して、圧縮仕事を低減する能力半減運転との切換えができれば有利である。
 日本国特表2008-520901号公報に開示される圧縮機の圧縮機構部は、一方のブレード(ベーン)の先端部をローラ周面から離間させて、一方のシリンダ室における圧縮運転の休止(セーブ運転)を可能とする休筒機構(モード切替えユニット)を備えている。上記休筒機構を機能させなければ両方のシリンダ室で圧縮運転がなされる、全能力運転(正常運転)となる。
 さらに、この文献には、ブレード後端部を移動自在に収容するブレード背室(ベーンチャンバ)の背面に背圧導入通路(吸入圧側連結管)が、ブレードの進退方向と平行に設けられ、ブレード背室の底面と密閉ケース内の潤滑油とを連通し、逆止弁(背圧調整バルブ)を備えた潤滑油連通路(背圧調整孔)が設けられる例が記載されている。
 しかるに、全能力運転時にブレード背室が潤滑油で満たされていて、ブレードがブレード背室の容積を縮小する方向に移動したときに、潤滑油が背圧導入通路へ押し出され易くなるが、ブレードがシリンダ室側であるブレード背室の容積を拡大する方向に移動したときは、背圧導入通路内の潤滑油が慣性力によってブレードの動きに追従し難くなる。
 このときは、密閉ケース内の潤滑油が潤滑油連通路からブレード背室を介して背圧導入通路へも浸入する。運転時間が継続すると、背圧導入通路への潤滑油の浸入量が増大し、ついには充満する、いわゆる流体ダイオード効果が生じてしまう。
 その結果、密閉ケース内の潤滑油の油面が低下し、圧縮機構部の各摺動部への給油量が不足し勝ちになって潤滑性に欠ける。また、ブレードがブレード背室の容量を拡大する方向へ移動したときに、逆止弁の弁孔部付近で圧力が急速に低下する。そのため、弁体が弁座に繰り返し接触して、騒音の増大化がある。
 本実施形態が解決しようとする課題は、ブレードがブレード背室の容積を縮小する方向に移動したときにも、ブレード背室の潤滑油が密閉ケース内に戻り易くなり、背圧導入通路には溜り難くして、信頼性の向上と低騒音化を得る多気筒回転式圧縮機と、この多気筒回転式圧縮機を備えて冷凍サイクル効率の向上化を得る冷凍サイクル装置を提供することにある。
 本実施形態の多気筒回転式圧縮機は、密閉ケース内に、潤滑油の油溜り部を備えるとともに、電動機部と、この電動機部と回転軸を介して連結される圧縮機構部を収容する。上記圧縮機構部は、中間仕切り板を介在して、シリンダ室を有する第1のシリンダ及び第2のシリンダを設ける。回転軸に形成される偏心部に第1のローラ及び第2のローラを嵌合し、各シリンダ室内でそれぞれ偏心回転させる。第1、第2のローラに第1のブレード及び第2のブレードの先端部が当接した状態で各シリンダ内を区画する。
 第1のブレードを弾性部材が第1のローラに当接するように付勢する。第2のブレード後端部をブレード背室に移動自在に収容する。ブレード背室に背圧導入通路を連通し、ブレード背室に高圧もしくは低圧を切換えて供給し第2のブレードに背圧を付与する。
 ブレード背室と潤滑油の油溜り部とを潤滑油連通路で連通する。潤滑油連通路に逆止弁機構を設け、背圧導入通路からブレード背室に高圧が導入されたときに潤滑油連通路を開いてブレード背室へ潤滑油を供給し、ブレード背室に低圧が導入されたときに潤滑油連通路を閉じる。
 上記背圧導入通路と潤滑油連通路は、ブレード背室に高圧が導入され、ブレードがブレード背室の容積を拡大する方向に移動したときに背圧導入通路からブレード背室に流入する流体の量が、ブレードがブレード背室の容積を縮小する方向に移動したときにブレード背室から背圧導入通路に流出する流体の量よりも多くなるように構成される。
 本実施形態の冷凍サイクル装置は、上記記載の多気筒回転式圧縮機と、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成する。
図1は、第1の実施形態に係る、気筒回転式圧縮機の概略の縦断面図である。 図2は、同多気筒回転式圧縮機の要部を分解した斜視図である。 図3は、同多気筒回転式圧縮機の要部を拡大した縦断面図である。 図4は、第2の同実施形態に係る多気筒回転式圧縮機概略の縦断面図である。 図5は、第3の同実施形態に係る多気筒回転式圧縮機概略の縦断面図である。 図6は、第1~第3の実施形態に共通する、多気筒回転式圧縮機を備えた冷凍サイクル装置の冷凍サイクル構成図である。
 以下、本実施形態を図面にもとづいて説明する。図1は、第1の実施形態に係る、多気筒回転式圧縮機Mの概略の縦断面図である。図中1は密閉ケースであって、この密閉ケース1内の下部には圧縮機構部3が設けられ、上部には電動機部4が設けられる。上記電動機部4と圧縮機構部3は、回転軸5を介して一体に連結される。
 上記圧縮機構部3は、上部側に第1のシリンダ6Aを備え、下部側に第2のシリンダ6Bを備えている。第1のシリンダ6Aの上端面に主軸受7Aが取付け固定され、第2のシリンダ6Bの下端面に副軸受7Bが取付け固定される。これら第1のシリンダ6Aと第2のシリンダ6Bとの間には中間仕切り板2が介在される。
 上記回転軸5は、各シリンダ6A、6B内部を貫通し、略180°の位相差で同一直径の第1の偏心部5aと第2の偏心部5bを一体に備える。各偏心部5a、5bはシリンダ6A、6Bの内径部に位置するように組立てられる。第1の偏心部5aの周面に第1のローラ9aが嵌合され、第2の偏心部5bの周面に第2のローラ9bが嵌合される。
 上記第1のシリンダ6Aの内径部は、主軸受7Aと中間仕切り板2によって閉塞され、第1のシリンダ室Saが形成される。上記第2のシリンダ6Bの内径部は、中間仕切り板2と副軸受7Bによって閉塞され、第2のシリンダ室Sbが形成される。
 第1のシリンダ室Saと第2のシリンダ室Sbは、互いに同一直径及び高さ寸法に設計される。上記第1、第2のローラ9a、9bの周壁一部が、第1、第2のシリンダ室Sa、Sbの周壁一部に潤滑油膜を介して線接触しながら偏心移動自在になるように、それぞれのローラ9a、9bがシリンダ室Sa,Sbに収容される。
 上記主軸受7Aには二重に重ねられた吐出マフラ8aが取付けられ、主軸受7Aに設けられる吐出弁機構を覆っている。いずれの吐出マフラ8aにも吐出孔が設けられる。上記副軸受7Bには一重の吐出マフラ8bが取付けられ、副軸受7Bに設けられる吐出弁機構を覆う。この吐出マフラ8bには吐出孔が設けられていない。
 主軸受7Aの吐出弁機構は第1のシリンダ室Saに対向し、圧縮作用にともない室内が所定圧力に上昇したとき開放して、圧縮ガスを吐出マフラ8a内に吐出させる。副軸受7Bの吐出弁機構は第2のシリンダ室Sbに対向し、圧縮作用にともない室内圧力が所定圧力に上昇したとき開放して、圧縮ガスを吐出マフラ8b内に吐出させる。
 副軸受7Bと、第2のシリンダ6Bと、中間仕切り板2と、第1のシリンダ6A及び主軸受7Aとに亘って吐出ガス案内路が設けられる。この吐出ガス案内路は、第2のシリンダ室Sbから吐出弁機構を介して下部側吐出マフラ8bに吐出された高圧ガスを、上部側の二重吐出マフラ8a内に案内する。
 上記密閉ケース1の内底部には、潤滑油を集溜する油溜り部14が形成される。図1において、上記主軸受7Aのフランジ部を横切る実線は潤滑油の油面を示していて、圧縮機構部3のほとんど全部が上記油溜り部14の潤滑油中に浸漬されている。回転軸5の下端面と圧縮機構部3の各摺動部に亘って、潤滑油を給油するための給油通路が設けられる。
 図2は、同実施形態に係る、上記圧縮機構部3の一部を分解して示す斜視図であり、要部のみを概略的に示し、詳細は省略している。
 第1のシリンダ6Aには、内径部である第1のシリンダ室Saにブレード溝10aが連設され、さらにブレード溝10aから第1のブレード背室11aが設けられる。上記ブレード溝10aには第1のブレード12aが移動自在に収容され、その先端部は第1のシリンダ室Saに、後端部は第1のブレード背室11aに突没自在である。
 第2のシリンダ6Bには、内径部である第2のシリンダ室Sbにブレード溝10bが連設され、さらにブレード溝10bから第2のブレード背室11bが設けられる。上記ブレード溝10bには第2のブレード12bが移動自在に収容され、その先端部は第2のシリンダ室Sbに、後端部は第2のブレード背室11bに突没自在である。
 第1、第2のブレード12a、12bそれぞれの先端部は平面視で略円弧状に形成されており、これら先端部が対向する第1、第2のシリンダ室Sa、Sbに突出した状態で、平面視で円形状の図1に示す上記第1、第2のローラ9a、9b周壁に、これらの回転角度にかかわらず線接触するようになっている。
 上記第1のシリンダ6Aには、第1のブレード背室11aと、このシリンダ6Aの外周面とを連通する横孔Wfが設けられ、ばね部材(弾性部材)13が収容される。ばね部材13は第1のブレード12aの後端部端面と密閉ケース1内周壁との間に介在され、第1のブレード12aに弾性力(背圧)を付与する。
 なお、第2のブレード12bに対しては、後端部端面と密閉ケース1内周壁との間に介在する部材は存在しない。後述するように、先端部が第2のシリンダ室Sbの圧力影響を受け、後端部が第2のブレード背室11bの圧力影響を受けて、先端部と後端部が受ける圧力の差圧によって背圧が付与され、もしくは付与されない。
 図3は、図1におけるA部を拡大して示す、圧縮機構部3要部である第2のブレード背室11bと周辺部を拡大した縦断面図である。
 第2のブレード背室11bの背面側周壁に永久磁石15が取付けられる。永久磁石15の磁気力は、第2のブレード12b後端部が永久磁石15に接触し、もしくは極く近傍位置に移動したところで、ブレード12b後端部を磁気吸着できる程度である。ある程度の高い圧力がかかれば、第2のブレード12bは永久磁石15から容易に離脱する。
 第2のブレード背室11bの上面開口部は、第2のシリンダ6Bの上端面に取付けられる中間仕切り板2によって閉塞される。しかしながら、第2のブレード背室11bの下面開口部は、副軸受7Bのフランジ部周端面から外方へ突出した位置に設けられ、そのままでは下面開口部が密閉ケース1内に開口してしまう。
 そこで、第2のブレード背室11bの下面開口部は、副軸受7Bのフランジ部外周壁一部に沿って取付けられる閉塞部材16によって閉塞される。すなわち、第2のブレード背室11bは中間仕切り板2と閉塞部材16とで閉塞され、密閉構造をなす。
 上記閉塞部材16は鋳鉄材で形成されるもしくは、SMF3種(鉄-炭素系焼結合金)もしくは、SMF4種(鉄-炭素-銅系焼結合金)で形成されている。すなわち、閉塞部材16を製造するには、複雑な内部構造を金型成形により確実に製造できる素材が選択される。
 上記閉塞部材16の下面部には、弁体支持部材17が取付け具18を介して取付けられる。上記弁体支持部材17は、合成樹脂材もしくは閉塞部材16と同一の素材から成形される。ただし、閉塞部材16と同一の素材が選択された場合は、後述するように一部を合成樹脂材からなり、ある程度肉厚の被膜で覆う必要がある。
 上記閉塞部材16と弁体支持部材17に、後述する背圧導入通路Hが設けられるとともに、潤滑油連通路Jが設けられ、さらに逆止弁機構Gが設けられる。
 上記背圧導入路Hは、第2のブレード背室11bの底面である閉塞部材16の上面から下方へ、閉塞部材16板厚の略半分程度の部位に亘って設けられる縦孔部20と、この縦孔部20の軸方向とは直交する軸方向で、縦孔部20の下端部と連通する細径孔部21と、この細径孔部21と同一の軸方向に沿わせて連通する接続用孔22とからなる。
 上記縦孔部20の直径よりも細径孔部21の直径が小さく(略半分程度)形成され、接続用孔22の直径は縦孔部20の直径よりも大である。この接続用孔22は閉塞部材16の(右)側端面に開口し、密閉ケース1を貫通して内部に延出される圧力制御用配管P1が接続される。
 上記潤滑油連通路Jは、上記縦孔部20と、この縦孔部20の下端部と連通され、縦孔部20の軸方向と同一に揃えられ下方に延設される案内孔部24と、この案内孔部24の下端部に形成される断面テーパー状(円錐台状)の弁孔部25と、この弁孔部25と連通され弁体支持部材17に設けられる空間部である油導通孔26とからなる。
 すなわち、上記縦孔部20は、第2のブレード背室11bの底面から所定の長さの範囲内で下方へ延びていて、上記背圧導入通路Hと、上記潤滑油連通路Jとの共用通路として形成される。
 この縦孔部(共用通路)20の中途部から、縦孔部20と直交する軸方向に延出される上記細径孔部21と接続用孔22で背圧導入通路Hが形成される。さらに、縦孔部20の下端部から下方へ延出される案内孔部24と弁孔部25及び油導通孔26で上記潤滑油連通路Jが構成される。潤滑油連通路Jの延出端部に、上記逆止弁機構Gが設けられる。
 潤滑油連通路Jの案内孔部24の直径は、縦孔部20の直径よりもわずかに小さく、弁孔部25は案内孔部24の下端部から直径が拡大するよう形成される。油導通孔26は縦孔部20と案内孔部24及び弁孔部25の軸方向とは直交する方向に設けられ、弁体支持部材17の左右両端面に開口する。
 上記背圧導入通路Hを構成する細径孔部21の直径は、潤滑油連通路Jを構成する案内孔部24の直径よりも極く小さく形成されるので、背圧導入通路Hは、潤滑油連通路Jの弁孔部25の断面積よりも極く小さい断面積部分を有することになる。
 上記逆止弁機構Gは、潤滑油連通路Jを構成する案内孔部24を弁孔とし、弁孔部25の断面テーパー状の周面を弁座となす。そして、弁体支持部材17上端面である油導通孔26と下端面との間に亘って設けられる弁体支持用孔(弁体支持部)28と、この弁体支持用孔28に支持される弁体30とで構成される。
 すなわち、ここでは弁孔部25である弁座が弁体30の上部に設けられ、断面形状は上端部から下端部に亘って拡径状をなし、下方へ向って漸次広がる断面テーパー状(円錐台状)をなす。弁体支持用孔28は弁体30の下部に設けられ、断面形状は上端部から下端部に亘って縮径状をなし、下方へ向って漸次狭まる断面テーパー状をなす。
 弁体30が弁体支持用孔28に支持された状態で、弁体30の重心は弁体支持用孔28の上端開口面よりも下方に位置する。弁座(弁孔部25)のテーパー角度αは、弁体支持用孔28のテーパー角度βよりも大であり、弁孔部25の下端面直径は、弁体支持用孔28の上端面直径よりも大である。
 弁孔部25の下端面直径と弁体支持用孔28の上端面直径のいずれにおいても、すなわち弁孔部25おとび弁体支持用孔28の弁体30側端部の直径は、弁体30の直径よりも大に形成されている。上記弁体30は球状で鋼製(金属)の磁性材である。
 上記弁体支持用孔28の周壁一部に、このテーパー角度に沿ってバランス用溝29が設けられる。弁体30が弁体支持用孔28に支持されることで、弁体支持用孔28が弁体30により閉成されるが、上記バランス用溝29を介して弁体支持部材17の上端面と下端面とが連通状態を保つ。
 さらに、弁体支持部材17の下端面に永久磁石小片19が取付けられる。この永久磁石小片19の一部は、弁体支持用孔28の下端開口面に突出していて、弁体支持用孔28に支持される弁体30の周壁一部に接触するよう位置調整されている。すなわち、弁体30を永久磁石小片19が磁気吸着して、弁体30の微小な上下動を規制する。
 なお、上記逆止弁機構Gを構成する弁体30を球状としたが、これに限定されるものではなく、断面テーパー状(円錐台状)としても良い。上記閉塞部材16を設ける代りに、副軸受7Bのフランジ部の一部を大きく形成して、このフランジ部で第2のブレード背室11bの下面開口部を閉塞し、背圧導入通路H等を備えてもよい。
 上記圧力制御用配管P1と背圧導入通路Hは、後述するブレード背圧制御機構(圧力切換え手段)Kの一部を構成している。このブレード背圧制御機構Kは、第2のブレード背室11bに高圧ガス(吐出圧)もしくは低圧ガス(吸込み圧)を選択して導き、第2のブレード12bの後端部に対する背圧の圧力切換えを制御するものである。
 再び図1に示すように、多気筒回転式圧縮機Mを構成する密閉ケース1の上端部には、吐出用の冷媒管Pが接続される。この冷媒管Pは、ヒートポンプ式冷凍サイクルを構成する機器に順次連通し、密閉ケース1に取付け具31を介して取付け固定されるアキュームレータ32上端部に接続される。
 アキュームレータ32下端部と密閉ケース1とは吸込み用の冷媒管Paを介して接続される。なお説明すると、冷媒管Paは密閉ケース1を貫通して中間仕切り板2の周端面に接続される。中間仕切り板2においては、冷媒管Paが接続される周面部位から軸芯方向へ向って二股状に分岐する分岐案内路(図示しない)が設けられる。
 一方の分岐案内路は第1のシリンダ室Saに連通し、他方の分岐案内路は第2のシリンダ室Sbに、それぞれ連通する。したがって、アキュームレータ32と、多気筒回転式圧縮機Mにおける第1のシリンダ室Sa及び第2のシリンダ室Sbとは、常時、連通状態にある。
 一方、上記圧力制御用配管P1は、密閉ケース1とアキュームレータ32の上端部よりも上方位置まで延出され、この端部に後述する圧力切換え弁33が設けられる。上記圧力切換え弁33は、冷暖房運転の切換えが可能なヒートポンプ式冷凍サイクルを備えた空気調和機に用いられる四方切換え弁を流用して、コストの抑制を図る。
 密閉ケース1の上端部に接続される冷媒管Pから第1の分岐管(高圧管)35が分岐され、これは圧力切換え弁33の第1のポートpaに接続される。第2のポートpbには上記圧力制御用配管P1が接続され、第3のポートpcにはアキュームレータ32の冷媒導入側の冷媒管Pから分岐される第2の分岐管(低圧管)36が接続される。
 第4のポートpdは、栓体37で常時、閉塞される。内部に収容される逆U字型弁38は、図に示すように第3のポートpcと第4のポートpdとを連通する位置と、二点鎖線で示すように第2のポートpbと第3のポートpcとを連通する位置に電磁的に切換え操作される。第1のポートpaは常時開放され、第4のポートPdは常時閉塞される。
 なお説明すると、図1の状態では第1のポートpaと第2のポートpbとが直接連通し、逆U字型弁38を介して第3のポートpcと第4のポートpdとが連通する。ただし、第4のポートpdは栓体37で閉塞されているので、第1のポートpaと第2のポートpbとの連通だけが残る。
 図1に二点鎖線で示す位置に逆U字型弁38が移動すると、逆U字型弁38を介して第2のポートpbと第3のポートpcとが連通し、第1のポートpaと第4のポートpdが直接連通する。同様に、第4のポートpdは栓体37で閉塞されているので、第2のポートpbと第3のポートpcとの連通だけが残る。 
 上記圧力切換え弁33は、通常のヒートポンプ式空気調和機を構成する冷凍サイクルに用いられる標準品である四方切換え弁を流用したが、この四方切換え弁に代って三方弁を使用し、もしくは複数の開閉弁を組合せても同様の作用効果を得られる。
 このようにブレード背圧制御機構Kは、圧力切換え弁33と、圧力制御用配管P1と、第1の分岐管35及び第2の分岐管36と、閉塞部材16に設けられる背圧導入通路Hとから構成され、第2のブレード背室11bに高圧と低圧を切換えて導き、第2のブレード12bに背圧を付与することができる。
 図6は、冷凍サイクル装置を空気調和機Rに適用した場合の、ヒートポンプ式冷凍サイクル構成図である。ここでは、上述したブレード背圧制御機構Kについては省略して示している。 
 多気筒回転式圧縮機Mに接続される冷媒管Pに四方切換え弁50が接続され、四方切換え弁50から室外熱交換器51と、膨張装置52と、室内熱交換器53に接続される。室内熱交換器53から四方切換え弁50を介してアキュームレータ32に接続され、さらに多気筒回転式圧縮機Mと吸込み用冷媒管Paで接続しているが、ここでは図示しない。
 このような空気調和機Rにおいて冷房運転を選択すると、多気筒回転式圧縮機Mで後述するように圧縮され冷媒管Pへ吐出されるガス冷媒は、四方切換え弁50から実線矢印に示すように、室外熱交換器51に導かれ外気と熱交換して凝縮され液冷媒に変る。すなわち、室外熱交換器51が凝縮器として作用する。
 室外熱交換器51から導出される液冷媒は、膨張装置52に導かれて断熱膨張する。そして、室内熱交換器53に導かれ、ここに送風される室内空気と熱交換して蒸発し、室内空気から蒸発潜熱を奪って室内の冷房作用をなす。すなわち、室内熱交換器53が蒸発器となる。 
 室内熱交換器53から導出される蒸発冷媒は、四方切換え弁50を介して多気筒回転式圧縮機Mに吸込まれ、上述したように圧縮されて冷凍サイクルを循環する。
 暖房運転を選択すると四方切換え弁50が切換り、多気筒回転式圧縮機Mから冷媒管Pへ吐出されるガス冷媒は、四方切換え弁50を介して破線矢印に示すように室内熱交換器53に導かれ、室内空気と熱交換して凝縮する。凝縮器となる室内熱交換器53の凝縮熱を室内空気が吸収することで温度上昇し、室内の暖房作用を得る。
 室内熱交換器53から導出される液冷媒は膨張装置52に導かれ、断熱膨張して室外熱交換器51に導かれて蒸発する。蒸発器である室外熱交換器51から導出される蒸発冷媒は、四方切換え弁50から多気筒回転式圧縮機Mに吸込まれ、上述したように圧縮されて冷凍サイクルを循環する。
 この空気調和機Rにおいては、上述の冷房運転と暖房運転のそれぞれにおいて、能力半減運転(休筒運転)と、全能力運転(通常運転)との切換え選択が可能である。
 たとえば冷房運転時に能力半減運転を選択すると、上述した冷房運転時の冷凍サイクルが構成されるとともに、ブレード背圧制御機構Kの圧力切換え弁33に収容される逆U字型弁38が切換えられる。すなわち圧力切換え弁33は、図1に二点鎖線で示すように、第2のポートpbと第3のポートpcが連通するように制御される。
 室内熱交換器53からアキュームレータ32に連通する冷媒管Pと、第2の分岐管36と、圧力切換え弁33と、圧力制御用配管P1、背圧導入通路H及び第2のブレード背室11bが連通状態になる。逆止弁機構Gは後述するように作用し、弁体30は図3に二点鎖線で示すように弁座である弁孔部25に嵌り込んで潤滑油連通路Jを閉成する。
 同時に、電動機部4に運転信号が送られ、回転軸5が回転駆動される。回転軸5の回転にともない、第1、第2のローラ9a、9bはそれぞれのシリンダ室Sa、Sb内で偏心移動する。第1のシリンダ6Aにおいては、第1のブレード12aがばね部材13に押圧付勢され、先端部がローラ9a周壁に摺接して第1のシリンダ室Sa内を二分する。
 室内熱交換器53で蒸発した低圧の冷媒ガスが、アキュームレータ32から吸込み側の冷媒管Paに導かれ、多気筒回転式圧縮機Mの中間仕切り板2に設けられる2つの分岐案内路に案内される。そして、それぞれの分岐案内路から第1のシリンダ室Saと第2のシリンダ室Sbに吸込まれる。
 さらに、圧力切換え弁33の上述した切換え操作により、室内熱交換器53から導出される低圧のガス冷媒の一部が、冷媒管Pから第2の分岐管36と、圧力切換え弁33と、圧力制御用配管P1と、閉塞部材18に設けられる背圧導入通路Hを介して第2のブレード背室11bに導かれる。
 第2のブレード背室11bに充満する低圧のガス冷媒は、第2のブレード12bの後端部に低圧の背圧を付与する。第2のシリンダ室Sbに対向する第2のブレード12b先端部が低圧雰囲気下にあり、第2のブレード背室11bに対向する第2のブレード12b後端部も低圧雰囲気下にあるので、ブレード12bの先端部と後端部で差圧が生じない。
 回転軸5の回転により第2のローラ9bが偏心移動してくると、第2のブレード12b先端部はローラ9bに蹴られて後退する。第2のブレード12bの後端部が第2のブレード背室11bに取付けられる永久磁石15に接触または近接し、第2のブレード12bは永久磁石15に磁気吸着される。
 したがって、第2のブレード12bの先端部は第2のシリンダ室Sb内へ突出せず、そのままの位置を保持する。回転軸5の偏心部5bに嵌合する第2のローラ9bは空回りを継続し、第2のシリンダ室Sbおいて圧縮作用が行われない。すなわち、第2のシリンダ室Sbでは休筒運転状態となる。
 一方、第1のシリンダ室Saにおいては、第1のブレード12aがばね部材13の弾性力を受ける。ブレード12a先端部は第1のローラ9aの周壁に当接し、第1のシリンダ室Saを圧縮室と吸込み室の二室に区画する。ローラ9aの偏心移動にともなって圧縮室側の容積が減少していき、吸込まれたガスが徐々に圧縮されて高圧化する。
 所定圧まで上昇して高圧化すると、吐出弁機構が開放して高圧化したガスが吐出マフラ8a,8bへ吐出される。さらに密閉ケース1内に導かれて、ここに充満する。密閉ケース1内の充満した高圧のガス冷媒は冷媒管Pへ吐出され、上述したような冷凍サイクルを構成して室内の冷房作用をなす。
 結局、第2のシリンダ室Sbにおいて圧縮作用が行われない休筒運転状態を支持し、第1のシリンダ室Saにおいてのみ圧縮運転をなす、能力半減運転となる。
 このとき、密閉ケース1内は第1のシリンダ室Saで圧縮された高圧ガスが充満し、高圧の雰囲気下にある。密閉ケース1内底部に形成される油溜り部14の潤滑油も高圧状態となり、逆止弁機構Gを構成する弁体30が高圧を受ける。その一方で、背圧導入通路Hに低圧のガス冷媒が導かれている。
 上記弁孔部25を境にして、潤滑油連通路Jとの共用通路である縦孔部20と、上記案内孔部24が低圧雰囲気下にあり、弁体支持用孔28が高圧雰囲気下にある。弁体30は鋼球であり、ある程度の重量を有するが、高圧の影響で浮上し、図3に二点鎖線で示すように弁孔部25に受け止められ嵌り込む。したがって、潤滑油連通路Jが閉塞される。
 全能力運転を選択すると、圧力切換え弁33のU字型弁38が図1の実線位置に切換えられ、第1のポートpaと第2のポートpbが連通する。したがって、密閉ケース1に接続する吐出側の冷媒管Pと、第1の分岐管35と、圧力切換え弁33と、圧力制御用配管P1と、閉塞部材16の背圧導入通路H及び第2のブレード背室11bが連通する。
 同時に、電動機部4に運転信号が送られ、回転軸5が回転駆動されて、第1、第2のローラ9a、9bはそれぞれのシリンダ室Sa、Sb内で偏心運動を行う。第1のシリンダ6Aにおいて、第1のブレード12aはばね部材13に押圧付勢され、先端部がローラ9a周壁に摺接して第1のシリンダ室Sa内を二分する。
 室内熱交換器53で蒸発した低圧のガス冷媒がアキュームレータ32から吸込み側の冷媒管Paに導かれ、分岐案内路を介して第1のシリンダ室Saと第2のシリンダ室Sbに吸込まれる。第1のシリンダ室Saでは、上述したように圧縮作用が行われて高圧化したガス冷媒が密閉ケース1内に充満している。
 高圧のガス冷媒は、密閉ケース1から吐出側の冷媒管Pへ導かれ、上述した冷凍サイクルを循環する。一部の高圧ガス冷媒は冷媒管Pから第1の分岐管35に分流され、圧力切換え弁33、圧力制御用配管P1、閉塞部材16の背圧導入通路Hから第2のブレード背室11bに導入される。
 第2のブレード12b後端部が高圧の背圧を受けることとなり、その一方で、第2のブレード12b先端部が第2のシリンダ室Sbに対向し低圧雰囲気下にあるので、先端部と後端部で差圧が生じる。そのため、それまで永久磁石15によって磁気吸着されていた第2のブレード12bが、永久磁石15から容易に離れて先端部側へ押圧付勢される。
 回転軸5の回転にともない第2のローラ9bが偏心移動すると、第2のブレード12bの先端部が第2のローラ9b周面に当接したまま、ブレード溝10bを往復移動する。第2のブレード12bは第2のシリンダ室Sbを圧縮室と吸込み室とに二分し、圧縮作用が行われる。
 したがって、第1のシリンダ室Saと第2のシリンダ室Sbにおいて同時に圧縮作用をなし、全能力運転が行われることとなる。
 このとき、背圧導入通路Hに高圧のガス冷媒が導かれる一方で、油溜り部14の潤滑油も密閉ケース1に充満するガス冷媒によって高圧の影響を受けている。したがって、能力半減運転時に弁孔部25に入り込んで弁座を閉塞していた弁体30は、その上下部がほとんど同じ高圧雰囲気に変るため、自重により沈下して弁体支持用孔28に支持される。
 潤滑油連通路Jが開放され、油溜り部14の潤滑油が油導通孔26から弁孔部25と案内孔部24及び縦孔部20からなる潤滑油連通路Jを介して第2のブレード背室11bに導かれ、第2のブレード12bの往復動作を円滑化する。
 ところで、能力半減運転時には、圧力制御用配管P1と背圧導入通路Hに低圧のガス冷媒が導かれ、第2のブレード背室11bに充満して第2のブレード12bに低圧の背圧を付与する。また、密閉ケース1内には圧縮された高圧ガスが充満し、高圧状態となっていて、油溜り部14に集溜する潤滑油も高圧の影響を受ける。
 上記回転軸5には、油溜り部14に集溜する潤滑油を圧縮機構部3の各摺動部に導くための潤滑油供給路が設けられ、油溜り部14の高圧の影響を受けた潤滑油が導かれる。ここでは逆止弁機構Gが作用し弁座を閉塞しているが、クリアランスを介して第2のブレード背室11bに浸入する潤滑油もある。
 潤滑油は、時間をかけて背圧導入通路Hに導かれ、圧力制御用配管P1内を上昇する可能性が多い。結局、能力半減運転を継続している間に、第2のブレード背室11bと、背圧導入通路H及び圧力制御用配管P1に、潤滑油が充満することが考えられる。そして、そのまま全能力運転に切換る場合がある。
 あるいは、外気が極く低温の条件下で、全能力運転が開始されることがある。このときは、高圧のガス冷媒が圧力切換え弁33から圧力制御用配管P1と背圧導入通路Hを介して第2のブレード背室11bに導かれる。
 しかるに、外気温度が極く低温状態でガス冷媒を供給し続けていると、ガス冷媒が凝縮して液冷媒に変ってしまう。すなわち、上述の潤滑油と同様の非圧縮性流体となり、これが第2のブレード背室11bと、背圧導入通路H及び圧力制御用配管P1に充満する可能性がある。
 このような状況下での全能力運転時に、圧力制御用配管P1と背圧導入通路H及び第2のブレード背室11bに非圧縮性流体が充満する一方で、圧縮機構部3の作用にともなう発熱の影響で、非圧縮流体からガス分が蒸発する。
 全能力運転を継続することで、第2のブレード背室11bと背圧導入通路Hと圧力制御用配管P1に充満する非圧縮流体からほとんどのガス分が蒸発し、純然たる液体のみが残る。そのため、第2のブレード12bの往復動作を第2のブレード背室11bにおいて完全な液体状である非圧縮性流体が直接受け、緩衝効果がほとんど無い状態となる。
 そのまま高回転運転を行うと、第2のブレード12bの往復動作に非圧縮流体の流動が追従できなくなる。第2のブレード12b後端部とっては過大な抵抗力を受けることになり、動作に円滑を欠く。背圧導入通路Hにおける非圧縮流体の圧力エネルギーの変動である圧力脈動が大きくなり、振動、騒音、配管の破裂などの問題が生じる虞れがある。
 しかるに、第2のブレード背室11bに高圧が導入されているとき、第2のブレード12bは第2のシリンダ室Sb側である第2のブレード背室11bの容積を拡大する方向に移動し、さらに第2のブレード背室11b側であるブレード背室の容積を縮小する方向に移動している。
 上記背圧導入通路Hと潤滑油連通路Jは、第2のブレード12bが第2のブレード背室11bの容積を拡大する方向に移動したときに背圧導入通路Hからブレード背室11bに流入する非圧縮性流体の量が、第2のブレード12bがブレード背室11bの容積を縮小する方向に移動したときに背圧導入通路Hに流出する流体の量よりも多くなるように構成されている。
 このような構成により、背圧導入通路H及び圧力制御用配管P1内の非圧縮性流体は速やかに密閉ケース1内の油溜り部14に排出されるので、上記圧力脈動等の不具合を回避できる。
 なお説明すると、第2のブレード背室11b下面に、背圧導入通路Hと潤滑油連通路Jとを共用する共用通路である縦孔部20を開口し、この軸方向を第2のブレード12bの往復動方向とは直交する垂直方向に設けた。そして、縦孔部20に細径孔部21を連通させ、細径孔部21の軸方向は縦孔部20の軸方向とは直交する水平方向にした。
 一方、縦孔部20の下端部に潤滑油連通路Jを構成する案内孔部24と弁孔部25を連通して下方へ延出し、軸方向を同一の垂直方向に揃える。逆止弁機構Gを構成する弁体30は、第2のブレード背室11bに低圧が導かれると弁孔部25を閉成するが、高圧が導かれると自重で沈下して弁体支持用孔28に支持され、弁孔部25を開放する。
 圧力制御用配管P1と背圧導入通路Hに充満する非圧縮性流体自体は高圧化されているから、第2のブレード背室11bで第2のブレード12bに高圧の背圧を付与する。第2のブレード12bは、第2のシリンダ室Sb側と第2のブレード背室11b側へ往復移動を継続し、第2のシリンダ室Sbにおいて圧縮作用を得られることは変りがない。
 ここで、図3に示すように第2のブレード12bが実線矢印方向へ往動したとき、すなわち第2のブレード背室11bの容積を拡大する方向へ移動したとき、第2のブレード背室11bが負圧状態になり、圧力制御用配管P1内の非圧縮流体が実線矢印に示すように導かれる。
 具体的には、圧力制御用配管P1内の非圧縮流体は細径孔部21から縦孔部20を介して第2のブレード背室11bへ導出される。また、潤滑油連通路Jからも油溜り部14の潤滑油が、縦孔部20を介して第2のブレード背室11bへ導かれる。
 第2のブレード12bが破線矢印方向へ復動する、第2のブレード背室11bの容積を縮小する方向へ移動した状態で、第2のブレード背室11bに充満する非圧縮性流体は、ここから出る。
 そして、流体は縦孔部20を介して案内孔部24と細径孔部21に流出するが、案内孔部24の方が縦孔部20を流動する流体の流動方向と一致しているうえ、断面積も大きいので、細径孔部21よりも多量に流出する。
 つぎに、再度第2のブレード12bが実線矢印方向へ往動すると、ブレード背室11bには、案内孔部24よりも細径孔部21から、より流入され易くなる。これは、細径孔部21の方が、案内孔部24よりも流出流体の慣性力が小さいためで、いわゆる流体ダイオード効果による。
 すなわち、第2のブレード12bが第2のブレード背室11bの容積を拡大する方向に移動したとき背圧導入通路Hからブレード背室11bに流入する流体の量が、ブレード12bがブレード背室11bの容積を縮小する方向へ移動したときブレード背室11bから背圧導入通路Hへ流出する流体の量よりも多くなるように、背圧導入通路Hと潤滑油連通路Jが構成されている。
 したがって、圧力制御用配管P1と背圧導入通路Hに充満する潤滑油もしくは液冷媒からなる非圧縮性流体が、油溜り部14へ早急、かつ円滑に戻ることとなり、圧力制御用配管P1と背圧導入通路H内の圧力脈動による不具合を回避でき、また油面の低下も防止できる。
 第2のブレード12bが第2のシリンダ室Sb側へ移動するとき、弁孔部25付近で急速に圧力が低下し、弁体30が弁孔部25に繰り返し接触し易い。しかしながら、弁体30を支持する弁体支持用孔28の上部に弁孔部25を設けているので、弁孔部25から導出される非圧縮流体が弁体30を押圧し、細かな上下動を規制して騒音の発生がない。
 弁体支持用孔28を備えた弁体支持部材17を、合成樹脂材で形成した。弁体支持部材17を閉塞部材16と同様の素材を選択した場合は、少なくとも弁体支持用孔28の周面を合成樹脂材からなり、ある程度肉厚のある被膜で覆う。したがって、鋼製(金属材)からなる弁体30が弁体支持用孔28に衝突を繰り返しても騒音の発生を低減できる。
 弁体支持部材17の下端面に永久磁石小片19を取付けて、その一部を弁体支持用孔28に突出させている。弁体30が弁体支持用孔28に支持されるとき、弁体30一部は永久磁石小片19に接触する。そのため、永久磁石小片19は鋼球である弁体30を磁気吸着する。
 たとえ、第2のブレード12bの往復動にともなう大きな流体力が弁体30に作用しても、永久磁石小片19が弁体30を磁気吸着することで、弁体30の動きを確実に規制して騒音の発生を防止でき、低騒音の多気筒回転式圧縮機Mを提供できる。
 逆止弁機構Gを構成する弁体30を球状とし、この弁体30を弁孔部25の開放時に支持する弁体支持用孔28を上方に広がる断面テーパー状に形成し、かつこのときの弁体30の重心位置が弁体支持用孔28の上端面よりも下方に位置するよう構成した。
 したがって、弁体30は弁体支持用孔28にガタ無く納まり、微小な動きに起因する騒音発生を防止できる。第2のブレード12bの往復動にともなう大きな流体力が弁体30に作用しても、弁体30の重心位置が弁体支持用孔28の上端面よりも下方に位置するので弁体支持用孔28から飛び出すことが無く、衝突音による騒音の低減化を図れる。
 逆止弁機構Gを構成する弁孔部25を弁座として、下方に広がる断面テーパー状とし、この開口角度αを、上方に広がる断面テーパー状の弁体支持用孔28の開口角度βよりも大きく形成した。そのため、弁孔部25の下端面開口面積は、弁体支持用孔28の上端面開口面積よりも大きい。
 したがって、弁体30が弁体支持用孔28に支持され、弁座である弁孔部25が開放状態にあるときの、弁体30上部の流体の流路断面積を大きくでき、流体の流速が低減して、弁体30に働く流体力を低減できる。加えて、弁体支持用孔28の開口角度βが小さいため、弁体30の納まりが良くなり、弁体保持性の向上を得られる。
 さらに、逆止弁機構Gを構成する弁体支持用孔28の周壁一部に、この上端面から下端面に沿ってバランス用溝29を設けた。バランス用溝29は、弁体支持用孔28に弁体30を支持したときでも、弁体支持部材17の上端面と下端面とを連通する連通路となっている。
 したがって、弁体支持用孔28に弁体30が支持され、弁座である弁孔部25が開放された状態であっても、弁体30の上部と下部との圧力差がバランスされ易くなり、弁体30が弁体支持用孔28から飛び出すことを防止でき、弁体30の衝突音による騒音の発生を低減できる。
 なお、上記逆止弁機構Gは、球状(もしくは円錐状)の弁体30と、この弁体30の上部に設けられる弁座(弁孔部25)と、弁座の下部に設けられ、弁体30が弁座を開放したとき弁体30の動きを規制する弁体支持用孔28を備えた弁体支持部材17とから構成される。
 そして、弁座が第2のブレード背室11bを閉塞する閉塞部材16に設けられ、この閉塞部材16と弁体支持部材17が、ともに、取付け具18を介して第2のブレード背室11bを有する第2のシリンダ6Bに取付け固定されている。
 したがって、部品点数と製造工数の低減化を図ることができ、低コストで製造性の高い多気筒回転式圧縮機Mを提供できる。
 図4は、第2の実施の形態としての多気筒回転式圧縮機Maの縦断面図である。上述した第1の実施の形態における多気筒回転式圧縮機Mと同一の構成部品に付いては、同番号を付して新たな説明は省略する。
 ここでは、第2のブレード背室11bの上部である中間仕切り板2に背圧導入通路Haを構成する縦孔凹部60が設けられ、ブレード背室11b上面に背圧導入通路Haの開口部がある。縦孔凹部60の軸方向とは直交する方向に細径孔部21が連通し、圧力制御用配管P1が接続される接続用孔22が連設される。
 その一方で、副軸受7Bの外周面に沿って設けられる閉塞部材16Aには、縦孔部と、案内孔部と、弁孔部が設けられ、弁体支持部材17には、油導通孔と、弁体支持用孔と、弁体支持用孔に支持される弁体が設けられる。すなわち、閉塞部材16aと弁体支持部材17に、潤滑油連通路Jaと逆止弁機構Gaのみが設けられる。
 上記中間仕切り板2に設けられる背圧導入通路Haを含めて、潤滑油連通路Jaと逆止弁機構Gaそれぞれの構成部品の寸法形状は、先に第1の実施形態で説明したものとほとんど同一であってよい。
 作用的には、第1の実施の形態で説明したものと同一である。すなわち、背圧導入通路Haと圧力制御用配管P1に非圧縮性流体が充満した状態で全能力運転をなすと、逆止弁機構Gを構成する弁体30が弁体支持用孔に支持され、弁孔部が開口される。
 第2のブレード12bが第2のシリンダ室Sb側である、第2のブレード背室11bの容積を拡大する方向へ移動したとき、圧力制御用配管P1から背圧導入通路Haを介して第2のブレード背室11bに非圧縮性流体が導かれ、潤滑油連通路Jaの油導通孔等を介して油溜り部の潤滑油が、第2のブレード背室11bへ導かれる。
 このとき、背圧導入通路Haの縦孔凹部60及び細径孔部21がブレード背室11bの上部位置し、潤滑油連通路Jaはブレード背室11bの下部に位置していることから、重力の作用により、流体は背圧導入通路Ha側から導かれやすく、潤滑油連通路Ja側からは導かれ難い。
 第2のブレード12bが第2のブレード背室11b側である、ブレード背室の容積を縮小する方向へ移動したとき、第2のブレード背室11bに充満する非圧縮性流体は潤滑油連通路Jaから導出される。同時に、第2のブレード背室11bに充満する一部の非圧縮性流体は、縦孔凹部60から細径孔部21を介して圧力制御用配管P1に導かれる。
 しかるに、背圧導入通路Haの縦孔凹部60及び細径孔部21がブレード背室11bの上部位置し、潤滑油連通路Jaはブレード背室11bの下部に位置していることから、重力の作用により、流体は潤滑油連通路Ja側に流れ易く、背圧導入通路Ha側には流れに難い。
 さらに、縦孔凹部60と細径孔部21の軸方向は互いに直交する方向に設けられ、縦孔凹部60よりも細径孔部21の直径が極く細く形成されされているので、より流体は背圧導入通路Ha側には流れ難い状態となっている。
 結局、第2のブレード12bが第2のブレード背室11bの容積を拡大する方向に移動したときに、背圧導入通路Haからブレード背室11bに流入する流体の量が、ブレードが12bブレード背室11bの容積を縮小する方向に移動したときに、ブレード背室11bから背圧導入通路Haに流出する流体の量よりも多くなるように、背圧導入通路Haと潤滑油連通路Jaが構成される。
 さらに、背圧導入通路Haを構成する縦孔凹部60が、第2のブレード背室11bの上部である中間仕切り板2に設けられ開口している。そのため、ガス冷媒などの気体が縦孔凹部60など背圧導入通路Haへ逃げ易い。一方で、第2のブレード背室11bとブレード溝には常に潤滑油が供給されるため、性能の低下や摺動性の悪化を防止できる。
 図5は、第3の実施の形態としての多気筒回転式圧縮機Mbの縦断面図である。図4と同様に、上述した第1の実施の形態における多気筒回転式圧縮機Mと同一の構成部品に付いては、同番号を付して新たな説明は省略する。
 ここでは、中間仕切り板2を挟んで、この下部側に第1のシリンダ6Aを取付け、上部側に第2のシリンダ6Bを取付けている。したがって、第1のシリンダ6Aには第1のシリンダ室Saが設けられ、第1のローラ9aが収容されるとともに、図示しないブレード溝と第1のブレード背室が連設され、第1のブレードが移動自在に収容される。
 上記第1のブレード後端部と密閉ケース1内周壁との間にばね部材が介設され、ブレード先端部を上記第1のローラ9aに線接触させるようになっていることは、何らの変更もない。
 上記第1のシリンダ6Bには第2のシリンダ室Sbが形成され、第2のローラ9bが収容される。さらに、第2のシリンダ室Sbにブレード溝と第2のブレード背室11bが連設され、第2のブレード12bが移動自在に収容される。第2のブレード背室11bの背面側には永久磁石が取付けられることも変りが無い。
 このような前提のうえで、第2のシリンダ6Bの上面に取付けられる主軸受7Aのフランジ部周壁一部に沿って閉塞部材16bが設けられる。この閉塞部材16bは第2のブレード背室11bの上面開口部を閉塞する。第2のブレード背室11bの下面開口部は中間仕切り板2によって閉塞され、ブレード背室11bは密閉構造をなす。
 上記閉塞部材16bの下端面から上端近傍部位まで、垂直な軸方向の縦孔凹部60が設けられ、第2のブレード背室11b上面に開口する。上記縦孔凹部60の軸方向とは直交する水平な軸方向に細径孔部21が連通して設けられ、さらに細径孔部21と同一の軸方向に沿って接続用孔22が設けられる。
 上記接続用孔22には、密閉ケース1外部から、密閉ケース1を貫通して設けられる圧力制御用配管P1の端部が接続される。これら接続用孔22と、細径孔部21及び縦孔凹部60で上記背圧導入通路Hbが構成され、これと連通する圧力制御用配管P1に上述の圧力切換え弁33が設けられ、ブレード背圧制御機構Kが構成される。
 一方、第2のシリンダ室Sbの下面を閉塞する中間仕切り板2には、縦孔部20と、案内孔部24及び弁孔部25が、中間仕切り板2の上端面から下端面に亘って、垂直な軸方向に沿って連設される。これら孔部20,24,25は、上記閉塞部材16bに設けられる縦孔凹部60と、第2のブレード背室11bを介在して対向する部位に設けられる。
 上記第1のシリンダ6Aには、上記弁孔部25と対向する部位に油導通孔26及び弁体支持用孔28が設けられ、この弁体支持用孔28に弁体30が支持される。したがって、中間仕切り板2に設けられる弁孔部25が、弁体30に対する弁座となっていて、弁座の下部側に弁体支持用孔28が設けられることになる。
 このようにして、中間仕切り板2と第1のシリンダ6Aに、潤滑油連通路Jbが形成されるとともに、逆止弁機構Gbが設けられる。上記背圧導入通路Hbを含めて、潤滑油連通路Jbと逆止弁機構Gbそれぞれの構成部品の寸法形状は、先に第1の実施形態で説明したものとほとんど同一であってよい。
 このような多気筒回転式圧縮機Mbにおける作用及び効果は、先に第1の実施の形態及び第2の実施の形態で説明した多気筒回転式圧縮機M、Maと全く同一であるので、ここでは同説明を適用し、新たな説明は省略する。
 上述の多気筒回転式圧縮機Mを備えて冷凍サイクルを構成する冷凍サイクル装置(空気調和機)Rであるから、冷凍(空調)効果の大幅な向上を得られ、さらなる信頼性の向上に繋げられる。
 なお、上述の圧縮機構部3では、アキュームレータ32から吸込み側の冷媒管Paを介して導かれたガス冷媒を、中間仕切り板2内で分岐して第1のシリンダ室Saと第2のシリンダ室Sbに導く構成としたが、これに限定されるものではない。
 たとえば、アキュームレータ32から2本の吸込み冷媒管を延出して、第1のシリンダ室Saと、第2のシリンダ室Sbとのそれぞれに、直接、連通するように構成したものであっても良い。
 また、第1のシリンダ室Saと、第2のシリンダ室Sbの排除容積が同一のものとして説明したが、これに限定されるものではなく、排除容積が互いに異なる場合においても、同等の作用効果が得られる。
 本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。
 本発明によれば、流体ダイオード効果を抑制して信頼性の向上を得られ、低騒音の多気筒回転式圧縮機と、この多気筒回転式圧縮機を備えて冷凍サイクル効率の向上化を得る冷凍サイクル装置が得られる。

Claims (6)

  1.  密閉ケース内に、潤滑油の油溜り部を備えるとともに、電動機部と、この電動機部と回転軸を介して連結される圧縮機構部を収容する多気筒回転式圧縮機において、
     上記圧縮機構部は、
     中間仕切り板を介在して設けられ、それぞれにシリンダ室を有する第1のシリンダ及び第2のシリンダと、上記回転軸に形成される偏心部に嵌合され、上記各シリンダ室内でそれぞれ偏心回転する第1のローラ及び第2のローラと、上記第1のローラ及び第2のローラに先端部が当接した状態で上記各シリンダ内を区画する第1のブレード及び第2のブレードと、
     上記第1のブレードを、上記第1のローラに当接するように付勢する弾性部材と、
     上記第2のブレード後端部を、移動自在に収容するブレード背室と、
     このブレード背室に連通され、ブレード背室に高圧もしくは低圧を切換えて供給し、第2のブレードに背圧を付与する背圧導入通路と、
     上記ブレード背室と上記油溜り部とを連通する潤滑油連通路と、
     この潤滑油連通路に設けられ、上記背圧導入通路からブレード背室に高圧が導入されたときに上記潤滑油連通路を開いてブレード背室に潤滑油を供給し、ブレード背室に低圧が導入されたときに潤滑油連通路を閉じる逆止弁機構と、を具備し、
     上記背圧導入通路と潤滑油連通路は、ブレード背室に高圧が導入され、ブレードがブレード背室の容積を拡大する方向に移動したときに背圧導入通路からブレード背室に流入する流体の量が、ブレードがブレード背室の容積を縮小する方向に移動したときにブレード背室から背圧導入通路へ流出する流体の量よりも多くなるように構成されることを特徴とする多気筒回転式圧縮機。
  2.  上記背圧導入通路と潤滑油連通路は、ブレード背室の底面から所定の長さの範囲内で下方へ延びる通路を共用し、
     上記背圧導入通路は、共用通路の中途部から、共用通路と直交する方向へ延出され、
     上記潤滑油連通路は、共用通路の下端部からさらに下方へ延出され、この延出端部に上記逆止弁機構が設けられる
    ことを特徴とする請求項1記載の多気筒回転式圧縮機。
  3.  上記背圧導入通路のブレード背室に対する開口部はブレード背室の上面に設けられ、上記潤滑油連通路のブレード背室に対する開口部よりも上方部位に位置することを特徴とする請求項1記載の多気筒回転式圧縮機。
  4.  上記第1のシリンダを下部側に、この第1のシリンダ上に中間仕切り板を介して上記ブレード背室を備えた第2のシリンダを上部側にして組立てた状態で、
     上記逆止弁機構は、上記中間仕切り板に設けられる弁座と、この弁座を開閉する弁体と、上記弁座の下部である上記第1のシリンダに設けられ弁座の開放時に上記弁体の動きを規制する弁体支持部とを具備することを特徴とする請求項1ないし請求項3のいずれかに記載の多気筒回転式圧縮機。
  5.  上記逆止弁機構は、
     金属製で球体からなる弁体と、この弁体の上部に設けられた弁座と、上記弁体を弁座とともに挟むように弁体の下部に設けられ、弁体が上記潤滑油連通路を開いたときに弁体の動きを規制する弁体支持部とを有し、
     上記弁座及び上記弁体支持部は、弁体側に向かって漸次直径が大きくなる断面テーパー状に形成され、その弁体側端部の直径が弁体の直径より大きくなるように形成されることを特徴とする請求項1ないし請求項4のいずれかに記載の多気筒回転式圧縮機。
  6.  請求項1ないし請求項5のいずれかに記載の多気筒回転式圧縮機と、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成することを特徴とする冷凍サイクル装置。
PCT/JP2011/079868 2010-12-24 2011-12-22 多気筒回転式圧縮機と冷凍サイクル装置 WO2012086779A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012549881A JP5481568B2 (ja) 2010-12-24 2011-12-22 多気筒回転式圧縮機と冷凍サイクル装置
CN201180051566.1A CN103189653B (zh) 2010-12-24 2011-12-22 多汽缸旋转式压缩机及制冷循环装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-288859 2010-12-24
JP2010288859 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086779A1 true WO2012086779A1 (ja) 2012-06-28

Family

ID=46314045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079868 WO2012086779A1 (ja) 2010-12-24 2011-12-22 多気筒回転式圧縮機と冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JP5481568B2 (ja)
CN (1) CN103189653B (ja)
WO (1) WO2012086779A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181559A1 (ja) * 2015-05-14 2016-11-17 三菱電機株式会社 冷媒圧縮機及びそれを備えた蒸気圧縮式冷凍サイクル装置
EP3115611A4 (en) * 2014-03-03 2017-10-18 Guangdong Meizhi Compressor Co., Ltd. Two-stage rotary compressor and refrigerating circulation device having same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086637A1 (ja) * 2010-12-20 2012-06-28 東芝キヤリア株式会社 多気筒回転式圧縮機及び冷凍サイクル装置
JP6206468B2 (ja) * 2015-11-11 2017-10-04 ダイキン工業株式会社 スクロール圧縮機
JP6753336B2 (ja) * 2017-02-28 2020-09-09 株式会社豊田自動織機 ベーン型圧縮機
CN107606249A (zh) * 2017-09-19 2018-01-19 南京润泽流体控制设备有限公司 单向阀
CN108980047A (zh) * 2018-08-27 2018-12-11 珠海凌达压缩机有限公司 气缸及压缩机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520901A (ja) * 2005-02-23 2008-06-19 エルジー エレクトロニクス インコーポレイティド 容量可変型ロータリ圧縮機及びこれを備える冷却システム
JP2009203861A (ja) * 2008-02-27 2009-09-10 Toshiba Carrier Corp 密閉型圧縮機および冷凍サイクル装置
JP2010163926A (ja) * 2009-01-14 2010-07-29 Toshiba Carrier Corp 多気筒回転式圧縮機および冷凍サイクル装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3762043B2 (ja) * 1997-01-17 2006-03-29 東芝キヤリア株式会社 ロータリ式密閉形圧縮機および冷凍サイクル装置
KR100466620B1 (ko) * 2002-07-09 2005-01-15 삼성전자주식회사 용량가변형 회전압축기
CN101634500B (zh) * 2003-12-03 2011-04-13 东芝开利株式会社 冷却循环系统
KR100620040B1 (ko) * 2005-02-23 2006-09-11 엘지전자 주식회사 로터리 압축기의 용량 가변 장치 및 이를 적용한 에어콘
KR100595766B1 (ko) * 2005-02-23 2006-07-03 엘지전자 주식회사 로터리 압축기의 용량 가변 장치 및 이를 적용한 에어콘

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520901A (ja) * 2005-02-23 2008-06-19 エルジー エレクトロニクス インコーポレイティド 容量可変型ロータリ圧縮機及びこれを備える冷却システム
JP2009203861A (ja) * 2008-02-27 2009-09-10 Toshiba Carrier Corp 密閉型圧縮機および冷凍サイクル装置
JP2010163926A (ja) * 2009-01-14 2010-07-29 Toshiba Carrier Corp 多気筒回転式圧縮機および冷凍サイクル装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3115611A4 (en) * 2014-03-03 2017-10-18 Guangdong Meizhi Compressor Co., Ltd. Two-stage rotary compressor and refrigerating circulation device having same
WO2016181559A1 (ja) * 2015-05-14 2016-11-17 三菱電機株式会社 冷媒圧縮機及びそれを備えた蒸気圧縮式冷凍サイクル装置
JPWO2016181559A1 (ja) * 2015-05-14 2017-10-05 三菱電機株式会社 冷媒圧縮機及びそれを備えた蒸気圧縮式冷凍サイクル装置
GB2553711A (en) * 2015-05-14 2018-03-14 Mitsubishi Electric Corp Refrigerant compressor and vapor-compression refrigeration cycle device comprising same
GB2553711B (en) * 2015-05-14 2020-08-05 Mitsubishi Electric Corp Refrigerant compressor and vapor compression refrigeration cycle apparatus including the same

Also Published As

Publication number Publication date
CN103189653B (zh) 2015-09-23
CN103189653A (zh) 2013-07-03
JP5481568B2 (ja) 2014-04-23
JPWO2012086779A1 (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5481568B2 (ja) 多気筒回転式圧縮機と冷凍サイクル装置
JP5005579B2 (ja) 密閉型圧縮機および冷凍サイクル装置
JP4561326B2 (ja) 流体機械
WO2009096167A1 (ja) 膨張機一体型圧縮機およびそれを用いた冷凍サイクル装置
US20100326128A1 (en) Fluid machine
JP5760836B2 (ja) ロータリ圧縮機
CN112412801A (zh) 一种油路结构、卧式涡旋压缩机及冷冻设备
JP6071190B2 (ja) 多気筒回転式圧縮機及び冷凍サイクル装置
JPWO2010087180A1 (ja) 回転型圧縮機
JP2018507339A (ja) 可変容量型圧縮機及びこれを備える冷凍装置
JP4617831B2 (ja) 流体機械
JP2012215158A (ja) 圧縮機及びこの圧縮機を搭載した冷凍サイクル装置
JP5481298B2 (ja) 多気筒ロータリ式圧縮機と冷凍サイクル装置
CN109154296B (zh) 封闭式旋转压缩机以及冷冻空调装置
WO2012086637A1 (ja) 多気筒回転式圧縮機及び冷凍サイクル装置
JP2008133810A (ja) 圧縮機
JP5588903B2 (ja) 多気筒回転圧縮機と冷凍サイクル装置
JP2010001887A (ja) 密閉型回転式圧縮機と空気調和機
JP6007030B2 (ja) 回転式圧縮機と冷凍サイクル装置
JP5703013B2 (ja) 多気筒回転式圧縮機と冷凍サイクル装置
WO2023214497A1 (ja) 圧縮機および空気調和装置
JP2015140737A (ja) 密閉型圧縮機及びそれを用いた冷蔵庫
JP5738030B2 (ja) ロータリ式圧縮機及び冷凍サイクル装置
JP2013147973A (ja) 圧縮機及び冷凍サイクル装置
WO2014155802A1 (ja) 多気筒回転圧縮機と冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012549881

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851412

Country of ref document: EP

Kind code of ref document: A1