WO2012077188A1 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
WO2012077188A1
WO2012077188A1 PCT/JP2010/071927 JP2010071927W WO2012077188A1 WO 2012077188 A1 WO2012077188 A1 WO 2012077188A1 JP 2010071927 W JP2010071927 W JP 2010071927W WO 2012077188 A1 WO2012077188 A1 WO 2012077188A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
fuel
ecu
fdrv
vehicle
Prior art date
Application number
PCT/JP2010/071927
Other languages
English (en)
French (fr)
Inventor
正記 光安
浅原 則己
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP10860429.9A priority Critical patent/EP2650515A1/en
Priority to JP2012547622A priority patent/JP5387784B2/ja
Priority to PCT/JP2010/071927 priority patent/WO2012077188A1/ja
Priority to CN201080070552XA priority patent/CN103249932A/zh
Priority to US13/991,711 priority patent/US9206760B2/en
Publication of WO2012077188A1 publication Critical patent/WO2012077188A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period

Definitions

  • the present invention relates to a vehicle control device.
  • the engine control device described in Patent Document 1 as described above has room for further improvement, for example, in terms of returning from a more appropriate fuel cut state.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle control device capable of appropriately starting fuel supply when returning from a fuel cut state.
  • the vehicle control apparatus requires a required driving force and an actual actual driving force when returning from a state where the fuel supply to the combustion chamber of the internal combustion engine is cut off. Is equalized, the internal combustion engine is controlled to start supplying the fuel.
  • the vehicle control device may start supplying the fuel when a deviation between the required driving force and the actual driving force falls within a predetermined range set in advance.
  • the opening degree of the intake passage to the combustion chamber is increased as compared with a case where the fuel supply is not cut. Can be.
  • the vehicle control system and the vehicle control device according to the present invention have an effect that fuel supply can be appropriately started when returning from the fuel cut state.
  • FIG. 1 is a schematic configuration diagram of a vehicle to which the vehicle control system according to the embodiment is applied.
  • FIG. 2 is a flowchart for explaining an example of control by the ECU.
  • FIG. 3 is a time chart for explaining an example of control by the ECU.
  • FIG. 1 is a schematic configuration diagram of a vehicle to which the vehicle control system according to the embodiment is applied
  • FIG. 2 is a flowchart illustrating an example of control by the ECU
  • FIG. 3 is a time chart illustrating an example of control by the ECU. is there.
  • the vehicle control system 1 of this embodiment is a system for controlling the vehicle 2 mounted on the vehicle 2 as shown in FIG.
  • the vehicle control system 1 executes fuel cut control in which the ECU 5 cuts the supply of fuel to the combustion chamber 41a of the engine 41 while the vehicle 2 is traveling.
  • the vehicle control system 1 includes drive wheels 3, a drive device 4, and an ECU 5 as a vehicle control device.
  • the vehicle control apparatus demonstrated below is demonstrated as what is comprised by ECU5 which controls each part of the vehicle 2, it is not restricted to this, Even if the vehicle control apparatus and ECU5 are comprised separately. Good.
  • the drive device 4 has an engine 41 as an internal combustion engine, and the drive wheel 3 is rotationally driven by the engine 41. More specifically, the drive device 4 includes an engine 41, a torque converter 42, a transmission 43, a differential gear 44, and the like. In the drive device 4, a crankshaft 45 as an internal combustion engine output shaft of an engine 41 and a transmission input shaft 46 of a transmission 43 are connected via a torque converter 42, and a transmission output shaft 47 of the transmission 43 is connected to a differential gear. 44, the drive shaft 48 and the like, and connected to the drive wheel 3.
  • the engine 41 is a driving power source (prime mover) that causes the vehicle 2 to travel, and generates power that consumes fuel and acts on the drive wheels 3 of the vehicle 2.
  • air that is taken into the combustion chamber 41a via an intake passage 41b such as an intake pipe, an intake port, and the fuel supplied from the fuel injection valve 41c are burned in the combustion chamber 41a.
  • the engine 41 adjusts the throttle opening corresponding to the opening of the intake passage 41b by adjusting the throttle valve 41d provided in the intake passage 41b to adjust the amount of intake air taken into the combustion chamber 41a. be able to.
  • each part such as the fuel injection valve 41c and the throttle valve 41d is controlled by the ECU 5.
  • the engine 41 shown in FIG. 1 is illustrated as a so-called port injection type that injects fuel into the intake port that forms the intake passage 41b, but is a so-called direct injection type that directly injects fuel into the combustion chamber 41a. May be.
  • the torque converter 42 When the lockup clutch is OFF (lockup OFF), the torque converter 42 amplifies the torque from the crankshaft 45 of the engine 41 by the fluid transmission unit, and the transmission input shaft 46 of the transmission 43. To communicate.
  • the torque converter 42 transmits the power from the crankshaft 45 of the engine 41 with the same torque through the lockup clutch as the transmission input shaft of the transmission 43. 46.
  • the transmission 43 shifts the rotational power (rotational output) from the engine 41 input to the transmission input shaft 46 at a predetermined gear ratio and transmits it to the transmission output shaft 47.
  • Each part of the torque converter 42, the transmission 43, and the like is controlled by the ECU 5 via a hydraulic control device.
  • the differential gear 44 transmits the power transmitted to the transmission output shaft 47 to each drive wheel 3 via each drive shaft 48.
  • the transmission 43 includes various types such as a stepped automatic transmission (AT), a continuously variable automatic transmission (CVT), a multimode manual transmission (MMT), a sequential manual transmission (SMT), and a dual clutch transmission (DCT).
  • AT stepped automatic transmission
  • CVT continuously variable automatic transmission
  • MMT multimode manual transmission
  • SMT sequential manual transmission
  • DCT dual clutch transmission
  • the known configuration can be used, and a so-called manual transmission (MT) may be used.
  • the ECU 5 controls the driving of each part of the vehicle 2 and is an electronic circuit mainly composed of a known microcomputer including a CPU, a ROM, a RAM, and an interface.
  • the ECU 5 includes an accelerator opening sensor 51 that detects an accelerator opening corresponding to an operation amount of an accelerator pedal, a throttle opening sensor 52 that detects a throttle opening, a vehicle speed sensor 53 that detects a vehicle speed that is the traveling speed of the vehicle 2, From various sensors such as an engine speed sensor 54 that detects the engine speed that is the speed of the crankshaft 45 of the engine 41 and an intake pressure sensor 55 that detects the pressure in the intake pipe that forms the intake passage 41b. An electric signal corresponding to the detection result is input.
