WO2012065294A1 - 可交联固化的超支化聚酯及其固化产物和制备方法 - Google Patents

可交联固化的超支化聚酯及其固化产物和制备方法 Download PDF

Info

Publication number
WO2012065294A1
WO2012065294A1 PCT/CN2010/078739 CN2010078739W WO2012065294A1 WO 2012065294 A1 WO2012065294 A1 WO 2012065294A1 CN 2010078739 W CN2010078739 W CN 2010078739W WO 2012065294 A1 WO2012065294 A1 WO 2012065294A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyperbranched polyester
group
moles
composition
compound
Prior art date
Application number
PCT/CN2010/078739
Other languages
English (en)
French (fr)
Inventor
虞明东
陈智
Original Assignee
上海维凯化学品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海维凯化学品有限公司 filed Critical 上海维凯化学品有限公司
Priority to PCT/CN2010/078739 priority Critical patent/WO2012065294A1/zh
Priority to US13/885,399 priority patent/US8912246B2/en
Priority to CN2010800174874A priority patent/CN102439061B/zh
Priority to JP2013538025A priority patent/JP5729845B2/ja
Priority to GB1310384.1A priority patent/GB2499944B/en
Priority to TW100141495A priority patent/TW201221578A/zh
Publication of WO2012065294A1 publication Critical patent/WO2012065294A1/zh
Priority to HK12108563.6A priority patent/HK1167871A1/xx

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • C08L67/07Unsaturated polyesters having terminal carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a cross-linkable curable hyperbranched polyester, in particular a hyperbranched polyester which can be cross-linked and cured by photo- or thermal-initiated radical polymerization, and a cured product thereof and a process for the preparation thereof.
  • High refractive index organic materials are increasingly used in resin lenses, optical devices, optical coatings, information storage, etc., and photocuring is a highly efficient method for obtaining optical coatings and optical bonding layers.
  • High refractive materials with photocuring properties show strong development momentum and show increasingly important application value in many fields, including LCD backlight brightness enhancement film, LED package, instrument digital device panel protection coating, etc.
  • Chinese Patent Application Publication Number CN1777822A provides a single-phase, substantially solvent-free, polymerizable liquid composition comprising a polymerizable liquid and an organic fourth, fifth or sixth dissolved therein A compound which can be polymerized by the influence of external application.
  • a curable composition comprising a polyfunctional (meth) acrylate, a substituted or unsubstituted aryl ether (meth) acrylate monomer, and a polymerization initiator.
  • the composition exhibits a high refractive index, and upon polymerization, the composition provides a film having excellent properties.
  • US 2008/0075959 Al discloses a class of high refractive index photocurable monomers based on brominated fluorenyl groups for the production of optical protective films.
  • US 7,491,441 A class of aromatic sulfur-containing acrylates, such as diacrylates based on 4,4'-dimercapto-p-phenylene sulfide or dinonylnaphthalene, which have a higher refractive index and can be used in display panels Wear-resistant hard coating.
  • US 6,656,990 reports a class of curable inorganic-organic hybrid compositions composed of metal oxide nanoparticles and organic components having a relatively high refractive index, which can be used in the fabrication of communication optical waveguides.
  • the present invention provides a hyperbranched polyester which can be cross-linked and cured by photo- or thermal-initiated radical polymerization, which is modified by modifying a general terminal hydroxyl group-branched polyester. And got it.
  • the (meth) acrylate group is attached to the end group of the ordinary hyperbranched polyester to impart curable properties to the resin; and the inventors have unexpectedly discovered that By simultaneously inserting an appropriate amount of a naphthalene ring on the end group of the same hyperbranched polyester, the refractive index of the cured product can be controlled, thereby obtaining a cured product having a desired refractive index.
  • the present invention provides a A cross-linkable, cured hyperbranched polyester comprising a compound represented by the following structural formula (I):
  • HBP is a hyperbranched polyester skeleton; a and b are both positive integers, the sum of a and b Less than or equal to n, n is greater than or equal to 10 and less than 80; A is represented by the following structural formula (II):
  • R is a methyl group or a hydrogen atom
  • N is represented by the following structural formula (III):
  • the molar ratio of N to the total moles of A and N is 30 mol% or more, and the ratio of the total number of moles of A and N to the product of the total number of moles of HBP skeleton and n is 0.5. Above and less than or equal to 1.
  • the above hyperbranched polyester itself has a high refractive index, is easy to prepare, and can obtain a high refractive index cured product by a simple curing reaction, thereby solving the above problems of the prior art.
  • the present invention also provides a manufacturing method A method of cross-linking a cured hyperbranched polyester, wherein the hyperbranched polyester is obtained by reacting a hyperbranched polyester skeleton compound having n terminal hydroxyl groups with a compound selected from the group consisting of (meth)acrylic acid and (methyl) At least one compound of an acryloyl halide; and at least one compound selected from the group consisting of naphthaleneacetic acid and naphthylacetyl halide.
  • the above method can be used to produce a hyperbranched polyester having the formula (I), and the reaction is simple and controllable, the raw materials are easily available, and the convenience is outstanding.
  • the present invention provides a crosslinkable curable hyperbranched polyester composition, wherein the composition comprises the crosslinkable curable hyperbranched polyester and a photoinitiator.
  • the composition can be used to make the cured product of the present invention, and the resulting cured product has a high refractive index and can therefore be used as a coating for surface layers such as LED devices, lenses, and panels to protect and enhance the coated article.
  • the present invention provides a cured product obtained by a curing reaction of the above composition.
  • the resulting cured product has a high refractive index and thus can be used as a surface protective layer for, for example, LED devices, lenses, panels to protect and enhance the coated article.
  • the present invention employs a saturated aliphatic hyperbranched polyester as a skeleton, and a naphthalene ring and an acrylate double bond are introduced at the terminal group to obtain a class of curable hyperbranched polymer having a relatively high refractive index. Due to their special dendritic molecular structure and saturated polyester backbone, these hyperbranched polymers have good compatibility with common photocurable monomers and prepolymers, and are also suitable for increasing the refractive index of polymers. Copolymerized component or blended component.
  • Figure 1 lists unmodified hyperbranched polyester Boltorn H30, fully acrylated hyperbranched polyester HBNA3A, pernaphthalene acetated hyperbranched polyester HBNA3E, and both acrylate curable groups and naphthalene 1 H NMR spectrum of an acetate-based hyperbranched polyester (represented by HBNA3C).
  • the skeleton compound used in the crosslinkable and cured hyperbranched polyester of the present invention is a typical hyperbranched polymer, and is also a kind of variety and application field which is bred in the development process of hyperbranched polymer. Wide new materials.
  • the branched repeating unit of the ordinary hyperbranched polyester has a characteristic group of an ester group, and has a typical highly branched structure, a spherical shape, a large number of end groups, and the like.
  • due to Hyperbranched polyester has a special molecular structure, a large number of active end groups, and good comprehensive performance, which makes it have broad research value and application prospects.
  • the hyperbranched polyester backbone compound suitable for use in the present invention only needs to have n hydroxyl groups, i.e., can be reacted with, for example, acrylic acid and naphthalene acetic acid to obtain a cross-linked curable hyperbranched polyester of formula (I).
  • Hyperbranched polyester backbone compounds suitable for use in the present invention can be prepared by a variety of synthetic methods, such as self-condensation polymerization of ABx (x>1) type monomers, multi-branched ring-opening polymerization, and polyfunctional monomer copolymerization. These methods are well known in the art, and can be found in "Hyperbranched Polyester” (published by Chemical Industry Press, 2009), and will not be repeated here.
  • the cross-linking and curing hyperbranched polyester of the present invention has a wide range of skeleton raw materials, either commercially available hyperbranched polyester or self-synthesized hyperbranched polyester, which requires only hyperbranched polycondensation.
  • the ester skeleton compound has n terminal hydroxyl groups and can be used to obtain a crosslinkable curable hyperbranched polyester as shown in Structural Formula (I).
  • n is preferably from 10 to 80.
  • the hyperbranched polyester backbone compound used is preferably an aliphatic hyperbranched polyester having n terminal hydroxyl groups, more preferably a saturated aliphatic hyperbranched polyester having n terminal hydroxyl groups, Increasing the miscibility of the resulting product with other resins and polymerized monomers allows the reaction to proceed smoothly and improves the compatibility of subsequent products.
  • the aliphatic hyperbranched polyester can be synthesized by a common synthetic method.
  • commercial aliphatic hyperbranched polyesters can also be used.
  • a commercial aliphatic hyperbranched polyester in order to obtain a high refractive index hyperbranched polyester, thereby obtaining a cured product having a high refractive index, the present invention preferably uses, for example, Sweden.
  • Perstorp AB's Boltorn H20, Boltorn H30 and Boltorn H40, respectively, with multiplicative algebras of 2, 3 and 4 Hyperbranched polyesters, where n are 16, 32 and 64, respectively, and their ideal structure is as follows:
  • aliphatic hyperbranched polyesters suitable for use in the present invention are by no means limited to the above-listed compounds, and those skilled in the art will be able to anticipate any of the above-mentioned aliphatic hyperbranched polypolymers in accordance with the teachings of the present invention.
  • a compound having a similar ester structure can be used as the skeleton compound, for example, an aliphatic hyperbranched polyester derived from the core compound (V) shown below as a 10-80, thereby obtaining a high refractive index as described above.
  • the cured macromonomer (I) can be crosslinked.
  • a continuous chain-extension reaction of 2,2-dimethylolpropionic acid as a branched chain-extended molecule with a compound of the formula (V) can be used, thereby obtaining more ends.
  • a and b are both positive integers, and the sum of a and b is less than or equal to n.
  • a and The sum of b should be equal to n, so that the terminal hydroxyl group of the skeleton compound can be utilized to the utmost extent, however, the inventors have found that even a and b The sum of less than n, for example, greater than or equal to 0.6n, can also meet the actual needs, that is, obtain a curable monomer that meets the actual requirements, thereby obtaining a cured product having a high refractive index.
  • the ratio of the total number of moles of A to N to the product of the total number of moles of HBP skeleton and n is 0.5 or more, more preferably 0.6 or more, and most preferably 0.7 or more.
  • acrylic acid and naphthaleneacetic acid are used as the modifying compound to react with the skeleton compound having n terminal hydroxyl groups, it is ensured that the esterification ratio is 50% or more, more preferably 60% or more, and most preferably 70. %the above.
  • a macromonomer having both crosslinkable curing ability and high refractive index can be obtained.
  • the molar ratio of N to the total number of moles of A and N should be 30% by mole or more, and more preferably 40% by mole or more. In order to obtain curability, the ratio should be less than 100% by mole (both a and b are positive integers). In order to balance the refractive index and curability of the curable monomer, it is further preferred that the range is from about 30 mol% to about 80 mol%, still more preferably from about 40 mol% to about 75 mol%, and most preferably about 60 mol% - About 75 mol%.
  • the insertion of a (meth) acrylate group on the terminal group of the hyperbranched polyester skeleton compound is carried out by reacting a terminal hydroxyl group of the skeleton compound with a compound containing a (meth)acryloyloxy group.
  • the compound which introduces a (meth)acryloyloxy group to the skeleton may be a (meth)acryloyl halide, particularly a (meth)acryloyl chloride.
  • the compound is preferably acrylic acid or methacrylic acid.
  • the attachment of a naphthyl group to the terminal group of the hyperbranched polyester backbone compound is achieved by reacting a terminal hydroxyl group of the hyperbranched polyester backbone with a naphthyl group-containing compound.
  • the naphthyl group-introduced compound used in the skeleton may contain a carboxyl group or an acid halide group or other group reactive with a hydroxyl group to form an ester group, and thus may be naphthoic acid, naphthaleneacetic acid, naphthoyl chloride, and naphthylacetyl chloride. More preferred are naphthaleneacetic acid and naphthylacetyl chloride, and naphthaleneacetic acid is most preferred in view of availability and cost.
  • the method for synthesizing the crosslinkable and curable hyperfractionated hyperbranched polyester according to the present invention can adopt a common esterification reaction method, that is, an ester is formed by reacting a terminal hydroxyl group with a carboxyl group or an acid halide group.
  • the typical reaction process is as follows:
  • Formula (IV) is a hydroxyl group-containing hyperbranched polyester skeleton compound, and formula (I) is the above crosslinkable curable hyperbranched polyester, X is a hydroxyl group or a halogen atom; R is H or CH 3 ; a and b are respectively It is the number of the A group and the N group in the formula (I), and the crosslinkable curing activity and the refractive index of the product can be controlled by adjusting the content of the crosslinkable curing group and the naphthalene ring content in the product.
  • the crosslinkable and curable hyperbranched polyester produced by the present invention is a mixture comprising the hyperbranched polyester of the formula (I), and each of the hyperbranched polyesters represented by the formula (I) has its own a and b, and the sum of a and b is less than or equal to n.
  • the average molecular number of a will be close to the molar ratio of the modified compound (for example, acrylic acid) containing a (meth)acryloyloxy group to the skeleton compound, and the average molecular number of b is also close to that of naphthalene.
  • the molar ratio of the modified compound of the ring to the backbone compound is also close to that of naphthalene.
  • both a and b can be adjusted by the amount of charge.
  • the inventors have found that by adjusting the amount of the various modifying compounds, the crosslinkable curing group content and the naphthalene ring group content in the product can be arbitrarily changed, thereby controlling the crosslinking curing activity and refractive index of the product.
  • the refractive index of the above crosslinkable monomer can be adjusted to 1.50-1.60, and the refractive index of the cured product can be 1.55-1.65.
  • a water-carrying agent may be used to promote the reaction.
  • the water-carrying agent may be any organic agent capable of azeotroping with water and not compatible with water and not participating in or interfering with the esterification reaction, and examples thereof include benzene, toluene, xylene, cyclohexane, halogenated alkanes (for example) Chloroform, carbon tetrachloride, etc.), acetonitrile, acrylonitrile, diethyl ether and carbon disulfide.
  • benzene, toluene, xylene, cyclohexane, a halogenated alkane (for example, chloroform, carbon tetrachloride, or the like) is preferably used, and toluene is more preferably used.
  • the amount of the water-carrying agent can be determined according to the actual situation, and is not particularly limited as long as it is sufficient to achieve an esterification ratio of 50% or more (preferably 60% or more).
  • a polymerization inhibitor which prevents radical polymerization such as hydroquinone (HQ), p-benzoquinone (PBQ), A, to the reaction raw material.
  • THQ Hydroquinone
  • MEHQ p-hydroxyanisole
  • MTBHQ 2-tert-butyl hydroquinone
  • 2,5-di-tert-butyl hydroquinone 2,5-DTBHQ
  • phenol Thiazide ⁇ -phenylnaphthylamine, methylene blue, 1,1-diphenyl-2-trinitrophenylhydrazine, 2,2,6,6-tetramethylpiperidine nitroxyl radical, and the like.
  • hydroquinone, p-benzoquinone, methylhydroquinone, 2-tert-butyl hydroquinone, 2,5-di-tert-butyl-p-phenylene are preferred.
  • the amount of the polymerization inhibitor may be determined according to the actual conditions, and as a preferred range, it may be 0.5 to 8.0 mol% based on the molar ratio of the reactant containing a double bond.
  • a more preferred range is from 2.0 to 6.0 mol% in order to achieve a better effect.
  • a catalyst such as concentrated sulfuric acid or an acidic catalyst such as p-toluenesulfonic acid and an alkaline such as sodium hydroxide or 4-dimethylaminopyridine to the reaction raw material.
  • p-toluenesulfonic acid is preferably used as a catalyst in order not to affect the refractive index of the final product and environmental considerations.
  • the amount of the catalyst can be determined according to the actual situation, and the preferred range is from 1.0 mol% to 15.0 mol%, based on the total moles of the modified compound (the acyloxy group-containing modified compound and the naphthyl group-containing modified compound). More preferably, it is 3.0 mol% - 10.0 mol%.
  • the temperature of the above esterification reaction is preferably a temperature higher than the azeotropic point of the water-carrying agent and water, and in the case of using toluene, for example, 110 to 130 ° C, more preferably 115 to 120 ° C.
  • the reaction time is preferably 4 to 12 hours, more preferably 5 to 10 hours.
  • the actual reaction time should be based on the end of the reaction indicated by the instrument.
  • the detecting instrument used herein it may be a general infrared detector, for example, the hydroxyl absorption peak at 3408 cm -1 is no longer changed to the end point.
  • the following method may be employed: the product is subjected to fractional washing with an aqueous solution of NaHCO 3 (preferably 10% by weight or more), dilute hydrochloric acid and saturated brine. then the organic layer was retained; the organic layer with a drying agent (e.g. anhydrous MgSO 4) drying to remove water; solvent was then removed under reduced pressure to obtain a curable monomer.
  • a drying agent e.g. anhydrous MgSO 4
  • the cross-linkable and cured hyperbranched polyester of the present invention may be prepared by reacting a hyperbranched polyester skeleton compound having n terminal hydroxyl groups with a compound selected from (meth)acrylic acid and At least one compound of (meth)acryloyl halide; and at least one compound selected from the group consisting of naphthaleneacetic acid and naphthylacetyl halide.
  • the hyperbranched polyester skeleton compound having n terminal hydroxyl groups is preferably an aliphatic hyperbranched polyester.
  • the aliphatic hyperbranched polyester is selected from Boltorn H20, One or more compounds of Boltorn H30 and Boltorn H40; or one or more compounds selected from the group consisting of:
  • the hyperbranched polyester is obtained by esterification reaction of the aliphatic hyperbranched polyester with acrylic acid and naphthalene acetic acid.
  • the ratio of the naphthaleneacetic acid to the total amount of the acrylic acid and the naphthaleneacetic acid is preferably from 30 to 80% by mole, more preferably from 40 to 75% by mole.
  • the raw material of the esterification reaction preferably contains a water-carrying agent, a polymerization inhibitor, and a catalyst.
  • the esterification reaction is preferably protected by the addition of nitrogen.
  • the esterification reaction uses toluene as the water-carrying agent.
  • the reaction temperature is preferably from 110 to 130 ° C, more preferably from 115 to 120 ° C; and the reaction time is preferably from 4 to 12 hours, more preferably from 5 to 10 hours.
  • the esterification reaction uses p-hydroxyanisole as the polymerization inhibitor.
  • the amount of the polymerization inhibitor to be used is preferably from 0.5 to 8.0 mol%, more preferably from 2.0 to 6.0 mol%, based on the mole ratio of (meth)acrylic acid or (meth)propionyl chloride.
  • the esterification reaction uses p-toluenesulfonic acid as a catalyst.
  • the molar ratio of the catalyst to the total moles of the following compounds is from 1.0 mol% to 15.0 mol%, more preferably from 3.0 mol% to 10.0 mol%: selected from (meth)acrylic acid and (meth)acryloyl group.
  • the preparation method further comprises the following separation of the product obtained by the esterification reaction: the product is subjected to fractional washing with an aqueous solution of NaHCO 3 , dilute hydrochloric acid and saturated brine, and then the organic layer is retained; The layer was dried to remove water; the solvent was then removed under reduced pressure to obtain the crosslinkable, cured hyperbranched polyester.
  • the present invention also provides a crosslinkable curable hyperbranched polyester composition comprising the above crosslinkable curable hyperbranched polyester of the present invention and an optional photoinitiator.
  • the photoinitiator for example, it is preferably used, for example.
  • the amount of the photoinitiator is not particularly limited, and an appropriate amount may be selected according to actual conditions, for example, Darocur 1173, The amount thereof may be from 0.5 to 5% by weight, more preferably from 1 to 3% by weight, based on the weight of the composition.
  • other known photoinitiators suitable for the crosslinking reaction of the (meth)acryloyloxy group can also be used.
  • the composition may also contain conventional additives such as solvents, leveling agents, anti-abrasives, and other optional free radical polymerizations.
  • a monomer such as (meth)acrylic acid or the like.
  • the above composition may be irradiated according to a commonly used apparatus such as an ultraviolet lamp (for example, a medium-high pressure mercury lamp) or an electron beam or visible light according to the initiator to be used, thereby initiating a reaction. Therefore, the curing reaction is very simple and easy to implement, and can be applied to most occasions where it is necessary to perform lightening and protection.
  • a commonly used apparatus such as an ultraviolet lamp (for example, a medium-high pressure mercury lamp) or an electron beam or visible light according to the initiator to be used, thereby initiating a reaction. Therefore, the curing reaction is very simple and easy to implement, and can be applied to most occasions where it is necessary to perform lightening and protection.
  • the hyperbranched polyester of the present invention can also form a cured product of high refractive index by a heat curing reaction.
  • a heat curing reaction for the thermosetting reaction of the (meth)acryloyloxy group, those skilled in the art know how to select a suitable temperature and reaction time, and will not be described herein.
  • the synthesis method of the crosslinkable and curable hyperbranched polyester according to the present invention is further illustrated by the following examples, wherein the ratio of the raw materials and the percentage are all by weight.
  • Example 1 In this example, a hyperbranched polyester Boltorn H30 having a propagation number of 3 was used as a starting material, and the synthesis was as follows: in a three-necked flask equipped with a reflux condenser, a water separator, and a stirring head. 4.1g of acrylic acid, 16.0g of naphthaleneacetic acid and 16.11g of hyperbranched polyester Boltron H30, and adding appropriate amount of toluene as a watering agent, adding 0.289g of p-hydroxyanisole (MEHQ) as a polymerization inhibitor, adding 1.27g P-toluenesulfonic acid was used as a catalyst.
  • MEHQ p-hydroxyanisole
  • the reaction temperature is 118 o C-120 o C and is protected by nitrogen.
  • the reaction lasted for about 8 hours until the hydroxyl absorption peak at 3408 cm -1 in the infrared monitoring no longer changed (or the acid value of the reaction system no longer decreased).
  • the reaction system was cooled to room temperature and diluted with dichloromethane. It was washed with 10% NaHCO 3 , 0.1 mol/L of dilute hydrochloric acid and saturated brine, and the organic layer was left. The organic layer was dried over anhydrous MgSO 4 to remove water, the solvent was removed under reduced pressure, the product as a pale yellow viscous liquid, referred to as HBNA3C.
  • the 1 H NMR spectrum confirmed the successful synthesis of the product (see Figure 1), and the esterification rate was 86% from the area of the relevant chemical shift peak, that is, 86% of the terminal hydroxyl groups in Boltron H30 participated in the esterification reaction.
  • the resulting product had a refractive index of 1.563.
  • a 2% photoinitiator Darocur 1173 was added to the product, and the film was coated, and then cured under irradiation with a 400 W medium pressure mercury lamp, and the obtained cured film had a refractive index of 1.579.
  • Comparative Example 1 As a comparison, in the comparative example, naphthalene acetic acid which can increase the refractive index was not added, and all of the hyperbranched polyester was modified with acrylic acid. The synthesis process was the same as in Example 1. The amount of acrylic acid charged was 10.3 g, the amount of naphthalene acetic acid was 0, the amount of p-toluenesulfonic acid was 0.92 g, and the amount of polymerization inhibitor MEHQ was 0.21 g. The amount of the remaining materials was the same as in Example 1. The product obtained was a pale yellow viscous liquid, designated HBNA3A.
  • the 1 H NMR spectrum confirmed the successful synthesis of the product (see Figure 1) and calculated the esterification rate to be 85% from the area of the relevant chemical shift peak.
  • the resulting product had a refractive index of 1.475.
  • the product was added to a 2% photoinitiator Darocur 1173, coated, and then cured by irradiation under a 400 W medium pressure mercury lamp, and the refractive index of the obtained cured film was measured to be 1.502.
  • Comparative Example 2 As a comparison, acrylic acid providing a curable group was not added in this comparative example, and all of the hyperbranched polyester was modified with naphthaleneacetic acid. The synthesis process was the same as in Example 1. The amount of acrylic acid charged was 0, the amount of naphthaleneacetic acid was 26.6 g, the amount of p-toluenesulfonic acid was 1.49 g, the amount of polymerization inhibitor MEHQ was 0, and the amount of the remaining materials was the same as in Example 1. The product obtained was a pale yellow viscous liquid, designated HBNA3E. The 1 H NMR spectrum confirmed the successful synthesis of the product (see Figure 1) and calculated the esterification rate to be 89% from the area of the relevant chemical shift peak.
  • the resulting product had a refractive index of 1.593. Since the product does not contain a radical-curable group, it cannot be cured into a film by a radical photoinitiator and light, and can be used only as a non-curing high-refractive-index resin.
  • Example 2 In this example, a hyperbranched polyester Boltorn H20 having a propagation number of 2 was used as a starting material, and the synthesis process was the same as in Example 1.
  • the amount of Boltorn H20 was 15.65 g, and the amount of p-toluenesulfonic acid was 1.25 g.
  • the amount of the polymerization inhibitor MEHQ was 0.29 g, and the amount of the remaining materials was the same as in Example 1.
  • the product obtained was a pale yellow viscous liquid, designated HBNA2C.
  • the 1 H NMR spectrum confirmed the successful synthesis of the product, and the esterification rate was 87% from the area of the relevant chemical shift peak.
  • the resulting product had a refractive index of 1.562.
  • the product was added with 2% photoinitiator Darocur 1173, coated, and then cured by irradiation under a 400 W medium pressure mercury lamp, and the obtained cured film had a refractive index of 1.579.
  • Example 3 In this example, a hyperbranched polyester Boltorn H40 having a propagation number of 4 was used as a starting material, and the synthesis process was the same as in Example 1.
  • the amount of Boltorn H40 was 16.52 g, and the amount of p-toluenesulfonic acid was 1.28 g.
  • the amount of the polymerization inhibitor MEHQ was 0.29 g, and the amount of the remaining materials was the same as in Example 1.
  • the product obtained was a pale yellow viscous liquid, designated HBNA4C.
  • the 1 H NMR spectrum confirmed the successful synthesis of the product, and the esterification rate was 85% from the area of the relevant chemical shift peak.
  • the resulting product had a refractive index of 1.560.
  • a 2% photoinitiator Darocur 1173 was added to the product, and the film was coated, and then cured by irradiation under a 400 W medium pressure mercury lamp, and the obtained cured film had a refractive index of
  • Example 1 Example 2 and Example 3 that in the case of modification with a hyperbranched polyester of different propagation algebra, when the ratio of the modified compound (acrylic acid and naphthalene acetic acid) is the same, the obtained product The refractive index is very close.
  • Example 4 Compared with Example 1, the ratio of the amount of acrylic acid and naphthalene acetic acid was changed in this example, and the synthesis process was the same as that in Example 1, wherein the amount of acrylic acid charged was 6.23 g, and the amount of naphthalene acetic acid was 10.7g, the amount of p-toluenesulfonic acid was 1.15g, the amount of the polymerization inhibitor MEHQ was 0.27g, and the amount of other materials was the same as that of Example 1.
  • the product obtained was a pale yellow viscous liquid, designated HBNA3B.
  • the 1 H NMR spectrum confirmed the successful synthesis of the product, and the esterification rate was 88% from the area of the relevant chemical shift peak.
  • the resulting product had a refractive index of 1.543.
  • a 2% photoinitiator Darocur 1173 was added to the product, and the film was coated, and then cured by irradiation under a 400 W medium pressure mercury lamp, and the obtained cured film had a refractive index of 1.562.
  • Example 5 Compared with Example 1, the ratio of the amount of acrylic acid and naphthalene acetic acid was changed in this example, and the synthesis process was the same as that of Example 1, wherein the amount of acrylic acid charged was 2.6 g, and the amount of naphthalene acetic acid was 20.0 g, the amount of p-toluenesulfonic acid was 1.35 g, and the amount of the polymerization inhibitor MEHQ was 0.31 g, and the amount of the remaining materials was the same as in Example 1.
  • the product obtained was a pale yellow viscous liquid, designated HBNA3D.
  • the 1 H NMR spectrum confirmed the successful synthesis of the product, and the esterification rate was 87% from the area of the relevant chemical shift peak.
  • the resulting product had a refractive index of 1.577.
  • a 2% photoinitiator Darocur 1173 was added to the product, and the film was coated, and then cured under irradiation with a 400 W medium pressure mercury lamp, and the obtained cured film had a refractive index of 1.592.
  • Example 1 Example 4 and Example 5 that, in synthesizing the curable hyperbranched polyester of the present invention, the refractive index of the product can be conveniently adjusted by changing the ratio of the feed of acrylic acid and naphthalene acetic acid.
  • the total amount of feed is the sum of the amount of naphthalene ring charge and the amount of (meth)acryloyloxy group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

可交联固化的超支化聚酯及其固化产物和制备方法 技术领域
本发明涉及一种可交联固化的超支化聚酯特别是可以通过光或热引发自由基聚合而交联固化的超支化聚酯及其固化产品和制备方法。
背景技术
高折射率有机材料越来越多应用于树脂镜片、光学器件、光学覆膜、信息存储等领域,而光固化是获得光学涂层、光学粘结层的高效率方法。具有光固化性能的高折射材料显示出较强的发展势头,在诸多领域显现出越来越重要的应用价值,这些领域包括 LCD 背光增亮膜、 LED 封装、仪表数码设备面板保护涂层等。基于日益增加的应用需求,近年来陆续有专利报道了具有较高折射率的可固化体系。中国专利申请公开号 CN1777822A 提供了一种单相、基本上无溶剂、可聚合的液体组合物,其包括可聚合液体及溶于其中的有机第 4 、 5 或 6 族化合物,该组合物在外部施加的影响的作用下可发生聚合。中国发明专利授权公告号 CN100355795C 提供了一种可固化组合物,包括多官能(甲基)丙烯酸酯、取代或未取代芳基醚(甲基)丙烯酸酯单体和聚合引发剂。该组合物显示出高折射率,并且在聚合时,该组合物提供具有优异性能的膜。 US 2008/0075959 Al 公开了一类基于溴代芴基的高折射率光固化性单体,用于光学保护膜的制作。 US 7,491,441 报道了一类芳香族含硫丙烯酸酯,如基于 4,4'- 二巯基对苯硫醚或二巯基萘的双丙烯酸酯,这类可固化化合物具有较高的折射率,可用于显示面板的耐磨加硬涂料。 US 6,656,990 报道了一类由金属氧化物纳米粒子和具有较高折射率的有机组分构成的可固化无机 - 有机杂化组合物,可用于通讯光波导的制作。
然而,上述的现有产品仍然不能满足当前的需求。目前仍然需要制备方法简单、固化容易、固化产品折射率可控的可固化单体,以满足例如作为LED器件、镜头、面板表面保护层的保护和增光的需求。
发明内容
为了解决上述技术问题,本发明提供了一种可以通过光或热引发自由基聚合而交联固化的的超支化聚酯,这种可固化树脂是通过对普通端羟基超支化聚酯进行改性而得到的。具体来说,以普通超支化聚酯为骨架,在该普通超支化聚酯的端基上接入(甲基)丙烯酸酯基团,可赋予树脂以可固化特性;而且发明人意外地发现,在同一超支化聚酯的端基上同时接入适量的萘环,可控制其固化产品的折射率,从而得到具有理想的折射率的固化产品。
由此,本 发明 提供了一种 可交联固化的超支化聚酯,所述超支化聚酯包含由以下结构式(I)表示的化合物:
Figure PCTCN2010078739-appb-C000001
I
式(I)中 , HBP 为超支化聚酯骨架; a 和 b 均 为正 整数,a 和 b 之和 小于或等于n,n大于等于10且小于80;A由以下结构式(II)表示:
Figure PCTCN2010078739-appb-C000002
II
式(II)中,R为甲基或氢原子;
N 由以下结构式(III)表示:
Figure PCTCN2010078739-appb-C000003
III
所述超支化聚酯中,N相对于A与N总摩尔数的摩尔比例为30摩尔%以上,且A与N的总摩尔数相对于HBP骨架的总摩尔数与n的乘积之比为0.5以上且小于等于1。
上述超支化聚酯本身即具有高折射率,易于制备,而且可以通过简单的固化反应获得高折射率的固化产品,由此解决了现有技术的上述问题。
同时,本发明还提供了一种制造所述 可交联固化的超支化聚酯的方法,其中,所述超支化聚酯由具有n个端羟基的超支化聚酯骨架化合物与以下化合物反应得到:选自(甲基)丙烯酸和(甲基)丙烯酰卤的至少一种化合物;以及选自萘乙酸和萘乙酰卤的至少一种化合物。
上述方法可用于制造具有如结构式(I)所示的超支化聚酯,且反应简单可控,原料易得,具有突出的便利性。
此外,本发明还提供了一种可交联固化的超支化聚酯组合物,其中,所述组合物包含所述的可交联固化的超支化聚酯以及光引发剂。
该组合物可用于制造本发明的固化产品,所得固化产品具有高折射率,因此可作为涂层用于例如LED器件、镜头、面板的表面层,以对所涂制品进行保护和增光。
另外,本发明还提供了由上述组合物经固化反应而制得的固化产品。
所得固化产品具有高折射率,因此可用作例如LED器件、镜头、面板的表面保护层,以对所涂制品进行保护和增光。
此外,本发明采用饱和脂肪族超支化聚酯作为骨架,在端基引入萘环和丙烯酸酯双键,得到了一类具有较高折射率的可固化超支化聚合物。这类超支化聚合物由于具有特殊的树枝状分子结构和饱和聚酯骨架,与常见的光固化单体、预聚物之间有很好的相容性,也很适合作为提高聚合物折射率的共聚组分或者共混组分。
附图说明
图 1 列出了未改性的超支化聚酯 Boltorn H30 、全丙烯酸酯化的超支化聚酯HBNA3A、全萘乙酸酯化的超支化聚酯 HBNA3E 以及同时含有丙烯酸酯可固化基团和萘乙酸酯基的超支化聚酯(以 HBNA3C 为代表)的 1 H NMR 谱。
具体实施方式
本发明的可交联固化的超支化聚酯所用的骨架化合物即超支化聚酯是一种典型的超支化聚合物,也是在超支化聚合物发展过程中孕育出来的一类品种多、应用领域广的新材料。一般而言,普通超支化聚酯的支化重复单元以酯基为特征基团,具有典型的高度支化结构、类球形的分子形状、大量端基等特点。由于 超支化聚酯兼备特殊的分子结构,众多的活性端基,良好的综合性能,因而使其有着广阔的研究价值和应用前景。但 适用于本发明的超支化聚酯骨架化合物只需要具有n个羟基,即可与例如丙烯酸和萘乙酸反应,从而获得式(I)可交联固化的超支化聚酯。
适用于本发明的超支化聚酯骨架化合物可采用多种合成方法制得,例如ABx(x>1)型单体自缩合聚合、多支化开环聚合以及多官能度单体共聚合等。这些方法都是本领域公知的,具体可参见《超支化聚酯》(化学工业出版社出版,2009年)在此不再赘述。总而言之,本发明的可交联固化的超支化聚酯的骨架原料的来源极其广泛,既可以是市售的超支化聚酯,也可以是自行合成的超支化聚酯,只需该超支化聚酯骨架化合物具有n个端羟基,即可用于获得如结构式(I)所示的可交联固化的超支化聚酯。但为了使固化产物获得可控的折射率,n优选为10-80。另外,本发明 所使用的超支化聚酯骨架化合物优选是具有n个端羟基的脂肪族超支化聚酯,更优选是具有n个端羟基的饱和脂肪族超支化聚酯,以 增加所得产物与其他树脂及聚合单体的混溶性,从而使反应顺利进行,并改善后续产品的相容性 。
如上所述,该脂肪族超支化聚酯可以通过普通的合成方法合成得到。不过,为了方便起见,也可以采用商品化的脂肪族超支化聚酯。作为商品化的脂肪族超支化聚酯,为了获得高折射率的超支化聚酯,进而获得高折射率的固化产品,本发明优选使用例如瑞典 Perstorp AB 公司出品的 Boltorn H20 、 Boltorn H30 和 Boltorn H40 ,分别对应繁衍代数为 2 、 3 和 4 的超支化聚酯, 其中,n分别为16、32和64, 其理想结构如下所示:
Figure PCTCN2010078739-appb-C000004
Boltorn H20
Figure PCTCN2010078739-appb-C000005
Boltorn H30
Figure PCTCN2010078739-appb-C000006
Boltorn H40
尽管如此,适用于本发明的脂肪族超支化聚酯决不限于上述列举的化合物,根据本发明给出的教导,本领域技术人员可以预期的是,任何与以上提到的脂肪族超支化聚酯结构相似的化合物都可以用作所述骨架化合物,例如n为10-80的衍生自如下所示的核心化合物(V)的脂肪族超支化聚酯,从而获得如上所述的高折射率的可交联固化的大分子单体(I)。
Figure PCTCN2010078739-appb-C000007
V
为了获得适用于本发明的骨架化合物,可使用作为支化扩链分子的2,2-二羟甲基丙酸与式(V)化合物进行连续的扩链酯化反应,从而获得具有更多端 羟基 (n=10-80)的脂肪族超支化聚酯骨架化合物。
如上所述,在结构式(I)中,a和b均为正整数, a 和 b 之和 小于或等于n。在 理想 情况下,a 和 b 之和应等于n,这样,可以最大程度地利用骨架化合物的端羟基,然而,本发明人发现,即使 a 和 b 之和小于n,例如大于或等于0.6n,也可满足实际需要,即获得符合实际要求的可固化单体,进而可获得高折射率的固化产物。
重要的是,A与N的总摩尔数相对于HBP骨架的总摩尔数与n的乘积之比为0.5以上,更优选在0.6以上,最优选在0.7以上。换言之,当使用例如丙烯酸与萘乙酸作为改性化合物与具有n个端羟基的所述骨架化合物进行反应时,应确保其酯化率在50%以上,更优选在60%以上,最优选在70%以上。这样,即可获得既具有可交联固化能力,又具有高折射率的大分子单体。另一方面,为了确保获得高折射率的单体,进而获得高折射率的固化产物,N相对于A与N总摩尔数的摩尔比例应为30摩尔%以上,更优选为40摩尔%以上。为了获得可固化性,该比例应小于100摩尔%(a和b均为正整数)。为了平衡可固化单体的折射率与固化性,进一步优选该范围为约30摩尔%-约80摩尔%,更进一步优选为约40摩尔%-约75摩尔%,最优选是约60摩尔%-约75摩尔%。
本发明中, 在超支化聚酯骨架化合物的端基上接入(甲基)丙烯酸酯基团,是利用骨架化合物的端羟基与含(甲基)丙烯酰氧基的化合物反应而实现的。向骨架引入(甲基)丙烯酰氧基的化合物可以是(甲基)丙烯酰卤,特别是(甲基)丙烯酰氯。不过,考虑到可得性和成本,该化合物优选是丙烯酸或甲基丙烯酸。
本发明中, 在超支化聚酯骨架化合物的端基上接入萘基团,是利用超支化聚酯骨架的端羟基与含萘基的化合物反应而实现的。所使用的向骨架引入萘基的化合物可同时含有羧基或酰卤基团或其它可与羟基反应形成酯基的基团,因此可以是萘甲酸、萘乙酸、萘甲酰氯和萘乙酰氯,其中更优选是萘乙酸与萘乙酰氯,考虑到可得性和成本,最优选是萘乙酸。
本发明所涉及的可交联固化的、具有较高折射率超支化聚酯的合成方法可采用普通的酯化反应方法,即通过端羟基与羧基或酰卤基反应而形成酯。典型的反应过程如下式所示:
Figure PCTCN2010078739-appb-C000008
式( IV ) 为含端羟基的超支化聚酯骨架化合物,式( I ) 为上述可交联固化的超支化聚酯, X 为羟基或卤素原子; R 为 H 或 CH3 ; a 和 b 分别是式(I)中A基团与N基团的个数,通过调节可任意改变产物中的可交联固化基团含量和萘环含量,从而控制产物的交联固化活性和折射率。显然,本发明制得的可交联固化的超支化聚酯是包含式(I)超支化聚酯的混合物,在由式(I)表示的各超支化聚酯之中,各分子具有各自的a和b,且a与b之和均小于等于n。不过,由于上述反应较为彻底,a的分子数量平均值将接近含(甲基)丙烯酰氧基的改性化合物(例如丙烯酸)与骨架化合物的摩尔比,b的分子数量平均值也接近含萘环的改性化合物与骨架化合物的摩尔比。因此,a和b均可由投料量来调节。发明人发现,通过调节 各种改性化合物的投料量, 可任意改变产物中的可交联固化基团含量和萘环基团含量,从而控制产物的交联固化活性和折射率。结果,可以将上述可交联单体的折射率调节至1.50-1.60,其固化产物的折射率则可以达到1.55-1.65。
为了实现上述技术效果,在进行上述酯化反应时,可使用带水剂以推进反应。所述带水剂可以是任何能够与水共沸且不会与水相溶以及不参与或干扰酯化反应的有机试剂,其实例包括苯、甲苯、二甲苯、环己烷、卤代烷烃(例如氯仿、四氯化碳等)、乙腈、丙烯腈、乙醚和二硫化碳等。其中,为了提高转化率,优选使用苯、甲苯、二甲苯、环己烷、卤代烷烃(例如氯仿、四氯化碳等),更优选使用甲苯。所述带水剂的用量可以根据实际情况来确定,而不受特别限制,只要足以使酯化率达到50%以上(优选60%以上)即可。
另外,为了抑制上述酯化反应过程中可能的自由基聚合反应,优选在反应原料中加入可阻止自由基聚合的阻聚剂,例如对苯二酚(HQ)、对苯醌(PBQ)、甲基氢醌(THQ)、对羟基苯甲醚(MEHQ)、2-叔丁基对苯二酚(MTBHQ)和2,5-二叔丁基对苯二酚(2,5-DTBHQ)、酚噻嗪、β-苯基萘胺、亚甲基蓝、1,1-二苯基-2-三硝基苯肼、2,2,6,6-四甲基哌啶氮氧自由基等等。其中,为了便于分离以不影响后续的固化,优选的是对苯二酚、对苯醌、甲基氢醌、2-叔丁基对苯二酚、2,5-二叔丁基对苯二酚和对羟基苯甲醚;更优选的是对羟基苯甲醚。阻聚剂的用量可以根据实际情况确定,作为优选的范围,其相对于含双键的反应物的摩尔比例可以是0.5-8.0摩尔%。如果低于0.5摩尔%,可能达不到阻聚的效果,如果高于8.0摩尔%,则可能造成后续纯化时无法彻底去除,从而不利于固化反应。基于类似的理由,为了达到更好的效果,更优选的范围是2.0-6.0摩尔%。
另一方面,为了提高上述酯化反应的效率,还优选在反应原料中加入催化剂,例如浓硫酸、对甲基苯磺酸等酸性催化剂和例如氢氧化钠、4-二甲氨基吡啶等碱性催化剂。其中,为了不影响最终产物的折射率和出于环保的考虑,优选使用对甲基苯磺酸作为催化剂。催化剂的用量可以根据实际情况来确定,相对于改性化合物(含酰氧基的改性化合物与含萘基的改性化合物)的总摩尔数,优选的范围是1.0摩尔%-15.0摩尔%,更优选是3.0摩尔%-10.0摩尔%。
作为上述酯化反应的温度,优选是比带水剂与水的共沸点更高的温度,在使用甲苯的情况下,例如是110-130℃,更优选是115-120℃。在这样的反应温度下,优选反应时间为4-12小时,更优选为5-10小时。不过,实际反应时间应以仪器所指示的反应终点为准。作为此处使用的检测仪器,可以是普通的红外检测仪,以例如 3408cm -1 处羟基吸收峰不再变化为终点。
此外,为了提高酯化效率,减少或抑制自由基反应,还优选在上述酯化反应中通入氮气进行保护。
作为从上述酯化反应的产物中分离所述可固化单体的方法,可以使用以下方法:利用 NaHCO3 水溶液(优选10重量%以上) 、稀盐酸和饱和食盐水对该产物进行分次清洗,然后保留有机层;将有机层用干燥剂(例如无水 MgSO4 ) 干燥除水;然后减压去除溶剂,从而获得可固化单体。基于以上描述,本发明所述的可交联固化的超支化聚酯的制备方法可以是:将具有n个端羟基的超支化聚酯骨架化合物与以下化合物反应:选自(甲基)丙烯酸和(甲基)丙烯酰卤的至少一种化合物;以及选自萘乙酸和萘乙酰卤的至少一种化合物。
在上述制备方法中,所述具有n个端羟基的超支化聚酯骨架化合物优选是脂肪族超支化聚酯。优选的情况下,所述脂肪族超支化聚酯为选自 Boltorn H20 、 Boltorn H30 和 Boltorn H40 中的一种或多种化合物;或者包含选自 以下化合物 中的一种或多种化合物:
Figure PCTCN2010078739-appb-C000009
Figure PCTCN2010078739-appb-C000010
Figure PCTCN2010078739-appb-C000011
在上述制备方法中,优选的情况下,所述超支化聚酯由所述脂肪族超支化聚酯与丙烯酸和萘乙酸经酯化反应而得到。其中,所述萘乙酸相对于丙烯酸和萘乙酸的总投料量之比优选为30-80摩尔%,更优选是40-75摩尔%。
所述酯化反应的原料优选包含带水剂、阻聚剂和催化剂。
所述酯化反应优选通入氮气进行保护。
更优选的是,所述酯化反应使用甲苯作为所述带水剂。在使用甲苯作为带水剂的情况下,优选反应温度为110-130℃,更优选是115-120℃;优选反应时间为4-12小时,更优选为5-10小时。
更优选的是,所述酯化反应使用对羟基苯甲醚作为所述阻聚剂。所述阻聚剂的用量相对于(甲基)丙烯酸或(甲基)丙酰氯的摩尔比例优选是0.5-8.0摩尔%,更优选是2.0-6.0摩尔%。
更优选的是,所述酯化反应使用对甲苯磺酸作为催化剂。所述催化剂的用量相对于以下化合物的总摩尔数的摩尔比例是1.0摩尔%-15.0摩尔%,更优选是3.0摩尔%-10.0摩尔%:选自(甲基)丙烯酸和(甲基)丙烯酰卤的至少一种化合物;以及选自萘乙酸和萘乙酰卤的至少一种化合物。
更优选的是,所述制备方法还包括对所述酯化反应所得的产物进行以下分离:利用 NaHCO3 水溶液 、稀盐酸和饱和食盐水对该产物进行分次清洗,然后保留有机层;将有机层干燥除水;然后减压去除溶剂,从而获得所述可交联固化的超支化聚酯。
在对上述可固化单体进行固化时,由于该单体存在(甲基)丙烯酰氧基作为端基,因此可使用光固化方法进行自由基固化。由此,本发明还提供了一种可交联固化的超支化聚酯组合物,该组合物包含本发明的上述可交联固化的超支化聚酯和可选的光引发剂。作为光引发剂,可优选使用例如 Darocur 1173 、Irgacure 184、Irgacure 369、Irgacure 651、Irgacure 819、Irgacure 907、Irgacure 2959以及TPO(2,4,6-三甲基苯甲酰基-二苯基氧化膦)(均可购自Ciba公司)等常用的引发剂。光引发剂的用量不受特别限制,可根据实际情况选用合适的用量,例如,对于 Darocur 1173 , 其用量相对于组合物的重量可以是0.5-5重量%,更优选是1-3重量%。除此之外,还可以采用适用于(甲基)丙烯酰氧基的交联反应的其他公知的光引发剂。
除了上述可交联固化的超支化聚酯和可选的光引发剂之外,该组合物还可以包含例如溶剂、流平剂、耐研磨剂等常用的添加剂,以及其他可选的自由基聚合单体,例如(甲基)丙烯酸(酯)等。
在进行所述光固化反应时,可根据所采用的引发剂选用紫外线灯(例如中高压汞灯)或电子束等常见的设备或可见光对上述组合物进行照射,从而引发反应。因此该固化反应非常简便,易于实施,可适用于大多数需要进行增光和保护的场合。
另一方面,本发明的超支化聚酯也可通过热固化反应而形成高折射率的固化产物。对于(甲基)丙烯酰氧基的热固化反应,本领域技术人员知道如何选择合适的温度与反应时间,在此不再赘述。
实施例
以下通过实施例对本发明所涉及的可交联固化的超支化聚酯的合成方法作进一步说明,其中所述的原料配比、百分比均为重量比。
实施例1:在该实施例中,采用繁衍代数为 3 的超支化聚酯 Boltorn H30 作为起始原料,合成过程如下:在装有回流冷凝管、分水器、搅拌头的三颈烧瓶中加入 4.1g 的丙烯酸、 16.0g 萘乙酸和 16.11g 的超支化聚酯 Boltron H30 ,并加入适量甲苯作为带水剂,添加 0.289g 的对羟基苯甲醚( MEHQ )作为阻聚剂,添加 1.27g 的对甲基苯磺酸作为催化剂。反应温度为 118oC-120 oC ,通氮气保护。反应历时约 8 小时,至红外监测 3408cm -1 处羟基吸收峰不再变化为止(或反应体系酸值不再降低为止)。将反应体系冷却到室温,用二氯甲烷稀释。用 10%NaHCO3 、 0.1mol/L 稀盐酸和饱和食盐水分次清洗,保留有机层。将有机层用无水 MgSO4 干燥除水,减压去除溶剂,产物为淡黄色粘稠液体,记为 HBNA3C 。 1 HNMR 谱证实了该产物的成功合成(参见图 1 ),并从相关化学位移峰的面积计算出酯化率为 86% ,即 Boltron H30 中的 86% 端羟基参与了酯化反应。所得产物折射率为 1.563 。在该产物中加入 2% 光引发剂 Darocur 1173 ,涂膜,然后在400W中压汞灯照射下固化,测得所得固化膜的折射率为 1.578 。
比较例1:作为比较,在该比较例中不加入可提高折射率的萘乙酸,全部用丙烯酸改性超支化聚酯。合成过程与实施例1相同,丙烯酸的投料量分别为 10.3g ,萘乙酸投料量为 0 ,对甲苯磺酸用量为 0.92g ,阻聚剂 MEHQ 用量为 0.21g 。其余物料用量与实施例1相同。所得产物为淡黄色粘稠液体,记为 HBNA3A 。 1 HNMR 谱证实了该产物的成功合成(参见图 1 ),并从相关化学位移峰的面积计算出酯化率为 85% 。所得产物折射率为 1.475 。该产物加入 2% 光引发剂 Darocur 1173 ,涂膜,然后在400W中压汞灯照射下固化,测得所得固化膜的折射率为 1.502 。
比较例2:作为比较,在该比较例中不加入提供可固化基团的丙烯酸,全部用萘乙酸改性超支化聚酯。合成过程与实施例1相同,丙烯酸的投料量分别为 0 ,萘乙酸投料量为 26.6g ,对甲苯磺酸用量为 1.49g ,阻聚剂 MEHQ 用量 0 ,其余物料用量与实施例1相同。所得产物为淡黄色粘稠液体,记为 HBNA3E 。 1 HNMR 谱证实了该产物的成功合成(参见图 1 ),并从相关化学位移峰的面积计算出酯化率为 89% 。所得产物折射率为 1.593 。该产物因不含可自由基固化基团,因此不能在自由基光引发剂和光照作用下固化成膜,仅可作为非固化高折射率树脂使用。
实施例2:在该实施例中,采用繁衍代数为 2 的超支化聚酯 Boltorn H20 作为起始原料,合成过程与实施例1相同, Boltorn H20 用量为 15.65g ,对甲苯磺酸用量为 1.25g ,阻聚剂 MEHQ 用量为 0.29g ,其余物料用量与实施例1相同。所得产物为淡黄色粘稠液体,记为 HBNA2C 。 1 HNMR 谱证实了该产物的成功合成,并从相关化学位移峰的面积计算出酯化率为 87% 。所得产物折射率为 1.562 。在该产物中加入 2% 光引发剂 Darocur1173 ,涂膜,然后在 400W 中压汞灯照射下固化,测得所得固化膜的折射率为 1.578 。
实施例3:在该实施例中,采用繁衍代数为 4 的超支化聚酯 Boltorn H40 作为起始原料,合成过程与实施例1相同, Boltorn H40 用量为 16.52g ,对甲苯磺酸用量为 1.28g ,阻聚剂 MEHQ 用量为 0.29g ,其余物料用量与实施例1相同。所得产物为淡黄色粘稠液体,记为 HBNA4C 。 1 HNMR 谱证实了该产物的成功合成,并从相关化学位移峰的面积计算出酯化率为 85% 。所得产物折射率为 1.560 。在该产物中加入 2% 光引发剂 Darocur1173 ,涂膜,然后在 400W 中压汞灯照射下固化,测得所得固化膜的折射率为 1.576 。
由实施例1、实施例2和实施例3可见,在采用不同繁衍代数的超支化聚酯进行改性的情况下,当改性化合物(丙烯酸和萘乙酸)的比例相同时,得到的产物的折射率很接近。
实施例4:与实施例1相比,在该实施例中改变了丙烯酸和萘乙酸的用量比例,合成过程与实施例1相同,其中,丙烯酸的投料量分别为 6.23g ,萘乙酸投料量为 10.7g ,对甲苯磺酸用量为 1.15g ,阻聚剂 MEHQ 用量为 0.27g ,其余物料用量与实施例1相同。所得产物为淡黄色粘稠液体,记为HBNA3B。 1 HNMR 谱证实了该产物的成功合成,并从相关化学位移峰的面积计算出酯化率为 88% 。所得产物折射率为 1.543 。在该产物中加入 2% 光引发剂 Darocur1173 ,涂膜,然后在 400W 中压汞灯照射下固化,测得所得固化膜的折射率为 1.562 。
实施例5:与实施例1相比,在该实施例中改变了丙烯酸和萘乙酸的用量比例,合成过程与实施例1相同,其中,丙烯酸的投料量分别为 2.6g ,萘乙酸投料量为 20.0g ,对甲苯磺酸用量为 1.35g ,阻聚剂 MEHQ 用量为 0.31g ,其余物料用量与实施例1相同。所得产物为淡黄色粘稠液体,记为HBNA3D。 1 HNMR 谱证实了该产物的成功合成,并从相关化学位移峰的面积计算出酯化率为 87% 。所得产物折射率为 1.577 。在该产物中加入 2% 光引发剂 Darocur1173 ,涂膜,然后在 400W 中压汞灯照射下固化,测得所得固化膜的折射率为 1.592 。
由实施例1、实施例4和实施例5可见,合成本发明的可固化超支化聚酯时,改变丙烯酸和萘乙酸的投料比例,可以方便地调节产物的折射率。
表1:各实例的比较
序号 骨架化合物 萘环投料量:总投料量(摩尔%)* 酯化率 单体折射率 固化产物
折射率
实施例1 Boltorn H30 60 86% 1.563 1.578
实施例2 Boltorn H20 60 87% 1.562 1.578
实施例3 Boltorn H40 60 85% 1.560 1.576
实施例4 Boltorn H30 40 88% 1.543 1.562
实施例5 Boltorn H30 75 87% 1.577 1.592
比较例1 Boltorn H30 0 85% 1.475 1.502
比较例2 Boltorn H30 100 89% 1.593
* 注:总投料量为萘环投料量与(甲基)丙烯酰氧基投料量之和

Claims (25)

  1. 1. 一种可交联固化的超支化聚酯,所述超支化聚酯包含由以下结构式(I)表示的化合物:
    Figure PCTCN2010078739-appb-C000012
    I
    式(I)中 ,HBP 为超支化聚酯骨架; a 和 b 均 为正 整数,a 和 b 之和 小于或等于n,n大于等于10且小于80;A由以下结构式(II)表示:
    Figure PCTCN2010078739-appb-C000013
    II
    式(II)中,R为甲基或氢原子;
    N 由以下结构式(III)表示:
    Figure PCTCN2010078739-appb-C000014
    III
    所述超支化聚酯中,N相对于A与N总摩尔数的摩尔比例为30摩尔%以上,且A与N的总摩尔数相对于HBP骨架的总摩尔数与n的乘积之比为0.5以上且小于等于1。
  2. 如权利要求 1 所述的超支化聚酯,其中,所述超支化聚酯骨架衍生自具有n个端羟基的脂肪族超支化聚酯。
  3. 如权利要求2所述的超支化聚酯,其中,所述脂肪族超支化聚酯为选自 Boltorn H20 、Boltorn H30和Boltorn H40 中的一种或多种化合物。
  4. 如权利要求2所述的超支化聚酯,其中,所述脂肪族超支化聚酯为选自 以下化合物中 的一种或多种化合物:
    Figure PCTCN2010078739-appb-C000015
    Figure PCTCN2010078739-appb-C000016
    Figure PCTCN2010078739-appb-C000017
  5. 如权利要求 1 所述的超支化聚酯,其中,A与N的总摩尔数相对于HBP骨架的总摩尔数与n的乘积之比为0.6以上。
  6. 如权利要求 1 所述的超支化聚酯,其中,A与N的总摩尔数相对于HBP骨架的总摩尔数与n的乘积之比为0.7以上。
  7. 如权利要求 1-6 中任一项 所述的超支化聚酯,其中,N相对于A与N总摩尔数的摩尔比例为40摩尔%以上,且小于90摩尔%。
  8. 如权利要求 7 所述的超支化聚酯,其中,N相对于A与N总摩尔数的摩尔比例小于等于80摩尔%。
  9. 如权利要求 7 所述的超支化聚酯,其中,N相对于A与N总摩尔数的摩尔比例为40摩尔%以上,且小于等于75摩尔%。
  10. 如权利要求 9 所述的超支化聚酯,其中,所述超支化聚酯的折射率为1.50-1.60 。
  11. 如权利要求 7 所述的超支化聚酯,其中, a 和 b 之和大于或等于0.6 n 且小于或等于n。
  12. 一种制造权利要求1所述的 可交联固化的超支化聚酯的方法,其中,所述超支化聚酯由具有n个端羟基的超支化聚酯骨架化合物与以下化合物反应得到:选自(甲基)丙烯酸和(甲基)丙烯酰卤的至少一种化合物;以及选自萘乙酸和萘乙酰卤的至少一种化合物。
  13. 如权利要求12所述的制造方法,其中,所述具有n个端羟基的超支化聚酯骨架化合物是脂肪族超支化聚酯。
  14. 如权利要求13所述的制造方法,其中,所述脂肪族超支化聚酯为选自 Boltorn H20 、 Boltorn H30 和 Boltorn H40 中的一种或多种化合物。
  15. 如权利要求13所述的制造方法,其中,所述脂肪族超支化聚酯为选自 以下化合物 中的一种或多种化合物:
    Figure PCTCN2010078739-appb-C000018
    Figure PCTCN2010078739-appb-C000019
    Figure PCTCN2010078739-appb-C000020
  16. 如权利要求 13 所述的制造方法,其中,所述超支化聚酯由所述脂肪族超支化聚酯与丙烯酸和萘乙酸经酯化反应而得到。
  17. 如权利要求 16 所述的制造方法,其中,所述萘乙酸相对于丙烯酸和萘乙酸的总投料量之比为30-80摩尔%。
  18. 如权利要求 16 所述的制造方法,其中,所述萘乙酸相对于丙烯酸和萘乙酸的总投料量之比为40-75摩尔%。
  19. 一种可交联固化的超支化聚酯组合物,其中,所述组合物包含权利要求1-11中任一项所述的超支化聚酯以及光引发剂。
  20. 如权利要求19所述的组合物,其中,所述光引发剂占所述组合物的0.5-5重量%。
  21. 如权利要求19所述的组合物,其中,所述光引发剂占所述组合物的1-3重量%。
  22. 如权利要求19所述的组合物,其中,所述光引发剂为选自 Darocur 1173 、 Irgacure 184、Irgacure 369、Irgacure 651、Irgacure 819、Irgacure 907、Irgacure 2959和2,4,6-三甲基苯甲酰基-二苯基氧化膦中的一种或多种引发剂 。
  23. 一种固化产品,所述固化产品由权利要求19-22中任一项所述的组合物经固化反应而制得。
  24. 如权利要求23所述的固化产品,其中,所述固化产品的折射率为1.55-1.65。
  25. 如权利要求23所述的固化产品,其中,所述的固化反应是通过使用紫外线灯、电子束或可见光照射所述组合物而进行的光固化反应。
PCT/CN2010/078739 2010-11-15 2010-11-15 可交联固化的超支化聚酯及其固化产物和制备方法 WO2012065294A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2010/078739 WO2012065294A1 (zh) 2010-11-15 2010-11-15 可交联固化的超支化聚酯及其固化产物和制备方法
US13/885,399 US8912246B2 (en) 2010-11-15 2010-11-15 Crosslinkable curing super-branched polyester and cured product and preparation method thereof
CN2010800174874A CN102439061B (zh) 2010-11-15 2010-11-15 可交联固化的超支化聚酯及其固化产物和制备方法
JP2013538025A JP5729845B2 (ja) 2010-11-15 2010-11-15 可架橋固形化超分岐ポリエステルおよびその固形化産物とその調製方法
GB1310384.1A GB2499944B (en) 2010-11-15 2010-11-15 Crosslinkable curing super-branched polyester and cured product and preparation method thereof
TW100141495A TW201221578A (en) 2010-11-15 2011-11-14 Crosslinkable curing super-branched polyester and cured product and preparation method thereof
HK12108563.6A HK1167871A1 (en) 2010-11-15 2012-09-03 Crosslinkable curing super-branched polyester and cured product and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078739 WO2012065294A1 (zh) 2010-11-15 2010-11-15 可交联固化的超支化聚酯及其固化产物和制备方法

Publications (1)

Publication Number Publication Date
WO2012065294A1 true WO2012065294A1 (zh) 2012-05-24

Family

ID=45986228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078739 WO2012065294A1 (zh) 2010-11-15 2010-11-15 可交联固化的超支化聚酯及其固化产物和制备方法

Country Status (7)

Country Link
US (1) US8912246B2 (zh)
JP (1) JP5729845B2 (zh)
CN (1) CN102439061B (zh)
GB (1) GB2499944B (zh)
HK (1) HK1167871A1 (zh)
TW (1) TW201221578A (zh)
WO (1) WO2012065294A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450410B2 (en) * 2014-04-23 2019-10-22 Sun Chemical Corporation Process for preparing polyester resins from polyethylene terephthalate and energy curable coating compositions
CN104086756A (zh) * 2014-07-28 2014-10-08 营口康辉石化有限公司 一种光学透明膜级聚酯生产方法
CN113185883B (zh) * 2021-06-11 2022-04-15 山东高速湖北养护科技有限公司 一种环保高性能公路标线涂料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1248586A (zh) * 1999-08-06 2000-03-29 中国科学技术大学 辐射可固化胺基超支化聚酯及其制备方法
TW200714614A (en) * 2005-10-03 2007-04-16 Eternal Chemical Co Ltd Acrylated semi-crystalline hyperbranched polyester oligomer and preparation method thereof
US20110045199A1 (en) * 2009-08-20 2011-02-24 Lianhui Cong Radiation curable ink compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE468771B (sv) * 1992-02-26 1993-03-15 Perstorp Ab Dendritisk makromolekyl av polyestertyp, foerfarande foer framstaellning daerav samt anvaendning daerav
JP2000075774A (ja) * 1998-09-01 2000-03-14 Toppan Printing Co Ltd ホログラム記録材料
SE514075C2 (sv) * 1999-04-27 2000-12-18 Perstorp Ab Förfarande för tillverkning av en akrylatkomposition innefattande minst en dendritisk polyesterakrylatoligomer och minst en akrylatmonomer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1248586A (zh) * 1999-08-06 2000-03-29 中国科学技术大学 辐射可固化胺基超支化聚酯及其制备方法
TW200714614A (en) * 2005-10-03 2007-04-16 Eternal Chemical Co Ltd Acrylated semi-crystalline hyperbranched polyester oligomer and preparation method thereof
US20110045199A1 (en) * 2009-08-20 2011-02-24 Lianhui Cong Radiation curable ink compositions

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUIGUANG KOU ET AL.: "Photopolymerizable acrylated hyperbranched polyisophthalesters used for photorefractive materials I. Synthesis and characterization", EUROPEAN POLYMER JOURNAL, vol. 38, 2002, pages 1931 - 1936 *
HUIGUANG KOU ET AL.: "Recording performance of holographic diffraction gratings in dry films containing hyperbranched polyisophthalesters as polymeric binders", APPLIED OPTICS, vol. 42, no. 19, July 2003 (2003-07-01), pages 3944 - 3949 *
LIMING TANG ET AL.: "Synthesis and curing of acrylate terminated hyperbranched polyester", JOURNAL OF TSINGHUA UNIVERSITY(SCIENCE AND TECHNOLOGY), vol. 43, no. 12, 2003, pages 1613 - 1615 *
WEI WEI ET AL.: "Synthesis and characterization of pentaerythritol-based hyperbranched polyester", PAINT & COATINGS INDUSTRY, vol. 38, no. 6, June 2008 (2008-06-01), pages 19 - 22 *

Also Published As

Publication number Publication date
JP5729845B2 (ja) 2015-06-03
CN102439061B (zh) 2013-05-08
JP2013542298A (ja) 2013-11-21
GB2499944A (en) 2013-09-04
GB201310384D0 (en) 2013-07-24
GB2499944B (en) 2018-05-02
US8912246B2 (en) 2014-12-16
HK1167871A1 (en) 2012-12-14
US20130237627A1 (en) 2013-09-12
CN102439061A (zh) 2012-05-02
TW201221578A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
CN111032704B (zh) 固化物、光学部件、透镜、化合物及固化性组合物
US8524942B2 (en) Synthesis of inimers and hyperbranched polymers
US6533959B2 (en) Brominated materials
JP2016522904A (ja) ビカルバゾール化合物、光硬化性組成物、その硬化物、プラスチックレンズ用硬化性組成物、及びプラスチックレンズ
WO2012065294A1 (zh) 可交联固化的超支化聚酯及其固化产物和制备方法
US11396613B2 (en) Cured product, optical member, lens, and compound
EP1109776B1 (en) Brominated materials
JP6187847B1 (ja) 活性エネルギー線硬化型組成物及びプラスチックレンズ
JP2019119715A (ja) 多官能(メタ)アクリレート及びネットワークポリマーの製造方法。
JP6583519B1 (ja) (メタ)アクリレート重合体の製造方法、(メタ)アクリレート重合体、ブロック共重合体、およびグラフト共重合体
KR101403480B1 (ko) 광개시제가 필요없는 중합성 메조겐 및 이를 포함하는 중합성 액정 조성물
JP4010583B2 (ja) 単官能重合性化合物及びその重合物からなる液晶性高分子
JP3900313B2 (ja) 変性共重合体の製造方法
JP2001064278A (ja) 含硫黄(メタ)アクリレート系重合性単量体
JP2019023319A (ja) ブロックポリマ及びその製造方法
JPH05140234A (ja) 高誘電性ポリマー組成物およびシアノエチル基含有(メタ)アクリル酸エステルモノマー
JP6025019B2 (ja) 反応性重合体溶液の製造方法
JP5951286B2 (ja) フルオレン骨格を有する熱可塑性(メタ)アクリル樹脂
JP2514455B2 (ja) 分子内に二重結合と三重結合を含有するカ―ボネ―ト化合物
JP2004091479A (ja) マレイミド化合物、それを含有する活性エネルギー線硬化性組成物、低屈折光学材料用重合体、及びマレイミド化合物の製造方法
TWI384045B (zh) 含有雙唑啉之可固化液體組成物
JP2011178863A (ja) 活性エネルギー線硬化性組成物、硬化性樹脂組成物及び硬化物
WO2019116798A1 (ja) フルオレン骨格を有する(メタ)アクリレート化合物
JPH0770242A (ja) 側鎖にアリル基を有するビニル共重合体およびその製造方法
JPH0725938A (ja) 硬化性ビニル重合体およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017487.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13885399

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1310384

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20101115

WWE Wipo information: entry into national phase

Ref document number: 1310384.1

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 10859841

Country of ref document: EP

Kind code of ref document: A1