CN104300028B - 以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法 - Google Patents

以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法 Download PDF

Info

Publication number
CN104300028B
CN104300028B CN201410390595.6A CN201410390595A CN104300028B CN 104300028 B CN104300028 B CN 104300028B CN 201410390595 A CN201410390595 A CN 201410390595A CN 104300028 B CN104300028 B CN 104300028B
Authority
CN
China
Prior art keywords
graphene
substrate
fluorinated
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410390595.6A
Other languages
English (en)
Other versions
CN104300028A (zh
Inventor
徐杨
孟楠
万霞
陆薇
王雪
郭宏伟
阿亚兹
俞滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410390595.6A priority Critical patent/CN104300028B/zh
Publication of CN104300028A publication Critical patent/CN104300028A/zh
Application granted granted Critical
Publication of CN104300028B publication Critical patent/CN104300028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法,所述紫外雪崩光电探测器包括衬底、金属电极、石墨烯叉指电极和氟化石墨烯;氟化石墨烯是一种宽禁带的二维半导体材料,可探测波长小于415nm的光。本发明以氟化石墨烯作为感光材料,石墨烯作为透明叉指电极,可实现对紫外光的探测。氟化石墨烯的电阻可达1TΩ以上,利用氟化石墨烯制作的光电探测器具有非常低的暗电流噪声。本发明以石墨烯和氟化石墨烯两种二维材料为主,可以实现柔性的光电探测器。

Description

以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法
技术领域
本发明属于光电探测技术领域,涉及光电探测器件结构,尤其涉及一种以氟化石墨烯为感光材料,石墨烯/氟化石墨烯/石墨烯(MSM)结构的紫外雪崩光电探测器(APD)及制备方法。
背景技术
石墨烯是由单层sp2杂化碳原子构成的蜂窝状二维平面晶体薄膜,具有优异的力、热、光、电等性能。与普通金属不同,石墨烯是一种具有透明和柔性的新型二维导电材料。石墨烯和半导体接触可以形成肖特基结,制备工艺简单,在光电探测领域有广泛应用。
氟化石墨烯是石墨烯的衍生物,利用氟化氙(XeF2),六氟化硫(SF6)和八氟环丁烷(C4F8)等含氟气体对石墨烯进行氟化,可以制备氟化石墨烯。通过改变石墨烯的氟化率,可以将石墨烯由导体变为半导体或者绝缘体。石墨烯氟化后禁带宽度可从0.0eV增加到3.0eV。氟化石墨烯是一种宽禁带半导体,可以吸收紫外光而透过可光,适合作为紫外光电探测器的感光材料。
发明内容
本发明的目的在于针对现有技术的不足,提供一种以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法。
本发明的目的是通过以下技术方案来实现的:一种以氟化石墨烯为吸收层的紫外雪崩光电探测器,包括衬底、金属电极、石墨烯叉指电极和氟化石墨烯;其中,所述衬底的上表面两侧分别覆盖一金属电极;在两个金属电极之间的衬底的上表面、两个金属电极的上表面和内侧壁上覆盖石墨烯叉指电极,金属电极上表面的石墨烯叉指电极的两翼的覆盖范围小于金属电极的边界;在两个金属电极之间的衬底和石墨烯叉指电极的上表面覆盖氟化石墨烯。
进一步地,所述的衬底为绝缘材料,选自二氧化硅、云母、PDMS或PI。
进一步地,所述的金属电极是金属薄膜电极,材料为铝、金或金铬合金。
进一步地,所述的石墨烯叉指电极为单层或多层石墨烯,形状为叉指。
进一步地,所述的氟化石墨烯为单层或多层氟化石墨烯。
制备上述以氟化石墨烯为吸收层的紫外雪崩光电探测器的方法,包括以下步骤:
(1)采用二氧化硅或云母作为绝缘的衬底,或者在硅衬底上旋涂PDMS或PI形成均匀的薄膜,加热让其固化,形成柔性的衬底;
(2)在衬底表面光刻出金属电极图形,然后采用电子束蒸发技术,首先生长厚度约为5nm和的Cr黏附层,然后生长50nm的Au电极;
(3)石墨烯薄膜的制备:采用化学气相沉积方法在铜箔基底上制备石墨烯薄膜;
(4)在两个金属电极之间的衬底的上表面、两个金属电极的上表面和内侧壁上覆盖石墨烯薄膜;其中,石墨烯的转移方法为:将带有铜箔基底的石墨烯薄膜表面均匀涂覆一层聚甲基丙烯酸甲酯薄膜,然后放入刻蚀溶液中4h腐蚀去除铜箔,留下由聚甲基丙烯酸甲酯薄膜支撑的石墨烯薄膜;将聚甲基丙烯酸甲酯薄膜支撑的石墨烯薄膜用去离子水清洗后转移到两个金属电极之间的衬底的上表面、两个金属电极的上表面和内侧壁上;最后用丙酮和异丙醇去除聚甲基丙烯酸甲酯;其中,所述刻蚀溶液由CuSO4、HCl和水组成,CuSO4:HCl:H2O=10g:50ml:50ml;
(5)对步骤(4)中转移的石墨烯薄膜光刻出叉指电极图形,将光刻好的石墨烯薄膜放入反应离子刻蚀系统真空腔室,通入氧气对石墨烯薄膜进行刻蚀,获得石墨烯叉指电极;
(6)氟化石墨烯的制备和转移方法,具体方法如下:
(a)将带有铜箔基底的石墨烯薄膜进行氟化:将石墨烯薄膜放入反应离子刻蚀系统的真空腔室中,采用六氟化硫等离子体对石墨烯薄膜表面进行氟化,形成氟化石墨烯;
(b)将步骤(a)中形成的氟化石墨烯转移至两个金属电极之间的衬底和叉指电极的上表面;其中,氟化石墨烯薄膜的转移方法与步骤(4)中石墨烯的转移方法相同。
(7)当采用柔性的衬底时,揭下制备有氟化石墨烯为吸收层的紫外雪崩光电探测器的PDMS或者PI。
本发明采用宽禁带的氟化石墨烯作为感光材料,吸收紫外光,过滤可见光,实现紫外探测;石墨烯作为柔性透明电极和有源层,石墨烯与氟化石墨烯接触可以形成肖特基结,石墨烯电极是透明的,可以增强氟化石墨烯对紫外光的吸收;氟化石墨烯的电阻可达1TΩ以上,大大降低暗电流。以氟化石墨烯为吸收层,石墨烯为透明电极的二维紫外雪崩光电探测器将在柔性器件中有广泛应用。
与现有技术相比,本发明具有以下有益效果:
1、紫外光入射到以氟化石墨烯为吸收层的紫外雪崩光电探测器表面,被石墨烯和氟化石墨烯吸收。较大反向偏压加到器件两端,产生的光生载流子(空穴电子对)在APD光二极管表面高电场作用下高速运动,在运动过程中通过碰撞电离效应,产生数量为初始电子空穴对的几十倍二次、三次新空穴电子对,从而形成很大的光信号电流,具有很高的增益。
2、石墨烯和氟化石墨烯形成肖特基浅结,入射紫外光容易被吸收,产生的电子空穴很快被内部电场分离。在紫外光区域,量子效率很高。
3、石墨烯作为透明电极,增强入射光吸收,提高光生电流,具有很高的光学响应。
4、叉指状的石墨烯电极之间可以形成很强的电场,更容易产生雪崩效应,降低能耗;相邻电极之间距离小,石墨烯的载流子迁移率很大,可以提高器件的时间响应。
5、氟化石墨烯的电阻很高,大大降低暗电流,具有很高的开关比。
6、本发明提供的以氟化石墨烯为吸收层的紫外雪崩光电探测器所用材料以石墨烯为基本材料,制备过程简单,成本低,易于实现柔性光电探测器。
附图说明
图1示出了以氟化石墨烯为吸收层的紫外雪崩光电探测器的结构示意图;
图2示出了本发明中实施例所制备的MSM APD紫光电探测器的石墨烯叉指电极光学显微镜图;
图中,衬底1、金属电极2、石墨烯叉指电极3、氟化石墨烯4。
具体实施方式
本发明提供的以氟化石墨烯为吸收层的紫外雪崩光电探测器的工作原理如下:
石墨烯与氟化石墨烯接触形成肖特基结,相邻石墨烯叉指电极与氟化石墨烯形成两个背靠背的肖特基结。两端电极加偏压后,一个肖特基结正向偏置,另一个肖特基结反向偏置。当入射紫外光照射到石墨烯/氟化石墨烯界面,石墨烯和氟化石墨烯吸收入射紫外光并产生电子-空穴对。在电场作用下,空穴流向正电极,电子流向负电极,形成光生电流。叉指状的石墨烯电极之间可以形成很强的电场,光生载流子高速运动,与氟化石墨烯中的原子产生碰撞离子化,更容易产生雪崩效应,实现内部增益,降低能耗。
下面结合附图和实施例对本发明的具体实施方法作进一步的说明。
如图1所示,本发明以氟化石墨烯为吸收层的紫外雪崩光电探测器,包括衬底1、金属电极2、石墨烯叉指电极3和氟化石墨烯4;其中,所述衬底1的上表面两侧分别覆盖一金属电极2;在两个金属电极2之间的衬底1的上表面、两个金属电极2的上表面和内侧壁上覆盖石墨烯叉指电极3,金属电极2上表面的石墨烯叉指电极3的两翼的覆盖范围小于金属电极2的边界;在两个金属电极2之间的衬底1和石墨烯叉指电极3的上表面覆盖氟化石墨烯4。
制作以氟化石墨烯为吸收层的紫外雪崩光电探测器的方法,包括以下步骤:
(1)采用二氧化硅或云母作为绝缘的衬底1,或者在硅衬底上旋涂PDMS或PI形成均匀的薄膜,加热让其固化,形成柔性的衬底1;
(2)在衬底1表面光刻出金属电极2图形,然后采用电子束蒸发技术,首先生长厚度约为5nm和的Cr黏附层,然后生长50nm的Au电极;
(3)石墨烯薄膜的制备:采用化学气相沉积方法(CVD)在铜箔基底上制备石墨烯薄膜;
(4)在两个金属电极2之间的衬底1的上表面、两个金属电极2的上表面和内侧壁上覆盖石墨烯薄膜;其中,石墨烯的转移方法为:将带有铜箔基底的石墨烯薄膜表面均匀涂覆一层聚甲基丙烯酸甲酯(PMMA)薄膜,然后放入刻蚀溶液中4h腐蚀去除铜箔,留下由PMMA支撑的石墨烯薄膜;将PMMA支撑的石墨烯薄膜用去离子水清洗后转移到两个金属电极2之间的衬底1的上表面、两个金属电极2的上表面和内侧壁上;最后用丙酮和异丙醇去除PMMA;其中,所述刻蚀溶液由CuSO4、HCl和水组成,CuSO4:HCl:H2O=10g:50ml:50ml;
(5)对步骤(4)中转移的石墨烯薄膜光刻出叉指电极图形,将光刻好的石墨烯薄膜放入反应离子刻蚀系统真空腔室,通入氧气(O2)对石墨烯薄膜进行刻蚀,获得石墨烯叉指电极3;
(6)氟化石墨烯4的制备和转移方法,具体方法如下:
(a)将带有铜箔基底的石墨烯薄膜进行氟化:将石墨烯薄膜放入反应离子刻蚀系统的真空腔室中,采用六氟化硫(SF6)等离子体对石墨烯薄膜表面进行氟化,形成氟化石墨烯4;
(b)将步骤(a)中形成的氟化石墨烯4转移至两个金属电极2之间的衬底1和叉指电极3的上表面;其中,氟化石墨烯薄膜4的转移方法与步骤(4)中石墨烯的转移方法相同。
(7)当采用柔性的衬底1时,揭下制备有氟化石墨烯为吸收层的紫外雪崩光电探测器的PDMS或者PI。
对上述以氟化石墨烯为吸收层的紫外雪崩光电探测器加偏压,使其可以产生雪崩效应,实现增益。其中电压的正极和负极分别连接到两个金属电极2上,如图1所示。
图2为本发明实施例所制备的石墨烯叉指电极光学显微镜图片。每根石墨烯叉指电极是连续的,相邻石墨烯叉指电极是断开的。通过本实施例可以获得较高质量的石墨烯叉指电极。

Claims (1)

1.一种制备以氟化石墨烯为吸收层的紫外雪崩光电探测器的方法,所述以氟化石墨烯为吸收层的紫外雪崩光电探测器包括衬底(1)、金属电极(2)、石墨烯叉指电极(3)和氟化石墨烯(4);其中,所述衬底(1)的上表面两侧分别覆盖一金属电极(2);在两个金属电极(2)之间的衬底(1)的上表面、两个金属电极(2)的上表面和内侧壁上覆盖石墨烯叉指电极(3),金属电极(2)上表面的石墨烯叉指电极(3)的两翼的覆盖范围小于金属电极(2)的边界;在两个金属电极(2)之间的衬底(1)和石墨烯叉指电极(3)的上表面覆盖氟化石墨烯(4);其特征在于,该方法包括以下步骤:
(1)采用二氧化硅或云母作为绝缘的衬底(1),或者在硅衬底上旋涂PDMS或PI形成均匀的薄膜,加热让其固化,形成柔性的衬底(1);
(2)在衬底(1)表面光刻出金属电极(2)图形,然后采用电子束蒸发技术,首先生长厚度为5nm和的Cr黏附层,然后生长50nm的Au电极;
(3)石墨烯薄膜的制备:采用化学气相沉积方法在铜箔基底上制备石墨烯薄膜;
(4)在两个金属电极(2)之间的衬底(1)的上表面、两个金属电极(2)的上表面和内侧壁上覆盖石墨烯薄膜;其中,石墨烯的转移方法为:将带有铜箔基底的石墨烯薄膜表面均匀涂覆一层聚甲基丙烯酸甲酯薄膜,然后放入刻蚀溶液中4h腐蚀去除铜箔,留下由聚甲基丙烯酸甲酯薄膜支撑的石墨烯薄膜;将聚甲基丙烯酸甲酯薄膜支撑的石墨烯薄膜用去离子水清洗后转移到两个金属电极(2)之间的衬底(1)的上表面、两个金属电极(2)的上表面和内侧壁上;最后用丙酮和异丙醇去除聚甲基丙烯酸甲酯;其中,所述刻蚀溶液由CuSO4、HCl和水组成,CuSO4:HCl:H2O=10g:50ml:50ml;
(5)对步骤(4)中转移的石墨烯薄膜光刻出叉指电极图形,将光刻好的石墨烯薄膜放入反应离子刻蚀系统真空腔室,通入氧气对石墨烯薄膜进行刻蚀,获得石墨烯叉指电极(3);
(6)氟化石墨烯(4)的制备和转移方法,具体方法如下:
(a)将带有铜箔基底的石墨烯薄膜进行氟化:将石墨烯薄膜放入反应离子刻蚀系统的真空腔室中,采用六氟化硫等离子体对石墨烯薄膜表面进行氟化,形成氟化石墨烯(4);
(b)将步骤(a)中形成的氟化石墨烯(4)转移至两个金属电极(2)之间的衬底(1)和叉指电极(3)的上表面;其中,氟化石墨烯薄膜(4)的转移方法与步骤(4)中石墨烯的转移方法相同;
(7)当采用柔性的衬底(1)时,揭下制备有氟化石墨烯为吸收层的紫外雪崩光电探测器的PDMS或者PI。
CN201410390595.6A 2014-08-08 2014-08-08 以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法 Active CN104300028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410390595.6A CN104300028B (zh) 2014-08-08 2014-08-08 以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410390595.6A CN104300028B (zh) 2014-08-08 2014-08-08 以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN104300028A CN104300028A (zh) 2015-01-21
CN104300028B true CN104300028B (zh) 2017-02-15

Family

ID=52319686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410390595.6A Active CN104300028B (zh) 2014-08-08 2014-08-08 以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN104300028B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104925797A (zh) * 2015-06-26 2015-09-23 浙江大学 一种氟化还原氧化石墨烯的制备方法
CN104986750A (zh) * 2015-06-26 2015-10-21 浙江大学 一种氟化石墨烯的制备方法
CN104925777A (zh) * 2015-06-26 2015-09-23 浙江大学 氟化石墨烯泡沫的制备方法
CN106549077B (zh) * 2015-09-18 2018-03-02 中国科学院物理研究所 一种光电二极管装置以及一种产生整流效应的方法
CN107154438A (zh) * 2016-03-03 2017-09-12 苏州升奥新能源有限公司 一种以氟化氮掺杂石墨烯为吸收层的紫外雪崩光电探测器
CN107785443A (zh) * 2016-08-26 2018-03-09 中国科学院金属研究所 透明柔性非极性GaN纳米线紫外探测器及其制备方法
CN108231942B (zh) * 2016-12-13 2020-04-24 中国科学院理化技术研究所 一种还原氧化石墨烯薄膜光电探测器及其制备方法和应用
CN107146830B (zh) * 2017-06-07 2019-04-02 浙江大学 一种制备柔性透明的石墨烯/硅金属-半导体-金属光电探测器的方法
CN108538927B (zh) * 2018-03-30 2019-12-31 南京信息工程大学 一种柔性日盲紫外探测器及制备方法
CN110581125B (zh) * 2019-09-19 2020-12-22 中南大学 一种集成cmos探测器及制备工艺
CN111697091A (zh) * 2020-04-13 2020-09-22 东南大学 一种高性能二维材料光电探测器及其制备方法
CN111668336A (zh) * 2020-05-29 2020-09-15 中国科学院长春光学精密机械与物理研究所 一种360度超大广角紫外探测器
CN112071940A (zh) * 2020-07-31 2020-12-11 西安交通大学 一种基于透明电极的α-硒化铟二维光电探测器
CN113097336B (zh) * 2021-03-22 2022-09-06 西安邮电大学 一种非对称电极msm结构氧化镓紫外探测器
CN113471324B (zh) * 2021-06-22 2022-09-16 中国科学院重庆绿色智能技术研究院 一种基于石墨烯同质结的宽波段光电探测器及其制备方法
CN114838653B (zh) * 2022-04-22 2024-07-09 江苏大学 一种基于垂直石墨烯的柔性应变传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法
CN101859858A (zh) * 2010-05-07 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 基于石墨烯的透明导电电极及其制法与应用
CN102881759A (zh) * 2012-10-24 2013-01-16 中国航天科技集团公司第五研究院第五一0研究所 氟化石墨烯在制备光电探测器件中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153851B (zh) * 2010-12-22 2015-05-13 海洋王照明科技股份有限公司 氟化氧化石墨烯及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法
CN101859858A (zh) * 2010-05-07 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 基于石墨烯的透明导电电极及其制法与应用
CN102881759A (zh) * 2012-10-24 2013-01-16 中国航天科技集团公司第五研究院第五一0研究所 氟化石墨烯在制备光电探测器件中的应用

Also Published As

Publication number Publication date
CN104300028A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
CN104300028B (zh) 以氟化石墨烯为吸收层的紫外雪崩光电探测器及制备方法
CN104157721B (zh) 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
Spina et al. Micro-engineered CH $ _3 $ NH $ _3 $ PbI $ _3 $ nanowire/graphene phototransistor for low intensity light detection at room temperature
CN107154438A (zh) 一种以氟化氮掺杂石墨烯为吸收层的紫外雪崩光电探测器
Xiang et al. Surface transfer doping‐induced, high‐performance graphene/silicon Schottky junction‐based, self‐powered photodetector
Mulazimoglu et al. Silicon nanowire network metal-semiconductor-metal photodetectors
Zhou et al. UV–Vis-NIR photodetector based on monolayer MoS2
CN108281554A (zh) 一种量子点结构光电探测器及其制备方法
CN106601857A (zh) 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
CN107146830B (zh) 一种制备柔性透明的石墨烯/硅金属-半导体-金属光电探测器的方法
CN104300027B (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
CN104157720B (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN106784122A (zh) 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
CN106169516A (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
Shafique et al. High-performance photodetector using urchin-like hollow spheres of vanadium pentoxide network device
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
Wang et al. Nanorainforest solar cells based on multi-junction hierarchical p-Si/n-CdS/n-ZnO nanoheterostructures
WO2022100053A1 (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
Chen et al. Three-dimensional radial junction solar cell based on ordered silicon nanowires
Wang et al. The fabrication of Schottky photodiode by monolayer graphene direct-transfer-on-silicon
Hong et al. Nanodome-patterned transparent conductor for highly responsive photoelectric device
Ji et al. Fabrication and photoelectrochemical properties of ordered Si nanohole arrays
Kim et al. Three-dimensional nanodome-printed transparent conductors for high-performing Si photodetectors
Elrashidi Electrophotonic improvement of polymer solar cells by using graphene and plasmonic nanoparticles
CN114256367B (zh) 石墨烯锗硅量子点集成的复合结构探测器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant