WO2012081539A1 - 測定対象成分の測定方法 - Google Patents

測定対象成分の測定方法 Download PDF

Info

Publication number
WO2012081539A1
WO2012081539A1 PCT/JP2011/078669 JP2011078669W WO2012081539A1 WO 2012081539 A1 WO2012081539 A1 WO 2012081539A1 JP 2011078669 W JP2011078669 W JP 2011078669W WO 2012081539 A1 WO2012081539 A1 WO 2012081539A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
kit
acid
chromogen
hydrogen peroxide
Prior art date
Application number
PCT/JP2011/078669
Other languages
English (en)
French (fr)
Inventor
智美 村上
Original Assignee
協和メデックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和メデックス株式会社 filed Critical 協和メデックス株式会社
Priority to CN201180059537.XA priority Critical patent/CN103261434B/zh
Priority to EP11849227.1A priority patent/EP2653551B1/en
Priority to BR112013013288A priority patent/BR112013013288A2/pt
Priority to CA2819040A priority patent/CA2819040A1/en
Priority to KR1020137014501A priority patent/KR20140114267A/ko
Priority to JP2012548774A priority patent/JP6004942B2/ja
Priority to US13/991,652 priority patent/US9671348B2/en
Publication of WO2012081539A1 publication Critical patent/WO2012081539A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B21/00Thiazine dyes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/64Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving ketones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/908Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)

Definitions

  • the present invention relates to a method for measuring a component to be measured in a specimen, a reagent for measurement, a kit for measurement, and a method for suppressing the influence of peroxide.
  • measurement of components to be measured in biological samples is performed using biological samples such as whole blood, serum, plasma, and urine.
  • the component to be measured in the biological sample is measured by a method using an enzyme, an immunoassay using an antigen antibody, or the like.
  • the measurement target component is converted into hydrogen peroxide by an oxidase, and then the generated hydrogen peroxide reacts with an oxidative coloring chromogen in the presence of peroxidase.
  • the absorbance of the dye produced is often measured.
  • surfactants are often used in the measurement of components to be measured in biological samples based on the hydrogen peroxide determination system.
  • the surfactant is used for enzyme specificity control by interaction with the enzyme substrate, enzyme reactivity control by enzyme interaction, sample pretreatment, and the like.
  • polyoxyalkylene surfactants such as polyoxyethylene surfactants and polyoxypropylene surfactants are frequently used because of their variety and availability.
  • polyoxyalkylene-based surfactants easily generate peroxides from their structures (for example, Patent Document 1), and the generated peroxides have a positive effect on the hydrogen peroxide determination system.
  • the problem is that becomes higher than the theoretical value.
  • peroxides are often generated in these reagents and kits, causing deterioration in the performance of the reagents and kits. .
  • diagnostic kits often contain additives such as salts, buffers, enzymes, preservatives, etc. Peroxidation generated or mixed in the kit manufacturing process using these additives. And peroxides generated by oxidation during long-term storage may have a positive effect on the measurement. Furthermore, peroxides are generated in biological samples such as whole blood, serum, plasma, urine, etc. due to oxidative stress, enzymatic reactions, etc. in the living body, and this peroxide is positive for measurement. May have an impact.
  • Pyruvate is one of ⁇ -keto acids and is produced as an intermediate product in the glycolysis in vivo. Pyruvate is known to have a relatively strong antioxidant activity (for example, Patent Document 2), and has been reported to neutralize oxygen radicals in cells (for example, Patent Document 3).
  • An object of the present invention is to reduce the influence of peroxide in the hydrogen peroxide determination system, the measuring method of the measurement target component in the sample, the measuring reagent, the measuring kit, and the suppression of the influence of the peroxide. It is to provide a method.
  • the present inventors have used ⁇ -keto acid in a method for converting a component to be measured in a specimen into hydrogen peroxide and measuring the generated hydrogen peroxide.
  • the inventors have found that the influence of peroxide can be suppressed without affecting the hydrogen peroxide determination system and that the measurement target component in the sample can be accurately measured, and the present invention has been completed. That is, the present invention relates to the following [1] to [20].
  • the component to be measured in the sample is converted to hydrogen peroxide, and the generated hydrogen peroxide is measured using an oxidative coloring chromogen in the presence of ⁇ -keto acid.
  • Method for measuring the component to be measured [2] In a method for measuring a component to be measured in a sample, wherein the component to be measured in the sample is converted to hydrogen peroxide, and the generated hydrogen peroxide is reacted with an oxidative coloring chromogen.
  • a reagent for measuring a component to be measured in a specimen characterized by comprising a hydrogen peroxide generating reagent, ⁇ -keto acid, a peroxide active substance, and an oxidative coloring chromogen.
  • a hydrogen peroxide generating reagent characterized by comprising a hydrogen peroxide generating reagent, ⁇ -keto acid, a peroxide active substance, and an oxidative coloring chromogen.
  • the ⁇ -keto acid is ⁇ -keto acid selected from the group consisting of pyruvic acid, ⁇ -ketoglutaric acid and oxaloacetic acid.
  • the oxidative coloring chromogen is a leuco chromogen.
  • a kit for measuring a component to be measured in a sample comprising a first reagent and a second reagent, wherein the leuco chromogen and the peroxidation active substance are respectively separate from the first reagent and the second reagent.
  • a kit comprising a reagent, wherein the hydrogen peroxide generating reagent and the ⁇ -keto acid are contained in one or both of the first reagent and the second reagent, respectively.
  • the leuco chromogen is a phenothiazine derivative.
  • kits for measuring a component to be measured in a sample comprising a first reagent and a second reagent, wherein the coupler and the aniline derivative or phenol derivative are separate reagents for the first reagent and the second reagent, respectively. And a peroxide active substance, a hydrogen peroxide generating reagent, and an ⁇ -keto acid, respectively, in one or both of the first reagent and the second reagent.
  • ⁇ -keto acid is ⁇ -keto acid selected from the group consisting of pyruvic acid, ⁇ -ketoglutaric acid and oxaloacetic acid.
  • a method for measuring a component to be measured in a specimen in which the influence of peroxide is suppressed a measuring reagent, a measuring kit, and a method for suppressing the influence of peroxide.
  • the horizontal axis represents hemoglobin A1c concentration ( ⁇ mol / L), and the vertical axis represents absorbance (Abs).
  • represents a graph of measurement using a kit containing pyruvic acid, and ⁇ represents a graph of measurement using a kit not containing ⁇ -keto acid.
  • the horizontal axis represents hemoglobin A1c concentration ( ⁇ mol / L), and the vertical axis represents absorbance (Abs).
  • represents a graph of measurement using a kit containing oxaloacetic acid, and ⁇ represents a graph of measurement using a kit not containing ⁇ -keto acid.
  • the measurement target component measurement method of the present invention converts a measurement target component in a sample into hydrogen peroxide, and the generated hydrogen peroxide is oxidized and colored in the presence of ⁇ -keto acid. Measured using a chromogen. In the method for measuring a measurement target component of the present invention, the influence of peroxide present in the specimen is suppressed, and the measurement target component in the specimen can be measured accurately.
  • the specimen in the present invention is not particularly limited as long as the measurement method of the present invention is possible, and examples thereof include whole blood, serum, plasma, urine and the like.
  • the measurement method of the present invention is not particularly limited as long as the influence of peroxide is suppressed, and examples thereof include a method including the following steps.
  • Step 1 a step of reacting a measurement target component in a specimen with a hydrogen peroxide generating reagent to generate hydrogen peroxide
  • Step 2 A step of reacting the hydrogen peroxide produced in Step 1 with an oxidative coloring type chromogen in the presence of ⁇ -keto acid and a peroxide active substance to produce a dye
  • Step 3 Measuring the absorbance of the dye produced in Step 2
  • Step 4 correlating the absorbance measured in Step 3 with a calibration curve representing the relationship between the concentration or activity of the measurement target component and the absorbance created using the measurement target component having a known concentration
  • Step 5 A step of determining the concentration or activity of the measurement target component in the specimen.
  • reaction in the above step 1 may be performed in the presence of ⁇ -keto acid. Moreover, the process 1 and the process 2 may be performed simultaneously or in steps.
  • the reaction between the component to be measured in the sample and the hydrogen peroxide generating reagent in step 1 may be any reaction condition as long as it generates hydrogen peroxide, for example, 10 to 50 ° C., preferably 20 to 40 ° C. For 1 minute to 3 hours, preferably 2.5 minutes to 1 hour.
  • the reaction of hydrogen peroxide with the oxidative coloring type chromogen in the presence of ⁇ -keto acid and a peroxide active substance in step 2 may be any reaction condition as long as it produces a dye, for example, The reaction is carried out at 10 to 50 ° C., preferably 20 to 40 ° C. for 1 minute to 3 hours, preferably 2.5 minutes to 1 hour.
  • the concentration of ⁇ -keto acid in this reaction is not particularly limited as long as it can suppress the influence of peroxide, and is, for example, 0.001 to 20 g / L.
  • the method for measuring the absorbance of the produced dye in step 3 may be any method as long as it can measure the absorbance, and examples include a method using a spectrophotometer.
  • the hydrogen peroxide generating reagent in step 1 is a reagent that reacts with the measurement target component to generate hydrogen peroxide.
  • reagent (A) a reagent that directly converts the measurement target component into hydrogen peroxide [hereinafter referred to as reagent (A) ),
  • B) a reagent that indirectly converts a measurement target component into hydrogen peroxide [hereinafter referred to as reagent (B)],
  • D a reagent that indirectly generates hydrogen peroxide from the component to be measured [hereinafter referred to as reagent (D)], and the like.
  • Reagent (A) is a reagent that directly converts the component to be measured in the specimen into hydrogen peroxide.
  • the component to be measured to which the reagent (A) is applied is, for example, an oxidase substrate.
  • the reagent (A) include a reagent containing an oxidase as a measurement target component. Specific examples of combinations of the measurement target component and the reagent (A) are shown in Table 1.
  • lipoproteins refer to HDL, LDL, VLDL, IDL, remnant lipoprotein, sdLDL, and the like. The same applies hereinafter.
  • the substrate of the oxidase to be measured may be derived from a plurality of reactions.
  • the component to be measured that is converted into the oxidase substrate is converted into the oxidase substrate through a plurality of reactions, and then hydrogen peroxide is generated by the reaction with the oxidase.
  • Examples of the combination of the substance converted to the oxidase substrate, the oxidase substrate, and the oxidase include the combinations shown in Table 2.
  • Total cholesterol means a combination of free cholesterol and ester cholesterol in all lipoproteins, and cholesterol in various lipoproteins means free cholesterol and ester cholesterol in various lipoproteins.
  • the total ester type cholesterol means the ester type cholesterol in all lipoproteins.
  • Reagent (B) is a reagent that indirectly converts the component to be measured in the specimen into hydrogen peroxide.
  • the measurement target component to which the reagent (B) is applied include an enzyme substrate that is converted into hydrogen peroxide by two or more enzyme reactions.
  • the reagent (B) includes, for example, an enzyme that reacts with the substrate, an enzyme that converts a substance produced by the conversion of the substrate into a substance in which the corresponding oxidase is present, an enzyme and its substrate, and the oxidase. And the like. Table 3 shows combinations of the measurement target component and the reagent (B).
  • the reagent (C) is a reagent that directly generates hydrogen peroxide from the measurement target component.
  • the measurement target component to which the reagent (C) is applied include an oxidase that generates hydrogen peroxide.
  • the reagent (C) include a reagent containing a substrate for the oxidase. Specific examples of combinations of the measurement target component and the reagent (C) are shown in Table 4.
  • the reagent (D) is a reagent that indirectly generates hydrogen peroxide from the measurement target component.
  • the measurement target component to which the reagent (D) is applied includes, for example, an enzyme that generates hydrogen peroxide by two or more reactions.
  • the reagent (D) include a substrate of the enzyme, an enzyme that converts a substance produced by the reaction between the enzyme and the substrate into a substance in which the corresponding oxidase exists, an enzyme and the substrate, and the oxidase. Examples thereof include reagents. Specific examples of combinations of the measurement target component and the reagent (D) are shown in Table 5.
  • the oxidative coloring type chromogen reacts with hydrogen peroxide in the presence of a peroxide active substance to produce a dye.
  • a peroxide active substance include peroxidase.
  • the oxidative coloring type chromogen include an oxidative coupling type chromogen and a leuco chromogen, and a leuco chromogen is preferred.
  • the leuco chromogen is a substance that is converted into a pigment alone in the presence of hydrogen peroxide and a peroxide active substance.
  • leuco chromogen examples include phenothiazine chromogen, triphenylmethane chromogen, diphenylamine chromogen, o-phenylenediamine, hydroxypropionic acid, diaminobenzidine, tetramethylbenzidine and the like, and phenothiazine.
  • a chromogen is preferred.
  • phenothiazine chromogen examples include 10-N-carboxymethylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine (CCAP), 10-N-methylcarbamoyl-3,7-bis (dimethylamino).
  • CCAP 10-N-carboxymethylcarbamoyl-3,7-bis (dimethylamino).
  • -10H-phenothiazine (MCDP) 10-N- (carboxymethylaminocarbonyl) -3,7-bis (dimethylamino) -10H-phenothiazine sodium salt (DA-67), and the like.
  • 10-N- (carboxymethylaminocarbonyl) -3,7-bis (dimethylamino) -10H-phenothiazine sodium salt (DA-67) is particularly preferable.
  • triphenylmethane chromogen examples include N, N, N ′, N ′, N ′′, N ′′ -hexa (3-sulfopropyl) -4,4 ′, 4 ′′ -triaminotriphenyl And methane (TPM-PS).
  • diphenylamine chromogen examples include N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium salt (DA-64), 4,4′-bis (dimethylamino) diphenylamine, bis [3-bis (4-chlorophenyl) methyl-4-dimethylaminophenyl] amine (BCMA) and the like.
  • the oxidative coupling type chromogen is a substance that forms a dye by oxidative coupling of two compounds in the presence of hydrogen peroxide and a peroxide active substance.
  • Examples of the combination of the two compounds include a combination of a coupler and an aniline (Trinder reagent), a combination of a coupler and a phenol.
  • couplers examples include 4-aminoantipyrine (4-AA) and 3-methyl-2-benzothiazolinone hydrazine.
  • anilines include N- (3-sulfopropyl) aniline, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline (TOOS), N-ethyl-N- (2-hydroxy -3-Sulfopropyl) -3,5-dimethylaniline (MAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (DAOS), N-ethyl-N- (3-sulfopropyl) -3-methylaniline (TOPS), N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (HDAOS), N, N-dimethyl-3-methylaniline, N , N-bis (3-sulfopropyl) -3,5-dimethoxyaniline, N-ethyl-N- (3-sulfopropyl) -3-methoxyaniline,
  • phenols examples include phenol, 4-chlorophenol, 3-methylphenol, 3-hydroxy-2,4,6-triiodobenzoic acid (HTIB) and the like.
  • the peroxide is a substance having a positive influence in the measurement method of the present invention, and examples thereof include a peroxide derived from a surfactant capable of generating a peroxide.
  • the peroxide may be a peroxide derived from a specimen or a peroxide derived from a measurement reagent.
  • the surfactant capable of generating a peroxide include a polyoxyalkylene surfactant.
  • polyoxyalkylene surfactants include polyoxyethylene surfactants, polyoxypropylene surfactants, polyoxybutylene surfactants, and the like.
  • polyoxyalkylene surfactants examples include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants, with nonionic surfactants being preferred.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkenyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene polyoxypropylene alkenyl ether, and polyoxyethylene.
  • examples include polyoxypropylene alkyl aryl ether, polyoxyethylene polyoxypropylene copolymer, and the like.
  • the peroxide can be detected, measured or quantified by an index of fat oxidation such as peroxide value, carbonyl value, thiobarbituric acid value and the like.
  • the ⁇ -keto acid in the present invention is not particularly limited as long as it enables the measurement method of the present invention, and examples thereof include pyruvic acid, oxaloacetic acid, ⁇ -ketoglutaric acid, oxalic acid, and the like. Oxaloacetic acid and ⁇ -ketoglutaric acid are preferred, and pyruvic acid is particularly preferred.
  • the ⁇ -keto acid in the present invention may be in the form of a salt, and examples of the salt include sodium salt, potassium salt, ammonium salt, calcium salt and the like.
  • the concentration of ⁇ -keto acid used in the measurement method of the present invention is not particularly limited as long as it enables the measurement method of the present invention, and is, for example, 0.001 to 20 g / L.
  • the reaction between the measurement target component and the hydrogen peroxide generating reagent is preferably performed in an aqueous medium.
  • the reaction between the component to be measured and the hydrogen peroxide generating reagent can also be carried out in the presence of a stabilizer, an antiseptic, an interference substance erasing agent, a reaction accelerator, and the like.
  • aqueous medium examples include deionized water, distilled water, and a buffer solution, and a buffer solution is preferable.
  • the pH of the buffer solution is pH 4.0 to 10.0, preferably pH 6.0 to 8.0.
  • Examples of the buffer used in the buffer include a phosphate buffer, a borate buffer, a Good buffer, and the like.
  • Good buffers include, for example, 2-morpholinoethanesulfonic acid (MES), tris (hydroxymethyl) aminomethane (Tris), bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), N- (2-acetamido) iminodiacetic acid (ADA), piperazine-N, N′-bis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3 -Morpholino-2-hydroxypropanesulfonic acid (MOPSO), N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), 3-morpholinopropanesulfonic acid (MOPS), N- [tris ( Hydroxymethyl) methyl] -2-aminoethanesulfonic acid (TES), 2- [ -(2-hydroxyethyl) -1-pipe
  • the concentration of the buffer solution is not particularly limited as long as it is suitable for measurement, but is preferably 0.001 to 2.0 mol / L, more preferably 0.005 to 1.0 mol / L.
  • Examples of the stabilizer include ethylenediaminetetraacetic acid (EDTA), sucrose, calcium chloride, potassium ferrocyanide, bovine serum albumin (BSA) and the like.
  • Examples of the preservative include sodium azide and antibiotics.
  • Examples of the interfering substance eliminating agent include ascorbic acid oxidase for eliminating the influence of ascorbic acid.
  • Examples of the reaction accelerator include enzymes such as colipase and phospholipase, and salts such as sodium sulfate and sodium chloride.
  • the reagent for measurement of the component to be measured in the sample of the present invention is a reagent used in the measurement method of the present invention, which is a hydrogen peroxide generating reagent, ⁇ - Includes keto acids, peroxidic actives and oxidative coloring chromogens.
  • ⁇ Reagent for measurement 1 A reagent comprising a hydrogen peroxide generating reagent, ⁇ -keto acid, a peroxide active substance and a leuco chromogen.
  • ⁇ Reagent for measurement 2 A reagent comprising a hydrogen peroxide generating reagent, ⁇ -keto acid, a peroxide active substance and a coupling type chromogen.
  • the reagent for measurement of the component to be measured in the sample of the present invention may be stored, distributed, and used in the form of a kit.
  • the measurement kit of the present invention is used in the measurement method of the present invention, and includes kits such as a two-reagent system and a three-reagent system, with a two-reagent kit being preferred.
  • the leuco chromogen and the peroxide active substance are the first reagent and the second reagent, respectively.
  • the coupler and the aniline derivative or phenol derivative are the first reagent and examples of the kit include a kit containing a peroxide active substance, a hydrogen peroxide generating reagent and an ⁇ -keto acid in one or both of the first reagent and the second reagent.
  • Measurement kit 1 First reagent: a reagent containing a leuco chromogen and ⁇ -keto acid. Second reagent A reagent containing a peroxide active substance and a hydrogen peroxide generating reagent.
  • Measurement kit 2 First Reagent A reagent comprising a leuco chromogen, ⁇ -keto acid and a hydrogen peroxide generating reagent. Second reagent A reagent containing a peroxide active substance and a hydrogen peroxide generating reagent.
  • First Reagent A reagent comprising a leuco chromogen, ⁇ -keto acid and a hydrogen peroxide generating reagent.
  • Second reagent A reagent containing a peroxidation active substance, an ⁇ -keto acid and a hydrogen peroxide generating reagent.
  • Measurement kit 4 First reagent A reagent comprising a peroxidation active substance and ⁇ -keto acid. Second reagent A reagent comprising a leuco chromogen and a hydrogen peroxide generating reagent.
  • Measurement kit 5 First reagent A reagent comprising a peroxidation active substance, ⁇ -keto acid and a hydrogen peroxide generating reagent. Second reagent A reagent comprising a leuco chromogen and a hydrogen peroxide generating reagent.
  • Measurement kit 6 First reagent A reagent comprising a peroxidation active substance, ⁇ -keto acid and a hydrogen peroxide generating reagent.
  • Second reagent A reagent comprising a leuco chromogen, ⁇ -keto acid and a hydrogen peroxide generating reagent.
  • Measurement kit 7 First Reagent A reagent containing a coupler and ⁇ -keto acid. Second reagent A reagent comprising an aniline derivative or a phenol derivative, a peroxide active substance, and a hydrogen peroxide generating reagent.
  • Measurement kit 8 First reagent: A reagent containing an aniline derivative or a phenol derivative and ⁇ -keto acid. Second reagent A reagent comprising a coupler, a peroxide active substance and a hydrogen peroxide generating reagent.
  • Measurement kit 9 First reagent A reagent comprising a coupler, an ⁇ -keto acid and a hydrogen peroxide generating reagent. Second reagent A reagent comprising an aniline derivative or a phenol derivative, a peroxide active substance, and a hydrogen peroxide generating reagent. ⁇ Measurement kit 10 First reagent A reagent comprising an aniline derivative or a phenol derivative, ⁇ -keto acid, and a hydrogen peroxide generating reagent. Second reagent A reagent comprising a coupler, a peroxide active substance and a hydrogen peroxide generating reagent.
  • Measurement kit 11 First reagent A reagent comprising a coupler, an ⁇ -keto acid and a hydrogen peroxide generating reagent.
  • Second reagent A reagent comprising an aniline derivative or a phenol derivative, a peroxide active substance, ⁇ -keto acid, and a hydrogen peroxide generating reagent.
  • Measurement kit 12 First reagent A reagent comprising an aniline derivative or a phenol derivative, ⁇ -keto acid, and a hydrogen peroxide generating reagent.
  • Second reagent A reagent comprising a coupler, a peroxide active substance, an ⁇ -keto acid and a hydrogen peroxide generating reagent.
  • Examples of the hydrogen peroxide generating reagent in the measuring reagent and measuring kit of the present invention include the reagent (A) to reagent (D) described above.
  • Examples of the ⁇ -keto acid, the peroxide active substance, and the oxidative coloring chromogen in the measurement reagent and measurement kit of the present invention include those described in (1) above.
  • the measurement reagent and measurement kit of the present invention may contain a stabilizer, an antiseptic, an interference substance erasing agent, a reaction accelerator, and the like, if necessary.
  • a stabilizer an antiseptic, an interference substance erasing agent, a reaction accelerator, and the like, if necessary.
  • examples of the stabilizer, preservative, interfering substance eliminator, and reaction accelerator include those described in (1) above.
  • the component to be measured in the sample is converted to hydrogen peroxide, and the generated hydrogen peroxide reacts with the oxidative coloring type chromogen.
  • the reaction between the produced hydrogen peroxide and the oxidative coloring chromogen is performed in the presence of ⁇ -keto acid.
  • the specimen As the specimen, the measurement target component, the oxidative coloring chromogen, and the ⁇ -keto acid in the method for suppressing the influence of peroxide of the present invention, the above-described specimen, measurement target component, oxidative coloring chromogen, ⁇ - Keto acid etc. are mentioned.
  • the peroxide whose influence is suppressed by the suppression method of the present invention include the above-described peroxides. According to the method for suppressing the influence of peroxide of the present invention, it is possible to accurately measure a component to be measured in a specimen.
  • Step 1 Step of preparing a reagent containing ⁇ -keto acid [hereinafter referred to as reagent (+)] and a reagent not containing ⁇ -keto acid [hereinafter referred to as reagent ( ⁇ )]
  • Step 2 Sample and reagent (+ ) To measure the absorbance of the produced dye
  • Step 3 react the sample with the reagent ( ⁇ ) and measure the absorbance of the produced dye
  • Step 4 measure the absorbance measured in Step 2 The step of comparing the absorbance measured in step 3.
  • step 4 the absorbance measured in step 2, ie, the absorbance when using the reagent (+) is lower than the absorbance measured in step 3, ie, the absorbance when using the reagent ( ⁇ ).
  • the absorbance measured in step 2 ie, the absorbance when using the reagent (+) is lower than the absorbance measured in step 3, ie, the absorbance when using the reagent ( ⁇ ).
  • MES manufactured by Dojindo Laboratories
  • Bis-Tris manufactured by Dojindo Laboratories
  • ADA manufactured by Dojindo Laboratories
  • POD peroxidase
  • sodium pyruvate manufactured by Kanto Chemical
  • ⁇ -ketoglutaric acid manufactured by Kanto Chemical Co., Inc.
  • oxaloacetic acid manufactured by Kanto Chemical Co., Ltd.
  • DA-67 manufactured by Wako Pure Chemical Industries, Ltd.
  • 4-AA manufactured by Saikyo Kasei Co., Ltd.
  • EMSE manufactured by Daito Chemix
  • Kit for measuring glucose containing pyruvate A kit for measuring glucose (kit A) having the following composition was prepared.
  • First reagent MES pH 6.25) 20 mmol / L DA-67 50 ⁇ mol / L Sodium pyruvate 5g / L
  • Second reagent MES pH 6.25) 20 mmol / L POD 10kU / L GOD 5kU / L
  • Specimen 1 Aqueous solution containing 90 ⁇ mol / L and 0% glucose and dispanol TOC
  • Specimen 2 Aqueous solution containing 90 ⁇ mol / L and 0.25% glucose and dispanol TOC
  • Specimen 3 Glucose and dispanol
  • Aqueous solution containing 90 ⁇ mol / L and 0.5% of each TOC and specimen 4 Aqueous solution containing 90 ⁇ mol / L and 1% each of glucose and dispanol TOC Dispanol TOC is a polyoxyethylene surfactant, It is a source of oxide.
  • Samples 1 to 4 contain a large amount of peroxide depending on the concentration of Dispanol TOC.
  • a series of operations performed on the sample 1 is also performed on each of the samples 2 to 4, and the absorbance for the sample 2 ( ⁇ E 2A ), the absorbance for the sample 3 ( ⁇ E 3A ), and the measured value of the absorbance for the sample 4 ( ⁇ E 4A ) was determined.
  • Table 6 shows the relative values of the absorbance ( ⁇ E 2A to ⁇ E 4A ) with respect to the samples 2 to 4 when the absorbance to the sample 1 ( ⁇ E 1A ) is 100.
  • kits a prepared in (2) are used instead of the kit A prepared in (1), and the relative absorbance values ( ⁇ E 1a to ⁇ E 4a ) for each of the samples 1 to 4 are obtained. It was determined.
  • Table 6 shows the relative values of the absorbance ( ⁇ E 2a to ⁇ E 4a ) with respect to the samples 2 to 4 when the absorbance ( ⁇ E 1a ) with respect to the sample 1 is 100.
  • the measurement using kit A containing pyruvic acid is the measurement using kit a not containing pyruvic acid.
  • the influence of peroxide derived from Dispanol TOC is remarkably suppressed, and it can be seen that more accurate glucose measurement is possible.
  • Kit for measuring glucose containing pyruvic acid A kit for measuring glucose (kit B) having the following composition was prepared.
  • First reagent MES pH 6.25) 20 mmol / L EMSE 0.3g / L Sodium pyruvate 5g / L
  • Second reagent MES pH 6.25) 20 mmol / L POD 10kU / L 4-AA 0.1g / L GOD 5kU / L
  • a series of operations performed on the sample 1 is also performed on each of the samples 2 to 4, and the absorbance for the sample 2 ( ⁇ E 2B ), the absorbance for the sample 3 ( ⁇ E 3B ), and the measured value of the absorbance for the sample 4 ( ⁇ E 4B ) was determined.
  • Table 7 shows the relative values of the absorbance ( ⁇ E 2B to ⁇ E 4B ) with respect to the samples 2 to 4 when the absorbance ( ⁇ E 1B ) with respect to the sample 1 is 100.
  • Kit for measuring fructosyl VHLTPE containing pyruvic acid A kit for measuring fructosyl VHLTPE (kit C) having the following composition was prepared.
  • First reagent Bis-Tris (pH 7.0) 10 mmol / L Calcium chloride dihydrate 10mmol / L Sodium sulfate 7.5mmol / L C10TMA 17g / L DA-67 20 ⁇ mol / L Thermolysin 1200kU / L Sodium pyruvate 5g / L
  • fructosyl VHLTPE measurement kit (kit c) having the following composition was prepared.
  • First reagent Bis-Tris (pH 7.0) 10 mmol / L Calcium chloride dihydrate 10mmol / L Sodium sulfate 7.5mmol / L C10TMA 17g / L DA-67 20 ⁇ mol / L Thermolysin 1200kU / L
  • Second reagent ADA (pH 7.0) 50 mmol / L POD 120kU / L FPOX-CE 12kU / L
  • Specimen 1 Aqueous solution containing 18 ⁇ mol / L and fructosyl VHLTPE and Dispanol TOC, respectively.
  • Specimen 2 Aqueous solution containing fructosyl VHLTPE and Dispanol TOC, respectively 18 ⁇ mol / L and 0.05%
  • Specimen 3 Fructosyl VHLTPE And Dispanol TOC, respectively 18 ⁇ mol / L, 0.1% aqueous solution
  • specimen 4 Fructosyl VHLTPE and Dispanol TOC, respectively 18 ⁇ mol / L, 0.2% aqueous solution Dispanol TOC is a polyoxyethylene interface It is an activator and a source of peroxide. Samples 1 to 4 contain a large amount of peroxide depending on the concentration of Dispanol TOC.
  • Kit D1 is a kit having a nonionic E230 concentration of 0% in the first reagent
  • kit D2 is a kit having a nonionic E230 concentration of 0.02% in the first reagent
  • kit D3 is a nonion in the first reagent. Represents a kit with an E230 concentration of 0.1%.
  • First reagent MES 50 mmol / L EMSE 0.3g / L Nonion E230 0, 0.02 or 0.1% Sodium pyruvate 5g / L
  • Second reagent MES 50 mmol / L 4-AA 0.1g / L POD 40kU / L GOD 100kU / L
  • Kit E1 is a kit having a nonionic E230 concentration of 0% in the first reagent
  • Kit E2 is a kit having a nonionic E230 concentration of 0.02% in the first reagent
  • Kit E3 is a nonion in the first reagent. Represents a kit with E230 concentration of 0.1%.
  • First reagent MES 50 mmol / L EMSE 0.3g / L Nonion E230 0, 0.02 or 0.1% ⁇ -ketoglutaric acid 1g / L
  • Second reagent MES 50 mmol / L 4-AA 0.1g / L POD 40kU / L GOD 100kU / L
  • Kit F1 is a kit having a nonionic E230 concentration of 0% in the first reagent
  • kit F2 is a kit having a nonionic E230 concentration of 0.02% in the first reagent
  • kit F3 is a nonion in the first reagent. Represents a kit with an E230 concentration of 0.1%.
  • First reagent MES 50 mmol / L EMSE 0.3g / L Nonion E230 0, 0.02 or 0.1% Oxaloacetic acid 0.2g / L
  • Second reagent MES 50 mmol / L 4-AA 0.1g / L POD 40kU / L GOD 100kU / L
  • Kits d1 to d3 having the following compositions were prepared.
  • Kit d1 is a kit having a nonion E230 concentration of 0% in the first reagent
  • kit d2 is a kit having a nonion E230 concentration of 0.02% in the first reagent
  • kit d3 is a nonion in the first reagent. Represents a kit with E230 concentration of 0.1%.
  • First reagent MES 50 mmol / L EMSE 0.3g / L Nonion E230 0, 0.02 or 0.1%
  • Second reagent MES 50 mmol / L 4-AA 0.1g / L POD 40kU / L GOD 100kU / L
  • Blank Absorbance kit D1 a (Delta] E D1) as 0, by subtracting blank absorbance from the blank absorbance (E D2) to (E D1), and the blank absorbance kit D2 and (Delta] E D2). Similarly, the blank absorbance (E D1 ) was subtracted from the blank absorbance (E D3 ) to obtain the blank absorbance ( ⁇ E D3 ) of the kit D3.
  • Table 9 shows the blank absorbance ( ⁇ E D1 to ⁇ E D3 ) of each of the kits D1 to D3 .
  • kits D1 to D3 In place of kits D1 to D3, kits E1 to E3 containing ⁇ -ketoglutarate prepared in (2) above were used, respectively (5 ), The blank absorbance ( ⁇ E E1 to ⁇ E E3 ) of each of the kits E1 to E3 was calculated. Table 9 shows the blank absorbance ( ⁇ E E1 to ⁇ E E3 ) of each of the kits E1 to E3 .
  • kits F1 to F3 containing oxaloacetic acid prepared in (3) above were used instead of kits D1 to D3.
  • the blank absorbance ( ⁇ E F1 to ⁇ E F3 ) of each of the kits F1 to F3 was calculated by the method.
  • Table 9 shows the blank absorbance ( ⁇ E F1 to ⁇ E F3 ) of each of the kits F1 to F3 .
  • kits d1 to d3 containing no ⁇ -keto acid prepared in the above (4) were used.
  • the blank absorbance ( ⁇ E d1 to ⁇ E d3 ) of each of kits d1 to d3 was calculated by the same method as in (5) except that it was used.
  • Table 9 shows blank absorbances ( ⁇ E d1 to ⁇ E d3 ) of the kits d1 to d3.
  • Kit for measuring hemoglobin A1c containing pyruvate A kit for measuring hemoglobin A1c (kit G) having the following composition Prepared.
  • First reagent MES 50 mmol / L Calcium chloride dihydrate 10mmol / L Sodium nitrate 100mmol / L 1-dodecylpyridinium chloride 1.4 g / L Actinase E 340 kU / L DA-67 30 ⁇ mol / L Nonion E230 0.01% Sodium pyruvate 2g / L
  • Second reagent Bis-Tris 50 mmol / L FPOX-CET 6kU / L POD 120kU / L
  • a hemoglobin A1c measurement kit (kit H) having the following composition was prepared.
  • First reagent MES (pH 6.5) 50 mmol / L Calcium chloride dihydrate 10mmol / L Sodium nitrate 100mmol / L 1-dodecylpyridinium chloride 1.4 g / L Actinase E 340 kU / L DA-67 30 ⁇ mol / L Nonion E230 0.01% ⁇ -Ketoglutaric acid 0.3g / L
  • Second reagent Bis-Tris (pH 7.0) 50 mmol / L FPOX-CET 6kU / L POD 120kU / L
  • Kit for measuring hemoglobin A1c having the following composition was prepared.
  • First reagent MES pH 6.5
  • 50 mmol / L Calcium chloride dihydrate 10mmol / L
  • Sodium nitrate 100mmol / L 1-dodecylpyridinium chloride 1.4 g / L
  • Actinase E 340 kU / L DA-67 30 ⁇ mol / L
  • Second reagent Bis-Tris (pH 7.0) 50 mmol / L FPOX-CET 6kU / L POD 120kU / L
  • each specimen (12 ⁇ L) and the first reagent (150 ⁇ L) of kit G containing pyruvic acid prepared in (1) were reacted at 37 ° C. for 5 minutes, and the absorbance (E1) was measured at a main wavelength of 660 nm and a subwavelength of 800 nm.
  • the second reagent (50 ⁇ L) of kit G was added, and the mixture was further reacted at 37 ° C. for 5 minutes, and absorbance (E2) was measured at a main wavelength of 660 nm and a sub wavelength of 800 nm.
  • the measurement was performed by Hitachi H7170.
  • the absorbance (E1) was subtracted from the absorbance (E2) to obtain the reaction absorbance (E G ) of each specimen in the kit G.
  • reaction absorbance (E e ) of each specimen in the kit e which was calculated in the same manner using the kit e in (4) above that does not contain ⁇ -keto acid, was used as a control.
  • the reaction absorbance (E G ) of each specimen in kit G and the reaction absorbance (E e ) of each specimen in kit e are shown in FIG.
  • Kit I was used in the same manner as (5) except that kit I containing oxaloacetic acid prepared in (3) above was used instead of kit G.
  • the reaction absorbance ( ⁇ E I ) of each specimen was calculated.
  • the reaction absorbance (E I ) of each specimen in kit I and the reaction absorbance (E e ) of each specimen in kit e are shown in FIG.
  • the influence of the peroxide derived from nonion E230 is suppressed, and the hemoglobin A1c concentration can be measured more accurately. It has been found.
  • a measuring method a measuring reagent, a measuring kit, and a method for suppressing the influence of peroxide in a sample in which the influence of peroxide in the hydrogen peroxide determination system is suppressed. Is done.
  • the present invention is useful for clinical diagnosis and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 検体中の測定対象成分を過酸化水素に変換し、生成した過酸化水素をα-ケト酸存在下に酸化発色型色原体を用いて測定することを特徴とする、検体中の測定対象成分の測定方法。 検体中の測定対象成分を過酸化水素に変換し、生成した過酸化水素を、酸化発色型色原体を用いて測定する方法において、α-ケト酸を用いることを特徴とする、過酸化物の影響抑制方法。 本発明のα-ケト酸を用いる測定方法、および、抑制方法により、過酸化物の影響が抑制され、正確な検体中の測定対象成分の測定が可能となる。

Description

測定対象成分の測定方法
 本発明は、検体中の測定対象成分の測定方法、測定用試薬、及び、測定用キット、並びに、過酸化物の影響抑制方法に関する。
 臨床診断においては、全血、血清、血漿、尿等の生体試料を用いて、生体試料中の測定対象成分の測定が行われる。生体試料中の測定対象成分は、酵素を用いる方法や抗原抗体を用いた免疫測定法等により測定される。酵素を用いる、生体試料中の測定対象成分の測定においては、測定対象成分を酸化酵素により過酸化水素に変換した後、生成した過酸化水素を、ペルオキシダーゼ存在下、酸化発色型色原体と反応させ、生成した色素の吸光度を測定することがしばしば行われる。
 この過酸化水素定量系に基づく生体試料中の測定対象成分の測定は、温和な反応条件や、操作の簡便性等から、自動分析装置を用いた多検体の連続測定に多用されている。しかしながら、この方法は、生体試料中に存在するビリルビンやヘモグロビン等の影響を受け、測定値が理論値よりも低くなるという、所謂、負の影響を受けることが問題となっている。この問題に対して、これまでに鉄シアノ化合物を用いる方法(例えば、非特許文献1)等の方法が報告されている。
 一方、過酸化水素定量系に基づく生体試料中の測定対象成分の測定においては、界面活性剤がしばしば用いられる。界面活性剤は、酵素の基質との相互作用による酵素の特異性制御や、酵素との相互作用による酵素の反応性制御、検体の前処理等のために用いられる。中でも、ポリオキシエチレン系界面活性剤、ポリオキシプロピレン系界面活性剤等のポリオキシアルキレン系界面活性剤は、その種類の多様性と入手可能性から多用される。
 しかしながら、ポリオキシアルキレン系界面活性剤は、その構造から過酸化物を生成し易く(例えば、特許文献1)、生成した過酸化物は、過酸化水素定量系に正の影響を与え、測定値が理論値よりも高くなることが問題となっている。特に、生体試料測定用試薬や生体試料測定用キットの保存状態が不十分の場合には、これらの試薬やキットにおいて、過酸化物がしばしば生成し、試薬やキットの性能の低下を引き起こしている。
 また、診断用キット中には、塩、緩衝剤、酵素、防腐剤等の添加物が含有される場合が多いが、これらの添加物を用いたキット製造工程の中で生成又は混入した過酸化物や、長期保存中に酸化により生成した過酸化物により、測定に正の影響を与えることがある。さらには、生体中での酸化ストレスや酵素反応等、あるいは薬剤投与等により、全血、血清、血漿、尿等の生体試料中に過酸化物が生成し、この過酸化物が測定に正の影響を与えることもある。
 ピルビン酸は、α-ケト酸の1つで、生体内では、解糖系において中間生成物として生成する。ピルビン酸は、比較的強い抗酸化活性を有することが知られており(例えば、特許文献2)、細胞中の酸素ラジカルを中和する作用が報告されている(例えば、特許文献3)。
 過酸化水素定量系に基づく生体試料中の測定対象成分の測定において、過酸化物の影響が抑制された測定方法が求められている。
特開2007-204701号公報 特開2004-217932号公報 特表平9-511746号公報
クリニカルケミストリー、26巻、2号、227-231頁(1980年)
 本発明の目的は、過酸化水素定量系における過酸化物の影響が抑制された、検体中の測定対象成分の測定方法、測定用試薬、及び、測定用キット、並びに、過酸化物の影響抑制方法を提供することにある。
 本発明者らは本課題を解決すべく鋭意検討を重ねた結果、検体中の測定対象成分を過酸化水素に変換し、生成した過酸化水素を測定する方法において、α-ケト酸を用いることにより、過酸化水素定量系に影響を及ぼすことなく、過酸化物の影響が抑制され、正確な検体中の測定対象成分の測定ができる、という知見を見出し、本発明を完成させた。すなわち、本発明は、以下の[1]~[20]に関する。
[1] 検体中の測定対象成分を過酸化水素に変換し、生成した過酸化水素をα-ケト酸存在下に酸化発色型色原体を用いて測定することを特徴とする、検体中の測定対象成分の測定方法。
[2] 検体中の測定対象成分を過酸化水素に変換し、生成した過酸化水素を酸化発色型色原体と反応させる、検体中の測定対象成分の測定方法において、生成した過酸化水素と酸化発色型色原体との反応をα-ケト酸存在下に行うことを特徴とする、検体中の測定対象成分の測定方法における過酸化物の影響抑制方法。
[3] α-ケト酸が、ピルビン酸、α-ケトグルタル酸及びオキサロ酢酸からなる群より選ばれるα-ケト酸である[1]又は[2]記載の方法。
[4] 酸化発色型色原体が、ロイコ型色原体である[1]~[3]のいずれかに記載の方法。
[5] ロイコ型色原体が、フェノチアジン誘導体である[4]記載の方法。
[6] フェノチアジン誘導体が、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジンである[5]記載の方法。
[7] 酸化発色型色原体が、酸化カップリング型色原体である[1]~[3]のいずれかに記載の方法。
[8] 酸化カップリング型色原体が、カップラーと、アニリン誘導体又はフェノール誘導体との組み合わせである[7]記載の方法。
[9] 過酸化水素生成試薬、α-ケト酸、過酸化活性物質及び酸化発色型色原体を含有することを特徴とする、検体中の測定対象成分の測定用試薬。
[10] α-ケト酸が、ピルビン酸、α-ケトグルタル酸及びオキサロ酢酸からなる群より選ばれるα-ケト酸である[9]記載の試薬。
[11] 酸化発色型色原体が、ロイコ型色原体である[9]又は[10]記載の試薬。
[12] ロイコ型色原体が、フェノチアジン誘導体である[11]記載の試薬。
[13] フェノチアジン誘導体が、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジンである[12]記載の試薬。
[14] 酸化発色型色原体が、酸化カップリング型色原体である[9]又は[10]記載の試薬。
[15] 酸化カップリング型色原体が、カップラーと、アニリン誘導体又はフェノール誘導体との組み合わせである[14]記載の試薬。
[16] 第1試薬及び第2試薬を含む、検体中の測定対象成分の測定用キットであって、ロイコ型色原体と過酸化活性物質がそれぞれ、第1試薬及び第2試薬の別々の試薬に含まれ、過酸化水素生成試薬及びα-ケト酸がそれぞれ、第1試薬及び第2試薬の一方又は両方に含まれることを特徴とするキット。
[17] ロイコ型色原体が、フェノチアジン誘導体である[16]記載のキット。
[18] フェノチアジン誘導体が、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジンである[17]記載のキット。
[19] 第1試薬及び第2試薬を含む、検体中の測定対象成分の測定用キットであって、カップラーと、アニリン誘導体又はフェノール誘導体とがそれぞれ、第1試薬及び第2試薬の別々の試薬に含まれ、過酸化活性物質、過酸化水素生成試薬及びα-ケト酸がそれぞれ、第1試薬及び第2試薬の一方又は両方に含まれることを特徴とするキット。
[20] α-ケト酸が、ピルビン酸、α-ケトグルタル酸及びオキサロ酢酸からなる群より選ばれるα-ケト酸である[16]~[19]のいずれかに記載のキット。
 本発明により、過酸化物の影響が抑制された検体中の測定対象成分の測定方法、測定用試薬、及び、測定用キット、並びに、過酸化物の影響抑制方法が提供される。
実施例5(1)のピルビン酸を含有するヘモグロビンA1c測定用キット、及び、実施例5(4)のα-ケト酸を含有しないヘモグロビンA1c測定用キットを用いたヘモグロビンA1c測定方法における、ヘモグロビンA1c濃度と吸光度との関係を表すグラフである。横軸はヘモグロビンA1c濃度(μmol/L)を、縦軸は吸光度(Abs)を表す。○は、ピルビン酸を含有するキットを用いた測定のグラフを表し、△は、α-ケト酸を含有しないキットを用いた測定のグラフを表す。 実施例5(2)のα-ケトグルタル酸を含有するヘモグロビンA1c測定用キット、及び、実施例5(4)のα-ケト酸を含有しないヘモグロビンA1c測定用キットを用いたヘモグロビンA1c測定方法における、ヘモグロビンA1c濃度と吸光度との関係を表すグラフである。横軸はヘモグロビンA1c濃度(μmol/L)を、縦軸は吸光度(Abs)を表す。○は、α-ケトグルタル酸を含有するキットを用いた測定のグラフを表し、△は、α-ケト酸を含有しないキットを用いた測定のグラフを表す。 実施例5(3)のオキサロ酢酸を含有するヘモグロビンA1c測定用キット、及び、実施例5(4)のα-ケト酸を含有しないヘモグロビンA1c測定用キットを用いたヘモグロビンA1c測定方法における、ヘモグロビンA1c濃度と吸光度との関係を表すグラフである。横軸はヘモグロビンA1c濃度(μmol/L)を、縦軸は吸光度(Abs)を表す。○は、オキサロ酢酸を含有するキットを用いた測定のグラフを表し、△は、α-ケト酸を含有しないキットを用いた測定のグラフを表す。
(1)測定対象成分の測定方法
 本発明の測定対象成分の測定方法は、検体中の測定対象成分を過酸化水素に変換し、生成した過酸化水素をα-ケト酸存在下に酸化発色型色原体を用いて測定することを特徴とする。本発明の測定対象成分の測定方法は、検体中に存在する過酸化物の影響が抑制され、正確に検体中の測定対象成分を測定することができる。
 本発明における検体としては、本発明の測定方法を可能とする限りでは特に制限はなく、例えば全血、血清、血漿、尿等が挙げられる。
 本発明の測定方法は、過酸化物の影響が抑制される限りでは特に制限はなく、例えば以下の工程を含む方法等が挙げられる。
工程1:検体中の測定対象成分を過酸化水素生成試薬と反応させ、過酸化水素を生成させる工程;
工程2:工程1で生成した過酸化水素を、α-ケト酸及び過酸化活性物質の存在下、酸化発色型色原体と反応させて色素を生成させる工程;
工程3:工程2で生成した色素の吸光度を測定する工程;
工程4:既知濃度の測定対象成分を用いて作成された、測定対象成分の濃度又は活性と吸光度との関係を表す検量線に、工程3で測定した吸光度を相関させる工程;
工程5:検体中の測定対象成分の濃度又は活性を決定する工程。
 上記工程1の反応は、α-ケト酸存在下に行ってもよい。また、工程1と工程2は、同時に行っても、段階的に行ってもよい。
 工程1における、検体中の測定対象成分と過酸化水素生成試薬との反応は、過酸化水素を生成する条件であれば、いかなる反応条件でもよく、例えば10~50℃、好ましくは20~40℃で、1分間~3時間、好ましくは2.5分間~1時間行う。
 工程2における、α-ケト酸及び過酸化活性物質の存在下での、過酸化水素と酸化発色型色原体との反応は、色素を生成する条件であれば、いかなる反応条件でもよく、例えば10~50℃、好ましくは20~40℃で、1分間~3時間、好ましくは2.5分間~1時間行う。この反応におけるα-ケト酸の濃度としては、過酸化物の影響を抑制し得る濃度であれば特に制限はなく、例えば0.001~20g/Lである。
 工程3における、生成した色素の吸光度を測定する方法は、吸光度を測定し得る方法であれば、いかなる方法でもよく、例えば分光光度計を用いて測定する方法等が挙げられる。
 工程1における過酸化水素生成試薬は、測定対象成分と反応して過酸化水素を生成させる試薬であり、例えば(A)測定対象成分を直接過酸化水素に変換する試薬[以下、試薬(A)と記す]、(B)測定対象成分を間接的に過酸化水素に変換する試薬[以下、試薬(B)と記す]、(C)測定対象成分から直接過酸化水素を生成させる試薬[以下、試薬(C)と記す]、(D)測定対象成分から間接的に過酸化水素を生成させる試薬[以下、試薬(D)と記す]等が挙げられる。
 試薬(A)は、検体中の測定対象成分を直接過酸化水素に変換する試薬である。試薬(A)が適用される測定対象成分は、例えば酸化酵素の基質等である。試薬(A)としては、例えば測定対象成分の酸化酵素を含む試薬等が挙げられる。測定対象成分と試薬(A)との組み合わせの具体例を第1表に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、上記において各種リポタンパクとは、HDL、LDL、VLDL、IDL、レムナントリポタンパク、sdLDL等をいう。以下、同様である。
 また、測定対象となる酸化酵素の基質は、複数の反応を経て誘導されるものであってもよい。この場合、酸化酵素の基質へ変換される測定対象成分が、複数の反応を経て、酸化酵素の基質に変換された後、酸化酵素との反応により過酸化水素が生成される。この酸化酵素の基質へ変換される物質、酸化酵素の基質、及び、酸化酵素の組み合わせとしては、例えば第2表に示される組み合わせ等が挙げられる。
Figure JPOXMLDOC01-appb-T000002
 尚、総コレステロールは、全てのリポタンパク中の遊離型コレステロールとエステル型コレステロールとを合わせたものを意味し、各種リポタンパク中のコレステロールは、各種リポタンパク中の遊離型コレステロールとエステル型コレステロールとを合わせたものを意味し、総エステル型コレステロールは、全てのリポタンパク中のエステル型コレステロールを意味する。
 試薬(B)は、検体中の測定対象成分を間接的に過酸化水素に変換する試薬である。試薬(B)が適用される測定対象成分は、例えば2つ以上の酵素反応により過酸化水素に変換されるような酵素の基質等が挙げられる。試薬(B)としては、例えば該基質と反応する酵素、該基質が変換されて生成する物質を対応する酸化酵素が存在する物質へ変換する酵素又は酵素とその基質、及び、該酸化酵素を含有する試薬等が挙げられる。測定対象成分と試薬(B)との組み合わせを第3表に示す。
Figure JPOXMLDOC01-appb-T000003
 試薬(C)は、測定対象成分から直接過酸化水素を生成させる試薬である。試薬(C)が適用される測定対象成分は、例えば過酸化水素を生成する酸化酵素等が挙げられる。試薬(C)としては、例えば該酸化酵素の基質を含有する試薬等が挙げられる。測定対象成分と試薬(C)との組み合わせの具体例を第4表に示す。
Figure JPOXMLDOC01-appb-T000004
 試薬(D)は、測定対象成分から間接的に過酸化水素を生成させる試薬である。試薬(D)が適用される測定対象成分は、例えば2つ以上の反応により過酸化水素を生成させるような酵素等が挙げられる。試薬(D)としては、例えば該酵素の基質、該酵素と該基質との反応により生成する物質を対応する酸化酵素が存在する物質へ変換する酵素又は酵素とその基質、及び、該酸化酵素を含有する試薬等が挙げられる。測定対象成分と試薬(D)との組み合わせの具体例を第5表に示す。
Figure JPOXMLDOC01-appb-T000005
 本発明において、酸化発色型色原体は、過酸化活性物質の存在下に、過酸化水素と反応し、色素が生成する。過酸化活性物質としては、例えばペルオキシダーゼ等が挙げられる。酸化発色型色原体としては、酸化カップリング型色原体、ロイコ型色原体等が挙げられ、ロイコ型色原体が好ましい。
 ロイコ型色原体は、過酸化水素および過酸化活性物質の存在下、単独で色素へ変換される物質である。
 ロイコ型色原体としては、例えばフェノチアジン系色原体、トリフェニルメタン系色原体、ジフェニルアミン系色原体、o-フェニレンジアミン、ヒドロキシプロピオン酸、ジアミノベンジジン、テトラメチルベンジジン等が挙げられ、フェノチアジン系色原体が好ましい。
 フェノチアジン系色原体としては、例えば10-N-カルボキシメチルカルバモイル-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン(CCAP)、10-N-メチルカルバモイル-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン(MCDP)、10-N-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン ナトリウム塩(DA-67)等が挙げられる。フェノチアジン系色原体の中でも、10-N-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン ナトリウム塩(DA-67)が特に好ましい。
 トリフェニルメタン系色原体としては、例えばN,N,N’,N’,N’’,N’’-ヘキサ(3-スルホプロピル)-4,4’,4’’-トリアミノトリフェニルメタン(TPM-PS)等が挙げられる。
 ジフェニルアミン系色原体としては、例えばN-(カルボキシメチルアミノカルボニル)-4,4’-ビス(ジメチルアミノ)ジフェニルアミン ナトリウム塩(DA-64)、4,4’-ビス(ジメチルアミノ)ジフェニルアミン、ビス〔3-ビス(4-クロロフェニル)メチル-4-ジメチルアミノフェニル〕アミン(BCMA)等が挙げられる。
 酸化カップリング型色原体は、過酸化水素及び過酸化活性物質の存在下、2つの化合物が酸化的カップリングして色素を生成する物質である。2つの化合物の組み合わせとしては、カプラーとアニリン類(トリンダー試薬)との組み合わせ、カプラーとフェノール類との組み合わせ等があげられる。
 カプラーとしては、例えば4-アミノアンチピリン(4-AA)、3-メチル-2-ベンゾチアゾリノンヒドラジン等があげられる。
 アニリン類としては、N-(3-スルホプロピル)アニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メチルアニリン(TOOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメチルアニリン(MAOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(DAOS)、N-エチル-N-(3-スルホプロピル)-3-メチルアニリン(TOPS)、N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(HDAOS)、N,N-ジメチル-3-メチルアニリン、N,N-ビス(3-スルホプロピル)-3,5-ジメトキシアニリン、N-エチル-N-(3-スルホプロピル)-3-メトキシアニリン、N-エチル-N-(3-スルホプロピル)アニリン、N-エチル-N-(3-スルホプロピル)-3,5-ジメトキシアニリン、N-(3-スルホプロピル)-3,5-ジメトキシアニリン、N-エチル-N-(3-スルホプロピル)-3,5-ジメチルアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)アニリン、N-エチル-N-(3-メチルフェニル)-N’-サクシニルエチレンジアミン(EMSE)、N-エチル-N-(3-メチルフェニル)-N’-アセチルエチレンジアミン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-4-フルオロ-3,5-ジメトキシアニリン(F-DAOS)等があげられる。
 フェノール類としては、フェノール、4-クロロフェノール、3-メチルフェノール、3-ヒドロキシ-2,4,6-トリヨード安息香酸(HTIB)等があげられる。
 本発明において、過酸化物とは、本発明の測定方法において、正の影響を与える物質であり、過酸化物を生成し得る界面活性剤に由来する過酸化物等が挙げられる。本発明において、過酸化物は検体由来の過酸化物であっても、測定試薬由来の過酸化物であってもよい。過酸化物を生成し得る界面活性剤としては、例えばポリオキシアルキレン系界面活性剤等が挙げられる。ポリオキシアルキレン系界面活性剤としては、例えばポリオキシエチレン系界面活性剤、ポリオキシプロピレン系界面活性剤、ポリオキシブチレン系界面活性剤等が挙げられる。ポリオキシアルキレン系界面活性剤は、非イオン性界面活性剤、陽イオン性界面活性剤、陰イオン性界面活性剤、両イオン性界面活性剤等が挙げられ、非イオン性界面活性剤が好ましい。非イオン性界面活性剤としては、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルケニルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルケニルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルアリールエーテル、ポリオキシエチレンポリオキシプロピレン共重合体等が挙げられる。
 過酸化物は、過酸化物価、カルボニル価、チオバルビツール酸価等の油脂酸化の指標により、検出、測定又は定量することができる。
 本発明におけるα-ケト酸は、本発明の測定方法を可能とすることができる限りは特に制限はなく、例えばピルビン酸、オキサロ酢酸、α-ケトグルタル酸、シュウ酸等が挙げられ、ピルビン酸、オキサロ酢酸、α-ケトグルタル酸が好ましく、ピルビン酸が特に好ましい。本発明におけるα-ケト酸は、塩の形態でもよく、塩としては、例えばナトリウム塩、カリウム塩、アンモニウム塩、カルシウム塩等が挙げられる。
 本発明の測定方法において使用されるα-ケト酸の濃度は、本発明の測定方法を可能とする濃度であれば特に制限はなく、例えば0.001~20g/Lである。
 本発明の測定方法における、測定対象成分と過酸化水素生成試薬との反応は、水性媒体中で行われることが好ましい。また、測定対象成分と過酸化水素生成試薬との反応は、安定化剤、防腐剤、干渉物質消去剤、反応促進剤等を共存させて行うこともできる。
 水性媒体としては、例えば脱イオン水、蒸留水、緩衝液等があげられるが、緩衝液が好ましい。緩衝液のpHとしては、pH4.0~10.0であり、pH6.0~8.0が好ましい。緩衝液に用いる緩衝剤としては、例えばリン酸緩衝剤、ホウ酸緩衝剤、グッドの緩衝剤等があげられる。
 グッドの緩衝剤としては、例えば2-モルホリノエタンスルホン酸(MES)、トリス(ヒドロキシメチル)アミノメタン(Tris)、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(Bis-Tris)、N-(2-アセトアミド)イミノ二酢酸(ADA)、ピペラジン-N,N’-ビス(2-エタンスルホン酸)(PIPES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES)、3-モルホリノ-2-ヒドロキシプロパンスルホン酸(MOPSO)、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(BES)、3-モルホリノプロパンスルホン酸(MOPS)、N-〔トリス(ヒドロキシメチル)メチル〕-2-アミノエタンスルホン酸(TES)、2-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕エタンスルホン酸(HEPES)、3-〔N,N-ビス(2-ヒドロキシエチル)アミノ〕-2-ヒドロキシプロパンスルホン酸(DIPSO)、N-〔トリス(ヒドロキシメチル)メチル〕-2-ヒドロキシ-3-アミノプロパンスルホン酸(TAPSO)、ピペラジン-N,N’-ビス(2-ヒドロキシプロパンスルホン酸)(POPSO)、3-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕-2-ヒドロキシプロパンスルホン酸(HEPPSO)、3-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕プロパンスルホン酸〔(H)EPPS〕、N-〔トリス(ヒドロキシメチル)メチル〕グリシン(Tricine)、N,N-ビス(2-ヒドロキシエチル)グリシン(Bicine)、N-トリス(ヒドロキシメチル)メチル-3-アミノプロパンスルホン酸(TAPS)、N-シクロヘキシル-2-アミノエタンスルホン酸(CHES)、N-シクロヘキシル-3-アミノ-2-ヒドロキシプロパンスルホン酸(CAPSO)、N-シクロヘキシル-3-アミノプロパンスルホン酸(CAPS)等があげられる。
 緩衝液の濃度は測定に適した濃度であれば特に制限はされないが、0.001~2.0mol/Lが好ましく、0.005~1.0mol/Lがより好ましい。
 安定化剤としては、例えばエチレンジアミン四酢酸(EDTA)、シュークロース、塩化カルシウム、フェロシアン化カリウム、牛血清アルブミン(BSA)等が挙げられる。防腐剤としては、例えばアジ化ナトリウム、抗生物質等が挙げられる。干渉物質消去剤としては、例えばアスコルビン酸の影響を消去するためのアスコルビン酸オキシダーゼ等が挙げられる。反応促進剤としては、例えばコリパーゼ、ホスホリパーゼ等の酵素、硫酸ナトリウム、塩化ナトリウム等の塩類が挙げられる。
(2)測定対象成分の測定用試薬及び測定用キット
 本発明の、検体中の測定対象成分の測定用試薬は、本発明の測定方法に用いられる試薬であり、過酸化水素生成試薬、α-ケト酸、過酸化活性物質及び酸化発色型色原体を含む。
 本発明の、測定用試薬の具体的態様を以下に示す。
・測定用試薬1
 過酸化水素生成試薬、α-ケト酸、過酸化活性物質及びロイコ型色原体を含む試薬。
・測定用試薬2
 過酸化水素生成試薬、α-ケト酸、過酸化活性物質及びカップリング型色原体を含む試薬。
 本発明の、検体中の測定対象成分の測定用試薬は、キットの形態で保存、流通、使用されてもよい。本発明の測定用キットは、本発明の測定方法に用いられ、2試薬系、3試薬系等のキットが挙げられ、2試薬系のキットが好ましい。
 本発明の測定用キットについて、酸化発色型色原体としてロイコ型色原体を用いる2試薬系のキットの場合、ロイコ型色原体と過酸化活性物質がそれぞれ、第1試薬及び第2試薬の別々の試薬に含まれ、過酸化水素生成試薬及びα-ケト酸がそれぞれ、第1試薬及び第2試薬の一方又は両方に含まれるキット等が挙げられる。
 また、本発明の測定用キットについて、酸化発色型色原体として酸化カップリング型色原体を用いる2試薬系のキットの場合、カップラーと、アニリン誘導体又はフェノール誘導体とがそれぞれ、第1試薬及び第2試薬の別々の試薬に含まれ、過酸化活性物質、過酸化水素生成試薬及びα-ケト酸がそれぞれ、第1試薬及び第2試薬の一方又は両方に含まれるキット等が挙げられる。
 本発明の測定用キットの具体的態様を以下に記す。
・測定用キット1
第1試薬
 ロイコ型色原体及びα-ケト酸を含む試薬。
第2試薬
 過酸化活性物質及び過酸化水素生成試薬を含む試薬。
・測定用キット2
第1試薬
 ロイコ型色原体、α-ケト酸及び過酸化水素生成試薬を含む試薬。
第2試薬
 過酸化活性物質及び過酸化水素生成試薬を含む試薬。
・測定用キット3
第1試薬
 ロイコ型色原体、α-ケト酸及び過酸化水素生成試薬を含む試薬。
第2試薬
 過酸化活性物質、α-ケト酸及び過酸化水素生成試薬を含む試薬。
・測定用キット4
第1試薬
 過酸化活性物質及びα-ケト酸を含む試薬。
第2試薬
 ロイコ型色原体及び過酸化水素生成試薬を含む試薬。
・測定用キット5
第1試薬
 過酸化活性物質、α-ケト酸及び過酸化水素生成試薬を含む試薬。
第2試薬
 ロイコ型色原体及び過酸化水素生成試薬を含む試薬。
・測定用キット6
第1試薬
 過酸化活性物質、α-ケト酸及び過酸化水素生成試薬を含む試薬。
第2試薬
 ロイコ型色原体、α-ケト酸及び過酸化水素生成試薬を含む試薬。
・測定用キット7
第1試薬
 カップラー及びα-ケト酸を含む試薬。
第2試薬
 アニリン誘導体又はフェノール誘導体、過酸化活性物質、及び、過酸化水素生成試薬を含む試薬。
・測定用キット8
第1試薬
 アニリン誘導体又はフェノール誘導体、及び、α-ケト酸を含む試薬。
第2試薬
 カップラー、過酸化活性物質及び過酸化水素生成試薬を含む試薬。
・測定用キット9
第1試薬
 カップラー、α-ケト酸及び過酸化水素生成試薬を含む試薬。
第2試薬
 アニリン誘導体又はフェノール誘導体、過酸化活性物質、及び、過酸化水素生成試薬を含む試薬。
・測定用キット10
第1試薬
 アニリン誘導体又はフェノール誘導体、α-ケト酸、及び、過酸化水素生成試薬を含む試薬。
第2試薬
 カップラー、過酸化活性物質及び過酸化水素生成試薬を含む試薬。
・測定用キット11
第1試薬
 カップラー、α-ケト酸及び過酸化水素生成試薬を含む試薬。
第2試薬
 アニリン誘導体又はフェノール誘導体、過酸化活性物質、α-ケト酸、及び、過酸化水素生成試薬を含む試薬。
・測定用キット12
第1試薬
 アニリン誘導体又はフェノール誘導体、α-ケト酸、及び、過酸化水素生成試薬を含む試薬。
第2試薬
 カップラー、過酸化活性物質、α-ケト酸及び過酸化水素生成試薬を含む試薬。
 本発明の測定用試薬及び測定用キットにおける過酸化水素生成試薬としては、上記に示した、試薬(A)~試薬(D)等が挙げられる。本発明の測定用試薬及び測定用キットにおけるα-ケト酸、過酸化活性物質及び酸化発色型色原体としては、上記(1)に記載したものが挙げられる。
 本発明の測定用試薬及び測定用キットは、必要に応じて、安定化剤、防腐剤、干渉物質消去剤、反応促進剤等を含有してもよい。安定化剤、防腐剤、干渉物質消去剤、反応促進剤は上記(1)に記載したものが挙げられる。
(3)過酸化物の影響抑制方法
 本発明の過酸化物の影響抑制方法は、検体中の測定対象成分を過酸化水素に変換し、生成した過酸化水素を酸化発色型色原体と反応させる、検体中の測定対象成分の測定方法において、生成した過酸化水素と酸化発色型色原体との反応をα-ケト酸存在下に行うことを特徴とする抑制方法である。
 本発明の過酸化物の影響抑制方法における検体、測定対象成分、酸化発色型色原体、α-ケト酸としては、それぞれ、前述の検体、測定対象成分、酸化発色型色原体、α-ケト酸等が挙げられる。また、本発明の抑制方法によってその影響が抑制される過酸化物としては、例えば前述の過酸化物等が挙げられる。
 本発明の過酸化物の影響抑制方法により、検体中の測定対象成分を正確に測定することができる。
 本発明において、過酸化物の影響の抑制は、例えば以下の工程により評価することができる。
工程1:α-ケト酸を含む試薬[以下、試薬(+)という]と、α-ケト酸を含まない試薬[以下、試薬(-)という]を調製する工程
工程2:検体と試薬(+)とを反応させて、生成した色素の吸光度を測定する工程
工程3:検体と試薬(-)とを反応させて、生成した色素の吸光度を測定する工程
工程4:工程2で測定した吸光度と、工程3で測定した吸光度とを比較する工程。
 上記工程4において、工程2で測定した吸光度、すなわち、試薬(+)を用いた場合の吸光度が、工程3で測定した吸光度、すなわち、試薬(-)を用いた場合の吸光度に比較して低ければ、α-ケト酸によって過酸化物の影響が抑制されている、と評価することができる。
 以下、実施例により本発明をより詳細に説明するが、これらは本発明の範囲を何ら限定するものではない。
 尚、本実施例、比較例及び試験例においては、下記メーカーの試薬及び酵素を使用した。
 MES(同仁化学研究所社製)、Bis-Tris(同仁化学研究所社製)、ADA(同仁化学研究所社製)、ペルオキシダーゼ(POD;東洋紡績社製)、ピルビン酸ナトリウム(関東化学社製)、α-ケトグルタル酸(関東化学社製)、オキサロ酢酸(関東化学社製)、DA-67(和光純薬工業社製)、4-AA(埼京化成社製)、EMSE(ダイトーケミックス社製)、塩化カルシウム二水和物(和光純薬工業社製)、硫酸ナトリウム(関東化学社製)、硝酸ナトリウム(関東化学社製)、デシルトリメチルアンモニウム ブロマイド(C10TMA;東京化成社製)、1-ドデシルピリジニウム クロライド(東京化成社製)、グルコース(MERCK製)、フルクトシルVHLTPE(フルクトシルヘキサペプチド;ペプチド研究所社製)、グルコース酸化酵素(GOD;東洋紡績社製)、サーモリシン(プロテアーゼ;天野エンザイム社製)、アクチナーゼE(プロテアーゼ;科研製薬社製)、FPOX-CE(フルクトシルペプチド酸化酵素;キッコーマン社製)、FPOX-CET(フルクトシルペプチド酸化酵素;キッコーマン社製)、ディスパノールTOC(ポリオキシエチレントリデシルエーテル;日油社製)、ノニオンE230(ポリオキシエチレンオレイルエーテル;日油社製)。
(1)ピルビン酸含有グルコース測定用キット
 以下の組成からなるグルコース測定用キット(キットA)を調製した。
第1試薬
 MES(pH6.25)       20mmol/L
 DA-67             50μmol/L
 ピルビン酸ナトリウム        5g/L
第2試薬
 MES(pH6.25)       20mmol/L
 POD               10kU/L
 GOD               5kU/L
(2)ピルビン酸非含有グルコース測定用キット
 以下の組成からなるグルコース測定用キット(キットa)を調製した。
第1試薬
 MES(pH6.25)       20mmol/L
 DA-67             50μmol/L
第2試薬
 MES(pH6.25)       20mmol/L
 POD               10kU/L
 GOD               5kU/L
(3)過酸化物含有検体の調製
 以下の4つの検体を調製した。
・検体1:グルコース及びディスパノールTOCをそれぞれ90μmol/L、0%含有する水溶液
・検体2:グルコース及びディスパノールTOCをそれぞれ90μmol/L、0.25%含有する水溶液
・検体3:グルコース及びディスパノールTOCをそれぞれ90μmol/L、0.5%含有する水溶液
・検体4:グルコース及びディスパノールTOCをそれぞれ90μmol/L、1%含有する水溶液
 ディスパノールTOCは、ポリオキシエチレン系界面活性剤であり、過酸化物の生成源である。検体1~4において、ディスパノールTOC濃度に依存して、過酸化物が多く含まれる。
(4)ピルビン酸による、過酸化水素定量系における過酸化物の影響抑制効果の評価
 上記(3)で調製した検体1(1.5μL)と、(1)で調製したキットAの第1試薬(150μL)とを37℃で5分間反応させて、吸光度(E1)を主波長660nm、副波長800nmで測定した。次いで、キットAの第2試薬(50μL)を添加し、さらに37℃で5分間反応させて、吸光度(E2)を主波長660nm、副波長800nmで測定した。測定は、日立H7180にて行った。吸光度(E2)から吸光度(E1)を差し引いて、検体1の反応吸光度(E1A)とした。
 次いで、検体1の代わりに生理食塩水を用いて同様の測定を行い、ブランク吸光度(Eブランク)とした。検体1の反応吸光度(E1A)からブランク吸光度(Eブランク)を差し引き、検体1に対する吸光度(ΔE1A)とした。
 検体1に対して行った一連の操作を、検体2~4それぞれに対しても行い、検体2に対する吸光度(ΔE2A)、検体3に対する吸光度(ΔE3A)、検体4に対する吸光度の測定値(ΔE4A)を決定した。検体1に対する吸光度(ΔE1A)を100とした時の、検体2~4に対する吸光度(ΔE2A~ΔE4A)の相対値を第6表に示す。
 さらに、(1)で調製したキットAの代わりに、(2)で調製したキットaを用いる以外は、同様の方法を行い、検体1~4それぞれに対する吸光度の相対値(ΔE1a~ΔE4a)を決定した。検体1に対する吸光度(ΔE1a)を100とした時の、検体2~4に対する吸光度(ΔE2a~ΔE4a)の相対値を第6表に示す。
Figure JPOXMLDOC01-appb-T000006
 第6表から明らかな様に、ロイコ型色原体であるDA-67を用いるグルコース定量系において、ピルビン酸を含有するキットAを用いた測定は、ピルビン酸を含有しないキットaを用いた測定に比較して、ディスパノールTOC由来の過酸化物による影響が顕著に抑制されており、より正確なグルコースの測定が可能であることが分かる。
(1)ピルビン酸含有グルコース測定用キット
 以下の組成からなるグルコース測定用キット(キットB)を調製した。
第1試薬
 MES(pH6.25)       20mmol/L
 EMSE              0.3g/L
 ピルビン酸ナトリウム        5g/L
第2試薬
 MES(pH6.25)       20mmol/L
 POD               10kU/L
 4-AA              0.1g/L
 GOD               5kU/L
(2)ピルビン酸非含有グルコース測定用キット
 以下の組成からなるグルコース測定用キット(キットb)を調製した。
第1試薬
 MES(pH6.25)       20mmol/L
 EMSE              0.3g/L
第2試薬
 MES(pH6.25)       20mmol/L
 POD               10kU/L
 4-AA              0.1g/L
 GOD               5kU/L
(3)過酸化物含有検体の調製
 実施例1で調製した検体1~4を用いた。
(4)ピルビン酸による、過酸化水素定量系における過酸化物の影響抑制効果の評価
 上記(3)で調製した検体1(15μL)と、(1)で調製したキットAの第1試薬(150μL)とを37℃で5分間反応させて、吸光度(E1)を主波長660nm、副波長800nmで測定した。次いで、キットAの第2試薬(50μL)を添加し、さらに37℃で5分間反応させて、吸光度(E2)を主波長546nm、副波長800nmで測定した。測定は、日立H7180にて行った。吸光度(E2)から吸光度(E1)を差し引いて、検体1の反応吸光度(E1B)とした。
 次いで、検体1の代わりに生理食塩水を用いて同様の測定を行い、ブランク吸光度(Eブランク)とした。検体1の反応吸光度(E1B)からブランク吸光度(Eブランク)を差し引き、検体1に対する吸光度(ΔE1B)とした。
 検体1に対して行った一連の操作を、検体2~4それぞれに対しても行い、検体2に対する吸光度(ΔE2B)、検体3に対する吸光度(ΔE3B)、検体4に対する吸光度の測定値(ΔE4B)を決定した。検体1に対する吸光度(ΔE1B)を100とした時の、検体2~4に対する吸光度(ΔE2B~ΔE4B)の相対値を第7表に示す。
 さらに、(1)で調製したキットBの代わりに、(2)で調製したキットbを用いる以外は、同様の方法を行い、検体1~4それぞれに対する吸光度の相対値(ΔE1b~ΔE4b)を決定した。検体1に対する吸光度(ΔE1b)を100とした時の、検体2~4に対する吸光度(ΔE2b~ΔE4b)の相対値を第7表に示す。
Figure JPOXMLDOC01-appb-T000007
 第7表から明らかな様に、カップリング型色原体である4-AAとEMSEとの組み合わせを用いるグルコース定量系において、ピルビン酸を含有するキットBを用いた測定は、ピルビン酸を含有しないキットbを用いた測定に比較して、ディスパノールTOC由来の過酸化物による影響が顕著に抑制されており、より正確なグルコースの測定が可能であることが分かる。
(1)ピルビン酸含有フルクトシルVHLTPE測定用キット
 以下の組成からなるフルクトシルVHLTPE測定用キット(キットC)を調製した。
第1試薬
 Bis-Tris(pH7.0)   10mmol/L
 塩化カルシウム二水和物       10mmol/L
 硫酸ナトリウム           7.5mmol/L
 C10TMA            17g/L
 DA-67             20μmol/L
 サーモリシン            1200kU/L
 ピルビン酸ナトリウム        5g/L
第2試薬
 ADA(pH7.0)        50mmol/L
 POD               120kU/L
 FPOX-CE           12kU/L
(2)ピルビン酸非含有フルクトシルVHLTPE測定用キット
 以下の組成からなるフルクトシルVHLTPE測定用キット(キットc)を調製した。
第1試薬
 Bis-Tris(pH7.0)   10mmol/L
 塩化カルシウム二水和物       10mmol/L
 硫酸ナトリウム           7.5mmol/L
 C10TMA            17g/L
 DA-67             20μmol/L
 サーモリシン            1200kU/L
第2試薬
 ADA(pH7.0)        50mmol/L
 POD               120kU/L
 FPOX-CE           12kU/L
(3)過酸化物含有検体の調製
 以下の4つの検体を調製した。
・検体1:フルクトシルVHLTPE及びディスパノールTOCをそれぞれ18μmol/L、0%含有する水溶液
・検体2:フルクトシルVHLTPE及びディスパノールTOCをそれぞれ18μmol/L、0.05%含有する水溶液
・検体3:フルクトシルVHLTPE及びディスパノールTOCをそれぞれ18μmol/L、0.1%含有する水溶液
・検体4:フルクトシルVHLTPE及びディスパノールTOCをそれぞれ18μmol/L、0.2%含有する水溶液
 ディスパノールTOCは、ポリオキシエチレン系界面活性剤であり、過酸化物の生成源である。検体1~4において、ディスパノールTOC濃度に依存して、過酸化物が多く含まれる。
(4)ピルビン酸による、過酸化水素定量系における過酸化物の影響抑制効果の評価
 上記(3)で調製した検体1(9.6μL)と、(1)で調製したキットCの第1試薬(120μL)とを37℃で5分間反応させて、吸光度(E1)を主波長660nm、副波長800nmで測定した。次いで、キットCの第2試薬(40μL)を添加し、さらに37℃で5分間反応させて、吸光度(E2)を主波長660nm、副波長800nmで測定した。測定は、日立H7180にて行った。吸光度(E2)から吸光度(E1)を差し引いて、検体1の反応吸光度(E1C)とした。
 次いで、検体1の代わりに生理食塩水を用いて同様の測定を行い、ブランク吸光度(Eブランク)とした。検体1の反応吸光度(E1C)からブランク吸光度(Eブランク)を差し引き、検体1に対する吸光度(ΔE1C)とした。
 検体1に対して行った一連の操作を、検体2~4それぞれに対しても行い、検体2に対する吸光度(ΔE2C)、検体3に対する吸光度(ΔE3C)、検体4に対する吸光度の相対値(ΔE4C)を決定した。検体1に対する吸光度(ΔE1C)を100とした時の、検体2~4に対する吸光度(ΔE2C~ΔE4C)の相対値を第8表に示す。
 さらに、(1)で調製したキットCの代わりに、(2)で調製したキットcを用いる以外は、同様の方法を行い、検体1~4それぞれに対する吸光度の相対値(ΔE1c~ΔE4c)を決定した。検体1に対する吸光度(ΔE1c)を100とした時の、検体2~4に対する吸光度(ΔE2c~ΔE4c)の相対値を第8表に示す。
Figure JPOXMLDOC01-appb-T000008
 第8表から明らかな様に、ロイコ型色原体であるDA-67を用いるフルクトシルVHLTPE定量系において、ピルビン酸を含有するキットCを用いた測定は、ピルビン酸を含有しないキットcを用いた測定に比較して、ディスパノールTOC由来の過酸化物による影響が顕著に抑制されており、より正確なフルクトシルVHLTPEの測定が可能であることが分かる。
 グルコース測定系における、α-ケト酸による、試薬中の過酸化物の影響軽減効果の検討
(1)ピルビン酸含有グルコース測定用キット
 以下の組成からなるグルコース測定用キット(キットD1~D3)を調製した。キットD1は、第1試薬中のノニオンE230濃度が0%のキットを、キットD2は、第1試薬中のノニオンE230濃度が0.02%のキットを、キットD3は、第1試薬中のノニオンE230濃度が0.1%のキットを表す。
第1試薬
 MES(pH6.5)        50mmol/L
 EMSE              0.3g/L
 ノニオンE230          0,0.02又は0.1%
 ピルビン酸ナトリウム        5g/L
第2試薬
 MES(pH6.5)        50mmol/L
 4-AA              0.1g/L
 POD               40kU/L
 GOD               100kU/L
(2)α-ケトグルタル酸含有グルコース測定用キット
 以下の組成からなるグルコース測定用キット(キットE1~E3)を調製した。キットE1は、第1試薬中のノニオンE230濃度が0%のキットを、キットE2は、第1試薬中のノニオンE230濃度が0.02%のキットを、キットE3は、第1試薬中のノニオンE230濃度が0.1%のキットを表す。
第1試薬
 MES(pH6.5)        50mmol/L
 EMSE              0.3g/L
 ノニオンE230          0,0.02又は0.1%
 α-ケトグルタル酸         1g/L
第2試薬
 MES(pH6.5)        50mmol/L
 4-AA              0.1g/L
 POD               40kU/L
 GOD               100kU/L
(3)オキサロ酢酸含有グルコース測定用キット
 以下の組成からなるグルコース測定用キット(キットF1~F3)を調製した。キットF1は、第1試薬中のノニオンE230濃度が0%のキットを、キットF2は、第1試薬中のノニオンE230濃度が0.02%のキットを、キットF3は、第1試薬中のノニオンE230濃度が0.1%のキットを表す。
第1試薬
 MES(pH6.5)        50mmol/L
 EMSE              0.3g/L
 ノニオンE230          0,0.02又は0.1%
 オキサロ酢酸            0.2g/L
第2試薬
 MES(pH6.5)        50mmol/L
 4-AA              0.1g/L
 POD               40kU/L
 GOD               100kU/L
(4)α-ケト酸非含有グルコース測定用キット
 以下の組成からなるグルコース測定用キット(キットd1~d3)を調製した。キットd1は、第1試薬中のノニオンE230濃度が0%のキットを、キットd2は、第1試薬中のノニオンE230濃度が0.02%のキットを、キットd3は、第1試薬中のノニオンE230濃度が0.1%のキットを表す。
第1試薬
 MES(pH6.5)        50mmol/L
 EMSE              0.3g/L
 ノニオンE230          0,0.02又は0.1%
第2試薬
 MES(pH6.5)        50mmol/L
 4-AA              0.1g/L
 POD               40kU/L
 GOD               100kU/L
(5)ピルビン酸による過酸化物の影響抑制効果の評価
 生理食塩水(2.0μL)と、(1)で調製したキットD1の第1試薬(180μL)とを37℃で5分間反応させて、吸光度(E1)を主波長546nm、副波長700nmで測定した。次いで、キットD1の第2試薬(60μL)を添加し、さらに37℃で5分間反応させて、吸光度(E2)を主波長546nm、副波長700nmで測定した。測定は、日立H7170にて行った。吸光度(E2)から吸光度(E1)を差し引いて、生理食塩水のブランク吸光度(ED1)とした。
 次いで、キットD1の代わりにキットD2を用いて同様の測定を行い、生理食塩水のブランク吸光度(ED2)を算出した。
 さらに、キットD1の代わりにキットD3を用いて同様の測定を行い、生理食塩水のブランク吸光度(ED3)を算出した。
 キットD1のブランク吸光度(ΔED1)を0として、ブランク吸光度(ED2)からブランク吸光度(ED1)を差し引いて、キットD2のブランク吸光度(ΔED2)とした。同様に、ブランク吸光度(ED3)からブランク吸光度(ED1)を差し引いて、キットD3のブランク吸光度(ΔED3)とした。キットD1~キットD3のそれぞれのキットのブランク吸光度(ΔED1~ΔED3)を第9表に示す。
(6)α-ケトグルタル酸による過酸化物の影響抑制効果の評価
 キットD1~D3の代わりに、上記(2)で調製したα-ケトグルタル酸を含有するキットE1~E3をそれぞれ用いる以外は(5)と同様の方法により、キットE1~E3のそれぞれのキットのブランク吸光度(ΔEE1~ΔEE3)を算出した。キットE1~キットE3のそれぞれのキットのブランク吸光度(ΔEE1~ΔEE3)を第9表に示す。
(7)オキサロ酢酸による過酸化物の影響抑制効果の評価
 キットD1~D3の代わりに、上記(3)で調製したオキサロ酢酸を含有するキットF1~F3をそれぞれ用いる以外は(5)と同様の方法により、キットF1~F3のそれぞれのキットのブランク吸光度(ΔEF1~ΔEF3)を算出した。キットF1~キットF3のそれぞれのキットのブランク吸光度(ΔEF1~ΔEF3)を第9表に示す。
(8)α-ケト酸非含有キットを用いた過酸化物の影響抑制効果の評価
 キットD1~D3の代わりに、上記(4)で調製したα-ケト酸を含有しないキットd1~d3をそれぞれ用いる以外は(5)と同様の方法により、キットd1~d3のそれぞれのキットのブランク吸光度(ΔEd1~ΔEd3)を算出した。キットd1~キットd3のそれぞれのキットのブランク吸光度(ΔEd1~ΔEd3)を第9表に示す。
Figure JPOXMLDOC01-appb-T000009
 第9表から明らかな様に、α-ケト酸として、ピルビン酸、α-ケトグルタル酸又はオキサロ酢酸を含有するキットを用いた場合には、α-ケト酸を含有しないキットに比較して、ノニオンE230濃度が高くなった場合でも、ブランク吸光度が顕著に低くなっていることが判明した。ノニオンE230は、過酸化物を生成し易い界面活性剤である。従って、α-ケト酸により、ノニオンE230に起因する過酸化物の影響が顕著に抑制され、より正確なグルコースの測定が可能であることが判明した。
 ヘモグロビンA1c測定系における、α-ケト酸による、試薬中の過酸化物の影響抑制効果の検討
(1)ピルビン酸含有ヘモグロビンA1c測定用キット
 以下の組成からなるヘモグロビンA1c測定用キット(キットG)を調製した。
第1試薬
 MES(pH6.5)         50mmol/L
 塩化カルシウム二水和物        10mmol/L
 硝酸ナトリウム            100mmol/L
 1-ドデシルピリジニウム クロライド 1.4g/L
 アクチナーゼE            340kU/L
 DA-67              30μmol/L
 ノニオンE230           0.01%
 ピルビン酸ナトリウム         2g/L
第2試薬
 Bis-Tris(pH7.0)    50mmol/L
 FPOX-CET           6kU/L
 POD                120kU/L
(2)α-ケトグルタル酸含有ヘモグロビンA1c測定用キット
 以下の組成からなるヘモグロビンA1c測定用キット(キットH)を調製した。
第1試薬
 MES(pH6.5)         50mmol/L
 塩化カルシウム二水和物        10mmol/L
 硝酸ナトリウム            100mmol/L
 1-ドデシルピリジニウム クロライド 1.4g/L
 アクチナーゼE            340kU/L
 DA-67              30μmol/L
 ノニオンE230           0.01%
 α-ケトグルタル酸          0.3g/L
第2試薬
 Bis-Tris(pH7.0)    50mmol/L
 FPOX-CET           6kU/L
 POD                120kU/L
(3)オキサロ酢酸含有ヘモグロビンA1c測定用キット
 以下の組成からなるヘモグロビンA1c測定用キット(キットI)を調製した。
第1試薬
 MES(pH6.5)         50mmol/L
 塩化カルシウム二水和物        10mmol/L
 硝酸ナトリウム            100mmol/L
 1-ドデシルピリジニウム クロライド 1.4g/L
 アクチナーゼE            340kU/L
 DA-67              30μmol/L
 ノニオンE230           0.01%
 オキサロ酢酸             0.3g/L
第2試薬
 Bis-Tris(pH7.0)    50mmol/L
 FPOX-CET           6kU/L
 POD                120kU/L
(4)α-ケト酸非含有ヘモグロビンA1c測定用キット
 以下の組成からなるヘモグロビンA1c測定用キット(キットe)を調製した。
第1試薬
 MES(pH6.5)         50mmol/L
 塩化カルシウム二水和物        10mmol/L
 硝酸ナトリウム            100mmol/L
 1-ドデシルピリジニウム クロライド 1.4g/L
 アクチナーゼE            340kU/L
 DA-67              30μmol/L
 ノニオンE230           0.01%
第2試薬
 Bis-Tris(pH7.0)    50mmol/L
 FPOX-CET           6kU/L
 POD                120kU/L
(5)ピルビン酸による過酸化物の影響抑制効果の評価
 ヘモグロビンA1c濃度が3.2,4.0,4.9,5.6,6.5,7.6,9.7μmol/Lである各血球、及び、生理食塩水(ヘモグロビンA1c濃度:0μmol/L)を検体として用いた。
 各検体(12μL)と、(1)で調製したピルビン酸を含有するキットGの第1試薬(150μL)とを37℃で5分間反応させて、吸光度(E1)を主波長660nm、副波長800nmで測定した。次いで、キットGの第2試薬(50μL)を添加し、さらに37℃で5分間反応させて、吸光度(E2)を主波長660nm、副波長800nmで測定した。測定は、日立H7170にて行った。吸光度(E2)から吸光度(E1)を差し引いて、キットGにおける各検体の反応吸光度(E)とした。
 α-ケト酸を含有しない上記(4)のキットeを用いて同様に算出した、キットeにおける各検体の反応吸光度(E)を対照とした。キットGにおける各検体の反応吸光度(E)及びキットeにおける各検体の反応吸光度(E)を図1に示す。
(6)α-ケトグルタル酸による過酸化物の影響抑制効果の評価
 キットGの代わりに、上記(2)で調製したα-ケトグルタル酸を含有するキットHを用いる以外は(5)と同様の方法により、キットHにおける各検体の反応吸光度(ΔE)を算出した。キットHにおける各検体の反応吸光度(E)及びキットeにおける各検体の反応吸光度(E)を図2に示す。
(7)オキサロ酢酸による過酸化物の影響抑制効果の評価
 キットGの代わりに、上記(3)で調製したオキサロ酢酸を含有するキットIを用いる以外は(5)と同様の方法により、キットIにおける各検体の反応吸光度(ΔE)を算出した。キットIにおける各検体の反応吸光度(E)及びキットeにおける各検体の反応吸光度(E)を図3に示す。
 図1~図3から明らかな様に、α-ケト酸を含有しないキットを用いた測定においては、検体として生理食塩水を用いた場合には、ブランクとして、過酸化物由来の発色による吸光度が得られた。また、検体として、ヘモグロビンA1c濃度3.2μmol/Lの血球を用いた場合には、ブランクの吸光度よりも低い吸光度が得られた。これは、血球中に含まれるヘモグロビンの還元作用により、過酸化物、及び、ヘモグロビンA1c由来の過酸化水素が消去されたことによる、と考えられる。
 一方、α-ケト酸を含有するキットを用いた測定においては、ヘモグロビンA1c濃度3.2μmol/Lの血球を用いた場合でも吸光度の減少は見られず、ヘモグロビンA1c濃度と吸光度との間に良好な直線性が認められた。これは、α-ケト酸が過酸化物と相互作用し、過酸化物が消去される一方、α-ケト酸は過酸化水素とは相互作用せず、ヘモグロビンA1c由来の過酸化水素は消去されないことによる、と考えられる。
 この様に、ピルビン酸、α-ケトグルタル酸又はオキサロ酢酸を含有するキットを用いた測定においては、ノニオンE230由来の過酸化物の影響が抑制され、より正確なヘモグロビンA1c濃度の測定が可能となることが判明した。
 本発明により、過酸化水素定量系における過酸化物の影響が抑制された検体中の測定対象成分の測定方法、測定用試薬、及び、測定用キット、並びに、過酸化物の影響抑制方法が提供される。本発明は、臨床診断等に有用である。
 

Claims (20)

  1.  検体中の測定対象成分を過酸化水素に変換し、生成した過酸化水素をα-ケト酸存在下に酸化発色型色原体を用いて測定することを特徴とする、検体中の測定対象成分の測定方法。
  2.  検体中の測定対象成分を過酸化水素に変換し、生成した過酸化水素を酸化発色型色原体と反応させる、検体中の測定対象成分の測定方法において、生成した過酸化水素と酸化発色型色原体との反応をα-ケト酸存在下に行うことを特徴とする、検体中の測定対象成分の測定方法における過酸化物の影響抑制方法。
  3.  α-ケト酸が、ピルビン酸、α-ケトグルタル酸及びオキサロ酢酸からなる群より選ばれるα-ケト酸である請求項1又は2記載の方法。
  4.  酸化発色型色原体が、ロイコ型色原体である請求項1~3のいずれかに記載の方法。
  5.  ロイコ型色原体が、フェノチアジン誘導体である請求項4記載の方法。
  6.  フェノチアジン誘導体が、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジンである請求項5記載の方法。
  7.  酸化発色型色原体が、酸化カップリング型色原体である請求項1~3のいずれかに記載の方法。
  8.  酸化カップリング型色原体が、カップラーと、アニリン誘導体又はフェノール誘導体との組み合わせである請求項7記載の方法。
  9.  過酸化水素生成試薬、α-ケト酸、過酸化活性物質及び酸化発色型色原体を含有することを特徴とする、検体中の測定対象成分の測定用試薬。
  10.  α-ケト酸が、ピルビン酸、α-ケトグルタル酸及びオキサロ酢酸からなる群より選ばれるα-ケト酸である請求項9記載の試薬。
  11.  酸化発色型色原体が、ロイコ型色原体である請求項9又は10記載の試薬。
  12.  ロイコ型色原体が、フェノチアジン誘導体である請求項11記載の試薬。
  13.  フェノチアジン誘導体が、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジンである請求項12記載の試薬。
  14.  酸化発色型色原体が、酸化カップリング型色原体である請求項9又は10記載の試薬。
  15.  酸化カップリング型色原体が、カップラーと、アニリン誘導体又はフェノール誘導体との組み合わせである請求項14記載の試薬。
  16.  第1試薬及び第2試薬を含む、検体中の測定対象成分の測定用キットであって、ロイコ型色原体と過酸化活性物質がそれぞれ、第1試薬及び第2試薬の別々の試薬に含まれ、過酸化水素生成試薬及びα-ケト酸がそれぞれ、第1試薬及び第2試薬の一方又は両方に含まれることを特徴とするキット。
  17.  ロイコ型色原体が、フェノチアジン誘導体である請求項16記載のキット。
  18.  フェノチアジン誘導体が、10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジンである請求項17記載のキット。
  19.  第1試薬及び第2試薬を含む、検体中の測定対象成分の測定用キットであって、カップラーと、アニリン誘導体又はフェノール誘導体とがそれぞれ、第1試薬及び第2試薬の別々の試薬に含まれ、過酸化活性物質、過酸化水素生成試薬及びα-ケト酸がそれぞれ、第1試薬及び第2試薬の一方又は両方に含まれることを特徴とするキット。
  20.  α-ケト酸が、ピルビン酸、α-ケトグルタル酸及びオキサロ酢酸からなる群より選ばれるα-ケト酸である請求項16~19のいずれかに記載のキット。
     
PCT/JP2011/078669 2010-12-13 2011-12-12 測定対象成分の測定方法 WO2012081539A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180059537.XA CN103261434B (zh) 2010-12-13 2011-12-12 测定对象成分的测定方法
EP11849227.1A EP2653551B1 (en) 2010-12-13 2011-12-12 Method for measuring component to be measured
BR112013013288A BR112013013288A2 (pt) 2010-12-13 2011-12-12 método, reagente e kit para medir um componente a ser medido em uma amostra, e, método para suprimir a influência de um peróxido sobre o dito método
CA2819040A CA2819040A1 (en) 2010-12-13 2011-12-12 Method for measuring component to be measured
KR1020137014501A KR20140114267A (ko) 2010-12-13 2011-12-12 측정 대상 성분의 측정 방법
JP2012548774A JP6004942B2 (ja) 2010-12-13 2011-12-12 測定対象成分の測定方法
US13/991,652 US9671348B2 (en) 2010-12-13 2011-12-12 Method for measuring component by treating aqueous sample with alpha-keto acid and then converting component to hydrogen peroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-276550 2010-12-13
JP2010276550 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012081539A1 true WO2012081539A1 (ja) 2012-06-21

Family

ID=46244639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078669 WO2012081539A1 (ja) 2010-12-13 2011-12-12 測定対象成分の測定方法

Country Status (8)

Country Link
US (1) US9671348B2 (ja)
EP (1) EP2653551B1 (ja)
JP (1) JP6004942B2 (ja)
KR (1) KR20140114267A (ja)
CN (1) CN103261434B (ja)
BR (1) BR112013013288A2 (ja)
CA (1) CA2819040A1 (ja)
WO (1) WO2012081539A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017012169A (ja) * 2015-07-06 2017-01-19 ヤマサ醤油株式会社 L−グルタミン酸測定キット
WO2022054890A1 (ja) * 2020-09-11 2022-03-17 積水メディカル株式会社 測定誤差低減方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891202B (zh) * 2016-06-03 2017-08-22 广州市进德生物科技有限公司 一种单组份tmb显色液及其制备方法
JP7047759B2 (ja) * 2016-07-29 2022-04-05 ミナリスメディカル株式会社 ロイコ型色原体含有水溶液の保存方法
CZ2017271A3 (cs) * 2017-05-16 2018-11-28 Prevention Medicals s.r.o. Reakční směs pro kvantitativní stanovení sarkosinu ve vzorku lidské moči, séra nebo plazmy
CN111175292A (zh) * 2020-01-20 2020-05-19 杭州联晟生物科技有限公司 一种检测乳酸的试纸条及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147058A (en) * 1981-03-06 1982-09-10 Wako Pure Chem Ind Ltd Measuring method for hydrogen peroxide
JPS59182361A (ja) * 1983-03-31 1984-10-17 Kyowa Medetsukusu Kk 過酸化水素の定量方法
JPS60178358A (ja) * 1984-02-24 1985-09-12 Dainippon Printing Co Ltd ブドウ糖検出用インキ組成物およびそれを用いて形成された検査体
JPS60178356A (ja) * 1984-02-24 1985-09-12 Dainippon Printing Co Ltd 体液検査体
JPS61284661A (ja) * 1985-06-12 1986-12-15 Dainippon Printing Co Ltd ブドウ糖検出用検査体
JPH0349695A (ja) * 1989-07-17 1991-03-04 Dainippon Printing Co Ltd ブドウ糖検出用印刷インキ組成物及びこれを用いた血糖検出用検査体
JPH04194664A (ja) * 1990-11-27 1992-07-14 Nitsusui Seiyaku Kk 免疫比濁法及びこれに用いる測定試薬
JPH09511746A (ja) 1994-04-08 1997-11-25 ワーナー−ランバート・カンパニー ピルベート、抗酸化剤、脂肪酸混合物および抗ウイルス化合物を含む抗ウイルス創傷治癒組成物
JPH11318440A (ja) * 1998-05-20 1999-11-24 Kdk Corp ギベレラ属由来のd−アミノ酸オキシダーゼ
JP2002356421A (ja) * 1991-03-01 2002-12-13 Warner Lambert Co 哺乳動物の細胞を保護および蘇生するための治療用組成物
JP2004089191A (ja) * 2002-08-09 2004-03-25 Sysmex Corp 脂質測定試薬
JP2004217932A (ja) 2002-12-18 2004-08-05 Alberta Research Council Inc 抗酸化性トリアシルグリセロール及び脂質組成物
JP2007204701A (ja) 2006-02-06 2007-08-16 Nof Corp アルケニル基含有ポリオキシアルキレン誘導体及びその製造方法
JP2008125368A (ja) * 2006-11-16 2008-06-05 Amano Enzyme Inc 新規なジペプチド分解酵素及びその製造方法並びにジペプチド分解酵素を用いる糖化蛋白質等の測定方法及びそれに用いる試薬組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614714A (en) * 1982-08-21 1986-09-30 Yamasa Shoyu Kabushiki Kaisha Use of novel L-glutamic acid oxidase
US5037738A (en) * 1987-06-03 1991-08-06 Abbott Laboratories Simultaneous assay for glucose and urea
JP3283348B2 (ja) * 1993-07-29 2002-05-20 協和メデックス株式会社 物質の測定法
US7074581B2 (en) * 2002-08-09 2006-07-11 Sysmex Corporation Reagent for assaying lipid
CA2559908A1 (en) * 2004-03-17 2005-09-22 Daiichi Pure Chemicals Co., Ltd. Method of stabilizing oxidizable color-assuming reagent
TWI379904B (en) 2005-02-14 2012-12-21 Kyowa Medex Co Ltd A method for quantifying cholesterol of remnant-like particles lipoprotein, reagent and kit
CN101097200A (zh) * 2006-06-26 2008-01-02 苏州艾杰生物科技有限公司 5'-核苷酸酶诊断试剂盒及5'-核苷酸酶活性浓度测定方法
CN101173939A (zh) * 2006-10-30 2008-05-07 苏州艾杰生物科技有限公司 无机磷诊断试剂盒及无机磷浓度测定方法
JP4697809B2 (ja) 2007-02-22 2011-06-08 旭化成ファーマ株式会社 ロイコ色素の安定化方法
EP2065708B1 (en) 2007-11-28 2014-01-01 FUJIFILM Corporation Method for measuring high-density lipoprotein cholesterol
JP5297637B2 (ja) * 2007-11-28 2013-09-25 富士フイルム株式会社 高密度リポ蛋白コレステロールの測定方法
CN101609017A (zh) * 2008-06-19 2009-12-23 苏州艾杰生物科技有限公司 同型半胱氨酸诊断试剂盒及同型半胱氨酸浓度测定方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147058A (en) * 1981-03-06 1982-09-10 Wako Pure Chem Ind Ltd Measuring method for hydrogen peroxide
JPS59182361A (ja) * 1983-03-31 1984-10-17 Kyowa Medetsukusu Kk 過酸化水素の定量方法
JPS60178358A (ja) * 1984-02-24 1985-09-12 Dainippon Printing Co Ltd ブドウ糖検出用インキ組成物およびそれを用いて形成された検査体
JPS60178356A (ja) * 1984-02-24 1985-09-12 Dainippon Printing Co Ltd 体液検査体
JPS61284661A (ja) * 1985-06-12 1986-12-15 Dainippon Printing Co Ltd ブドウ糖検出用検査体
JPH0349695A (ja) * 1989-07-17 1991-03-04 Dainippon Printing Co Ltd ブドウ糖検出用印刷インキ組成物及びこれを用いた血糖検出用検査体
JPH04194664A (ja) * 1990-11-27 1992-07-14 Nitsusui Seiyaku Kk 免疫比濁法及びこれに用いる測定試薬
JP2002356421A (ja) * 1991-03-01 2002-12-13 Warner Lambert Co 哺乳動物の細胞を保護および蘇生するための治療用組成物
JP2003231632A (ja) * 1991-03-01 2003-08-19 Warner Lambert Co Llc 哺乳動物の細胞を保護するための治療用組成物
JPH09511746A (ja) 1994-04-08 1997-11-25 ワーナー−ランバート・カンパニー ピルベート、抗酸化剤、脂肪酸混合物および抗ウイルス化合物を含む抗ウイルス創傷治癒組成物
JPH11318440A (ja) * 1998-05-20 1999-11-24 Kdk Corp ギベレラ属由来のd−アミノ酸オキシダーゼ
JP2004089191A (ja) * 2002-08-09 2004-03-25 Sysmex Corp 脂質測定試薬
JP2004217932A (ja) 2002-12-18 2004-08-05 Alberta Research Council Inc 抗酸化性トリアシルグリセロール及び脂質組成物
JP2007204701A (ja) 2006-02-06 2007-08-16 Nof Corp アルケニル基含有ポリオキシアルキレン誘導体及びその製造方法
JP2008125368A (ja) * 2006-11-16 2008-06-05 Amano Enzyme Inc 新規なジペプチド分解酵素及びその製造方法並びにジペプチド分解酵素を用いる糖化蛋白質等の測定方法及びそれに用いる試薬組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLINICAL CHEMISTRY, vol. 26, no. 2, 1980, pages 227 - 231
NORIHITO AOYAMA: "H202-POD group", CLINICAL TESTING, vol. 41, no. 9, 1997, pages 1014 - 1019, XP008168586 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017012169A (ja) * 2015-07-06 2017-01-19 ヤマサ醤油株式会社 L−グルタミン酸測定キット
WO2022054890A1 (ja) * 2020-09-11 2022-03-17 積水メディカル株式会社 測定誤差低減方法
KR20230066051A (ko) 2020-09-11 2023-05-12 세키스이 메디칼 가부시키가이샤 측정 오차 저감 방법

Also Published As

Publication number Publication date
CN103261434B (zh) 2016-06-01
EP2653551A1 (en) 2013-10-23
CN103261434A (zh) 2013-08-21
EP2653551B1 (en) 2018-02-07
CA2819040A1 (en) 2012-06-21
JPWO2012081539A1 (ja) 2014-05-22
US20130288283A1 (en) 2013-10-31
US9671348B2 (en) 2017-06-06
EP2653551A4 (en) 2014-05-14
KR20140114267A (ko) 2014-09-26
BR112013013288A2 (pt) 2016-09-06
JP6004942B2 (ja) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6004942B2 (ja) 測定対象成分の測定方法
US20130171676A1 (en) Method for measuring glycated hemoglobin
EP2843054B1 (en) Method for measuring component to be measured in specimen
EP2604699B1 (en) Method for measuring glycated hemoglobin
KR20110104082A (ko) 렘난트형 리포단백질 (rlp) 중의 콜레스테롤의 정량 방법, 시약 및 키트
WO2018021530A1 (ja) 糖化ヘモグロビンの測定方法
KR102524702B1 (ko) 저밀도 리포단백 중의 콜레스테롤의 측정 방법, 측정용 시약 및 측정용 키트
EP2843045B1 (en) Method for stabilizing cholesterol oxidase
EP2740801B1 (en) Sphingomyelin measurement method and measurement kit
KR101924663B1 (ko) Hdl 소분획 중의 콜레스테롤의 측정 방법, 측정용 시약 및 측정용 키트
US9546363B2 (en) Method for stabilizing ascorbic acid oxidase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548774

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2819040

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137014501

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13991652

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013013288

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013013288

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130528