  • the ECU 5 controls the engine 41, the torque converter 42, the transmission 43, and the like according to the input detection result, acquired information, and the like.
  • the ECU 5 can detect ON / OFF of an accelerator operation that is an acceleration requesting operation for the vehicle 2 by the driver based on a detection result by the accelerator opening sensor 51.
  • the vehicle control system 1 configured as described above can transmit the power generated by the engine 41 to the drive wheels 3 via the torque converter 42, the transmission 43, the differential gear 44, and the like. 2 can be driven by a driving force [N] generated on the contact surface with the road surface of the driving wheel 3.
  • the ECU 5 adjusts the throttle opening based on the accelerator opening, the vehicle speed, etc., adjusts the intake air amount to the engine 41, and controls the fuel injection amount in response to the change. Then, the output control of the engine 41 is performed by adjusting the amount of the air-fuel mixture filled in the combustion chamber 41a. Further, the ECU 5 performs shift control of the transmission 43 based on the accelerator opening, the vehicle speed, and the like.
  • the ECU 5 controls the fuel injection valve 41c under predetermined conditions while the vehicle 2 is traveling, and executes fuel cut control for cutting the supply of fuel to the combustion chamber 41a of the engine 41.
  • the ECU 5 executes fuel cut control when the accelerator opening detected by the accelerator opening sensor 51 is equal to or less than a predetermined value.
  • the vehicle control system 1 can suppress unnecessary fuel consumption and improve fuel consumption.
  • the ECU 5 controls the throttle valve 41d during the fuel cut, that is, when the fuel supply to the combustion chamber 41a is cut, compared with the case where the fuel supply is not cut. You may perform control which enlarges the throttle opening equivalent to the opening of the intake passage 41b to the combustion chamber 41a. Thereby, the vehicle control system 1 reduces the pumping loss by opening the throttle valve 41d during the deceleration fuel cut of the vehicle 2 to generate an appropriate engine braking force, or the torque accompanying the shift down of the transmission 43. Shock can be reduced.
  • the ECU 5 of the present embodiment returns from the state where the fuel supply to the combustion chamber 41a of the engine 41 is cut off, the required driving force required and the actual actual driving force become equal.
  • the fuel injection valve 41c of the engine 41 By controlling the fuel injection valve 41c of the engine 41 and starting the supply of fuel, the supply of fuel can be started properly when returning from the fuel cut state. That is, the ECU 5 realizes an appropriate fuel cut return by returning from the fuel cut state when the required drive force and the actual drive force are close to each other.
  • the ECU 5 typically calculates a required driving force [Fdrv-req], which is a driving force required by the driver, based on the accelerator opening related value and the vehicle speed related value.
  • the accelerator opening related value for example, accelerator opening [acc], throttle opening [ta], or the like can be used.
  • the vehicle speed [spd], the engine speed [Ne], the output speed of the transmission 43 (the speed of the transmission output shaft 47) [No], or the like can be used as the vehicle speed related value.
  • the ECU 5 is typically generated based on the intake pipe pressure-related value, the engine speed-related value, and the overall reduction ratio ⁇ in the power transmission system such as the transmission 43 and the differential gear 44.
  • An actual driving force [Fdrv-real] that is a driving force is calculated.
  • intake pipe pressure related value for example, intake pipe pressure [Pim], air flow meter [am], or the like can be used.
  • engine speed related value the engine speed [Ne], the vehicle speed [spd], the output speed [No] of the transmission 43, and the like can be used.
  • the reduction ratio ⁇ is determined according to the reduction ratio of the transmission 43, the differential ratio of the differential gear 44, and the like, for example.
  • the ECU 5 for example, the intake pipe pressure [Pim] detected by the intake pressure sensor 55, the engine speed [Ne] detected by the engine speed sensor 54, the reduction ratio ⁇ , and the tire radius of the drive wheel 3.
  • the ECU 5 determines whether or not the required driving force [Fdrv-req] and the actual driving force [Fdrv-real] are equal to each other, and the required driving force [Fdrv-req] and the actual driving force [Fdrv-real]. ] Is within a predetermined range set in advance.
  • the ECU 5 calculates the required driving force [Fdrv-req] and the actual driving force [ Assuming that Fdrv-real] is equivalent, the fuel injection valve 41c is controlled to start supplying fuel.
  • the ECU 5 determines that the required driving force [Fdrv ⁇ req] is actually It is determined that the driving force [Fdrv-real] has become equal, fuel supply is started, and the fuel cut state is restored.
  • the vehicle control system 1 configured as described above returns from a state in which the fuel supply to the combustion chamber 41a is cut off, for example, in an elapsed time (delay time) after the accelerator operation is turned on by the driver.
  • the ECU 5 can control the fuel injection valve 41c and start the supply of fuel. Therefore, when the ECU 5 returns from the state in which the fuel supply to the combustion chamber 41a is cut, when the ECU 5 makes the required driving force [Fdrv-req] equal to the actual driving force [Fdrv-real]. Since the fuel injection valve 41c is controlled and the fuel supply is started, the fuel supply can be appropriately started when returning from the fuel cut state.
  • the ECU 5 recovers from the fuel cut state when the required driving force [Fdrv-req] and the actual driving force [Fdrv-real] are close to each other, so that the driving force required by the driver and the driving generated when the fuel cut is restored. Since the difference from the force becomes small, the return shock felt by the driver when returning from the fuel cut can be reduced.
  • the ECU 5 when the ECU 5 returns from the state in which the fuel supply to the combustion chamber 41a is cut, for example, compared with a technique that provides a predetermined delay time (delay time) until the fuel supply is returned, It is possible to return from the fuel cut state with more responsiveness, and to properly return to the fuel cut according to the actual engine torque (intake pipe pressure, throttle opening, engine speed), the reduction ratio of the power transmission system, etc.
  • the return shock at the time can be reduced.
  • the ECU 5 can start the fuel supply at an optimal timing for every acceleration state from the slow acceleration to the sudden acceleration of the vehicle 2, and appropriately suppress the return shock for every acceleration state. it can.
  • the ECU 5 slowly increases the required driving force [Fdrv-req], so that the actual driving force [Fdrv-real] is the required driving force. After dropping to the vicinity of [Fdrv-req] and stabilizing sufficiently low, the fuel supply is started. As a result, the vehicle 2 generates a small torque corresponding to the return shock after the torque has decreased to a relatively small value and stabilized in the early stage of acceleration, so that the driver can experience this return shock. Can be difficult.
  • the ECU 5 quickly increases the required driving force [Fdrv-req], and thus the actual driving force [Fdrv-real] is to some extent.
  • the fuel supply is started at a relatively early stage when the state is large.
  • the vehicle 2 generates a large torque corresponding to the return shock after a relatively large torque is generated in the early stage of acceleration, so that it is difficult for the driver to experience this return shock. Can do.
  • the ECU 5 reduces the torque error actually generated with respect to the driver's accelerator operation feeling when returning from the state in which the fuel supply to the combustion chamber 41a is cut off. For example, it is possible to achieve both suppression of hesitation during slow acceleration of the vehicle 2 and suppression of shock during sudden acceleration of the vehicle 2. Further, the ECU 5 can start the fuel supply at an optimal timing without determining whether the vehicle 2 is accelerating from a slow acceleration to a sudden acceleration, for example. Can be reduced.
  • the engine 41 when the ECU 5 performs control to relatively increase the throttle opening during fuel cut as described above, the pumping loss can be reduced, but the intake pipe pressure Pim is increased by opening the throttle valve 41d. As a result, the engine 41 has a large amount of air in the intake passage 41b. For this reason, the engine 41 supplies a large amount of air into the combustion chamber 41a even when the ECU 5 is controlled to reduce the throttle opening in order to generate the required driving force required by the driver when returning from the fuel cut. It will be in the state. When the engine 41 resumes the supply of fuel to the combustion chamber 41a in a state where a large amount of air is supplied to the combustion chamber 41a as described above, the engine 41 generates an actual driving force that exceeds the required driving force.
  • the ECU 5 of this embodiment controls the fuel injection valve 41c when the required driving force [Fdrv-req] and the actual driving force [Fdrv-real] become equal when returning from the fuel cut state. Since the fuel supply is started, for example, even when the throttle opening is controlled to be relatively large during the fuel cut, the pumping loss is reduced and the shock that occurs when the fuel cut is restored is appropriate. Can be reduced.
  • control routines are repeatedly executed at a control cycle of several ms to several tens of ms.
  • the ECU 5 controls the throttle valve 41d as the throttle fully open control during F / C.
  • the throttle opening [ta] is made fully open or maintained fully open (ST2)
  • the current control cycle is terminated, and the next control cycle is started.
  • the throttle valve 41d is controlled by the throttle valve 41d as the throttle fully closed control at the time of F / C return.
  • the opening degree [ta] is set to be fully closed or is maintained fully closed (ST3).
  • the ECU 5 calculates the required driving force [Fdrv-req] and the actual driving force [Fdrv-real], and calculates the ratio [k] (ST4).
  • the ECU 5 is based on, for example, the intake pipe pressure [Pim] detected by the intake pressure sensor 55, the engine speed [Ne] detected by the engine speed sensor 54, the reduction ratio ⁇ , and the tire radius of the drive wheels 3.
  • the actual driving force [Fdrv-real] corresponds to the intake pipe pressure estimated driving force [Fdrv-pim] estimated from the intake pipe pressure [Pim].
  • the ECU 5 determines whether or not the ratio [k] calculated in ST4 is within the range of 0.80 to 1.2 (ST5).
  • the fuel cut return control is performed by setting the FCUT flag to OFF (FCUT ⁇ OFF) and fuel injection.
  • the valve 41c is controlled to start supplying fuel (ST6), the current control cycle is terminated, and the next control cycle is started.
  • the fuel cut continuation control is performed by setting the FCUT flag to ON (FCUT ⁇ ON) and The supply cut is continued (ST7), the current control cycle is terminated, and the next control cycle is started.
  • the horizontal axis represents the time axis
  • the vertical axis represents the accelerator opening [acc], the idle signal, the intake pipe pressure [pim], the FCUT flag, the driving force [Fdrv], and the ratio [k].
  • the FCUT flag is ON, the idle signal is ON, and the intake pipe pressure [pim] is almost atmospheric pressure before the time t ⁇ b> 1 when the accelerator opening [acc] is 0%.
  • the fuel supply to the combustion chamber 41a is cut off.
  • the vehicle 2 turns off the idle signal by the ECU 5.
  • the intake pipe pressure [pim] decreases and the actual driving force [Fdrv-real] decreases.
  • the required driving force [Fdrv-req] increases and the ratio [k] decreases as the accelerator opening [acc] increases.
  • the vehicle 2 When the ratio [k] falls within the range of 0.80 or more and 1.2 or less at time t2, the vehicle 2 turns off the FCUT flag by the ECU 5 and starts supplying fuel to the combustion chamber 41a. Is done.
  • the ECU 5 when the fuel supply to the combustion chamber 41a of the engine 41 is restored from the cut state, the required driving force required and the actual actual driving force are equal. When this happens, the engine 41 is controlled to start supplying fuel. Therefore, the ECU 5 can appropriately start the supply of fuel when returning from the fuel cut state, and can reduce, for example, a return shock when returning from the fuel cut.
  • the vehicle described above is a so-called “hybrid vehicle” provided with a motor generator as an electric motor capable of generating electricity in addition to the engine 41 as a driving source for traveling, and the engine 41 is stopped and stopped under predetermined conditions during traveling. It may be a so-called “free-run S & S (stop and start) vehicle” that can be restarted.
  • the vehicle control device according to the present invention is suitable for application to vehicle control devices mounted on various vehicles.
  • Vehicle Control System Vehicle 3 Drive Wheel 4 Drive Device 5 ECU (Vehicle Control Device) 41 engine (internal combustion engine) 41a Combustion chamber 41b Intake passage 41c Fuel injection valve 41d Throttle valve 51 Accelerator opening sensor 52 Throttle opening sensor 53 Vehicle speed sensor 54 Engine speed sensor 55 Intake pressure sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 車両用制御装置(5)は、内燃機関(41)の燃焼室(41a)への燃料の供給をカットした状態から復帰する場合に、要求される要求駆動力と実際の実際駆動力とが同等になった際に、内燃機関(41)を制御し燃料の供給を開始することを特徴とすることから、燃料カット状態から復帰する際に適正に燃料の供給を開始することができる。車両用制御装置(5)は、要求される要求駆動力と実際の実際駆動力とが同等になった際として、例えば、要求駆動力と実際駆動力との偏差が予め設定される所定範囲内になった際に、燃料の供給を開始する。

Description

車両用制御装置
 本発明は、車両用制御装置に関する。
 従来の車両用制御装置として、例えば、特許文献1にはエンジンの燃焼室に対する燃料の供給をカットした状態から復帰する際に、燃料供給の復帰までのディレイ時間(遅延時間)として、アクセル開度に基づいて燃料カット復帰時間を決定するエンジン制御装置が開示されている。
特開2010-084611号公報
 ところで、上述のような特許文献1に記載のエンジン制御装置は、例えば、より適正な燃料カット状態からの復帰の点で、更なる改善の余地がある。
 本発明は、上記の事情に鑑みてなされたものであって、燃料カット状態から復帰する際に適正に燃料の供給を開始することができる車両用制御装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る車両用制御装置は、内燃機関の燃焼室への燃料の供給をカットした状態から復帰する場合に、要求される要求駆動力と実際の実際駆動力とが同等になった際に、前記内燃機関を制御し前記燃料の供給を開始することを特徴とする。
 また、上記車両用制御装置では、前記要求駆動力と前記実際駆動力との偏差が予め設定される所定範囲内になった際に、前記燃料の供給を開始するものとすることができる。
 また、上記車両用制御装置では、前記燃料の供給をカットした状態である場合に、前記燃料の供給をカットした状態でない場合と比較して、前記燃焼室への吸気通路の開度を大きくするものとすることができる。
 本発明に係る車両制御システム、車両用制御装置は、燃料カット状態から復帰する際に適正に燃料の供給を開始することができる、という効果を奏する。
図1は、実施形態に係る車両制御システムが適用される車両の概略構成図である。 図2は、ECUによる制御の一例を説明するフローチャートである。 図3は、ECUによる制御の一例を説明するタイムチャートである。
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。
[実施形態]
 図1は、実施形態に係る車両制御システムが適用される車両の概略構成図、図2は、ECUによる制御の一例を説明するフローチャート、図3は、ECUによる制御の一例を説明するタイムチャートである。
 本実施形態の車両制御システム1は、図1に示すように、車両2に搭載され、この車両2を制御するためのシステムである。この車両制御システム1は、ECU5が車両2の走行中にエンジン41の燃焼室41aへの燃料の供給をカットする燃料カット(フューエルカット)制御を実行するものである。
 具体的には、車両制御システム1は、図1に示すように、駆動輪3と、駆動装置4と、車両用制御装置としてのECU5とを備える。なお、以下で説明する車両用制御装置は、車両2の各部を制御するECU5によって構成されるものとして説明するが、これに限らず、車両用制御装置とECU5とが別個に構成されていてもよい。
 駆動装置4は、内燃機関としてのエンジン41を有し、このエンジン41により駆動輪3を回転駆動するものである。より詳細には、駆動装置4は、エンジン41、トルクコンバータ42、変速機43、デファレンシャルギヤ44等を含んで構成される。駆動装置4は、エンジン41の内燃機関出力軸としてのクランク軸45と変速機43の変速機入力軸46とがトルクコンバータ42を介して接続され、変速機43の変速機出力軸47がデファレンシャルギヤ44、駆動軸48などを介して駆動輪3に接続される。
 エンジン41は、車両2を走行させる走行用動力源(原動機)であり、燃料を消費して車両2の駆動輪3に作用させる動力を発生させる。エンジン41は、吸気管、吸気ポートなどの吸気通路41bを介して燃焼室41a内に吸気される空気と、燃料噴射弁41cから供給される燃料とが燃焼室41a内で燃焼することにより燃料のエネルギを機械的仕事に変換して出力する熱機関である。エンジン41は、吸気通路41bに設けられたスロットル弁41dが開閉駆動することで、吸気通路41bの開度に相当するスロットル開度を調節し、燃焼室41aに吸気される吸入空気量を調節することができる。エンジン41は、燃料噴射弁41c、スロットル弁41dなどの各部の動作がECU5によって制御される。なお、図1に示すエンジン41は、吸気通路41bをなす吸気ポートに燃料を噴射するいわゆるポート噴射式であるものとして図示しているが、燃焼室41aに直接燃料を噴射するいわゆる直噴式であってもよい。
 トルクコンバータ42は、ロックアップクラッチがOFF(ロックアップOFF)である場合に、エンジン41のクランク軸45からの動力を、流体伝達部によってトルクを増幅して、変速機43の変速機入力軸46に伝達する。トルクコンバータ42は、ロックアップクラッチがON(ロックアップON)である場合に、エンジン41のクランク軸45からの動力を、ロックアップクラッチを介してそのままのトルクで、変速機43の変速機入力軸46に伝達する。変速機43は、変速機入力軸46に入力されるエンジン41からの回転動力(回転出力)を所定の変速比で変速して変速機出力軸47に伝達する。トルクコンバータ42、変速機43等は、各部が油圧制御装置を介してECU5によって制御される。デファレンシャルギヤ44は、変速機出力軸47に伝達された動力を、各駆動軸48を介して各駆動輪3に伝達する。なお、変速機43は、例えば、有段自動変速機(AT)、無段自動変速機(CVT)、マルチモードマニュアルトランスミッション(MMT)、シーケンシャルマニュアルトランスミッション(SMT)、デュアルクラッチトランスミッション(DCT)など種々の公知の構成のものを用いることができ、また、いわゆる手動変速機(MT)であってもよい。
 ECU5は、車両2の各部の駆動を制御するものであり、CPU、ROM、RAM及びインターフェースを含む周知のマイクロコンピュータを主体とする電子回路である。ECU5は、アクセルペダルの操作量に相当するアクセル開度を検出するアクセル開度センサ51、スロットル開度を検出するスロットル開度センサ52、車両2の走行速度である車速を検出する車速センサ53、エンジン41のクランク軸45の回転数であるエンジン回転数を検出するエンジン回転数センサ54、吸気通路41bをなす吸気管内の圧力である吸気管圧力を検出する吸気圧センサ55等の種々のセンサから検出結果に対応した電気信号が入力される。ECU5は、入力された検出結果、取得情報等に応じて、エンジン41、トルクコンバータ42、変速機43等を制御する。ECU5は、例えば、アクセル開度センサ51による検出結果に基づいて、運転者による車両2に対する加速要求操作であるアクセル操作のON/OFFを検出することができる。
 上記のように構成される車両制御システム1は、エンジン41が発生させた動力をトルクコンバータ42、変速機43、デファレンシャルギヤ44などを介して駆動輪3に伝達することができ、この結果、車両2は、駆動輪3の路面との接地面に駆動力[N]が生じ、これにより走行することができる。
 ECU5は、例えば、通常の運転時においては、アクセル開度、車速等に基づいてスロットル開度を調整しエンジン41への吸入空気量を調節して、その変化に対応して燃料噴射量を制御し、燃焼室41aに充填される混合気の量を調節してエンジン41の出力制御を行う。また、ECU5は、アクセル開度、車速等に基づいて変速機43の変速制御を行う。 
 そして、ECU5は、車両2の走行中に、所定の条件下で、燃料噴射弁41cを制御して、エンジン41の燃焼室41aへの燃料の供給をカットする燃料カット制御を実行する。ECU5は、例えば、アクセル開度センサ51によって検出されるアクセル開度が所定の値以下である場合に、燃料カット制御を実行する。これにより、車両制御システム1は、不要な燃料消費を抑制し燃費を向上することができる。
 また、ECU5は、燃料カット中、すなわち、燃焼室41aへの燃料の供給をカットした状態である場合に、スロットル弁41dを制御して、燃料の供給をカットした状態でない場合と比較して、燃焼室41aへの吸気通路41bの開度に相当するスロットル開度を大きくする制御を行ってもよい。これにより、車両制御システム1は、車両2の減速燃料カット中に、スロットル弁41dを開くことでポンピング損失を低減し、適切なエンジンブレーキ力を生じさせたり、変速機43のシフトダウンに伴うトルクショックを低減したりすることができる。
 そして、本実施形態のECU5は、エンジン41の燃焼室41aへの燃料の供給をカットした状態から復帰する場合に、要求される要求駆動力と実際の実際駆動力とが同等になった際に、エンジン41の燃料噴射弁41cを制御し燃料の供給を開始することで、燃料カット状態から復帰する際に適正に燃料の供給を開始することができるようにしている。つまり、ECU5は、要求駆動力と実際駆動力とが近接したら燃料カット状態から復帰することで、適正な燃料カット復帰を実現している。
 ECU5は、典型的には、アクセル開度関連値と、車速関連値とに基づいて、運転者が要求する駆動力である要求駆動力[Fdrv-req]を算出する。アクセル開度関連値は、例えば、アクセル開度[acc]、スロットル開度[ta]等を用いることができる。車速関連値は、例えば、車速[spd]、エンジン回転数[Ne]、変速機43の出力回転数(変速機出力軸47の回転数)[No]等を用いることができる。ここでは、ECU5は、例えば、アクセル開度センサ51が検出するアクセル開度[acc]と、車速センサ53が検出する車速[spd]とに基づいて、要求駆動力[Fdrv-req]を算出する([Fdrv-req]=f(Acc、spd))。
 ECU5は、典型的には、吸気管圧力関連値と、エンジン回転数関連値と、変速機43、デファレンシャルギヤ44等の動力伝達系における総合の減速比γとに基づいて、実際に生じている駆動力である実際駆動力[Fdrv-real]を算出する。吸気管圧力関連値は、例えば、吸気管圧力[Pim]、エアフロメータ[am]等を用いることができる。エンジン回転数関連値は、エンジン回転数[Ne]、車速[spd]、変速機43の出力回転数[No]等を用いることができる。減速比γは、例えば、変速機43の減速比、デファレンシャルギヤ44のデフ比等に応じて定まる。ここでは、ECU5は、例えば、吸気圧センサ55が検出する吸気管圧力[Pim]と、エンジン回転数センサ54が検出するエンジン回転数[Ne]と、減速比γと、駆動輪3のタイヤ半径とに基づいて、実際駆動力[Fdrv-real]を算出する([Fdrv-real]=f(Pim、Ne、γ))。
 そして、ECU5は、要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]とが同等になったか否かの判定として、要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]との偏差が予め設定される所定範囲内になったか否かを判定する。ECU5は、要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]との偏差が予め設定される所定範囲内になった際に、要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]とが同等になったものとして、燃料噴射弁41cを制御し燃料の供給を開始する。
 より具体的には、ECU5は、要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]との偏差として、例えば、[Fdrv-real]/[Fdrv-req]を演算して比率[k]を算出する(k=[Fdrv-real]/[Fdrv-req])。ECU5は、比率[k]が予め設定される所定範囲内になった際、例えば、0.80≦k≦1.2を満たすようになった際に、要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]とが同等になったと判定し、燃料の供給を開始して、燃料カット状態から復帰する。
 上記のように構成される車両制御システム1は、燃焼室41aへの燃料の供給をカットした状態から復帰する場合に、例えば、運転者によるアクセル操作のONからの経過時間(遅延時間)等にかかわらず、要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]とが同等になった際に、ECU5が燃料噴射弁41cを制御し燃料の供給を開始することができる。したがって、ECU5は、燃焼室41aへの燃料の供給をカットした状態から復帰する場合に、ECU5が要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]とが同等になった際に、燃料噴射弁41cを制御し燃料の供給を開始することから、燃料カット状態から復帰する際に適正に燃料の供給を開始することができる。
 すなわち、ECU5は、要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]とが近接したら燃料カット状態から復帰することで、運転者が要求する駆動力と燃料カット復帰時に発生する駆動力との差が小さくなるため、燃料カット復帰時に運転者が感じる復帰ショックを低減することができる。さらに、ECU5は、燃焼室41aへの燃料の供給をカットした状態から復帰する場合に、例えば、燃料供給の復帰までの所定のディレイ時間(遅延時間)を設けるような技術等と比較して、より応答性よく燃料カット状態から復帰することができ、また、実際のエンジントルク(吸気管圧力、スロットル開度、エンジン回転数)や動力伝達系の減速比等に応じて、適正に燃料カット復帰時の復帰ショックを低減することができる。さらに言えば、ECU5は、車両2の緩加速から急加速まで、あらゆる加速状態に対して、最適なタイミングで燃料の供給を開始することができ、あらゆる加速状態に対して適正に復帰ショックを抑制できる。
 ECU5は、例えば、車両2が相対的に小さな加速度で緩加速する場合には、要求駆動力[Fdrv-req]がゆっくり増加することとなるため、実際駆動力[Fdrv-real]が要求駆動力[Fdrv-req]近傍まで低下し十分に低く安定した後に、燃料の供給を開始することとなる。この結果、車両2は、加速初期にトルクが相対的に小さな値まで低下して安定してから、復帰ショックに応じた小さなトルクが発生することとなるので、この復帰ショックを運転者に体感させにくくすることができる。
 また、ECU5は、例えば、車両2が相対的に大きな加速度で急加速する場合には、要求駆動力[Fdrv-req]がすばやく増加することとなるため、実際駆動力[Fdrv-real]がある程度大きな状態であるときに比較的にはやい段階で、燃料の供給を開始することとなる。この結果、車両2は、加速初期に相対的に大きなトルクが発生するのに続いて、復帰ショックに応じた大きなトルクが発生することとなるので、この復帰ショックを運転者に体感させにくくすることができる。
 この結果、ECU5は、車両2の加速時に、燃焼室41aへの燃料の供給をカットした状態から復帰する際に、運転者のアクセル操作感覚に対して実際に発生するトルクの感覚誤差を低減することができ、例えば、車両2の緩加速時のヘジテーションの抑制と、車両2の急加速時のショック抑制とを両立することができる。また、ECU5は、車両2の緩加速から急加速まであらゆる加速状態に対して、例えば、緩急の判定をすることなく、最適なタイミングで燃料の供給を開始することができるので、例えば、適合工数を削減することができる。
 特に、ECU5は、上記のように燃料カット中にスロットル開度を相対的に大きくする制御を行う場合、ポンピング損失を低減することができるものの、スロットル弁41dを開くことで吸気管圧力Pimが大気圧となり、これにより、エンジン41は、吸気通路41bに大量の空気が存在することとなる。このため、エンジン41は、燃料カット復帰時に運転者が要求する要求駆動力を発生させるために、ECU5がスロットル開度を小さくするように制御しても、燃焼室41a内に大量の空気が供給された状態となる。そして、エンジン41は、上記のように燃焼室41aに大量の空気が供給された状態で、燃焼室41aへの燃料の供給を再開してしまうと、要求駆動力以上の実際駆動力を発生させてしまうおそれがあり、これにより、復帰ショックが顕著になるおそれがある。しかしながら、本実施形態のECU5は、燃料カット状態から復帰する場合に要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]とが同等になった際に、燃料噴射弁41cを制御し燃料の供給を開始することから、例えば、燃料カット中にスロットル開度を相対的に大きくする制御を行った場合であっても、ポンピング損失を低減した上で、燃料カット復帰時に生じるショックを適正に低減することができる。
 次に、図2のフローチャートを参照してECU5による制御の一例を説明する。なお、これらの制御ルーチンは、数msないし数十ms毎の制御周期で繰り返し実行される。
 まず、ECU5は、減速燃料カット時判定として、種々のセンサの検出結果やトルクコンバータ42の動作状態等に基づいて、現在、燃料カット状態でFCUTフラグがONであり(FCUTフラグ=ON)、トルクコンバータ42のロックアップクラッチがON状態であり(L/U=ON)、かつ、アクセル開度[acc]が0%である(acc=0%)か否かを判定する(ST1)。ECU5は、例えば、アクセル開度センサ51等の種々のセンサの検出結果やトルクコンバータ42の動作状態等に基づいて、FCUTフラグ=ONであり、L/U=ONであり、かつ、acc=0%であるか否かを判定する。
 ECU5は、FCUTフラグ=ONであり、L/U=ONであり、かつ、acc=0%であると判定した場合(ST1:Yes)、F/C時スロットル全開制御として、スロットル弁41dを制御しスロットル開度[ta]を全開とし、あるいは全開を維持し(ST2)、現在の制御周期を終了し、次の制御周期に移行する。ECU5は、FCUTフラグ=OFF、L/U=OFF、あるいは、acc≠0%であると判定した場合(ST1:No)、F/C復帰時スロットル全閉制御として、スロットル弁41dを制御しスロットル開度[ta]を全閉とし、あるいは、全閉を維持する(ST3)。
 次に、ECU5は、比率算出制御として、要求駆動力[Fdrv-req]と実際駆動力[Fdrv-real]とを算出し、比率[k]を算出する(ST4)。ECU5は、例えば、アクセル開度センサ51が検出するアクセル開度[acc]と、車速センサ53が検出する車速[spd]とに基づいて、マップ等から要求駆動力[Fdrv-req]を算出する([Fdrv-req]=f(Acc、spd))。ECU5は、例えば、吸気圧センサ55が検出する吸気管圧力[Pim]と、エンジン回転数センサ54が検出するエンジン回転数[Ne]と、減速比γと、駆動輪3のタイヤ半径とに基づいて、実際駆動力[Fdrv-real]を算出する([Fdrv-real]=f(Pim、Ne)×減速比γ/タイヤ半径)。ここでは、この実際駆動力[Fdrv-real]は、吸気管圧力[Pim]から推定した吸気管圧力推定駆動力[Fdrv-pim]に相当する。そして、ECU5は、例えば、[Fdrv-real]/[Fdrv-req]を演算して比率[k]を算出する(k=[Fdrv-real]/[Fdrv-req])。
 次に、ECU5は、比率範囲判定制御として、ST4で算出した比率[k]が0.80以上1.2以下の範囲内であるか否かを判定する(ST5)。ECU5は、比率[k]が0.80以上1.2以下の範囲内であると判定した場合(ST5:Yes)、燃料カット復帰制御として、FCUTフラグをOFFとし(FCUT←OFF)、燃料噴射弁41cを制御し燃料の供給を開始し(ST6)、現在の制御周期を終了し、次の制御周期に移行する。ECU5は、比率[k]が0.80以上1.2以下の範囲外であると判定した場合(ST5:No)、燃料カット継続制御として、FCUTフラグをONとし(FCUT←ON)、燃料の供給のカットを継続し(ST7)、現在の制御周期を終了し、次の制御周期に移行する。
 次に、図3のタイムチャートを参照してECU5による制御の一例を説明する。図3では、横軸を時間軸、縦軸をアクセル開度[acc]、アイドル信号、吸気管圧力[pim]、FCUTフラグ、駆動力[Fdrv]、比率[k]としている。
 この例では、車両2は、アクセル開度[acc]が0%である時刻t1以前の期間では、FCUTフラグがON、アイドル信号がON、吸気管圧力[pim]がほぼ大気圧となっており、燃焼室41aへの燃料の供給がカットされた状態となっている。
 そして、車両2は、時刻t1にてアクセル操作がONされアクセル開度[acc]が大きくなると、ECU5によりアイドル信号がOFFとされる。そして、車両2は、吸気管圧力[pim]が低下すると共に実際駆動力[Fdrv-real]が低下する。一方、車両2は、アクセル開度[acc]の増加に伴って要求駆動力[Fdrv-req]が増加し、比率[k]が低下する。
 そして、車両2は、時刻t2にて比率[k]が0.80以上1.2以下の範囲内となった際にECU5によりFCUTフラグがOFFとされ、燃焼室41aへの燃料の供給が開始される。
 以上で説明した実施形態に係るECU5によれば、エンジン41の燃焼室41aへの燃料の供給をカットした状態から復帰する場合に、要求される要求駆動力と実際の実際駆動力とが同等になった際に、エンジン41を制御し燃料の供給を開始する。したがって、ECU5は、燃料カット状態から復帰する際に適正に燃料の供給を開始することができ、例えば、燃料カット復帰時の復帰ショックを低減することができる。
 なお、上述した本発明の実施形態に係る車両用制御装置は、上述した実施形態に限定されず、請求の範囲に記載された範囲で種々の変更が可能である。
 以上で説明した車両は、走行用駆動源として、エンジン41に加えてさらに、発電可能な電動機としてのモータジェネレータなどを備えたいわゆる「ハイブリッド車両」や走行中に所定条件下でエンジン41を停止及び再始動可能ないわゆる「フリーランS&S(ストップ&スタート)車両」であってもよい。
 以上のように本発明に係る車両用制御装置は、種々の車両に搭載される車両用制御装置に適用して好適である。
1  車両制御システム
2  車両
3  駆動輪
4  駆動装置
5  ECU(車両用制御装置)
41  エンジン(内燃機関)
41a  燃焼室
41b  吸気通路
41c  燃料噴射弁
41d  スロットル弁
51  アクセル開度センサ
52  スロットル開度センサ
53  車速センサ
54  エンジン回転数センサ
55  吸気圧センサ

Claims (3)

  1.  内燃機関の燃焼室への燃料の供給をカットした状態から復帰する場合に、要求される要求駆動力と実際の実際駆動力とが同等になった際に、前記内燃機関を制御し前記燃料の供給を開始することを特徴とする、
     車両用制御装置。
  2.  前記要求駆動力と前記実際駆動力との偏差が予め設定される所定範囲内になった際に、前記燃料の供給を開始する、
     請求項1に記載の車両用制御装置。
  3.  前記燃料の供給をカットした状態である場合に、前記燃料の供給をカットした状態でない場合と比較して、前記燃焼室への吸気通路の開度を大きくする、
     請求項1又は請求項2に記載の車両用制御装置。
PCT/JP2010/071927 2010-12-07 2010-12-07 車両用制御装置 WO2012077188A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10860429.9A EP2650515A1 (en) 2010-12-07 2010-12-07 Vehicle control device
JP2012547622A JP5387784B2 (ja) 2010-12-07 2010-12-07 車両用制御装置
PCT/JP2010/071927 WO2012077188A1 (ja) 2010-12-07 2010-12-07 車両用制御装置
CN201080070552XA CN103249932A (zh) 2010-12-07 2010-12-07 车辆用控制装置
US13/991,711 US9206760B2 (en) 2010-12-07 2010-12-07 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071927 WO2012077188A1 (ja) 2010-12-07 2010-12-07 車両用制御装置

Publications (1)

Publication Number Publication Date
WO2012077188A1 true WO2012077188A1 (ja) 2012-06-14

Family

ID=46206709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071927 WO2012077188A1 (ja) 2010-12-07 2010-12-07 車両用制御装置

Country Status (5)

Country Link
US (1) US9206760B2 (ja)
EP (1) EP2650515A1 (ja)
JP (1) JP5387784B2 (ja)
CN (1) CN103249932A (ja)
WO (1) WO2012077188A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8886437B2 (en) * 2011-04-12 2014-11-11 Honda Motor Co., Ltd. Cruise control method
US20150285202A1 (en) * 2014-04-02 2015-10-08 GM Global Technology Operations LLC Method and apparatus for controlling an internal combustion engine during autostop and autostart operations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215198A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2008231985A (ja) * 2007-03-19 2008-10-02 Toyota Motor Corp トルクディマンド型の内燃機関の制御装置
JP2010084611A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp エンジン制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562429B2 (ja) 2000-03-21 2004-09-08 日産自動車株式会社 ハイブリッド車両の制御装置
JP2003041959A (ja) 2001-08-01 2003-02-13 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP3724425B2 (ja) * 2002-01-18 2005-12-07 日産自動車株式会社 エンジンのシリンダ吸入空気量測定装置
US6832975B2 (en) * 2002-03-16 2004-12-21 Robert Bosch Gmbh Method for controlling an internal combustion engine
JP3611556B2 (ja) 2002-05-27 2005-01-19 本田技研工業株式会社 ハイブリッド車両の制御装置
JP4096820B2 (ja) 2003-06-12 2008-06-04 トヨタ自動車株式会社 車載内燃機関の制御装置
JP4453686B2 (ja) * 2006-07-24 2010-04-21 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP4618239B2 (ja) * 2006-12-11 2011-01-26 トヨタ自動車株式会社 内燃機関の制御装置
JP4548486B2 (ja) * 2008-01-09 2010-09-22 トヨタ自動車株式会社 内燃機関の制御装置
JP2010185382A (ja) * 2009-02-12 2010-08-26 Toyota Motor Corp 内燃機関の制御装置
JP5177578B2 (ja) * 2010-03-31 2013-04-03 アイシン・エィ・ダブリュ株式会社 制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215198A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2008231985A (ja) * 2007-03-19 2008-10-02 Toyota Motor Corp トルクディマンド型の内燃機関の制御装置
JP2010084611A (ja) * 2008-09-30 2010-04-15 Mazda Motor Corp エンジン制御装置

Also Published As

Publication number Publication date
EP2650515A1 (en) 2013-10-16
JP5387784B2 (ja) 2014-01-15
US9206760B2 (en) 2015-12-08
US20130253805A1 (en) 2013-09-26
CN103249932A (zh) 2013-08-14
JPWO2012077188A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP4265572B2 (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
US9500155B2 (en) Vehicle controller
JP3922549B2 (ja) 車両の制御装置
US7347803B2 (en) Drive apparatus for hybrid vehicle and control method and control device thereof
KR101371461B1 (ko) 하이브리드 차량의 엔진클러치의 토크전달 시작점 학습 제어 방법 및 시스템
US9050964B2 (en) Vehicle driving device and vehicle driving method
WO2012073834A1 (ja) ロックアップ装置およびその制御方法
US11041451B2 (en) Internal combustion engine control method and internal combustion engine control device
JP4232761B2 (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP7211190B2 (ja) ハイブリッド車両の制御装置
JP5617646B2 (ja) 車両制御装置
JP5293657B2 (ja) ハイブリッド車両の制御装置
JP5387784B2 (ja) 車両用制御装置
JP2008208729A (ja) 車両用のブレーキ負圧維持装置
JP5362936B1 (ja) 車両の制御装置
JP5936572B2 (ja) 車両制御装置
JP2009150513A (ja) 動力伝達装置の制御装置
JP2012167587A (ja) 車両の制御装置
JP2005030484A (ja) 自動変速機の制御装置
JP2014238101A (ja) 車両制御装置
JP5231948B2 (ja) エンジンの制御装置および制御方法
WO2019102541A1 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP5157832B2 (ja) 車両用制御装置
JP2004282852A (ja) ハイブリッド車両用動力源の制御装置
JP2008094346A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547622

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13991711

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010860429

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE