WO2012079670A1 - Elektrolyseur mit spiralförmigem einlaufschlauch - Google Patents
Elektrolyseur mit spiralförmigem einlaufschlauch Download PDFInfo
- Publication number
- WO2012079670A1 WO2012079670A1 PCT/EP2011/005738 EP2011005738W WO2012079670A1 WO 2012079670 A1 WO2012079670 A1 WO 2012079670A1 EP 2011005738 W EP2011005738 W EP 2011005738W WO 2012079670 A1 WO2012079670 A1 WO 2012079670A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte
- spiral
- overflow
- electrolyzer
- mbar
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/34—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
- C25B1/46—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/06—Detection or inhibition of short circuits in the cell
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
Definitions
- the present invention can be classified in the technical field of electrolyzers.
- the present invention relates to an electrolyzer as characterized in the preamble of claim 1.
- electrolysis electrical energy is converted into chemical energy. This is achieved by the decomposition of a chemical compound under the action of an electric current.
- the solution used as electrolyte contains positively and negatively charged ions. Accordingly, the main electrolytes used are acids, bases or salts.
- the main electrolytes used are acids, bases or salts.
- the resulting liquor is separated from the sodium chloride, which is supplied to the anode side, via a cation exchange membrane, and thereby separated from each other.
- a cation exchange membrane Such membranes are known in the art and commercially available from a variety of suppliers.
- the standard potential at the anode, which forms at the end of the above reaction is + 1, 36 V, the standard potential at the cathode at the end of the above reaction - 0.86 V.
- GDE gas diffusion electrodes
- the electrochemical conversion takes place within these electrodes only at the so-called three-phase boundary.
- the three-phase limit is the range at which gas, electrolyte and metallic conductors meet.
- the metallic conductor should simultaneously be a catalyst for the desired reaction.
- Typical catalysts in alkaline systems are silver, nickel, manganese dioxide, carbon and platinum.
- their surface area must be large. This is achieved by fine or porous powder with inner surface.
- the hydrostatic pressure at the bottom of the column is highest, which would enhance the phenomenon described above.
- This problem is, as can be found in the relevant literature, solved in the form of falling film evaporators.
- the liquor is allowed to pass between the membrane and the GDE through a porous medium, thus preventing the formation of a hydrostatic column.
- Percolatortechnologie WO03 / 042430 discloses the use of high density polyethylenes or perfluorinated plastics for these porous ones
- anode and / or cathode is a gas diffusion electrode, between the gas diffusion electrode and the
- Ion exchange membrane a gap, an electrolyte inlet above the gap and an electrolyte drain below the gap and a gas inlet and a gas outlet is arranged, wherein the electrolyte inlet is connected to an electrolyte reservoir and has an overflow.
- the overflow of the electrolyte is intended to ensure a uniform feeding over the full width of the cell.
- the amount of electrolyte flowing into the electrolyte feed from the receiver tank is dependent on the difference in height between the liquid level of the electrolyte in the receiver tank and the electrolyte
- Liquid level in the electrolyte feed dependent.
- the liquid level in the electrolyte feed depends on the height of the overflow, which determines how much the electrolyte in the electrolyte feed is dammed up. If more electrolyte is added than can drain over the overflow channel and the gap, the pressure of the electrolyte increases in the channel-shaped
- Electrolyte feed above the gap By selecting the height of the overflow channel, the pressure in the electrolyte inlet can be adjusted. As the pressure increases, more electrolyte can therefore be passed through the gap and the flow velocity in the gap can be selectively varied. By varying the ratio of the described height differences to one another, the pressure in the electrolyte inlet can be adjusted in a targeted manner.
- an apparatus consisting of several juxtaposed in a stack and in electrical contact standing plate-shaped electrolytic cells is constructed, which has inlets and outlets for all the necessary and resulting liquids and gases. It is therefore a series connection of several individual elements, each having electrodes which are separated from each other via a suitable membrane and which are fitted into a housing for receiving these individual elements.
- electrolyzers are disclosed, for example, in DE 196 41 125 A1 and in DE 102 49 508 A1.
- a polarization can be performed. This is the case, inter alia, when an electrolysis cell is filled and heated to be put into operation. Even if the cell is taken out of the electrolysis operation, the polarization is to be maintained until the chlorine-free state of the anodic liquid and cooling has taken place.
- the polarization current ensures that the metallic
- Components of the electrolytic cell are in a potential range in which no corrosion reactions take place, which lead to the dissolution of the metals that make up individual components of the cell cathode.
- the polarization current must be selected so high that after loss by stray currents through the Elektrolytzu- and processes in the Elektrolyseurmitte still sufficient positive current is present to ensure a defined potential range in which no critical corrosion reactions occur.
- Drain lines of the cell is discharged through the electrolytes, minimized by said constructive measures.
- the inflow of the brine and brine takes place via a conventional inlet distributor.
- Consists of individual electrolysis elements which are arranged in two electrolyzer stacks 2 and 3.
- a polarization current of 27 A is fed on the anode side, so that a total voltage of theoretically about 250 V is obtained without stray current losses.
- FIG. 1C and FIG. 1D show, in detail, the stray currents that are conducted through the electrolyte inlets and outflows for each element.
- stray currents are above the element number, i. the element position in the electrolyser, shown by the brine supply lines
- Fig. 1 D shows for comparison in detail the currents flowing through the Laugeablauf effet (represented by filled triangles) and the
- Anolyte drain line (represented by open triangles) are lost. Disadvantage of this technology is thus that very high stray currents arise, which in turn make high polarization currents necessary.
- the object of the present invention is therefore to provide a construction which ensures a uniform distribution of the electrolyte in the
- Electrolysis operation comprising a plurality of individual electrolysis elements to ensure by a constant pressure in the electrolyte supply structure and sufficient amounts of electrolyte are provided. In addition, it should increased electrical stray currents caused, inter alia, by an uneven electrolyte distribution can be avoided in order to keep necessary polarization currents as low as possible.
- an electrolyzer comprising at least one Einzelelektrolyseelement, each comprising an anode half-cell with an anode, a cathode half-cell with a cathode and a arranged between the anode half-cell and cathode half-cell ion exchange membrane, wherein the anode and / or the cathode is a gas Diffusion electrode is provided between the gas diffusion electrode and the ion exchange membrane, a gap, wherein above the gap an electrolyte inlet and below the gap a
- Electrolyte drain and a gas inlet and a gas outlet are arranged, the electrolyte effluent discharges into a drain collection channel, and wherein the electrolyte inlet is connected to an electrolyte reservoir and having an overflow, and the overflow is connected to the drain collection channel, wherein for connection of the electrolyte reservoir and the electrolyte inlet is provided spiral-shaped hose and wherein a spiral-shaped hose is provided for connecting the overflow to the drain collection channel.
- hoses with a length of 2.5 m are especially advantageous.
- spiral-shaped tubes are provided, the one
- Inner diameter of 5 mm to 15 mm preferably an inner diameter of 7.5 to 12.5 mm, and more preferably from 9 mm to 11 mm.
- hoses which have an inner diameter of 10 mm.
- the overflow is provided with a through opening having a diameter of 2 mm to 4 mm, and preferably from 2.5 to 3.5 mm.
- Single electrolysis preferably 70 to 180 Einzelelektrolyse shame, and more preferably provided 100 to 160 Einzelelektrolyse 1952.
- the present invention comprises the electrolysis of an aqueous alkali halide solution.
- the pressure drop at the overflow provided with the spiral-shaped hose is up to 200 mbar, preferably 100 to 200 mbar.
- the pressure drop is in a preferred embodiment at the provided with the spirai-shaped hose electrolyte inlet 30 mbar to 200 mbar, preferably 80 to 170 mbar, and particularly preferably 100 mbar to 150 mbar.
- the hoses used are made of PTFE.
- Fig. 1 electrolyzer from the prior art.
- Fig. 1A shows a schematic structure of such an electrolyzer.
- Fig. 1 B shows the course of the current across the individual elements of which the electrolyzer is composed.
- Fig. 1 C shows the stray currents, which are conducted at each element via brine and Laugezulauf,
- Fig. 1 D the stray currents, which are passed through Katholytablauf (Laugeablholz) and anolyte effluent.
- Fig. 2 Inventive electrolyzer.
- Fig. 2 A shows a
- FIG. 2 B shows the course of the element voltage below
- Fig. 2 C shows the course of the current under polarization over the individual elements of which the electrolyzer is composed.
- Fig. 2 D shows the stray currents that are derived for each element via brine and Laugezulauf. The stray currents over the
- Fig. 3 side view of an inventive
- Polarization without stray current losses is here also at a maximum of 250V, i. the pure ohmic resistance of the electrolyzer under polarization is in the range of the electrolyzer of the prior art, the results of which are described in Fig. 1, so that they can be directly compared with those shown in Fig. 2 results.
- Fig. 2 A the current flow through the electrolyzer 4 according to the invention is shown.
- the electrolyzer stacks are provided with the reference numerals 5, 6, 7, 8. Again, the electrolyzer is fed from the anodic end with a polarization current, which goes from the polarization rectifier 9.
- a fed-in current of 27 A is not sufficient to a minimum flow in the electrolysis center to
- Fig. 2 B Cell voltage (Fig. 2 B) or the current (Fig. 2 C) in each element using the same calculation method which was also based on Fig. 1, calculated.
- Fig. 2 B and 2 C show the calculation result in the form of the course over the elements of the electrolyzer.
- the Katholytüberlauf is like the feed via a spiral
- FIG. 3 shows a single electrolysis element 10 according to the invention. In this case, the internal structure of the electrolytic cell is not shown.
- the claimed electrolysers Stringing together a plurality of individual electrolysis elements 10 in so-called cell stacks in the corresponding devices provided for this purpose, the claimed electrolysers are created.
- the individual electrolysis elements are electrically conductively connected to one another via contact strips 12 provided on the outer wall 11, with the electrolyzer being flowed through by current during operation from the anodic end.
- the filling of the electrolyte is done via a spiral-shaped
- the electrolyte flows uniformly over the entire width of the individual electrolysis element 10.
- the electrolyte feed takes place from top to bottom via a falling film (not shown).
- the overflow of the electrolyte is also provided with a spiral-shaped hose 14. In the installed state, this overflow is connected by way of example to the oxygen drainage channel, from which excess electrolyte can be removed into the drainage collection channel of the electrolyzer (not shown). Due to the simultaneous throttling action of the spiral tubes 13 and 14, a uniform distribution of the electrolyte during the
- Electrolyte supply design, as well as sufficient amounts of electrolyte are provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112013014396A BR112013014396A2 (pt) | 2010-12-15 | 2011-11-15 | eletrolisador com tubo de alimentação em espiral |
CA2817164A CA2817164A1 (en) | 2010-12-15 | 2011-11-15 | Electrolyser having a spiral inlet tube |
KR1020137018257A KR20130138295A (ko) | 2010-12-15 | 2011-11-15 | 나선형 입구 튜브를 갖는 전해조 |
JP2013543549A JP2013545898A (ja) | 2010-12-15 | 2011-11-15 | コイル状の入口ホースを有する電解槽 |
US13/994,042 US9045837B2 (en) | 2010-12-15 | 2011-11-15 | Electrolyser with coiled inlet hose |
EP20110788370 EP2652176B1 (de) | 2010-12-15 | 2011-11-15 | Elektrolyseur mit spiralförmigem einlaufschlauch |
EA201390869A EA023659B1 (ru) | 2010-12-15 | 2011-11-15 | Электролизер со спиральным впускным шлангом |
CN201180058885.5A CN103370449B (zh) | 2010-12-15 | 2011-11-15 | 具有螺旋状入口软管的电解器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010054643A DE102010054643A1 (de) | 2010-12-15 | 2010-12-15 | Elektrolyseur mit spiralförmigem Einlaufschlauch |
DE102010054643.7 | 2010-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012079670A1 true WO2012079670A1 (de) | 2012-06-21 |
Family
ID=45047710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/005738 WO2012079670A1 (de) | 2010-12-15 | 2011-11-15 | Elektrolyseur mit spiralförmigem einlaufschlauch |
Country Status (10)
Country | Link |
---|---|
US (1) | US9045837B2 (de) |
EP (1) | EP2652176B1 (de) |
JP (1) | JP2013545898A (de) |
KR (1) | KR20130138295A (de) |
CN (1) | CN103370449B (de) |
BR (1) | BR112013014396A2 (de) |
CA (1) | CA2817164A1 (de) |
DE (1) | DE102010054643A1 (de) |
EA (1) | EA023659B1 (de) |
WO (1) | WO2012079670A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3805429A1 (de) * | 2019-10-08 | 2021-04-14 | Covestro Deutschland AG | Verfahren und elektrolysevorrichtung zur herstellung von chlor, kohlenmonoxid und gegebenenfalls wasserstoff |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016210349A1 (de) | 2016-06-10 | 2017-12-14 | Thyssenkrupp Uhde Chlorine Engineers Gmbh | Elektrolyseur sowie Verfahren zum Betrieb eines Elektrolyseurs |
CN106245057A (zh) * | 2016-09-08 | 2016-12-21 | 中国水利水电科学研究院 | 一种带有极化整流装置的次氯酸钠发生器 |
DE102017204096A1 (de) | 2017-03-13 | 2018-09-13 | Siemens Aktiengesellschaft | Herstellung von Gasdiffusionselektroden mit Ionentransport-Harzen zur elektrochemischen Reduktion von CO2 zu chemischen Wertstoffen |
DE102018210458A1 (de) | 2018-06-27 | 2020-01-02 | Siemens Aktiengesellschaft | Gasdiffusionselektrode zur Kohlendioxid-Verwertung, Verfahren zu deren Herstellung sowie Elektrolysezelle mit Gasdiffusionselektrode |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4417970A (en) * | 1981-11-24 | 1983-11-29 | Chlorine Engineers Corp. Ltd. | Electrolytic cell for ion exchange membrane method |
US4614575A (en) | 1984-11-19 | 1986-09-30 | Prototech Company | Polymeric hydrogel-containing gas diffusion electrodes and methods of using the same in electrochemical systems |
DE9413003U1 (de) * | 1994-08-11 | 1994-10-13 | Huang, Ching-Chiang, Chia Yi | Gerät zum Erzeugen eines Gemisches aus Wasserstoff und Sauerstoff |
DE19641125A1 (de) | 1996-10-05 | 1998-04-16 | Krupp Uhde Gmbh | Elektrolyseapparat zur Herstellung von Halogengasen |
WO1998055670A1 (en) | 1997-06-03 | 1998-12-10 | De Nora S.P.A. | Ion exchange membrane bipolar electrolyzer |
WO2003042430A2 (en) | 2001-11-12 | 2003-05-22 | Uhdenora Technologies S.R.L. | Electrochemical cell with gas diffusion electrodes |
DE10249508A1 (de) | 2002-10-23 | 2004-05-06 | Uhde Gmbh | Elektrolysezelle mit Innenrinne |
DE102004018748A1 (de) | 2004-04-17 | 2005-11-10 | Bayer Materialscience Ag | Elektrochemische Zelle |
WO2007061319A1 (en) * | 2005-11-25 | 2007-05-31 | Skomsvold Aage Joergen | A device for production of hydrogen by electrolysis |
US20070221496A1 (en) * | 2004-04-22 | 2007-09-27 | Basf Aktiengesellschaft | Method for Producing a Uniform Cross-Flow of an Electrolyte Chamber of an Electrolysis Cell |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE553783C (de) * | 1928-03-16 | 1932-10-10 | Jakob Emil Noeggerath Dr Ing | Elektrolytischer Zersetzer |
EP0005597B1 (de) * | 1978-05-15 | 1981-10-07 | Ernst Spirig | Knallgasgenerator |
JPS5524969A (en) * | 1978-08-14 | 1980-02-22 | Tokuyama Soda Co Ltd | Liquid feed method |
CN1148823C (zh) * | 2001-04-23 | 2004-05-05 | 华南理工大学 | 使用液体燃料的燃料电池 |
JP2003183867A (ja) * | 2001-12-19 | 2003-07-03 | Asahi Glass Co Ltd | 塩化アルカリ水溶液の電解方法 |
GB0328124D0 (en) * | 2003-12-04 | 2004-01-07 | Daly James | Membrane electrolyser with a two part end design |
-
2010
- 2010-12-15 DE DE102010054643A patent/DE102010054643A1/de not_active Ceased
-
2011
- 2011-11-15 EP EP20110788370 patent/EP2652176B1/de active Active
- 2011-11-15 US US13/994,042 patent/US9045837B2/en not_active Expired - Fee Related
- 2011-11-15 CA CA2817164A patent/CA2817164A1/en not_active Abandoned
- 2011-11-15 WO PCT/EP2011/005738 patent/WO2012079670A1/de active Application Filing
- 2011-11-15 EA EA201390869A patent/EA023659B1/ru not_active IP Right Cessation
- 2011-11-15 KR KR1020137018257A patent/KR20130138295A/ko not_active Application Discontinuation
- 2011-11-15 CN CN201180058885.5A patent/CN103370449B/zh active Active
- 2011-11-15 JP JP2013543549A patent/JP2013545898A/ja active Pending
- 2011-11-15 BR BR112013014396A patent/BR112013014396A2/pt not_active IP Right Cessation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4417970A (en) * | 1981-11-24 | 1983-11-29 | Chlorine Engineers Corp. Ltd. | Electrolytic cell for ion exchange membrane method |
US4614575A (en) | 1984-11-19 | 1986-09-30 | Prototech Company | Polymeric hydrogel-containing gas diffusion electrodes and methods of using the same in electrochemical systems |
DE9413003U1 (de) * | 1994-08-11 | 1994-10-13 | Huang, Ching-Chiang, Chia Yi | Gerät zum Erzeugen eines Gemisches aus Wasserstoff und Sauerstoff |
DE19641125A1 (de) | 1996-10-05 | 1998-04-16 | Krupp Uhde Gmbh | Elektrolyseapparat zur Herstellung von Halogengasen |
WO1998055670A1 (en) | 1997-06-03 | 1998-12-10 | De Nora S.P.A. | Ion exchange membrane bipolar electrolyzer |
WO2003042430A2 (en) | 2001-11-12 | 2003-05-22 | Uhdenora Technologies S.R.L. | Electrochemical cell with gas diffusion electrodes |
DE10249508A1 (de) | 2002-10-23 | 2004-05-06 | Uhde Gmbh | Elektrolysezelle mit Innenrinne |
DE102004018748A1 (de) | 2004-04-17 | 2005-11-10 | Bayer Materialscience Ag | Elektrochemische Zelle |
US20070221496A1 (en) * | 2004-04-22 | 2007-09-27 | Basf Aktiengesellschaft | Method for Producing a Uniform Cross-Flow of an Electrolyte Chamber of an Electrolysis Cell |
WO2007061319A1 (en) * | 2005-11-25 | 2007-05-31 | Skomsvold Aage Joergen | A device for production of hydrogen by electrolysis |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3805429A1 (de) * | 2019-10-08 | 2021-04-14 | Covestro Deutschland AG | Verfahren und elektrolysevorrichtung zur herstellung von chlor, kohlenmonoxid und gegebenenfalls wasserstoff |
WO2021069470A1 (de) * | 2019-10-08 | 2021-04-15 | Covestro Intellectual Property Gmbh & Co. Kg | Verfahren und elektrolysevorrichtung zur herstellung von chlor, kohlenmonoxid und gegebenenfalls wasserstoff |
Also Published As
Publication number | Publication date |
---|---|
EP2652176B1 (de) | 2015-05-06 |
CN103370449A (zh) | 2013-10-23 |
BR112013014396A2 (pt) | 2016-09-27 |
CA2817164A1 (en) | 2012-06-21 |
CN103370449B (zh) | 2016-10-12 |
KR20130138295A (ko) | 2013-12-18 |
EP2652176A1 (de) | 2013-10-23 |
US20130256151A1 (en) | 2013-10-03 |
EA201390869A1 (ru) | 2013-10-30 |
US9045837B2 (en) | 2015-06-02 |
EA023659B1 (ru) | 2016-06-30 |
JP2013545898A (ja) | 2013-12-26 |
DE102010054643A1 (de) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3000313C2 (de) | ||
DE4444114C2 (de) | Elektrochemische Halbzelle mit Druckkompensation | |
EP0428171B1 (de) | Elektrolysezelle zur Herstellung von Peroxo- und Perhalogenatverbindungen | |
DE2435185C3 (de) | Elektrolysezelle | |
EP3317435B1 (de) | Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung | |
DE1468148B1 (de) | Elektrochemische Zelle fuer die Herstellung von Olefinoxyden aus aliphatischen oder cycloaliphatischen Olefinen | |
DE19622744C1 (de) | Elektrochemische Halbzelle mit Druckkompensation | |
DE102017117161A1 (de) | Verfahren zur Erzeugung von hydrogenisiertem Wasser | |
EP2652176B1 (de) | Elektrolyseur mit spiralförmigem einlaufschlauch | |
EP2697410B1 (de) | Alternativer einbau einer gas-diffusions-elektrode in eine elektrochemische zelle mit percolatortechnologie | |
DE3112302A1 (de) | "anode mit verringerter sauerstofferzeugung bei der hcl-elektrolyse" | |
DE102017212278A1 (de) | CO2-Elektrolyseur | |
DE2827266A1 (de) | Verfahren zur elektrolyse in einer membranzelle unter einhaltung eines durch druckbeaufschlagung erzielten gleichmaessigen abstands sowie vorrichtung zur durchfuehrung des verfahrens | |
DE2928427A1 (de) | Chloralkalielektrolysezelle und chloralkalielektrolyseverfahren | |
EP1264010A1 (de) | Verfahren und vorrichtung zum regulieren der konzentration von metallionen in einer elektrolytflüssigkeit sowie anwendung des verfahrens und verwendung der vorrichtung | |
DE102018202184A1 (de) | Separatorlose Doppel-GDE-Zelle zur elektrochemischen Umsetzung | |
DE2515372A1 (de) | Verfahren zum betreiben von elektrolytischen diaphragmazellen mit horizontalen elektroden und derartige zellen | |
DE102016217989A1 (de) | Vorrichtung zum kontinuierlichen Betrieb einer Elektrolysezelle mit gasförmigem Substrat und Gasdiffusionselektrode | |
EP2746429A1 (de) | Elektrolysezelle | |
DD216049A5 (de) | Elektrolysezelle | |
WO2021043578A1 (de) | Kreuzflusswasserelektrolyse | |
WO1993020261A1 (de) | Bipolare filterpressenzelle zur herstellung von peroxodisulfaten | |
WO2023198581A1 (de) | Vorrichtung zur aufbereitung einer elektrolytflüssigkeit | |
DE1771976A1 (de) | Elektrochemische Erzeugung eines elektrischen Stromes | |
DE2624694A1 (de) | Mehrelektrodenzelle fuer die elektrolyse waessriger alkalichloridloesungen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11788370 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2817164 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2013543549 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011788370 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13994042 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137018257 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201390869 Country of ref document: EA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013014396 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013014396 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130610 |