WO2012079310A1 - 复方海参制剂及其制备方法 - Google Patents

复方海参制剂及其制备方法 Download PDF

Info

Publication number
WO2012079310A1
WO2012079310A1 PCT/CN2011/071475 CN2011071475W WO2012079310A1 WO 2012079310 A1 WO2012079310 A1 WO 2012079310A1 CN 2011071475 W CN2011071475 W CN 2011071475W WO 2012079310 A1 WO2012079310 A1 WO 2012079310A1
Authority
WO
WIPO (PCT)
Prior art keywords
sea cucumber
nano
powder
extract
enzymatic hydrolysis
Prior art date
Application number
PCT/CN2011/071475
Other languages
English (en)
French (fr)
Inventor
焦健
邵俊杰
Original Assignee
大连海晏堂生物有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连海晏堂生物有限公司 filed Critical 大连海晏堂生物有限公司
Priority to US13/576,961 priority Critical patent/US8927523B2/en
Priority to CA2787154A priority patent/CA2787154C/en
Priority to EP11842462.1A priority patent/EP2514432B1/en
Publication of WO2012079310A1 publication Critical patent/WO2012079310A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/616Echinodermata, e.g. starfish, sea cucumbers or sea urchins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/25Araliaceae (Ginseng family), e.g. ivy, aralia, schefflera or tetrapanax
    • A61K36/258Panax (ginseng)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/39Complex extraction schemes, e.g. fractionation or repeated extraction steps

Definitions

  • the present invention pertains to pharmaceutical preparations derived from mollusc extracts and plants, to enzyme application and polysaccharide extraction techniques, and to the preparation of formulations.
  • sea cucumber is one of the eight treasures of seafood in China, and its nourishing value is recognized by people.
  • sea cucumber polysaccharide is the most important active ingredient in sea cucumber, and has a variety of physiological activities. According to experimental research, sea cucumber polysaccharide has a significant effect on diseases against cardiovascular and cerebrovascular diseases. After the sea cucumber is nano-sized, it can be directly developed, and not only the important active ingredients such as sea cucumber polysaccharides can be fully utilized, but also components such as sea cucumber protein and lipid can be fully utilized.
  • Panax notoginseng is a special ginseng plant in southern Yunnan.
  • the roots are fleshy like ginger, which is used by folks to treat bruises, blood stasis and other diseases.
  • the main functional component of Panax notoginseng is Panax notoginseng saponins, which has been widely used in the field of medicine and health care.
  • Pharmaceutical companies have used the special effects of Sanqi to develop many such as Yunnan Baiyao, Xuesaitong series and compound Danshen dripping pills.
  • Well-known drugs such as Pien Tze Huang.
  • the drug made from the total saponins of Panax notoginseng is commonly known as "Blood Plug".
  • Xuesaitong is an essential Chinese patent medicine for emergency departments in national hospitals. It is also mainly used for cardiovascular and cerebrovascular diseases.
  • the object of the present invention is to utilize a polysaccharide extracted from a low molecular weight sea cucumber nanopowder, and directly to use a tris-7 or notoginsenoside extract to develop a product having better therapeutic and health effects than sea cucumber or notoginseng alone.
  • the technical proposal of the invention is that the sea cucumber is firstly gelatinized, and the gelatinized sea cucumber is gradually pulverized, ultra-finely pulverized and nano-pulverized into nanoparticles after being freeze-dried, and the nano sea cucumber granules are enzymatically hydrolyzed and divided.
  • the extract active ingredient: sea cucumber polysaccharide
  • the specific steps in this aspect are:
  • Raw material processing Cut and clean fresh sea cucumber or water-borne sea cucumber in a closed container; cut fresh sea cucumber, remove the internal organs, and clean them thoroughly, you can use only sea cucumber wall It can also be ground together with the viscera of sea cucumber and placed in a closed container.
  • the fresh sea cucumber or sea hair sea cucumber varieties are common sea cucumbers such as sea cucumber and leaf melon; the sea hair sea cucumber is made of dried sea cucumber, semi-dry sea cucumber or salted sea cucumber for water or salt water.
  • Heating gelation heating, temperature is 70 ⁇ 130 °C, time is lmii! ⁇ 20h. Preferably, it is 100 to 105 ° C, lh.
  • Coarse pulverization The sea cucumber after lyophilization is coarsely pulverized.
  • the equipment selected for coarse pulverization is preferably high in power, and the pulverization time is very short.
  • ginseng powder having a fineness of 10 to 300 mesh can be obtained within 1 to 20 minutes.
  • Ultrafine pulverization The coarsely pulverized sea cucumber powder is ultra-finely pulverized by a jet mill to pulverize the sea cucumber ultrafine powder having a fineness of 100 to 3000 mesh.
  • Nano-crushing The sea cucumber ultrafine powder which has been subjected to jet milling is subjected to nano-grinding by a high-energy ball mill, and the pulverization time is 4 to 20 hours, preferably 10 to 12 hours, and the fineness can reach 10 to 1000 nm.
  • the particle size distribution is detected by X-ray, and the average particle diameter is in the range of 0 to 300 nm, which is 100 to 200 nm.
  • Enzymatic hydrolysis and separation Nano sea cucumber powder and water are dissolved in water at a mass ratio of 1: 3 ⁇ 10, according to the nano sea cucumber powder: protease is lg: 0.1 ⁇ 1010mg, the protease is added at the corresponding pH value at 40 ⁇ 70 °C for 1 ⁇ 5h enzymatic hydrolysis, then warming the enzyme, 0 ⁇ 10 °C high-speed centrifugation, take the supernatant; enzymatically selected protease can be various enzymes, such as bromelain, papain, alkaline Protease, neutral protease, flavor protease, trypsin, etc., may be enzymatic hydrolysis of a single enzyme, or may be enzymatically digested with two or more proteases.
  • the nano sea cucumber powder is mixed with water in a ratio of 1:7, and double-digested with an alkaline protease Acalase and trypsin.
  • the enzymatic hydrolysis temperature is 40 ⁇ 70 °C, first adjust the pH to 7 ⁇ 8, according to the mass ratio of nano sea cucumber powder to enzyme (1 g: 0.1 ⁇ 10 mg), add alkaline protease Acalase, and carry out enzymatic hydrolysis for 0.1h ⁇ 5h. Adjust the pH to 8 ⁇ 10.
  • the mass ratio of nano-sea cucumber powder to enzyme (1 g: 10 mg ⁇ 1000 mg
  • trypsin for 2 times of enzymatic hydrolysis for 0.1 ⁇ 5h
  • the enzymatic hydrolysis temperature is 40 ⁇ 70 °C.
  • Nano sea cucumber extract and Panax notoginseng saponin extract are mixed according to the ratio of nano sea cucumber extract: Panax notoginseng saponin extract of 99% ⁇ 70%: 1% ⁇ 30%.
  • the product is a grayish white or light brown or brown powder.
  • the main active ingredients are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components), and the sea cucumber polysaccharide content is 2.5% ⁇ 8.0%, three The total saponin content is from 0.3% to 21%.
  • various types of agents such as capsules, tablets, granules and the like can be prepared.
  • sea cucumber polysaccharide not only has anticoagulant function, but also can mobilize liver cells from the bone marrow, while Panax notoginseng saponins can promote the transformation or differentiation of mobilized stem cells into newborn cardiomyocytes or brain cells instead. Necrosis of myocardium or brain tissue caused by ischemia.
  • the combination of nano-sea cucumber and panax notoginseng saponins can complement and synergize pharmacologically.
  • the side effects of sea cucumber polysaccharide on platelet aggregation can be eliminated by complexing with panax notoginseng saponins.
  • Raw material processing Cut the fresh sea thorns, remove the internal organs, and thoroughly clean the sea cucumber body wall and place them in a closed container.
  • Coarse pulverization The sea cucumber after lyophilization is coarsely pulverized. A sea cucumber powder having a fineness of 10 to 300 mesh is obtained.
  • Ultrafine pulverization The coarsely pulverized sea cucumber powder is ultra-finely pulverized by a jet mill to obtain a sea cucumber ultrafine powder having a pulverization fineness of 100 to 3,000 mesh.
  • Nano-crushing The sea cucumber ultrafine powder which was pulverized by airflow was subjected to nanometer pulverization with a high-energy ball mill pulverizer, and the pulverization time was 4 hours.
  • Enzymatic hydrolysis After adding nano sea cucumber powder and water (weight ratio) in a ratio of 1:3, stir well, add bromelain according to the mass ratio of nano sea cucumber powder to bromelain enzyme lg: 10 mg, pH 6-7 The enzymatic hydrolysis temperature was 40 ° C, and after enzymatic hydrolysis for 5 h, the enzymatic reaction solution was heated at 90 ° C for 20 min after the end of the enzyme reaction. The enzymatically hydrolyzed product is subjected to centrifugation, and the supernatant is subjected to enzymatic hydrolysis, and directly dried to obtain a nano-sea cucumber extract.
  • Nano sea cucumber extract and Panax notoginseng saponin extract were mixed according to the nano sea cucumber extract: Panax notoginseng saponin extract at a ratio of 99%: 1%.
  • the product is a light brown powder.
  • the main active ingredients are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components).
  • the content of sea cucumber polysaccharide is 7.8%, and the total saponin content of panax notoginseng is 0.5%.
  • Raw material processing Cut fresh live melon seeds, remove the internal organs, thoroughly clean the wall and viscera of the sea cucumber, and put them together in a closed container.
  • Vacuum freeze-drying The gelatinized sea cucumber is freeze-dried and the water is divided into 1%.
  • Coarse pulverization The sea cucumber after lyophilization is coarsely pulverized. A sea cucumber powder having a fineness of 10 to 300 mesh is obtained.
  • Ultrafine pulverization The coarsely pulverized sea cucumber powder is ultra-finely pulverized by a jet mill to obtain a sea cucumber ultrafine powder having a pulverization fineness of 100 to 3,000 mesh.
  • Nano-crushing The sea cucumber ultrafine powder that has been subjected to jet milling is subjected to nanometer pulverization with a high-energy ball mill pulverizer, and the pulverization time is 8 hours.
  • Enzymatic hydrolysis After adding nanometer sea cucumber powder and water (weight ratio) in a ratio of 1:4, stir well, add alkaline protease according to the mass ratio of nano sea cucumber powder to alkaline protease lg: 0.5 mg, pH 7 ⁇ 8, the enzymatic hydrolysis temperature was 65 ° C, and after enzymatic hydrolysis for 2 h, the enzymatic reaction solution was heated at 95 ° C for 15 min after the end of the enzyme reaction. The enzymatic hydrolysate is subjected to centrifugation, and the supernatant is subjected to enzymatic hydrolysis, and directly dried to obtain a nano-sea cucumber extract.
  • Nano sea cucumber extract and Panax notoginseng saponin extract are mixed according to the nano sea cucumber extract: Panax notoginseng saponin extract is 90%: 10%.
  • the product is a light brown powder, the main active ingredients of which are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components), the sea cucumber polysaccharide content is 4.6%, and the total saponin content of panax notoginseng is 6.2%. .
  • Raw material treatment Take the sea thorns. After soaking in water, cut the body wall, clean it, and place it in a closed container.
  • Vacuum freeze-drying The gelatinized sea cucumber is freeze-dried and the water is divided into 3%.
  • Enzymatic hydrolysis After adding nano-sea cucumber powder and water (weight ratio) in a ratio of 1:5, stir well, add trypsin according to the mass ratio of nano sea cucumber powder to trypsin lg: 10 mg, pH 8 ⁇ 9, The enzymatic hydrolysis temperature was 45 ° C, and after enzymatic hydrolysis for 5 h, the enzymatic reaction solution was heated at 100 ° C for 10 min after the end of the enzymatic reaction. The enzymatic hydrolysate is centrifuged, and the supernatant is taken for enzymatic hydrolysis, and directly dried to obtain nano sea cucumber extract.
  • Nano sea cucumber extract and Panax notoginseng saponin extract According to the nano sea cucumber extract: Panax notoginseng saponin extract is mixed at 80%: 20%.
  • the product is brown powder
  • the main active ingredients are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components)
  • the sea cucumber polysaccharide content is 6.3%
  • the total saponin content of panax notoginseng is 10.9%.
  • the mixed powder was made into capsules, 0.3 g per capsule.
  • Raw material treatment Take the salted dried sea cucumber, remove the salt from the sea cucumber in the water, soak it in soft, cut the body wall, clean it, and put it in a closed container.
  • Vacuum freeze-drying The gelatinized sea cucumber is freeze-dried and the water is divided into 5%.
  • Nano-crushing The sea cucumber ultrafine powder subjected to airflow pulverization was subjected to nanocrystallization by a high-energy ball mill pulverizer, and the pulverization time was 12 hours.
  • Enzymatic hydrolysis After adding nano-sea cucumber powder and water (weight ratio) in a ratio of 1:6, stir well, add neutral protease according to the mass ratio of nano-sea cucumber powder to neutral protease lg: lmg, pH 6. 7 ⁇ 7, the enzymatic hydrolysis temperature was 50 ° C, and after enzymatic hydrolysis for 1 h, the enzymatic reaction solution was heated at 100 ° C for 5 min after the end of the enzyme reaction. The enzymatically hydrolyzed product is subjected to centrifugation, and the supernatant is subjected to enzymatic hydrolysis, and directly dried to obtain a nano-sea cucumber extract.
  • Nano sea cucumber extract and Panax notoginseng saponin extract According to the nano sea cucumber extract: Panax notoginseng saponin extract is mixed in a ratio of 70%: 30%.
  • the product is a brown powder
  • the main active ingredients are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components), sea cucumber polysaccharide content is 5.4%, and panax notoginseng saponin content is 15.2%.
  • the mixed powder was made into capsules, 0.3 g per capsule.
  • Raw material treatment Take salted dried sea cucumber, soak it in soft, heat it at 90 ⁇ 100 °C for 1 hour, cut the body wall, clean it, remove the salt from the sea cucumber with pure water, and at the same time The role of sea cucumbers. Place in a closed container.
  • Vacuum freeze-drying The gelatinized sea cucumber is freeze-dried and the water is divided into 7%.
  • Nano-crushing The sea cucumber ultrafine powder which has been subjected to jet milling is subjected to nano-grinding with a high-energy ball mill, and the pulverization time is 16 hours.
  • Enzymatic hydrolysis After adding nano-sea cucumber powder and water (weight ratio) in a ratio of 1:7, stir well, and add alkaline protease according to the mass ratio of nano-sea cucumber powder to alkaline protease lg: 0.1 mg, pH7 ⁇ 8, enzymatic hydrolysis temperature is 65 °C, after enzymatic hydrolysis for 3h, then adjust the temperature to 45 °C, add trypsin, add trypsin according to the weight ratio of nano sea cucumber powder to trypsin lg: 10mg, pH 8 ⁇ 9, enzymatic hydrolysis for 3h, after the end of the enzyme reaction, the enzymatic reaction solution was heated at 100 ° C for 10 min. The enzymatic hydrolysate is centrifuged, and the supernatant is taken and directly dried to obtain a nano sea cucumber extract.
  • Nano sea cucumber extract and Panax notoginseng saponin extract According to the nano sea cucumber extract: Panax notoginseng saponin extract is mixed at 80%: 20%.
  • the product is a brown powder
  • the main active ingredients are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components), sea cucumber polysaccharide content is 4.4%, and panax notoginseng total saponin content is 7.9%.
  • the tablets were prepared according to the ratio of the raw materials: the excipients were 2:1.
  • Raw material processing Take the dried leaf melon, and after soaking in soft, cut the body wall and clean it. Placed in a closed capacity In the device.
  • Vacuum freeze-drying The gelatinized sea cucumber is freeze-dried, and the water is divided into 9%.
  • Nano-crushing The sea cucumber ultrafine powder that has been subjected to jet milling is subjected to nanometer pulverization with a high-energy ball mill pulverizer, and the pulverization time is 18 hours.
  • Enzymatic hydrolysis After adding nano-sea cucumber powder and water (weight ratio) in a ratio of 1:8, stir well, and add alkaline protease according to the mass ratio of nano-sea cucumber powder to alkaline protease lg: 0.1 mg, pH7 ⁇ 8, enzymatic hydrolysis temperature is 65 °C, after enzymatic hydrolysis for lh, then add alkaline protease, add alkaline protease according to the mass ratio of nano sea cucumber powder to alkaline protease lg: 0.1mg, pH 7 ⁇ 8, temperature At 65 ° C, enzymatic hydrolysis was carried out for 3 h.
  • the enzymatic reaction solution was heated at 100 ° C for 10 min.
  • the enzymatically hydrolyzed product is subjected to centrifugation, and the supernatant is subjected to enzymatic hydrolysis, and directly dried to obtain a nano-sea cucumber extract.
  • Nano sea cucumber extract and Panax notoginseng saponin extract According to the nano sea cucumber extract: Panax notoginseng saponin extract is mixed at a ratio of 90%: 10%.
  • the product is a brown powder
  • the main active ingredients are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components), the sea cucumber polysaccharide content is 2.6%, and the total saponin content of panax notoginseng is 3.2%.
  • the granules are prepared according to the ratio of the raw materials: the auxiliary materials are 1:1.
  • Raw material treatment Take fresh sea thorns and remove the viscera. Clean the wall of the sea cucumber and place it in a closed container.
  • Nano-crushing The sea cucumber ultrafine powder that has been subjected to jet milling is subjected to nanometer pulverization with a high-energy ball mill pulverizer, and the pulverization time is 20 hours.
  • Enzymatic hydrolysis Add nano sea cucumber powder and water (weight ratio) in a ratio of 1:10, stir well, add neutral protease according to the mass ratio of nano sea cucumber powder to neutral protease lg: 0.8mg , pH 6.7 ⁇ 7, enzymatic hydrolysis temperature is 50 ° C, after enzymatic hydrolysis for 1 h, then add alkaline protease, add alkaline protease according to the mass ratio of nano sea cucumber powder to alkaline protease lg: l mg, pH 7 ⁇ 8, temperature 65 ° C, enzymatic hydrolysis lh, then adjust the temperature to 45 ° C, add trypsin, add trypsin according to nano sea cucumber The mass ratio of powder to trypsin was lg: 10 mg, pH 8 to 9, and enzymatic hydrolysis was carried out for 1 h.
  • the enzymatic reaction solution was heated at 100 ° C for 10 min.
  • the enzymatically hydrolyzed product is subjected to centrifugation, and the supernatant is subjected to enzymatic hydrolysis, and directly dried to obtain a nano-sea cucumber extract.
  • Nano sea cucumber extract and Panax notoginseng saponin extract According to the nano sea cucumber extract: Panax notoginseng saponin extract is mixed in a ratio of 95%: 5%.
  • the product is a brown powder, the main active ingredients of which are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components), sea cucumber polysaccharide content is 7.5%, and panax notoginseng saponin content is 3.2%.
  • the mixed powder was made into capsules, 0.3 g per capsule.
  • Raw material treatment Take fresh sea thorns and remove the viscera. Clean the wall of the sea cucumber and place it in a closed container.
  • Vacuum freeze-drying The gelatinized sea cucumber is freeze-dried and the water is divided into 9%.
  • Enzymatic hydrolysis After adding nanometer sea cucumber powder and water (weight ratio) in a ratio of 1:9, stir well, add alkaline protease, and add alkaline protease according to the mass ratio of nano sea cucumber powder to alkaline protease. : 10 mg, pH 7 ⁇ 8, temperature 65 ° C, enzymatic hydrolysis lh, then adjust the temperature to 45 ° C, add trypsin, add trypsin according to the mass ratio of nano sea cucumber powder to trypsin lg: 100mg, pH 8 ⁇ 9, enzymatic hydrolysis lh, after the end of the enzyme reaction, the enzymatic reaction solution was heated at 100 ° C for 10 min. The enzymatically hydrolyzed product is centrifuged and separated, and the supernatant is taken and directly dried to obtain a nano-sea cucumber extract.
  • Nano sea cucumber extract and Panax notoginseng saponin extract According to the nano sea cucumber extract: Panax notoginseng saponin extract is mixed at 80%: 20%.
  • the product is a brown powder, the main active ingredients of which are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components), the sea cucumber polysaccharide content is 3.3%, and the total saponin content of panax notoginseng is 6.8%.
  • the mixed powder is made into a powder according to the ratio of the raw material: the auxiliary material is 1:1.
  • Raw material treatment Take fresh sea cucumber and remove the internal organs, then clean the wall and viscera of the sea cucumber separately and put them in a closed container.
  • Enzymatic hydrolysis After adding nanometer sea cucumber powder and water (weight ratio) in a ratio of 1:6, stir well, add alkaline protease, and add alkaline protease according to the mass ratio of nano sea cucumber powder to alkaline protease. : 5 mg, pH 7 ⁇ 8, temperature 65 ° C, enzymatic hydrolysis lh, then adjust the temperature to 45 ° C, add trypsin, add trypsin according to the mass ratio of nano sea cucumber powder to trypsin lg: 1000mg, pH 8 ⁇ 9, enzymatic hydrolysis lh, after the end of the enzyme reaction, the enzymatic reaction solution was heated at 100 ° C for 10 min. The enzymatic hydrolysate is centrifuged, and the supernatant is taken and dried, and then the nano sea cucumber extract is obtained.
  • Nano sea cucumber extract and Panax notoginseng saponin extract According to the nano sea cucumber extract: Panax notoginseng saponin extract is mixed at a ratio of 90%: 10%.
  • the tablets were prepared according to the ratio of the raw materials: the excipients were 2:1.
  • the product is a brown powder
  • the main active ingredients are sea cucumber polysaccharide and panax notoginseng saponin (calculated as the total content of Rl+Rbl+Rgl components), the sea cucumber polysaccharide content is 4.7%, and the total saponin content of panax notoginseng is 4.1%.
  • mice Kunming species, male, weighing 23 ⁇ 25g.
  • mice Forty-five Kunming mice were randomly divided into three groups, namely saline group, nano sea cucumber powder group and compound sea cucumber preparation group, with 15 rats in each group.
  • the saline group was injected with normal saline O.lml/lOg body weight by the tail vein, and the sea cucumber nano powder group and the compound sea cucumber preparation group were respectively injected with the above-prepared sea cucumber water extract O.lml/lOg body weight, and the mouse eyeball was injected 15 minutes after the injection.
  • Blood collection 0.45ml, add 0.05ml 3.8% sodium citrate anticoagulation, then add 0.2ml normal saline, mix
  • mice were injected intraperitoneally:
  • saline group was intraperitoneally injected with normal saline 0.2ml/10g body weight.
  • the sea cucumber nano powder group and the compound sea cucumber preparation group were intraperitoneally injected with 50mg/ml sea cucumber common and nano powder suspension 0.2ml/10g body weight, 30 minutes after intraperitoneal injection.
  • Eye blood was collected 0.45ml, added with 0.05ml of 3.8% sodium citrate anticoagulation, then added 0.2ml of normal saline, mixed and centrifuged at 3000r/min for 10min, and the supernatant was taken to determine its TT and RT values.
  • mice administered by intragastric administration 3 mice administered by intragastric administration:
  • mice Sixty Kunming mice were randomly divided into six groups, namely saline group, sea cucumber nano powder group and compound sea cucumber preparation group. They were administered intragastrically for one week and two weeks, with 10 rats in each group.
  • the saline group was intragastrically administered with normal saline 0.2ml/10g body weight.
  • the sea cucumber nano powder group and the compound sea cucumber preparation group were intragastrically administered with 50mg/ml sea cucumber nano powder and compound sea cucumber preparation suspension 0.2ml/10g body weight (lg/kg body weight). 2 times a day, 1 hour after the last gavage, 0.45ml of blood was collected from the eyeball of the mouse. Add 0.05ml of 3.8% sodium citrate anticoagulation, add 0.2ml of normal saline, mix and centrifuge at 3000r/min for 10min. The supernatant was assayed for TT and RT values.
  • the RT values of the sea cucumber nano powder group and the NS group were extended by 1259.46%, 236.54% and 284.04% respectively, and the compound sea cucumber preparation group and The RT values of NS group were extended by 1895.95%, 698.08% and 717.02%, respectively, and they were statistically significant (PO.Ol).
  • the RT prolongation of compound sea cucumber preparation was more significant than that of nano powder.
  • Compound sea cucumber preparation group RT The values were 46.82%, 137.14% and 112.74% longer than the nano-powder group, and the difference was statistically significant (P ⁇ 0.01).
  • A-1 Establishment of a mouse hyperglycemia model: Males, 18-22 g Kunming mice were randomly divided into 10 normal controls. The remaining mice were fasted (without water) for 16 hours, and then injected with 10 mg/kg of alloxan in the tail vein. After 15 days of stabilization, the blood glucose level (FPG) of the mice was measured for 5 hours, and the mice with FPG>10 mmol/L were high. Blood glucose model mice.
  • A-2 Animal grouping and administration: 10 mice in the normal control group. Forty mice with hyperglycemia were randomly divided into hyperglycemia model group, compound sea cucumber preparation high dose (0.5g/kg) group, compound sea cucumber preparation low dose (0.25g/kg) group and positive control drug metformin 200mg/kg group. .
  • the high dose group of compound sea cucumber preparation and the low dose group of compound sea cucumber preparation were intragastrically administered with 0.025g/mL and 0.0125g/mL compound sea cucumber preparation physiological saline suspension 0.2mL/10gBW, metformin
  • the mice in the 200 mg/kg group were intragastrically administered with 10 mg/mL metformin physiological saline solution 0.2 mL/10 g BW, and the normal control group and the hyperglycemia model group were intragastrically administered with the same volume of normal saline. Each group of mice was administered twice daily.
  • FBG measurement The blood glucose level (FPG) of the mice in the 7th, 14th, 21st and 28th days was measured by the German Roche Superior IV blood glucose meter, and the body weight of the mice was recorded.
  • AUC (mmol-h/L) J 1 ⁇ i+1 ⁇ At
  • C is the blood glucose level (mmol/L)
  • t is the time after glucose load (h)
  • i is the blood glucose value number
  • C. , d, C 2 , C 3 , and C 4 are blood glucose values before glucose load (Omin) and 30 min, 60 min, 120 min, and 240 min after glucose load, respectively.
  • HepG 2 Human hepatocellular carcinoma cell line HepG 2 was provided by Dalian Medical University, and inoculated in DMEM medium containing 10% by volume of fetal bovine serum (addition of penicillin and streptomycin each 100 Ui- 1 ), and placed at 37 ° C containing 5% C0 2 in a cell culture incubator. HepG 2 cells were adherently grown, digested with 0.25% trypsin, subcultured every 3 days, and cells in logarithmic growth phase were used for experiments.
  • Disposition of sea cucumber N powder solution Dissolve in DMEM medium to prepare a mother liquor with a concentration of 1600 mg/L, and then dilute the mother liquor to the desired concentration according to the specific conditions.
  • Configuration of metformin solution Dissolved in DMEM medium at a concentration of 30 mg/L.
  • the monolayer cultured HepG 2 cells were digested with 0.25% trypsin, and a single cell suspension was prepared from DMEM medium containing 10% fetal bovine serum. The cell concentration was adjusted to Sx l O ⁇ ml 1 , and the total amount per well was 20 ( ⁇ L Inoculate in a 96-well cell culture plate. Incubate in an incubator at 37 ° C, 5% C0 2 for 8 h to form a single layer of adherent cells. After washing the cells twice with DMEM containing no fetal bovine serum, Using a culture containing S xl O ⁇ mol 1 insulin The culture medium was incubated at 37 ° C in a 5% C0 2 incubator for 16 ho. This was used as a model cell for HepG 2 cells incubated with insulin-containing medium for 16 h.
  • the prepared cell suspension was counted, and the cell concentration was adjusted to 5 ⁇ 10 4 ⁇ ⁇ .
  • the cells were seeded in a 96-well cell culture plate, and each group was provided with 8 replicate wells, each of which was 200 ⁇ M.
  • the experiment was divided into 5 groups: normal control group, insulin resistance model group, compound sea cucumber preparation high and low dose group and metformin positive control group. Except the normal control group, the other groups were incubated with the final concentration of Sx lO ⁇ moH 1 insulin for 16 h to induce insulin resistance.
  • the cells were incubated with the insulin-free medium, and each of the administration groups was incubated with a final concentration of a compound sea cucumber preparation 2.5 g_lA compound sea cucumber preparation 5.0 g_lA metformin 30 mg 1 in a culture medium. After 24 hours of administration, the glucose in the culture solution was detected by glucose oxidase method, and the sugar contained in the unrecovered cells was used.
  • the mean value is subtracted and the glucose consumption of each well cell is calculated.
  • the GPO-POD enzymatic method was used to determine the glycerol content in the culture solution, and the average glycerol content in the unrecovered cell blank was subtracted, and the glycerol consumption of each well cell was calculated.
  • the MTT stock solution of Sg.L and the serum-free DMEM medium were mixed into MTT medium in a volume of 1:9.
  • the culture solution was removed, and MTT culture solution was added to each well, 37 °. C continued the culture, and the culture was terminated after 4 hours, and the culture supernatant in the well was carefully aspirated, 200 L of dimethyl sulfoxide was added per well, and the crystal was shaken for 10 min to dissolve the crystal at a wavelength of 570 nm in a microplate reader.
  • the absorbance values of the respective wells were measured, and the % survival of the cells was calculated to evaluate the effect of the drug on cell proliferation.
  • Type group ⁇ 40 ⁇ .00 .00 .00 .31 2.57 ⁇

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Description

说 明 书 复方海参制剂及其制备方法 技术领域
本发明属于来源于软体动物的提取物和植物的医药配制品, 涉及到酶的应 用和多糖的提取技术, 以及配制品的剂型的制备。
背景技术
海参, 是我国的海味八珍之一, 其滋补价值为人们所公认。 其中海参多糖 是海参中最为重要的活性成分, 具有多种生理活性, 根据实验研究表明, 海参 多糖在对抗心脑血管方面疾病的效果显著。 将海参纳米化后, 直接进行开发, 不仅可充分利用海参多糖等重要的活性成分, 同时, 可将海参蛋白、 脂质等成 分共同进行充分利用。
三七为云南南部特产的人参属植物, 根茎肉质如姜块状, 民间用于治疗跌打 损伤、 活血祛瘀等疾患。 三七的主要功能成分是三七总皂苷, 在医药保健领域 有广泛的应用, 医药企业利用三七这种特殊的功效, 研制开发了很多如云南白 药、 血塞通系列、 复方丹参滴丸、 片仔癀等知名药品。 其中, 以三七总皂苷为 原料制成的药物通称 "血塞通", 目前市场上有血塞通粉针、血塞通片、血塞通胶 囊、 血塞通颗粒等。 血塞通是全国医院急诊科室必备中成药, 也主要用于心脑 血管方面的疾病。
现代科技发展已经确定了海参和三七的活性成分和对人体的作用, 而且有 相当数量的药品、 保健品生产和上市。 但是目前对于利用海参和三七等各自的 特点进行复配能否起到更为有利人体健康作用, 是当前重要研究课题。
海参复方制剂, 目前市场基本还属于空白, 仅有少数如专利 200710114414.7 复方海参糖肽口服液, 其是利用海参, 配以蜂王桨以及中药提取液而开发的一 种复方海参口服液, 其针对人群不清, 效果不明确。
发明内容
本发明的目的在于利用低分子化后的海参纳米粉提取的多糖, 直接配以三 七或三七皂苷提取物, 开发一种比单用海参或三七更好治疗和保健效果的产品。
本发明的技术方案是将海参先进行胶化处理, 胶化处理的海参在冷冻干燥 后逐步经粗粉碎、 超微粉碎、 纳米粉碎成纳米颗粒, 纳米海参颗粒经酶解和分 离制得提取物(有效成分: 海参多糖),用海参提取物与三七皂甙进行复配而成。 本方面的具体操作步骤为:
( 1 ) 原料处理: 将剪开、 清洗干净鲜活海参或水发海参置于密闭容器中; 鲜活海参将其剪开, 取出内脏, 将其分别充分清洗干净, 可以仅是用海参体壁, 也可以连同海参内脏一起绞碎, 置于密闭容器中。 鲜活海参或水发海参品种为 海刺参、 叶瓜参等常见食用海参; 所述水发海参为干海参、 半干海参或盐渍海 参进行水发或脱盐水发而成。
(2 )加热胶化:加热,温度为 70〜130°C,时间为 lmii!〜 20h。优选 100〜105°C, lh。
(3 )冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分小于 10%。 为了利于后 续的粉碎过程, 干燥后得水分越低越好, 优选水分小于 3%。
(4 ) 粗粉碎: 将冷冻干燥后的海参进行粗粉碎。 粗粉碎选择的设备以功率 大的为佳, 粉碎时间很短, 一般在 l〜20min内可以得到细度为 10〜300目不等的 海参粉。
( 5 ) 超微粉碎: 将粗粉碎的海参粉用气流粉碎机进行超微粉碎, 粉碎细度 为 100〜3000目的海参超微粉。
( 6 ) 纳米粉碎: 将经过气流粉碎的海参超微粉用高能球磨粉碎机进行纳米 化粉碎, 粉碎时间为 4〜20h, 优选 10〜12h, 细度可达到 10〜 1000nm。 其中用 X-射线检测粒度分布, 在 0〜300nm范围, 它的平均粒径是 100〜200nm。
(7 ) 酶解及分离: 纳米海参粉与水以 1 : 3〜10质量比加水溶解, 按纳米海 参粉: 蛋白酶为 lg:0.1〜1010mg的比例加入蛋白酶在相应的 pH值下于 40〜70°C 进行 l〜5h的酶解, 而后加温灭酶, 0〜10°C高速离心, 取上清液; 酶解所选用 的蛋白酶可以是各种酶, 如菠萝蛋白酶, 木瓜蛋白酶, 碱性蛋白酶, 中性蛋白 酶, 风味蛋白酶, 胰蛋白酶等, 同时可以是单种酶酶解, 也可以是选用两种或 两种以上的蛋白酶进行酶解。 优选纳米海参粉末与水按照 1 : 7的比例进行混匀, 用碱性蛋白酶 Acalase与胰酶进行双酶解。酶解温度为 40〜70°C,先将 pH调为 7〜 8 , 按照纳米海参粉末与酶的质量比(1克: 0.1〜10mg)加入碱性蛋白酶 Acalase, 进行酶解 0.1h〜5h后, 将 pH调节到 8〜10, 按照纳米海参粉末与酶的质量比 (1 克: 10mg〜1000mg)加入胰蛋白酶进行 2次酶解 0.1〜5h ,酶解温度为 40〜70°C。 酶反应结束后将酶解反应液于 90〜100°C加热 l〜20min灭酶。将酶解产物进行过 滤离心分离, 取酶解上清液, 将上清液进行干燥处理, 即得纳米海参粉提取物。 ( 8 ) 纳米海参提取物与三七总皂甙提取物按照纳米海参提取物: 三七总皂 甙提取物为 99%~70%: 1%~30%的比例进行混合。
该产品为一种灰白色或浅棕或棕色粉末, 其主要活性成分为海参多糖和三 七总皂甙(以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 2.5%~8.0%, 三 七总皂甙含量为 0.3%~21%。
混合后即可制成各种型剂, 如胶囊、 片剂、 冲剂等。
根据目前的研究显示, 海参多糖不仅具有抗凝功能, 同时可以从骨髓动员 肝细胞的能力, 而三七总皂甙则可促进被动员的干细胞转化或分化为新生的心 肌细胞或脑细胞, 以替代因缺血而引发的心肌或脑组织的坏死。 纳米海参和三 七总皂甙复合制剂在药理作用上可起到互补和协同, 海参多糖对血小板促聚的 副作用, 可以通过与三七总皂甙的复合剂而得以消除。 利用低分子化后的海参 纳米粉进行提取后, 直接配以三七总皂甙提取物, 能够大大提高海参或三七单 一组方的药理功能, 可用于抗凝、 糖尿病等多种药用用途。
具体实施方式
一. 复合海参制剂的制造
实施例 1
( 1 )原料处理: 将鲜活海刺参剪开, 取出内脏, 将海参体壁分别充分清洗干净, 置于密闭容器中。
(2) 胶化: 将上述容器于 70〜80°C, 加热 20h。
(3 ) 真空冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分为 0.1%。
(4) 粗粉碎: 将冷冻干燥后的海参进行粗粉碎。 得到细度为 10〜300目不等的 海参粉。
(5 ) 超微粉碎: 将粗粉碎的海参粉用气流粉碎机进行超微粉碎, 得到粉碎细度 为 100〜3000目的海参超微粉。
(6) 纳米粉碎: 将经过气流粉碎的海参超微粉用高能球磨粉碎机进行纳米化粉 碎, 粉碎时间为 4h。
(7)酶解: 将纳米海参粉末与水(重量比)按照比例 1 : 3的比例加入后, 搅匀, 加入菠萝蛋白酶按照纳米海参粉末与菠萝蛋白酶酶的质量比 lg:10mg, pH6— 7, 酶解温度为 40 °C,进行酶解 5h后,酶反应结束后将酶解反应液于 90°C加热 20min。 将酶解产物进行离心分离, 取酶解上清液, 直接进行干燥后, 即得纳米海参提 取物。 (8) 纳米海参提取物与三七总皂甙提取物按照纳米海参提取物: 三七总皂甙提 取物为 99%: 1%的比例进行混合。
产品为一种浅棕色粉末, 其主要活性成分为海参多糖和三七总皂甙 (以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 7.8% , 三七总皂甙含量为 0.5%。
本实施例产品进行了小鼠灌胃对凝血时间参数 TT、 RT的影响的效果实验。 其结果见表 1.
将其装入胶囊, 每囊 0.3克。
实施例 2
( 1 ) 原料处理: 将鲜活叶瓜参剪开, 取出内脏, 将海参体壁, 内脏分别充分清 洗干净, 一起置于密闭容器中。
(2) 胶化: 将上述容器于 80〜90°C, 加热 15h。
(3 ) 真空冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分为 1%。
(4) 粗粉碎: 将冷冻干燥后的海参进行粗粉碎。 得到细度为 10〜300目不等的 海参粉。
(5 ) 超微粉碎: 将粗粉碎的海参粉用气流粉碎机进行超微粉碎, 得到粉碎细度 为 100〜3000目的海参超微粉。
(6) 纳米粉碎: 将经过气流粉碎的海参超微粉用高能球磨粉碎机进行纳米化粉 碎, 粉碎时间为 8h。
(7)酶解: 将纳米海参粉末与水(重量比)按照比例 1 : 4的比例加入后, 搅匀, 加入碱性蛋白酶按照纳米海参粉末与碱性蛋白酶的质量比 lg:0.5mg, pH7〜8, 酶解温度为 65°C,进行酶解 2h后,酶反应结束后将酶解反应液于 95°C加热 15min。 将酶解产物进行离心分离, 取酶解上清液, 直接进行干燥后, 即得纳米海参提 取物。
(8) 纳米海参提取物与三七总皂甙提取物按照纳米海参提取物: 三七总皂甙提 取物为 90%: 10%的比例进行混合。
该产品为一种浅棕色粉末, 其主要活性成分为海参多糖和三七总皂甙 (以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 4.6% , 三七总皂甙含量为 6.2%。
用单纯海参纳米粉与本实施例产品对小鼠进行不同途径给药后对 TT值和 RT值的影响, 结果见表 2. 混合后制成胶囊, 每囊 0.3克。
实施例 3
(1) 原料处理: 取干海刺参, 在水中浸泡软后, 将体壁剪开, 清洗干净, 置于 密闭容器中。
(2) 胶化: 将上述容器于 90〜100°C, 加热 10h。
(3) 真空冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分为 3%。
(4) 粗粉碎、 (5) 超微粉碎与 (6) 纳米粉碎均同实施例 2。
(7)酶解: 将纳米海参粉末与水(重量比)按照比例 1: 5的比例加入后, 搅匀, 加入胰蛋白酶按照纳米海参粉末与胰蛋白酶的质量比 lg:10mg, pH8〜9, 酶解温 度为 45°C, 进行酶解 5h后, 酶反应结束后将酶解反应液于 100°C加热 10min。 将 酶解产物进行离心分离, 取酶解上清液, 直接进行干燥后, 即得纳米海参提取
(8) 纳米海参提取物与三七总皂甙提取物 按照纳米海参提取物: 三七总皂甙 提取物为 80%: 20%的比例进行混合。
产品为棕色粉末, 其主要活性成分为海参多糖和三七总皂甙 (以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 6.3%, 三七总皂甙含量为 10.9%。
本实施例复方海参制剂对四氧嘧啶致实验性糖尿病小鼠空腹血糖的影响进 行了实验, 结果见表 3.
混合后的粉末制成胶囊, 每囊 0.3克。
实施例 4
(1) 原料处理: 取盐渍干海刺参, 在水中除去海参体内的盐分, 浸泡软后, 将 体壁剪开, 清洗干净, 置于密闭容器中。
(2) 胶化: 将上述容器于 100〜105°C, 加热 5h。
(3) 真空冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分为 5%。
(4) 粗粉碎与 (5) 超微粉碎均同实施例 2。
(6) 纳米粉碎将经过气流粉碎的海参超微粉用高能球磨粉碎机进行纳米化粉 碎, 粉碎时间为 12h。
(7)酶解: 将纳米海参粉末与水(重量比)按照比例 1: 6的比例加入后, 搅匀, 加入中性蛋白酶按照纳米海参粉末与中性蛋白酶的质量比 lg:lmg, pH6.7〜7, 酶解温度为 50°C,进行酶解 lh后,酶反应结束后将酶解反应液于 100°C加热 5min。 将酶解产物进行离心分离, 取酶解上清液, 直接进行干燥后, 即得纳米海参提 取物。
( 8 ) 纳米海参提取物与三七总皂甙提取物 按照纳米海参提取物: 三七总皂甙 提取物为 70%: 30%的比例进行混合。
产品为一种棕色粉末, 其主要活性成分为海参多糖和三七总皂甙 (以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 5.4% , 三七总皂甙含量为 15.2%。
混合后的粉末制成胶囊, 每囊 0.3克。
实施例 5
( 1 ) 原料处理: 取盐渍干海刺参, 浸泡软后, 在 90〜100°C在水加热 lh, 将体 壁剪开, 清洗干净, 用纯净水除去海参体内的盐分, 同时起到发制海参的作用。 置于密闭容器中。
(2) 胶化: 将上述容器于 105〜110°C, 加热 2h。
(3 ) 真空冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分为 7%。
(4) 粗粉碎与 (5 ) 超微粉碎同实施例 1。
(6) 纳米粉碎: 将经过气流粉碎的海参超微粉用高能球磨粉碎机进行纳米化粉 碎, 粉碎时间为 16h。
(7)酶解: 将纳米海参粉末与水(重量比)按照比例 1 : 7的比例加入后, 搅匀, 加入碱性性蛋白酶按照纳米海参粉末与碱性蛋白酶的质量比 lg:0.1mg, pH7〜8, 酶解温度为 65°C, 进行酶解 3h后, 再将温度调整为 45°C, 加入胰蛋白酶, 加入 胰蛋白酶按照纳米海参粉末与胰酶的重量比 lg: 10mg,pH 8〜9, 进行酶解 3h, 酶 反应结束后将酶解反应液于 100°C加热 10min。 将酶解产物进行离心分离, 取酶 解上清液, 直接进行干燥后, 即得纳米海参提取物。
( 8 ) 纳米海参提取物与三七总皂甙提取物 按照纳米海参提取物: 三七总皂甙 提取物为 80%: 20%的比例进行混合。
产品为一种棕色粉末, 其主要活性成分为海参多糖和三七总皂甙 (以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 4.4% , 三七总皂甙含量为 7.9%。
混合后按照原料: 辅料为 2: 1的比例制成片剂。
实施例 6
( 1 ) 原料处理: 取干叶瓜参, 浸泡软后, 将体壁剪开, 清洗干净。 置于密闭容 器中。
(2) 胶化: 将上述容器于 110〜120°C, 加热 lh。
(3 ) 真空冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分为 9%
(4) 粗粉碎与 (5 ) 超微粉碎均同实施例 1。
(6) 纳米粉碎: 将经过气流粉碎的海参超微粉用高能球磨粉碎机进行纳米化粉 碎, 粉碎时间为 18h。
(7)酶解: 将纳米海参粉末与水(重量比)按照比例 1 : 8的比例加入后, 搅匀, 加入碱性性蛋白酶按照纳米海参粉末与碱性蛋白酶的质量比 lg:0.1mg, pH7〜8, 酶解温度为 65°C, 进行酶解 lh后, 再加入碱性蛋白酶, 加入碱性蛋白酶按照纳 米海参粉末与碱性蛋白酶的质量比 lg:0.1mg,pH 7〜8, 温度 65°C, 进行酶解 3h, 酶反应结束后将酶解反应液于 100°C加热 10min。 将酶解产物进行离心分离, 取 酶解上清液, 直接进行干燥后, 即得纳米海参提取物。
( 8 ) 纳米海参提取物与三七总皂甙提取物 按照纳米海参提取物: 三七总皂甙 提取物为 90%: 10%的比例进行混合。
产品为一种棕色粉末, 其主要活性成分为海参多糖和三七总皂甙 (以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 2.6% , 三七总皂甙含量为 3.2%。
混合后按照原料: 辅料为 1 : 1的比例制成冲剂。
实施例 7
( 1 ) 原料处理: 取鲜活海刺参, 去除内脏后, 将海参体壁清洗干净, 置于密闭 容器中。
(2) 胶化: 将上述容器于 120〜130°C, 加热 10min。
(3 ) 真空冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分为 10%。
(4) 粗粉碎与 (5 ) 超微粉碎均同实施例 1。
(6) 纳米粉碎: 将经过气流粉碎的海参超微粉用高能球磨粉碎机进行纳米化粉 碎, 粉碎时间为 20h。
(7) 酶解: 将纳米海参粉末与水 (重量比) 按照比例 1 : 10的比例加入后, 搅 匀, 加入中性性蛋白酶按照纳米海参粉末与中性性蛋白酶的质量比 lg:0.8mg, pH6.7〜7, 酶解温度为 50°C, 进行酶解 lh后, 再加入碱性蛋白酶, 加入碱性蛋 白酶按照纳米海参粉末与碱性蛋白酶的质量比 lg:l mg,pH 7〜8, 温度 65°C, 进 行酶解 lh, 再将温度调整为 45°C, 加入胰蛋白酶, 加入胰蛋白酶按照纳米海参 粉末与胰酶的质量比 lg:10mg,pH 8〜9, 进行酶解 lh, 酶反应结束后将酶解反应 液于 100°C加热 10min。 将酶解产物进行离心分离, 取酶解上清液, 直接进行干 燥后, 即得纳米海参提取物。
( 8 ) 纳米海参提取物与三七总皂甙提取物 按照纳米海参提取物: 三七总皂甙 提取物为 95%: 5%的比例进行混合。
产品为一种棕色粉末, 其主要活性成分为海参多糖和三七总皂甙 (以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 7.5% , 三七总皂甙含量为 3.2%。
混合后的粉末制成胶囊, 每囊 0.3克。
实施例 8
( 1 ) 原料处理: 取鲜活海刺参, 去除内脏后, 将海参体壁清洗干净, 置于密闭 容器中。
(2) 胶化: 将上述容器于 105〜110°C, 加热 40min。
(3 ) 真空冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分为 9%。
(4) 粗粉碎、 (5 ) 超微粉碎与 (6) 纳米粉碎均同实施例 7。
(7)酶解: 将纳米海参粉末与水(重量比)按照比例 1 : 9的比例加入后, 搅匀, 加入碱性蛋白酶, 加入碱性蛋白酶按照纳米海参粉末与碱性蛋白酶的质量比 lg:10 mg,pH 7〜8, 温度 65°C, 进行酶解 lh, 再将温度调整为 45°C, 加入胰蛋白 酶, 加入胰蛋白酶按照纳米海参粉末与胰酶的质量比 lg: 100mg,pH 8〜9, 进行酶 解 lh, 酶反应结束后将酶解反应液于 100°C加热 10min。 将酶解产物进行离心分 离, 取酶解上清液, 直接进行干燥后, 即得纳米海参提取物。
( 8) 纳米海参提取物与三七总皂甙提取物 按照纳米海参提取物: 三七总皂甙 提取物为 80%: 20%的比例进行混合。
产品为一种棕色粉末, 其主要活性成分为海参多糖和三七总皂甙 (以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 3.3% , 三七总皂甙含量为 6.8%。
混合后的粉末按照原料: 辅料为 1 : 1的比例制成冲剂。
实施例 9
( 1 ) 原料处理: 取鲜活海参, 去除内脏后, 将海参体壁与内脏分别清洗干净, 置于密闭容器中。
(2) 胶化: 将上述容器于 100〜105°C, 加热 120min。 (3 ) 真空冷冻干燥: 将胶化后的海参进行冷冻干燥, 水分为 3%。
(4) 粗粉碎、 (5 ) 超微粉碎与 (6) 纳米粉碎均同实施例 7。
(7)酶解: 将纳米海参粉末与水(重量比)按照比例 1 : 6的比例加入后, 搅匀, 加入碱性蛋白酶,加入碱性蛋白酶按照纳米海参粉末与碱性蛋白酶的质量比 lg:5 mg,pH 7〜8, 温度 65°C, 进行酶解 lh, 再将温度调整为 45°C, 加入胰蛋白酶, 加入胰蛋白酶按照纳米海参粉末与胰酶的质量比 lg: 1000mg,pH 8〜9, 进行酶解 lh, 酶反应结束后将酶解反应液于 100°C加热 10min。 将酶解产物进行离心分离, 取酶解上清液, 直接进行干燥后, 即得纳米海参提取物。
( 8 ) 纳米海参提取物与三七总皂甙提取物 按照纳米海参提取物: 三七总皂甙 提取物为 90%: 10%的比例进行混合。
混合后按照原料: 辅料为 2: 1的比例制成片剂。
产品为一种棕色粉末, 其主要活性成分为海参多糖和三七总皂甙 (以 Rl+Rbl+Rgl成分总含量来计算), 海参多糖含量为 4.7% , 三七总皂甙含量为 4.1%。
二.纳米海参提取物与三七总皂甙提取物混合物的实验室效果实验。
1. 小鼠灌胃对凝血时间参数 TT、 RT的影响: 见表 1
表 1. 小鼠灌胃复方海参制剂 3天后对 ΤΤ及 RT的影响 (n=10, x±s) 组别 剂量 TT ( s) TT延长% RT ( s) RT延长%
NS 5.64±0.62 12.8±10.2
复方海参制
0.3g/kg 7.08±0.64*** 25.5 67.0±8.5*** 423.4 剂
复方海参制
0.15g/kg 6.56±0.53*** 16.3 50.3±11.3*** 293.0 剂
注: Ρ<0.001与生理盐水组比较
2.单纯海参纳米粉与复方海参制剂小鼠不同途径给药后对 TT值和 RT值的影响:
(1)小鼠: 昆明种, 雄性, 体重 23~25g。
(2)凝血酶时间 (TT) 的测定:
依次在血凝仪测定杯中加入待测血桨 5(^L, 0.1mol/LpH7.4Tris-HCL缓冲液和 5u/ml的凝血酶溶液各 50μΙ^, 加入凝血酶溶液的同时血凝仪开始自动记录凝血时 间。 自加入凝血酶溶液至凝血形成这段时间被记录为血桨凝血酶凝结时间, 简 称凝血酶时间。
( 复钙时间 (RT) 的测定: 在血凝仪测定杯中加入待测血浆 1 OO L, 再加入 0.025mol/L的 CaCl2溶液 ΙΟΟμΙ^, 加入 CaCl2溶液的同时血凝仪开始自动记录凝血时间即复钙时间。
(4)动物实验
①小鼠尾静脉注射给药:
精确称取海参纳米粉或复方海参制剂 lOOmg, 加蒸馏水 5ml, 以 2800r/min旋 混 30秒, 然后以 3000r/min离心 15分钟, 取上清夜即海参纳米粉或复方海参制剂 的水提物备用。
昆明种小鼠 45只, 随机分为三组, 即生理盐水组、 纳米海参粉组, 复方海参制 剂组, 每组 15只。 生理盐水组由尾静脉注射生理盐水 O.lml/lOg体重, 海参纳米 粉组和复方海参制剂组分别尾静脉注射上述配制的海参水提物 O.lml/lOg体重, 注射 15分钟后小鼠眼球采血 0.45ml,加入 0.05ml3.8%枸橼酸钠抗凝,再加入 0.2ml 生理盐水, 混匀
后 3000r/min离心 10min, 取上清液测定其 TT及 RT值。
②小鼠腹腔注射给药:
昆明种小鼠 18只, 随机分为三组, 即生理盐水组、 海参纳米粉组和复方海 参制剂组, 每组 6只。 生理盐水组腹腔注射生理盐水 0.2ml/10g体重, 海参纳米粉 组和复方海参制剂组分别腹腔注射 50mg/ml的海参普通及纳米粉混悬液 0.2ml/10g体重, 腹腔注射 30分钟后小鼠眼球采血 0.45ml, 加入 0.05ml3.8%枸橼酸 钠抗凝, 再加入 0.2ml生理盐水, 混匀后 3000r/min离心 10min, 取上清液测定其 TT及 RT值。
③小鼠灌胃给药:
昆明种小鼠 60只, 随机分为六组, 即生理盐水组, 海参纳米粉组和复方海 参制剂组各两组, 分别灌胃给药一周和两周, 每组 10只。 生理盐水组灌胃生理 盐水 0.2ml/10g体重,海参纳米粉组和复方海参制剂组分别灌胃 50mg/ml的海参纳 米粉和复方海参制剂混悬液 0.2ml/10g体重, (lg/kg体重), 每日 2次, 末次灌胃 1 小时后小鼠眼球采血 0.45ml, 加入 0.05ml3.8%枸橼酸钠抗凝, 再加入 0.2ml生理 盐水, 混匀后 3000r/min离心 10min, 取上清液测定其 TT及 RT值。
(5)结果
如表 2所示, 小鼠尾静脉注射、 腹腔注射及两周灌胃给药后, 海参纳米粉组 与 NS组比较 RT值分别延长了 1259.46%、 236.54%和 284.04%,复方海参制剂组与 NS组比较 RT值分别延长了 1895.95%、 698.08%和 717.02%,且均具有统计学意义 (PO.Ol),复方海参制剂的 RT延长较纳米粉的 RT延长更为显著; 复方海参制剂组 RT值较纳米粉组分别延长了 46.82%、 137.14%和 112.74%,且两者之间差异具统计 学意义 (P<0.01)。 与 NS组比较, 注射给药及口服后 TT值虽有延长趋势, 但无统 计学意义 (P>0.05)。小鼠一周灌胃给药后,海参纳米粉组和复方海参制剂组与 NS 比较 RT值均显著延长, 分别延长了 641.18%和 905.88%, 且具有统计学意义; 纳 米粉组虽较普通粉组 RT延长了 35.71%,但两者之间差异无统计学意义(P>0.05 )。 其实验详细总结见表 2:
表 2. 小鼠不同途径给药后 TT值及 RT值的影响
NS 组 纳米海参粉 复方海参制剂
给药 TT RT TT RT RT延长 TT RT RT延长 RT延长 途径 ( %, 与 (%,与 NS
NS 组 比 组比较) 粉组比较) 较)
静 脉 18.4 7.4 23.8 100.6** 15.6 147.74
注射 Δ
士 士 士 士 1259.46 士 士 1895.95 46.82
6.1 1.8 8.3 19.6 2.4 32.0 腹腔 15.7 5.2 24.7 17.5** 25.5 41.5*4
注射 士 士 士 士 236.54 士 士 698.08 137.14
0.8 1.5 2.3 3.1 2.5 2.2 灌胃 14.7 5.1 18.2 37.8** 19.1 51.3*4
一周 士 士 士 士 641.18 士 士 905.88 35.71
7.0 1.9 7.4 36.3 7.6 38.3 灌胃 13.8 9.4 18.5 36.1* 18.2 76.8*
两周 士 士 士 士 284.04 士 士 717.02 112.74
6.2 8.9 5.0 34.6 3.6 42.1
*P<0.05与生理盐水组比较; **P<0.01与与生理盐水组比较; ΔΡΟ.01与纳米粉组比较
3. 复方海参制剂对四氧嘧啶致实验性糖尿病小鼠空腹血糖的影响:
A. 实验的设计:
A-1.小鼠高血糖模型建立: 取雄性, 18-22g昆明种小鼠, 随机取其中 10只为 正常对照组。其余小鼠于禁食(不禁水) 16h后,经尾静脉注射四氧嘧啶 50mg/kg, 稳定 15天后测定小鼠空腹 5h的血糖值 (FPG) , FPG>10mmol/L的小鼠即为高血 糖模型小鼠。
A-2. 动物分组及给药: 正常对照组小鼠 10只。 取高血糖小鼠 40只, 随机分为高血 糖模型组、 复方海参制剂高剂量(0.5g/kg)组、 复方海参制剂低剂量(0.25g/kg) 组和阳性对照药二甲双胍 200mg/kg组。
复方海参制剂高剂量组和复方海参制剂低剂量组小鼠分别灌胃给予 0.025g/mL和 0.0125g/mL复方海参制剂生理盐水混悬液 0.2mL/10gBW, 二甲双胍 200mg/kg组小鼠灌胃给予 lOmg/mL二甲双胍生理盐水溶液 0.2mL/10gBW, 正常 对照组和高血糖模型组小鼠灌胃给予等容量生理盐水。 各组小鼠均每日给药 2次
(b.i.d. ) , 连续给药 4周。
A-3. FBG测定: 以德国罗氏优越 IV型血糖仪测定各组小鼠给药第 7、 14、 21和 28 天空腹 5h的血糖值 (FPG) , 并记录小鼠体重。
B. 复方海参制剂对四氧嘧啶致实验性糖尿病小鼠糖耐量的影响:
小鼠高血糖模型的建立、 动物分组及给药方法均同上所述。 各组小鼠于给 药第 28天以德国罗氏优越 IV型血糖仪测定空腹 5h的血糖值 (FPG) 后, 经腹腔注 射给予葡萄糖 2g/kg, 测定葡萄糖负荷后 30min、 60min、 120min和 240min血糖值, 并按梯形面积法如下式计算糖耐量曲线下面积 (AUC ) :
n-l Q + C
AUC (mmol-h/L) = J 1 ^ i+1 · At
式中, C为血糖值 (mmol/L) , t为葡萄糖负荷后时间 (h) , i为血糖值序号;
C。、 d、 C2、 C3、 C4分别为葡萄糖负荷前(Omin)及葡萄糖负荷后 30min、 60min、 120min和 240min的血糖值。
C. 复方海参制剂对胰岛素抵抗 HepG2细胞模型的作用:
C-1.细胞株
人肝癌细胞株 HepG2由大连医科大学提供, 接种于含 10%体积分数胎牛血清 的 DMEM培养基中 (补充青霉素、链霉素各 lOO Ui—1 ) ,置于 37 °C含有 5% C02 的 细胞培养箱中培养。 HepG2细胞呈贴壁生长, 采用 0.25%胰酶进行消化, 每 3 d传 代 1次, 取对数生长期的细胞用于实验。
C-2.溶液的配置
海参 N粉溶液的配置: 用 DMEM培养液溶解, 配成浓度为 1600mg/ L的母液, 再根据具体情况将此母液等比稀释成所需的浓度。
二甲双胍溶液的配置: 用 DMEM培养液溶解, 浓度为 30mg/L。
C-3.胰岛素抵抗 HepG2细胞模型的建立
用 0.25%胰酶消化单层培养 HepG2细胞, 以含 10%胎牛血清的 DMEM培养液 制成单个细胞悬液, 调整细胞浓度至 Sx l O^ml 1,每孔总量 20(^L接种于 96孔细胞 培养板。 于培养箱 37 °C, 5% C02 条件下孵育 8 h, 使之形成单层贴壁细胞。 以 不含胎牛血清的 DMEM培养液洗涤细胞 2 次后,用含有 S x l O^mol 1胰岛素的培 养液于 37 °C , 5% C02 培养箱中孵育细胞 16 ho 此以含胰岛素培养液孵育 16h的 HepG2细胞即为模型细胞。
C-4.分组、 给药及指标测定
将制备好的细胞悬液计数,调整细胞浓度至 5χ 104·ηιΐ 接种于 96孔细胞培养 板,每组设 8个复孔,每孔总量 200μΙ^。实验分 5组:正常对照组、胰岛素抵抗模型组、 复方海参制剂高、 低剂量组和二甲双胍阳性对照组。 除正常对照组外,其余各组 在培养液中加入终浓度为 Sx lO^moH 1胰岛素后孵育 16 h以造成胰岛素抵抗模 型。 造模后细胞换不含胰岛素的培养液孵育, 各给药组分别以终浓度为复方海 参制剂 2.5g_lA 复方海参制剂 5.0g_lA 二甲双胍 30 mg 1的培养液孵育。 给药 24 h后, 用葡萄糖氧化酶法检测培养液中葡萄糖,以未接种细胞空白复孔的糖含
% K
量均值相减,计算各孔细胞的葡萄糖消耗量。用 GPO-POD酶法测定培养液中甘油 的含量, 以未接种细胞空白复孔的甘油含量均值相减,计算各孔细胞的甘油消耗
C-5. MTT法测定药物对细胞增殖的影响
将 Sg.L 的 MTT原液与无血清 DMEM培养液按体积 1 :9配成 MTT培养液, 待 细胞葡萄糖消耗试验和甘油消耗实验结束待测培养液移出后,每孔加入 MTT培养 液, 37 °C继续培养, 4h后终止培养,并小心吸弃孔内的培养上清液,每孔加 200 L 二甲基亚砜,震荡 10min, 使结晶物充分溶解, 于波长 570nm下, 在酶标仪中测定 各孔的吸光度值, 计算细胞的存活%以评价药物对细胞增殖的影响。 ¾体药
后重天
D. 结果:
D-1 复方海参制剂对四氧嘧啶致实验性糖尿病小鼠空腹血糖的影响
表 3 复方海参制剂对四氧嘧啶致实验性糖尿病小鼠空腹血糖的影响
(n=10, x± s )
空腹血糖 (FPG, mmol/L)
药后 7天 药后 14天 药后 21天 ί后 28天
IT夂 At IT夂 At IT夂/ α
降低 降低 降低 降低
FPG FPG FPG FPG
% % % % g
7.18± 6.91± 7.19± 7.35± 38.12 空白对照组
0.74 0.83 0.58 0.62 ±1.70 24.01 29.65 30.05 30.16 25.64 高血糖模型
±3.02 ±2.07 ±2.07 ±2.40 ±4.10 组 Δ Δ Δ Δ Δ
18.80 24.59 21.18 20.72 31.76 二甲双胍 21.7 29.5 31.3
±2.77 ±4.17 ±3.12 ±3.03 ±1.74 200mg/kg % % % 23.62
复方海参制 21.54 10.3 26.79 21.4 28.6
9.6% ±2.86
齐 IJ 0.5g/kg ±3.58 % ±2.21 % % 复方海参制
剂 0.25g/kg
Figure imgf000015_0001
注: 与高血糖模型组相比 *p<0.05, **p<0.01, 与空白对照组相比 Δρ<0.01
D-2复方海参制剂对卜 O四氧嘧啶致实验性糖尿病小鼠糖耐量的影响
表 4. 复方海参制剂对四氧嘧啶致实验性糖尿病小鼠糖耐量的影响 (n=10, x ± s) 糖负荷
糖负荷后血糖 (mmol/L)
空腹血 曲线下 糖 面积
AUC降
Figure imgf000015_0002
0 /0 mmol/L 30min 60min 120min 240min
) mmol-h/
L)
空白对照 7.35±0. 20.40±2 19.22±4 10.37±2 6.86±0. 48.87±7
组 62 .42 .08 .31 46 .00
高血糖模 30.16±2 33.30±0 33.30±0 33.30±0 30.47±2 129.59士
型组 ·40Δ .00 .00 .00 .31 2.57Δ
二甲双胍 20.72±3 31.68±2 31.19±3 27.43±4 20.49±2 106.05士
18.2% 200mg/kg .03** .78 .42 .37 .58 12.0**
复方海参 33.30±0
21.54±3 33.30±0 30.59±3 20.94±3 113.84±
制剂 .00 12.2%
•43** .00 .37 .68 7.73**
0.5g/kg j ra
复方海参
25.00±4 33.30±0 33. Λ Λ 3.25±0 28.63±1 126.38士
制剂 2.5%
.00 .16 .98 2.42
0-25g/kg
注: 与高血糖模型组相比 *p〈0. 05, **p〈0. 01, 与空白对照组相比 Δρ〈0. 01
D-3 复方海参制剂对胰岛素抵抗 HepG2细胞葡萄糖消耗量及甘油消耗量的影响: 见表 5、 6:
表 5 复方海参制剂对体外胰岛素抵抗 HepG2细胞糖消耗量及甘油消耗量影响 葡萄糖消
葡萄糖消耗量 甘油消耗量 甘油消耗 组别 耗
(mmol/L) (mmol/L)
增加%
空白对照组 3.60±0.27 0.51±0.05
模型组 1.32±0.13 A 0.15±0.01 A
二甲双胍
2.83±0.14** 115.10% 0.39±0.02** 165.97%
30mg/L
复方海参制剂
2.59±0.15** 96.60% 0.38±0.02** 162.82%
2.5g/L 2.82±0.15** 114.24% 0.39±0.02** 167.02% 注: 与模型组相比 *p<0.05, **p<0.01 ; 与空白对照组相比 Ap<0.01 表 6复方海参制剂对体外胰岛素抵抗 11 02细胞增殖的影响 组别 细胞存活% 细胞增长%
空白对照组 100±0
模型组 98.72±1.37A -1.28% 二甲双胍 30mg/L 100.28±1.93Δ 0.28%
复方海参制剂 2.5g/L 104.17±6.78Δ 4.17%
复方海参制剂 5.0g/L 105.96±5.80* 5.96%
注: 与模型组相比 *ρ〈0. 05, Δρ〉0. 05, 与空白对照组相比 Αρ〉0. 05 由表 5和表 6可知, 复方海参制剂在浓度为 2. 5g/L和 5. Og/L时可使胰岛素抵 抗 11印^细胞的葡萄糖消耗量分别增加 96. 6%和 114. 2% (p〈0. 01 ) , 甘油消耗量分 别增加 162%和 167% (p〈0. 01 )。 在此浓度时, 细胞增殖仅为 4%_6%, 故可认为, 上述葡萄糖及甘油消耗量的增加不是由于细胞的增殖所致, 而主要是复方海参 制剂中活性成分对糖代谢生化过程的直接影响所致。

Claims

权 利 要 求 书
1、 一种复方海参制剂, 其特征在于主要由 99~70wt%纳米海参提取物和 l~30wt%三七总皂甙提取物组成;产品为一种灰白色或浅棕或棕色粉末,海参多 糖含量为 2.5~8.0wt%, 三七总皂甙含量为 0.3~21.0wt%;
所述纳米海参提取物是按如下步骤提取:
( 1 ) 原料处理: 将剪开、 清洗干净鲜活海参或水发海参置于密闭容器中;
(2 ) 加热胶化: 温度为 70〜130°C, 胶化 lmii!〜 20h;
(3 ) 冷冻干燥: 将胶化后的海参进行冷冻干燥, 至水分小于 10wt%;
(4)粗粉碎:将冷冻干燥后的海参进行粗粉碎, l〜20min得到细度为 10〜300 目不等的海参粉;
( 5 ) 超微粉碎: 将粗粉碎的海参粉用气流粉碎机进行超微粉碎, 粉碎细度 为 100〜3000目的海参超微粉;
( 6 ) 纳米粉碎: 将经过气流粉碎的海参超微粉用高能球磨粉碎机进行纳米 化粉碎, 粉碎时间为 4〜20h, 细度可达到 10〜1000nm;
(7 ) 酶解及分离: 纳米海参粉与水以 1 : 3〜10质量比加水溶解, 按纳米海 参粉: 蛋白酶为 lg: 0.1〜1010mg的比例加入蛋白酶在相应的 pH值下于 40〜70°C 进行 l〜5h的酶解, 而后加温灭酶, 0〜10°C高速离心, 取上清液进行干燥处理, 即得纳米海参粉提取物;
( 8 ) 纳米海参提取物与三七总皂甙提取物按照纳米海参提取物: 三七总皂 甙提取物为 99~70wt%: l~30wt%的比例进行混合。
2、 根据权利要求 1所述复方海参制剂, 其特征在于制品为含有纳米海参提 取物和三七总皂甙提取物的胶囊、 片剂和冲剂。
3、 根据权利要求 1所述复方海参制剂, 其特征在于所述鲜活海参或水发海 参品种为海刺参或叶瓜参; 所述水发海参为干海参、 半干海参或盐渍海参。
4、 如权利要求 1所述复方海参制剂的制备方法, 其特征在于具体步骤为:
( 1 ) 原料处理: 将剪开、 分清洗干净鲜活海参或水发海参置于密闭容器中;
(2 ) 加热胶化: 温度为 70〜130°C, 胶化 lmii!〜 20h;
(3 ) 冷冻干燥: 将胶化后的海参进行冷冻干燥, 至水分小于 10wt%;
(4) 粗粉碎: 将冷冻干燥后的海参进行粗粉碎, l〜20min得到细度为 10〜 300目不等的海参粉; ( 5 ) 超微粉碎: 将粗粉碎的海参粉用气流粉碎机进行超微粉碎, 粉碎细度 为 100〜3000目的海参超微粉;
( 6 ) 纳米粉碎: 将经过气流粉碎的海参超微粉用高能球磨粉碎机进行纳米 化粉碎, 粉碎时间为 4〜20h, 细度可达到 10〜1000nm;
(7 ) 酶解及分离: 纳米海参粉与水以 1 : 3〜10质量比加水溶解, 按纳米海 参粉: 蛋白酶为 lg: 0.1〜1010mg的比例加入蛋白酶在相应的 pH值下于 40〜70°C 进行 l〜5h的酶解, 而后加温灭酶, 0〜10°C高速离心, 取上清液进行干燥处理, 即得纳米海参粉提取物;
( 8 ) 纳米海参提取物与三七总皂甙提取物按照纳米海参提取物: 三七总皂 甙提取物为 99~70wt%: l~30wt%的比例进行混合。
5、 根据权利要求 4所述复方海参制剂的制备方法, 其特征在于步骤 (1 ) 中 的鲜活海参或水发海参品种为海刺参或叶瓜参; 所述水发海参为干海参、 半干 海参或盐渍海参进行水发或脱盐水发而成。
6、 根据权利要求 4所述复方海参制剂的制备方法 , 其特征在于步骤 (2 ) 加 热胶化为: 100〜105°C, lho
7、 根据权利要求 4所述复方海参制剂的制备方法, 其特征在于步骤 (3 ) 冷 冻干燥至水分小于 3%。
8、 根据权利要求 4所述复方海参制剂的制备方法, 其特征在于步骤 (7 ) 酶 解及分离中酶解所选用的蛋白酶为菠萝蛋白酶, 木瓜蛋白酶, 碱性蛋白酶, 中 性蛋白酶, 风味蛋白酶, 胰蛋白酶中 1~3种酶解。
9、 根据权利要求 4所述复方海参制剂的制备方法, 其特征在于步骤 (7 ) 酶 解及分离为:
纳米海参粉末与水按照 1 : 7的质量比例进行混匀, 用碱性蛋白酶 Acalase与胰 酶进行双酶解: 酶解温度为 40〜70°C, 先将 pH调为 7〜8, 按照纳米海参粉末与 酶的质量比为 1克: 0.1〜10mg加入碱性蛋白酶 Acalase,进行酶解 0.1h〜5h后, 将 pH调节到 8〜10, 按照纳米海参粉末与酶的质量比为 1克: 10mg〜1000mg加入胰 蛋白酶进行 2次酶解 0.1〜5h , 酶解温度为 40〜70°C, 酶反应结束后灭酶, 后将 酶解产物进行过滤离心分离, 取酶解上清液进行干燥处理, 得纳米海参粉提取
PCT/CN2011/071475 2010-12-14 2011-03-03 复方海参制剂及其制备方法 WO2012079310A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/576,961 US8927523B2 (en) 2010-12-14 2011-03-03 Compound sea cucumber preparation and manufacturing method thereof
CA2787154A CA2787154C (en) 2010-12-14 2011-03-03 A compound sea cucumber preparation and manufacturing method thereof
EP11842462.1A EP2514432B1 (en) 2010-12-14 2011-03-03 Sea cucumber compound preparation and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010586833.2 2010-12-14
CN2010105868332A CN102008528B (zh) 2010-12-14 2010-12-14 复方海参制剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2012079310A1 true WO2012079310A1 (zh) 2012-06-21

Family

ID=43838989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071475 WO2012079310A1 (zh) 2010-12-14 2011-03-03 复方海参制剂及其制备方法

Country Status (5)

Country Link
US (1) US8927523B2 (zh)
EP (1) EP2514432B1 (zh)
CN (1) CN102008528B (zh)
CA (1) CA2787154C (zh)
WO (1) WO2012079310A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110353197A (zh) * 2018-03-26 2019-10-22 大连凯林生物科技有限公司 海参肠粉和海参肠营养液及其制备方法
CN111838524A (zh) * 2020-07-10 2020-10-30 大连工业大学 一种复配代餐粉及其制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731675A (zh) * 2012-07-16 2012-10-17 大连海晏堂生物有限公司 叶瓜参多糖a及其在制备防治糖尿病药物中的应用
CN103704713A (zh) * 2014-01-06 2014-04-09 大连海晏堂生物有限公司 一种海参降血脂功能保健食品及其制备方法
CN103936877B (zh) * 2014-04-24 2017-01-11 湖州康企药业有限公司 一种从乌贼墨囊中提取粘多糖的方法
CN104877035B (zh) * 2015-03-24 2017-07-21 中国计量学院 一种具有降糖作用的黑木耳多糖的制备方法
CN113201562A (zh) * 2015-03-26 2021-08-03 浙江泰利森药业有限公司 一种将海参酶解成多种氨基酸的工艺
CN106137896B (zh) * 2015-04-15 2019-04-30 (株)新韩Eco 一种利用刺参制备功能性原料的方法
CN104814462A (zh) * 2015-04-29 2015-08-05 合肥不老传奇保健科技有限公司 一种速溶木瓜粉修饰的冰冻复合体冻干速溶海参冲剂及其制备方法
CN106726812A (zh) * 2015-11-20 2017-05-31 威海市养元多鲜食海参有限公司 一种海参果蔬面膜
CA3052765C (en) * 2017-02-09 2022-07-12 Altregen Co.,Ltd. Composition comprising composite extract from ginseng/red ginseng and sea cucumber as effective ingredient for preventing or treating bruch's membrane hypofunction-related disease
CN107164441A (zh) * 2017-05-18 2017-09-15 华南理工大学 一种提高干海参蛋白与多糖提取率的方法
CN108523029A (zh) * 2017-12-15 2018-09-14 华南理工大学 一种含有叶瓜参提取物的具有延缓衰老功能的组合物及其应用
CN109430854B (zh) * 2018-09-18 2021-10-26 广东精核生物科技发展有限公司 一种保健品及其制备方法
CN109363157B (zh) * 2018-09-19 2021-08-17 广东精核生物科技发展有限公司 一种能降血糖和提高免疫力的营养品及其制备方法
CN111139278A (zh) * 2020-03-05 2020-05-12 山西原生肽科技有限公司 一种从海参中提取小分子肽的方法及其应用
CN111424067B (zh) * 2020-06-02 2023-04-07 好当家集团有限公司 一种低分量海参活性肽的提取方法
CN113925142A (zh) * 2020-07-14 2022-01-14 天津星宇航天生物科技有限公司 一种适合航天员调节三高和提高免疫力的营养配方及制备方法
CN114316077A (zh) * 2020-09-30 2022-04-12 牡丹江友搏药业有限责任公司 一种海参多糖的制备方法与应用
CN114316078A (zh) * 2020-09-30 2022-04-12 牡丹江友搏药业有限责任公司 一种海参多糖的制备方法与应用
CN113151389B (zh) * 2021-04-24 2023-06-30 长春中医药大学 一种人参糖肽及制备方法和医药用途
CN113186243A (zh) * 2021-06-23 2021-07-30 大洲新燕(厦门)生物科技有限公司 一种从海参内脏中提取出海参多肽的方法
CN113812409B (zh) * 2021-11-24 2022-03-01 山东科大创业生物有限公司 防治植物白粉病组合物及其制备方法、应用
CN114532499B (zh) * 2022-02-15 2023-03-14 中国海洋大学 一种具有良好贮藏稳定性的即食海参
CN115463166B (zh) * 2022-10-25 2023-06-16 湖南祥民制药有限公司 一种高纯度三七冻干粉的制备工艺
CN116250617A (zh) * 2022-12-14 2023-06-13 青岛琛蓝生物营养技术有限公司 一种海参胶原蛋白肽复方组合物及其制备方法与应用
CN117625582A (zh) * 2023-12-04 2024-03-01 山东助邦生物科技有限公司 来自海参组织蛋白酶l的改造酶及降低海参自溶的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007005349A2 (en) * 2005-06-29 2007-01-11 Coastside Bio Resources Improved method of processing sea cucumbers, with new compositions of matter
CN100432232C (zh) * 2005-04-30 2008-11-12 黑龙江红豆杉药业有限责任公司 自玉足海参中提取玉参多糖的方法
CN101416672A (zh) * 2007-10-27 2009-04-29 山东健人食品科技有限公司 双参糖果及其制备方法
CN101451157A (zh) * 2008-12-25 2009-06-10 大连海晏堂生物有限公司 一种低分子量海参多糖的制备方法
CN101143155B (zh) * 2006-09-15 2010-05-12 中国科学院大连化学物理研究所 一种双参组合物及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416747A (zh) * 2001-11-07 2003-05-14 焦柏忠 纳米级海参制品及制作方法
CN100998427B (zh) * 2006-12-31 2010-09-08 李朝武 一种活性海参粉的加工方法
CN101062339A (zh) * 2007-05-23 2007-10-31 魏荣祥 一种治疗糖尿病的药物
CN101433625A (zh) * 2007-11-12 2009-05-20 威海健方医药研究所 复方海参糖肽口服液
CN101411523B (zh) * 2008-11-14 2011-04-20 钱武刚 超声波萃取海参原液的方法
CN101700265B (zh) * 2009-11-20 2013-02-20 许淑清 三七及其提取物在制备治疗和/或预防糖尿病性微血管病变药物的用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432232C (zh) * 2005-04-30 2008-11-12 黑龙江红豆杉药业有限责任公司 自玉足海参中提取玉参多糖的方法
WO2007005349A2 (en) * 2005-06-29 2007-01-11 Coastside Bio Resources Improved method of processing sea cucumbers, with new compositions of matter
CN101143155B (zh) * 2006-09-15 2010-05-12 中国科学院大连化学物理研究所 一种双参组合物及其应用
CN101416672A (zh) * 2007-10-27 2009-04-29 山东健人食品科技有限公司 双参糖果及其制备方法
CN101451157A (zh) * 2008-12-25 2009-06-10 大连海晏堂生物有限公司 一种低分子量海参多糖的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2514432A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110353197A (zh) * 2018-03-26 2019-10-22 大连凯林生物科技有限公司 海参肠粉和海参肠营养液及其制备方法
CN111838524A (zh) * 2020-07-10 2020-10-30 大连工业大学 一种复配代餐粉及其制备方法

Also Published As

Publication number Publication date
US20120309710A1 (en) 2012-12-06
EP2514432A4 (en) 2014-07-09
CN102008528A (zh) 2011-04-13
EP2514432A1 (en) 2012-10-24
EP2514432B1 (en) 2017-05-10
CA2787154C (en) 2019-01-22
US8927523B2 (en) 2015-01-06
CA2787154A1 (en) 2012-06-21
CN102008528B (zh) 2012-01-25

Similar Documents

Publication Publication Date Title
WO2012079310A1 (zh) 复方海参制剂及其制备方法
CN102028730B (zh) 一种海参复方制品、制法及其在使用中的剂型
CN102153668B (zh) 一种抗癌的黄绿蜜环菌多糖及提取工艺
CN102872206A (zh) 一种提高免疫力、抗疲劳、改善性功能的中药复合物
CN105412353A (zh) 一种具有抗衰老、提高免疫力、抗疲保健功能的中药组合
CN103608024B (zh) 控制血糖、血脂及体重的药物组合物
CN102293927A (zh) 具有抗疲劳和抗氧化功能的复方中药制剂及其制备方法
CN101884783B (zh) 一种含有麦麸多肽的抗疲劳中药及其制备方法
CN105617355A (zh) 一种用于治疗心脑血管疾病的药物
CN103520318B (zh) 一种增强免疫功能的中药组合物及其制备方法
CN103705638B (zh) 一种缓解视疲劳的中药组合物及其制备方法
WO2023125797A1 (zh) 一种中药组合物及其制备方法与应用
CN104027471B (zh) 控制人体血糖和体重的保健食品及其制备工艺
CN102048890A (zh) 一种具有催乳作用的中药组合物及其制备方法
CN101697989B (zh) 三七及其提取物在制备治疗和/或预防冠状动脉粥样硬化药物的用途
CN107812115A (zh) 一种治疗糖尿病的中药组合物
CN103585456A (zh) 一种海参咀嚼片
TWI844079B (zh) 中藥組合物及其製備方法和應用
CN102631487B (zh) 提高免疫力、抗疲劳的中药组合物
CN110638996B (zh) 一种促进胰岛再生降糖复合物及其制备方法和用途
CN102631486B (zh) 一种保健组合物
KR101114006B1 (ko) 백화사설초 추출물을 함유하는 피부 미용 또는 성형 조성물
CN102048852A (zh) 治疗脑梗塞和缓解肢体痉挛的口服药物
CN105963356A (zh) 一种抗肝炎的药物
WO2015032016A1 (zh) 制备芦荟冻干粉针剂的方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2011842462

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011842462

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2787154

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13576961

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE