WO2012068951A1 - 聚苯硫醚基强碱离子交换纤维及其制备方法 - Google Patents

聚苯硫醚基强碱离子交换纤维及其制备方法 Download PDF

Info

Publication number
WO2012068951A1
WO2012068951A1 PCT/CN2011/081887 CN2011081887W WO2012068951A1 WO 2012068951 A1 WO2012068951 A1 WO 2012068951A1 CN 2011081887 W CN2011081887 W CN 2011081887W WO 2012068951 A1 WO2012068951 A1 WO 2012068951A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polyphenylene sulfide
solvent
ion exchange
polyphenylsulfate
Prior art date
Application number
PCT/CN2011/081887
Other languages
English (en)
French (fr)
Inventor
原思国
黄佳佳
白玲玲
张鑫
李仙蕊
赵林秀
Original Assignee
广东普润环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东普润环保科技有限公司 filed Critical 广东普润环保科技有限公司
Priority to RU2013123484/05A priority Critical patent/RU2013123484A/ru
Priority to JP2013540224A priority patent/JP2013544984A/ja
Publication of WO2012068951A1 publication Critical patent/WO2012068951A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • D01F6/765Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products from polyarylene sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/13Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers

Definitions

  • the invention relates to a preparation method of a strong alkali ion exchange fiber, in particular to a preparation method of a polyether-based strong alkali ion exchange fiber.
  • Strong alkali ion exchange fibers have wide applications in wastewater treatment, air purification, preparation of high purity water, and drug carriers. To date, the methods used to prepare such fibers are mainly: 1. Pass 6 . The copolymer of styrene and divinylbenzene is grafted onto the polypropylene fiber by Co 3 ⁇ 4, and then it is subjected to chloroguanidation and quaternization; 2. The "island" type composite fiber is used as a matrix, It is subjected to chloroguanidation and quaternization to prepare a strong alkali ion exchange fiber.
  • the preparation methods of the above two strong alkali ion exchange fibers have been industrialized and registered under the trademark "FIBAN, P"IONEX". However, the preparation methods of the above two strong alkali ion exchange fibers have higher production cost and reaction steps. It is cumbersome, so it limits their promotion and application in the industry to some extent.
  • 1, Preparation and characterization of a strong basic anion exchanger by radiation-induced grafting of styrene onto poly (tetrafluoroethylene) fiber.
  • This document uses a polytetrafluoroethylene fiber as a reaction substrate and passes 6 .
  • Co Y irradiation initiates grafting of a copolymer of styrene and divinylbenzene onto the surface, and then changing the process parameters of gamma irradiation to prepare a strong alkali ion exchange fiber having a high exchange capacity.
  • the method also employs an irradiation initiation technique, which is also costly and complicated in synthesis steps. 2.
  • Anion exchange fibers for arsenate removal derived from a vinylbenzyl chloride precursor avoids the priming technique, which uses glass fiber as the reaction substrate to carry out in-situ polymerization of chloromercaptostyrene on its surface, and then quaternizes the chlorohydrazine group of the monomer itself to prepare a Strong alkali ion Exchange fibers.
  • the operation steps of the method are also complicated, and the reaction is difficult to control, and it is difficult to promote the application in the industry.
  • the application number is 201010216107.1
  • the invention name is "a strong basic anion exchange fiber material and its synthesis method”.
  • the invention patent uses acrylic fiber as a basic skeleton, first introduces an amine group by amination with a polyamine compound, and then introduces a quaternary ammonium group by reacting an amine group with triglycidyl ammonium chloride to obtain a novel strong alkali anion exchange fiber. material.
  • the invention is based on the preliminary research and development work, and further proposes a polyphenylene sulfide fiber with a benzene ring structure and a cheap and easy to obtain as a substrate, and is directly chlorinated with a chlorohydrin ether and a part of the benzene ring.
  • the cross-linking reaction, followed by quaternization with the triterpene solution, directly obtains a new method of strong alkali ion exchange fibers. This method has not been reported in the relevant literature. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a novel polyphenylene sulfide-based strong alkali ion exchange fiber and a preparation method thereof.
  • the preparation method of the invention utilizes polyphenylene sulfide fiber, that is, PPS fiber, to replace the cumbersome and expensive PP-ST-DVB fiber in the prior art, and undergoes chlorohydrination and partial crosslinking reaction with chlorohydrin ether.
  • the quaternization reaction produces a novel strong alkali ion exchange fiber, that is, the product polyphenylene sulfate base alkali ion exchange fiber of the present invention.
  • the invention provides a preparation method of polyphenylsulfate-based strong alkali ion exchange fiber, and the preparation method comprises the following steps:
  • Chloroprene-based and cross-linking reaction Polyphenylene sulfide fiber and chlorinated ether as the basic raw materials, firstly swell the raw material polyphenylene sulfide fiber in a solvent, swell and add the weighed raw material chlorinated ether and The catalyst is added to the chlorinated ether and the catalyst, and then shaken and shaken. After the hook is shaken, the reaction solution is heated to 50 to 60 ° C for chlorohydrination and crosslinking reaction, and the reaction time is 15 to 30 hours. Obtaining a chloromethylated crosslinked polyphenylene sulfide fiber, and then washing, extracting and drying the obtained chloromethylated crosslinked polyphenylene sulfide fiber;
  • the molar ratio of the polyphenylene sulfide fiber to the chlorinated ether is 1:5 ⁇ 10:1;
  • the ratio of the polyphenylene ether fiber to the solvent is 5 to 10 ml of solvent per gram of the polyphenylene ether fiber;
  • the molar ratio of the polyphenylene sulfide fiber to the catalyst is 1 : 0.5 - 1 : 1 ;
  • the chlorohydrinated crosslinked polyphenylene sulfide fiber obtained by the step a is dried in a solvent, and a part of the solvent is recovered after swelling, and then the triterpene solution is added to raise the temperature of the reaction solution.
  • the quaternization reaction is carried out at 30 ⁇ 40 °C for 10 ⁇ 15h. After the reaction is completed, the product polyphenylsulfate strong alkali ion exchange fiber is obtained, and finally the product is washed, extracted, salt washed and dried. ;
  • the ratio of the amount of the chloromethylated crosslinked polyphenylene sulfide fiber to the solvent is chlorinated crosslinked polyphenylene sulfide per gram.
  • the phenyl sulfide fiber is added with 5 to 15 ml of a solvent; the molar ratio of the chlorohydrazine group to the tridecylamine of the chlorodecyl crosslinked polyphenylene sulfide fiber is 1:5 to 10:1.
  • the swelling time of the polyphenylene sulfide fiber in the step a is swollen in a solvent of 12 to 16 h, and the polyphenylene ether ether fiber is swollen during the swelling.
  • the solvent is added in a ratio of 5 to 15 ml of solvent per gram of the polyphenylene ether fiber; the solvent is dichloroethane or nitrobenzene.
  • the catalyst in the step a is anhydrous tin tetrachloride.
  • the detailed process of washing, extracting and drying the obtained chloromethylated crosslinked polyphenylene sulfide fiber in the step a is as follows:
  • the thiolated cross-linked polyphenylene sulfide fiber is washed successively with distilled water and ethanol.
  • the obtained product is extracted in a solvent extraction device by using anhydrous ethanol or acetone solution for 6-12 hours, and then the product is distilled water.
  • the ethanol or acetone in the wash is washed off, and finally vacuum dried to constant weight.
  • the vacuum degree in vacuum drying is 0.07 - 0.09 Mpa
  • the drying temperature is 50-80 ° C
  • the drying time is 15 ⁇
  • the swelling time of the chloromethylated crosslinked polyphenylene sulfide fiber obtained by the step a drying in the step a is swollen in a solvent as described in the step b. 12h;
  • the solvent is tetrahydrofuran.
  • the triterpeneamine solution in the step b is an aqueous solution having a concentration of 33% by weight or an alcohol solution having a concentration of 40% by weight.
  • the detailed steps of washing, extracting, salt washing and drying the obtained product in the step b are as follows: the obtained product polyphenylsulfate strong base ion exchange
  • the fiber is washed with distilled water and ethanol to neutrality. After washing, it is extracted with absolute ethanol in a solvent extraction device for 6 ⁇ 12h, and then soaked with hydrochloric acid or sodium hydroxide solution at a concentration of 0.5 ⁇ 2mol / L. 15h, then washed with distilled water to neutral, and finally vacuum dried to constant weight.
  • the vacuum degree is 0.07 - 0.09 Mpa
  • the drying temperature is 50 to 60 ° C
  • the drying time is 15 to 24 hours.
  • the raw material polyphenylene ether fiber, chlorinated ether and triterpene amine used in the invention are cheap and easy to obtain, and the preparation method thereof
  • the production of polyphenylene sulfide based strong alkali ion exchange fibers by the method of the present invention is significantly reduced in production cost compared to the prior art.
  • the reduction of production cost and the preparation of the process have laid a solid foundation for the broadening of the synthesis and application of strong alkali ion exchange fibers.
  • the method for preparing polyphenylsulfate-based strong alkali ion exchange fiber by the method of the invention can completely avoid the irradiation initiation technology, the cost is obviously reduced, the synthesis method is obviously tubular, and it is easy to be widely applied in industry.
  • the strong alkali ion exchange fiber prepared by the method of the invention can be used in the fields of industrial wastewater treatment, air purification, preparation of ultrapure water and separation and extraction of pharmaceutical chemicals, and the application effect is remarkable.
  • Fig. 1 is a view showing the infrared spectrum of the raw material polyphenylene sulfide fiber, the chloromethylated crosslinked polyphenylene sulfide fiber, and the product polyphenylsulfate strong alkali ion exchange fiber of the present invention.
  • Chloroprene-based and cross-linking reaction Weigh 4.1047g of basic raw material polyphenylene sulfide fiber and 50ml of solvent dichloroethane in a 100ml three-necked flask for swelling for 12h, and then recover 25ml of dichloroethane after swelling, and then add The weighed 20 ml of the basic raw material chlorohydrazine ether and 3 ml of the catalyst anhydrous tin tetrachloride were shaken, shaken, and then heated to 55 ° C in an oil bath, and reacted at this temperature for 20 h; The crosslinked polyphenylene sulfide fiber was obtained, and the obtained fiber was cooled to room temperature, washed successively with distilled water and absolute ethanol, and then extracted with absolute ethanol in a Soxhlet extractor for 8 hours, and extracted with distilled water.
  • the resulting chloromethylated crosslinked polyphenylene sulfide fiber is weighted relative to the original polyphenylene sulfide fiber
  • b Quaternization reaction: Weigh 1.6647g of chloropurinated crosslinked polyphenylene sulfide fiber obtained after vacuum drying in step a. Place it in a 100ml three-necked flask, add 80ml of tetrahydrofuran solvent for ultrasonic swelling for 6h, and recover 60ml of solvent after swelling. Tetrahydrofuran, then 30 ml of 33% aqueous solution of trisamine was added dropwise in 1 h, and the reaction solution was heated. The quaternization reaction was carried out for 10 h when the temperature reached 35 ° C. After the reaction, the product obtained polyphenylene sulfide-based strong alkali ion exchange fiber.
  • the obtained product polyphenylsulfate-based strong alkali ion exchange fiber gained 27.94%, and the elemental analysis result: C: 48.10 H: 6.68 S: 11.97 N: 3.98, the nitrogen content was determined to be 2.84 mmol/g according to the elemental analysis result, and the exchange capacity was determined. 2.74 mmol/g.
  • Chloroprene-based and cross-linking reaction Weigh 5.4819 g of basic raw material polyphenylene sulfide fiber and 50 ml of solvent dichloroethane in a 100 ml three-necked flask for swelling for 13 h, and then recover 20 ml of dichloroethane after swelling, and then add Weighing 30 ml of the basic raw material chlorohydrazine ether and 4 ml of catalyst anhydrous tin tetrachloride, shaking, shaking, and heating the reaction solution to 50 ° C for 25 h in an oil bath; after completion of the reaction, the chloroguanidation cross-linking is obtained.
  • Polyphenylene sulfide fiber the obtained fiber was cooled to room temperature, washed successively with distilled water and absolute ethanol, and then extracted with absolute ethanol in a Soxhlet extractor for 10 hours, extracted, washed with distilled water, and chlorine residue was removed.
  • Alkaline cross-linking of ethanol in polyphenylene sulfide fiber drying the washed fiber in a vacuum drying oven to a constant weight (vacuum degree of 0.09Mpa, drying temperature of 50 ° C, drying time of 15h), vacuum drying Afterwards, 7.0370 g of chloromethylated crosslinked polyphenylene sulfonate ether fiber is obtained;
  • the resulting chloromethylated crosslinked polyphenylene sulfide fiber is weighted relative to the original polyphenylene sulfide fiber
  • Quaternization reaction Weigh 0.6392 g of chloromethylated cross-linked polyphenylene sulfide fiber obtained after vacuum drying in step a. Place it in a 50 ml three-necked flask, add 15 ml of tetrahydrofuran solvent for swelling for 8 h, and swell and recover 8 ml. Solvent tetrahydrofuran, then add 30 ml of 33% aqueous solution of trisamine in 1 h, heat the reaction solution to 30 ° C in an oil bath, and carry out quaternization at this temperature.
  • Chloroprene-based and cross-linking reaction Weigh 13.6311 g of basic raw material polyphenylene sulfide fiber, 80 ml of solvent dichloroethane, 80 ml of chlorinated ether in a 250 ml three-necked flask for swelling for 14 h, and add catalyst without water after swelling. 8 ml of tin tetrachloride was shaken and shaken. After shaking, the reaction solution was heated in an oil bath to react at 55 ° C for 30 h. After the reaction, a chloromethylated crosslinked polyphenylene sulfide fiber was obtained, and the obtained fiber was cooled to room temperature.
  • the mixture was washed successively with distilled water and absolute ethanol, and then extracted with absolute ethanol in a Soxhlet extractor for 12 hours. After extraction, it was washed with distilled water to remove the chlorohydrinated crosslinked polyphenylene sulfide fiber.
  • the washed fiber is vacuum dried to constant weight (vacuum degree is 0.07Mpa, drying temperature is 70 ° C, drying time is 16h), and vacuum dried to obtain chlorohydrinated crosslinked polyphenylene sulfide fiber 17.4007g;
  • the resulting chloromethylated crosslinked polyphenylene sulfide fiber is weighted relative to the original polyphenylene sulfide fiber
  • Quaternization reaction Weigh 2.0519g of chloropurinated crosslinked polyphenylene sulfide fiber obtained after vacuum drying in a step. It is placed in a 100ml three-necked flask, and added to 80ml of tetrahydrofuran solvent for swelling for 12h. After swelling, 50ml of tetrahydrofuran solvent is recovered.
  • the obtained product polyphenylsulfate strong base ion exchange fiber gained 31.27%, and the elemental analysis result of the product was: C: 47.10 H: 6.58 S: 11.95 N: 3.99; According to the elemental analysis, the nitrogen content was 2.85 mmol/g; The capacity was determined to be 2.90 mmol/g.
  • Chloroprene-based and cross-linking reaction Weigh 4.1715g of basic raw material polyphenylene sulfide fiber, 35ml of solvent nitrobenzene, 25ml of chlorinated ether in 100ml three-necked flask for swelling for 16h, and then add catalyst to anhydrous after swelling. 3 ml of tin chloride was shaken and shaken. After shaking, the reaction solution was heated in an oil bath to react at 55 ° C for 20 h. After the reaction, the chloromethylated crosslinked polyphenylene sulfide fiber was obtained, and the obtained fiber was cooled to room temperature.
  • the polyphenylene sulfide fiber was vacuum dried to constant weight (vacuum degree was 0.08Mpa, drying temperature was 60 ° C, drying time was 16h), and vacuum dried to obtain 5.0568g of chloromethylated crosslinked polyphenylene sulfide fiber;
  • the resulting chloromethylated crosslinked polyphenylene sulfide fiber is weighted relative to the original polyphenylene sulfide fiber
  • the obtained product polyphenylsulfate-based strong alkali ion exchange fiber gained 27.14%, and the elemental analysis result: C: 47.86 H: 6.52 S: 10.95 N: 4.01. According to the elemental analysis result, the nitrogen content was 2.86 mmol/g, and the exchange capacity was determined. 2.82 mmol/g.
  • the thiolated crosslinked polyphenylene sulfide fiber is cooled to room temperature, washed successively with distilled water and absolute ethanol, and then used in a Soxhlet extractor. The acetone solution was extracted for 8 hours, extracted with distilled water, and the acetone in the fiber was removed.
  • the washed chlorohydrin-based crosslinked polyether ether fiber was vacuum dried to constant weight (vacuum degree was 0.08 MPa, and the drying temperature was 60 ° C, drying time is 16h), vacuum drying to obtain 8.2422g of chloromethylated crosslinked polyphenylene sulfide fiber;
  • the resulting chloromethylated crosslinked polyphenylene sulfide fiber is weighted relative to the original polyphenylene sulfide fiber
  • step b Quaternization reaction: 1.6792 g of chloropurinated crosslinked polyphenylene sulfide fiber obtained after vacuum drying in step a is placed in a 100 ml three-necked flask, and 40 ml of tetrahydrofuran solvent is added to swell for 12 hours, and 25 ml of solvent is recovered after swelling.
  • Tetrahydrofuran then add 15ml of 40% triterpeneamine Alcohol solution, the reaction solution is heated to 35 ° C for quaternization reaction for 10 h; after the reaction is completed, the product polyphenylsulfate-based strong alkali ion exchange fiber is obtained, and the product is washed to neutral with distilled water, after washing The Soxhlet extractor was extracted with absolute ethanol for 6 h. After extraction, the product was immersed in a 1.5 mol/L hydrochloric acid HC1 solution for 12 h, then the product was washed to neutral with distilled water and finally dried under vacuum.
  • Constant weight vacuum degree is 0.08Mpa, drying temperature is 50 °C, drying time is 18h
  • vacuum drying to obtain 2.2204g of polyphenylsulfate-based strong alkali ion exchange fiber; obtained product polyphenylsulfate-based strong alkali ion exchange fiber
  • the weight gain was 32.23%
  • the elemental analysis result was C: 49.97 H: 6.54 S: 11.03 N: 4.13 .
  • the nitrogen content was determined to be 2.95 mmol/g, and the exchange capacity was determined to be 3.01 mmol/g.
  • a, chlorohydrination and cross-linking reaction Weigh 4.9733g of basic raw material polyphenylene sulfide fiber, 50ml of solvent dichloroethane in 100ml three-necked flask for swelling for 15h, recover 20ml of dichloroethane after swelling, and then add 30 ml of the raw material chlorohydrazine ether and 4 ml of the catalyst anhydrous tin tetrachloride were shaken and shaken. After shaking, the reaction liquid was heated in an oil bath to react at 50 ° C for 20 h. After the reaction, the chloropurinated crosslinked polyphenylene sulfide was obtained.
  • the fiber was cooled to room temperature, washed successively with distilled water and absolute ethanol, and then extracted in a Soxhlet extractor with an acetone solution for 10 hours, extracted, washed with distilled water, and the chloroformated cross-linked polycondensation was removed.
  • Acetone in phenyl sulfide fiber the washed chlorohydrinated crosslinked polyphenylene sulfide fiber is vacuum dried to constant weight (vacuum degree is 0.08Mpa, drying temperature is 60 ° C, drying time is 16h), vacuum drying Then obtained 6.2489 g of chloromethylated crosslinked polyphenylene sulfide fiber;
  • the resulting chloromethylated crosslinked polyphenylene sulfide fiber is weighted relative to the original polyphenylene sulfide fiber
  • Tetrahydrofuran then add 15ml of 40% triterpeneamine Alcohol solution, the reaction solution is heated to 35 ° C for quaternization for 12 h; after the reaction is completed, the product polyphenylsulfate-based strong alkali ion exchange fiber is obtained, and the product is washed to neutral with distilled water, after washing The extractor was extracted with ethanol solution for 12 h, and after extraction, the product was soaked with a concentration of 1.0 mol/L hydrochloric acid HC1 solution for 15 h, then the product was washed to neutral with distilled water, and finally vacuum dried to constant weight.
  • the degree of vacuum is 0.08Mpa, the drying temperature is 50 ° C, the drying time is 18h
  • the product polyphenol phase strong alkali ion exchange fiber is obtained after vacuum drying, 2.0684g; the obtained product polyphenylsulfate strong alkali ion exchange fiber weight gain 32.04%
  • the nitrogen content was determined to be 3.02 mmol/g according to the elemental analysis result, and the exchange capacity was determined to be 3.13 mmol/g.
  • Chloroprene-based and cross-linking reaction Weigh out 29.1039 g of basic raw material polyphenylene sulfide fiber, 125 ml of solvent dichloroethane, 100 ml of chlorinated ether and 10 ml of catalyst anhydrous tin tetrachloride in 500 ml three-necked flask. Swell for 15h, swell and heat the reaction solution to 60 °C for 8h. After 8h reaction, add 40ml of chlorinated ether and 4ml of anhydrous tin tetrachloride for 8h, then add solvent dichloroethane.
  • the washed fiber was vacuum dried to a constant weight (vacuum degree of 0.08 MPa, drying temperature of 60 ° C, drying time of 16 h), and vacuum dried to obtain 38.8933 g of chloromethylated crosslinked polyphenylene sulfide fiber;
  • the resulting chloromethylated crosslinked polyphenylene sulfide fiber is weighted relative to the original polyphenylene sulfide fiber
  • Quaternization reaction Weigh the chloropurinated crosslinked polyphenylene sulfide obtained after vacuum drying in step a 14.3969g of ether fiber was placed in a 500ml three-necked flask, and added to 200ml of tetrahydrofuran solvent for swelling for 12h. After swelling, 100ml of solvent tetrahydrofuran was recovered, then 140ml of 33% aqueous solution of triammonium was added, and the reaction solution was heated to 40 ° C for quaternary ammonium.
  • the reaction was carried out for 15 h; after the reaction, the product polyphenylsulfate-based strong alkali ion exchange fiber was obtained, and the product was washed to neutral with distilled water. After washing, it was extracted with an ethanol solution for 8 h in a Soxhlet extractor, and the concentration was extracted after extraction.
  • the product of lmol/L hydrochloric acid HC1 was soaked for 12h, then the product was washed to neutral with distilled water, and finally vacuum dried to constant weight (vacuum degree was 0.08Mpa, drying temperature was 50 °C, drying time was 18h). After vacuum drying, the product polyphenylsulfate-based strong alkali ion exchange fiber 20.6265g;
  • the obtained product polyphenylsulfate-based strong alkali ion exchange fiber gained 43.27%, and the product element analysis result was: C: 48.65 H: 6.39 S: 13.46 N: 4.57; The nitrogen content was determined to be 3.26 mmol/g according to the elemental analysis result; The exchange capacity was 3.51 mmol/g.
  • PPS an infrared spectrum of the original polyphenylene ether fiber
  • PPS-C1 infrared spectrum of chloromethylated crosslinked polyphenylene sulfide fibers
  • PPS-N+CI Infrared spectrum of polyphenylene sulfate strong base ion exchange fiber of the present invention, in PPS-N+CI-infrared spectrum, 1257cm- 1 is -CH 2 C1 -CH 2 bond stretching The vibration absorption peak, but the original polyphenylene sulfide fiber does not have this absorption peak, indicating the successful introduction of the chlorohydrazine group.
  • 1321cm” 1 is the in-plane bending vibration absorption peak of the saturated C-H bond
  • 1633cm- 1 is the stretching vibration absorption peak of C-N bond
  • 3393cm- 1 is the stretching vibration absorption peak of fiber adsorption water (strong alkali ion exchange fiber has strong water absorption;), indicating chlorination reaction and quaternary ammonium The reaction has been successfully reacted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Catalysts (AREA)

Description

聚苯硫酸基强碱离子交换纤维及其制备方法 技术领域
本发明涉及一种强碱离子交换纤维的制备方法, 特别是涉及一种聚 W醚基强碱离子交换纤维的制备方法。 背景技术
强碱离子交换纤维在废水处理、 空气净化、 高纯水的制备以及药物 载体等方面有着广泛的应用。 迄今为止, 制备此类纤维所采用的方法主 要有: 1、 通过 6。Co ¾照引发将苯乙烯和二乙烯苯的共聚物接枝到聚丙 烯纤维上, 然后再对其进行氯曱基化和季铵化; 2、 以"海島"型复合纤维 为基质, 通过对其进行氯曱基化和季铵化制备成强碱离子交换纤维。 以 上两种强碱离子交换纤维的制备方法均已实现工业化生产, 并分别注册 商标" FIBAN, P"IONEX"。但是以上两种强碱离子交换纤维的制备方法, 其生产成本较高、 反应步骤繁瑣, 所以在某种程度上限制了它们在工业 上进一步的推广应用。
近年来, 已有一些强碱离子交换纤维制备方法改进的文献报道。 例
^口: 1、 Preparation and characterization of a strong basic anion exchanger by radiation-induced grafting of styrene onto poly(tetrafluoroethylene) fiber。 该 文献是以聚四氟乙烯纤维为反应基质, 通过 6。CoY辐照引发将苯乙烯和二 乙烯苯的共聚物接枝到其表面, 然后改变 γ辐照的工艺参数, 制备出一种 具有高交换容量的强碱离子交换纤维。 该方法也采用了辐照引发技术, 其成本同样较高、合成步 较为繁琐。 2、 Anion exchange fibers for arsenate removal derived from a vinylbenzyl chloride precursor。 该文献避开了季¾照 引发技术, 是以玻璃纤维为反应基质, 让氯曱基苯乙烯在其表面进行原 位聚合, 然后利用单体自身的氯曱基进行季铵化, 制备出一种强碱离子 交换纤维。 该方法操作步骤同样较为复杂, 且反应难以控制, 不易在工 业上推广应用。
关于强碱离子交换纤维方面也有相关专利文献进行报道。 例如: 申 请号为 201010216107.1、发明名称为"一种强碱性阴离子交换纤维材料及 其合成方法"。 该发明专利是以腈纶纤维作为基础骨架, 先与多胺基化合 物胺化引入胺基,再利用胺基与缩水甘油三曱基氯化铵反应引入季铵基, 得到一种新型的强碱阴离子交换纤维材料。
本发明是在前期研发工作的基础上, 进一步提出以自身带有苯环结 构且价廉易得的聚苯硫醚纤维为基质, 经与氯曱醚的直接氯曱基化及部 分苯环间的交联反应, 再与三曱胺溶液进行季铵化后直接得到强碱离子 交换纤维的新方法。 该方法未见有关文献进行报道。 发明内容
本发明要解决的技术问题是提供一种新型的聚苯硫醚基强碱离子交 换纤维及其制备方法。 本发明的制备方法是利用聚苯硫醚纤维即 PPS纤 维代替现有技术中制备过程繁瑣、价格昂贵的 PP-ST-DVB纤维, 通过与 氯曱醚进行氯曱基化及部分交联反应和季铵化反应制备出新型的强碱离 子交换纤维, 即本发明的产品聚苯硫酸基强碱离子交换纤维。
为了解决上述问题, 本发明采用的技术方案是:
本发明提供一种聚苯硫酸基强碱离子交换纤维的制备方法, 所述制 备方法包括以下步骤:
a、 氯曱基化与交联反应: 以聚苯硫醚纤维和氯曱醚为基本原料,首 先将原料聚苯硫醚纤维在溶剂中进行溶胀, 溶胀后加入称取的原料氯曱 醚和催化剂, 加入氯曱醚和催化剂后振动摇勾, 摇勾后将其反应溶液升 温至 50 ~ 60°C条件下进行氯曱基化与交联反应, 反应时间为 15 ~ 30小 时, 反应结束后得到氯曱基化交联聚苯硫醚纤维, 然后将所得氯曱基化 交联聚苯硫醚纤维进行洗涤、 抽提和干燥处理;
所述聚苯硫醚纤维与氯曱醚二者之间加入量的摩尔比为 1 :5 ~ 10: 1 ; 所述聚苯^ L醚纤维与溶剂二者之间加入量的比例为每克聚苯 醚纤维加 入 5 ~ 10ml溶剂; 所述聚苯硫醚纤维与催化剂二者之间加入量的摩尔比 为 1 :0.5 - 1 : 1 ;
b、 季铵化反应: 将步骤 a干燥处理所得的氯曱基化交联聚苯硫醚纤 维在溶剂中进行溶胀, 溶胀后回收部分溶剂, 然后加入三曱胺溶液, 将 反应溶液的温度升至 30 ~ 40 °C条件下进行季铵化反应,反应时间为 10 ~ 15h,反应结束后得到产物聚苯硫酸基强碱离子交换纤维, 最后将所得产 物进行洗涤、 抽提、 盐洗和干燥;
所述氯曱基化交联聚苯硫醚纤维在溶剂中进行溶胀时氯曱基化交联 聚苯硫醚纤维与溶剂之间加入量的比例为每克氯曱基化交联聚苯硫醚纤 维加入 10 ~ 30ml溶剂; 所述溶胀后回收部分溶剂, 回收部分溶剂后控制 氯曱基化交联聚苯硫醚纤维与溶剂之间加入量的比例为每克氯曱基化交 联聚苯硫醚纤维加入 5 ~ 15ml溶剂; 所述氯曱基化交联聚苯硫醚纤维的 氯曱基与三曱胺之间加入量的摩尔比为 1 :5 ~ 10: 1。
根据上述的聚苯硫酸基强碱离子交换纤维的制备方法, 步骤 a中所 述聚苯硫醚纤维在溶剂中进行溶胀时溶胀时间为 12 ~ 16h, 所述溶胀时 聚苯^ L醚纤维与溶剂二者之间加入量的比例为每克聚苯 醚纤维加入 5 ~ 15ml溶剂; 所述溶剂为二氯乙烷或硝基苯。
根据上述的聚苯硫酸基强碱离子交换纤维的制备方法, 步骤 a中所 述催化剂为无水四氯化锡。
根据上述的聚苯硫酸基强碱离子交换纤维的制备方法, 步骤 a中所 述将所得氯曱基化交联聚苯硫醚纤维进行洗涤、 抽提和干燥处理的详细 过程为: 将所得氯曱基化交联聚苯硫醚纤维依次用蒸榴水、 乙醇分别进 行洗涤, 洗潦后将所得产物在溶剂提取装置中采用无水乙醇或丙酮溶液 抽提 6 ~ 12h, 然后采用蒸馏水将产物中的乙醇或丙酮洗潦掉, 最后真空 干燥至恒重。
根据上述的聚苯硫酸基强碱离子交换纤维的制备方法, 所述真空干 燥时真空度为 0.07 - 0.09 Mpa, 干燥温度为 50 ~ 80°C , 干燥时间为 15 ~ 根据上述的聚苯硫酸基强碱离子交换纤维的制备方法, 步骤 b中所 述将步骤 a干燥处理所得的氯曱基化交联聚苯硫醚纤维在溶剂中进行溶 胀时溶胀时间为 6 ~ 12h; 所述溶剂为四氢呋喃。
根据上述的聚苯硫酸基强碱离子交换纤维的制备方法, 步骤 b中所 述三曱胺溶液为浓度 33wt%的水溶液或为浓度 40wt%的醇溶液。
根据上述的聚苯硫酸基强碱离子交换纤维的制备方法, 步骤 b中所 述将所得产物进行洗涤、 抽提、 盐洗和干燥的详细步骤为: 将所得产物 聚苯硫酸基强碱离子交换纤维依次用蒸榴水和乙醇洗涤至中性, 洗潦后 在溶剂提取装置中采用无水乙醇抽提 6 ~ 12h,然后用浓度为 0.5 ~ 2mol/L 的盐酸或氢氧化钠溶液浸泡 10 ~ 15h, 再用蒸榴水洗涤至中性, 最后真 空干燥至恒重。
根据上述的聚苯硫酸基强碱离子交换纤维的制备方法, 所述真空干 燥时真空度为 0.07 - 0.09 Mpa, 干燥温度为 50 ~ 60°C , 干燥时间为 15 ~ 24h。
本发明的积极有益效果:
1、 本发明采用的原料聚苯 醚纤维、 氯曱醚和三曱胺, 价廉易得, 其制备方法
筒单, 易于操作。 利用本发明方法制备聚苯硫醚基强碱离子交换纤维与 现有技术相比, 其生产成本明显降低。 生产成本的降低、 制备方法的筒 化, 为强碱离子交换纤维的合成与应用领域的拓宽奠定了坚实的基础。
2、 利用本发明方法制备聚苯硫酸基强碱离子交换纤维, 可以完全避 开辐照引发技术, 成本明显降低, 合成方法明显筒化, 易于在工业上推 广应用。
3、 利用本发明方法制备的强碱离子交换纤维可用于工业废水的处 理、 空气净化、 超纯水的制备以及医药化学品的分离提取等领域, 其应 用效果显著。
4 附图说明
图 1表示本发明的原料聚苯硫醚纤维、 氯曱基化交联聚苯硫醚纤维 以及产品聚苯硫酸基强碱离子交换纤维的红外光谱图。 具体实施方式
下面通过实施例更具体地说明本发明。 以下实施例仅为了进一步说 明本发明, 并不限制本发明的内容。
实施例 1 :
本实施例的聚苯硫酸基强碱离子交换纤维的制备方法, 其详细步骤 如下:
a、 氯曱基化与交联反应: 称取基本原料聚苯硫醚纤维 4.1047g、 溶 剂二氯乙烷 50ml 置于 100ml 三口烧瓶中进行溶胀 12h,溶胀后回收 25ml 二氯乙烷,然后加入称取的基本原料氯曱醚 20ml和催化剂无水四氯化锡 3ml振荡摇匀,摇匀后油浴加热反应液至 55 °C ,在此温度条件下反应 20h; 反应结束后得到氯曱基化交联聚苯硫醚纤维, 将所得纤维冷却至室温, 依次用蒸馏水、 无水乙醇进行洗涤, 然后将其在索氏提取器中用无水乙 醇抽提 8h, 抽提后用蒸榴水洗涤、 去掉氯曱基化交联聚苯硫醚纤维中的 乙醇, 将洗潦后的纤维真空干燥至恒重(真空度为 0.08Mpa, 干燥温度 为 60°C , 干燥时间为 18h ), 真空干燥后得到氯曱基化交联聚苯硫醚纤维 5.0796g;
所得氯曱基化交联聚苯硫醚纤维相对于原聚苯硫醚纤维增重
23.75%,氯曱基化交联聚苯硫醚纤维的元素分析结果: C: 56.79; H: 3.39; S: 20.94; C1 18.88; 根据元素分析测算氯曱基的含量为 5.318 mmol/g。
b、 季铵化反应: 称取步骤 a真空干燥后得到的氯曱基化交联聚苯硫 醚纤维 1.6481g置于 100ml三口烧瓶中,加入 80ml四氢呋喃溶剂进行超 声溶胀 6h,溶胀后回收 60ml溶剂四氢呋喃,然后在 lh内滴加 30ml 33% 的三曱胺水溶液, 加热反应液, 当温度达到 35 °C时进行季铵化反应 10h; 反应结束后得到产品聚苯硫醚基强碱离子交换纤维, 用蒸馏水将其产物 洗涤至中性, 洗潦后在索氏提取器中采用无水乙醇抽提 8h, 抽提后用浓 度为 lmol/L的盐酸溶液将其产物浸泡 10h, 然后用蒸馏水将其产物洗涤 至中性, 最后真空干燥至恒重(真空度为 0.08 Mpa, 干燥温度为 50°C, 干燥时间为 20h ), 真空干燥后得到产品聚苯硫酸基强碱离子交换纤维 2.1086g;
所得产品聚苯硫酸基强碱离子交换纤维增重 27.94%, 元素分析结 果: C:48.10 H:6.68 S: 11.97 N: 3.98 , 根据元素分析结果测算氮含 量为 2.84mmol/g, 测定交换容量为 2.74mmol/g。
实施例 2:
本实施例的聚苯硫酸基强碱离子交换纤维的制备方法, 其详细步骤 如下:
a、 氯曱基化与交联反应: 称取基本原料聚苯硫醚纤维 5.4819g、 溶 剂二氯乙烷 50ml 置于 100ml 三口烧瓶中进行溶胀 13h,溶胀后回收 20ml 二氯乙烷,然后加入称取的基本原料氯曱醚 30ml和催化剂无水四氯化锡 4ml振荡摇匀, 摇匀后用油浴加热反应液至 50 °C条件下反应 25h; 反应 结束后得到氯曱基化交联聚苯硫醚纤维, 将所得纤维冷却至室温, 依次 用蒸馏水、 无水乙醇进行洗涤, 然后将其在索氏提取器中用无水乙醇抽 提 10h, 抽提后用蒸馏水洗涤、 去掉氯曱基化交联聚苯硫醚纤维中的乙 醇, 将洗潦后的纤维在真空干燥箱内干燥至恒重(真空度为 0.09Mpa, 干燥温度为 50°C , 干燥时间为 15h ), 真空干燥后得到氯曱基化交联聚苯 石 υ醚纤维 7.0370g;
所得氯曱基化交联聚苯硫醚纤维相对于原聚苯硫醚纤维增重
28.37%, 元素分析结果: C:53.25 H:3.21 S: 19.35 , 根据元素分析结 果推算其氯曱基的含量为 6.814mmol/g。
b、 季铵化反应: 称取步骤 a真空干燥后得到的氯曱基化交联聚苯硫 醚纤维 0.6392g置于 50ml三口烧瓶中, 加入 15 ml四氢呋喃溶剂进行溶 胀 8h, 溶胀后回收 8 ml溶剂四氢呋喃, 然后在 lh内滴加 30ml 33%的三 曱胺水溶液, 油浴加热反应液至 30°C , 在此温度条件下进行季铵化反应 12h; 反应结束后得到产品聚苯硫酸基强碱离子交换纤维, 用蒸馏水将其 产物洗涤至中性, 洗潦后在索氏提取器中采用无水乙醇抽提 8h, 抽提后 用浓度为 lmol/L的 NaOH溶液将其产物浸泡 15h, 然后用蒸馏水将其产 物洗涤至中性, 最后真空干燥至恒重 (真空度为 0.07 Mpa, 干燥温度为 55 °C , 干燥时间为 18h ), 真空干燥后得到产品聚苯硫酸基强碱离子交换 纤维 0.8112g;
所得产品聚苯硫酸基强碱离子交换纤维增重 26.91%, 元素分析结 果: C:49.17 H:6.53 S: 11.86 N: 3.76, 根据元素分析结果测算氮含 量为 2.69mmol/g, 测定交换容量为 2.68mmol/g。
实施例 3:
本实施例的聚苯硫酸基强碱离子交换纤维的制备方法, 其详细步骤 如下:
a、 氯曱基化与交联反应: 称取基本原料聚苯硫醚纤维 13.6311g、溶 剂二氯乙烷 80ml、 氯曱醚 80ml置于 250ml 三口烧瓶中进行溶胀 14h, 溶胀后加入催化剂无水四氯化锡 8ml振荡摇匀, 摇匀后用油浴加热反应 液至 55 °C条件下反应 30h;反应结束后得到氯曱基化交联聚苯硫醚纤维, 将所得纤维冷却至室温, 依次用蒸榴水、 无水乙醇进行洗涤, 然后将其 在索氏提取器中用无水乙醇抽提 12h, 抽提后用蒸榴水洗涤、 去掉氯曱 基化交联聚苯硫醚纤维中的乙醇, 将洗潦后的纤维真空干燥至恒重(真 空度为 0.07Mpa, 干燥温度为 70°C , 干燥时间为 16h ), 真空干燥后得到 氯曱基化交联聚苯硫醚纤维 17.4007g;
所得氯曱基化交联聚苯硫醚纤维相对于原聚苯硫醚纤维增重
27.65%, 氯曱基化交联聚苯硫醚纤维的元素分析结果: C:53.85 H:3.23 S: 18.43; 根据元素分析测算氯曱基含量为 6.90mmol/g。
b、 季铵化反应: 称取步骤 a真空干燥后得到的氯曱基化交联聚苯硫 醚纤维 2.0516g置于 100ml三口烧瓶中,加入 80ml四氢呋喃溶剂进行溶 胀 12h, 溶胀后回收 50ml四氢呋喃溶剂, 然后加入 40ml 33%的三曱胺 水溶液, 油浴加热至反应液 40°C , 在此温度条件下进行季铵化反应 15h; 反应结束后得到产品聚苯硫醚基强碱离子交换纤维, 用蒸馏水将其产物 洗涤至中性, 洗潦后在索氏提取器中采用无水乙醇抽提 8h, 抽提后用浓 度为 lmol/L的 NaOH溶液将其产物浸泡 12h, 然后用蒸馏水将其产物洗 涤至中性, 最后真空干燥至恒重(真空度为 0.07Mpa, 干燥温度为 55 °C , 干燥时间为 18h ), 真空干燥后得到产品聚苯硫酸基强碱离子交换纤维 2.6931g;
所得产品聚苯硫酸基强碱离子交换纤维增重 31.27%, 产品的元素分 析结果为: C:47.10 H:6.58 S: 11.95 N: 3.99; 根据元素分析结果其 氮含量为 2.85mmol/g; 交换容量测定为 2.90mmol/g。
实施例 4:
本实施例的聚苯硫酸基强碱离子交换纤维的制备方法, 其详细步骤 如下:
a、 氯曱基化与交联反应: 称取基本原料聚苯硫醚纤维 4.1715g、 溶 剂硝基苯 35ml、 氯曱醚 25ml置于 100ml 三口烧瓶中进行溶胀 16h, 溶 胀后加入催化剂无水四氯化锡 3ml振荡摇匀, 摇匀后用油浴加热反应液 至 55°C条件下反应 20h; 反应结束后得到氯曱基化交联聚苯硫醚纤维, 将所得纤维冷却至室温, 依次用蒸榴水、 无水乙醇进行洗涤, 然后将其 在索氏提取器中用丙酮溶液抽提 8h, 抽提后用蒸馏水洗涤、 去掉纤维中 的丙酮, 将洗潦后的氯曱基化交联聚苯硫醚纤维真空干燥至恒重 (真空 度为 0.08Mpa, 干燥温度为 60°C , 干燥时间为 16h ), 真空干燥后得到氯 曱基化交联聚苯硫醚纤维 5.0568g;
所得氯曱基化交联聚苯硫醚纤维相对于原聚苯硫醚纤维增重
21.22%, 元素分析结果: C:57.22 H:4.26 S: 20.14, 根据元素分析结 果推算其氯曱基的含量为 5.177mmol/g。
b、 季铵化反应: 称取步骤 a真空干燥后得到的氯曱基化交联聚苯硫 醚纤维 1.7294g置于 100ml三口烧瓶中,加入 40ml四氢呋喃溶剂进行溶 胀 10h, 溶胀后回收 30ml溶剂四氢呋喃, 然后加入 30ml 33%的三曱胺 水溶液, 油浴加热至反应液 38 °C , 在此温度条件下进行季铵化反应 1 lh; 反应结束后得到产品聚苯硫醚基强碱离子交换纤维, 用蒸馏水将其产物 洗涤至中性, 洗潦后在索氏提取器中采用无水乙醇抽提 8h, 抽提后用浓 度为 lmol/L的盐酸 HC1溶液将其产物浸泡 10h, 然后用蒸榴水将其产物 洗涤至中性,最后真空干燥至恒重(真空度为 0.08Mpa,干燥温度为 50°C , 干燥时间为 18h ), 真空干燥后得到产品聚苯硫酸基强碱离子交换纤维 2.1988g;
所得产品聚苯硫酸基强碱离子交换纤维增重 27.14% ,元素分析结果: C:47.86 H:6.52 S: 10.95 N: 4.01 , 根据元素分析结果测算氮含量为 2.86mmol/g, 测定交换容量为 2.82mmol/g。
实施例 5:
本实施例的聚苯硫酸基强碱离子交换纤维的制备方法, 其详细步骤 如下:
a、 氯曱基化与交联反应: 称取基本原料聚苯硫醚纤维 6.500g、 溶剂 硝基苯 90ml置于 250ml 三口烧瓶中进行溶胀 16h, 溶胀后回收 50ml硝 基苯, 然后加入原料氯曱醚 50ml和催化剂无水四氯化锡 5ml振荡摇匀, 摇匀后用油浴加热反应液至 50°C条件下反应 20h, 再升温至 60°C条件下 反应 10h; 反应结束后得到氯曱基化交联聚苯硫醚纤维, 将所得氯曱基 化交联聚苯硫醚纤维冷却至室温, 依次用蒸榴水、 无水乙醇进行洗涤, 然后将其在索氏提取器中用丙酮溶液抽提 8h, 抽提后用蒸馏水洗涤、 去 掉纤维中的丙酮, 将洗潦后的氯曱基化交联聚^^醚纤维真空干燥至恒 重(真空度为 0.08Mpa, 干燥温度为 60°C , 干燥时间为 16h ), 真空干燥 后得到氯曱基化交联聚苯硫醚纤维 8.2422g;
所得氯曱基化交联聚苯硫醚纤维相对于原聚苯硫醚纤维增重
26.80%, 元素分析结果: C:55.15 H:3.67 S: 21.86, 根据元素分析结 果推算其氯曱基的含量为 5.442mmol/g。
b、 季铵化反应: 称取步骤 a真空干燥后得到的氯曱基化交联聚苯硫 醚纤维 1.6792g置于 100ml三口烧瓶中,加入 40ml四氢呋喃溶剂进行溶 胀 12h, 溶胀后回收 25 ml溶剂四氢呋喃, 然后加入 15ml 40%的三曱胺 醇溶液, 加热反应液至 35°C条件下进行季铵化反应 10h; 反应结束后得 到产品聚苯硫酸基强碱离子交换纤维, 用蒸榴水将其产物洗涤至中性, 洗潦后在索氏提取器中采用无水乙醇抽提 6h, 抽提后用浓度为 1.5mol/L 的盐酸 HC1溶液将其产物浸泡 12h, 然后用蒸榴水将其产物洗涤至中性, 最后真空干燥至恒重(真空度为 0.08Mpa, 干燥温度为 50°C , 干燥时间 为 18h ), 真空干燥后得到产品聚苯硫酸基强碱离子交换纤维 2.2204g; 所得产品聚苯硫酸基强碱离子交换纤维增重 32.23%,元素分析结果: C:49.97 H:6.54 S: 11.03 N: 4.13 , 根据元素分析结果测算氮含量为 2.95mmol/g, 测定交换容量为 3.01mmol/g。
实施例 6:
本实施例的聚苯硫酸基强碱离子交换纤维的制备方法, 其详细步骤 如下:
a、 氯曱基化与交联反应: 称取基本原料聚苯硫醚纤维 4.9733g、 溶 剂二氯乙烷 50ml置于 100ml 三口烧瓶中进行溶胀 15h,溶胀后回收 20ml 二氯乙烷,然后加入原料氯曱醚 30ml和催化剂无水四氯化锡 4ml振荡摇 匀, 摇匀后用油浴加热反应液至 50°C条件下反应 20h; 反应结束后得到 氯曱基化交联聚苯硫醚纤维, 将所得纤维冷却至室温, 依次用蒸馏水、 无水乙醇进行洗涤, 然后将其在索氏提取器中用丙酮溶液抽提 10h, 抽 提后用蒸馏水洗涤、 去掉氯曱基化交联聚苯硫醚纤维中的丙酮, 将洗涤 后的氯曱基化交联聚苯硫醚纤维真空干燥至恒重(真空度为 0.08Mpa,干 燥温度为 60°C , 干燥时间为 16h ), 真空干燥后得到氯曱基化交联聚苯硫 醚纤维 6.2489g;
所得氯曱基化交联聚苯硫醚纤维相对于原聚苯硫醚纤维增重
25.65%, 元素分析结果: C:56.25 H:3.63 S: 21.37, 根据元素分析结 果推算其氯曱基的含量为 5.28mmol/g。
b、 季铵化反应: 称取步骤 a真空干燥后得到的氯曱基化交联聚苯硫 醚纤维 1.5665g置于 100ml三口烧瓶中,加入 40ml四氢呋喃溶剂进行溶 胀 13h, 溶胀后回收 25 ml溶剂四氢呋喃, 然后加入 15ml 40%的三曱胺 醇溶液, 加热反应液至 35°C条件下进行季铵化反应 12h; 反应结束后得 到产品聚苯硫酸基强碱离子交换纤维, 用蒸榴水将其产物洗涤至中性, 洗涤后在索氏提取器中采用乙醇溶液抽提 12h,抽提后用浓度为 1.0mol/L 的盐酸 HC1溶液将其产物浸泡 15h, 然后用蒸榴水将其产物洗涤至中性, 最后真空干燥至恒重(真空度为 0.08Mpa, 干燥温度为 50°C , 干燥时间 为 18h ), 真空干燥后得到产品聚苯硫酸基强碱离子交换纤维 2.0684g; 所得产品聚苯硫酸基强碱离子交换纤维增重 32.04%,元素分析结果: C:50.21 H:7.38 S: 10.48 N: 4.23 , 根据元素分析结果测算氮含量为 3.02mmol/g, 测定交换容量为 3.13mmol/g。
实施例 7:
本实施例的聚苯硫酸基强碱离子交换纤维的制备方法, 其详细步骤 如下:
a、 氯曱基化与交联反应: 称取基本原料聚苯硫醚纤维 29.1039g、溶 剂二氯乙烷 125ml、氯曱醚 100ml和催化剂无水四氯化锡 10ml置于 500ml 三口烧瓶中进行溶胀 15h, 溶胀后用油浴加热反应液至 60°C条件下反应 8h, 反应 8h后补加氯曱醚 40ml和无水四氯化锡 4ml再反应 8h, 然后再 补加溶剂二氯乙烷 50ml、氯曱醚 50ml和无水四氯化锡 6ml继续反应 14h; 反应结束后得到氯曱基化交联聚苯硫醚纤维, 将所得氯曱基化交联聚苯 硫醚纤维冷却至室温, 依次用蒸馏水、 无水乙醇进行洗涤, 然后将其在 索氏提取器中用无水乙醇抽提 8h, 抽提后用蒸馏水洗涤、 去掉氯曱基化 交联聚苯 醚纤维中的乙醇, 将洗潦后的纤维真空干燥至恒重(真空度 为 0.08Mpa, 干燥温度为 60°C , 干燥时间为 16h ), 真空干燥后得到氯曱 基化交联聚苯硫醚纤维 38.8933g;
所得氯曱基化交联聚苯硫醚纤维相对于原聚苯硫醚纤维增重
33.60%,氯曱基化交联聚苯硫醚纤维的元素分析结果为: C:54.25 H:3.13 S: 22.27; 根据元素分析结果测算出氯曱基化交联聚 醚纤维中氯曱 基的含量为 5.73mmol/g。
b、 季铵化反应: 称取步骤 a真空干燥后得到的氯曱基化交联聚苯硫 醚纤维 14.3969g置于 500ml三口烧瓶中,加入 200ml四氢呋喃溶剂进行 溶胀 12h, 溶胀后回收 100ml溶剂四氢呋喃, 然后加入 140ml 33%的三 曱胺水溶液, 将反应液加热至 40°C条件下进行季铵化反应 15h; 反应结 束后得到产品聚苯硫酸基强碱离子交换纤维, 用蒸馏水将其产物洗涤至 中性, 洗涤后在索氏提取器中采用乙醇溶液抽提 8h, 抽提后用浓度为 lmol/L的盐酸 HC1溶液将其产物浸泡 12h, 然后用蒸馏水将其产物洗涤 至中性, 最后真空干燥至恒重(真空度为 0.08Mpa, 干燥温度为 50°C , 干燥时间为 18h ), 真空干燥后得到产品聚苯硫酸基强碱离子交换纤维 20.6265g;
所得产品聚苯硫酸基强碱离子交换纤维增重 43.27%, 产品元素分析 结果为: C:48.65 H:6.39 S: 13.46 N: 4.57; 根据元素分析结果测定 其氮含量为 3.26mmol/g; 产品交换容量为 3.51mmol/g。
利用红外光谱对上述制备方法中的氯曱基化与交联反应和季铵化反 应进行了鉴定, 附图 1中显示了三种物质 (PPS、 PPS-CK PPS-N+CI- ) 的红外光谱图。 由附图 1可知:
其中 PPS: 原聚苯 醚纤维的红外谱图;
PPS-C1: 氯曱基化交联聚苯硫醚纤维的红外谱图;
PPS-N+CI": 本发明产品聚苯硫酸基强碱离子交换纤维的红外谱图, PPS-N+CI-红外谱图中, 1257cm-1为 -CH2C1的 -CH2键的伸缩振动吸收峰, 而原聚苯硫醚纤维上没有这个吸收峰, 说明氯曱基的成功引入。 对于 PPS-N+C1", 1321cm"1为饱和 C一 H键的面内弯曲振动吸收峰, 1633cm-1 为 C一 N键的伸缩振动吸收峰, 3393cm-1为纤维吸附水的伸缩振动吸收 峰(强碱离子交换纤维有很强的吸水性;), 说明氯曱基化反应和季铵化反 应均已成功反应。

Claims

1、 一种聚苯硫酸基强碱离子交换纤维的制备方法, 其特征在于,所 述制备方法包括以下步骤:
a、 氯曱基化与交联反应: 以聚苯硫醚纤维和氯曱醚为基本原料,首 先将原料聚苯硫醚纤维在溶剂中进行溶胀, 溶胀后加入称取的原料氯曱 醚和催化剂, 加入氯曱醚和催化剂后振动摇勾, 摇勾后将其反应溶液升 温至 50 ~ 60°C条件下进行氯曱基化与交联反应, 反应时间为 15 ~ 30小 时, 反应结束后得到氯曱基化交联聚苯硫醚纤维, 然后将所得氯曱基化 交联聚苯硫醚纤维进行洗涤、 抽提和干燥处理;
所述聚苯硫醚纤维与氯曱醚二者之间加入量的摩尔比为 1 :5 ~ 10: 1 ; 所述聚苯 醚纤维与溶剂二者之间加入量的比例为每克聚苯 醚纤维加 入 5 ~ 10ml溶剂; 所述聚苯硫醚纤维与催化剂二者之间加入量的摩尔比 为 1 :0.5 - 1 : 1 ;
b、 季铵化反应: 将步骤 a干燥处理所得的氯曱基化交联聚苯硫醚纤 维在溶剂中进行溶胀, 溶胀后回收部分溶剂, 然后加入三曱胺溶液, 将 反应溶液的温度升至 30 ~ 40 °C条件下进行季铵化反应,反应时间为 10 ~ 15h,反应结束后得到产物聚苯硫酸基强碱离子交换纤维, 最后将所得产 物进行洗涤、 抽提、 盐洗和干燥;
所述氯曱基化交联聚苯硫醚纤维在溶剂中进行溶胀时氯曱基化交联 聚苯硫醚纤维与溶剂之间加入量的比例为每克氯曱基化交联聚苯硫醚纤 维加入 10 ~ 30ml溶剂; 所述溶胀后回收部分溶剂, 回收部分溶剂后控制 氯曱基化交联聚苯硫醚纤维与溶剂之间加入量的比例为每克氯曱基化交 联聚苯硫醚纤维加入 5 ~ 15ml溶剂; 所述氯曱基化交联聚苯硫醚纤维的 氯曱基与三曱胺之间加入量的摩尔比为 1 :5 ~ 10: 1。
2、 根据权利要求 1所述的聚苯硫酸基强碱离子交换纤维的制备方 法, 其特征在于: 步骤 a中所述聚苯硫醚纤维在溶剂中进行溶胀时溶胀 时间为 12 ~ 16h, 所述溶胀时聚苯硫醚纤维与溶剂二者之间加入量的比 例为每克聚苯 醚纤维加入 5 ~ 15ml溶剂; 所述溶剂为二氯乙烷或硝基 苯。
3、 根据权利要求 1所述的聚苯硫酸基强碱离子交换纤维的制备方 法, 其特征在于: 步骤 a中所述催化剂为无水四氯化锡。
4、 根据权利要求 1所述的聚苯硫酸基强碱离子交换纤维的制备方 法, 其特征在于, 步骤 a中所述将所得氯曱基化交联聚苯硫醚纤维进行 洗涤、 抽提和干燥处理的详细过程为: 将所得氯曱基化交联聚苯硫醚纤 维依次用蒸榴水、 乙醇分别进行洗涤, 洗潦后将所得产物在溶剂提取装 置中采用无水乙醇或丙酮溶液抽提 6 ~ 12h, 然后采用蒸榴水将产物中的 乙醇或丙酮洗潦掉, 最后真空干燥至恒重。
5、 根据权利要求 4所述的聚苯硫酸基强碱离子交换纤维的制备方 法, 其特征在于: 所述真空干燥时真空度为 0.07 - 0.09 Mpa, 干燥温度 为 50 ~ 80°C , 干燥时间为 15 ~ 24h。
6、 根据权利要求 1所述的聚苯硫酸基强碱离子交换纤维的制备方 法, 其特征在于: 步骤 b中所述将步骤 a干燥处理所得的氯曱基化交联 聚苯硫醚纤维在溶剂中进行溶胀时溶胀时间为 6 ~ 12h; 所述溶剂为四氢 p夫喃。
7、 根据权利要求 1所述的聚苯硫酸基强碱离子交换纤维的制备方 法, 其特征在于: 步骤 b中所述三曱胺溶液为浓度 33wt%的水溶液或为 浓度 40wt%的醇溶液。
8、 根据权利要求 1所述的聚苯硫酸基强碱离子交换纤维的制备方 法, 其特征在于, 步骤 b中所述将所得产物进行洗涤、 抽提、 盐洗和干 燥的详细步骤为: 将所得产物聚苯硫酸基强碱离子交换纤维依次用蒸馏 水和乙醇洗涤至中性, 洗潦后在溶剂提取装置中采用无水乙醇抽提 6 ~ 12h, 然后用浓度为 0.5 ~ 2mol/L 的盐酸或氢氧化钠溶液浸泡 10 ~ 15h, 再用蒸榴水洗涤至中性, 最后真空干燥至恒重。
9、 根据权利要求 8所述的聚苯硫酸基强碱离子交换纤维的制备方 法, 其特征在于: 所述真空干燥时真空度为 0.07 - 0.09 Mpa, 干燥温度 为 50~60°C, 干燥时间为 15~24h。
10、 一种聚 醚基强碱离子交换纤维, 其由前述权利要求 1〜9中 任意一项所述的制备方法制备。
PCT/CN2011/081887 2010-11-23 2011-11-07 聚苯硫醚基强碱离子交换纤维及其制备方法 WO2012068951A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2013123484/05A RU2013123484A (ru) 2010-11-23 2011-11-07 Сильнощелочное ионообменное волокно на основе полифениленсульфида и способ его получения
JP2013540224A JP2013544984A (ja) 2010-11-23 2011-11-07 ポリフェニレンサルファイドベースの強アルカリイオン交換繊維およびその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010555361.4 2010-11-23
CN2010105553614A CN102051811B (zh) 2010-11-23 2010-11-23 聚苯硫醚基强碱离子交换纤维的制备方法

Publications (1)

Publication Number Publication Date
WO2012068951A1 true WO2012068951A1 (zh) 2012-05-31

Family

ID=43956588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081887 WO2012068951A1 (zh) 2010-11-23 2011-11-07 聚苯硫醚基强碱离子交换纤维及其制备方法

Country Status (4)

Country Link
JP (1) JP2013544984A (zh)
CN (1) CN102051811B (zh)
RU (1) RU2013123484A (zh)
WO (1) WO2012068951A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117116520A (zh) * 2023-08-16 2023-11-24 西南科技大学 一种强碱性高氟铀废水深度净化及铀资源回收的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051811B (zh) * 2010-11-23 2012-04-25 郑州大学 聚苯硫醚基强碱离子交换纤维的制备方法
CN102277730B (zh) * 2011-05-30 2013-03-13 郑州大学 聚苯硫醚基强酸离子交换纤维的制备方法
CN102505480B (zh) * 2011-09-26 2014-08-06 淮海工学院 超级螯合离子交换纤维的制备方法
CN103306133B (zh) * 2013-06-18 2015-06-10 郑州大学 Pps基n-甲基咪唑强碱型离子交换纤维的制备方法
CN103556455B (zh) * 2013-10-29 2015-06-10 郑州大学 高交换容量聚苯硫醚基强酸离子交换纤维的制备方法
CN104389159A (zh) * 2014-10-20 2015-03-04 中国石油化工股份有限公司 一种聚苯硫醚基螯合纤维的制备方法
CN107904939B (zh) * 2017-11-29 2020-07-28 郑州大学 一种强碱离子交换纤维的制备方法
CN113248781A (zh) * 2021-05-24 2021-08-13 井冈山大学 一种电路板废料中非金属材料的绿色回收再利用的方法
CN116239934B (zh) * 2023-04-28 2023-08-15 江西瑞耐德新材料股份有限公司 一种基于保温胶泥反射隔热涂料的外墙保温系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347761A (zh) * 2001-09-17 2002-05-08 桂林正翰科技开发有限责任公司 一种制备功能性离子交换纤维的新方法
JP2005344263A (ja) * 2004-06-07 2005-12-15 Solt Industry Center Of Japan 陰イオン交換膜の製造方法および陰イオン交換膜
CN1715552A (zh) * 2004-06-30 2006-01-04 桂林正翰科技开发有限责任公司 一种接枝共聚进行离子交换纤维制备的新方法
KR100776375B1 (ko) * 2006-06-20 2007-11-15 한국에너지기술연구원 음이온 교환막의 제조방법 및 동 방법에 의해 제조한 음이온 교환막을 포함하는 연료전지
KR20080103794A (ko) * 2007-05-25 2008-11-28 한국에너지기술연구원 연료전지에 사용하는 이오노머 슬러리를 포함하는 막-전극접합체 제조방법 및 그 막-전극접합체, 막-전극체를 포함하는 연료전지
CN102051811A (zh) * 2010-11-23 2011-05-11 郑州大学 聚苯硫醚基强碱离子交换纤维的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147876A (ja) * 1984-08-10 1986-03-08 東レ株式会社 活性化された繊維の製造法
JP2844739B2 (ja) * 1989-11-02 1999-01-06 東レ株式会社 イオン交換性シート状物
JPH11179218A (ja) * 1997-12-19 1999-07-06 Mitsubishi Chemical Corp イオン交換樹脂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347761A (zh) * 2001-09-17 2002-05-08 桂林正翰科技开发有限责任公司 一种制备功能性离子交换纤维的新方法
JP2005344263A (ja) * 2004-06-07 2005-12-15 Solt Industry Center Of Japan 陰イオン交換膜の製造方法および陰イオン交換膜
CN1715552A (zh) * 2004-06-30 2006-01-04 桂林正翰科技开发有限责任公司 一种接枝共聚进行离子交换纤维制备的新方法
KR100776375B1 (ko) * 2006-06-20 2007-11-15 한국에너지기술연구원 음이온 교환막의 제조방법 및 동 방법에 의해 제조한 음이온 교환막을 포함하는 연료전지
KR20080103794A (ko) * 2007-05-25 2008-11-28 한국에너지기술연구원 연료전지에 사용하는 이오노머 슬러리를 포함하는 막-전극접합체 제조방법 및 그 막-전극접합체, 막-전극체를 포함하는 연료전지
CN102051811A (zh) * 2010-11-23 2011-05-11 郑州大学 聚苯硫醚基强碱离子交换纤维的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117116520A (zh) * 2023-08-16 2023-11-24 西南科技大学 一种强碱性高氟铀废水深度净化及铀资源回收的方法
CN117116520B (zh) * 2023-08-16 2024-02-06 西南科技大学 一种强碱性高氟铀废水深度净化及铀资源回收的方法

Also Published As

Publication number Publication date
JP2013544984A (ja) 2013-12-19
CN102051811A (zh) 2011-05-11
RU2013123484A (ru) 2014-12-27
CN102051811B (zh) 2012-04-25

Similar Documents

Publication Publication Date Title
WO2012068951A1 (zh) 聚苯硫醚基强碱离子交换纤维及其制备方法
Zhou et al. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents
Hu et al. Self-assembly of binary oppositely charged polysaccharides into polyelectrolyte complex hydrogel film for facile and efficient Pb2+ removal
Zhao et al. A study on the degree of amidoximation of polyacrylonitrile fibers and its effect on their capacity to adsorb uranyl ions
CN103480333B (zh) 一种复合型石墨烯吸附剂及其制备方法、应用
CN103910822B (zh) 一种凝胶型强碱性阴离子交换树脂的制备方法
Zhang et al. Sulfhydryl-modified chitosan aerogel for the adsorption of heavy metal ions and organic dyes
Cheng et al. Development of a novel hollow fiber cation-exchange membrane from bromomethylated poly (2, 6-dimethyl-1, 4-phenylene oxide) for removal of heavy-metal ions
CN108159890B (zh) 一种具有耐碱性的阴离子交换膜的制备及其应用
CN103372381A (zh) 一种阴离子交换膜及其制备方法和燃料电池
Li et al. Effects of chain conformation on uranium adsorption performance of amidoxime adsorbents
CN105860077A (zh) 一种聚苯硫醚基吸附分离树脂的制备方法
CN107413305A (zh) 聚苯胺‑硅藻土/Fe3 O4‑壳聚糖复合材料的制备方法
CN106268381B (zh) 一种耐碱解阴离子交换膜材料及其制备方法和应用
CN104804182B (zh) 磺化聚芳醚砜及其制法和其在制备电致动器中的应用
CN101543764A (zh) 疏水性羰基修饰超高交联吸附树脂及其合成方法与应用
CN103306133B (zh) Pps基n-甲基咪唑强碱型离子交换纤维的制备方法
CN104117344A (zh) 新型壳聚糖金属离子吸附剂的制备方法
CN105418843B (zh) 一种用于二氧化碳捕集/吸收的多孔聚合离子液体的制备方法
CN101053823A (zh) 聚间苯二胺用作汞离子吸附剂
CN114031701A (zh) 一种双季铵二氧化碳吸附树脂及其制备方法和应用
TW201113380A (en) Indium adsorbent, indium adsorbent producing method, and indium adsorption method
CN111019182B (zh) 一种自具微孔聚合物阴离子交换膜的制备方法
CN103556455B (zh) 高交换容量聚苯硫醚基强酸离子交换纤维的制备方法
CN114736338B (zh) 一种阳离子型共价有机框架材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540224

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013123484

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11842557

Country of ref document: EP

Kind code of ref document: A1