WO2012083534A1 - 氟化氧化石墨烯及其制备方法 - Google Patents

氟化氧化石墨烯及其制备方法 Download PDF

Info

Publication number
WO2012083534A1
WO2012083534A1 PCT/CN2010/080127 CN2010080127W WO2012083534A1 WO 2012083534 A1 WO2012083534 A1 WO 2012083534A1 CN 2010080127 W CN2010080127 W CN 2010080127W WO 2012083534 A1 WO2012083534 A1 WO 2012083534A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
fluorinated graphene
graphite
fluorinated
mass percentage
Prior art date
Application number
PCT/CN2010/080127
Other languages
English (en)
French (fr)
Inventor
周明杰
刘大喜
王要兵
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN201080069695.9A priority Critical patent/CN103153851B/zh
Priority to US13/988,287 priority patent/US8865932B2/en
Priority to EP10860990.0A priority patent/EP2657189A4/en
Priority to PCT/CN2010/080127 priority patent/WO2012083534A1/zh
Priority to JP2013541175A priority patent/JP5649741B2/ja
Publication of WO2012083534A1 publication Critical patent/WO2012083534A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/21Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups
    • C07C65/24Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups polycyclic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/305Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with sulfur or sulfur-containing compounds

Definitions

  • the invention belongs to the technical field of organic semiconductor materials, and particularly relates to a fluorinated graphene oxide and a preparation method thereof.
  • High specific surface area (theoretical calculated value: 2,630 m 2 /g).
  • its high conductivity properties, large specific surface properties and its two-dimensional nanoscale structural properties of monolayers can be used as electrode materials in supercapacitors and lithium ion batteries.
  • the graphite oxide exhibits a strong polarity because it contains groups such as -C-OH, -COC, -COOH.
  • the dried graphite oxide has poor stability in air and easily absorbs moisture to form hydrated graphite oxide.
  • the graphite oxide is fluorinated to form fluorinated graphite oxide, the stability is remarkably enhanced.
  • the discharge capacity of fluorinated graphite oxide is also much higher than that of graphite oxide, especially the fluorinated graphite oxide formed by the action of F 2 at 110 ° C, at a discharge current density of 0.5 mA/cm 2 (1M LiClO).
  • the discharge capacity and energy density at 4 -PC were 675 mA h/g and 1420 W h/Kg, respectively.
  • the mass percentage of fluorine is 9% ⁇ F% ⁇ 27%
  • the mass percentage of carbon is 55% ⁇ C% ⁇ 75%
  • the mass percentage of oxygen is 18% ⁇ O% ⁇ 27%.
  • a method for preparing fluorinated graphene oxide comprising the following steps:
  • the graphene oxide and the mixed gas composed of N 2 and F 2 are obtained at a reaction temperature of 20 to 200 ° C and a reaction time of 0.5 to 24 h for the fluorinated graphene oxide.
  • the volume fraction of F 2 is 5 to 30%.
  • the volume fraction of F 2 is 8 to 25%.
  • the volume fraction of F 2 is 20%.
  • the volume fraction of F 2 is 10%.
  • the reaction temperature is 50 to 150 ° C, and the reaction time is 2 to 20 hours.
  • the step of preparing graphene oxide using the graphite comprises:
  • the solid was washed with dilute hydrochloric acid and dried to obtain the graphene oxide.
  • the graphite has a purity greater than 99.5%.
  • the above method for preparing fluorinated graphene oxide uses graphite to prepare graphene oxide, and then reacts graphene oxide with a mixed gas of N 2 and F 2 at a certain temperature to prepare fluorinated graphene oxide, which is fluorinated and oxidized.
  • the preparation method of graphene has fewer steps and simple process, and has a strong application prospect.
  • FIG. 1 is a flow chart showing a method of preparing fluorinated graphene oxide according to an embodiment
  • Example 2 is an XPS full spectrum of C1s, O1s and F1s of the fluorinated graphene oxide prepared in Example 1.
  • the mass percentage of fluorine is 9% ⁇ F% ⁇ 27%
  • the mass percentage of carbon is 55% ⁇ C% ⁇ 75%
  • the mass percentage of oxygen is 18% ⁇ O% ⁇ 27%.
  • a method for preparing the above fluorinated graphene oxide as shown in FIG. 1 includes the following steps:
  • graphite oxide can be prepared by the Hummers method, that is, graphite, potassium permanganate and high-concentration strong oxidizing acid (sulfuric acid or nitric acid) are heated in a water bath or an oil bath in the same container, and are taken out after being fully oxidized, first using hydrogen peroxide. The potassium permanganate is reduced, and the product is washed several times with distilled water or hydrochloric acid, and dried to obtain graphite oxide.
  • the Hummers method that is, graphite, potassium permanganate and high-concentration strong oxidizing acid (sulfuric acid or nitric acid) are heated in a water bath or an oil bath in the same container, and are taken out after being fully oxidized, first using hydrogen peroxide. The potassium permanganate is reduced, and the product is washed several times with distilled water or hydrochloric acid, and dried to obtain graphite oxide.
  • the pretreated mixture and potassium permanganate are added to concentrated sulfuric acid to maintain the temperature below 20 °C, after which 30 ⁇ 40°C oil bath 1.5 ⁇ 2.5h, add deionized water, add hydrogen peroxide reaction after 15min, filter and collect solid.
  • the purpose of the oil bath is to better control the reaction temperature, and in other embodiments, a water bath can also be used.
  • the graphene oxide obtained by the step S20 is reacted with the fluorine element (F 2 ) to prepare a fluorinated graphene oxide.
  • This method is called a gas phase method, and a mixed gas of N 2 and F 2 is used.
  • the specific steps are as follows:
  • the dried graphene oxide obtained in step S20 is placed in a reactor, and a mixed gas of N 2 and F 2 is introduced (the volume fraction of F 2 is 5% to 30%), and the temperature is maintained at 20 to 200 ° C, and the reaction is 0.5. ⁇ 24 h, the graphene oxide is reacted with F 2 , and the F portion is substituted with O to obtain a fluorinated graphene oxide.
  • the volume fraction of F 2 in the mixed gas is 8 to 25%
  • the reaction temperature is 50 to 150 ° C
  • the reaction time is 2 to 20 hours.
  • the volume fraction of F 2 in the mixed gas is 10% or 20%.
  • the above method for preparing fluorinated graphene oxide uses graphite to prepare graphene oxide, and then uses graphene oxide to react with a mixed gas of N 2 and F 2 to prepare fluorinated graphene oxide, and preparation of the fluorinated graphene oxide.
  • the method has fewer steps and simple process, and has a strong application prospect.
  • the prepared fluorinated graphene oxide can be applied as an electrode material of a supercapacitor or a lithium ion secondary battery.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10g potassium persulfate and 10g phosphorus pentoxide were added to concentrated sulfuric acid at 80 °C, stirred evenly, cooled for more than 6h, washed to neutral and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 35 °C for 2 h, then slowly add 920 mL. Deionized water.
  • Fluorinated graphene oxide The graphene oxide obtained in (2) is obtained by reacting with F 2 to obtain a fluorinated graphene oxide.
  • the specific step is to charge the dried graphene oxide into the reactor and pass through the dry N 2 2 h, and then introduce a mixed gas of fluorine gas and nitrogen with a fluorine gas integral number of 10% and graphene oxide at 100.
  • the fluorinated graphene oxide can be obtained by reacting at ° C for 12 h.
  • XPS test conditions Samples were analyzed using a VG Scientific ESCALab 220i-XL photoelectron spectrometer.
  • the excitation source is Al K ⁇ X-ray with a power of about 300 W.
  • the basis vacuum for the analysis was 3 x 10 -9 mbar.
  • the electron binding energy was corrected by the C1s peak of contaminated carbon (284.8 eV).
  • the obtained fluorinated graphene oxide has a strong peak at 533.0 eV, and the carbon bond structure in the fluorinated graphene oxide is C - O ( 533.0 eV).
  • the obtained fluorinated graphene oxide has a strong peak at 689.5 eV, and the carbon bond structure in the corresponding fluorinated graphene oxide is C - F (689.5 eV).
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10 g of potassium persulfate and 10 g of phosphorus pentoxide were added to concentrated sulfuric acid at 75 ° C, stirred uniformly, cooled for more than 6 h, washed until neutral, and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 40 °C for 2.5 h, then slowly add 920 mL. Deionized water.
  • Fluorinated graphene oxide The graphene oxide obtained in (2) is obtained by reacting with F 2 to obtain a fluorinated graphene oxide.
  • the specific step is to charge the dried graphene oxide into the reactor and pass through the dry N 2 4 h, and then pass a mixed gas of fluorine gas and nitrogen with a fluorine gas integral number of 5% and graphene oxide at 20
  • the fluorinated graphene oxide can be obtained by reacting at ° C for 24 h.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10 g of potassium persulfate and 10 g of phosphorus pentoxide were added to concentrated sulfuric acid at 95 ° C, stirred uniformly, cooled for more than 6 h, washed until neutral, and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 30 °C for 1.5 h, then slowly add 920 mL. Deionized water.
  • Fluorinated graphene oxide The graphene oxide obtained in (2) is obtained by reacting with F 2 to obtain a fluorinated graphene oxide.
  • the specific step is to charge the dried graphene oxide into the reactor and pass dry N 2 for 0.5 h, and then introduce a mixed gas of fluorine gas and nitrogen with a fluorine gas integral number of 30% and graphene oxide at 50.
  • the fluorinated graphene oxide can be obtained by reacting at ° C for 24 h.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10g potassium persulfate and 10g phosphorus pentoxide were added to concentrated sulfuric acid at 85 °C, stirred evenly, cooled for more than 6h, washed to neutral and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 35 °C for 2 h, then slowly add 920 mL. Deionized water.
  • Fluorinated graphene oxide The graphene oxide obtained in (2) is obtained by reacting with F 2 to obtain a fluorinated graphene oxide.
  • the specific step is to charge the dried graphene oxide into the reactor and pass through the dry N 2 3h, and then introduce a mixed gas of fluorine gas and nitrogen with a fluorine gas integral number of 20% and graphene oxide at 200 ° C.
  • the fluorinated graphene oxide can be obtained by reacting for 0.5 h.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10g potassium persulfate and 10g phosphorus pentoxide were added to concentrated sulfuric acid at 80 °C, stirred evenly, cooled for more than 6h, washed to neutral and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 35 °C for 2 h, then slowly add 920 mL. Deionized water.
  • Fluorinated graphene oxide The graphene oxide obtained in (2) is obtained by reacting with F 2 to obtain a fluorinated graphene oxide.
  • the specific step is to charge the dried graphene oxide into the reactor and pass through the dry N 2 2h, and then pass a mixed gas of fluorine gas and nitrogen with a fluorine gas integral number of 8% and graphene oxide at 120 ° C.
  • the fluorinated graphene oxide can be obtained by reacting for 10 hours.
  • Graphene oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 The graphite powder, 10g potassium persulfate and 10g phosphorus pentoxide were added to concentrated sulfuric acid at 80 °C, stirred evenly, cooled for more than 6h, washed to neutral and dried. Add the dried sample to 0 °C, In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C, then keep it in the oil bath at 35 °C for 2 h, then slowly add 920 mL. Deionized water.
  • Fluorinated graphene oxide The graphene oxide obtained in (2) is obtained by reacting with F 2 to obtain a fluorinated graphene oxide.
  • the specific step is to charge the dried graphene oxide into the reactor and pass through the dry N 2 2h, and then introduce a mixed gas of fluorine gas and nitrogen with a fluorine gas integral number of 25% and graphene oxide at 80 ° C.
  • the fluorinated graphene oxide can be obtained by reacting for 4 hours.
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 6 F content 40% 27% 16% 15% 9% 0.5%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

氟化氧化石墨烯及其制备方法
【技术领域】
本发明属于有机半导体材料技术领域,具体涉及氟化氧化石墨烯及其制备方法。
【背景技术】
自从英国曼彻斯特大学的安德烈· K ·海姆 (Andre K. Geim) 等在 2004 年制备出石墨烯材料,由于其独特的结构和光电性质受到了人们广泛的重视。石墨烯被喻为材料科学与凝聚态物理领域正在升起的'新星',它所具有的许多新颖而独特的性质与潜在的应用正吸引了诸多科技工作者。单层石墨烯具有大的比表面积,优良的导电、导热性能和低的热膨胀系数。如: 1. 高强度,杨氏摩尔量, (1,100 GPa) ,断裂强度: (125GPa) ; 2. 高热导率, (5,000 W/mK) ; 3. 高导电性、载流子传输率, (200,000 cm2/V*s) ; 4. 高的比表面积,(理论计算值: 2,630 m2 /g ) 。尤其是其高导电性质,大的比表面性质和其单分子层二维的纳米尺度的结构性质,可在超级电容器和锂离子电池中用作电极材料。
氧化石墨中由于含有 -C-OH 、 -C-O-C 、 -COOH 等基团,从而表现出较强的极性。干燥的氧化石墨在空气中的稳定性较差,很容易吸潮而形成水化氧化石墨,但当氧化石墨氟化生成氟化氧化石墨后, 稳定性明显增强。作为电极材料, 氟化氧化石墨的放电容量也较氧化石墨有很大提高, 特别是在 110 ℃ 下 与 F2 作用生成的氟化氧化石墨,在放电电流密度为 0.5mA/cm2 (1M LiClO4-PC ) 时的放电容量、能量密度分别达 675mA h/g 、 1420W h/Kg 。
然而,如何方便的得到氟化氧化石墨烯是目前的一个难题。
【发明内容】
基于此,有必要提供至少一种 工艺简单的 氟化氧化石墨烯的制备方法以及由上述氟化氧化石墨烯的制备方法制得的氟化氧化石墨烯。
一种氟化氧化石墨烯,氟的质量百分比为 0.5% < F% < 40% ,碳的质量百分比为 50% < C% < 80% ,氧的质量百分比为 0.5% < O% < 30% 。
优选的,氟的质量百分比为 9% < F% < 27% ,碳的质量百分比为 55% < C% < 75% ,氧的质量百分比为 18% < O% < 27% 。
一种氟化氧化石墨烯的制备方法,包括如下步骤:
提供石墨;
使用所述石墨制备氧化石墨烯;
所述氧化石墨烯与由 N2 和 F2 组成的混合气体在反应温度为 20~200℃,反应时间为下0.5~24h 的条件下制得所述氟化氧化石墨烯。
优选的,所述混合气体中, F2 的体积分数为 5~30% 。
优选的,所述混合气体中, F2 的体积分数为 8~25% 。
优选的,所述混合气体中, F2 的体积分数为 20% 。
优选的,所述混合气体中, F2 的体积分数为 10% 。
优选的,反应温度为 50~150℃,反应时间为2~20h 。
优选的,使用所述石墨制备氧化石墨烯的步骤包括:
将所述石墨、过硫酸钾和五氧化二磷按照质量比 2 : 1 : 1 加入到 60~85℃的浓硫酸中,搅拌均匀后自然冷却,洗涤至中性后干燥,得到预处理的混合物;
将所述预处理的混合物和高锰酸钾加入到温度低于 20 ℃ 的浓硫酸中,然后在 30~40℃下油浴1.5~2.5 h ,加入去离子水, 15min 后加入双氧水反应,抽滤、收集固体;
所述固体用稀盐酸洗涤,干燥,得到所述氧化石墨烯。
优选的,所述石墨纯度大于 99.5% 。
上述氟化氧化石墨烯的制备方法使用石墨制备氧化石墨烯,再利用氧化石墨烯与N2和F2组成的混合气体在一定温度下反应,制备出氟化氧化石墨烯,这种氟化氧化石墨烯的制备方法步骤较少、工艺简单,具有较强的应用前景。
【附图说明】
图 1 为一实施方式的氟化氧化石墨烯的制备方法的流程图;
图 2 为实施例1制备的氟化氧化石墨烯的C1s、O1s和F1s的XPS全谱图。
【具体实施方式】
下面结合附图及实施例对氟化氧化石墨烯及其制备方法做进一步的解释说明。
一种氟化氧化石墨烯,氟的质量百分比为 0.5% < F% < 40% ,碳的质量百分比为 50% < C% < 80% ,氧的质量百分比为 0.5% < O% < 30% 。
在优选的实施例中,氟的质量百分比为9% < F% < 27%,碳的质量百分比为55% < C% < 75%,氧的质量百分比为18% < O% < 27%。
如图 1 所示的上述氟化氧化石墨烯的一种制备方法,包括如下步骤:
S10 、提供石墨
购买纯度超过 99.5% 的石墨。
S20 、使用石墨制备氧化石墨烯
一般的,可以通过Hummers法制备氧化石墨,即将石墨、高锰酸钾和高浓度强氧化性酸(硫酸或硝酸)置于同一容器中水浴或油浴加热,待充分氧化后取出,先用双氧水还原高锰酸钾,在用蒸馏水或盐酸洗涤产物数次,干燥后得到氧化石墨。
为了制备氧化石墨烯,可以对 Hummers 法进行一些改进,改进后的制备过程包括如下步骤。
首先,将石墨、过硫酸钾和五氧化二磷按照质量比 2 : 1 : 1 加入到 60~85℃的浓硫酸中,搅拌均匀后自然冷却,洗涤至中性后干燥,得到预处理的混合物。
其次,将所述预处理的混合物和高锰酸钾加入到浓硫酸中,保持温度低于 20 ℃ ,之后 30~40℃油浴1.5~2.5h ,加入去离子水, 15min 后加入双氧水反应,抽滤、收集固体。
最后,将上述固体用稀盐酸洗涤,干燥,得到氧化石墨烯。
油浴的目的是为了更好的控制反应温度,在其他的实施方式中,也可以采用水浴。
S30 、氧化石墨烯与氟单质反应得到氟化氧化石墨烯
利用S20步骤得到的氧化石墨烯与氟单质(F2 )反应制备氟化氧化石墨烯,这种方法称为气相法,采用N2 和F2 混合气体,具体步骤如下:
将 S20 步骤得到的干燥过的氧化石墨烯放入反应器中,通入 N2 和 F2 混合气体( F2 的体积分数为 5%~30% ),维持温度为 20~200℃,反应0.5~24 h ,使得氧化石墨烯与 F2 反应, F 部分取代 O ,得到氟化氧化石墨烯。
在优选的实施例中,混合气体中, F2 的体积分数为 8~25% ,反应温度为 50~150℃,反应时间为2~20h 。
在更优选的实施例中,混合气体中, F2 的体积分数为 10% 或 20% 。
上述氟化氧化石墨烯的制备方法使用石墨制备氧化石墨烯,再利用氧化石墨烯与 N2 和 F2 组成的混合气体反应,制备出氟化氧化石墨烯,这种氟化氧化石墨烯的制备方法步骤较少、工艺简单,具有较强的应用前景。
制备得到的氟化氧化石墨烯可以应用作为超级电容器、锂离子二次电池的电极材料。
以下为具体实施例部分。
实施例 1
本实施例通过氧化石墨烯制备氟化氧化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化氧化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 2h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化氧化石墨烯:( 2 )中所得氧化石墨烯通过与 F2 反应得到氟化氧化石墨烯。其具体步骤为将干燥好了的氧化石墨烯装入反应器中通入干燥的 N2 2 h ,然后通入氟气体积分数为 10% 的氟气和氮气的混合气体与氧化石墨烯在 100 ℃ 下反应 12h ,即可以得到氟化氧化石墨烯。
对所得氟化石墨烯进行以下实验:
XPS测试实验条件:样品用VG Scientific ESCALab220i-XL型光电子能谱仪分析。激发源为Al KαX射线,功率约300 W。分析时的基础真空为3×10-9 mbar。电子结合能用污染碳的C1s峰(284.8 eV)校正。
元素相对定量计算:
相对原子百分比=
Figure PCTCN2010080127-appb-I000001
式中: Ii - i 元素的峰强度 ( 面积 )
Si -i元素的相对元素灵敏度因子
由表 1 可以得出 F 的质量百分比为 40% ,氧的质量百分比为 15% 。
如图 3 所示的本实施例制备的氟化氧化石墨烯的 C1s 、 O1s 和 F1s 的 XPS 全谱图。
从图中可以看出,制得的氟化氧化石墨烯在 284.8 eV 处有很强的峰值,对应氟化氧化石墨烯中碳键结构为 C - C ( 284.8 eV )。
制得的氟化氧化石墨烯在 533.0 eV 处有很强的峰值,对应氟化氧化石墨烯中碳键结构为 C - O ( 533.0 eV )。
制得的氟化氧化石墨烯在689.5 eV处有很强的峰值,对应氟化氧化石墨烯中碳键结构为C - F(689.5 eV)。
实施例 2
本实施例通过氧化石墨烯制备氟化氧化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化氧化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 75 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 40 ℃ 的油浴中保持 2.5 h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化氧化石墨烯:( 2 )中所得氧化石墨烯通过与 F2 反应得到氟化氧化石墨烯。其具体步骤为将干燥好了的氧化石墨烯装入反应器中通入干燥的 N2 4 h ,然后通入氟气体积分数为 5% 的氟气和氮气的混合气体与氧化石墨烯在 20 ℃ 下反应 24h ,即可以得到氟化氧化石墨烯。
由表1可以得出F的质量百分比为27%,氧的质量百分比为18%。
实施例 3
本实施例通过氧化石墨烯制备氟化氧化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化氧化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 95 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 30 ℃ 的油浴中保持 1.5h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化氧化石墨烯:( 2 )中所得氧化石墨烯通过与 F2 反应得到氟化氧化石墨烯。其具体步骤为将干燥好了的氧化石墨烯装入反应器中通入干燥的 N2 0.5 h ,然后通入氟气体积分数为 30% 的氟气和氮气的混合气体与氧化石墨烯在 50 ℃ 下反应 24h ,即可以得到氟化氧化石墨烯。
由表1可以得出F的质量百分比为16%,氧的质量百分比为27%。
实施例 4
本实施例通过氧化石墨烯制备氟化氧化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化氧化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 85 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 2h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化氧化石墨烯:( 2 )中所得氧化石墨烯通过与 F2 反应得到氟化氧化石墨烯。其具体步骤为将干燥好了的氧化石墨烯装入反应器中通入干燥的 N2 3h ,然后通入氟气体积分数为 20% 的氟气和氮气的混合气体与氧化石墨烯在 200 ℃ 下反应 0.5h ,即可以得到氟化氧化石墨烯。
由表1可以得出F的质量百分比为15%,氧的质量百分比为29% 。
实施例 5
本实施例通过氧化石墨烯制备氟化氧化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化氧化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 2h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化氧化石墨烯:( 2 )中所得氧化石墨烯通过与 F2 反应得到氟化氧化石墨烯。其具体步骤为将干燥好了的氧化石墨烯装入反应器中通入干燥的 N2 2h ,然后通入氟气体积分数为 8% 的氟气和氮气的混合气体与氧化石墨烯在 120 ℃ 下反应 10h ,即可以得到氟化氧化石墨烯。
由表1可以得出F的质量百分比为9%,氧的质量百分比为25%。
实施例 6
本实施例通过氧化石墨烯制备氟化氧化石墨烯的工艺流程如下:
石墨 →氧化石墨烯 →氟化氧化石墨烯
( 1 )石墨:纯度 99.5% 。
( 2 )氧化石墨烯:通过改进的 Hummers 法制备氧化石墨烯。其具体步骤为将 20g 50 目石墨粉、 10g 过硫酸钾和 10g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230mL 的浓硫酸中,再加入 60g 高锰酸钾,混合物的温度保持在 20 ℃ 以下,然后在 35 ℃ 的油浴中保持 2h 后,缓慢加入 920mL 去离子水。 15min 后,再加入 2.8L 去离子水 ( 其中含有 50mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60 ℃ 真空干燥 48h 即得到氧化石墨烯。
( 3 )氟化氧化石墨烯:( 2 )中所得氧化石墨烯通过与 F2 反应得到氟化氧化石墨烯。其具体步骤为将干燥好了的氧化石墨烯装入反应器中通入干燥的 N2 2h ,然后通入氟气体积分数为 25% 的氟气和氮气的混合气体与氧化石墨烯在 80 ℃ 下反应 4h ,即可以得到氟化氧化石墨烯。
由表1可以得出F的质量百分比为0.5%,氧的质量百分比为30%。
表 1 氟化石墨稀氟含量及氧含量
编号 实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 实施例 6
F 含量 40% 27% 16% 15% 9% 0.5%
O 含量 15% 18% 27% 29% 25% 30%
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种氟化氧化石墨烯,其特征在于,氟的质量百分比为0.5% < F% < 40%,碳的质量百分比为50% < C% < 80%,氧的质量百分比为0.5% < O% < 30%。
  2. 如权利要求1所述氟化氧化石墨烯,其特征在于,氟的质量百分比为9% < F% < 27%,,碳的质量百分比为55% < C% < 75%,氧的质量百分比为18% < O% < 27%。
  3. 一种氟化氧化石墨烯的制备方法,其特征在于,包括如下步骤:
    提供石墨;
    使用所述石墨制备氧化石墨烯;
    所述氧化石墨烯与由N2和F2组成的混合气体在反应温度为20~200℃,反应时间为下0.5~24h的条件下制得所述氟化氧化石墨烯。
  4. 如权利要求3所述氟化氧化石墨烯的制备方法,其特征在于,所述混合气体中,F2的体积分数为5~30%。
  5. 如权利要求4所述氟化氧化石墨烯的制备方法,其特征在于,所述混合气体中,F2的体积分数为8~25%。
  6. 如权利要求5所述氟化氧化石墨烯的制备方法,其特征在于,所述混合气体中,F2的体积分数为20%。
  7. 如权利要求5所述氟化氧化石墨烯的制备方法,其特征在于,所述混合气体中,F2的体积分数为10%。
  8. 如权利要求3所述氟化氧化石墨烯的制备方法,其特征在于,反应温度为50~150℃,反应时间为2~20h。
  9. 如权利要求 3~8 中任一项所述的氟化氧化石墨烯的制备方法,其特征在于,使用所述石墨制备氧化石墨烯的步骤包括:
    将所述石墨、过硫酸钾和五氧化二磷按照质量比 2 : 1 : 1 加入到 60~85℃的浓硫酸中,搅拌均匀后自然冷却,洗涤至中性后干燥,得到预处理的混合物;
    将所述预处理的混合物和高锰酸钾加入到温度低于 20 ℃ 的浓硫酸中,然后在 30~40℃下油浴1.5~2.5 h ,加入去离子水, 15min 后加入双氧水反应,抽滤、收集固体;
    所述固体用稀盐酸洗涤,干燥,得到所述氧化石墨烯。
  10. 如权利要求3~8中任一项所述的氟化氧化石墨烯的制备方法,其特征在于,所述石墨纯度大于99.5%。
PCT/CN2010/080127 2010-12-22 2010-12-22 氟化氧化石墨烯及其制备方法 WO2012083534A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080069695.9A CN103153851B (zh) 2010-12-22 2010-12-22 氟化氧化石墨烯及其制备方法
US13/988,287 US8865932B2 (en) 2010-12-22 2010-12-22 Fluorinated graphene oxide and preparation method thereof
EP10860990.0A EP2657189A4 (en) 2010-12-22 2010-12-22 Fluorinated graphite oxide and method of production thereof
PCT/CN2010/080127 WO2012083534A1 (zh) 2010-12-22 2010-12-22 氟化氧化石墨烯及其制备方法
JP2013541175A JP5649741B2 (ja) 2010-12-22 2010-12-22 フッ化酸化グラフェン及びその調製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080127 WO2012083534A1 (zh) 2010-12-22 2010-12-22 氟化氧化石墨烯及其制备方法

Publications (1)

Publication Number Publication Date
WO2012083534A1 true WO2012083534A1 (zh) 2012-06-28

Family

ID=46313034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080127 WO2012083534A1 (zh) 2010-12-22 2010-12-22 氟化氧化石墨烯及其制备方法

Country Status (5)

Country Link
US (1) US8865932B2 (zh)
EP (1) EP2657189A4 (zh)
JP (1) JP5649741B2 (zh)
CN (1) CN103153851B (zh)
WO (1) WO2012083534A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103420352A (zh) * 2013-08-08 2013-12-04 四川大学 一种高氟含量氟化石墨烯及其制备方法
CN104071765A (zh) * 2014-06-30 2014-10-01 张至 氧化氟化石墨的制备方法
CN108946706A (zh) * 2017-05-18 2018-12-07 天津大学 一种以氟气为氟源制备氟化石墨烯薄膜的方法
WO2021046966A1 (zh) * 2019-09-10 2021-03-18 安徽大学 含氟石墨烯量子点与制备及其作为光动力治疗光敏剂的应用
CN112591732A (zh) * 2020-12-15 2021-04-02 西北大学 一种氟含量可控的氟化石墨烯和氟化碳纳米管的制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130252135A1 (en) * 2010-12-29 2013-09-26 Mingjie Zhou Pt-ru nano-alloy/graphene catalyst, preparation method and use thereof
CN103864062B (zh) * 2014-01-27 2015-07-01 沈阳大学 一种石墨烯透明导电薄膜的制备方法
JP5971279B2 (ja) * 2014-05-30 2016-08-17 エス・イー・アイ株式会社 電極材料の製造方法
CN104300028B (zh) * 2014-08-08 2017-02-15 浙江大学 以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法
US10059595B1 (en) 2014-09-17 2018-08-28 Neil Farbstein Ultra high strength nanomaterials and methods of manufacture
JP7050667B2 (ja) * 2015-09-23 2022-04-08 ナノテク インスツルメンツ インク 一体化した高配向ハロゲン化グラフェンのモノリス膜
US9809459B2 (en) 2015-09-23 2017-11-07 Nanotek Instruments, Inc. Process for producing monolithic film of integrated highly oriented halogenated graphene sheets or molecules
US10553357B2 (en) 2015-09-23 2020-02-04 Global Graphene Group, Inc. Monolithic film of integrated highly oriented halogenated graphene
JP7037981B2 (ja) * 2018-03-28 2022-03-17 出光興産株式会社 酸化薄片化黒鉛の製造方法
CN109267316B (zh) * 2018-09-30 2021-07-23 河南工程学院 一种耐久性导电和超疏水棉/蚕丝织物的制备方法
US11264228B2 (en) 2018-10-09 2022-03-01 Savannah River Nuclear Solutions, Llc Method of making a carbon filament for thermal ionization
TWI680944B (zh) * 2018-10-31 2020-01-01 國立中央大學 氟化石墨烯的製備方法
WO2020129427A1 (ja) 2018-12-19 2020-06-25 株式会社カネカ グラファイトの薄板状構造物の製造方法、並びに、薄片化グラファイトおよびその製造方法
CN110237420B (zh) * 2019-05-05 2024-08-09 浙江诺尔康神经电子科技股份有限公司 一种包含氧化石墨烯的听性脑干刺激电极及其制作方法
CN112473065B (zh) * 2020-12-07 2022-04-05 上海纳米技术及应用国家工程研究中心有限公司 一种氟化氧化石墨烯灭火剂的制备方法及其产品
CN113402946A (zh) * 2021-05-26 2021-09-17 广州盛门新材料科技有限公司 一种高分子反光涂料及其制备方法
CN115028163A (zh) * 2022-06-23 2022-09-09 湖南科技大学 一种高度氟化石墨烯的制备方法
CN114975906B (zh) * 2022-07-27 2023-07-25 湘潭大学 氮掺杂氟化改性石墨烯负极材料的制备方法及电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080048152A1 (en) * 2006-08-25 2008-02-28 Jang Bor Z Process for producing nano-scaled platelets and nanocompsites
US20080206124A1 (en) * 2007-02-22 2008-08-28 Jang Bor Z Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
CN101486454A (zh) * 2008-01-17 2009-07-22 杨先金 氟化石墨工业合成新方法
US20100222482A1 (en) * 2006-09-26 2010-09-02 Jang Bor Z Mass production of nano-scaled platelets and products

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212110A (ja) * 1993-01-20 1994-08-02 Mitsubishi Pencil Co Ltd 改質炭素を含む記録材料
JPH08250117A (ja) 1995-03-09 1996-09-27 Shin Kobe Electric Mach Co Ltd リチウム二次電池負極用炭素材料及びその製造方法
US7794880B2 (en) * 2005-11-16 2010-09-14 California Institute Of Technology Fluorination of multi-layered carbon nanomaterials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080048152A1 (en) * 2006-08-25 2008-02-28 Jang Bor Z Process for producing nano-scaled platelets and nanocompsites
US20100222482A1 (en) * 2006-09-26 2010-09-02 Jang Bor Z Mass production of nano-scaled platelets and products
US20080206124A1 (en) * 2007-02-22 2008-08-28 Jang Bor Z Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
CN101486454A (zh) * 2008-01-17 2009-07-22 杨先金 氟化石墨工业合成新方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKAJIMA T. ET AL.: "Formation Process And Structure of Graphite Oxide", CARBON, vol. 32, no. 3, 1994, pages 469 - 475, XP024031025 *
See also references of EP2657189A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103420352A (zh) * 2013-08-08 2013-12-04 四川大学 一种高氟含量氟化石墨烯及其制备方法
CN103420352B (zh) * 2013-08-08 2016-04-06 四川大学 一种高氟含量氟化石墨烯及其制备方法
CN104071765A (zh) * 2014-06-30 2014-10-01 张至 氧化氟化石墨的制备方法
CN104071765B (zh) * 2014-06-30 2016-05-25 张至 氧化氟化石墨的制备方法
CN108946706A (zh) * 2017-05-18 2018-12-07 天津大学 一种以氟气为氟源制备氟化石墨烯薄膜的方法
WO2021046966A1 (zh) * 2019-09-10 2021-03-18 安徽大学 含氟石墨烯量子点与制备及其作为光动力治疗光敏剂的应用
CN112591732A (zh) * 2020-12-15 2021-04-02 西北大学 一种氟含量可控的氟化石墨烯和氟化碳纳米管的制备方法
CN112591732B (zh) * 2020-12-15 2022-06-24 西北大学 一种氟含量可控的氟化石墨烯和氟化碳纳米管的制备方法

Also Published As

Publication number Publication date
EP2657189A1 (en) 2013-10-30
EP2657189A4 (en) 2016-11-30
JP5649741B2 (ja) 2015-01-07
CN103153851A (zh) 2013-06-12
CN103153851B (zh) 2015-05-13
JP2014504248A (ja) 2014-02-20
US8865932B2 (en) 2014-10-21
US20130237723A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2012083534A1 (zh) 氟化氧化石墨烯及其制备方法
WO2012083533A1 (zh) 氟化石墨烯及其制备方法
WO2019039856A1 (ko) 다공성 실리콘-탄소 복합체의 제조방법, 상기 제조방법에 의해 제조된 다공성 실리콘-탄소 복합체를 포함하는 이차전지 음극 및 상기 이차전지 음극을 포함하는 이차전지
CN102530910A (zh) 氟化石墨烯的制备方法
CN102530911B (zh) 氟化石墨烯的制备方法
WO2016138802A1 (zh) 纤维素为原料制备生物质石墨烯的方法
CN102942177B (zh) 一种石墨烯片的制备方法
WO2021194149A1 (ko) 다공성 실리콘 및 이를 포함하는 이차전지 음극 활물질 제조 방법
Baek et al. Preparation of conductive carbon films from polyacrylonitrile/graphene oxide composite films by thermal treatment
WO2021167212A1 (ko) 헤테로 원소 도핑 고흑연성 다공성 탄소체, 이를 포함하는 촉매 및 이의 제조방법
KR102035908B1 (ko) 폐 흑연 물질의 재활용 방법, 폐 흑연 물질 및 이를 포함하는 제품
CN102568641A (zh) 一种负载纳米金属颗粒的石墨烯复合材料的制备方法
CN102464313A (zh) 石墨烯的制备方法
CN112310361B (zh) 氧化亚硅负极材料、电极及其制备方法和应用
Wu et al. Theoretical prediction of metallic R12-graphene as a promising anode material for potassium-ion batteries with high ion mobility, high capacity, and excellent electrolyte wettability
US12110231B2 (en) Expanded graphite and preparation method therefor
CN110627047A (zh) 石墨烯/碳纳米管/二硫化镍复合气凝胶的制备方法
CN102923694A (zh) 一种石墨烯的表面改性处理方法
KR20220095798A (ko) 열 플라즈마를 이용하여 제조되는 질소 및 황이 도핑 된 탄소 소재 및 그 소재를 이용하는 그래핀 잉크
Kapitanova et al. Modified carbon nanotubes for water-based cathode slurries for lithium–sulfur batteries
WO2021029480A1 (ko) 바인더 프리 자가지지형 전극 및 이의 제조방법
KR20210128177A (ko) 그래핀의 제조방법
CN111573659B (zh) 一种氮掺杂石墨烯的制备方法
WO2024123064A1 (ko) 질소 도핑된 고흑연화 다공성 탄소 구조체, 이를 포함하는 리튬-황 전지 및 이의 제조방법
KR20130053584A (ko) 초급속연소법을 이용한 그라핀 나노시트 제조방법 및 그 방법으로 제조된 그라핀 나노시트

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069695.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860990

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010860990

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13988287

Country of ref document: US

Ref document number: 2010860990

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013541175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE