WO2012063515A1 - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
WO2012063515A1
WO2012063515A1 PCT/JP2011/063351 JP2011063351W WO2012063515A1 WO 2012063515 A1 WO2012063515 A1 WO 2012063515A1 JP 2011063351 W JP2011063351 W JP 2011063351W WO 2012063515 A1 WO2012063515 A1 WO 2012063515A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
coating
cutting tool
layer
residual stress
Prior art date
Application number
PCT/JP2011/063351
Other languages
English (en)
French (fr)
Inventor
岡田 吉生
伊藤 実
秀明 金岡
鈴木 智恵
アノンサック パサート
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to EP11818965.3A priority Critical patent/EP2638993B1/en
Priority to US13/393,473 priority patent/US8715838B2/en
Priority to KR1020127006046A priority patent/KR101386856B1/ko
Priority to CN201180004081.7A priority patent/CN102625737B/zh
Priority to JP2012509406A priority patent/JP5866650B2/ja
Publication of WO2012063515A1 publication Critical patent/WO2012063515A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/24Cross section of the cutting edge
    • B23B2200/245Cross section of the cutting edge rounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/24Cutters, for shaping with chip breaker, guide or deflector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient

Definitions

  • the present invention relates to a surface-coated cutting tool, and particularly to a surface-coated cutting tool coated with a coating that improves wear resistance and chipping resistance.
  • cemented carbides (WC-Co alloys or alloys to which carbonitrides such as Ti (titanium), Ta (tantalum), Nb (niobium), etc. are added) have been used as cutting tools.
  • cemented carbide, cermet, cubic boron nitride sintered body, or alumina-based or silicon nitride-based ceramics is used as the base material, and chemical vapor deposition (CVD: Cutting tools coated with one or more coating layers by chemical vapor deposition (PVD) or physical vapor deposition (PVD) have become widespread.
  • the coating layer has a thickness of 3 to 20 ⁇ m and one or more first elements selected from IVa group elements, Va group elements, VIa group elements, Al (aluminum), Si or B in the periodic table of elements. And a compound consisting of one or more second elements selected from B, C, N or O (however, when the first element is only B, the second element is other than B).
  • Patent No. 3661503, Patent Document 1 As an attempt to increase the service life of a cutting tool, for example, in Japanese Patent Application Laid-Open No. 2001-0662603 (Patent No. 3661503, Patent Document 1), a film composed of a vertically long crystal structure has different residual stresses above and below the film.
  • the coating of a coating is disclosed. Specifically, residual compressive stress is applied to the upper layer of the coating, while residual tensile stress is applied to the lower layer of the coating, thereby improving the chipping resistance of the cutting tool.
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-096404 (Patent Document 2) describes that a hard coating layer obtained by laminating a Ti compound layer, a titanium carbonitride layer, a titanium carbide layer, and an aluminum oxide layer is coated to provide a high resistance. A technique for improving the chipping property is disclosed.
  • JP 2009-0778309 A (Patent Document 3) introduces a compressive stress to the outer layer side by blasting the hard coating layer covering the surface of the surface-coated cutting tool, thereby preventing chipping. Improved.
  • Patent Document 4 a first coating made of ⁇ -Al 2 O 3 provided with a second coating made of TiCN imparted with tensile stress on the inner layer side and imparted with compressive stress is disclosed.
  • a coating comprising a coating on the surface side is disclosed. This film can improve toughness and wear resistance when the tensile stress of the first film and the compressive stress of the second film satisfy a specific relational expression.
  • Patent Documents 1 to 4 described above provide sufficient performance with respect to chipping resistance, they do not sufficiently satisfy the requirements of recent cutting tools with regard to wear resistance.
  • the present invention has been made in view of the current situation as described above, and an object of the present invention is to provide a surface-coated cutting tool that is highly compatible with wear resistance and chipping resistance.
  • the present inventor has made extensive studies to solve the above-mentioned problems. As a result, the crystal structure of the chamfered portion of the film is different from the crystal structure of the portion other than the chamfered portion of the film, and different residual stresses are applied to each. The inventor has obtained the knowledge that it is the most effective in achieving both wear resistance and chipping resistance, and has finally completed the present invention by further research based on this knowledge.
  • the surface-coated cutting tool of the present invention includes a base material and a coating formed on the base material, and the surface-coated cutting tool has a portion where the rake face and the flank face intersect. It is a chamfered portion, and the coating includes at least one first coating layer, and the first coating layer is the outermost surface layer of the coating in the chamfered portion, and the first coating layer in the chamfered portion is the surface thereof.
  • the residual stress has a minimum value, and the residual stress increases continuously or stepwise as the depth A further increases in the depth direction.
  • the minimum value of the residual stress is -7 GPa to -1 GPa
  • the first coating layer other than the chamfered portion has a residual stress larger than the minimum value of the residual stress
  • the first coating other than the chamfered portion The layer is in the direction of the rake face center and relief
  • the residual stress increases continuously or stepwise as it goes in the center direction, resulting in a residual stress of 0 GPa or more and 2 GPa or less on the base material side, and a region from the surface to the depth A in the first coating layer in the chamfered portion.
  • the first coating layer is a region deeper in the depth direction from the depth A in the chamfered portion, and a region other than the chamfered portion.
  • it is a coarse crystal structure region including a crystal larger than a crystal in the fine crystal structure region.
  • the first coating layer preferably has a layer thickness of 2 ⁇ m or more and 30 ⁇ m or less.
  • the first covering layer is preferably the outermost surface layer, but is not necessarily the outermost surface.
  • the coating comprises at least one element selected from the group consisting of group IVa elements, group Va elements, group VIa elements, Al, Si, Y, B, and S, and a group consisting of boron, carbon, nitrogen, and oxygen. It is preferable to consist of a compound with at least one selected element, and it is preferable to include one or more layers in addition to the first coating layer.
  • the total thickness of the coating is preferably 3 ⁇ m or more and 50 ⁇ m or less.
  • the first coating layer is preferably made of alumina.
  • the surface-coated cutting tool of the present invention has a configuration as described above, so that both wear resistance and chipping resistance can be made highly compatible.
  • the layer thickness or film thickness is measured with a scanning electron microscope (SEM).
  • the surface-coated cutting tool of the present invention comprises a base material and a film formed thereon.
  • the surface-coated cutting tool of the present invention having such a basic configuration includes, for example, a drill, an end mill, a drill tip changeable tip, an end mill tip replacement tip, a milling tip replacement tip, and a turning tip replacement. It can be used very effectively as a die cutting tip, a metal saw, a gear cutting tool, a reamer, a tap and the like.
  • FIG. 1 is a schematic view schematically showing a contact state between a surface-coated cutting tool and a work material during cutting.
  • the surface-coated cutting tool 1 of the present invention includes a rake face 2 that comes into contact with the chips 6 of the work material 5 and a flank face 3 that comes into contact with the work material itself.
  • a chamfered portion 4 is a portion where the cutting edge processing is applied to the ridge where the rake face 2 and the flank 3 intersect.
  • the chamfered portion 4 is a portion where the surface-coated cutting tool 1 comes into contact with the work material 5, and is an extremely important portion particularly in a cutting tool.
  • FIG. 2 is a schematic view schematically showing a surface-coated cutting tool having a square rake face.
  • the surface-coated cutting tool 1 of the present invention is a blade-tip-exchangeable cutting tip, as shown in FIG. 2, a through-hole 20 that passes through the center front and back of the rake face 2 of the blade-tip-exchangeable cutting tip is formed. Also good.
  • This through hole 20 is used as a fixing hole attached to the tool. If necessary, another fixing means can be provided in addition to or instead of the fixing hole.
  • FIG. 3 is a schematic cross-sectional view showing a chamfered portion chamfered into a curved surface
  • FIG. 4 is a schematic cross-sectional view showing a chamfered portion chamfered into a flat shape.
  • the chamfered portion 4 is, as shown in FIG. 3, such that the edge corresponding to the ridge where the rake face 2 and the flank 3 intersect is subjected to cutting edge processing to have a radius (R).
  • the chamfered part here shown in FIG. 4, the part corresponding to the ridge where the rake face 2 and the flank 3 intersect is cut off in a straight line (negative land part).
  • the part processed by combining these chamfering processes shall also be included.
  • the chamfered portion 4 is formed by performing grinding, brushing, barreling, blasting, buffing, honing, etc. on the ridge where the rake face 2 and the flank 3 intersect.
  • Such a chamfered portion 4 preferably has a width of the chamfered portion of 0.01 mm or more and 0.2 mm or less when the surface-coated cutting tool is viewed in plan view from the rake face direction or the flank direction (FIG. 4). More preferably, it is 0.02 mm or more and 0.1 mm or less.
  • a conventionally known material known as such a cutting tool base material can be used without particular limitation.
  • cemented carbide for example, WC base cemented carbide, including WC, including Co, or further including carbonitride such as Ti, Ta, Nb, etc.
  • cermet TiC, TiN, TiCN, etc.
  • High-speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, and mixtures thereof), cubic boron nitride sintered body, diamond sintered body
  • Examples of such a substrate include a boron nitride sintered body or a mixture of aluminum oxide and titanium carbide.
  • a cemented carbide (WC-based cemented carbide). This is because the cemented carbide is composed of high-hardness tungsten carbide and contains an iron group metal such as cobalt, so it has both hardness and strength and is extremely balanced.
  • a cemented carbide is used as such a base material, the effect of the present invention is exhibited even if such a cemented carbide contains an abnormal phase called free carbon or ⁇ phase in the structure.
  • these base materials may have a modified surface.
  • a de- ⁇ layer may be formed on the surface, and in the case of cermet, a surface hardened layer may be formed, and even if the surface is modified in this way, The effect is shown.
  • the coating formed on the substrate includes at least a first coating layer. That is, the coating of the present invention may be constituted only by the first coating layer (in this case, the first coating layer is formed in contact with the substrate), or such a first coating layer. In addition, one or two or more other layers may be included. Such a layer other than the first coating layer may be formed between the base material and the first coating layer as described later, or may be formed on the first coating layer. However, even if a layer other than the first coating layer is formed on the first coating layer, the first coating layer is the outermost surface layer (the layer constituting the coating surface) in the chamfered portion involved in the cutting process. ). When the first coating layer contains crystals having different average crystal grain sizes depending on the part, the first covering layer has a residual stress suitable for the part, and can achieve both high wear resistance and chipping resistance. The crystal grain size and residual stress of the first coating layer will be described later.
  • Such a coating of the present invention includes an embodiment in which the entire surface of the substrate is coated, and also includes an embodiment in which the coating is not partially formed. The aspect which is mentioned is also included.
  • the total thickness of the coating of the present invention is preferably 3 ⁇ m or more and 50 ⁇ m or less. If it is less than 3 ⁇ m, the abrasion resistance may be inferior, and if it exceeds 50 ⁇ m, adhesion to the substrate and chipping resistance may be deteriorated.
  • a particularly preferable film thickness of such a coating is 5 ⁇ m or more and 25 ⁇ m or less.
  • group IVa elements Ti, Zr, Hf, etc.
  • group Va elements etc. (From V, Nb, Ta, etc.)
  • group VIa elements Cr, Mo, W, etc.
  • aluminum Al
  • silicon Si
  • yttrium Y
  • boron B
  • sulfur S
  • It is preferably composed of a compound of at least one selected element and at least one element selected from the group consisting of boron, carbon, nitrogen, and oxygen (except when both elements are B).
  • the compound includes, for example, the above-mentioned group IVa elements (Ti, Zr, Hf, etc.), group Va elements (V, Nb, Ta, etc.), group VIa elements (Cr, Mo, W, etc.), aluminum (Al), silicon ( Si), elements selected from the group consisting of yttrium (Y), carbides, nitrides, oxides, borides, carbonitrides, carbonates, nitrides, carbonitrides, and the like. Solid solutions are also included.
  • Examples of such compounds include Ti, Al, (Ti 1-x Al x ), (Al 1-x Zr x ), (Ti 1-x Si x ), (Al 1-x Cr x ), ( Ti 1-xy Si x Al y ) or (Al 1-xy Cr x V y ) nitrides, carbides, oxides, carbonitrides, nitrogen oxides or carbonitrous oxides (in addition to these, B, Cr, etc.) Can be mentioned as a suitable composition thereof (in the formula, x and y represent any number of 1 or less).
  • TiCN TiN, TiSiN, TiSiCN , TiAlN, TiAlCrN, TiAlSiN, TiAlSiCrN, AlCrN, AlCrCN, AlCrVN, TiBN, TiAlBN, TiBCN, TiAlBCN, TiSiBCN, AlN, AlCN, AlO, Al 2 O 3, ZrO 2, (AlZr) 2 O 3 and the like.
  • the 1st coating layer which comprises a film is demonstrated in detail.
  • the first coating layer is characterized in that the residual stress differs greatly between the depth of the chamfered portion and the chamfered portion and a portion other than the chamfered portion, and satisfies all the following conditions (1) to (5).
  • the first covering layer in the chamfered portion has a minimum value of the residual stress at the depth A where the depth from the surface is within 2 ⁇ m.
  • the minimum value of the residual stress is -7 GPa or more and -1 GPa or less.
  • the residual stress increases continuously or stepwise as the depth A further increases in the depth direction.
  • the first coating layer other than the chamfered portion has a residual stress larger than the minimum value of the residual stress of the first coating layer in the chamfered portion.
  • the residual stress increases continuously or stepwise as it proceeds in the center direction of the rake face and the center direction of the flank face, and the residual stress of 0 GPa to 2 GPa on the base material side. To be.
  • FIG. 5 and FIG. 6 show an example of the stress distribution of the first coating layer that satisfies the conditions (1) to (3) among the above (1) to (5).
  • FIG. 5 is a graph showing a stress distribution when the residual stress takes a minimum value at the depth A of the first coating layer and the residual stress continuously increases from the depth A toward the depth direction. 6 is the same graph as FIG. 5 except that the manner of increasing the residual stress is stepwise.
  • the first coating layer of the present invention has such a stress distribution, in combination with the crystal structure of the first coating layer, which will be described later, the wear resistance and the chipping resistance are highly compatible with each other. The adhesion between the material and the coating is further improved. In addition, since the residual stress has a minimum value in the vicinity of the surface of the coating (first coating layer), it is possible to suppress the progress of cracks generated on the coating surface during cutting.
  • first coating layer since the above conditions (1) to (5) and the effects brought about by them will be described.
  • the depth A at which the residual stress is a minimum value is preferably at a position where the depth from the surface of the first coating layer is 0.1 ⁇ m or more and 1 ⁇ m or less. When the depth A is greater than 2 ⁇ m from the surface of the first coating layer, the balance between wear resistance and chipping resistance is lost, and the tool life may be reduced.
  • the minimum value of such residual stress is preferably -5 GPa or more and -1.5 GPa or less. If it is less than ⁇ 7 GPa, the compressive stress of the first coating layer is too high, so that self-destruction occurs and chipping is likely to occur. On the other hand, if it exceeds ⁇ 1 GPa, the chipping resistance required for the cutting tool cannot be obtained.
  • the “minimum value” in the present invention indicates a minimum value in a mathematical sense, and, for example, as shown in FIG. 8 described later, the residual stress is continuous in the thickness direction of the first coating layer. Thus, it is a concept including a case where a certain numerical value is shown.
  • the condition (3) is provided to exclude the case where the residual stress includes a locally high value or low value. That is, when the residual stress has a locally high value or low value, chipping is likely to occur from that portion, but this condition (3) is satisfied (the residual stress changes continuously or stepwise). The occurrence of such chipping can be suppressed.
  • the first coating layer other than the chamfered portion finally has a residual stress of 0 GPa or more and 2 GPa or less. If the residual stress of the first coating layer other than the chamfered portion exceeds 2 GPa, the coating peels off at the chamfered portion depending on the shape of the cutting tool, which is not preferable. Further, if the residual stress on the substrate side is smaller than 0 GPa, sufficient wear resistance cannot be obtained.
  • the rake face center direction means a vector direction from one point of the cutting edge ridge line portion which is a chamfered portion toward the center of the rake face.
  • the “flank center direction” means a vector direction from one point of the cutting edge ridge line portion which is a chamfered portion toward the center of the flank surface.
  • the compressive stress referred to in the present invention is a kind of internal stress (intrinsic strain) existing in the film, and is represented by a numerical value (unit: GPa) of “ ⁇ ” (minus).
  • GPa numerical value
  • the expression that the compressive stress (internal stress) is high indicates that the absolute value of the numerical value is large, and the expression that the compressive stress (internal stress) is low indicates that the absolute value of the numerical value is small. I mean.
  • what the above numerical value is represented by “+” (plus) is tensile stress.
  • the residual stress distribution of the first coating layer of the present invention is measured by the following sin 2 ⁇ method.
  • the sin 2 ⁇ method using X-rays is widely used as a method for measuring the residual stress of a polycrystalline material. This measurement method is described in detail in pages 54 to 66 of “X-ray stress measurement method” (Japan Society for Materials Science, published by Yokendo Co., Ltd. in 1981).
  • the X-ray penetration depth is first fixed by combining the parallel tilt method and the side tilt method, and various ⁇ directions are measured in the plane including the stress direction to be measured and the sample surface normal set at the measurement position.
  • the diffraction angle 2 ⁇ is measured to create a 2 ⁇ -sin 2 ⁇ diagram, and the compressive stress from the gradient to the depth (distance from the coating surface) is obtained.
  • X-rays from an X-ray source are incident on the first coating layer at a predetermined angle, and X-rays diffracted by the first coating layer are detected by an X-ray detector, The internal stress is measured based on the detected value.
  • synchrotron radiation in terms of the quality of the X-ray source (high brightness, high parallelism, wavelength variability, etc.)
  • SR synchrotron radiation
  • the Young's modulus and Poisson's ratio of the coating are preferable to use.
  • the Young's modulus can be measured using a dynamic hardness meter, and since the Poisson's ratio does not vary greatly depending on the material, a value of around 0.2 may be used.
  • the Young's modulus is not necessarily used, and the compressive stress may be calculated by substituting the lattice constant and the lattice spacing.
  • the first covering layer is composed of an IVa group element (Ti, Zr, Hf, etc.), a Va group element (V, Nb, Ta, etc.), a VIa group element (Cr, Mo, W, etc.), aluminum ( At least one element selected from the group consisting of Al), silicon (Si), yttrium (Y), boron (B), and sulfur (S), and a group consisting of boron, carbon, nitrogen, and oxygen It is preferably composed of a compound with at least one element (except when both elements are B), more preferably composed of alumina, and further preferably alumina having an ⁇ -type crystal structure.
  • ⁇ Crystal structure of the first coating layer> 7 and 8 are cross-sectional views schematically showing the crystal structure of the first coating layer in the vicinity of the chamfered portion. 7 and 8 show that the coating consists only of the first coating layer.
  • the first coating layer 8 of the present invention is a layer that includes a fine crystal structure region 10 in which an average crystal grain size of a compound constituting the first cover layer 8 is minute and a coarse crystal structure region 9 in which the average crystal grain size is coarse.
  • Such a first coating layer is formed by aggregating crystal grains of a compound, and a region where the crystal grains having an average crystal grain size of 10 to 200 nm are aggregated is a fine crystal structure region. And a region where crystal grains larger than crystals in the fine crystal structure region are aggregated is defined as a coarse crystal structure region.
  • the fine crystal structure region occupies a region from the surface of the first coating layer 8 to the depth A in the chamfered portion 4 as shown in FIGS. That is, the first coating layer 8 in the chamfered portion 4 is composed of two regions in the thickness direction, the coarse crystal structure region 9 is present on the substrate 7 side, and the fine crystal structure region 10 is present on the surface side.
  • the thickness of the fine crystal structure region 10 occupies a region from the surface of the first coating layer 8 to the depth A.
  • the present invention succeeds in achieving both high wear resistance and chipping resistance at the same time by using the first coating layer 8 having such a configuration. That is, by forming the fine crystal structure region 10 on the surface of the first coating layer 8, the unit in which the coating is destroyed is reduced, thereby improving the wear resistance.
  • the crystal grain boundaries increase as the crystal grains are miniaturized, whereby cracks generated on the coating surface side do not progress toward the base material side, and chipping resistance is improved.
  • the progress of cracks is suppressed at the interface between the fine crystal structure region and the coarse crystal structure region, and an improvement in toughness can be expected.
  • the 1st coating layer 8 of this invention has the effect
  • the average crystal grain size of the crystal grains in the fine crystal structure region needs to be 10 nm or more and 200 nm or less, and more preferably 15 nm or more and 80 nm or less. If it is less than 10 nm, the bonding strength between the particles constituting the crystal structure constituting the first coating layer 8 becomes weak, so that the wear resistance is lowered. On the other hand, if it exceeds 200 nm, the crystal structure of the coating on the cutting surface is too rough, and adhesive wear occurs on the work material, resulting in a decrease in wear resistance.
  • the average crystal grain size of the crystal grains in the coarse texture region varies depending on the average crystal grain size of the crystal grains in the fine crystal texture region. Larger than the average crystal grain size, more preferably 200 nm or more, and still more preferably 300 nm or more and 1500 nm or less.
  • the average crystal grain size of crystal grains can be determined as follows. That is, the base material and the coating (first coating layer) formed on the base material are processed with a FIB processed material so that the cross section can be seen, and the cross section is processed by FE-SEM (electrolytic emission scanning electron microscope). Observe. At that time, by observing as a reflected electron image, portions having the same crystal orientation are observed with the same contrast, and the same contrast portion is regarded as one crystal particle.
  • a straight line having an arbitrary length (preferably corresponding to 400 ⁇ m) parallel to the surface of the base material is drawn at an arbitrary position of the first coating layer with respect to the image thus obtained.
  • the number of crystal grains included in the straight line is measured, and the length obtained by dividing the length of the straight line by the number of crystal grains is defined as the average crystal grain diameter in that portion of the first coating layer.
  • the interface between the fine crystal structure region and the coarse crystal structure region is perpendicular to the substrate surface by observing the cross section of the coating (first coating layer) using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the first coating layer when the coating is composed of a plurality of layers, the first coating layer may be formed on the substrate side of the coating or may be formed on the surface side of the coating. It is preferable that This is because the first coating layer comes into contact with the work material, and the chipping at the initial stage of cutting can be suppressed to improve the cutting performance and extend the life. In the chamfered portion, it is essential that the first coating layer is the outermost surface layer of the coating.
  • the first coating layer preferably has a layer thickness of 2 ⁇ m or more and 30 ⁇ m or less. Furthermore, the upper limit of the thickness is 20 ⁇ m, more preferably 10 ⁇ m, and the lower limit is 3 ⁇ m, more preferably 5 ⁇ m. If the thickness is less than 2 ⁇ m, the effect is not sufficient when compressive residual stress is applied, so there is not much effect in improving chipping resistance, and if it exceeds 30 ⁇ m, it is located inside the substrate or the first coating layer. Adhesiveness with the layer to perform may fall.
  • the coating film of the present invention can contain one layer or two or more layers in addition to the first coating layer.
  • Examples of such a layer include an intermediate layer formed between the base material and the first coating layer and an outermost surface layer formed on the first coating layer. These layers are formed to provide other effects such as oxidation resistance and lubricity, while the first covering layer exhibits the effects as described above.
  • the intermediate layer is formed for the purpose of improving wear resistance or improving adhesion to the substrate, and can be formed in one layer or two or more layers.
  • Such an intermediate layer can be made of, for example, TiC, TiN, TiCN, TiCNO, TiSiN, TiAlN, TiZrCN, TiAlCrN, TiAlSiN, TiAlCrSiN, or the like. In these compositions, conventionally known atomic ratios can be adopted without any particular limitation.
  • Such an intermediate layer is preferably formed with a thickness of 0.2 ⁇ m or more and 1 ⁇ m or less, and preferably has a residual stress of ⁇ 1 GPa or more and ⁇ 0.1 GPa or less.
  • the outermost surface layer is formed for the purpose of coloring and the like for identifying used blade edges, and can be formed in one layer or two or more layers.
  • Such an outermost surface layer can be made of, for example, Cr, CrN, TiN, TiCN, or the like. In these compositions, conventionally known atomic ratios can be adopted without any particular limitation.
  • Such an outermost surface layer is preferably formed with a thickness of 0.1 ⁇ m or more and 0.3 ⁇ m or less.
  • a chamfered portion is formed by performing grinding treatment, brush treatment, barrel treatment, blast treatment, and the like on the ridge where the rake face and flank face of the substrate intersect. And a film is formed with respect to the base material in which the chamfered part was formed.
  • the method for producing a coating film of the present invention can be employed without any particular limitation on a conventionally known method, but is preferably formed by a chemical vapor deposition method (CVD method).
  • CVD method chemical vapor deposition method
  • each layer of the film has a tensile residual stress, and the adhesion to the substrate can be very high.
  • a blasting process is locally performed on the chamfered portion of the coating film formed above, particularly the first coating layer.
  • compressive stress is applied to the surface side of the first coating layer in the chamfered portion, and the average crystal grain size of the crystal particles from the surface of the first coating layer in the chamfered portion to the position of the depth A is 10 nm or more and 200 nm or less.
  • the blast treatment is carried out by preparing a dispersion solvent in which abrasive grains are dispersed directly or in a solvent such as water and colliding it with the surface of the first coating layer.
  • concentration of the liquid contained in the dispersion solvent is increased continuously or stepwise to gradually reduce the abrasive concentration, and the volume ratio of the abrasive grains in the dispersion solvent is 5% by volume to 40% by volume.
  • the blasting process is performed in the range of.
  • blasting process may be divided into two stages, and the process may be performed using different powders.
  • the condition of the collision of the abrasive grains can be appropriately adjusted depending on the composition of the coating film, the magnitude of the compressive residual stress to be applied, etc., but the projection pressure is 0.01 MPa or more and 0.5 MPa or less and the projection distance is 0. It is preferable that the projection angle is 5 mm or more and 50 mm or less, and the projection angle is projected at right angles to the chamfered portion. If the impact strength of the particles is not sufficient, the desired compressive residual stress cannot be applied, and therefore it is preferable to cause the impact to occur with an appropriate strength.
  • the present invention is characterized in that the residual stress and the crystal grain size of the first coating layer in the chamfered portion are changed by performing the blasting process, but the first coating layer other than the chamfered portion is used. Part of the chamfered portion has the same residual stress and crystal grain size as the first covering layer, or the first covering layer in the chamfered portion partially satisfies the above residual stress and crystal grain size. It goes without saying that even if it is not present, it does not depart from the scope of the present invention as long as the effects of the present invention are not impaired.
  • the cutting edge of the base material was chamfered with a nylon brush containing SiC abrasive grains to form a round honing as a chamfered portion. Thereafter, the surface of the substrate was washed.
  • each layer of the coating film shown in the column of “Layer structure” in Table 1 was formed on the surface of the substrate using a conventionally known thermal CVD method (“Layer structure” in Table 1).
  • Layer structure in Table 1
  • a TiN layer having a thickness of 0.3 ⁇ m in order from the substrate side
  • a TiCN layer having a thickness of 10 ⁇ m
  • a TiCNO layer having a thickness of 0.5 ⁇ m
  • a ⁇ having a thickness of 4 ⁇ m An Al 2 O 3 layer was formed.
  • the 1st coating layer in each Example is an outermost surface layer.
  • the chamfered portion of the first coating layer was subjected to blasting using zirconia having a hardness lower than that of the coating and a high specific gravity and diamond abrasive grains having a high hardness and a low specific gravity.
  • the abrasive concentration is gradually reduced while increasing the liquid concentration continuously or stepwise, and adjusted at a projection distance of 0.5 to 50 mm with a projection pressure of 0.01 to 0.5 MPa.
  • the chamfered portion of the coating was blasted.
  • it processed with two types of different media so that the 1st coating layer might become the residual stress shown in the following Table 1, and a fine structure.
  • the column of “increase mode” in Table 1 indicates whether the mode of increase in the residual stress is “continuous” or “stepwise”. In the comparative example, since the state of increase in the residual stress of the first coating layer is constant, it is described as “constant”.
  • the surface-coated cutting tool of each example was also produced by the same method.
  • Each comparative example was manufactured by the same method as each example except that the blasting process was not performed.
  • the residual stress distribution of the first coating layer was measured by the above-described sin 2 ⁇ method. Moreover, about the average crystal grain diameter of the 1st coating layer, it implemented by observing the cross section of a film with the method mentioned above.
  • the X-ray energy used was 10 keV, and the peak of the diffraction line was the (166) plane of ⁇ -type Al 2 O 3 .
  • the measured diffraction peak position is determined by fitting a Gaussian function, the slope of the 2 ⁇ -sin 2 ⁇ diagram is obtained, and the value obtained using a dynamic hardness meter (MST nanoindenter) is adopted as the Young's modulus.
  • MST nanoindenter dynamic hardness meter
  • a value of Al 2 O 3 (0.2) was used.
  • the “film thickness” of each layer in Table 1 indicates the film thickness of the coating, and the layer thickness of each layer constituting the coating is shown in parentheses next to each layer in Table 1.
  • values obtained by cutting with a plane including a normal to the surface of the surface-coated cutting tool and observing the cut surface with an SEM were adopted.
  • the distance from the surface of the first coating layer to the minimum value of the residual stress is shown, and the minimum value of the residual stress is shown as “Minimum value” in Table 1. It is shown in the column.
  • the column of “increase mode” indicates whether the mode of the residual stress that increases as it proceeds toward the rake face center direction and the flank center direction is “continuous” or “stepwise”.
  • the “fine” column of “average particle size” indicates the average crystal particle size of the crystal particle size (fine crystal structure region) from the surface of the first coating layer to the depth A in the chamfered portion.
  • the average crystal grain size of the crystal grain size (coarse crystal structure region) of the first coating layer in the part other than the fine crystal structure region is shown.
  • the wear reduction width of the flank is calculated, and the time until the wear reduction width exceeds 0.25 mm on average is calculated. It is shown in the column of “Tool life” in Table 2. The longer the tool life, the longer the life of the surface-coated cutting tool.
  • the surface-coated cutting tool of each example has less flank wear and less chipping than that of each comparative example. From this result, it can be said that the surface-coated cutting tool of each example is excellent in wear resistance and chipping resistance as compared with that of each comparative example. As described above, the wear resistance and chipping resistance of the surface-coated cutting tool of each example were improved because the crystal of the first coating layer in the chamfered portion was refined and the residual stress in that portion was locally reduced. It is thought to be due to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 表面被覆切削工具(1)の耐摩耗性および耐チッピング性を高度に両立する。本発明の表面被覆切削工具(1)は、基材(7)と、該基材(7)上に形成された被膜とを備えるものであって、面取り部(4)における第1被覆層(8)は、その表面からの深さが2μm以内の深さとなる深さAにおいて、残留応力の極小値を有し、該極小値は、-7GPa以上-1GPa以下であり、面取り部(4)以外における第1被覆層(8)は、すくい面中心方向および逃げ面中心方向に進むにつれて、連続的または段階的に残留応力が増加して、0GPa以上2GPa以下の残留応力となり、第1被覆層(8)は、面取り部(4)における深さAからさらに深さ方向に深くなる領域、および面取り部(4)以外における領域において、微細結晶組織領域(10)における結晶よりも大きい結晶を含む粗大結晶組織領域(9)である。

Description

表面被覆切削工具
 本発明は、表面被覆切削工具に関し、特に、耐摩耗性および耐チッピング性を向上させる被膜を被覆した表面被覆切削工具に関する。
 従来、切削用の工具としては、超硬合金(WC-Co合金もしくはこれにTi(チタン)やTa(タンタル)、Nb(ニオブ)等の炭窒化物を添加した合金)が用いられてきた。しかし、近年の切削の高速化に伴い、超硬合金、サーメット、立方晶型窒化硼素焼結体、あるいはアルミナ系や窒化珪素系のセラミックスを基材として用い、その表面に化学蒸着法(CVD:Chemical Vapor Deposition)または物理蒸着法(PVD:Physical Vapor Deposition)によって、1層以上の被覆層で被覆した切削工具が普及している。この被覆層は、その厚みが3~20μmであり、かつ元素周期律表のIVa族元素、Va族元素、VIa族元素、Al(アルミニウム)、SiまたはBから選ばれる1種以上の第1元素と、B、C、NまたはOから選ばれる1種以上の第2元素とからなる化合物(ただし第1元素がBのみの場合、第2元素はB以外とする)からなるものである。
 近年の切削加工の省エネルギー化および低コスト化に対する要求は強く、これに伴い、切削加工条件は一段と高速・高送り化し、高能率加工が求められている。また、機械部品の低コスト化、高強度化、軽量化などが進み、部品に使われる被削材が難削材化しつつあり、被削材の加工が困難となってきている。このような現状に対応するために、切削工具の耐チッピング性を高め、切削工具を長寿命化する試みが行なわれている。
 切削工具の長寿命化を測るための試みとして、たとえば特開2001-062603号公報(特許第3661503号、特許文献1)では、縦長結晶組織からなる被膜において、被膜の上下で異なる残留応力を有する被膜を被覆することを開示している。具体的には、被膜の上層に残留圧縮応力を付与する一方で、被膜の下層に残留引張応力を付与し、これにより切削工具の耐チッピング性を向上している。
 また、特開2001-096404号公報(特許文献2)には、Ti化合物層と、炭窒化チタン層と、炭化チタン層と、酸化アルミニウム層とを積層した硬質被覆層を被覆することにより、耐チッピング性を向上させる技術が開示されている。
 また、特開2009-078309号公報(特許文献3)には、表面被覆切削工具の表面を覆う硬質被覆層に対し、ブラスト処理を施すことにより、外層側に圧縮応力を導入して、耐チッピング性を向上している。
 さらに、国際公開第2006/064724号パンフレット(特許文献4)では、引張応力を付与したTiCNからなる第2被膜を内層側に備え、かつ圧縮応力を付与したα-Al23からなる第1被膜を表面側に含む被膜が開示されている。この被膜は、第1被膜の引張応力と、第2被膜の圧縮応力とが特定の関係式を満たすことにより、靭性と耐摩耗性を向上し得る。
特開2001-062603号公報 特開2001-096404号公報 特開2009-078309号公報 国際公開第2006/064724号パンフレット
 上記の特許文献1~4に開示される技術により、耐チッピング性に関しては十分な性能が得られるものの、耐摩耗性に関しては昨今の切削工具の要求を十分に満たすものではなかった。
 本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、耐摩耗性および耐チッピング性を高度に両立した表面被覆切削工具を提供することにある。
 本発明者は、上記課題を解決するために鋭意検討を重ねたところ、被膜の面取り部の結晶組織と被膜の面取り部以外の部分の結晶組織とを異ならしめるとともに、それぞれに異なる残留応力を付与することが耐摩耗性と耐チッピング性との両立には最も効果的であるという知見を得、この知見に基づいてさらに研究を重ねることによりついに本発明を完成させるに至ったものである。
 すなわち、本発明の表面被覆切削工具は、基材と、該基材上に形成された被膜とを備えるものであって、該表面被覆切削工具は、すくい面と逃げ面とが交差する部分が面取り部となっており、被膜は、少なくとも1層の第1被覆層を含み、該第1被覆層は、面取り部における被膜の最表面層であり、面取り部における第1被覆層は、その表面からの深さが2μm以内の深さとなる深さAにおいて、残留応力の極小値を有し、かつ該深さAからさらに深さ方向に深くなるにつれて、連続的または段階的に残留応力が増加し、該残留応力の極小値は、-7GPa以上-1GPa以下であり、面取り部以外における第1被覆層は、残留応力の極小値よりも大きい残留応力を有し、面取り部以外における第1被覆層は、すくい面中心方向および逃げ面中心方向に進むにつれて、連続的または段階的に残留応力が増加して、基材側で0GPa以上2GPa以下の残留応力となり、面取り部における第1被覆層において、その表面から深さAまでの領域は、10nm以上200nm以下の平均結晶粒径の結晶を含む微細結晶組織領域であり、第1被覆層は、面取り部における深さAからさらに深さ方向に深くなる領域、および面取り部以外における領域において、微細結晶組織領域における結晶よりも大きい結晶を含む粗大結晶組織領域であることを特徴とする。
 上記の第1被覆層は、2μm以上30μm以下の層厚であることが好ましい。また、面取り部以外の部位においても、第1被覆層が最表面層であることが好ましいが、必ずしも最表面である必要はない。
 被膜は、IVa族元素、Va族元素、VIa族元素、Al、Si、Y、B、およびSからなる群から選ばれる少なくとも1種の元素と、ホウ素、炭素、窒素、および酸素からなる群より選ばれる少なくとも1種の元素との化合物からなることが好ましく、第1被覆層以外に1層以上の層を含むことが好ましい。また、被膜は、その全厚が3μm以上50μm以下であることが好ましい。第1被覆層は、アルミナからなることが好ましい。
 本発明の表面被覆切削工具は、上記のような構成を有することにより、耐摩耗性および耐チッピング性を高度に両立することを可能としたものである。
切削加工時における表面被覆切削工具と被削材との接触状態を模式的に示した概略図である。 すくい面が正方形の表面被覆切削工具を模式的に示した概略図である。 曲面状に面取り加工された面取り部を示す概略断面図である。 平面状に面取り加工された面取り部を示す概略断面図である。 第1被覆層の深さAで極小値をとり、該深さAから深さ方向に深くなるにつれて、残留応力が連続的に増加する場合の応力分布を示すグラフである。 第1被覆層の深さAで極小値をとり、該深さAから深さ方向に深くなるにつれて、残留応力が段階的に増加する場合の応力分布を示すグラフである。 面取り部の近郊における第1被覆層の結晶構造を模式的に示す断面図である。 面取り部の近郊における第1被覆層の結晶構造を模式的に示す断面図である。
 以下、本発明について、詳細に説明する。なお、本発明において、層厚または膜厚は走査型電子顕微鏡(SEM:Scanning Electron Microscope)により測定するものとする。
 <表面被覆切削工具>
 本発明の表面被覆切削工具は、基材とその上に形成された被膜とを備えたものである。このような基本的構成を有する本発明の表面被覆切削工具は、たとえばドリル、エンドミル、ドリル用刃先交換型チップ、エンドミル用刃先交換型チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ等として極めて有用に用いることができる。
 図1は、切削加工時における表面被覆切削工具と被削材との接触状態を模式的に示した概略図である。本発明の表面被覆切削工具1は、図1に示されるように、切削加工時において被削材5の切り屑6と接触するすくい面2と、被削材自体に接触する逃げ面3とを有する。そして、このすくい面2と逃げ面3とが交差する稜に対し、刃先処理を施した部分が面取り部4である。かかる面取り部4は、表面被覆切削工具1が被削材5と接触する部分であり、特に切削工具において極めて重要な部分である。
 図2は、すくい面が正方形の形状の表面被覆切削工具を模式的に示した概略図である。本発明の表面被覆切削工具1が刃先交換型切削チップである場合、図2に示されるように、刃先交換型切削チップのすくい面2の中央の表裏を貫通する貫通孔20が形成されていてもよい。この貫通孔20は、工具に取り付ける固定孔として使用される。必要に応じ、この固定孔の他にまたはその代わりに、別の固定手段を設けることもできる。
 <面取り部>
 図3は、曲面状に面取り加工された面取り部を示す概略断面図であり、図4は、平面状に面取り加工された面取り部を示す概略断面図である。本発明において、面取り部4とは、図3に示されるように、すくい面2と逃げ面3とが交差する稜に相当する部分に対し、刃先処理がされてアール(R)を有するように面取り加工された部分(ホーニング部)の他、図4に示されるように、すくい面2と逃げ面3とが交差する稜に相当する部分を直線状に切り落として面取り加工された部分(ネガランド部)を意味することもある。さらに、これらの面取り加工が組み合わされて処理された部分も含むものとする。
 上記面取り部4は、すくい面2と逃げ面3とが交差する稜に対し、研削加工、ブラシ加工、バレル加工、ブラスト加工、バフ加工、ホーニング加工等を行なうことによって形成される。このような面取り部4は、表面被覆切削工具をすくい面方向または逃げ面方向から平面視したときに(図4)、面取り部の幅が0.01mm以上0.2mm以下であることが好ましく、より好ましくは0.02mm以上0.1mm以下である。
 <基材>
 本発明の表面被覆切削工具の基材としては、このような切削工具の基材として知られる従来公知のものを特に限定なく使用することができる。たとえば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはさらにTi、Ta、Nb等の炭窒化物等を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化硅素、窒化硅素、窒化アルミニウム、酸化アルミニウム、およびこれらの混合体など)、立方晶型窒化硼素焼結体、ダイヤモンド焼結体、窒化硼素焼結体、または酸化アルミニウムと炭化チタンとからなる混合体等をこのような基材の例として挙げることができる。
 これらの基材の中でも、超硬合金(WC基超硬合金)を用いることが好ましい。超硬合金は、高硬度なタングステンカーバイドを主体として、コバルトなどの鉄族金属を含有するため、硬度と強度とを併せ持ち、かつ極めてバランスのとれた合金だからである。このような基材として超硬合金を使用する場合、そのような超硬合金は、組織中に遊離炭素やη相と呼ばれる異常相を含んでいても本発明の効果は示される。
 なお、これらの基材は、その表面が改質されたものであっても差し支えない。たとえば、超硬合金の場合はその表面に脱β層が形成されていたり、サーメットの場合には表面硬化層が形成されていてもよく、このように表面が改質されていても本発明の効果は示される。
 <被膜>
 本発明の表面被覆切削工具において、基材上に形成される被膜は、少なくとも第1被覆層を含むことを特徴とする。すなわち、本発明の被膜は、第1被覆層のみによって構成されていてもよいし(この場合は第1被覆層が基材に接して形成されることになる)、このような第1被覆層以外に1層または2層以上の他の層を含んでいてもよい。このような第1被覆層以外の層は、後述のように基材と第1被覆層との間に形成されていてもよいし、第1被覆層上に形成されていてもよい。ただし、第1被覆層以外の層が第1被覆層上に形成される場合であっても、切削加工に関与する面取り部においては、第1被覆層が最表面層(被膜表面を構成する層)であることを特徴とする。かかる第1被覆層が、部位によって異なる平均結晶粒径の結晶を含むことにより、その部位に適した残留応力を有し、耐摩耗性および耐チッピング性を高度に両立させることができる。なお、第1被覆層の結晶粒径および残留応力に関しては後述する。
 このような本発明の被膜は、基材上の全面を被覆する態様を含むとともに、部分的に被膜が形成されていない態様をも含み、さらにまた部分的に被膜の一部の積層態様が異なっているような態様をも含む。また、本発明の被膜は、その全厚が3μm以上50μm以下であることが好ましい。3μm未満であると耐摩耗性に劣る場合があり、50μmを超えると基材との密着性および耐チッピング性が低下する場合がある。このような被膜の特に好ましい膜厚は5μm以上25μm以下である。
 本発明の被膜は、この種の用途に使用される従来公知のものを特に限定なく使用することができるが、たとえば元素周期律表のIVa族元素(Ti、Zr、Hf等)、Va族元素(V、Nb、Ta等)、VIa族元素(Cr、Mo、W等)、アルミニウム(Al)、ケイ素(Si)、イットリウム(Y)、ホウ素(B)、および硫黄(S)からなる群から選ばれる少なくとも1種の元素と、ホウ素、炭素、窒素、および酸素からなる群より選ばれる少なくとも1種の元素との化合物(ただし、両元素がBの場合を除く)からなることが好ましい。当該化合物は、たとえば上記のIVa族元素(Ti、Zr、Hf等)、Va族元素(V、Nb、Ta等)、VIa族元素(Cr、Mo、W等)、アルミニウム(Al)、ケイ素(Si)、イットリウム(Y)からなる群より選ばれる元素の、炭化物、窒化物、酸化物、ホウ化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物等が挙げられるとともに、これらの固溶体も含まれる。
 このような化合物としては、特に、Ti、Al、(Ti1-xAlx)、(Al1-xZrx)、(Ti1-xSix)、(Al1-xCrx)、(Ti1-x-ySixAly)または(Al1-x-yCrxy)の窒化物、炭化物、酸化物、炭窒化物、窒酸化物または炭窒酸化物等(さらにこれらにB、Cr等を含むものも含む)をその好適な組成として挙げることができる(なお、式中のx、yは1以下の任意の数を示す)。
 より好ましくは、TiCN、TiN、TiSiN、TiSiCN、TiAlN、TiAlCrN、TiAlSiN、TiAlSiCrN、AlCrN、AlCrCN、AlCrVN、TiBN、TiAlBN、TiBCN、TiAlBCN、TiSiBCN、AlN、AlCN、AlO、Al23、ZrO2、(AlZr)23等を挙げることができる。以下、被膜を構成する第1被覆層をさらに詳細に説明する。
 <第1被覆層の残留応力>
 本発明において、第1被覆層は、その残留応力が面取り部の深度ならびに面取り部と、面取り部以外の部分とで大きく異なり、以下の(1)~(5)の条件を全て満たすことを特徴とする。
 (1)面取り部における第1被覆層が、その表面からの深さが2μm以内の深さとなる深さAにおいて、残留応力の極小値を有すること。
 (2)上記の残留応力の極小値が-7GPa以上-1GPa以下であること。
 (3)深さAからさらに深さ方向に深くなるにつれて、連続的または段階的に残留応力が増加すること。
 (4)面取り部以外における第1被覆層は、面取り部における第1被覆層の残留応力の極小値よりも大きい残留応力を有すること。
 (5)面取り部以外における第1被覆層は、すくい面中心方向および逃げ面中心方向に進むにつれて、連続的または段階的に残留応力が増加して、基材側で0GPa以上2GPa以下の残留応力となること。
 上記の(1)~(5)のうちの(1)~(3)の条件を満たす第1被覆層の応力分布の一例を図5および図6に示す。図5は、第1被覆層の深さAで極小値をとり、該深さAから深さ方向に深くなるにつれて、残留応力が連続的に増加する場合の応力分布を示すグラフであり、図6は、残留応力の増加様態が段階的であることが異なる他は図5と同一のグラフである。
 本発明の第1被覆層がこのような応力分布を有することにより、後述する第1被覆層の結晶構造と相俟って、耐摩耗性と耐チッピング性とが高度に両立されるとともに、基材と被膜との密着性が一層向上したものとなる。しかも、被膜(第1被覆層)の表面近傍で残留応力の極小値を持つことにより、切削加工時等に被膜表面に発生する亀裂の進展を抑制することができる。以下に、上記の(1)~(5)の条件と、それによってもたらされる効果を説明する。
 (1)の条件を満たすことにより、耐摩耗性と耐チッピング性のバランスを保つことができる。残留応力の極小値となる深さAは、第1被覆層の表面からの深さが0.1μm以上1μm以下の位置にあることが好ましい。深さAが第1被覆層の表面から2μmを超える深さにあると、耐摩耗性と耐チッピング性とのバランスが崩れ、工具寿命が低下する場合がある。
 (2)の条件を満たすことにより、切削加工中に被膜の自己破壊が生じにくくなるとともに、耐チッピング性に優れた表面被覆切削工具とすることができる。かかる残留応力の極小値は、-5GPa以上-1.5GPa以下であることが好ましい。-7GPa未満であると、第1被覆層の圧縮応力が高すぎるため、自己破壊が生じてチッピングしやすくなる。一方、-1GPaを超えると、切削工具に要求される耐チッピング性を得ることができない。なお、本発明での「極小値」とは、数学的な意味での極小値を示すことはもちろん、たとえば後述する図8に示されるように、残留応力が第1被覆層における厚み方向に連続して一定の数値を示す場合をも含む概念である。
 (3)の条件は、残留応力が局所的に高い値または低い値を含む場合を除外するために設けたものである。すなわち、残留応力が局所的に高い値または低い値を有する場合には、その部分を起点としてチッピングが発生しやすくなるが、本条件(3)を満たす(連続的または段階的に残留応力が変化する)ことにより、かかるチッピングの発生を抑制することができる。
 (4)および(5)の条件を満たすことにより、第1被覆層のすくい面中心方向または逃げ面の中心方向に向けて残留応力が徐々に増加し(圧縮応力を徐々に弱め)、もって被膜自身の応力による被膜の内部破壊を防止する。面取り部以外における第1被覆層は、最終的には0GPa以上2GPa以下の残留応力となることが好ましい。面取り部以外における第1被覆層の残留応力が2GPaを超えると、切削工具の形状によっては面取り部で被膜が剥離するため好ましくない。また、上記基材側での残留応力が0GPaより小さいと、十分な耐摩耗性が得られない。
 ここで、「すくい面中心方向」とは、面取り部である刃先稜線部のいずれか1点からすくい面の中心に向けたベクトル方向を意味する。同様に「逃げ面中心方向」とは、面取り部である刃先稜線部のいずれか1点から逃げ面の中心に向けたベクトル方向を意味する。
 ここで、本発明でいう圧縮応力とは、被膜中に存在する内部応力(固有ひずみ)の1種であり、「-」(マイナス)の数値(単位:GPa)で表されるものである。このため、圧縮応力(内部応力)が高いという表現は、上記数値の絶対値が大きくなることを示し、また圧縮応力(内部応力)が低いという表現は、上記数値の絶対値が小さくなることを意味している。因みに、上記数値が「+」(プラス)で表わされるものは引張応力である。
 ここで、本発明の第1被覆層の残留応力の分布は、以下のsin2ψ法で測定される。X線を用いたsin2ψ法は、多結晶材料の残留応力の測定方法として広く用いられている。この測定方法は、「X線応力測定法」(日本材料学会、1981年株式会社養賢堂発行)の54頁~66頁に詳細に説明されている。
 本発明ではまず並傾法と側傾法とを組み合わせてX線の進入深さを固定し、測定する応力方向と測定位置に立てた試料表面法線とを含む面内で種々のψ方向に対する回折角度2θを測定して2θ-sin2ψ線図を作成し、その勾配からその深さ(被膜表面からの距離)までの圧縮応力を求める。
 より具体的には、X線応力測定方法では、X線源からのX線を第1被覆層に所定角度で入射させ、第1被覆層で回折したX線をX線検出器で検出し、該検出値に基づいて内部応力を測定する。
 なお、このような被膜の厚み方向の残留応力を測定するためのX線源としては、X線源の質(高輝度、高平行度、波長可変性など)の点で、シンクロトロン放射光(SR)を用いることが好ましい。
 また、上記のように圧縮応力を2θ-sin2ψ線図から求めるためには、被膜のヤング率とポアソン比を用いることが好ましい。該ヤング率はダイナミック硬度計を用いて測定することができ、ポアソン比は材料によって大きく変化しないことから0.2前後の値を用いればよい。なお、2θ-sin2ψ線図から圧縮応力を求めるときには、必ずしもヤング率を用いる必要はなく、格子定数および格子面間隔を代用して圧縮応力を算出してもよい。
 <第1被覆層の組成>
 上記第1被覆層は、元素周期律表のIVa族元素(Ti、Zr、Hf等)、Va族元素(V、Nb、Ta等)、VIa族元素(Cr、Mo、W等)、アルミニウム(Al)、ケイ素(Si)、イットリウム(Y)、ホウ素(B)、および硫黄(S)からなる群から選ばれる少なくとも1種の元素と、ホウ素、炭素、窒素、および酸素からなる群より選ばれる少なくとも1種の元素との化合物(ただし、両元素がBの場合を除く)からなることが好ましく、より好ましくはアルミナからなることであり、さらに好ましくはα型の結晶構造を有するアルミナである。
 <第1被覆層の結晶構造>
 図7および図8は、面取り部の近郊における第1被覆層の結晶構造を模式的に示す断面図である。なお、図7および図8は、被膜が第1被覆層のみからなるものを示している。本発明の第1被覆層8は、それを構成する化合物の平均結晶粒径が微小である微細結晶組織領域10と該平均結晶粒径が粗大である粗大結晶組織領域9とを含む層である。このような第1被覆層は、化合物の結晶粒子が集合して構成されるものであるが、その結晶粒子の平均結晶粒径が10~200nmとなる結晶粒子が集合した領域を微細結晶組織領域とし、該微細結晶組織領域における結晶よりも大きい結晶粒子が集合した領域を粗大結晶組織領域とする。
 そして、該微細結晶組織領域は、図7および図8に示されるように、面取り部4における第1被覆層8の表面から深さAまでの領域を占める。すなわち、面取り部4における第1被覆層8は、厚み方向において2つの領域から構成され、基材7側には粗大結晶組織領域9が存在し、表面側には微細結晶組織領域10が存在する構成となっており、かつ微細結晶組織領域10の厚みが第1被覆層8の表面から深さAまでの領域を占める。
 本発明は、第1被覆層8をこのような構成としたことにより、耐摩耗性と耐チッピング性とを高度に両立させることに成功したものである。すなわち、第1被覆層8の表面に微細結晶組織領域10を形成することによって、被膜が破壊される単位が小さくなり、以って耐摩耗性が向上する。しかも、結晶粒子が微小化することで結晶粒界が増加し、これにより被膜表面側で発生した亀裂が基材側に向かって進展せず耐チッピング性が向上する。さらに、被膜中に結晶粒径の異なる界面が設けられることによって、亀裂の進展が微細結晶組織領域と粗大結晶組織領域との界面で抑制され、靱性の向上も期待できる。一方、基材側に粗大な結晶粒子を集合させたのは、これにより基材7を構成している結晶と倣って第1被覆層8の結晶が成長することによって、第1被覆層8と基材7との密着性を向上させるためである。このようにして、本発明の第1被覆層8は、耐摩耗性と耐チッピング性を高度に両立するとともに、基材7との密着性をも向上させる作用を有するものである。
 上記効果を奏するためには、微細結晶組織領域における結晶粒子の平均結晶粒径を10nm以上200nm以下にすることが必要であり、より好ましくは15nm以上80nm以下である。10nm未満であると、第1被覆層8を構成する結晶組織を構成する粒子間の結合力が弱くなるため、耐摩耗性が低下する。一方、200nmを超えると、切削表面の被膜の結晶組織が粗すぎて、被削材に対し凝着摩耗が発生して、耐摩耗性が低下する。
 一方、粗大組織領域の結晶粒子の平均結晶粒径は、微細結晶組織領域における結晶粒子の平均結晶粒径の大きさによって最適な範囲は異なるが、基本的には、微細結晶組織領域における結晶粒子の平均結晶粒径よりも大きいものであればよく、より好ましくは200nm以上であり、さらに好ましくは300nm以上1500nm以下である。
 本発明において、結晶粒子の平均結晶粒径は以下のようにして求めることができる。すなわち、基材と基材上に形成された被膜(第1被覆層)とをFIB加工材にて断面が見えるように加工し、その断面をFE-SEM(電解放出型走査型電子顕微鏡)によって観察する。その際、反射電子像として観察することによって、同じ結晶方位を有した部分は同じコントラストで観察され、この同一コントラスト部分を一つの結晶粒子とみなす。
 次いで、このようにして得られた画像に対して、第1被覆層の任意の箇所において基材表面に対して平行な任意長さ(好ましくは400μm相当)の直線を引く。そして、その直線に含まれる結晶粒子の個数を測定し、その直線の長さを結晶粒子の個数で除したものを、第1被覆層のその部分における平均結晶粒径とする。
 なお、微細結晶組織領域と粗大結晶組織領域との界面は、たとえば透過型電子顕微鏡(TEM)を用いて被膜(第1被覆層)の断面を観察することにより、基材表面に対して垂直な方向の結晶の配向性が変化する地点とする。またあるいは、そのような結晶の配向性がある地点を境として明確な変化を示さず、ある程度の幅(基材表面に対する垂直な方向の長さ)をもって変化する場合は、その幅の中間点を微細結晶組織領域と粗大結晶組織領域との界面とする。
 <第1被覆層の位置>
 本発明において、被膜が複数層からなる場合には、第1被覆層は、被膜の基材側に形成されていてもよいし、被膜の表面側に形成されていてもよいが、最表面層であることが好ましい。これにより第1被覆層が被削材と接することとなり、切削初期における欠損を抑制し、切削性能の向上と長寿命化を図ることができるからである。なお、面取り部においては、第1被覆層が被膜の最表面層であることが必須である。
 <第1被覆層の層厚>
 本発明において、第1被覆層は、2μm以上30μm以下の層厚を有することが好ましい。さらにその厚みの上限は20μm、より好ましくは10μmであり、その下限は3μm、より好ましくは5μmである。その厚みが2μm未満であると、圧縮残留応力が付与される場合その効果が十分ではないため、耐チッピング性向上にあまり効果がなく、30μmを超えると基材または第1被覆層の内側に位置する層との密着性が低下する場合がある。
 <第1被覆層以外の層>
 本発明の被膜は、上記第1被覆層以外に1層または2層以上の層を含むことができる。このような層としては、基材と第1被覆層との間に形成される中間層や第1被覆層上に形成される最外表面層を挙げることができる。これらの層は、上記第1被覆層が上記のような効果を示すのに対して、耐酸化性や潤滑性等の他の作用を付与するために形成する。
 特に、上記中間層は、耐摩耗性を向上させたり、基材との密着性を向上させることを目的として形成されるものであり、1層または2層以上形成することができる。このような中間層は、たとえばTiC、TiN、TiCN、TiCNO、TiSiN、TiAlN、TiZrCN、TiAlCrN、TiAlSiN、TiAlCrSiN等により構成することができる。なお、これらの組成中、各原子比は従来公知のものを特に限定することなく採用することができる。このような中間層は、0.2μm以上1μm以下の厚みとして形成することが好ましく、-1GPa以上-0.1GPa以下の残留応力を有していることが好ましい。
 上記最外表面層は、使用済み刃先部の識別のための色付性等を目的として形成されるものであり、1層または2層以上形成することができる。このような最外表面層は、たとえばCr、CrN、TiN、TiCN等により構成することができる。なお、これらの組成中、各原子比は従来公知のものを特に限定することなく採用することができる。このような最外表面層は、0.1μm以上0.3μm以下の厚みとして形成することが好ましい。
 <製造方法>
 まず、基材のすくい面と逃げ面とが交差する稜に対し、研削処理、ブラシ処理、バレル処理、ブラスト処理などを施すことにより、面取り部を形成する。そして、面取り部を形成した基材に対し、被膜を成膜する。
 本発明の被膜の製造方法は、従来公知の方法を特に限定することなく採用することができるが、化学蒸着法(CVD法)により形成されたものであることが好ましい。CVD法を用いて被膜を形成することにより、被膜の各層は引張残留応力を有したものとなり、基材との密着性が非常に高いものとすることができる。
 そして、上記で形成した被膜の特に第1被覆層の面取り部に対し、局所的にブラスト処理を行なうことを特徴とする。これにより面取り部における第1被覆層の表面側に圧縮応力を付与するとともに、面取り部における第1被覆層の表面から深さAの位置までの結晶粒子の平均結晶粒径が10nm以上200nm以下に微細化される。
 ここで、ブラスト処理は、砥粒を直接または水などの溶媒に分散させた分散溶媒を準備し、それを第1被覆層の表面に衝突させることにより実施する。本発明においては、分散溶媒に含まれる液体の濃度を連続的または段階的に増やして、砥粒濃度を徐々に薄めながら、分散溶媒に占める砥粒の体積比率を5体積%以上40体積%以下の範囲で変動させてブラスト処理を行なう。なお、上記砥粒は、比重および硬さが異なる2種以上の粉末を混合させたものを用いることが好ましい。たとえば、高硬度で比重の低いダイヤモンド、窒化ホウ素、炭化珪素等からなる粉末と、低硬度で比重の高いジルコニア、タンタルカーバイド、タングステンカーバイド等からなる粉末との2種を混合させたものを用いることが好ましい。また、ブラスト処理を2段階に分けて、それぞれ異なる粉末を用いて処理を行なってもよい。
 また、砥粒の衝突の条件は、被膜の構成や付与する圧縮残留応力の大きさ等により適宜調節することができるが、投射圧0.01MPa以上0.5MPa以下であり、かつ投射距離が0.5mm以上50mm以下であり、投射角度が面取り部に対して直角に投射することが好ましい。粒子の衝突の強度が十分でない場合には、所望の圧縮残留応力を付与することができないため、適度な強さで衝突させることが好ましい。
 なお、本発明は、上記のブラスト処理を行なうことによって、面取り部における第1被覆層の残留応力および結晶粒径を変化させることを特徴とするものであるが、面取り部以外の第1被覆層の一部が、面取り部における第1被覆層と同等の残留応力および結晶粒径を有する場合や、面取り部における第1被覆層において、部分的に上記の残留応力および結晶粒径を満足していない場合であっても、本発明の効果が損なわれない限り、本発明の範囲を逸脱するものではないことは言うまでもない。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例中の被膜の化合物組成はXPS(X線光電子分光分析装置)によって確認した。
 まず、86質量%のWCと、8.0質量%のCoと、2.0質量%のTiCと、2.0質量%のNbCと、2.0質量%のZrCとを配合した原料粉末をボールミルを用いて72時間湿式混合した。続いて、その混合物を乾燥させた後に、プレス成形し、真空雰囲気中で1420℃の温度で1時間の焼結を行なうことにより、WC基超硬合金製のスローアウェイチップ(形状:住友電工ハードメタル(株)製CNMG120408)の基材を作製した。
 かかる基材の切れ刃に対し、SiC砥粒を含んだナイロン性ブラシによって面取り加工を行ない、面取り部として丸ホーニングを形成した。その後、基材の表面を洗浄した。
 次に、基材の表面に対し、従来公知の熱CVD法を用いて、基材上に表1の「層構造」の欄に示した被膜の各層を形成した(表1の「層構造」の欄中の右側に示される組成の層から順に基材上に形成した)。たとえば実施例3では、基材側から順に0.3μmの層厚のTiN層、10μmの層厚のTiCN層を形成した後、0.5μmの層厚のTiCNO層、および4μmの層厚のκ-Al23層を形成した。なお、各実施例における第1被覆層は、最表面層である。
 そして、第1被覆層の面取り部に対し、被膜より硬度が低く比重の大きいジルコニアと、高硬度で比重の低いダイヤモンド砥粒とを用いて、ブラスト処理を行なった。具体的には、液体の濃度を連続的または段階的に増やしながら、砥粒濃度を徐々に薄め、0.01~0.5MPaの投射圧で、0.5~50mmの投射距離で調整することにより、被膜の面取り部のブラスト処理を行なった。このようにして第1被覆層が下記の表1に示す残留応力と微細な組織となるように異なる2種類のメディアで処理した。また、表1の「増加態様」の欄に、その残留応力の増加の態様が「連続的」であるか、「段階的」であるかを示した。比較例においては、第1被覆層の残留応力の増加の様態が一定であるため、「一定」と記した。
 各実施例の表面被覆切削工具も、これと同様の方法により作製した。なお、各比較例においては、上記のブラスト処理を行なわなかったことが異なる他は、各実施例と同様の方法により作製した。
 上記で作製した表面被覆切削工具に対し、上述したsin2ψ法によって第1被覆層の残留応力の分布を測定した。また、第1被覆層の平均結晶粒径については上述した方法で被膜の断面観察を行なうことによって実施した。
 また、sin2ψ法による測定において、使用したX線のエネルギーは10keVであり、回折線のピークはα型Al23の(166)面とした。そして、測定した回折ピーク位置をガウス関数のフィッティングにより決定し、2θ-sin2ψ線図の傾きを求め、ヤング率としてはダイナミック硬度計(MST製ナノインデンター)を用いて求めた値を採用し、ポアソン比にはAl23(0.2)の値を用いた。
Figure JPOXMLDOC01-appb-T000001
 表1中の各層の「膜厚」には、被膜の膜厚を示し、被膜を構成する各層の層厚は、表1中の各層の横に括弧書きで示した。これらの膜厚および層厚は、表面被覆切削工具の表面に対する法線を含む平面で切断し、該切断面をSEMで観察して得られた値を採用した。
 また、表1中の「深さA」の欄には、第1被覆層の表面から残留応力が極小値となるまでの距離を示し、該残留応力の極小値を表1の「極小値」の欄に示した。また、「増加様態」の欄には、そのすくい面中心方向および逃げ面中心方向に進むにつれて増加する残留応力の態様が「連続的」であるか、「段階的」であるかを示した。
 また、「平均粒径」の「微細」の欄には、面取り部における第1被覆層の表面から深さAまでの結晶粒径(微細結晶組織領域)の平均結晶粒径を示し、「粗大」の欄には、上記の微細結晶組織領域以外の部分の第1被覆層の結晶粒径(粗大結晶組織領域)の平均結晶粒径を示した。
 <切削試験>
 各実施例および各比較例の表面被覆切削工具を用いて、以下の条件で旋削切削加工試験を行なった。
 被削材:FCD700溝付き丸棒
切削速度:230m/min
送り速度:0.15mm/rev 
切り込み:1.0mm
 切削油:あり
 切削試験を開始してから表面被覆切削工具にチッピングが生じるまでの時間を表2の「チッピング発生時間」の欄に示した。チッピング発生時間が長いほど、切削工具にチッピングが生じにくいことを示している。
 また、切削試験を開始してから1分ごとに表面被覆切削工具をノギスで測定することにより、逃げ面の摩耗減少幅を算出し、摩耗減少幅が平均で0.25mmを超えるまでの時間を表2の「工具寿命」の欄に示した。工具寿命が長いほど、表面被覆切削工具の寿命が長いことを示している。
Figure JPOXMLDOC01-appb-T000002
 表2に示される結果から、各実施例の表面被覆切削工具は、各比較例のそれに比して、逃げ面摩耗量が少なく、かつチッピングが生じにくいことが明らかである。この結果から、各実施例の表面被覆切削工具は、各比較例のそれに比し、耐摩耗性および耐チッピング性に優れたものであると言える。このように各実施例の表面被覆切削工具の耐摩耗性および耐チッピング性が向上したのは、面取り部における第1被覆層の結晶を微細化し、その部分の残留応力を局所的に小さくしたことによるものと考えられる。
 以上の結果から、実施例の表面被覆切削工具は、比較例の表面被覆切削工具に比して、耐摩耗性および耐チッピング性に優れたものであることが示された。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 表面被覆切削工具、2 すくい面、3 逃げ面、4 面取り部、5 被削材、6 切り屑、7 基材、8 第1被覆層、9 粗大結晶組織領域、10 微細結晶組織領域、20 貫通孔。

Claims (6)

  1.  基材(7)と、該基材(7)上に形成された被膜とを備える表面被覆切削工具(1)であって、
     前記表面被覆切削工具(1)は、すくい面(2)と逃げ面(3)とが交差する部分が面取り部(4)となっており、
     前記被膜は、少なくとも1層の第1被覆層(8)を含み、
     前記第1被覆層(8)は、前記面取り部(4)における前記被膜の最表面層であり、
     前記面取り部(4)における前記第1被覆層(8)は、その表面からの深さが2μm以内の深さとなる深さAにおいて、残留応力の極小値を有し、かつ前記深さAからさらに深さ方向に深くなるにつれて、連続的または段階的に残留応力が増加し、
     前記残留応力の極小値は、-7GPa以上-1GPa以下であり、
     前記面取り部(4)以外における第1被覆層(8)は、前記残留応力の極小値よりも大きい残留応力を有し、
     前記面取り部(4)以外における第1被覆層(8)は、すくい面中心方向および逃げ面中心方向に進むにつれて、連続的または段階的に残留応力が増加して、前記基材(7)側で0GPa以上2GPa以下の残留応力となり、
     前記面取り部(4)における第1被覆層(8)において、その表面から前記深さAまでの領域は、10nm以上200nm以下の平均結晶粒径の結晶を含む微細結晶組織領域(10)であり、
     前記第1被覆層(8)は、前記面取り部(4)における前記深さAからさらに深さ方向に深くなる領域、および前記面取り部(4)以外における領域において、前記微細結晶組織領域(10)における結晶よりも大きい結晶を含む粗大結晶組織領域(9)である、表面被覆切削工具(1)。
  2.  前記第1被覆層(8)は、2μm以上30μm以下の層厚である、請求項1に記載の表面被覆切削工具(1)。
  3.  前記被膜は、IVa族元素、Va族元素、VIa族元素、Al、Si、Y、B、およびSからなる群から選ばれる少なくとも1種の元素と、ホウ素、炭素、窒素、および酸素からなる群より選ばれる少なくとも1種の元素との化合物からなる、請求項1に記載の表面被覆切削工具(1)。
  4.  前記被膜は、前記第1被覆層(8)以外に1層以上の層を含む、請求項1に記載の表面被覆切削工具(1)。
  5.  前記被膜は、その全厚が3μm以上50μm以下である、請求項1に記載の表面被覆切削工具(1)。
  6.  前記第1被覆層(8)は、アルミナからなる、請求項1に記載の表面被覆切削工具(1)。
PCT/JP2011/063351 2010-11-10 2011-06-10 表面被覆切削工具 WO2012063515A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11818965.3A EP2638993B1 (en) 2010-11-10 2011-06-10 Surface-coated cutting tool
US13/393,473 US8715838B2 (en) 2010-11-10 2011-06-10 Surface-coated cutting tool
KR1020127006046A KR101386856B1 (ko) 2010-11-10 2011-06-10 표면 피복 절삭 공구
CN201180004081.7A CN102625737B (zh) 2010-11-10 2011-06-10 表面被覆切削工具
JP2012509406A JP5866650B2 (ja) 2010-11-10 2011-06-10 表面被覆切削工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-251705 2010-11-10
JP2010251705 2010-11-10

Publications (1)

Publication Number Publication Date
WO2012063515A1 true WO2012063515A1 (ja) 2012-05-18

Family

ID=46050674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063351 WO2012063515A1 (ja) 2010-11-10 2011-06-10 表面被覆切削工具

Country Status (6)

Country Link
US (1) US8715838B2 (ja)
EP (1) EP2638993B1 (ja)
JP (1) JP5866650B2 (ja)
KR (1) KR101386856B1 (ja)
CN (1) CN102625737B (ja)
WO (1) WO2012063515A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188834A (ja) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp 表面被覆切削工具
JP5872747B1 (ja) * 2015-08-28 2016-03-01 住友電工ハードメタル株式会社 表面被覆切削工具
JP2016141874A (ja) * 2015-02-04 2016-08-08 株式会社不二機販 低温セラミックスコーティングの密着力強化方法
JP2017042901A (ja) * 2016-01-08 2017-03-02 住友電工ハードメタル株式会社 表面被覆切削工具
JP2017042902A (ja) * 2016-01-08 2017-03-02 住友電工ハードメタル株式会社 表面被覆切削工具
JP2018183864A (ja) * 2017-04-21 2018-11-22 株式会社タンガロイ 被覆切削工具
JP2019005894A (ja) * 2017-06-27 2019-01-17 株式会社タンガロイ 被覆切削工具
JP6641660B1 (ja) * 2018-10-15 2020-02-05 住友電工ハードメタル株式会社 切削工具
JP6641661B1 (ja) * 2018-10-15 2020-02-05 住友電工ハードメタル株式会社 切削工具
WO2020079894A1 (ja) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 切削工具
WO2020079952A1 (ja) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 切削工具
WO2020079953A1 (ja) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 切削工具
WO2020079893A1 (ja) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 切削工具

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568649B1 (ja) * 2013-01-22 2014-08-06 日本航空電子工業株式会社 刃物工具
CN103506640B (zh) * 2013-07-17 2016-04-13 厦门金鹭特种合金有限公司 一种具有涂层的切削工具及其制作方法
JP6604553B2 (ja) * 2016-03-30 2019-11-13 三菱マテリアル株式会社 表面被覆切削工具
JP2018030205A (ja) * 2016-08-25 2018-03-01 住友電工ハードメタル株式会社 切削工具およびその製造方法
JP2018030206A (ja) * 2016-08-25 2018-03-01 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP6521127B2 (ja) * 2017-04-21 2019-05-29 株式会社タンガロイ 被覆切削工具
JP7054473B2 (ja) * 2018-03-14 2022-04-14 三菱マテリアル株式会社 表面被覆切削工具
EP3858523A4 (en) * 2018-09-28 2022-05-25 Mitsubishi Materials Corporation SURFACE COATED CUTTING TOOL FOR TIN BASED CERMET WITH A HARD COATING LAYER WITH EXCELLENT MACHINING RESISTANCE
JP7411312B2 (ja) * 2019-12-16 2024-01-11 株式会社Subaru 転削加工方法
CN112410515A (zh) * 2020-11-02 2021-02-26 桃江富硕精密机械有限公司 一种高强度耐磨导轨钢的加工工艺
US20240051033A1 (en) * 2022-08-10 2024-02-15 Iscar, Ltd. CUTTING TOOL WITH A TiAlN COATING HAVING RAKE AND RELIEF SURFACES WITH DIFFERENT RESIDUAL STRESSES
CN116372206B (zh) * 2023-03-09 2024-03-19 株洲肯特硬质合金股份有限公司 一种刀具用纳米涂层及涂层刀具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062603A (ja) 1999-06-23 2001-03-13 Mitsubishi Materials Corp 断続重切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆炭化タングステン基超硬合金製切削工具
JP2001096404A (ja) 1999-07-23 2001-04-10 Mitsubishi Materials Corp 断続重切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆炭化タングステン基超硬合金製切削工具
JP2002062603A (ja) 2000-08-18 2002-02-28 Fuji Photo Film Co Ltd 画像読み取り装置
JP2006035383A (ja) * 2004-07-28 2006-02-09 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
WO2006064724A1 (ja) 2004-12-14 2006-06-22 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具
JP2009078309A (ja) 2007-09-25 2009-04-16 Mitsubishi Materials Corp 表面被覆切削工具
WO2009081026A2 (fr) * 2007-12-20 2009-07-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Particules de grenaillage
JP2010137315A (ja) * 2008-12-10 2010-06-24 Sumitomo Electric Hardmetal Corp 表面被覆切削工具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061885A1 (fr) 2002-01-18 2003-07-31 Sumitomo Electric Industries, Ltd. Outil de coupe presentant un revetement de surface
CN100479955C (zh) * 2003-12-05 2009-04-22 住友电工硬质合金株式会社 表面被覆切削工具
JP2005271190A (ja) 2003-12-05 2005-10-06 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
WO2006009121A1 (ja) * 2004-07-23 2006-01-26 Sumitomo Electric Hardmetal Corp. 圧縮応力の強度分布を有する被膜を備えた表面被覆切削工具
CN100496824C (zh) * 2004-10-29 2009-06-10 住友电工硬质合金株式会社 表面被覆切削工具
EP2000237A1 (en) 2006-03-28 2008-12-10 Kyocera Corporation Surface-coated tool

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062603A (ja) 1999-06-23 2001-03-13 Mitsubishi Materials Corp 断続重切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆炭化タングステン基超硬合金製切削工具
JP3661503B2 (ja) 1999-06-23 2005-06-15 三菱マテリアル株式会社 断続重切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆炭化タングステン基超硬合金製切削工具
JP2001096404A (ja) 1999-07-23 2001-04-10 Mitsubishi Materials Corp 断続重切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆炭化タングステン基超硬合金製切削工具
JP2002062603A (ja) 2000-08-18 2002-02-28 Fuji Photo Film Co Ltd 画像読み取り装置
JP2006035383A (ja) * 2004-07-28 2006-02-09 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
WO2006064724A1 (ja) 2004-12-14 2006-06-22 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具
JP2009078309A (ja) 2007-09-25 2009-04-16 Mitsubishi Materials Corp 表面被覆切削工具
WO2009081026A2 (fr) * 2007-12-20 2009-07-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Particules de grenaillage
JP2010137315A (ja) * 2008-12-10 2010-06-24 Sumitomo Electric Hardmetal Corp 表面被覆切削工具

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The Society of Materials Science, Japan", 1981, YOKENDO CO., LTD., article "X-ray Stress Measurement Method", pages: 54 - 66
C. BARBATTI ET AL.: "Influence of micro-blasting on the microstructure and residual stresses of CVD K-A1203 coatings", SURFACE AND COATINGS TECHNOLOGY, vol. 203, no. 24, September 2009 (2009-09-01), pages 3708 - 3717, XP026284336 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188834A (ja) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp 表面被覆切削工具
JP2016141874A (ja) * 2015-02-04 2016-08-08 株式会社不二機販 低温セラミックスコーティングの密着力強化方法
JP5872747B1 (ja) * 2015-08-28 2016-03-01 住友電工ハードメタル株式会社 表面被覆切削工具
WO2017037796A1 (ja) * 2015-08-28 2017-03-09 住友電工ハードメタル株式会社 表面被覆切削工具
US9828254B2 (en) 2015-08-28 2017-11-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2017042901A (ja) * 2016-01-08 2017-03-02 住友電工ハードメタル株式会社 表面被覆切削工具
JP2017042902A (ja) * 2016-01-08 2017-03-02 住友電工ハードメタル株式会社 表面被覆切削工具
JP2018183864A (ja) * 2017-04-21 2018-11-22 株式会社タンガロイ 被覆切削工具
JP2019005894A (ja) * 2017-06-27 2019-01-17 株式会社タンガロイ 被覆切削工具
JP6641661B1 (ja) * 2018-10-15 2020-02-05 住友電工ハードメタル株式会社 切削工具
JP6641660B1 (ja) * 2018-10-15 2020-02-05 住友電工ハードメタル株式会社 切削工具
WO2020079894A1 (ja) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 切削工具
WO2020079952A1 (ja) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 切削工具
WO2020079953A1 (ja) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 切削工具
WO2020079893A1 (ja) * 2018-10-15 2020-04-23 住友電工ハードメタル株式会社 切削工具
CN112839761A (zh) * 2018-10-15 2021-05-25 住友电工硬质合金株式会社 切削工具
CN112839760A (zh) * 2018-10-15 2021-05-25 住友电工硬质合金株式会社 切削工具
US11103930B2 (en) 2018-10-15 2021-08-31 Sumitomo Electric Hardmetal Corp. Cutting tool
US11167355B2 (en) 2018-10-15 2021-11-09 Sumitomo Electric Hardmetal Corp. Cutting tool
CN112839760B (zh) * 2018-10-15 2023-06-06 住友电工硬质合金株式会社 切削工具
CN112839761B (zh) * 2018-10-15 2023-08-22 住友电工硬质合金株式会社 切削工具

Also Published As

Publication number Publication date
CN102625737A (zh) 2012-08-01
EP2638993B1 (en) 2019-07-24
JPWO2012063515A1 (ja) 2014-05-12
EP2638993A1 (en) 2013-09-18
JP5866650B2 (ja) 2016-02-17
KR101386856B1 (ko) 2014-04-17
CN102625737B (zh) 2014-12-17
US20120282049A1 (en) 2012-11-08
EP2638993A4 (en) 2017-12-20
KR20120094467A (ko) 2012-08-24
US8715838B2 (en) 2014-05-06

Similar Documents

Publication Publication Date Title
JP5866650B2 (ja) 表面被覆切削工具
JP4739235B2 (ja) 表面被覆切削工具
JP4739236B2 (ja) 表面被覆切削工具
JP4680932B2 (ja) 表面被覆切削工具
JP5414883B2 (ja) 切削工具
KR20130025381A (ko) 표면 피복 절삭 공구
JP5023654B2 (ja) 硬質被覆層の改質α型Al2O3層がすぐれた結晶粒界面強度を有する表面被覆サーメット製切削工具
WO2011052767A1 (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP7121234B2 (ja) 硬質被覆層が優れた耐チッピング性を発揮する表面切削工具
CN109311099A (zh) 表面被覆切削工具
JP5835306B2 (ja) 超硬合金およびこれを用いた表面被覆切削工具
WO2020166683A1 (ja) 表面被覆切削工具
JP5569740B2 (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP2020131424A (ja) 表面被覆切削工具
JP2019166584A (ja) 硬質被覆層が優れた耐摩耗性を発揮する表面被覆切削工具
JP5088481B2 (ja) 重切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4883389B2 (ja) 硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する穴なし表面被覆サーメット製切削スローアウエイチップの表面研磨方法
JP4853822B2 (ja) 硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する穴なし表面被覆サーメット製切削スローアウエイチップの表面研磨方法
JP2010274330A (ja) 表面被覆切削工具
JP4748444B2 (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5111133B2 (ja) 切削工具
JP2019177425A (ja) 硬質被覆層が優れた耐酸化性、耐溶着性を発揮する表面被覆切削工具
JP2007090457A (ja) 硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ
JP2007160425A (ja) 硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ
JP2007168029A (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004081.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012509406

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13393473

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127006046

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011818965

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE