JP2010001887A - 密閉型回転式圧縮機と空気調和機 - Google Patents

密閉型回転式圧縮機と空気調和機 Download PDF

Info

Publication number
JP2010001887A
JP2010001887A JP2009070891A JP2009070891A JP2010001887A JP 2010001887 A JP2010001887 A JP 2010001887A JP 2009070891 A JP2009070891 A JP 2009070891A JP 2009070891 A JP2009070891 A JP 2009070891A JP 2010001887 A JP2010001887 A JP 2010001887A
Authority
JP
Japan
Prior art keywords
refrigerant
suction passage
passage
accumulator
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009070891A
Other languages
English (en)
Inventor
Izumi Onoda
泉 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2009070891A priority Critical patent/JP2010001887A/ja
Publication of JP2010001887A publication Critical patent/JP2010001887A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、慣性過給効果を得られるうえに、アキュームレータと密閉容器とを連通する冷媒吸込み通路の合計通路長を抑制して圧縮機全体の小型化を得られ、切換え制御弁の切換え制御を単純化してコストの低減を得られる密閉型回転式圧縮機と、冷房運転と暖房運転との切換えが可能で、冷暖房能力の向上化を図った空気調和機を提供する。
【解決手段】密閉容器11内に電動機部12と圧縮機構部13を収納し、密閉容器11外に設けたアキュームレータ6から吸込み通路Tを介して圧縮機構部に冷媒を導くようにした密閉型回転式圧縮機1において、吸込み通路は、過給効果を得られる長さに形成される第1の吸込み通路Taと、この第1の吸込み通路よりも短く形成される第2の吸込み通路Tbとの、2つの吸込み通路から構成され、冷媒の流れを第1の吸込み通路および第2の吸込み通路のいずれかに切換える切換え制御弁7を備え、アキュームレータ内部において第1の吸込み通路の長さを第2の吸込み通路の長さよりも長く形成した。
【選択図】 図2

Description

本発明は、特に暖房運転時に慣性過給効果を得られるように構成した密閉型回転式圧縮機と、この密閉型回転式圧縮機を備えて冷凍サイクルを構成した空気調和機に関する。
空気調和機において、円筒状のシリンダ内にピストンを収容し、前記ピストンを往復動駆動して冷媒ガスの圧縮作用を行わせる、いわゆるレシプロ式圧縮機が用いられる。このレシプロ式圧縮機では、圧縮した冷媒ガスのシリンダからの吐出が断続的になり、脈動が生じて運転騒音が比較的大となるとともに、振動発生を抑制することが困難である。
これに対してシリンダ内にローラが偏心回転するのにともなって冷媒ガスを吸込み、かつ圧縮して吐出するロータリ式圧縮機である密閉型回転式圧縮機の場合は、吸込み行程と、圧縮行程と、吐出行程が連続し、かつ円滑に行われるので、運転騒音が小さく、振動の発生もほとんどない。
しかしながら、実際には、吐出行程が終了して吸込み行程に切換る際に、ごく瞬間的ではあるが間(空白)がある。結果として、前記レシプロ式圧縮機のように顕著ではないものの、密閉型回転式圧縮機においても、ある程度の脈動が存在している。
そこで、圧縮機構部を変更することなく、圧縮機に接続する吸込み冷媒管の長さおよび内径を最適化して、ローラが吸込み孔を仕切る瞬間の圧力を高めるように作用させる。このことにより、シリンダ内へ比体積の小さい冷媒が多量に導かれて、冷媒吸込み量が増加し圧縮能力の向上を図れる、いわゆる慣性過給効果が得られる。
[特許文献1]には、吸込みマフラーと密閉容器との間に、流路切換え弁により切換えられる複数の長さが異なる冷媒の吸込み通路を備えた密閉形冷媒圧縮機が開示されている。前記吸込み通路には、流路切換え弁を介して分岐する複数の長さが異なる吸入管が接続され、あるいはバイパスループが接続される。
流路切換え弁により吸入管のうちの1つを選択し、選択された吸入管を含む吸込み通路の長さに応じた脈動流を通路内に生じさせ、慣性過給効果が得られるようシリンダ内へ冷媒ガスを吸込ませる。流路切換え弁の切換えによって吸込み冷媒量を変えることができ、段階的に能力を制御することができる、と記載されている。
実開昭62−102882号公報
しかしながら上記構成では、アキュームレータと密閉容器との間に設けられる冷媒の吸込み通路の合計長さ(総延長)が長くなってしまい、アキュームレータを付設する圧縮機全体の大型化が避けられない。これは、圧縮機を備えて冷凍サイクルを構成する空気調和機の大型化につながってしまう。
さらに、上記構成では、1つの流路切換え弁に複数本の吸入管、もしくはバイパスループが接続される。すなわち、1つの流路切換え弁で複数の吸込み通路を切換え制御している。そのため流路切換え弁として、少なくとも三方切換え弁あるいは、四方切換え弁等の特殊な弁を用いる必要があり、制御の複雑化を招き、部品費への影響がある。
なお、冷暖房運転の切換えが可能なヒートポンプ式空気調和機において、圧縮機の排除容積は必要能力から暖房運転を基準として決められている。そのため、全能力を使って冷房運転を行うと能力が出過ぎてしまい、効率的な運転ができない。上記発明では、冷房運転と暖房運転とに応じた慣性過給効果に係る記載もしくは示唆がなく、不明である。
本発明は上記事情にもとづきなされたものであり、その目的とするところは、慣性過給効果を得られるうえに、アキュームレータと密閉容器とを連通する冷媒吸込み通路の合計通路長を抑制して圧縮機全体の小型化を得られ、切換え制御弁の切換え制御を単純化してコストの低減を得られる密閉型回転式圧縮機と、冷房運転と暖房運転との切換えが可能で、冷房能力と暖房能力それぞれの、より向上化を図った空気調和機を提供しようとするものである。
上記目的を満足するため本発明は、密閉容器内に、電動機部と、この電動機部と回転軸を介して連結される圧縮機構部とを収容し、密閉容器の外側に設けたアキュームレータから吸込み通路を介して圧縮機構部に冷媒を導くようにした密閉型回転式圧縮機おいて、上記吸込み通路は、慣性過給効果を得られる長さに形成される第1の吸込み通路と、この第1の吸込み通路よりも短く形成される第2の吸込み通路との、少なくとも2つの吸込み通路から構成されるとともに、冷媒の流れを第1の吸込み通路および第2の吸込み通路のいずれかに切換える切換え制御弁を備え、アキュームレータ内部における第1の吸込み通路の長さを、アキュームレータ内部における第2の吸込み通路の長さよりも長く形成した。
上記目的を満足するため本発明は、上記密閉型回転式圧縮機と、四方切換え弁と、室外熱交換器と、膨張装置と、室内熱交換器とを接続してなる冷凍サイクルを備えた空気調和機において、冷房運転時には第2の吸込み通路を介して密閉型回転式圧縮機の圧縮機構部に冷媒を導き、暖房運転時には第1の吸込み通路のみを介して密閉型回転式圧縮機の圧縮機構部に冷媒を導くように切換え制御弁を制御する制御手段を備えた。
本発明によれば、慣性過給効果を得られるうえに、アキュームレータと密閉容器間における冷媒吸込み通路の通路長を抑制して圧縮機全体の小型化を得られ、切換え制御弁の切換え制御を単純化してコストの低減を得られる密閉型回転式圧縮機を提供できる。
さらに、冷房運転と暖房運転との切換えが可能で、冷房能力と暖房能力のそれぞれ、より向上化を図った空気調和機を提供できる。
本発明における第1の実施の形態に係る、密閉型回転式圧縮機を備えた空気調和機の冷凍サイクル構成図。 同第1の実施の形態に係る、密閉型回転式圧縮機の概略の縦断面図。 同第1の実施の形態に係る、冷媒吸込み通路の通路長に対する能力・効率の特性図。 同第1の実施の形態での変形例に係る、アキュームレータの概略の縦断面図。 同変形例に係る、アキュームレータを分解した斜視図。 本発明における第2の実施の形態に係る、アキュームレータを分解した斜視図。 同第2の実施の形態に係る、冷房運転時における冷凍サイクル構成図。 同第2の実施の形態に係る、冷房運転時における切換え制御弁の切換え状態を説明する図。 同第2の実施の形態に係る、冷房運転時におけるアキュームレータ内部の冷媒導通状態を説明する図。 同第2の実施の形態に係る、暖房運転時における冷凍サイクル構成図。 同第2の実施の形態に係る、暖房運転時における切換え制御弁の切換え状態を説明する図。 同第2の実施の形態に係る、暖房運転時におけるアキュームレータ内部の冷媒導通状態を説明する図。 本発明における第3の実施の形態に係る、アキュームレータを分解した斜視図。 同第3の実施の形態に係る、冷房運転時と、暖房運転時におけるアキュームレータ内部の冷媒導通状態を説明する図。
以下、本発明における第1の実施の形態を、図面にもとづいて説明する。
はじめに、図1から、空気調和機の冷凍サイクルについて説明する。
図中1は、密閉型回転式圧縮機(以下、単に「圧縮機」と呼ぶ)であり、この圧縮機1については後述する。前記圧縮機1の吐出部1aに接続される冷媒管Pは、四方切換え弁2の第1のポートaに連通される。
前記四方切換え弁2の第2のポートbに接続される冷媒管Pは、室外熱交換器3と、膨張装置である膨張弁4と、室内熱交換器5を介して、四方切換え弁2の第3のポートcに連通される。
四方切換え弁2の第4のポートdと、上記圧縮機1の吸込み部1bとの間にはアキュームレータ6が接続されるとともに、後述する切換え制御弁7を備えた吸込み通路Tが設けられる。
以上のようにしてヒートポンプ式の冷凍サイクルが構成される。なお、空気調和機の構造上、圧縮機1にアキュームレータ6が付設されている。換言すれば、アキュームレータ6は圧縮機1に含まれ、一体構造化される。
上記室外熱交換器3に対向して室外送風機8が設けられ、室内熱交換器5に対向して室内送風機9が設けられる。これら圧縮機1、四方切換え弁2、膨張弁4、室外送風機8、室内送風機9および切換え制御弁7等の電動部品の全ては、制御部(制御手段)10と電気的に接続され、ここから制御切換え信号を受けるようになっている。
また、特に図示していないが、空気調和機の運転切換え信号はリモコン(遠隔操作盤)から制御部10へ送られる。空気調和機本体に設けられる熱交換空気の吸込み部や吹出し部他には温度センサなどのセンサ類が取付けられ、それぞれのセンサから検知信号が制御部10へ送られるようになっている。
つぎに、図2にもとづき上記圧縮機1について説明する。
上記圧縮機1は、密閉容器11内の上部側に電動機部12が収容され、下部側に圧縮機構部13が収容されていて、これら電動機部12と圧縮機構部13とは回転軸14を介して連結される。
密閉容器11の上面部に冷媒管Pが接続される孔部からなる吐出部1aが設けられる。冷媒管Pは吐出部1aから密閉容器11内に挿入され、下端開口部は回転軸14の上端部と狭小の間隙を存して対向する。密閉容器11の下部周壁には吸込み通路Tが接続される吸込み部1bが形成され、吸込み通路Tを介してアキュームレータ6が接続される。
上記電動機部12は、回転軸14に嵌着固定される回転子(ロータ)15と、この回転子15の外周面と狭小の間隙を存して内周面が対向され、密閉容器11内周壁に嵌着固定される固定子(ステータ)16とから構成される。
上記圧縮機構部13は、密閉容器11の内周壁に嵌着固定され内径孔17aを備えたシリンダ17と、このシリンダ17の上面に取付けられ内径孔17aを覆う主軸受18と、シリンダ下面に取付けられ内径孔を覆う副軸受19を備えている。すなわち、主軸受18と副軸受19によって囲まれるシリンダ内径孔17aはシリンダ室である。
上記回転軸14は、主軸受18と副軸受19により回転自在に枢支される。回転軸14のシリンダ室17aの挿通部位に偏心部(以下、図示しない)が設けられ、この偏心部にローラが嵌め込まれる。
ローラの外周壁一部は、軸方向に沿いシリンダ室17a周壁に接触するよう設計されている。したがって、回転軸14が回転すれば、ローラ外周壁のシリンダ室周壁に対する接触位置が、漸次、周方向に移動変化するようになっている。
上記シリンダ17には、ブレード室が設けられる。このブレード室には、圧縮ばねが収容されるとともに、この圧縮ばねによって背圧を受けるブレードが移動自在に収容される。ブレードの先端縁はローラの外周壁一部に軸方向に沿って接触しており、したがってブレードは常にシリンダ室17aを二分する。
前記主軸受18には吐出孔が設けられている。この吐出孔が設けられる位置は、ブレードのローラ接触部位の近傍で、この一側部になる。さらに、吐出孔には吐出弁機構が設けられ、主軸受18に取付けられるバルブカバー20が吐出弁機構を覆う。バルブカバー20には密閉容器11内に開口する案内孔eが設けられる。
ブレードのローラ接触部位を挟んで、前記吐出孔とは反対側の部位に吸込み孔fが設けられる。この吸込み孔fは、シリンダ17の内周壁から外周壁に亘って径方向に貫通して設けられ、さらに密閉容器11にも吸込み孔fと連通する孔部gが設けられる。これら吸込み孔fと孔部gとで上記吸込み部1bが構成される。
この吸込み部1bには冷媒管Pが挿入され、密に接続される。冷媒管Pは、上記アキュームレータ6の下面部で折曲され、さらにアキュームレータ6下面部を貫通し内部において直状管に形成される。アキュームレータ6内部で冷媒管Pの上端部は、アキュームレータ6上面部とは所定の間隙を存した位置で開口される。
吸込み部1bとアキュームレータ6下面部との間の冷媒管P部位には、切換え制御弁7が設けられる。この切換え制御弁7は、いわゆる開閉弁(二方弁)であり、上記したように制御部10によって開閉制御される。
さらに、吸込み部1bと切換え制御弁7との間の冷媒管Pには、分岐部Sが設けられていて、分岐冷媒管Paが分岐している。分岐冷媒管Paは、分岐部Sから冷媒管Pと並行に折曲されてアキュームレータ6下面部を貫通し、内部に延長される。アキュームレータ6内部において分岐冷媒管Paは螺旋状に曲成され、先端は冷媒管Pの開口端位置と略同一の高さで開口する。
このような構成から、前記吸込み通路Tは、吸込み部1bから分岐部Sまでの通路部分と、分岐部Sから分岐されて中途部に切換え制御弁7が設けられ、かつアキュームレータ6内部で直状に形成される通路部分と、分岐部Sから分岐されてアキュームレータ6内部で螺旋状に形成される通路部分とからなる。
ここでは、吸込み部1bから分岐部Sを介して中途部に切換え制御弁7を備え、アキュームレータ6内部に挿通されるとともに、この内部おいて直状に形成される通路部分を、「第2の吸込み通路Tb」と呼ぶ。さらに、吸込み部1bから分岐部Sを介してアキュームレータ6内部に挿通されるとともに、内部で螺旋状に形成される通路部分を、「第1の吸込み通路Ta」と呼ぶ。
したがって、第1の吸込み通路Taと第2の吸込み通路Tbとは、吸込み部1bから分岐部Sまでの通路部分が互いに共通することになる。ただし、アキュームレータ6内部においては、第2の吸込み通路Tbが直状の冷媒管Pから形成されるのに対して、第1の吸込み通路Taが螺旋状の分岐冷媒管Paから形成される。
前記第1の吸込み通路Taと、第2の吸込み通路Tbとは、互いに同一の直径(管径)であるが、アキュームレータ6内部における通路長(管路長)は、第1の吸込み通路Taが第2の吸込み通路Tbよりも長く形成される。そのため、通路抵抗としては、第1の吸込み通路Taが第2の吸込み通路Tbよりも大である。
前記切換え制御弁7は、通路抵抗の小さい第2の吸込み通路Tbにのみ設けられ、通路抵抗の大きい第1の吸込み通路Taには設けられていない。切換え制御弁7が閉じられていれば、アキュームレータ6内部の冷媒は全て第1の吸込み通路Taから吸込み部1bを介して圧縮機構部13に導かれることになる。
その一方で、切換え制御弁7が開放されると、アキュームレータ6内部の冷媒は通路抵抗の小さい第2の吸込み通路Tbから圧縮機構部13に導かれる。これに対して第1の吸込み通路Taは切換え制御弁7が設けられていないので、常に開放状態にあり冷媒が導かれようとする。
しかしながら、先に説明したようにアキュームレータ6内部における第1の吸込み通路Taの通路長は、第2の吸込み通路Tbの通路長よりも長く、通路抵抗が大である。このことから、アキュームレータ6内部の冷媒は第2の吸込み通路Tbに導かれ、第1の吸込み通路Taに導かれる冷媒はほとんど無い状態となる。
特に、第1の吸込み通路Taの通路長Lは、以下の(1)式から求められている。
L = C / 4F − V / M …… (1)
なお、 C:音速、F:回転数、V:排除容積、M:吸込み通路面積 である。
(1)式で求められる第1の吸込み通路Taの通路長Lは、第1の吸込み通路Taにおいて慣性過給効果が得られる長さである。すなわち、慣性過給効果は、吸込み通路の長さと内径を最適化することで、ローラが吸込み孔を仕切る瞬間の吸込み冷媒に対する圧力を高められる。
結果として、シリンダ室17aに比体積が小さい冷媒を多量に吸込みことができ、シリンダ室17aへの冷媒吸込み量が増加して、圧縮能力の向上を得られる。一般的に、慣性過給効果を得るための実際の配管長は、数10cmから1M程度であり、音響的に長い通路が必要である。
ただし、圧縮能力の増大にともなって、その分、仕事量が増える。慣性過給効果が得られる時点では、圧縮効率としては悪い状態となってしまう。この現象は、図3から説明できる。
図3は、吸込み通路の通路長に対する能力と効率の関係を示す図である。
通路長が短い状態から徐々に長くなるにしたがって「能力」が向上し、所定長さでピークになり、前記所定長さを超えると再び「能力」が低下する。一方、通路長が短い状態から徐々に長くなるにしたがって「効率」が低下し、所定長さで最も落ち込む。前記所定長さを超えると再び「効率」が向上する。
能力が最も高いピーク位置と、効率が最も低下するピーク位置とは、同じ所定長さであり、このとき慣性過給効果が得られる。上記した第1の吸込み通路Taの通路長は、慣性過給効果を得られる所定の長さに設定されている。また、第2の吸込み通路Tbの通路長は第1の吸込み通路Taよりも短い範囲で、かつ効率の最も高いところに設定される。
つぎに、空気調和機の空調作用について説明する。
冷房運転時は、図1に実線矢印に示すように冷媒が導かれる。すなわち、圧縮機1で圧縮され吐出部1aを介して冷媒管Pに導かれた高温高圧のガス冷媒は、四方切換え弁2の第1のポートaと第2のポートbを介して室外熱交換器3に導かれる。室外送風機8が駆動されて外気を室外熱交換器3へ送風することで、ガス冷媒との熱交換が行われる。
ガス冷媒は凝縮液化して液冷媒に変り、膨張弁4に導かれて断熱膨張する。さらに、液冷媒は室内熱交換器5に導かれ、室内送風機9が駆動されて室内空気を室内熱交換器5へ送風し、液冷媒との熱交換が行われる。室内熱交換器5で液冷媒は蒸発して、室内空気から蒸発潜熱を奪い冷気に変える。
冷気が室内へ吹出され、室内の冷房作用をなす。室内熱交換器5で蒸発した冷媒は、四方切換え弁2の第3のポートcと第4のポートdを介してアキュームレータ6に導かれ気液分離される。そして、後述するように吸込み通路Tを介して圧縮機1に吸込まれ、再び圧縮されて高温高圧のガス冷媒に変り、上述の冷凍サイクルを繰り返す。
暖房運転時は、図1に破線矢印に示すように冷媒が導かれる。すなわち、圧縮機1で圧縮され吐出部1aを介して冷媒管Pに導かれた高温高圧のガス冷媒は、四方切換え弁2の第1のポートaと第3のポートcを介して室内熱交換器5に導かれる。室内送風機9が駆動されて室内空気を室内熱交換器5へ送風することで、冷媒との熱交換が行われる。
室内熱交換器5においてガス冷媒は凝縮し、室内空気へ凝縮熱を放出して液冷媒に変る。室内空気は温度上昇して暖気になり、室内へ吹出されて暖房作用をなす。室内熱交換器5から導出される液冷媒は膨張弁4に導かれて断熱膨張し、室外熱交換器3で外気と熱交換して蒸発する。
室外熱交換器3で蒸発した冷媒は、四方切換え弁2の第2のポートbと第4のポートdを介してアキュームレータ6に導かれ気液分離される。そして、後述するように吸込み通路Tを介して圧縮機1に吸込まれ、再び圧縮されて高温高圧の冷媒ガスに変り、上述の冷凍サイクルを繰り返す。
つぎに、図2および図1から、冷房運転時と、暖房運転時での吸込み通路Tにおける冷媒流通制御について説明する。
冷房運転時、上記制御部10は第2の吸込み通路Tbに設けられる切換え制御弁7を開放制御する。したがって、アキュームレータ6内部において気液分離された冷媒は第2の吸込み通路Tbに導かれ、切換え制御弁7および分岐部Sを介して圧縮機1の吸込み部1bから圧縮機構部13に導かれて圧縮される。
上述したように、第1の吸込み通路Taには切換え制御弁7が設けられておらず、全長に亘って開放状態にあるところから、一部の冷媒は吸込まれようとする。しかしながら、第1の吸込み通路Taはアキュームレータ6内部において螺旋状に曲成され、しかも直状に形成される第2の吸込み通路Tbよりも通路長が長く、通路抵抗が大である。
そのため、アキュームレータ6内部で気液分離された冷媒が、第2の吸込み通路Tbに円滑に導かれる一方で、第1の吸込み通路Taに吸込まれる冷媒はほとんど無い。アキュームレータ6内部で気液分離された全ての冷媒は、第2の吸込み通路Tbに導かれ、吸込み部1bを介して圧縮機構部13に吸込まれる。
先に図3で説明したように、第2の吸込み通路Tbは能力が低いが、運転効率が高い状態が得られる通路長に設定されている。冷房運転時にはアキュームレータ6から第2の吸込み通路Tbを介して圧縮機構部13に冷媒を案内するようにして、能力よりも効率を重視した運転が行われるようにする。
本来、冷房運転と暖房運転の切換えが可能なヒートポンプ式空気調和機において、圧縮機1の排除容積は、必要能力から暖房運転を基準として決められていて、全能力を使って冷房運転を行うと能力が出過ぎてしまい、効率的な運転ができない。上述したように、能力よりも効率を重視した運転を行うことで、最適能力の冷房運転となる。
これに対して暖房運転時には、制御部10は切換え制御弁7を閉じるよう制御する。そのため、アキュームレータ6で気液分離された全ての冷媒は、閉じられた第2の吸込み通路Tbには導かれず、常時開放状態にある第1の吸込み通路Taに導かれる。第1の吸込み通路Taは通路長が長く、通路抵抗が大であるが、冷媒が導かれるには支障がない。
再び図3に示すように、第1の吸込み通路Taは効率が低い状態となるが、高い能力が得られる通路長Lに設定されている。したがって、第1の吸込み通路Taに冷媒を導くことで、シリンダ室17aへ比体積の小さい冷媒が多量に吸込まれ、冷媒吸込み量が増加して圧縮(暖房)能力が向上する慣性過給効果が得られる。
このように、アキュームレータ6と吸込み部1bとの間の吸込み通路Tを、慣性過給効果が得られる通路長の第1の吸込み通路Taと、第1の吸込み通路Taよりも短い通路長の第2の吸込み通路Tbとする。そして、冷媒の流れを第1の吸込み通路Taと第2の吸込み通路Tbに切換える切換え制御弁7を備えた。
アキュームレータ6内部において、第1の吸込み通路Taの長さを第2の吸込み通路Tbの長さよりも長く形成したから、アキュームレータ6と吸込み部1bとの間の吸込み通路Tの通路長を抑制できる。そのため、圧縮機1全体の小型化を得られることとなり、この圧縮機1を備える空気調和機の小型化を促進できる。
さらに、上記構成を採用することで、圧縮機1の冷媒吸込み時に発生する慣性過給効果を、切換え制御弁7の開閉でコントロールが可能となる。特に、インバータ等の周波数切換え手段を備えることなく、一定速タイプの圧縮機1においても段階的な能力可変ができることとなる。
なお説明すると、圧縮機1の冷凍能力(排除容積)を冷房運転時に100%とし、暖房運転時には第1の吸込み通路Taの共鳴現象を利用することで、105%以上に持ち上げられる。
本来、冷暖房兼用の空気調和機での圧縮機冷凍能力は、暖房運転を基準として設定されていて、冷房運転時は能力が出過ぎて効率的な運転ができない。上述のように構成することで、冷房運転時の必要能力で圧縮機1の排除容積を決定でき、圧縮機構部13の小型化を得られ、固定損失が小さく省エネ性が確保され、省資源にも有効となる。
さらに、第2の吸込み通路Tbにのみ切換え制御弁7としての開閉弁を設けた。安価な開閉弁を1個備えるだけで、第1の吸込み通路Taと第2の吸込み通路Tbとの切換えができ、コストの低減を図ることができる。第1の吸込み通路Taには弁を設けないので、弁による吸込み通路抵抗の増大化を防止でき、より能力の向上が容易となる。
なお、冷暖房運転の切換えが可能な空気調和機において、上記構成の圧縮機1をインバータで駆動するようにしてもよい。この場合、特に暖房運転を長時間停止したあとに始動する際に生じ易い冷媒寝込み状態にも適応する。
すなわち、インバータの電気部品などの容量は、最大電流にて決定されるため、冷房運転時における過負荷状態などの圧力負荷が大きい条件が該当する。その一方で、圧縮機1の運転周波数上限は、軸信頼性や構成部品の共振周波数によって決まる。
上記した冷媒寝込み状態では、圧縮機1が置かれる周囲温度が低く、冷媒圧力が低い。このとき、可能な限り高運転周波数で、高能力を発揮した状態で運転したいが、吸込み圧力が負圧となり易く、圧縮機構部13の各摺動部への給油が阻害され易い。
上述の構成を採用することで、圧縮機1における自己発熱を吸込み圧力の上昇に生かすことができて、暖房能力の向上を得られる。また、運転時間が長い低運転周波数による運転は、第2の吸込み通路Tbを主流に行うことができる。そのため、低能力時に効率のよい省エネ運転が可能となり、コンパクトな圧縮機1が得られる。
なお、吸込み通路Tを構成する冷媒管Pは、内部に流通する冷媒と、外周面に導かれる外気あるいは室内空気との熱交換効率を最良とするため、従来から伝熱性がよく加工性が良好な銅管が用いられている。ただし、この銅管は高価であり、コストに少なからぬ影響を与える。そこで、伝熱性は劣るが廉価な鉄パイプを採用できると極めて有効である。
本発明では、吸込み通路Tを構成する冷媒管Pおよび分岐冷媒管Paのほとんど大部分をアキュームレータ6内に収容した。特に高価な銅管を用いる必要がなく、廉価な鉄パイプを採用しても何らの不具合もない。しかも、鉄パイプに対する防錆処理が不要であり、コストの大幅低減化を図れることとなる。
また、アキュームレータ6内に収容される第1の吸込み通路Taと第2の吸込み通路Tb部分は、全通路長に亘って必ずしもパイプで成形する必要はない。パイプで成形すると圧縮機1のコンパクト化が阻害され、特に銅管の場合は省資源の課題がある。しかも、各通路Ta,Tbの周囲を低圧にすれば、アキュームレータ6に対するシール性は厳密でなくてもよい。
したがって、第1の吸込み通路Taと第2の吸込み通路Tbの、少なくともいずれか一方の吸込み通路における少なくとも一部を、パイプから換えた構成とすることが可能である。ここでは第1の吸込み通路Taのみパイプを用いない構成とした。
図4は、第1の吸込み通路Taの変形例を示すアキュームレータ6の概略断面図であり、図5は、アキュームレータ6の分解した概略斜視図である。
アキュームレータ6を構成する容器本体30は、上端面が開口される有底筒状の主筒体31と、この主筒体31の上端開口面に嵌め込まれ、開口面を覆う蓋体32とから構成される。主筒体31と蓋体32は、互いに板金部材であり、これらの嵌め合い部はシール性を確保する加工が施され、円筒状の容器本体30として一体化される。
前記容器本体30内に通路部材33が挿入される。なお説明すると、前記通路部材33は主筒体31と同様、上端面が開口される有底筒状をなす板金部材である。この通路部材33の外周面で、かつ底部から上端部に亘って螺旋状の凹部からなる冷媒通路(以下、「凹部」と呼ぶ)34が形成される。
寸法的に、通路部材33の外径は主筒体31の内径と同一であり、軸方向長さは主筒体31よりもわずかに短い。通路部材33底部の曲率半径は、主筒体31底部の曲率半径よりも板厚分だけ小さい。したがって、通路部材33は容器本体30を構成する主筒体31に密に嵌め込まれる。
このようにして、アキュームレータ6内部において通路部材33と主筒体31との間には、凹部34である第1の吸込み通路Taが形成される。ただし、通路部材33は主筒体31に対して単純に嵌め込まれるだけであるので、第1の吸込み通路Taのシール性については考慮外である。
主筒体31と通路部材33の底部には互いに連通する孔部hが設けられていて、第2の吸込み通路Tbを構成する冷媒管Pが挿入され、挿入部分は密にシールされる。この冷媒管Pは、先に説明したように直状に形成されていて、ここでは鉄パイプを用いてよい。
冷媒管Pには切換え制御弁7が設けられ、切換え制御弁7と図示しない吸込み部1bとの間の冷媒管P部位から分岐冷媒管Paが分岐して設けられる。分岐冷媒管Paは主筒体31に設けられる孔部iに挿入され、挿入部分は密にシールされる。
分岐冷媒管Paの開口端は、通路部材33に設けられる凹部34の下部側基端に対向する位置にある。すなわち、分岐冷媒管Paは通路部材33の凹部34と連通するよう設けられ、これらでアキュームレータ6内部における第1の吸込み通路Taが形成されることになる。
このような構成においても、第1の吸込み通路Taの通路長として慣性過給効果を得られる長さに形成することができ、上述したのと同様の作用効果を得られる。単に通路部材33を主筒体31に嵌め込んだだけなので、厳密にはシール性を完全に確保することはできないが、周囲が低圧であるので何らの支障もない。
つぎに、本発明における第2の実施の形態について説明する。
図6は、ここで用いられるアキュームレータ6Aを分解して示す斜視図である。
アキュームレータ6Aを構成する容器本体30は、上端面が開口される有底筒状の主筒体31と、この主筒体31の上端開口面に嵌め込まれ、開口面を覆う蓋体32とから構成される。主筒体31と蓋体32は、互いに板金部材であり、これらの嵌め合い部はシール性を確保する加工が施され、円筒状の容器本体30として一体化される。
前記容器本体30内に、第2の通路部材40が挿入され、さらに第2の通路部材40内に第1の通路部材45が挿入される。これら、第2の通路部材40と第1の通路部材45は主筒体31と同様、上端面が開口される円筒状で、かつ有底の板金部材である。
寸法的に、第2の通路部材40外径は主筒体31内径と同一であり、軸方向長さは主筒体31よりもわずかに短い。第2の通路部材40底部の曲率半径は、主筒体31底部の曲率半径よりも板厚分だけ小さい。したがって、第2の通路部材40は容器本体30を構成する主筒体31の内周壁に密に嵌め込まれる。
同様に、第1の通路部材45外径は第2の通路部材40内径と同一であり、軸方向長さは第2の通路部材40よりもわずかに短い。第1の通路部材45底部の曲率半径は、第2の通路部材40底部の曲率半径よりも板厚分だけ小さい。したがって、第1の通路部材45は第2の通路部材40の内周壁に密に嵌め込まれる。
第2の通路部材40には、この底部から上端部に亘って、内面側に突出する第2の凹部(冷媒通路)41が形成される。第2の凹部41の上端部に第2の案内用孔42が設けられ、同じ第2の凹部41でかつ第2の通路部材40底部に取付け用孔43が設けられる。なお、第2の凹部41は容器本体30側に設けても何ら支障も無い。
取付け用孔43と対向する主筒体31の底部にも図示しない取付け用孔が設けられ、冷媒管Pが主筒体31の取付け用孔から第2の凹部41の取付け用孔43に挿入され、密にシールされるようになっている。
第1の通路部材45には、この上端部から底部中央に亘って設けられるとともに、この底部中央から前記上端部とは180度対向する上端部に亘って、内側に突出する第1の凹部(冷媒通路)46が設けられる。第1の凹部46における一方の上端部には第1の案内用孔47が設けられる。
このような第2の通路部材40を断面にすると、第2の凹部41は略L字状に形成されるのに対して、第1の通路部材45を断面にすると、第1の凹部46は略U字状に形成されることになる。
前記主筒体31内面に第2の通路部材40を嵌め込み、さらに第2の通路部材40内面に第1の通路部材45を嵌め込んだ状態で、第2の通路部材40における第2の凹部41に対して、第1の通路部材45における第1の凹部46の一部が重なり合うよう組立てられる。
第2の凹部41の幅寸法よりも、第1の凹部46の幅寸法がわずかに大きく形成され、第2の通路部材40の内側に第1の通路部材45を嵌め込んだ状態で、第2の凹部41に第1の凹部46が嵌り込む。
ただし、第1の凹部46における突出寸法は、第2の凹部41における突出寸法の略2倍あるので、第1の凹部46と第2の凹部41との間に空間スペースが確保されている。この状態で、第2の通路部材40に設けられる第2の案内用孔42と、第1の通路部材45に設けられる第1の案内用孔47とは、略180度対向する位置にある。
このようにして構成されるアキュームレータ6Aには、第1の案内用孔47および第1の凹部46を用いた第1の吸込み通路Taと、第1の案内用孔47と第1の凹部46および第2の案内用孔42と第2の凹部41を用いた第2の吸込み通路Tbが形成される。なお、これら第1、第2の吸込み通路Ta,Tbについては後述する。
図7は、上記アキュームレータ6Aを備えた密閉型回転式圧縮機1を用いて冷凍サイクルを構成し、冷房運転を行った場合の冷媒の流れ(実線矢印)を示す図である。
この冷凍サイクルでは、四方切換え弁2の第3のポートcへの冷媒管接続部近傍に分岐案内管Pbが接続されていて、圧縮機吸込み部1bとアキュームレータ6A下面部との間の冷媒管P部位に設けられる後述する切換え制御弁50に連通する。
圧縮機1で圧縮された高温高圧のガス冷媒は、四方切換え弁2の第1のポートaと第2のポートbを介して室外熱交換器3に導かれ、外気と熱交換が行われる。ガス冷媒は凝縮液化して液冷媒に変り、この液冷媒は膨張弁4に導かれて断熱膨張し、室内熱交換器5に導かれて室内空気と熱交換が行われる。
室内熱交換器5で液冷媒は蒸発して、室内空気から蒸発潜熱を奪い冷気に変えて室内の冷房作用をなす。蒸発した冷媒は、四方切換え弁2の第3のポートcと第4のポートdを介してアキュームレータ6Aに導かれ気液分離される。
一方、室内熱交換器5で蒸発した冷媒が四方切換え弁2の第3のポートcに導入される直前の位置で、この一部は分岐案内管Pbに分流され、分岐案内管Pbから切換え制御弁50に導かれる。
図8は、冷房運転時における切換え制御弁50の作用を説明する、切換え制御弁50の縦断面図である。
切換え制御弁50は、弁ケース(弁本体)51に、アキュームレータ6Aから延出される冷媒管Pと、圧縮機吸込み部1bから延出される冷媒管Pとが接続する冷媒通路52を備えている。
前記冷媒通路52の軸方向とは直交する方向に交差して、案内孔52aが設けられ、さらにこの案内孔52aの直径よりも大なる直径で、かつ弁ケース51端面に開口される弁室54が連設される。
弁室54の開口端は固定板53によって閉塞され、弁室54から弁ケース51外部へのガス漏れの無いよう完全にシールされる。前記固定板53には、上述した分岐案内管Pbの端部が接続されていて、四方切換え弁2の第3のポートc近傍部位から導かれる冷媒を弁ケース51の弁室54内へ導くように構成される。
上記弁室54には弁体55が収容される。この弁体55は、弁室54周壁に移動自在に嵌め込まれる基部55aを備えていて、基部55a周面にはシールリング56aとバックアップリング56bが嵌め込まれる取付け部が設けられる。このことから、弁ケース51に対して弁体55が移動しても、互いの摺接部からのガス漏れが確実に阻止される。
上記弁体55には、案内孔52aと略同一直径で、かつ先端が冷媒通路52の曲率半径と同一の曲率半径に形成される突部55bが設けられる。弁体55の移動位置によっては、突部55bは案内孔52aに対して進退自在であり、かつ冷媒通路52を略閉塞する。
すなわち、弁体55が案内孔52aを介して冷媒通路52に最も深く侵入しても、弁体55の突部55b先端と冷媒通路52とはある程度の間隙を確保するように設計されている。要するに、弁体55は冷媒通路52を完全開放できるが、完全閉塞するには至らない構造となっている。
弁体55の突部55b周面にコイル状の圧縮ばね57が装着されている。この圧縮ばね57の一端部は弁体55の基部55a端面に当接し、他端部は弁室54の端面における案内孔52a周部に当接する。したがって、圧縮ばね57は弁ケース51と弁室54に対して弁体55を固定板53に接する方向に弾性的に押圧付勢している。
上記切換え制御弁50において、上述した冷房運転時には、分岐案内管Pbを介して室内熱交換器5で蒸発した低圧の冷媒が導かれる。低圧冷媒が分岐案内管Pbから切換え制御弁50に導かれ、固定板53から弁室54内に侵入しようとしても、低圧冷媒の圧力に対し圧縮ばね57の弾性力が勝って弁体55が固定板53に押付けられたままとなる。
弁体55の突部55bは案内孔52aから抜け出た状態を保持し、冷媒通路52は完全開放される。したがって、切換え制御弁50として、アキュームレータ6Aと圧縮機吸込み部1bとを連通する冷媒管Pを開放する。アキュームレータ6Aにおいては、以下に述べるように冷媒が導かれる。
図9は、冷房運転時におけるアキュームレータ6A内部の冷媒導通状態を説明する図である。
アキュームレータ6A上端に接続される冷媒管Pから室内熱交換器5で蒸発した冷媒が、アキュームレータ6A内部に導かれる。蒸発冷媒は、アキュームレータ6A内部の上端に設けられるフィルタ組立てFを流通して気液分離される。フィルタ組立てFには所定方向に向けられた切起し部Kが設けられ、分離された液冷媒を案内する。
ガス冷媒はフィルタ組立てFの下部で浮遊し、第1の通路部材45内に充満した後、第1の案内用孔47に案内されて第1の凹部46に導かれる。液冷媒は切起し部Kの傾斜方向に沿って導かれ滴下する。切起し部Kの傾斜方向に対して第1の案内用孔47は反対方向に設けられていて、液冷媒が第1の案内用孔47に吸込まれないよう配慮している。
第1の案内用孔47から第1の凹部46に導かれたガス冷媒は、第1の凹部46に対して開口する冷媒管Pから、開放状態にある切換え制御弁50を介して圧縮機1の吸込み部1bに導かれて圧縮機構部13で圧縮される。
すなわち、アキュームレータ6A内部には第1の案内用孔47から第1の凹部46を介して冷媒管P開口端に至る第2の吸込み通路Tbが形成されることになる。ここでも、アキュームレータ6Aの構造上、ガス冷媒は冷媒管Pの開口端を越えて第2の通路部材40に設けられる第2の案内用孔42から第2の凹部41側へ流通しようとする。
しかしながら、上記第2の吸込み通路Tbは、第1の案内用孔47から第1の凹部46を介して冷媒管Pの開口端までの直状で、最短距離で形成されているから、冷媒管Pの開口端を越えて第1の凹部46を上昇し、第2の案内用孔42まで到達するガス冷媒はほとんど無い。
後述するように、冷媒管Pの開口端を越えて第1の凹部46から先に形成される第1の吸込み通路Taの通路長は、第2の吸込み通路Tbの通路長と比較して長く、通路抵抗が大である。したがって、アキュームレータ6A内部で気液分離された冷媒は、第2の吸込み通路Tbに導かれ、吸込み部1bを介して圧縮機構部13に吸込まれ圧縮される。
先にも説明したように、第2の吸込み通路Tbは能力が低いが、運転効率が高い状態が得られる通路長に設定されている。冷房運転時にはアキュームレータ6Aから第2の吸込み通路Tbを介して圧縮機構部13に冷媒を案内するようにして、能力よりも効率を重視した冷房運転を可能としている。
図10は、上記アキュームレータ6Aを備えた密閉型回転式圧縮機1を用いて冷凍サイクルを構成し、暖房運転を行った場合の冷媒の流れ(破線矢印)を示す図である。
圧縮機1で圧縮された高温高圧のガス冷媒は、四方切換え弁2の第1のポートaと第3のポートcを介して室内熱交換器5に導かれ、室内空気と熱交換が行われて凝縮液化し液冷媒に変る。このとき冷媒は室内空気に凝縮熱を放出するので、室内空気は温度上昇して熱気に変り、室内の暖房作用をなす。
室内熱交換器5から導出される液冷媒は膨張弁4に導かれて断熱膨張し、室外熱交換器3に導かれて外気と熱交換が行われる。室外熱交換器3で液冷媒は蒸発し、四方切換え弁2の第2のポートと第4のポートdを介してアキュームレータ6Aに導かれ気液分離される。
一方、密閉型回転式圧縮機1から吐出された高圧の冷媒ガスは四方切換え弁2の第3のポートcを出たところで、一部は分岐案内管Pbに案内されてアキュームレータ6A下部に設けられる切換え制御弁50に導かれる。
図11は、暖房運転時における切換え制御弁50の作用を説明する、切換え制御弁50の縦断面図である。
暖房運転時には、密閉型回転式圧縮機1で圧縮された高圧冷媒の一部が、分岐案内管Pbを介して切換え制御弁50に導かれる。具体的には、高圧冷媒は固定板53から弁室54内へ供給され、弁体55に高圧を付与する。弁体55は高圧を受ける一方で、圧縮ばね57の弾性力を受けるが、高圧冷媒の圧力が圧縮ばね57の弾性力に打ち勝って弁体55を弁室54内に押し込む。
ついには、図のように圧縮ばね57が最も収縮変形し、かつ弁体基部55aが弁室54の端面に当接して弁体55の移動が止まる。この状態で、弁体突部55bは案内孔52aを介して冷媒通路52に突出するが、上述したように弁体55は冷媒通路52を完全閉塞するには至らない。すなわち、切換え制御弁50として冷媒管Pを略閉成する。
図12は、暖房運転時におけるアキュームレータ6A内部の冷媒導通状態を説明する図である。
アキュームレータ6A上端に接続される冷媒管Pから室外熱交換器3で蒸発した冷媒が、アキュームレータ6A内部に導かれる。蒸発冷媒はアキュームレータ6A内部の上端に設けられるフィルタ組立てFを流通して気液分離され、液冷媒は切起し部Kに案内されて滴下する。
気液分離されたガス冷媒は、フィルタ組立てFの下部である第1の通路部材45内に充満した後、第1の案内用孔47に案内されて第1の凹部46に導かれる。ガス冷媒は第1の凹部46から、ここに開口する冷媒管Pへ導かれようとする。
しかしながら、冷媒管Pに取付けられる切換え制御弁50が略閉成状態にあるので、冷媒管P開口端を通過して、そのまま第1の凹部46を上昇する。第1の凹部46の上端位置には、第2の通路部材40の第2の凹部41に設けられる第2の案内用孔42が開口している。
第1の凹部46を上昇してきたガス冷媒は、第2の案内用孔42を流通して第2の凹部41に導かれ、そのまま降下する。主筒体31の底部には分岐冷媒管Paが接続されていて、この開口端は第2の凹部41に対して開口している。ガス冷媒は第2の凹部41から分岐冷媒管Paに導かれる。
すなわち、アキュームレータ6A内部には、第1の案内用孔47−第1の凹部46−第2の案内用孔42−第2の凹部41−冷媒分岐管Pa開口端に至る第1の吸込み通路Taが形成されている。アキュームレータ6内部で気液分離されたガス冷媒は、第1の吸込み通路Taに導かれ、吸込み部1bを介して圧縮機構部13に吸込まれ圧縮される。
先にも説明したように、第1の吸込み通路Taは効率が低いが、高い能力が得られる通路長に設定されている。第1の吸込み通路Taに冷媒を導くことで、密閉型回転式圧縮機1の圧縮機構部13を構成するシリンダ室17aへ比体積の小さい冷媒が多量に吸込まれ、冷媒吸込み量が増加して圧縮(暖房)能力が向上する慣性過給効果が得られる。
なお、先に図11で説明したように、暖房運転時において、切換え制御弁50は弁室54に高圧冷媒が導かれることで、弁体55が圧縮ばね57の弾性力に抗して押し込まれるが、弁体55の突部55bは冷媒通路52を完全閉塞するのではなく、ある程度の隙間を生じるよう構成されている。
暖房運転時において、切換え制御弁50が冷媒管Pを略閉成しているので、アキュームレータ6A内に導かれ気液分離されたガス冷媒は、上述したように通路長の長い第1の吸込み通路Taに導かれる。すなわち、第1の案内用孔47から第1の凹部46を介して切換え制御弁50を流通する通路長の短い第2の吸込み通路Tbには導かれない。
しかしながら、ここでは切換え制御弁50を構成する弁体55の突部55bは冷媒通路52を完全に閉塞していないから、ある程度のガス冷媒が弁体突部55bと冷媒通路52との隙間を介して流通し、切換え制御弁50の後流側に導かれることになる。
すなわち、アキュームレータ6Aは、言うまでもなく導入された蒸発冷媒を気液分離し、分離されたガス冷媒は上述したように第1の吸込み通路Taもしくは第2の吸込み通路Tbに導かれる。その一方で、分離した液冷媒はアキュームレータ6A底部に溜り、一部はガス冷媒に混合して蒸発させるように構成される。
図12に示す暖房運転時において、分離した液冷媒は第1の通路部材45の底部に溜り、ある程度蒸発しつつ、ここに設けられる小孔から滴下して第2の通路部材40の底部に溜まる。そしてまた、ある程度蒸発しつつ、一部の液冷媒は冷媒管Pの開口端から内部に滴下し、一部の液冷媒は底部に設けられる小孔から容器本体30底部に滴下する。
たとえば、切換え制御弁50の弁体突部55bが、冷媒通路52を完全閉塞する構造となっている場合、冷媒管P開口端から滴下する液冷媒が弁体突部55b上に溜まる。この状態を継続すると、弁体突部55b上の液冷媒の一部は蒸発するが、そのほとんどは液状のままで集溜量が増加してしまう。
暖房運転から冷房運転への切換えにあたって切換え制御弁50に冷凍サイクルから導いた圧力で動作させる。弁体55は圧縮ばね57の弾性力により移動し、突部55bが冷媒通路52を開放する。
したがって、それまで弁体突部55b上に溜まっていた液冷媒が、一度に、まとまった状態で冷媒通路52を流れることとなる。そして、液冷媒は圧縮機1の吸込み部1bに導かれ、圧縮機構部13において液圧縮の状態を招いてしまう。
上記実施の形態では、切換え制御弁50を閉成したとき、過給長さを決定付ける主流に影響しない程度の微量の冷媒を切換え制御弁50に流すようにした。切換え制御弁50内部における液冷媒の停滞を無くし、切換え動作時に液冷媒が圧縮機構部13に流入しないようにして、密閉型回転式圧縮機1の信頼性向上を得られる。
そして、切換え制御弁50は弁体突部55bが冷媒通路52を完全閉塞しないので、これら構成部品を高精度に仕上げる必要は無いとともに、安価な材料を用いて完成させることができる。アキュームレータ6Aや圧縮機1への冷媒管Pのロー付け加工にともなう熱影響を受けることがなく、したがって熱変形の虞れも無い。
このように、慣性過給効果が得られて能力を最大限引き上げた暖房運転と、運転効率を最大限引き上げた冷房運転時との切換えをなす切換え制御弁50を、冷凍サイクルから導いた冷媒圧力で動作させるようにした。
切換え制御弁50として、電磁弁等の高価な部品を使用しないですみ、コイル部分が無いので弁自体の重量を軽減でき、振動による冷媒管P破損の虞れがなく、通電回路が無いの運転時の省エネを図れる。
さらに、切換え制御弁50の切換えを、ヒートポンプ式冷凍サイクルを構成する四方切換え弁2の切換え動作にもとづくガス圧により行えるようにした。別途、切換え制御弁50の切換え駆動源を備える必要が無く、追加の部品を不要として、既存の冷凍サイクル構成部品を用いることで、コストへの影響を抑制できる。
つぎに、本発明における第3の実施の形態について説明する。
図13は、アキュームレータ6Bを分解して示す斜視図である。
アキュームレータ6Bを構成する容器本体30は、上端面が開口される有底筒状の主筒体31と、この主筒体31の上端開口面に嵌め込まれ、開口面を覆う蓋体32とから構成される。主筒体31と蓋体32は、互いに板金部材であり、これらの嵌め合い部はシール性を確保する加工が施され、円筒状の容器本体30として一体化される。
前記容器本体30内に、上端面が開口される円筒状で、かつ有底の板金部材である通路部材60が挿入される。通路部材60の外径は主筒体31の内径と同一であり、軸方向長さは主筒体31よりもわずかに短い。通路部材60底部の曲率半径は主筒体31底部の曲率半径よりも板厚分だけ小さく、通路部材は主筒体31の内周壁に密に嵌め込まれる。
通路部材60には、この底部から上端部に亘って、内面側に突出する凹部(冷媒通路)61が形成される。凹部61の上端部に案内用孔62aが設けられ、凹部61の通路部材60底部に取付け用孔62bが設けられる。なお、凹部61は容器本体30側に設けても何ら支障は無い。図示していないが、容器本体底部にも取付け用孔が設けられる。
図14(A)は上記アキュームレータ6Bを備えて冷房運転を行った際の、アキュームレータ6B内部における冷媒の流れを説明する図、図14(B)は同じく暖房運転を行った際の、アキュームレータ6B内部における冷媒の流れを説明する図である。
上述のようにして構成されるアキュームレータ6B内部に冷媒管Pが収容される。具体的には、切換え制御弁50を備えた冷媒管Pが容器本体30の取付け用孔と、通路部材60の取付け用孔62bを介して、通路部材60内に挿通される。冷媒管Pには通路部材60内で分岐する補助冷媒管Pcが設けられていて、この補助冷媒管Pcの開口端部は通路部材に60設けられる案内用孔62aに接続される。
冷媒管P自体は通路部材60の上端部において、フィルタ組立てFに設けられる切起し部Kの切起し方向とは対向しない方向に折曲される。これにより、蒸発冷媒がアキュームレータ6B内部に導かれフィルタ組立てFで気液分離されることで、分離された液冷媒が切起し部Kから滴下しても、冷媒管P開口端へ導かれることはない。
冷房運転時は、図14(A)に示すように、アキュームレータ6B内に導かれフィルタ組立てFで分離されたガス冷媒が、冷媒管P開口端へ導かれ、開放された切換え制御弁50を介して圧縮機1の吸込み部1bへ吸込まれ、圧縮機構部13で圧縮される。
ガス冷媒は以上の経路で形成される第2の吸込み通路Tbに導かれ、効率を重視した最適能力の冷房運転を行える。
ここでも、アキュームレータ6B内部において冷媒管Pに分岐する補助冷媒管Pcへガス冷媒が分流しようとする。しかしながら、補助冷媒管Pcは通路部材60の凹部61に接続され、さらに凹部61に補助冷媒管Pcが接続されていて、アキュームレータ6B外部において冷媒管Pとの接続部位に至る通路長が長い。
そのため、アキュームレータ6Bで気液分離されたガス冷媒が第2の吸込み通路Tbに円滑に導かれる一方で、補助冷媒管Pc−凹部61−分岐冷媒管Paに至る第1の吸込み通路Taに吸込まれるガス冷媒はほとんど無い。
暖房運転時は、図14(B)に示すように、アキュームレータ6B内に導かれフィルタ組立てFで分離されたガス冷媒が、図中破線矢印に示すように冷媒管P開口端へ導かれる。このとき、切換え制御弁50が閉成されていて、全てのガス冷媒は第1の吸込み通路Taに導かれる。
すなわち、ガス冷媒は冷媒管Pから補助冷媒管Pcに導かれ、通路部材60の凹部61と容器本体30との間に形成される空間部を介して、アキュームレータ6B底部に接続される分岐冷媒管Paに導かれる。この分岐冷媒管Paから切換え制御弁50後流側の冷媒管Pを介して圧縮機1の吸込み部1bへ吸込まれ、圧縮機構部13で圧縮される。
第1の吸込み通路Taは効率が低い状態となるが、高い能力が得られる通路長に設定されている。そのため、第1の吸込み通路Taに冷媒を導くことで、密閉型回転式圧縮機1のシリンダ室17aへ比体積の小さい冷媒が多量に吸込まれ、冷媒吸込み量が増加して圧縮(暖房)能力が向上する慣性過給効果が得られる。
なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。
11…密閉容器、12…電動機部、14…回転軸、13…圧縮機構部、6、6A,6B…アキュームレータ、T…吸込み通路、1…密閉式回転型圧縮機、Ta…第1の吸込み通路、Tb…第2の吸込み通路、7、50…切換え制御弁、30…容器本体、33…通路部材、34…冷媒通路(凹部)、45…第1の通路部材、40…第2の通路部材、46…第1の凹部(冷媒通路)、41…第2の凹部(冷媒通路)、60…通路部材、61…凹部(冷媒通路)、2…四方切換え弁、3…室外熱交換器、4…膨張弁(膨張装置)、5…室内熱交換器、10…制御部(制御手段)。

Claims (7)

  1. 密閉容器内に、電動機部と、この電動機部と回転軸を介して連結される圧縮機構部とを収容し、上記密閉容器の外側に設けたアキュームレータから吸込み通路を介して上記圧縮機構部に冷媒を導くようにした密閉型回転式圧縮機おいて、
    上記吸込み通路は、慣性過給効果を得られる長さに形成される第1の吸込み通路と、この第1の吸込み通路よりも短く形成される第2の吸込み通路との、少なくとも2つの吸込み通路から構成されるとともに、冷媒の流れを上記第1の吸込み通路および第2の吸込み通路のいずれかに切換える切換え制御弁を備え、
    上記アキュームレータ内部における上記第1の吸込み通路の長さを、上記アキュームレータ内部における上記第2の吸込み通路の長さよりも長く形成した
    ことを特徴とする密閉型回転式圧縮機。
  2. 上記切換え制御弁は、上記第2の吸込み通路のみに設けられる開閉弁であることを特徴とする請求項1記載の密閉型回転式圧縮機。
  3. 圧縮機と、四方切換え弁と、室外熱交換器と、膨張装置と、室内熱交換器とを接続してなる冷凍サイクルに用いられ、
    密閉容器内に、電動機部と、この電動機部と回転軸を介して連結される圧縮機構部とを収容し、上記密閉容器の外側に設けたアキュームレータから吸込み通路を介して上記圧縮機構部に冷媒を導くようにした密閉型回転式圧縮機おいて、
    上記吸込み通路は、慣性過給効果を得られる長さに形成される第1の吸込み通路と、この第1の吸込み通路よりも短く形成される第2の吸込み通路との、少なくとも2つの吸込み通路から構成されるとともに、冷媒の流れを上記第1の吸込み通路および第2の吸込み通路のいずれかに切換える切換え制御弁を備え、
    上記切換え弁は、上記冷凍サイクルから導いた圧力にて動作させるようにした
    ことを特徴とする密閉型回転式圧縮機。
  4. 上記アキュームレータは、円筒状の容器本体を備えており、
    この容器本体の内周面に、円筒状の外周面を有する通路部材を挿入して嵌合固定し、
    上記容器本体の内周面および上記通路部材の外周面の少なくともいずれか一方に、凹部からなる冷媒通路を設け、
    この冷媒通路を、上記アキュームレータ内部における上記第1の吸込み通路の一部とした
    ことを特徴とする請求項1ないし請求項3のいずれかに記載の密閉型回転式圧縮機。
  5. 上記凹部からなる冷媒通路は、螺旋状に形成される
    ことを特徴とする請求項4記載の密閉型回転式圧縮機。
  6. 上記アキュームレータは、円筒状の容器本体を備えており、
    この容器本体の内周面に、円筒状の外周面を有する複数の通路部材を挿入して嵌合固定し、
    上記容器本体の内周面および上記通路部材の外周面の少なくともいずれか一方に、凹部からなる冷媒通路を設け、
    この冷媒通路を、上記アキュームレータ内部における上記第1の吸込み通路および上記第2の吸込み通路の一部とした
    ことを特徴とする請求項1ないし請求項3記載の密閉型回転式圧縮機。
  7. 上記請求項1ないし請求項6のいずれかに記載の密閉型回転式圧縮機と、四方切換え弁と、室外熱交換器と、膨張装置と、室内熱交換器とを接続してなる冷凍サイクルを備えた空気調和機において、
    冷房運転時には、上記第2の吸込み通路を介して上記密閉型回転式圧縮機の圧縮機構部に冷媒を導き、暖房運転時には、上記第1の吸込み通路のみを介して密閉型回転式圧縮機の圧縮機構部に冷媒を導くように、上記切換え制御弁を制御する制御手段を備えた
    ことを特徴とする空気調和機。
JP2009070891A 2008-05-22 2009-03-23 密閉型回転式圧縮機と空気調和機 Withdrawn JP2010001887A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070891A JP2010001887A (ja) 2008-05-22 2009-03-23 密閉型回転式圧縮機と空気調和機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008134206 2008-05-22
JP2009070891A JP2010001887A (ja) 2008-05-22 2009-03-23 密閉型回転式圧縮機と空気調和機

Publications (1)

Publication Number Publication Date
JP2010001887A true JP2010001887A (ja) 2010-01-07

Family

ID=41583787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070891A Withdrawn JP2010001887A (ja) 2008-05-22 2009-03-23 密閉型回転式圧縮機と空気調和機

Country Status (1)

Country Link
JP (1) JP2010001887A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103161713A (zh) * 2011-12-08 2013-06-19 日立空调·家用电器株式会社 电动压缩机
WO2018133286A1 (zh) * 2017-01-18 2018-07-26 广东美芝制冷设备有限公司 储液器以及具有它的双缸压缩机
US11053990B2 (en) 2017-12-19 2021-07-06 Husco Automotive Holdings Llc Systems and methods for a two-way clutch with a predetermined interference

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103161713A (zh) * 2011-12-08 2013-06-19 日立空调·家用电器株式会社 电动压缩机
CN103161713B (zh) * 2011-12-08 2015-12-02 日立空调·家用电器株式会社 电动压缩机
WO2018133286A1 (zh) * 2017-01-18 2018-07-26 广东美芝制冷设备有限公司 储液器以及具有它的双缸压缩机
US11053990B2 (en) 2017-12-19 2021-07-06 Husco Automotive Holdings Llc Systems and methods for a two-way clutch with a predetermined interference

Similar Documents

Publication Publication Date Title
US7572116B2 (en) Compression system, multicylinder rotary compressor, and refrigeration apparatus using the same
KR101280155B1 (ko) 히트 펌프 장치, 2단 압축기 및 히트 펌프 장치의 운전 방법
JP2006057634A (ja) 往復動式圧縮機の冷媒吸入案内構造
WO2006035935A1 (ja) 容積型膨張機
JP4219198B2 (ja) 冷媒サイクル装置
JP5481568B2 (ja) 多気筒回転式圧縮機と冷凍サイクル装置
CN103582762B (zh) 密闭型压缩机和制冷循环装置
JP2010001887A (ja) 密閉型回転式圧縮機と空気調和機
JP5971633B2 (ja) 冷凍サイクル装置
JP4963971B2 (ja) ヒートポンプ式設備機器
JP2017186924A (ja) 圧縮機
JP2013053579A (ja) ロータリ圧縮機
JP2010048500A (ja) 冷凍サイクル装置
WO2022118383A1 (ja) 圧縮機及び冷凍サイクル装置
JP2018179353A (ja) 冷凍サイクル装置、ロータリ圧縮機
JP7466692B2 (ja) 圧縮機及び冷凍サイクル装置
JP2012247097A (ja) 冷凍サイクル装置
JP5588903B2 (ja) 多気筒回転圧縮機と冷凍サイクル装置
WO2023144953A1 (ja) 圧縮機及び冷凍サイクル装置
JP7466693B2 (ja) 圧縮機及び冷凍サイクル装置
WO2023214497A1 (ja) 圧縮機および空気調和装置
JP4652131B2 (ja) 冷凍サイクル装置
JP2006250491A (ja) 冷熱生成システム、空気調和装置、冷凍装置、及び冷熱生成方法
JP2021017852A (ja) 圧縮機、室外機および空気調和装置
CZ2023186A3 (cs) Kompresor a zařízení chladicího cyklu

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605