WO2012073466A1 - 基板、半導体装置および基板の製造方法 - Google Patents

基板、半導体装置および基板の製造方法 Download PDF

Info

Publication number
WO2012073466A1
WO2012073466A1 PCT/JP2011/006578 JP2011006578W WO2012073466A1 WO 2012073466 A1 WO2012073466 A1 WO 2012073466A1 JP 2011006578 W JP2011006578 W JP 2011006578W WO 2012073466 A1 WO2012073466 A1 WO 2012073466A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
substrate
manufacturing
forming
metal layer
Prior art date
Application number
PCT/JP2011/006578
Other languages
English (en)
French (fr)
Inventor
保明 三井
小野塚 偉師
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2012523153A priority Critical patent/JP5105030B2/ja
Priority to KR1020137016688A priority patent/KR20130129994A/ko
Publication of WO2012073466A1 publication Critical patent/WO2012073466A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components

Definitions

  • the present invention relates to a substrate, a semiconductor device, and a method for manufacturing the substrate.
  • PoP Package on Package
  • SiP System in Package
  • FCBGA Flexible Chip Ball Grid Array
  • FCCSP Package formats such as “Flip Chip Chip Scale Package”
  • the thermal expansion coefficient of the base material is larger than the thermal expansion coefficient of the semiconductor element, and the thermal expansion coefficient of the wiring is often larger than the thermal expansion coefficient of the base material.
  • the difference in thermal expansion coefficient generated between the portions generates stress in the wiring board and the semiconductor device. For this reason, when the base material is thinned, there is a problem that the stress caused by the difference in thermal expansion coefficient of each part becomes superior to the rigidity of the base material, and warpage is likely to occur.
  • connection position is shifted and a connection failure occurs, or the wiring layer in the semiconductor element is destroyed in the thermal shock test. Problems such as cracks occurring in the solder balls connecting the wiring board and the semiconductor element, and reliability are likely to occur.
  • Patent Document 1 realizes a low thermal expansion wiring board by using a composite layer made of copper and an iron-nickel alloy as a circuit conductor.
  • Patent Documents 2 and 3 examples of other techniques related to conductive metals include those described in Patent Documents 2 and 3.
  • the technique described in Patent Document 2 relates to a bimetal.
  • an iron-nickel (Fe—Ni) alloy layer formed by electroplating is used.
  • the technique described in Patent Document 3 relates to a separator material for a solid oxide fuel cell. Specifically, by adding at least one of Ti, Zr, and Hf to a Cr—W—Fe alloy, thermal expansion matching with stabilized zirconia and the like are realized.
  • the thermal expansion coefficient of the wiring provided on the wiring board may be relatively higher than the thermal expansion coefficient of other members such as a base material and a semiconductor element.
  • stress distortion occurs in the wiring board and the entire semiconductor device including the wiring board, and the wiring board and the semiconductor element may be warped after mounting the semiconductor element. .
  • a substrate Wiring provided on the base material and made of a first metal material; A wiring covering film made of a second metal material provided so as to cover at least an upper part and a side part of the wiring; With The first metal material has a lower coefficient of thermal expansion than the second metal material; The second metal material is provided with a substrate having an electric resistivity lower than that of the first metal material.
  • a semiconductor device comprising the above substrate and a semiconductor element mounted on the substrate.
  • a method for manufacturing the substrate comprising:
  • the wiring coating film made of the second metal material having a low electrical resistivity has a wiring structure formed on the surface side of the wiring having a low thermal expansion coefficient. For this reason, the thermal expansion coefficient of the wiring structure can be reduced. In addition, from the viewpoint of the skin effect, it is possible to effectively reduce the electrical resistivity of the wiring structure. Therefore, it is possible to realize a wiring structure having an excellent balance between the thermal expansion coefficient and the electrical resistivity.
  • FIG. 1 is a cross-sectional view showing a substrate 100 according to the first embodiment.
  • FIG. 7 is a sectional view showing a modification of the substrate 100 shown in FIG.
  • the substrate 100 includes a base material 30, a wiring 10, and a wiring coating film 20.
  • the wiring 10 is provided on the base material 30 via the wiring coating film 20.
  • the wiring 10 is made of a first metal material.
  • the wiring coating film 20 is provided so as to cover at least the upper part and the side part of the wiring 10.
  • the wiring coating film 20 is made of a second metal material.
  • the first metal material has a lower coefficient of thermal expansion than the second metal material.
  • the second metal material has a lower electrical resistivity than the first metal material.
  • the lower portion of the wiring 10 indicates a portion of the wiring 10 that faces the substrate 30. That is, the upper part of the wiring 10 indicates a part of the wiring 10 on the side opposite to the part facing the substrate 30.
  • the configuration of the substrate 100 will be described in detail.
  • the substrate 30 is, for example, a laminate in which at least one prepreg formed by impregnating the substrate with a resin composition, or a laminate, a laminate in which a metal foil is laminated on both sides or one side of the laminate,
  • the inner layer circuit board is formed by a laminated plate made of a laminate in which a prepreg or a resin sheet is laminated on one or both sides of the inner circuit board.
  • the metal foil is not particularly limited.
  • the prepreg is obtained by impregnating a base material with a resin composition to be described later. Thereby, a prepreg suitable for manufacturing a printed wiring board excellent in various characteristics such as dielectric characteristics, mechanical and electrical connection reliability under high temperature and high humidity can be obtained.
  • the base material is not particularly limited, but glass fiber base materials such as glass woven fabric and glass nonwoven fabric, polyamide resin fibers, aromatic polyamide resin fibers, polyamide resin fibers such as wholly aromatic polyamide resin fibers, polyester resin fibers, Synthetic fiber substrate, kraft paper, cotton linter composed of woven or non-woven fabric mainly composed of aromatic polyester resin fiber, polyester resin fiber such as wholly aromatic polyester resin fiber, polyimide resin fiber, fluororesin fiber, etc.
  • Examples thereof include organic fiber base materials such as paper base materials mainly composed of paper, mixed paper of linter and kraft pulp, and the like. Among these, a glass fiber base material is preferable.
  • strength of a prepreg can improve, a water absorption can be lowered
  • glass which comprises a glass fiber base material E glass, C glass, A glass, S glass, D glass, NE glass, T glass, H glass etc. are mentioned, for example.
  • E glass, S glass, D glass, and T glass are used, it is possible to achieve high elasticity of the glass fiber substrate and to reduce the thermal expansion coefficient.
  • Examples of the method of impregnating the base material with the resin composition include, for example, a method in which the resin composition of the present invention is dissolved in a solvent to prepare a resin varnish, the base material is immersed in the resin varnish, and a method in which coating is performed by various coaters. And a method of spraying with a spray. Among these, the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to a sheet-like base material can be improved. In addition, when a base material is immersed in a resin varnish, a normal impregnation coating equipment can be used.
  • the solvent used in the resin varnish desirably has good solubility in the resin component in the resin composition, but a poor solvent may be used as long as it does not have an adverse effect.
  • the solvent exhibiting good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve and carbitol.
  • the solid content in the resin varnish is not particularly limited, but is preferably 40 to 80% by weight, and particularly preferably 50 to 65% by weight. Thereby, the impregnation property to the fiber base material of the resin varnish can further be improved.
  • the base material 30 can be obtained by impregnating the fiber base material with the resin composition and drying at a predetermined temperature, for example, 80 to 200 ° C.
  • the resin composition includes, for example, a thermosetting resin and a filler.
  • the thermosetting resin include novolac type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, unmodified resole phenol resin, oil-modified resole phenol modified with tung oil, linseed oil, walnut oil, and the like.
  • Phenolic resin such as resol type phenolic resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Z Type epoxy resin, bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac epoxy resin, etc.
  • novolac type epoxy resin novolac type epoxy resin, biphenyl Epoxy resin, biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene type epoxy resin Epoxy resin such as resin, triazine ring resin such as urea (urea) resin, melamine resin, unsaturated polyester resin, bismaleimide resin, polyurethane resin, diallyl phthalate resin, silicone resin, resin having benzoxazine ring, norbornene series Examples thereof include resins, cyanate resins, benzocyclobutene resins, and bismaleimide triazine resins.
  • thermosetting resin among epoxy resins, cyanate resins (including prepolymers of cyanate resins), phenol resins, benzocyclobutene resins, and bismaleimide triazine resins is particularly preferable. Of these, cyanate resins are most preferred. Thereby, the thermal expansion coefficient of the base material 30 can be made small. Further, the substrate 30 is excellent in electrical characteristics (low dielectric constant, low dielectric loss tangent), mechanical strength, and the like.
  • the cyanate resin can be obtained, for example, by reacting a halogenated cyanide compound with a phenol and prepolymerizing it by a method such as heating as necessary.
  • bisphenols such as novolak type cyanate resin, naphthol type cyanate resin, dicyclopentadiene type cyanate resin, biphenyl aralkyl type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, etc.
  • Type cyanate resin is preferable. Thereby, the heat resistance improvement by an increase in a crosslinking density and flame retardances, such as a resin composition, can be improved.
  • novolak-type cyanate resin forms a triazine ring after the curing reaction. Furthermore, it is considered that novolak-type cyanate resin has a high benzene ring ratio due to its structure and is easily carbonized. As said novolak-type cyanate resin, what is shown, for example by Formula (1) can be used.
  • the average repeating unit n of the novolak type cyanate resin represented by the formula (1) is not particularly limited, but is preferably 1 to 10, and particularly preferably 2 to 7.
  • the average repeating unit n is less than the lower limit, the novolak cyanate resin has low heat resistance, and the low-mer may be desorbed and volatilized during heating.
  • melt viscosity will become high too much and the moldability of the base material 30 may fall.
  • the weight average molecular weight of the cyanate resin is not particularly limited, but a weight average molecular weight of 500 to 4,500 is preferable, and 600 to 3,000 is particularly preferable. If the weight average molecular weight is less than the lower limit, tackiness may occur when the substrate 30 is produced, and the substrates 30 may adhere to each other or transfer of the resin may occur. Further, when the weight average molecular weight exceeds the upper limit, the reaction becomes too fast, and when a substrate (particularly, a circuit substrate) is formed, molding defects may occur or the interlayer peel strength may be lowered.
  • the weight average molecular weight of the cyanate resin or the like can be measured by, for example, GPC (gel permeation chromatography, standard substance: converted to polystyrene).
  • the cyanate resin can be used alone or in combination of two or more having different weight average molecular weights, or one or two or more of these prepolymers. It can also be used together.
  • the content of the thermosetting resin is not particularly limited, but is preferably 5 to 55% by weight, particularly preferably 20 to 50% by weight, based on the solid content of the entire resin composition.
  • the content is less than the lower limit, it may be difficult to form the base material 30, and when the content exceeds the upper limit value, the strength of the base material 30 may be reduced.
  • the thermosetting resin When a cyanate resin (particularly a novolac-type cyanate resin) is used as the thermosetting resin, it is preferable to use an epoxy resin (substantially free of halogen atoms).
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z type epoxy resin.
  • Bisphenol type epoxy resin Bisphenol type epoxy resin, phenol novolak type epoxy resin, cresol novolac epoxy resin and other novolak type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin and other aryl alkylene type epoxy resin, naphthalene type epoxy resin, Anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, Adama Tan type epoxy resins, and fluorene type epoxy resins.
  • the epoxy resin one of these can be used alone, or two or more having different weight average molecular weights are used in combination, or one or two or more thereof and a prepolymer thereof are used in combination. You can also.
  • aryl alkylene type epoxy resins are particularly preferable. Thereby, moisture absorption solder heat resistance and a flame retardance can be improved.
  • the arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit.
  • a xylylene type epoxy resin, a biphenyl dimethylene type epoxy resin, etc. are mentioned.
  • a biphenyl dimethylene type epoxy resin is preferable.
  • mold epoxy resin can be shown, for example by Formula (2).
  • the average repeating unit n of the biphenyldimethylene type epoxy resin represented by the above formula (2) is not particularly limited, but is preferably 1 to 10, and particularly preferably 2 to 5.
  • the average repeating unit n is less than the lower limit, the biphenyl dimethylene type epoxy resin is easily crystallized, and the solubility in a general-purpose solvent is relatively lowered, which may make handling difficult.
  • the average repeating unit n exceeds the upper limit, the fluidity of the resin is lowered, which may cause molding defects.
  • the content of the epoxy resin is not particularly limited, but is preferably 1 to 50% by weight, particularly preferably 2 to 40% by weight, based on the solid content of the entire resin composition. If the content is less than the lower limit, the reactivity of the cyanate resin may decrease, or the moisture resistance of the product obtained may decrease, and if the content exceeds the upper limit, the heat resistance may decrease.
  • the weight average molecular weight of the epoxy resin is not particularly limited, but the weight average molecular weight is preferably 500 to 20,000, and particularly preferably 800 to 15,000. When the weight average molecular weight is less than the lower limit, the base material 30 may have tackiness. When the weight average molecular weight exceeds the upper limit value, when the base material 30 is produced, the impregnation property into the sheet-like base material is reduced, and the product is uniform. May not be obtained.
  • the weight average molecular weight of the epoxy resin can be measured, for example, by GPC (gel permeation chromatography, standard substance: converted to polystyrene).
  • cyanate resin especially novolak-type cyanate resin
  • a phenol resin examples include novolak-type phenol resins, resol-type phenol resins, and arylalkylene-type phenol resins.
  • the phenolic resin one of these can be used alone, or two or more having different weight average molecular weights are used in combination, or one or two or more thereof and a prepolymer thereof are used in combination. You can also.
  • arylalkylene type phenol resins are particularly preferable. Thereby, moisture absorption solder heat resistance can be improved further.
  • the aryl alkylene type phenol resin include a xylylene type phenol resin and a biphenyl dimethylene type phenol resin. A biphenyl dimethylene type phenol resin can be shown, for example by Formula (3).
  • the repeating unit n of the biphenyldimethylene type phenol resin represented by the formula (3) is not particularly limited, but is preferably 1 to 12, and particularly preferably 2 to 8. If the average repeating unit n is less than the lower limit, the heat resistance may be lowered. Moreover, when the said upper limit is exceeded, compatibility with other resin will fall and workability
  • the above-mentioned cyanate resin (particularly novolak-type cyanate resin) and arylalkylene-type phenol resin By combining the above-mentioned cyanate resin (particularly novolak-type cyanate resin) and arylalkylene-type phenol resin, the crosslinking density can be controlled and the reactivity can be easily controlled.
  • the content of the phenol resin is not particularly limited, but is preferably 1 to 50% by weight, particularly preferably 5 to 40% by weight, based on the solid content of the entire resin composition. If the content is less than the lower limit, the heat resistance may be reduced, and if the content exceeds the upper limit, the characteristics of low thermal expansion may be impaired.
  • the weight average molecular weight of the phenol resin is not particularly limited, but is preferably 4.0 ⁇ 10 2 to 1.8 ⁇ 10 4 and particularly preferably 5.0 ⁇ 10 2 to 1.5 ⁇ 10 4. .
  • the base material 30 may have tackiness.
  • the weight average molecular weight exceeds the upper limit value, when the base material 30 is produced, the impregnation property into the sheet-like base material is reduced, and the product is uniform. May not be obtained.
  • the weight average molecular weight of the phenol resin can be measured, for example, by GPC (gel permeation chromatography, standard substance: converted to polystyrene).
  • the cyanate resin especially novolac-type cyanate resin
  • the phenol resin arylalkylene-type phenolic resin, particularly biphenyldimethylene-type phenolic resin
  • the epoxy resin arylalkylene-type epoxy resin, especially biphenyldimethylene-type epoxy resin
  • the said resin composition contains an inorganic filler.
  • an inorganic filler examples include silicates such as talc, calcined clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, boehmite, silica and fused silica, calcium carbonate, magnesium carbonate and hydrotalc.
  • Carbonate such as site hydroxide such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfate or sulfite such as barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate And borate salts such as calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanates such as strontium titanate and barium titanate.
  • hydroxide such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfate or sulfite
  • barium sulfate calcium sulfate
  • calcium sulfite zinc borate, barium metaborate
  • aluminum borate And borate salts such as calcium borate and sodium borate
  • nitrides such as aluminum nitride, boron nitride, silicon nitrid
  • silica is particularly preferable, and fused silica (particularly spherical fused silica) is preferable in terms of excellent low thermal expansion.
  • fused silica particularly spherical fused silica
  • the shape is crushed and spherical, but in order to reduce the melt viscosity of the resin composition in order to ensure the impregnation of the fiber substrate, a method of use that suits the purpose, such as using spherical silica, is adopted. .
  • the average particle diameter of the inorganic filler is not particularly limited, but is preferably 0.01 to 5 ⁇ m, and particularly preferably 0.1 to 2 ⁇ m. If the particle size of the inorganic filler is less than the lower limit, the viscosity of the varnish becomes high, which may affect the workability when the base material 30 is produced. When the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the varnish.
  • This average particle diameter can be measured by, for example, a particle size distribution meter (manufactured by HORIBA, LA-500).
  • the inorganic filler is not particularly limited, and an inorganic filler having a monodispersed average particle diameter can be used, and an inorganic filler having a polydispersed average particle diameter can be used. Furthermore, one type or two or more types of inorganic fillers having an average particle size of monodisperse and / or polydisperse can be used in combination.
  • spherical silica (especially spherical fused silica) having an average particle size of 5 ⁇ m or less is preferable, and spherical fused silica having an average particle size of 0.01 to 2 ⁇ m is particularly preferable. Thereby, the filling property of an inorganic filler can be improved.
  • the content of the inorganic filler is not particularly limited, but is preferably 20 to 80% by weight, particularly preferably 30 to 70% by weight, based on the solid content of the entire resin composition. When the content is within the above range, particularly low thermal expansion and low water absorption can be achieved.
  • the resin composition is not particularly limited, but it is preferable to use a coupling agent.
  • the coupling agent can uniformly fix the thermosetting resin or the like and the inorganic filler to the substrate by improving the wettability of the interface between the thermosetting resin and the inorganic filler.
  • the laminate described below using the resin composition is excellent in heat resistance, particularly solder heat resistance after moisture absorption.
  • the coupling agent any commonly used one can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, and a silicone oil type coupling. It is preferable to use one or more coupling agents selected from among the agents. Thereby, the wettability with the interface of an inorganic filler can be made high, and the said laminated board using a resin composition is excellent in heat resistance by it.
  • the content of the coupling agent is not particularly limited because it depends on the specific surface area of the inorganic filler, but it is preferably 0.05 to 3 parts by weight, particularly 0.1 to 2 parts per 100 parts by weight of the inorganic filler. Part by weight is preferred. If the content is less than the lower limit, the inorganic filler cannot be sufficiently covered, so the effect of improving the heat resistance of the laminate may be reduced. If the content exceeds the upper limit, the reaction is affected, and the laminate The bending strength, etc. may be reduced.
  • a curing accelerator may be used as necessary.
  • a well-known thing can be used as said hardening accelerator.
  • organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), triethylamine, tributylamine, diazabicyclo [2,2 , 2] tertiary amines such as octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxyimidazole Imidazoles such as 2-phenyl-4,5-dihydroxyimidazole, phenolic compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid
  • the content of the curing accelerator is not particularly limited, but is preferably 0.05 to 5% by weight, particularly preferably 0.2 to 2% by weight, based on the solid content of the entire resin composition. If the content is less than the lower limit, the effect of promoting curing may not appear, and if the content exceeds the upper limit, the storage stability of the substrate 30 may deteriorate.
  • thermoplastic resins such as phenoxy resin, polyimide resin, polyamideimide resin, polyphenylene oxide resin, polyethersulfone resin, polyester resin, polyethylene resin, polystyrene resin, styrene-butadiene copolymer, styrene-isoprene copolymer are used.
  • Polystyrene thermoplastic elastomers such as polymers, polyolefin thermoplastic elastomers, thermoplastic elastomers such as polyamide elastomers and polyester elastomers, and diene elastomers such as polybutadiene, epoxy modified polybutadiene, acrylic modified polybutadiene and methacryl modified polybutadiene are used in combination. May be.
  • additives other than the above components such as pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, and ion scavengers are added to the resin composition as necessary. May be added.
  • thermosetting resin etc. which are used with the said resin composition are a thing which does not contain a halogen atom substantially.
  • a flame retardance can be provided, without using a halogen compound.
  • substantially free of halogen atoms means, for example, that the content of halogen atoms in the epoxy resin is 0.15% by weight or less (JPCA-ES01-2003).
  • the thermal expansion coefficient of the base material 30 is, for example, 1 to 10 ppm / ° C.
  • the coefficient of thermal expansion is, for example, a surface at 50 ° C. to 150 ° C. under conditions of 10 ° C./min using TMA after cutting the copper foil of the above-mentioned laminated plate and cutting out a test piece from the obtained laminated plate. It can be obtained by measuring the thermal expansion coefficient in the direction.
  • the wiring 10 is provided on both surfaces or one surface on the base material 30. Further, the wiring 10 may be provided inside the base material 30 to form the substrate 100 having a laminated structure.
  • the first metal material is, for example, an Fe—Ni alloy, W, Wo, or the like.
  • examples of the Fe—Ni alloy include Kovar (trade name), 42 alloy, Invar, and Super Invar.
  • the thermal expansion coefficient of the first metal material is, for example, 0.1 to 8 ppm / ° C.
  • the difference between the thermal expansion coefficient of the substrate and the thermal expansion coefficient of the first metal material is, for example, 0 ppm / ° C. to 9.9 ppm / ° C.
  • the electrical resistivity of the first metal material is, for example, 5 ⁇ 10 ⁇ 8 to 100 ⁇ 10 ⁇ 8 ⁇ ⁇ m.
  • the thickness of the wiring 10 is, for example, 1 to 30 ⁇ m. Further, the width of the wiring 10 is, for example, 1 to 50 ⁇ m.
  • the cross-sectional shape of the wiring 10 perpendicular to the direction in which the wiring 10 extends is, for example, a rectangle (see FIG. 1) or a semi-cylindrical shape (see FIG. 7).
  • the wiring coating film 20 is provided so as to cover the lower part of the wiring 10.
  • the thickness of the wiring coating film 20 positioned on the wiring 10 is, for example, 0.1 to 30 ⁇ m, and is 0.1 to 1.2 times the thickness of the wiring 10.
  • the thickness of the wiring coating film 20 located on the side surface of the wiring 10 is, for example, 0.1 to 30 ⁇ m, and is 0.1 to 1.2 times the width of the wiring 10.
  • the thickness of the wiring covering film 20 located below the wiring 10 is, for example, 0.1 to 30 ⁇ m, and is 0.1 to 1.2 times the thickness of the wiring 10.
  • the ratio between the thickness of the wiring coating film 20 and the thickness or width of the wiring 10 is preferably within these ranges.
  • the cross-sectional shape perpendicular to the direction in which the wiring extends of the wiring structure in which the wiring 10 is covered with the wiring coating film 20 is, for example, a rectangle (see FIG. 1) or a semi-cylindrical shape (see FIG. 7).
  • FIG. 11 is a cross-sectional view showing a modification of the substrate 100 shown in FIG. 1, and shows an example different from the example shown in FIG.
  • the outer shape of the cross section of the wiring 10 perpendicular to the extending direction of the wiring 10 is different from the outer shape of the cross section of the wiring covering film 20 perpendicular to the extending direction of the wiring 10.
  • the outer shape of the cross section of the wiring 10 perpendicular to the extending direction of the wiring 10 is rectangular.
  • the outer shape of the cross section of the wiring coating film 20 perpendicular to the extending direction of the wiring 10 is, for example, a straight line along the outer shape of the wiring 10 on the side surface and a semicircular shape that swells upward at the upper end.
  • the outer shape of the cross section of the wiring coating film 20 perpendicular to the extending direction of the wiring 10 does not have a corner between the side surface and the upper end portion.
  • the outer shape of the cross section of the wiring 10 perpendicular to the extending direction of the wiring 10 has a corner between the side surface and the upper end portion. In the example shown in FIG.
  • the outer shape of the cross section of the wiring 10 perpendicular to the extending direction of the wiring 10 is rectangular.
  • the outer shape of the cross section of the wiring coating film 20 perpendicular to the extending direction of the wiring 10 is, for example, a semicircular shape in which the side surface extends from the upper end side toward the lower end side and swells upward at the upper end portion. Yes.
  • the outer shape of the cross section of the wiring coating film 20 perpendicular to the extending direction of the wiring 10 does not have a corner between the side surface and the upper end portion.
  • the outer shape of the cross section of the wiring 10 perpendicular to the extending direction of the wiring 10 has a corner between the side surface and the upper end portion.
  • the second metal material is, for example, Cu, Al, or Au.
  • the thermal expansion coefficient of the second metal material is, for example, 13 ppm / ° C. to 25 ppm / ° C.
  • the difference between the thermal expansion coefficient of the second metal material and the thermal expansion coefficient of the first metal material is, for example, 5 ppm / ° C. to 25 ppm / ° C.
  • the electrical resistivity of the second metal material is, for example, 1 ⁇ 10 ⁇ 8 ⁇ ⁇ m to 3 ⁇ 10 ⁇ 8 ⁇ ⁇ m.
  • the difference between the electrical resistivity of the first metal material and the electrical resistivity of the second metal material is, for example, 2 ⁇ 10 ⁇ 8 ⁇ ⁇ m to 99 ⁇ 10 ⁇ 8 ⁇ ⁇ m.
  • FIG. 2 is a cross-sectional view showing a semiconductor device 110 having the substrate 100 shown in FIG. As shown in FIG. 2, the substrate 100 has the semiconductor element 60 mounted thereon to constitute a semiconductor device 110.
  • the semiconductor device 110 in the present embodiment is a semiconductor package.
  • the silicon substrate constituting the semiconductor element 60 has a thermal expansion coefficient of 3.5 ppm, for example.
  • the semiconductor element 60 is flip-chip connected to the substrate 100 via solder balls 62, for example.
  • the solder ball 62 is preferably made of an alloy made of tin, lead, silver, copper, bismuth, or the like.
  • the flip chip connection between the semiconductor element 60 and the substrate 100 is performed by aligning the connection electrode portion on the substrate 100 and the solder ball 62 of the semiconductor element 60 using a flip chip bonder or the like,
  • the solder ball 62 is heated to a melting point or higher using a plate or other heating device, and the substrate 100 and the solder ball 62 are connected by fusion bonding.
  • a metal layer having a relatively low melting point such as solder paste may be formed in advance on the connection electrode portion on the substrate 100.
  • connection reliability can be improved by applying flux to the surface of the solder ball 62 and / or the connection electrode portion on the substrate 100.
  • an underfill resin 64 is filled in these connection portions.
  • the underfill resin 64 is not particularly limited, but an epoxy resin composition conventionally used as an underfill resin is preferably used.
  • a die attach layer is formed on the conductor circuit layer on the mounting surface side of the substrate 100, a semiconductor element is temporarily bonded via the die attach layer, and the die attach layer is heated while being lightly pressed as necessary.
  • the semiconductor element can also be fixed by being softened or heat-cured.
  • the die attach material for example, a die attach material film made of a thermoplastic resin composition containing a thermoplastic resin such as a (meth) acrylic acid ester copolymer, or a thermosetting containing a thermosetting resin such as an epoxy resin.
  • a die attach material paste made of a conductive resin composition is used.
  • the semiconductor element 60 and the substrate 100 are electrically connected by a known method such as wire bonding simultaneously with or after the semiconductor element is fixed.
  • the element mounting surface may be sealed by a known method, for example, by a sealing material.
  • a sealing material is not specifically limited,
  • the epoxy resin composition for semiconductor sealing conventionally known is used suitably.
  • the epoxy resin composition for semiconductor encapsulation contains an epoxy resin, a curing agent, an inorganic filler, a curing accelerator, and other additives such as a colorant, a release agent, a low stress component, and an antioxidant as necessary. These materials can be kneaded and granulated or formed into a sheet or film shape can be used as the sealing material.
  • the substrate 100 in the present embodiment is an interposer that mounts the semiconductor element 60 and constitutes a semiconductor package.
  • the wiring structure according to this embodiment may be applied to a circuit board on which a semiconductor package is mounted.
  • 3 and 4 are cross-sectional views showing a first method for manufacturing the substrate 100 shown in FIG.
  • the metal layer 22 made of the second metal material is formed on the base material 30.
  • the metal layer 22 may be, for example, a metal foil used for the laminated plate, or may be formed by an electroless plating method, an electrolytic plating method, or an ion plating method.
  • a resist 40 is formed on the metal layer 22. Thereafter, an opening 70 is formed in the resist 40.
  • the method of forming the resist 40 having the opening 70 includes a method of forming a resist 40 on the surface of the metal layer 22 by laminating a dry film and exposing, a method of applying a liquid resist on the metal layer 22 and exposing, and the like. Can be mentioned.
  • the wiring 10 is formed in the opening 70 of the resist 40 by plating.
  • a wet plating method or a dry plating method is used.
  • an electrolytic plating method using the metal layer 22 as a seed film is used.
  • the resist 40 is removed.
  • the method for forming the wiring 10 can also be formed with reference to, for example, the description in Japanese Patent Application Laid-Open No. 2008-170438.
  • a resist 42 having an opening 72 wider than the wiring 10 is formed on the metal layer 22 so that the wiring 10 is exposed.
  • the method of forming the resist 42 having the opening 72 includes a method of forming a resist 42 on the surface of the metal layer 22 by laminating a dry film and exposing, and a method of applying a liquid resist on the metal layer 22 and exposing it. Can be mentioned.
  • a metal layer 24 made of a second metal material is formed by plating in the opening 72 of the resist 42 so as to cover the upper and side portions of the wiring 10.
  • the metal layer 24 is formed in the opening 72 by, for example, an electrolytic plating method.
  • a Cu seed film is formed on the metal layer 22 and the wiring 10 by an electroless plating method before the process shown in FIG.
  • electrolytic plating copper sulfate electrolytic plating can be used.
  • additives such as a leveler agent, a polymer, and a brightener agent, are contained in a plating solution. As a result, plating is preferentially deposited on the wiring 10 and is covered with the second metal material.
  • the resist 42 is removed.
  • a part of the metal layer 22 is removed by etching, and a portion overlapping with the wiring 10 in a plan view and a portion positioned around the wiring 10 are left. That is, a part of the metal layer 22 is removed by etching, and the second metal material deposited so as to cover the upper part, the side part, and the lower part of the wiring 10 is left.
  • the second metal material located between the adjacent wirings 10 is removed. Thereby, the adjacent wirings 10 are separated from each other. For this reason, each wiring 10 is not mutually short-circuited by the 2nd metal material located between each wiring 10.
  • FIG. The metal layer 22 can be removed by flash etching, for example. Thereby, as shown in FIG.4 (d), the wiring structure of the board
  • the substrate 100 can also be obtained by the following manufacturing method.
  • 5 and 6 are cross-sectional views showing a second manufacturing method of the substrate 100 shown in FIG.
  • the metal layer 22 made of the second metal material is formed on the base material 30.
  • a resist 40 having an opening 70 is formed on the metal layer 22.
  • the wiring 10 is formed in the opening 70 of the resist 40 by plating.
  • the resist 40 is removed.
  • it is the same as that of the 1st manufacturing method.
  • a metal layer 24 made of a second metal material is formed on the metal layer 22 and the wiring 10 by plating so as to cover the upper part and the side part of the wiring 10.
  • an electrolytic plating method using the metal layer 22 or the wiring 10 as a seed film is used.
  • copper sulfate electrolytic plating can be used.
  • additives such as a leveler agent, a polymer, and a brightener agent, are contained in a plating solution.
  • a resist 44 is formed on the metal layer 24.
  • Examples of the method of forming the resist 44 include a method in which a resist 44 is formed on the surface of the metal layer 24 by laminating a dry film, and a method in which a liquid resist is applied on the metal layer 24 and exposed.
  • a part of the metal layer 22 and a part of the metal layer 24 are removed by etching, and a part overlapping with the wiring 10 in a plan view and a part located around the wiring 10 are left. That is, the second metal material deposited so as to cover the upper part, the side part, and the lower part of the wiring 10 is left. At this time, the second metal material located between the adjacent wirings 10 is removed. Thereby, the adjacent wirings 10 are separated from each other.
  • each wiring 10 is not mutually short-circuited by the 2nd metal material located between each wiring 10.
  • the resist 44 is removed, and the wiring structure of the substrate 100 according to the present embodiment is formed as shown in FIG.
  • the cross-sectional shapes of the wiring 10 and the wiring coating film 20 are, for example, as shown in FIG.
  • the inventors have found that the skin effect of current works even in a fine wiring structure formed on a substrate, and have reached the substrate 100 according to the present embodiment. That is, in the substrate 100 according to the present embodiment, the first metal material constituting the wiring 10 has a lower thermal expansion coefficient than the second metal material constituting the wiring coating film 20. The second metal material has a lower electrical resistivity than the first metal material.
  • the wiring coating film 20 is provided so as to cover the upper part, the side part, and the lower part of the wiring 10.
  • the wiring coating film 20 made of the second metal material having a low electrical resistivity is formed so as to cover the upper portion, the side portion, and the lower portion of the wiring 10 having a low thermal expansion coefficient.
  • the thermal expansion coefficient of the wiring structure it is possible to reduce the warpage of the substrate and the semiconductor element after mounting the semiconductor element, and to improve the mounting reliability of the semiconductor element and the connection reliability of the semiconductor device.
  • the wiring coating film 20 is provided so as to cover at least the upper part and the side part of the wiring 10.
  • the skin effect in the wiring structure becomes prominent when the wiring coating film 20 is provided so as to cover the upper and side portions of the wiring 10. Therefore, the electrical resistivity in the wiring structure can be sufficiently reduced.
  • the wiring coating film 20 is formed so as to cover at least the upper part and the side part of the wiring 10. Since it has such a structure, warpage is unlikely to occur in the wiring structure, and peeling or the like is unlikely to occur between the wiring 10 and the wiring coating film 20. Therefore, reliability in long-term use of the semiconductor device can be improved. Further, according to the present embodiment, since the wiring coating film 20 is formed so as to cover the upper part, the side part, and the lower part of the wiring 10, the above effect becomes more remarkable.
  • FIG. 8 is a sectional view showing the substrate 102 according to the second embodiment.
  • the substrate 102 according to the present embodiment has the same configuration as that of the substrate 100 according to the first embodiment except that the wiring coating film 20 is not provided under the wiring 10.
  • FIG. 9 and 10 are cross-sectional views showing a method for manufacturing the substrate 102 shown in FIG.
  • a method for manufacturing the substrate 102 according to this embodiment is as follows. First, as shown in FIG. 9A, the metal layer 12 made of the first metal material is formed on the base material 30. The metal layer 12 is formed, for example, by pressing a metal foil on the substrate 30. For example, it can be formed by coating a metal foil with a resin or laminating a prepreg. Next, as in the first embodiment, as shown in FIG. 9B, a resist 46 is formed on the metal layer 12 formed on the substrate 30. Etching is performed using the resist 46 as a mask to form the wiring 10 on the substrate 30. Then, as shown in FIG. 9C, the resist 46 is removed.
  • a resist 48 having an opening 74 wider than the wiring 10 is formed on the substrate 30 so that the wiring 10 is exposed.
  • a metal layer made of a second metal material is formed by plating in the opening 74 of the resist 48 so as to cover the upper part and the side part of the wiring 10.
  • the wiring coating film 20 is formed.
  • the metal layer is formed in the opening 74 by, for example, electrolytic plating.
  • a Cu seed film is formed on the base material 30 and the wiring 10 by an electroless plating method.
  • the resist 48 is removed. Thereby, as shown in FIG.10 (c), the wiring structure of the board
  • the wiring coating film 20 can also be formed as follows, for example. After the step shown in FIG. 9C, a metal layer made of a second metal material is formed on the wiring 10 by plating so as to cover the upper part and the side part of the wiring 10 (not shown). Thereby, the wiring coating film 20 is formed. In this case, the metal layer is formed on the wiring 10 by, for example, an electrolytic plating method using the wiring 10 as a seed film.
  • FIG. 12 is a cross-sectional view showing a substrate 104 according to the third embodiment.
  • the wiring 10 is provided on the base material 30 via the wiring base metal layer 26. Except for these points, the substrate 104 according to the present embodiment has the same configuration as the substrate 100 according to the first embodiment.
  • 13 to 15 are sectional views showing a method for manufacturing the substrate 104 shown in FIG.
  • a resist 50 having an opening 80 is formed on the base material 30.
  • the wiring base metal layer 26 is formed on the resist 50 and on the inner wall of the opening 80.
  • the wiring base metal layer 26 is formed on the base material 30 exposed from the opening 80.
  • the wiring base metal layer 26 is formed by, for example, an electroless plating method using a second metal material.
  • the wiring base metal layer 26 may be made of the same metal as the wiring covering film 20 or may be made of a different metal.
  • the resist 50 is removed.
  • the wiring base metal layer 26 formed on the resist 50 and on the side wall of the opening 80 is removed together with the resist 50.
  • the wiring 10 is formed by an electrolytic plating method using the wiring base metal layer 26 as a seed.
  • the wiring 10 is provided on the base material 30 through the wiring base metal layer 26.
  • a wiring coating film 20 is formed so as to cover the side and upper part of the wiring 10.
  • the wiring coating film 20 can be formed by a process similar to the manufacturing process according to the second embodiment shown in FIG. 10, for example. Thereby, the wiring structure of the board
  • the substrate 104 may be manufactured by the steps described below.
  • the wiring base metal layer 26 is formed on the resist 50 and the inner wall of the opening 80
  • the wiring base metal layer 26 formed on the resist 50 and on the side wall of the opening 80 is flashed, for example, as shown in FIG. Remove by etching.
  • the etching solution is difficult to penetrate into the opening.
  • the shape of the wiring base metal layer 26 after the flash etching process is as shown in FIG.
  • the wiring 10 is formed by an electrolytic plating method using the wiring base metal layer 26 as a seed. Thereby, the wiring 10 is provided on the base material 30 through the wiring base metal layer 26.
  • a wiring coating film 20 is formed so as to cover the side and upper portions of the wiring 10.
  • the wiring coating film 20 can be formed by a process similar to the manufacturing process according to the second embodiment shown in FIG. 10, for example. Thereby, the wiring structure of the board

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 熱膨張係数と電気抵抗率とのバランスに優れた配線構造を実現する。 基板(100)は、基材(30)と、基材(30)上に設けられ、第1金属材料からなる配線(10)と、配線(10)の少なくとも上部および側部を覆うように設けられた、第2金属材料からなる配線被覆膜(20)と、を備え、第1金属材料は、第2金属材料よりも低い熱膨張係数を有し、第2金属材料は、第1金属材料よりも低い電気抵抗率を有する。これにより、熱膨張係数と電気抵抗率とのバランスに優れた配線構造を実現することができる。

Description

基板、半導体装置および基板の製造方法
 本発明は、基板、半導体装置および基板の製造方法に関する。
 電子機器に用いられる半導体装置は、小型化、高密度化、高機能化し続けており、例えば、PoP(Package on Package)やSiP(System in Package)、FCBGA(Flip Chip Ball Grid Array)、FCCSP(Flip Chip Chip Scale Package)等のパッケージ形式が知られている。このような半導体装置の小型化、高密度化の進展に伴い、半導体装置を構成する半導体素子や配線基板に対しても高レベルの小型化、薄型化が要求されるようになってきた。
 半導体素子を搭載、接続して半導体装置を構成する配線基板を薄くするための方法として、その支持体である基材を薄くすることが有効である。しかし、半導体素子の熱膨張係数よりも基材の熱膨張係数が大きく、基材の熱膨張係数よりも配線の熱膨張係数のほうが更に大きい場合が多い。このように、各部分の間で生じた熱膨張係数差は、配線基板や半導体装置の内部に応力を発生させる。このため、基材を薄くすると、各部分の熱膨張係数差によって生じる応力が基材の剛性よりも優るようになって、反りが起こり易くなるという問題がある。
 このため、半導体装置の素子搭載面とは反対側の面をマザーボードに二次接続する際に接続位置がずれて接続不良が生じるという問題や、冷熱衝撃試験において半導体素子中の配線層の破壊や配線基板と半導体素子を接続する半田ボールにクラックが生じ信頼性が低下する等の問題が生じやすい。
 これらの問題を解決するため、半導体素子と基材の熱膨張係数のミスマッチの緩和が求められ、基板材料の低熱膨張化が進んでいる。これに伴い、基材と半導体素子の熱膨張係数の差は小さくなっているが、逆に基材の配線に用いられる銅の熱膨張係数は変わらないため、必然的に基材や半導体素子と配線との間で熱膨張係数のミスマッチが発生し、配線基板の単体反りや半導体素子実装後における配線基板や半導体素子の反りの低減の効果に限界が生じている。
 そこで、配線基板の単体反りや半導体素子実装後の配線基板や半導体素子の反りの低減をさらに進めるために、熱膨張係数の小さい金属を配線に用いることが考えられる。例えば、特許文献1に記載の技術は、銅と鉄-ニッケル系合金とからなる複合層を回路導体とすることにより、低熱膨張配線基板を実現するというものである。
 その他の導電性金属に関する技術としては、例えば特許文献2、3に記載のものが挙げられる。例えば特許文献2に記載の技術は、バイメタルに関するものである。バイメタルに用いられる一方の導電性金属の層として、電気メッキ方式により形成された鉄-ニッケル(Fe-Ni)合金層を用いるというものである。また、特許文献3に記載の技術は、固体酸化物型燃料電池のセパレータ材等に関するものである。具体的には、Cr-W-Fe系合金にTi、Zr、Hfのうち少なくとも一種を添加することで、安定化ジルコニアとの熱膨張整合性等を実現するというものである。
特開平11-354684号公報 特開2008-170438号公報 特開2002-249852号公報
 配線基板に設けられる配線の熱膨張係数は、基材や半導体素子など他の部材の熱膨張係数と比較して相対的に高い場合がある。これに起因して、配線基板や、配線基板を含む半導体装置全体に応力のひずみが発生し、配線基板の単体反りや、半導体素子実装後における配線基板や半導体素子の反りが発生することがある。このため、配線の熱膨張係数の低減を図り、配線基板や半導体装置に発生する応力のひずみを抑制することが望まれている。一方で、半導体装置の高密度、高速信号化のため、電気抵抗率の低い配線構造とし、配線の導電性を向上させることも求められている。
 しかし、配線基板に設けられる配線として使用することができる材料の中では、熱膨張係数と電気抵抗率はトレードオフの関係にあることが多い。このため、低熱膨張係数と低電気抵抗率とをバランス良く両立させた配線構造の実現は困難であった。よって、本発明は、熱膨張係数と電気抵抗率とのバランスに優れた配線構造を実現することを課題とする。
 本発明によれば、基材と、
 前記基材上に設けられ、第1金属材料からなる配線と、
 前記配線の少なくとも上部および側部を覆うように設けられた、第2金属材料からなる配線被覆膜と、
 を備え、
  前記第1金属材料は、前記第2金属材料よりも低い熱膨張係数を有し、
  前記第2金属材料は、前記第1金属材料よりも低い電気抵抗率を有する基板が提供される。
 本発明によれば、上記の基板と、前記基板上に実装された半導体素子と、を備える半導体装置が提供される。
 本発明によれば、上記の基板の製造方法であって、前記基材上に、前記配線を形成する工程と、前記配線の上部および側部を覆う前記配線被覆膜を形成する工程と、を備える基板の製造方法が提供される。
 本発明によれば、電気抵抗率が低い第2金属材料からなる配線被覆膜が、熱膨張係数の低い配線の表面側に形成されている配線構造を有する。このため、配線構造の熱膨張係数の低減を図ることができる。また、表皮効果の観点から、効果的に配線構造の低電気抵抗率化を図ることもできる。従って、熱膨張係数と電気抵抗率とのバランスに優れた配線構造を実現することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係る基板を示す断面図である。 図1に示す基板を有する半導体装置を示す断面図である。 図1に示す基板の製造方法を示す断面図である。 図1に示す基板の製造方法を示す断面図である。 図1に示す基板の製造方法を示す断面図である。 図1に示す基板の製造方法を示す断面図である。 図1に示す基板の変形例を示す断面図である。 第2の実施形態に係る基板を示す断面図である。 図8に示す基板の製造方法を示す断面図である。 図8に示す基板の製造方法を示す断面図である。 図1に示す基板の変形例を示す断面図である。 第3の実施形態に係る基板を示す断面図である。 図12に示す基板の製造方法を示す断面図である。 図12に示す基板の製造方法を示す断面図である。 図12に示す基板の製造方法を示す断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1実施形態)
 図1は、第1の実施形態に係る基板100を示す断面図である。また、図7は、図1に示す基板100の変形例を示す断面図である。基板100は、基材30と、配線10と、配線被覆膜20と、を備えている。
 配線10は、配線被覆膜20を介して基材30上に設けられている。また配線10は、第1金属材料からなる。配線被覆膜20は、配線10の少なくとも上部および側部を覆うように設けられている。また配線被覆膜20は、第2金属材料からなる。第1金属材料は、第2金属材料よりも低い熱膨張係数を有する。第2金属材料は、第1金属材料よりも低い電気抵抗率を有する。なお、本明細書において、配線10の下部とは配線10のうち基材30と対向する部分を示す。すなわち、配線10の上部とは、配線10のうち基材30と対向する部分とは反対側の部分を示す。以下、基板100の構成について詳細に説明する。
 基材30は、例えば、樹脂組成物を基材に含浸させてなるプリプレグを少なくとも1枚、若しくは複数枚積層した積層体、前記積層体の両面、若しくは片面に、金属箔を重ねた積層体、または内層回路基板の両面、若しくは片面にプリプレグ、若しくは樹脂シートを積層した積層体からなる積層板により形成されている。
 前記金属箔は、特に限定されないが、例えば銅及び銅系合金、アルミ及びアルミ系合金、銀及び銀系合金、金及び金系合金、亜鉛及び亜鉛系合金、ニッケル及びニッケル系合金、錫及び錫系合金、鉄および鉄系合金等の金属箔が挙げられる。
 前記プリプレグは、後述する樹脂組成物を基材に含浸させてなるものである。これにより、誘電特性、高温多湿下での機械的、電気的接続信頼性等の各種特性に優れたプリント配線板を製造するのに好適なプリプレグを得ることができる。
 前記基材は、特に限定されないが、ガラス織布、ガラス不織布等のガラス繊維基材、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維等を主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙基材等の有機繊維基材等が挙げられる。これらの中でもガラス繊維基材が好ましい。これにより、プリプレグの強度が向上し、吸水率を下げることができ、また熱膨張係数を小さくすることができる。ガラス繊維基材を構成するガラスとしては、例えばEガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、Hガラス等が挙げられる。これらの中でも、特にEガラス、Sガラス、Dガラス、Tガラスを用いる場合に、ガラス繊維基材の高弾性化を達成することができ、熱膨張係数も小さくすることができる。
 前記樹脂組成物を基材に含浸させる方法には、例えば、本発明の樹脂組成物を溶媒に溶解させて樹脂ワニスを調製し、基材を樹脂ワニスに浸漬する方法、各種コーターにより塗布する方法、スプレーにより吹き付ける方法などが挙げられる。これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、シート状基材に対する樹脂組成物の含浸性を向上することができる。なお、基材を樹脂ワニスに浸漬する場合、通常の含浸塗布設備を使用することができる。
 前記樹脂ワニスに用いられる溶媒は、前記樹脂組成物中の樹脂成分に対して良好な溶解性を示すことが望ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。良好な溶解性を示す溶媒としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系などが挙げられる。
 前記樹脂ワニス中の固形分含有量は、特に限定されないが、40~80重量%が好ましく、特に50~65重量%が好ましい。これにより、樹脂ワニスの繊維基材への含浸性を更に向上できる。前記繊維基材に前記樹脂組成物を含浸させ、所定温度、例えば80~200℃等で乾燥させることにより基材30を得ることが出来る。
 前記樹脂組成物は、例えば熱硬化性樹脂と充填材などで構成される。
 前記熱硬化性樹脂としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂などのノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油などで変性した油変性レゾールフェノール樹脂などのレゾール型フェノール樹脂などのフェノール樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などのエポキシ樹脂、ユリア(尿素)樹脂、メラミン樹脂などのトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、ノルボルネン系樹脂、シアネート樹脂、ベンゾシクロブテン樹脂、ビスマレイミドトリアジン樹脂などが挙げられる。
 これらの中の1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。
 またこれらの中でも、特に、エポキシ樹脂、シアネート樹脂(シアネート樹脂のプレポリマーを含む)、フェノール樹脂、ベンゾシクロブテン樹脂およびビスマレイミドトリアジン樹脂の中の少なくとも1種の熱硬化性樹脂が好ましい。これらの中でも最もシアネート樹脂が好ましい。これにより、基材30の熱膨張係数を小さくすることができる。さらに、基材30の電気特性(低誘電率、低誘電正接)、機械強度などにも優れる。
 前記シアネート樹脂は、例えばハロゲン化シアン化合物とフェノール類とを反応させ、必要に応じて加熱などの方法でプレポリマー化することにより得ることができる。具体的には、ノボラック型シアネート樹脂、ナフトール型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂、ビフェニルアラルキル型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂などのビスフェノール型シアネート樹脂などを挙げることができる。これらの中でもノボラック型シアネート樹脂が好ましい。これにより、架橋密度増加による耐熱性向上と、樹脂組成物などの難燃性を向上することができる。
 ノボラック型シアネート樹脂は、硬化反応後にトリアジン環を形成するからである。さらに、ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。
 前記ノボラック型シアネート樹脂としては、例えば式(1)で示されるものを使用することができる。
Figure JPOXMLDOC01-appb-C000001
 前記式(1)で示されるノボラック型シアネート樹脂の平均繰り返し単位nは、特に限定されないが、1~10が好ましく、特に2~7が好ましい。平均繰り返し単位nが前記下限値未満であるとノボラック型シアネート樹脂は耐熱性が低下し、加熱時に低量体が脱離、揮発する場合がある。また、平均繰り返し単位nが前記上限値を超えると溶融粘度が高くなりすぎ、基材30の成形性が低下する場合がある。
 前記シアネート樹脂の重量平均分子量は、特に限定されないが、重量平均分子量500~4,500が好ましく、特に600~3,000が好ましい。重量平均分子量が前記下限値未満であると基材30を作製した場合にタック性が生じ、基材30同士が接触したとき互いに付着したり、樹脂の転写が生じたりする場合がある。また、重量平均分子量が前記上限値を超えると反応が速くなりすぎ、基板(特に回路基板)とした場合に、成形不良が生じたり、層間ピール強度が低下したりする場合がある。
 前記シアネート樹脂などの重量平均分子量は、例えばGPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
 また、特に限定されないが、前記シアネート樹脂は、1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。
 前記熱硬化性樹脂の含有量は、特に限定されないが、前記樹脂組成物全体の固形分基準で5~55重量%が好ましく、特に20~50重量%が好ましい。含有量が前記下限値未満であると基材30を形成するのが困難となる場合があり、前記上限値を超えると基材30の強度が低下する場合がある。
 前記熱硬化性樹脂としてシアネート樹脂(特にノボラック型シアネート樹脂)を用いる場合は、エポキシ樹脂(実質的にハロゲン原子を含まない)を用いることが好ましい。前記エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などが挙げられる。
 エポキシ樹脂として、これらの中の1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。
 これらエポキシ樹脂の中でも特にアリールアルキレン型エポキシ樹脂が好ましい。これにより、吸湿半田耐熱性および難燃性を向上させることができる。
 前記アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂などが挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂が好ましい。ビフェニルジメチレン型エポキシ樹脂は、例えば式(2)で示すことができる。
Figure JPOXMLDOC01-appb-C000002
 前記式(2)で示されるビフェニルジメチレン型エポキシ樹脂の平均繰り返し単位nは、特に限定されないが、1~10が好ましく、特に2~5が好ましい。平均繰り返し単位nが前記下限値未満であるとビフェニルジメチレン型エポキシ樹脂は結晶化しやすくなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合がある。また、平均繰り返し単位nが前記上限値を超えると樹脂の流動性が低下し、成形不良等の原因となる場合がある。
 前記エポキシ樹脂の含有量は、特に限定されないが、樹脂組成物全体の固形分基準で1~50重量%が好ましく、特に2~40重量%が好ましい。含有量が前記下限値未満であるとシアネート樹脂の反応性が低下したり、得られる製品の耐湿性が低下したりする場合があり、前記上限値を超えると耐熱性が低下する場合がある。
 前記エポキシ樹脂の重量平均分子量は、特に限定されないが、重量平均分子量500~20,000が好ましく、特に800~15,000が好ましい。重量平均分子量が前記下限値未満であると基材30にタック性が生じる場合が有り、前記上限値を超えると基材30作製時、シート状基材への含浸性が低下し、均一な製品が得られない場合がある。
 前記エポキシ樹脂の重量平均分子量は、例えばGPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
 前記熱硬化性樹脂としてシアネート樹脂(特にノボラック型シアネート樹脂)を用いる場合は、フェノール樹脂を用いることが好ましい。前記フェノール樹脂としては、例えばノボラック型フェノール樹脂、レゾール型フェノール樹脂、アリールアルキレン型フェノール樹脂などが挙げられる。フェノール樹脂として、これらの中の1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。これらの中でも特に、アリールアルキレン型フェノール樹脂が好ましい。これにより、さらに吸湿半田耐熱性を向上させることができる。
 前記アリールアルキレン型フェノール樹脂としては、例えばキシリレン型フェノール樹脂、ビフェニルジメチレン型フェノール樹脂などが挙げられる。ビフェニルジメチレン型フェノール樹脂は、例えば式(3)で示すことができる。
Figure JPOXMLDOC01-appb-C000003
 前記式(3)で示されるビフェニルジメチレン型フェノール樹脂の繰り返し単位nは、特に限定されないが、1~12が好ましく、特に2~8が好ましい。平均繰り返し単位nが前記下限値未満であると耐熱性が低下する場合がある。また、前記上限値を超えると他の樹脂との相溶性が低下し、作業性が低下する場合がある。
 前述のシアネート樹脂(特にノボラック型シアネート樹脂)とアリールアルキレン型フェノール樹脂との組合せにより、架橋密度をコントロールし、反応性を容易に制御できる。
 前記フェノール樹脂の含有量は、特に限定されないが、樹脂組成物全体の固形分基準で1~50重量%が好ましく、特に5~40重量%が好ましい。含有量が前記下限値未満であると耐熱性が低下する場合があり、前記上限値を超えると低熱膨張の特性が損なわれる場合がある。
 前記フェノール樹脂の重量平均分子量は、特に限定されないが、重量平均分子量4.0×10~1.8×10が好ましく、特に、5.0×10~1.5×10が好ましい。重量平均分子量が前記下限値未満であると基材30にタック性が生じる場合が有り、前記上限値を超えると基材30作製時、シート状基材への含浸性が低下し、均一な製品が得られない場合がある。
 前記フェノール樹脂の重量平均分子量は、例えばGPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
 更に、前記シアネート樹脂(特にノボラック型シアネート樹脂)と前記フェノール樹脂(アリールアルキレン型フェノール樹脂、特にビフェニルジメチレン型フェノール樹脂)と前記エポキシ樹脂(アリールアルキレン型エポキシ樹脂、特にビフェニルジメチレン型エポキシ樹脂)との組合せを用いて基板(特に、プリント配線板)を作製した場合、特に優れた寸法安定性を得ることが出来る。
 また、前記樹脂組成物は、無機充填材を含むことが好ましい。これにより、基材30を薄膜化(厚さ0.4mm以下)にしても強度に優れることができる。さらに、基材30の低熱膨張化を向上することもできる。
 前記無機充填材としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカなどの酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物、チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩などを挙げることができる。
 無機充填材として、これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。これらの中でも特に、シリカが好ましく、溶融シリカ(特に球状溶融シリカ)が低熱膨張性に優れる点で好ましい。その形状は破砕状、球状があるが、繊維基材への含浸性を確保するために樹脂組成物の溶融粘度を下げるには球状シリカを使うなど、その目的にあわせた使用方法が採用される。
 前記無機充填材の平均粒子径は、特に限定されないが、0.01~5μmが好ましく、特に0.1~2μmが好ましい。無機充填材の粒子径が前記下限値未満であるとワニスの粘度が高くなるため、基材30作製時の作業性に影響を与える場合がある。また、前記上限値を超えると、ワニス中で無機充填材の沈降などの現象が起こる場合がある。この平均粒子径は、例えば粒度分布計(HORIBA製、LA-500)により測定することができる。
 また前記無機充填材は、特に限定されないが、平均粒子径が単分散の無機充填材を用いることもできるし、平均粒子径が多分散の無機充填材を用いることができる。さらに平均粒子径が単分散および/または、多分散の無機充填材を1種類または2種類以上を併用したりすることもできる。
 更に平均粒子径5μm以下の球状シリカ(特に球状溶融シリカ)が好ましく、特に平均粒子径0.01~2μmの球状溶融シリカが好ましい。これにより、無機充填材の充填性を向上させることができる。
 前記無機充填材の含有量は、特に限定されないが、樹脂組成物全体の固形分基準で20~80重量%が好ましく、特に30~70重量%が好ましい。含有量が前記範囲内であると、特に低熱膨張、低吸水とすることができる。
 前記樹脂組成物は、特に限定されないが、カップリング剤を用いることが好ましい。前記カップリング剤は、前記熱硬化性樹脂と、前記無機充填材との界面の濡れ性を向上させることにより、基材に対して熱硬化性樹脂などおよび無機充填材を均一に定着させることができ、樹脂組成物を用いた以下に説明する積層板は、耐熱性、特に吸湿後の半田耐熱性に優れるものとなる。
 前記カップリング剤としては、通常用いられるものなら何でも使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。これにより、無機充填材の界面との濡れ性を高くすることができ、それによって樹脂組成物を用いた前記積層板は、耐熱性に優れるものとなる。
 前記カップリング剤の含有量は、前記無機充填材の比表面積に依存するので特に限定されないが、無機充填材100重量部に対して0.05~3重量部が好ましく、特に0.1~2重量部が好ましい。含有量が前記下限値未満であると無機充填材を十分に被覆できないため、積層板の耐熱性を向上する効果が低下する場合があり、前記上限値を超えると反応に影響を与え、積層板の曲げ強度などが低下する場合がある。
 前記樹脂組成物には、必要に応じて硬化促進剤を用いても良い。前記硬化促進剤としては公知の物を用いることができる。例えばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾールなどのイミダゾール類、フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸など、またはこの混合物が挙げられる。硬化促進剤として、これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用したりすることもできる。
 前記硬化促進剤の含有量は、特に限定されないが、前記樹脂組成物全体の固形分基準で0.05~5重量%が好ましく、特に0.2~2重量%が好ましい。含有量が前記下限値未満であると硬化を促進する効果が現れない場合があり、前記上限値を超えると基材30の保存性が低下する場合がある。
 前記樹脂組成物では、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリスチレン樹脂などの熱可塑性樹脂、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体などのポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマーなどの熱可塑性エラストマー、ポリブタジエン、エポキシ変性ポリブタジエン、アクリル変性ポリブタジエン、メタクリル変性ポリブタジエンなどのジエン系エラストマーを併用しても良い。
 また、前記樹脂組成物には、必要に応じて、顔料、染料、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤などの上記成分以外の添加物を添加しても良い。
 また、前記樹脂組成物で用いられる熱硬化性樹脂などは、実質的にハロゲン原子を含まないものであることが好ましい。これにより、ハロゲン化合物を用いることなく、難燃性を付与することができる。
 ここで、実質的にハロゲン原子を含まないとは、例えばエポキシ樹脂中のハロゲン原子の含有量が0.15重量%以下(JPCA-ES01-2003)のものをいう。
 基材30の熱膨張係数は、例えば1~10ppm/℃である。熱膨張係数は、例えば、上述した積層板の銅箔を全面エッチングし、得られた積層板からテストピースを切り出し、TMAを用いて10℃/分の条件で、50℃~150℃での面方向の熱膨張係数を測定することで求めることができる。
 配線10は、基材30上の両面または片面に設けられている。また、配線10は、基材30の内部に設けられ、積層構造を有する基板100を形成してもよい。第1金属材料は、例えばFe-Ni系の合金、WまたはWo等である。ここで、Fe-Ni系の合金としては、コバール(商標名)、42アロイ、インバーまたはスーパーインバー等が挙げられる。第1金属材料の熱膨張係数は、例えば0.1~8ppm/℃である。基材の熱膨張係数と第1金属材料の熱膨張係数との差は、例えば0ppm/℃~9.9ppm/℃である。
 また、第1金属材料の電気抵抗率は、例えば5×10-8~100×10-8Ω・mである。配線10の厚さは、例えば1~30μmである。また、配線10の幅は、例えば1~50μmである。配線10の、配線10が延在する方向と垂直な断面の形状は、例えば矩形(図1参照)や半円筒形状(図7参照)である。
 配線被覆膜20は、配線10の下部を覆うように設けられている。配線10の上部に位置する配線被覆膜20の厚さは、例えば0.1~30μmであり、配線10の厚さの0.1~1.2倍である。配線10の側面に位置する配線被覆膜20の厚さは、例えば0.1~30μmであり、配線10の幅の0.1~1.2倍である。配線10の下部に位置する配線被覆膜20の厚さは、例えば0.1~30μmであり、配線10の厚さの0.1~1.2倍である。電気抵抗率と熱膨張係数との優れたバランスを実現するためには、配線被覆膜20の厚さと、配線10の厚さまたは幅との比率がこれらの範囲にあることが好ましい。配線10を配線被覆膜20により覆った配線構造の、配線が延在する方向と垂直な断面の形状は、例えば矩形(図1参照)や半円筒形状(図7参照)である。
 図11は、図1に示す基板100の変形例を示す断面図であり、図7に示す例とは異なる例を示している。図11に示すように、配線10の延在方向と垂直な配線10の断面の外形と、配線10の延在方向と垂直な配線被覆膜20の断面の外形は、互いに異なっている。
 図11(a)に示す例において、配線10の延在方向と垂直な配線10の断面の外形は、矩形である。一方、配線10の延在方向と垂直な配線被覆膜20の断面の外形は、例えば側面において配線10の外形に沿う直線であり、かつ上端部において上側に膨らむ半円形状となっている。
 このとき、配線10の延在方向と垂直な配線被覆膜20の断面の外形は、側面と上端部との間に角を有していない。また、配線10の延在方向と垂直な配線10の断面の外形は、側面と上端部との間に角を有している。
 また、図11(b)に示す例において、配線10の延在方向と垂直な配線10の断面の外形は、矩形である。一方、配線10の延在方向と垂直な配線被覆膜20の断面の外形は、例えば側面が上端側から下端側に向けて広がっており、かつ上端部において上側に膨らむ半円形状となっている。このとき、配線10の延在方向と垂直な配線被覆膜20の断面の外形は、側面と上端部との間に角を有していない。また、配線10の延在方向と垂直な配線10の断面の外形は、側面と上端部との間に角を有している。
 第2金属材料は、例えばCu、Al、Auである。第2金属材料の熱膨張係数は、例えば13ppm/℃~25ppm/℃である。第2金属材料の熱膨張係数と、第1金属材料の熱膨張係数の差は、例えば5ppm/℃~25ppm/℃である。
 また、第2金属材料の電気抵抗率は、例えば1×10-8Ω・m~3×10-8Ω・mである。第1金属材料の電気抵抗率と、第2金属材料の電気抵抗率の差は、例えば2×10-8Ω・m~99×10-8Ω・mである。
 図2は、図1に示す基板100を有する半導体装置110を示す断面図である。図2に示すように、基板100は、その上に半導体素子60を実装し、半導体装置110を構成する。本実施形態における半導体装置110は、半導体パッケージである。半導体素子60を構成するシリコン基板は、例えば3.5ppmの熱膨張係数を有する。
 半導体素子60は、例えば半田ボール62を介して基板100とフリップチップ接続する。半田ボール62は、錫、鉛、銀、銅、ビスマスなどからなる合金で構成されることが好ましい。半導体素子60と基板100とのフリップチップ接続は、フリップチップボンダーなどを用いて基板100上の接続用電極部と半導体素子60の半田ボール62との位置合わせを行ったあと、IRリフロー装置、熱板、その他加熱装置を用いて半田ボール62を融点以上に加熱し、基板100と半田ボール62とを溶融接合することにより接続する。なお、接続信頼性を良くするため、予め基板100上の接続用電極部に半田ペースト等の比較的融点の低い金属の層を形成しておいても良い。この接合工程に先んじて、半田ボール62及び/または基板100上の接続用電極部の表層にフラックスを塗布することで接続信頼性を向上させることもできる。
 フリップチップ接続により半導体素子60と基板100とを電気的に接続する場合、例えばこれらの接続部分にアンダーフィル樹脂64を充填する。アンダーフィル樹脂64は、特に限定されないが、従来からアンダーフィル樹脂として用いられているエポキシ樹脂組成物が好適に用いられる。
 また、基板100の搭載面側の導体回路層上に、ダイアタッチ層を形成し、当該ダイアタッチ層を介して半導体素子を仮接着し、必要に応じて軽度に押圧しながらダイアタッチ層を加熱軟化又は加熱硬化させることにより、半導体素子を固定することもできる。
 ダイアタッチ材としては、例えば(メタ)アクリル酸エステル共重合体等の熱可塑性樹脂を含有する熱可塑性樹脂組成物からなるダイアタッチ材フィルムや、エポキシ樹脂等の熱硬化性樹脂を含有する熱硬化性樹脂組成物からなるダイアタッチ材ペーストが用いられる。通常、半導体素子を固定と同時に、又は固定した後、半導体素子60と基板100をワイヤボンディング等の公知の方法で電気的接続する。
 電気的接続の後、素子搭載面は公知の方法で封止してもよく、例えば封止材によって封止する。封止材は、特に限定されないが、従来から知られている半導体封止用エポキシ樹脂組成物が好適に用いられる。半導体封止用エポキシ樹脂組成物は、エポキシ樹脂、硬化剤、無機充填材、硬化促進剤、その他必要に応じて着色剤、離型剤、低応力成分、酸化防止剤等の添加剤を含有し、これらの材料を混練し、顆粒状又はシート乃至フィルム状に成形したものを封止材として用いることができる。
 このように、本実施形態における基板100は、半導体素子60を搭載して半導体パッケージを構成するインタポーザである。しかし、基板100にかえて、例えば半導体パッケージを搭載する回路基板について本実施形態に係る配線構造を適用してもよい。
 次に、基板100の製造方法について説明する。図3および図4は、図1に示す基板100の第1の製造方法を示す断面図である。まず、図3(a)に示すように、基材30上に第2金属材料からなる金属層22を形成する。金属層22は、例えば前記積層板に用いられる金属箔であってもよいし、無電解めっき法、電解めっき法、イオンプレーティング法によって形成されてもよい。次いで、金属層22の表面を薬液により粗化処理後、金属層22上にレジスト40を形成する。その後、レジスト40に開口70を形成する。開口70を有するレジスト40を形成する方法は、ドライフィルムをラミネートすることによって金属層22の表面にレジスト40を形成し露光する方法や、液状レジストを金属層22上に塗布し露光する方法などが挙げられる。そして、図3(b)に示すように、レジスト40の開口70内に、めっき法により配線10を形成する。配線10の形成には、ウェットめっき法やドライめっき法が用いられ、例えば金属層22をシード膜とした電解めっき法が用いられる。次いで、図3(c)に示すように、レジスト40を除去する。配線10を形成する方法は、例えば特開2008-170438号公報の記載を参考に形成することもできる。
 次いで、図4(a)に示すように、金属層22上に、配線10が露出するように配線10よりも幅の広い開口72を有するレジスト42を形成する。開口72を有するレジスト42を形成する方法は、ドライフィルムをラミネートすることによって金属層22の表面にレジスト42を形成し露光する方法や、液状レジストを金属層22上に塗布し露光する方法などが挙げられる。次いで、図4(b)に示すように、配線10の上部および側部を覆うように、レジスト42の開口72内に、めっき法により第2金属材料からなる金属層24を形成する。開口72内への金属層24の形成は、例えば電解めっき法によって行われる。この場合、例えば図4(a)に示した工程の前に、無電解めっき法により、金属層22上および配線10上にCuシード膜を形成する。電解めっきには硫酸銅電解めっきが使用できる。また、特に限定されないが、めっき液中にはレベラー剤、ポリマー、ブライトナー剤等の添加剤が含まれることが好ましい。これにより、配線10に優先的にめっきが析出し第2金属材料で覆われる。
 次いで、図4(c)に示すように、レジスト42を除去する。そして、金属層22の一部をエッチングにより除去し、平面視で配線10と重なる部分および配線10の周囲に位置する部分を残す。すなわち、金属層22の一部をエッチングにより除去し、配線10の上部、側部および下部を覆うように堆積された第2金属材料を残す。このとき、隣接する配線10間に位置する第2金属材料は除去される。これにより、隣接する配線10は、互いに分離される。このため、各配線10が、各配線10間に位置する第2金属材料により互いに短絡することはない。金属層22は、例えばフラッシュエッチングにより除去することができる。これにより、図4(d)に示すように、本実施形態に係る基板100の配線構造が形成される。
 なお、このとき、配線10および配線被覆膜20の断面形状は、例えば図11(b)に示すものとなる。
 また、基板100は、次の製造方法によっても得ることができる。図5および図6は、図1に示す基板100の第2の製造方法を示す断面図である。まず、図5(a)に示すように、基材30上に第2金属材料からなる金属層22を形成する。次いで、金属層22上に開口70を有するレジスト40を形成する。次いで、図5(b)に示すように、レジスト40の開口70内に、めっき法により配線10を形成する。そして、図5(c)に示すように、レジスト40を除去する。これらの製造工程については、第1の製造方法と同様である。
 次いで、図6(a)に示すように、配線10の上部および側部を覆うように、金属層22上および配線10上に、めっき法により第2金属材料からなる金属層24を形成する。この工程における金属層24の形成は、例えば金属層22や配線10をシード膜とした電解めっき法が用いられる。電解めっきには硫酸銅電解めっきが使用できる。また、特に限定されないが、めっき液中にはレベラー剤、ポリマー、ブライトナー剤等の添加剤が含まれることが好ましい。次いで、図6(b)に示すように、金属層24上にレジスト44を形成する。レジスト44を形成する方法は、ドライフィルムをラミネートすることによって金属層24の表面にレジスト44を形成し露光する方法や、液状レジストを金属層24上に塗布し露光する方法などが挙げられる。次いで、レジスト44をエッチングマスクとして、金属層22の一部および金属層24の一部をエッチングにより除去し、平面視で配線10と重なる部分および配線10の周囲に位置する部分を残す。すなわち、配線10の上部、側部および下部を覆うように堆積された第2金属材料を残す。このとき、隣接する配線10間に位置する第2金属材料は除去される。これにより、隣接する配線10は、互いに分離される。このため、各配線10が、各配線10間に位置する第2金属材料により互いに短絡することはない。そして、レジスト44を除去して、図6(c)に示すように、本実施形態に係る基板100の配線構造が形成される。
 なお、このとき、配線10および配線被覆膜20の断面形状は、例えば図11(a)に示すものとなる。
 次に、本実施形態の効果を説明する。配線基板や半導体装置に発生する応力のひずみを抑制するため、配線の熱膨張係数を低減することが求められる。一方で、半導体装置の高密度、高速信号化のため、基板に用いられる配線の電気抵抗率を低減することも望まれる。しかしながら、熱膨張係数と電気抵抗率はトレードオフの関係にあり、これらをバランス良く両立させた配線構造を実現することは困難であった。
 発明者らは、基板上に形成する微細な配線構造においても、電流の表皮効果が働くことを知見し、本実施形態に係る基板100に至った。すなわち、本実施形態に係る基板100は、配線10を構成する第1金属材料は、配線被覆膜20を構成する第2金属材料よりも低い熱膨張係数を有する。また、第2金属材料は、第1金属材料よりも低い電気抵抗率を有する。そして配線被覆膜20は、配線10の上部、側部および下部を覆うように設けられている。
 このように、本実施形態に係る基板100では、電気抵抗率が低い第2金属材料からなる配線被覆膜20が、熱膨張係数の低い配線10の上部、側部および下部を覆うように形成されている。このため、配線構造の低熱膨張係数化により、基板の単体反りや半導体素子実装後の基板や半導体素子の反りを低減し、半導体素子の実装信頼性や半導体装置の接続信頼性を高めることができる。また、表皮効果の観点から、効果的に配線構造の低電気抵抗率化を図ることもでき、半導体装置の高密度、高速信号化に効果がある。従って、熱膨張係数と電気抵抗率とのバランスに優れた配線構造を実現することができる。
 また、本実施形態によれば、配線被覆膜20は、配線10の少なくとも上部および側部を覆うように設けられている。配線構造における表皮効果は、配線被覆膜20が配線10の上部および側部を覆うように設けられていることによって、顕著となる。よって、配線構造における電気抵抗率の低減を十分に図ることができる。
 また、配線構造が、異なる金属材料からなる複数の金属層によって構成されている場合、金属層間の熱膨張係数の差に起因して、配線構造内で残留応力のひずみが発生する場合がある。この場合、配線構造において反りが発生しやすくなり、金属層間における剥離等の原因となる。これは、半導体装置の長期使用を妨げる要因となる。本実施形態によれば、配線被覆膜20は、配線10の少なくとも上部および側部を覆うように形成されている。このような構造を有するため、配線構造において反りが発生しにくく、配線10と配線被覆膜20との間において剥離等が生じにくい。よって、半導体装置の長期使用における信頼性を高めることができる。また、本実施形態によれば、配線10の上部、側部および下部を覆うように配線被覆膜20が形成されているため、上記効果がより顕著となる。
(第2実施形態)
 図8は、第2の実施形態に係る基板102を示す断面図である。本実施形態に係る基板102は、配線10下に配線被覆膜20が設けられていないことを除いて、第1の実施形態に係る基板100と同様の構成を有する。
 図9および図10は、図8に示す基板102の製造方法を示す断面図である。本実施形態に係る基板102の製造方法は次のようである。まず、図9(a)に示すように、基材30上に第1金属材料からなる金属層12を形成する。この金属層12は、例えば基材30上に金属箔をプレスすることにより形成される。また、例えば金属箔に樹脂をコーティングしたり、プリプレグをラミネートしたりすることにより形成することもできる。次いで、第1の実施形態と同様に図9(b)に示すように、基材30上に形成された金属層12上にレジスト46を形成する。このレジスト46をマスクとしてエッチングを行い、基材30上に配線10を形成する。そして、図9(c)に示すように、レジスト46を除去する。
 次いで、図10(a)に示すように、基材30上に配線10が露出するように配線10よりも幅の広い開口74を有するレジスト48を形成する。次いで、図10(b)に示すように、配線10の上部および側部を覆うように、レジスト48の開口74内に、めっき法により第2金属材料からなる金属層を形成する。これにより、配線被覆膜20が形成されることとなる。開口74内への金属層の形成は、例えば電解めっきによって行われる。この場合、例えば図10(a)に示した工程の前に、無電解めっき法により、基材30上および配線10上にCuシード膜を形成する。
 その後、レジスト48を除去する。これにより、図10(c)に示すように、本実施形態に係る基板102の配線構造を得ることができる。
 また、本実施形態において、配線被覆膜20は、例えば次のように形成することもできる。
 図9(c)に示す工程を経た後、配線10の上部および側部を覆うように、配線10上に、めっき法により第2金属材料からなる金属層を形成する(図示せず)。これにより、配線被覆膜20が形成されることとなる。この場合、配線10上への金属層の形成は、例えば配線10をシード膜とした電解めっき法によって行われる。
(第3実施形態)
 図12は、第3の実施形態に係る基板104を示す断面図である。本実施形態に係る基板104では、配線10は、配線下地金属層26を介して基材30上に設けられている。これらの点を除いて、本実施形態に係る基板104は、第1の実施形態に係る基板100と同様の構成を有する。
 次に、本実施形態に係る基板104の製造方法を説明する。図13~15は、図12に示す基板104の製造方法を示す断面図である。
 まず、図13(a)に示すように、基材30上に、開口80を有するレジスト50を形成する。
 次に、図13(b)に示すように、レジスト50上、および開口80の内壁に、配線下地金属層26を形成する。これにより、開口80から露出した基材30上に、配線下地金属層26が形成されることとなる。配線下地金属層26は、例えば第2金属材料を用いて無電解めっき法により形成される。ここで、配線下地金属層26は、配線被覆膜20と同じ金属により構成されても、異なる金属により構成されてもよい。
 次に、図14(a)に示すように、レジスト50を除去する。これにより、レジスト50上および開口80の側壁に形成された配線下地金属層26は、レジスト50とともに除去されることとなる。これにより、基材30上に形成された配線下地金属層26のみが残る。
 次に、図14(b)に示すように、配線下地金属層26をシードとした電解めっき法により、配線10を形成する。これにより、配線10は、配線下地金属層26を介して基材30上に設けられることとなる。
 次に、図14(c)に示すように、配線10の側部および上部を覆うように、配線被覆膜20を形成する。配線被覆膜20は、例えば図10に示す第2の実施形態に係る製造工程と同様の工程により形成することができる。
 これにより、本実施形態に係る基板104の配線構造を得ることができる。
 また、図13(b)に示す配線下地金属層26を形成する工程の後、以下に説明する工程により基板104を製造してもよい。
 レジスト50上および開口80の内壁に配線下地金属層26を形成した後、図15(a)に示すように、レジスト50上および開口80の側壁に形成された配線下地金属層26を、例えばフラッシュエッチングにより除去する。これにより、基材30上に形成された配線下地金属層26のみが残る。ここで、例えば図13においてレジスト50に設けられた開口80の開口幅が非常に狭い場合は、エッチング液が開口部へ浸透し難くなる。このため、フラッシュエッチング処理後における配線下地金属層26の形状は、結果として図15(a)に示すようになる。
 次に、図15(b)に示すように、配線下地金属層26をシードとした電解めっき法により、配線10を形成する。これにより、配線10は、配線下地金属層26を介して基材30上に設けられることとなる。
 次に、図15(c)に示すように、レジスト50を除去する。
 次に、図15(d)に示すように、配線10の側部および上部を覆うように、配線被覆膜20を形成する。配線被覆膜20は、例えば図10に示す第2の実施形態に係る製造工程と同様の工程により形成することができる。
 これにより、本実施形態に係る基板104の配線構造を得ることができる。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2010年12月3日に出願された日本出願特願2010-270577を基礎とする優先権を主張し、その開示の総てをここに取り込む。

Claims (29)

  1.  基材と、
     前記基材上に設けられ、第1金属材料からなる配線と、
     前記配線の少なくとも上部および側部を覆うように設けられた、第2金属材料からなる配線被覆膜と、
     を備え、
      前記第1金属材料は、前記第2金属材料よりも低い熱膨張係数を有し、
      前記第2金属材料は、前記第1金属材料よりも低い電気抵抗率を有する基板。
  2.  請求項1に記載の基板において、
     前記配線被覆膜は、前記配線の下部を覆うように設けられている基板。
  3.  請求項1または2に記載の基板において、
     前記第1金属材料は、Fe-Ni系の合金、WまたはMoである基板。
  4.  請求項1ないし3いずれか1項に記載の基板において、
     前記第2金属材料は、Cuである基板。
  5.  請求項1ないし4いずれか1項に記載の基板において、
     前記配線の上部に位置する前記配線被覆膜の厚さは、前記配線の厚さの0.1~1.2倍である基板。
  6.  請求項1ないし5いずれか1項に記載の基板において、
     前記第1金属材料の熱膨張係数は、0.1ppm/℃~8ppm/℃である基板。
  7.  請求項1ないし6いずれか1項に記載の基板において、
     前記第2金属材料の熱膨張係数は、13ppm/℃~25ppm/℃である基板。
  8.  請求項1ないし7いずれか1項に記載の基板において、
     前記基材の熱膨張係数は、1ppm/℃~10ppm/℃である基板。
  9.  請求項1ないし8いずれか1項に記載の基板において、
     前記第2金属材料の熱膨張係数と前記第1金属材料の熱膨張係数との差は、5ppm/℃~25ppm/℃である基板。
  10.  請求項1ないし9いずれか1項に記載の基板において、
     前記基材の熱膨張係数と前記第1金属材料の熱膨張係数との差は、0ppm/℃~9.9ppm/℃である基板。
  11.  請求項1ないし10いずれか1項に記載の基板において、
     前記配線の厚さは、1μm~30μmである基板。
  12.  請求項1ないし11いずれか1項に記載の基板において、
     前記配線被覆膜の厚さは、0.1μm~30μmである基板。
  13.  請求項1ないし12いずれか1項に記載の基板において、
     前記第1金属材料の電気抵抗率は、5×10-8Ω・m~100×10-8Ω・mである基板。
  14.  請求項1ないし13いずれか1項に記載の基板において、
     前記第2金属材料の電気抵抗率は、1×10-8Ω・m~3×10-8Ω・mである基板。
  15.  請求項1ないし14いずれか1項に記載の基板において、
     前記第1金属材料の電気抵抗率と前記第2金属材料の電気抵抗率の差は、2×10-8Ω・m~99×10-8Ω・mである基板。
  16.  請求項1ないし15いずれか1項に記載の基板において、
     前記配線の延在方向と垂直な前記配線の断面の外形と、前記配線の延在方向と垂直な前記配線被覆膜の断面の外形と、が互いに異なる基板。
  17.  請求項16に記載の基板において、
     前記配線の延在方向と垂直な前記配線の断面の外形は、側面と上端部との間に角を有しており、
     前記配線の延在方向と垂直な前記配線被覆膜の断面の外形は、側面と上端部との間に角を有していない基板。
  18.  請求項1ないし17いずれか1項に記載の基板と、
     前記基板上に実装された半導体素子と、
     を備える半導体装置。
  19.  請求項1に記載の基板の製造方法であって、
     前記基材上に、前記配線を形成する工程と、
     前記配線の上部および側部を覆う前記配線被覆膜を形成する工程と、
     を備える基板の製造方法。
  20.  請求項19に記載の基板の製造方法において、
     前記配線を形成する前記工程の前において、前記基材上に前記第2金属材料からなる第1金属層を形成する工程を備える基板の製造方法。
  21.  請求項20に記載の基板の製造方法において、
     前記第1金属層を形成する前記工程において、前記第1金属層は、前記基材の全面に形成され、
     前記配線を形成する前記工程は、
      前記第1金属層上に、開口を有する第1レジストを形成する工程と、
      前記第1レジストの開口内に、めっき法により前記配線を形成する工程と、
      前記第1レジストを除去する工程と、
     を含む基板の製造方法。
  22.  請求項21に記載の基板の製造方法において、
     前記配線被覆膜を形成する前記工程は、
      前記第1金属層上に、前記配線が露出するように前記配線よりも幅の広い開口を有する第2レジストを形成する工程と、
      前記配線の上部および側部を覆うように、前記第2レジストの開口内に、めっき法により前記第2金属材料からなる第2金属層を形成する工程と、
      前記第2レジストを除去する工程と、
      前記第1金属層の一部をエッチングにより除去し、平面視で前記配線と重なる部分および前記配線の周囲に位置する部分を残す工程と、
     を含む基板の製造方法。
  23.  請求項21に記載の基板の製造方法において、
     前記配線被覆膜を形成する前記工程は、
      前記配線の上部および側部を覆うように、前記第1金属層上および前記配線上に、めっき法により前記第2金属材料からなる第2金属層を形成する工程と、
      前記第1金属層の一部および前記第2金属層の一部をエッチングにより除去し、平面視で前記配線と重なる部分および前記配線の周囲に位置する部分を残す工程と、
     を含む基板の製造方法。
  24.  請求項20に記載の基板の製造方法において、
     前記第1金属層を形成する前記工程は、
      前記基材上に、開口を有する第3レジストを形成する工程と、
      前記第3レジスト上、および前記第3レジストの開口から露出した基板上に、前記第1金属層を形成する工程と、
      前記第3レジスト上に形成された前記第1金属層を除去する工程と、
     を含む基板の製造方法。
  25.  請求項24に記載の基板の製造方法において、
     前記第3レジスト上に形成された前記第1金属層を除去する工程は、前記第3レジストを除去することにより行われ、
     前記配線を形成する工程は、前記第1金属層をシードとしためっき法により行われる基板の製造方法。
  26.  請求項24に記載の基板の製造方法において、
     前記配線を形成する前記工程は、
      前記第1金属層をシードとしためっき法により前記配線を形成する工程と、
      前記第3レジストを除去する工程と、
     を含む基板の製造方法。
  27.  請求項19に記載の基板の製造方法において、
     前記配線を形成する前記工程は、
      前記基材上に、前記第1金属材料からなる第3金属層を形成する工程と、
      前記第3金属層を選択的にエッチングして、前記配線を形成する工程と、
     を含む基板の製造方法。
  28.  請求項27に記載の基板の製造方法において、
     前記配線被覆膜を形成する前記工程は、
      前記基材上に、前記配線が露出するように前記配線よりも幅の広い開口を有する第4レジストを形成する工程と、
      前記配線の上部および側部を覆うように、前記第4レジストの開口内に、めっき法により前記第2金属材料からなる第4金属層を形成する工程と、
      前記第4レジストを除去する工程と、
     を含む基板の製造方法。
  29.  請求項27に記載の基板の製造方法において、
     前記配線被覆膜を形成する前記工程は、前記配線の上部および側部を覆うように、前記配線上に、めっき法により前記第2金属材料からなる第4金属層を形成する基板の製造方法。
PCT/JP2011/006578 2010-12-03 2011-11-25 基板、半導体装置および基板の製造方法 WO2012073466A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012523153A JP5105030B2 (ja) 2010-12-03 2011-11-25 基板、半導体装置および基板の製造方法
KR1020137016688A KR20130129994A (ko) 2010-12-03 2011-11-25 기판, 반도체 장치 및 기판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-270577 2010-12-03
JP2010270577 2010-12-03

Publications (1)

Publication Number Publication Date
WO2012073466A1 true WO2012073466A1 (ja) 2012-06-07

Family

ID=46171440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006578 WO2012073466A1 (ja) 2010-12-03 2011-11-25 基板、半導体装置および基板の製造方法

Country Status (4)

Country Link
JP (1) JP5105030B2 (ja)
KR (1) KR20130129994A (ja)
TW (1) TW201242446A (ja)
WO (1) WO2012073466A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316551B1 (ko) * 2021-01-26 2021-10-22 주식회사 아이에스시 인쇄회로기판의 패드 또는 회로패턴 상지 확장 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164476A (ja) * 2000-11-27 2002-06-07 Kyocera Corp 配線基板およびその製造方法
JP2010103385A (ja) * 2008-10-27 2010-05-06 Sony Corp 半導体装置およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164476A (ja) * 2000-11-27 2002-06-07 Kyocera Corp 配線基板およびその製造方法
JP2010103385A (ja) * 2008-10-27 2010-05-06 Sony Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
KR20130129994A (ko) 2013-11-29
TW201242446A (en) 2012-10-16
JP5105030B2 (ja) 2012-12-19
JPWO2012073466A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
TWI405523B (zh) 積層體、基板之製造方法、基板以及半導體裝置
JP5771987B2 (ja) 多層回路基板、絶縁シート、および多層回路基板を用いた半導体パッケージ
TWI494337B (zh) 電路基板用環氧樹脂組成物,預浸體,積層板,樹脂片,印刷佈線板用積層基材,印刷佈線板及半導體裝置
JP4802246B2 (ja) 半導体装置
US20110120754A1 (en) Multilayer wiring board and semiconductor device
JP5533657B2 (ja) 積層板、回路板および半導体装置
JP5263134B2 (ja) 回路基板用樹脂組成物、プリプレグ、積層板、樹脂シート、多層プリント配線板および半導体装置
KR101409048B1 (ko) 회로 기판의 제조 방법, 반도체 제조 장치, 회로 기판 및 반도체 장치
WO2007108087A1 (ja) 絶縁樹脂層、キャリア付き絶縁樹脂層および多層プリント配線板
JP2008244189A (ja) 回路基板および半導体装置
JP2011135034A (ja) 半導体パッケージおよび半導体装置
JP5493948B2 (ja) プリント配線板用樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板、および半導体装置
JP5256681B2 (ja) 半導体装置、半導体装置用プリント配線板及び銅張積層板
JP5105030B2 (ja) 基板、半導体装置および基板の製造方法
JP2009067852A (ja) ガラス繊維織布入り絶縁樹脂シート、積層板、多層プリント配線板、及び半導体装置
WO2013021587A1 (ja) プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置
JP2011071348A (ja) インターポーザ用の金属張積層板とそれを用いた半導体パッケージ
JP5292847B2 (ja) 半導体素子搭載基板
JP2009070891A (ja) 半導体装置
JP4385555B2 (ja) インターポーザ、半導体パッケージおよびその製造方法
JP5188075B2 (ja) 回路基板の製造方法及び半導体製造装置
JP2010080609A (ja) 半導体装置
JP5353547B2 (ja) 金属箔付きプリプレグ、積層板およびインターポーザ
JP5211624B2 (ja) 半導体装置の製造方法および半導体装置用プリント配線板の製造方法
JP2008251891A (ja) 回路基板及びその半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012523153

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137016688

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11845799

Country of ref document: EP

Kind code of ref document: A1