JP2020131424A - 表面被覆切削工具 - Google Patents
表面被覆切削工具 Download PDFInfo
- Publication number
- JP2020131424A JP2020131424A JP2020011402A JP2020011402A JP2020131424A JP 2020131424 A JP2020131424 A JP 2020131424A JP 2020011402 A JP2020011402 A JP 2020011402A JP 2020011402 A JP2020011402 A JP 2020011402A JP 2020131424 A JP2020131424 A JP 2020131424A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting edge
- ridge line
- tool
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 88
- 239000010410 layer Substances 0.000 claims abstract description 137
- 239000013078 crystal Substances 0.000 claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 239000011247 coating layer Substances 0.000 claims abstract description 20
- 150000004767 nitrides Chemical class 0.000 claims abstract description 20
- 239000002131 composite material Substances 0.000 claims abstract description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 6
- 239000011780 sodium chloride Substances 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 229910000851 Alloy steel Inorganic materials 0.000 abstract description 10
- 229910010038 TiAl Inorganic materials 0.000 abstract 1
- 230000007547 defect Effects 0.000 abstract 1
- 229910010037 TiAlN Inorganic materials 0.000 description 30
- 239000010936 titanium Substances 0.000 description 23
- 239000007789 gas Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
【課題】合金鋼等の高速断続切削加工で、耐摩耗性、耐欠損性、耐チッピング性を発揮する工具の提供【解決手段】複合窒化物層が、(Ti(1−x)Alx)N、0.60≦x≦0.95で、工具基体表面の法線方向に対して{111}面の法線方向がなす角が10°以内であるNaCl型の面心立方構造の結晶粒が30%以上を占める層を、刃先稜線から逃げ面・すくい面方向に刃先稜線から50μmを超えることがない点と、100〜500μmの最遠点との間に連続的に有し、最遠点を起点に刃先稜線から逃げ面・前記すくい面方向の遠ざかる方向に50〜500μmの中の50μm以上の領域で、前記工具基体の表面の法線方向に対して{100}面の法線方向がなす角が10°以内であるNaCl型の面心立方構造の結晶粒が30%以上を占める層を有する、平均層厚1.0〜20.0μmの硬質被覆層を有する表面被覆切削工具【選択図】図1
Description
本発明は、特に、合金鋼等の高速断続切削加工において、硬質被覆層が優れた耐摩耗性を有しつつ耐欠損性、耐チッピング性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、「被覆工具」ということがある)に関するものである。
従来、炭化タングステン(以下、「WC」で示す)基超硬合金等の工具基体の表面に、硬質被覆層として、Ti−Al系の複合窒化物層や複合炭窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
そして、前記硬質被覆層を被覆形成した被覆工具のさらなる耐摩耗性および耐チッピング性の向上のために、硬質被覆層の改善についての種々の提案がなされている。
そして、前記硬質被覆層を被覆形成した被覆工具のさらなる耐摩耗性および耐チッピング性の向上のために、硬質被覆層の改善についての種々の提案がなされている。
例えば、特許文献1には、TiとAlの複合窒化物層(以下、TiAlN層ともいう)を含む硬質被覆層において、負荷の大きい切れ刃部分にAl量の少ないTiAlN膜を配置させ、膜の硬さをあえて小さくさせることにより、刃先の靭性を担保し、耐チッピング性を確保している被覆工具が記載されている。
また、例えば、特許文献2には、硬質被覆層において、結晶の成長方向と結晶の{111}面の法線方向を揃えることにより、鋳造材料の機械加工において極めて有利な性能を発揮する被覆工具が記載されている。
さらに、例えば、特許文献3には、TiとAlの複合炭窒化物層を有する被覆工具が記載され、該層の結晶成長優先方位が結晶学的{111}面との関係において存在することが、特に好ましいとされている。
近年の切削加工における省力化および省エネルギー化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にある。そのため、被覆工具には、より一層、耐チッピング性、耐欠損性等の耐異常損傷性とともに、長期の使用にわたって優れた耐摩耗性が求められている。
しかし、前記特許文献1〜3で提案されている被覆工具では、合金鋼等の高速断続切削加工において、耐摩耗性、耐欠損性、耐チッピング性が未だ十分ではなく、満足できる工具寿命を有しているとはいえない。その理由は以下のとおりである。
しかし、前記特許文献1〜3で提案されている被覆工具では、合金鋼等の高速断続切削加工において、耐摩耗性、耐欠損性、耐チッピング性が未だ十分ではなく、満足できる工具寿命を有しているとはいえない。その理由は以下のとおりである。
前記特許文献1に記載されているTiAlN層は、切削中に最も負荷のかかる刃先に硬度の小さい膜を配しているため、より負荷の大きい高速断続切削時には、刃先の偏摩耗やそれに起因する亀裂進展がなされ、所望の耐摩耗性、耐チッピング性を発揮できるとはいえない。
特許文献2および3に記載されている被覆工具では、硬質被覆層において、{111}面の法線方向の配向が強い組織がより適している旨が示されているが、この組織は、被削材の強度が大きい場合に、硬質被覆層の剥離や結晶粒の脱落を起点とする欠損やチッピングがしばしば生じ、耐欠損性、耐チッピング性が十分でない。
そこで、本発明は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する合金鋼(特殊鋼)等の高速断続切削加工において、優れた耐摩耗性、耐欠損性、耐チッピング性を発揮する被覆工具を提供することを目的とする。ここで、高速断続切削加工とは、切削速度である200m/minよりも速い切削速度に於いて被削材と切削工具が切削と空転を繰り返す加工を指す。
本発明者は、刃先部分のTiAlN硬質被覆層(硬質皮膜)を構成する結晶粒に配向分布を持たせたときの高速断続切削加工の耐摩耗性、耐欠損性、耐チッピング性について鋭意検討を行った。その結果、刃先稜線近傍のすくい面および逃げ面の所定範囲に前記結晶粒の{111}面の法線方向に主に配向した層と、この層に対して刃先稜線から遠い所定範囲に同{100}面の法線方向に主に配向した層を有し、さらに、必要により、これらの層に加えて、同{110}面の法線方向に配向した層を配置するとき、耐摩耗性を確保しつつ、耐欠損性、耐チッピング性の優れた硬質被覆層を得ることができるとの新規な事項を知見した。
本発明は、前記知見に基づく表面被覆切削工具であって、次のとおりのものである。
「(1)工具基体と、該工具基体の表面に設けた硬質被覆層を有する表面被覆切削工具であって、
(a)前記硬質被覆層は、平均層厚が1.0〜20.0μmのTiとAlの複合窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物層は、NaCl型の面心立方構造を有する結晶粒を含み、
(c)前記TiとAlの複合窒化物層の組成を組成式:(Ti(1−x)Alx)Nで表した場合、AlのTiとAlの合量に占める平均含有割合x(但し、xは原子比)が、0.60≦x≦0.95を満足し、
(d)前記TiとAlの複合窒化物層は、前記工具基体の表面の法線方向に対して{111}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を、刃先稜線から逃げ面方向およびすくい面方向に、前記刃先稜線からの距離が50μmを超えない前記刃先稜線に最も近い点と、前記刃先稜線からの距離が100〜500μmの前記刃先稜線に最も遠い点との間に連続的に有し、
(e)前記TiとAlの複合窒化物層は、前記配向した層の前記刃先稜線から最も遠い点を起点に、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が50〜500μmの範囲の中の50μm以上の長さの領域において、前記工具基体の表面の法線方向に対して{100}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を有する、
ことを特徴とする表面被覆切削工具。
(2)前記TiとAlの複合窒化物層は、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が100〜600μmの範囲の中の50μm以上の領域において、前記工具基体の表面の法線方向に対して{110}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が20%以上を占める配向した層を有する前記(1)に記載の表面被覆切削工具。
(3)前記TiとAlの複合窒化物層は、前記NaCl型の面心立方構造を有する結晶粒の占める割合が50面積%以上であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
「(1)工具基体と、該工具基体の表面に設けた硬質被覆層を有する表面被覆切削工具であって、
(a)前記硬質被覆層は、平均層厚が1.0〜20.0μmのTiとAlの複合窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物層は、NaCl型の面心立方構造を有する結晶粒を含み、
(c)前記TiとAlの複合窒化物層の組成を組成式:(Ti(1−x)Alx)Nで表した場合、AlのTiとAlの合量に占める平均含有割合x(但し、xは原子比)が、0.60≦x≦0.95を満足し、
(d)前記TiとAlの複合窒化物層は、前記工具基体の表面の法線方向に対して{111}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を、刃先稜線から逃げ面方向およびすくい面方向に、前記刃先稜線からの距離が50μmを超えない前記刃先稜線に最も近い点と、前記刃先稜線からの距離が100〜500μmの前記刃先稜線に最も遠い点との間に連続的に有し、
(e)前記TiとAlの複合窒化物層は、前記配向した層の前記刃先稜線から最も遠い点を起点に、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が50〜500μmの範囲の中の50μm以上の長さの領域において、前記工具基体の表面の法線方向に対して{100}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を有する、
ことを特徴とする表面被覆切削工具。
(2)前記TiとAlの複合窒化物層は、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が100〜600μmの範囲の中の50μm以上の領域において、前記工具基体の表面の法線方向に対して{110}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が20%以上を占める配向した層を有する前記(1)に記載の表面被覆切削工具。
(3)前記TiとAlの複合窒化物層は、前記NaCl型の面心立方構造を有する結晶粒の占める割合が50面積%以上であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
本発明によれば、耐摩耗性を確保しつつ、耐欠損性、耐チッピング性の優れた被覆工具を得ることができる。
本発明の表面被覆切削工具について、以下に詳細に説明する。なお、本明細書および特許請求の範囲において数値範囲を「A〜B」(A、Bはともに数値)で表現するとき、その範囲は上限(B)および下限(A)の数値を含んでいる。また、上限(B)と下限(B)の単位は同じである。
TiAlN層の平均層厚:
本発明の硬質被覆層は、後述する組成式:(Ti1−xAlx)Nで表されるTiAlN層を少なくとも含む。このTiAlN層は、硬さが高く、優れた耐チッピング性、耐摩耗性を有するが、特に平均層厚が1.0〜20.0μmのとき、その特性が際立って発揮される。その理由は、平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわたって耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlN層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなるためである。より好ましい平均層厚は2.0〜10.0μmである。
本発明の硬質被覆層は、後述する組成式:(Ti1−xAlx)Nで表されるTiAlN層を少なくとも含む。このTiAlN層は、硬さが高く、優れた耐チッピング性、耐摩耗性を有するが、特に平均層厚が1.0〜20.0μmのとき、その特性が際立って発揮される。その理由は、平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわたって耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlN層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなるためである。より好ましい平均層厚は2.0〜10.0μmである。
ここで、平均層厚の測定は、例えば、切削時に工具と被削材とが直接接触する領域内の逃げ面およびすくい面において、各構成層の工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡を用いて倍率5000倍で観察し、観察視野内の5点を平均して求めることができる。
NaCl型の面心立方構造
本発明のTiAlN層においてNaCl型の面心立方構造を有する結晶粒を含むことが好ましい。そして、本発明では、このNaCl型の面心立方構造結晶粒の存在割合(面積%)を、刃先稜線方向を法線とする断面に占める割合とし、その値は50面積%以上が好ましく、さらには70面積%以上がより好ましい。その理由は、高硬度であるNaCl型の面心立方構造の結晶粒の割合が六方晶構造の結晶粒に比して高くなり、硬さが向上するためである。なお、面積率の上限は100面積%(すべてNaCl型の面心立方構造である)であってもよい。
本発明のTiAlN層においてNaCl型の面心立方構造を有する結晶粒を含むことが好ましい。そして、本発明では、このNaCl型の面心立方構造結晶粒の存在割合(面積%)を、刃先稜線方向を法線とする断面に占める割合とし、その値は50面積%以上が好ましく、さらには70面積%以上がより好ましい。その理由は、高硬度であるNaCl型の面心立方構造の結晶粒の割合が六方晶構造の結晶粒に比して高くなり、硬さが向上するためである。なお、面積率の上限は100面積%(すべてNaCl型の面心立方構造である)であってもよい。
TiAlN層の組成:
本発明におけるTiAlN層の組成は、組成式:(Ti1−xAlx)Nで表した場合、AlのTiとAlの合量に占める平均含有割合(以下、「Alの平均含有割合」という)xが、0.60≦x≦0.95、(ただし、xは原子比)を満足することが好ましい。
本発明におけるTiAlN層の組成は、組成式:(Ti1−xAlx)Nで表した場合、AlのTiとAlの合量に占める平均含有割合(以下、「Alの平均含有割合」という)xが、0.60≦x≦0.95、(ただし、xは原子比)を満足することが好ましい。
その理由は、以下のとおりである。
Alの平均含有割合xが0.60未満であると、TiAlN層は耐酸化性に劣るため、合金鋼等の高速断続切削に供した場合に、耐摩耗性が十分でなく、一方、0.95を超えると硬さに劣る六方晶の析出量が増大して硬さが低下し、耐摩耗性が低下する。したがって、0.60≦x≦0.95が好ましい。より好ましくは0.70≦x≦0.90である。なお、(Ti(1−x)Alx)とNは、1:1で化合しているものに限らない。
Alの平均含有割合xが0.60未満であると、TiAlN層は耐酸化性に劣るため、合金鋼等の高速断続切削に供した場合に、耐摩耗性が十分でなく、一方、0.95を超えると硬さに劣る六方晶の析出量が増大して硬さが低下し、耐摩耗性が低下する。したがって、0.60≦x≦0.95が好ましい。より好ましくは0.70≦x≦0.90である。なお、(Ti(1−x)Alx)とNは、1:1で化合しているものに限らない。
刃先稜線から逃げ面およびすくい面方向に存在する{111}面の法線方向に配向したTiAlN層:
工具基体の表面の法線方向に対して、{111}面の法線方向のなす傾斜角が10°以内であるNaCl型の面心立方構造の結晶粒の割合(後述する頻度割合)が30%以上を占める配向したTiAlN層({111}面の法線方向配向層ということがある)を有することが好ましい。そして、この{111}面の法線方向配向層は、刃先稜線から逃げ面およびすくい面方向に、刃先稜線からの距離が50μmを超えない点(刃先稜線に最も近い点)から刃先稜線からの距離が100〜500μmの点(刃先稜線に最も遠い点)との間で連続的に存在する(図1に示す、逃げ面方向の存在領域(l)およびすくい面方向の存在領域(l’)の長さは異なっていてもよい)ことが好ましい。
工具基体の表面の法線方向に対して、{111}面の法線方向のなす傾斜角が10°以内であるNaCl型の面心立方構造の結晶粒の割合(後述する頻度割合)が30%以上を占める配向したTiAlN層({111}面の法線方向配向層ということがある)を有することが好ましい。そして、この{111}面の法線方向配向層は、刃先稜線から逃げ面およびすくい面方向に、刃先稜線からの距離が50μmを超えない点(刃先稜線に最も近い点)から刃先稜線からの距離が100〜500μmの点(刃先稜線に最も遠い点)との間で連続的に存在する(図1に示す、逃げ面方向の存在領域(l)およびすくい面方向の存在領域(l’)の長さは異なっていてもよい)ことが好ましい。
ここで、{111}面の法線方向配向層について、配向する結晶粒の割合(頻度割合)が30%以上であること、および、前記刃先稜線に最も近い点と最も遠い点の間で連続的に存在することが好ましい理由は、これらを満足することによって、{111}面の法線方向配向層の特性が十分に発現して、耐欠損性、耐チッピング性が十分に発揮されるためである。
{111}面の法線方向配向層に対して刃先稜線から逃げ面方向およびすくい面方向に遠ざかる方向に存在する{100}面の法線方向に配向したTiAlN層:
前記{111}面の法線方向配向層における刃先稜線から最も遠い点を起点に、刃先稜線から逃げ面方向およびすくい面方向に遠ざかる方向の距離が50〜500μmの範囲の中の50μm以上の長さの領域(図1に示す、逃げ面方向の領域の長さ(m)およびすくい面方向の領域の長さ(m’)は異なっていてもよい)において、工具基体の表面の法線方向に対して{100}面の法線方向のなす傾斜角が10°以内であるNaCl型の面心立方構造を有する結晶粒の割合(頻度割合)が30%以上を占める配向したTiAlN被覆層({100}面の法線方向配向層ということがある)を有することが好ましい。
前記{111}面の法線方向配向層における刃先稜線から最も遠い点を起点に、刃先稜線から逃げ面方向およびすくい面方向に遠ざかる方向の距離が50〜500μmの範囲の中の50μm以上の長さの領域(図1に示す、逃げ面方向の領域の長さ(m)およびすくい面方向の領域の長さ(m’)は異なっていてもよい)において、工具基体の表面の法線方向に対して{100}面の法線方向のなす傾斜角が10°以内であるNaCl型の面心立方構造を有する結晶粒の割合(頻度割合)が30%以上を占める配向したTiAlN被覆層({100}面の法線方向配向層ということがある)を有することが好ましい。
ここで、前記{100}面の法線方向配向層について、配向する結晶粒の割合(頻度割合)が30%以上であること、および、前記50μm以上の長さの領域に存在することが好ましい理由は、これらを満足することによって、{100}面の法線方向配向層の特性が十分に発現して、耐欠損性、耐チッピング性が十分に発揮されるためである。
{110}面の法線方向に配向したTiAlN層:
刃先稜線から、逃げ面方向およびすくい面方向に、100〜600μmの範囲において、少なくとも50μm以上の領域において、工具基体の表面の法線方向に対して{110}面の法線方向がなす傾斜角が10°以内であるNaCl型の面心立方構造を有する結晶粒の割合(頻度割合)が20%以上を占める配向した層({110}面の法線方向配向層ということがある)が存在することが、より好ましい。
刃先稜線から、逃げ面方向およびすくい面方向に、100〜600μmの範囲において、少なくとも50μm以上の領域において、工具基体の表面の法線方向に対して{110}面の法線方向がなす傾斜角が10°以内であるNaCl型の面心立方構造を有する結晶粒の割合(頻度割合)が20%以上を占める配向した層({110}面の法線方向配向層ということがある)が存在することが、より好ましい。
前記結晶粒の割合(頻度割合)が20%以上とし、かつ、この{110}面法線方向配向層の長さを50μm以上の領域とする理由は、この数値範囲を満足すると、{110}面の法線方向配向層の特性が十分に発現し、耐欠損性、耐チッピング性がより一層向上するためである。
なお、前記刃先稜線とは、逃げ面とすくい面とをそれぞれ平面で近似し、その平面を延長した場合に両延長平面が交差する交線をいい、刃先稜線からの距離は、刃先稜線を法線とする断面における刃先稜線との交点からそれぞれの断面上での逃げ面およびすくい面に沿った距離をいう。
工具基体の表面の法線とNaCl型の面心立方構造を有する結晶粒の特定の結晶面の法線とのなす角度とその割合の測定:
工具基体の表面の法線とTiAlN層のNaCl型の面心立方構造を有する結晶粒の特定の結晶面({111}面、{110}面、{100}面)の法線となす角度の測定は、以下のように行う。まず、TiAlN層の刃先稜線方向を法線とする断面を研磨面として、電界放出型走査電子顕微鏡の鏡筒内にセットする。次に、前記研磨面に対して所定の観察範囲(例えば、工具基体の表面と平行方向に幅10μm、この幅の中点が25μm離れたもの)を設定する。
工具基体の表面の法線とTiAlN層のNaCl型の面心立方構造を有する結晶粒の特定の結晶面({111}面、{110}面、{100}面)の法線となす角度の測定は、以下のように行う。まず、TiAlN層の刃先稜線方向を法線とする断面を研磨面として、電界放出型走査電子顕微鏡の鏡筒内にセットする。次に、前記研磨面に対して所定の観察範囲(例えば、工具基体の表面と平行方向に幅10μm、この幅の中点が25μm離れたもの)を設定する。
続いて、工具基体の表面の法線方向(断面研磨面における工具基体の表面と垂直な方向)に対して、前記観察範囲内の測定点ごとの結晶粒の{111}面、{110}面、{100}面の法線がなす傾斜角を測定すべく、前記研磨面の法線に対して、70度の入射角度、10kVの加速電圧、1nAの照射電流で、0.1μm/stepの間隔により、電子線を観察範囲に照射し、電子線後方散乱解析像を得て、傾斜角を測定する。そして、得られた電子線後方散乱解析像をPole Plotsで表示して、前記法線がなす傾斜角が10°以内にある結晶粒の頻度割合を求める。
なお、前記Pole Plotsは、例えば面心立方構造を有するCuに対する文献「J.A.Nucci, et al., Appl. Phys. Lett. 69 (1996) 4017.」などに記載されているように、測定対象の物質がどの方位に偏っているかを、完全にランダムな多結晶構造を有している状態と比較して示す指標である。前記文献では頻度を表すために「times random」の単位で表記されている。本発明の測定結果の処理においては、基準となる面方位の法線方向を0°として90°までの傾斜角に対する結晶粒の頻度の合計に対する前記0°から10°までの傾斜角を有する結晶粒の頻度の合計の割合(頻度割合)を、着目する面の法線方向に配向した割合とし「%」で算出し、この割合が特定値({111}面および{100}面の法線方向であれば30%、{110}面の法線方向であれば20%)以上のものを配向した硬質被覆層として扱う。
配向層の頻度割合は、急激に変化することはなく、上記の方法を用いて測定することによって、測定に於ける誤差の影響(主には、結晶粒毎のバラツキ、測定サンプルの位置や角度)を抑制でき、観察領域が配向層であるかどうかの判定が可能となる。また、隣接する観察領域において、前記観察範囲の頻度割合からみて共に配向層であると判定されるときは、これらの隣接する観察範囲の間に存在する領域も配向層といえることを、本発明の導出過程で確認している。
さらに、配向層の端部は、隣接する観察範囲の片方の頻度割合からみて配向層といえないときは、配向層の頻度割合からみて配向層と判定される観察範囲の中点とする。
また、NaCl型の面心立方構造を有する結晶粒の占める割合は、前記観察範囲のTiAlN層部分の全測定点数を分母とし、NaCl型の面心立方構造を示すKikuchiパターンが測定されたTiAlN層部分の測定点数を分子として、それらの割合から「面積%」を算出したものである。
工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかである。
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかである。
下部層および上部層:
本発明では、硬質被覆層として前記TiAlN層を有する層を設けることによって十分な耐摩耗性、耐欠損性、耐チッピング性を有するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20.0μmの合計平均層厚を有するTi化合物層を含む下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層が1.0〜25.0μmの合計平均層厚で設けられた場合には、これらの層が奏する効果と相俟って、一層優れた特性を発揮することができる。
本発明では、硬質被覆層として前記TiAlN層を有する層を設けることによって十分な耐摩耗性、耐欠損性、耐チッピング性を有するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20.0μmの合計平均層厚を有するTi化合物層を含む下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層が1.0〜25.0μmの合計平均層厚で設けられた場合には、これらの層が奏する効果と相俟って、一層優れた特性を発揮することができる。
なお、前記Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物ならびに酸化アルミニウム層の組成は、化学量論的割合のものに限定されるものではない。
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20.0μmの合計平均層厚を有するTi化合物層を含む下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
製造方法:
本発明のTiAlN層は、例えば、次のような条件でCVDにより作製することができる。
反応ガス組成(%は容量%を表し、ガス群Aとガス群Bの和を100容量%とする)
ガス群A:NH3:0.3〜0.6%、Ar:25.0〜35.0%、
H2:20.0〜30.0%、
ガス群B:AlCl3:0.04〜0.06%、
TiCl4:0.01〜0.03%、
N2:25.0〜30.0%、H2:残
反応雰囲気圧力:4.5〜5.5kPa
反応雰囲気温度:700〜850℃
供給周期:8.0〜15.0秒
1周期当たりのガス供給時間0.2〜0.6秒
ガス群Aとガス群Bの供給の位相差0.10〜0.15秒
本発明のTiAlN層は、例えば、次のような条件でCVDにより作製することができる。
反応ガス組成(%は容量%を表し、ガス群Aとガス群Bの和を100容量%とする)
ガス群A:NH3:0.3〜0.6%、Ar:25.0〜35.0%、
H2:20.0〜30.0%、
ガス群B:AlCl3:0.04〜0.06%、
TiCl4:0.01〜0.03%、
N2:25.0〜30.0%、H2:残
反応雰囲気圧力:4.5〜5.5kPa
反応雰囲気温度:700〜850℃
供給周期:8.0〜15.0秒
1周期当たりのガス供給時間0.2〜0.6秒
ガス群Aとガス群Bの供給の位相差0.10〜0.15秒
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、NbC粉末、Cr3C2粉末およびCo粉末を用意した。これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結した。焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体Aを作製した。
次に、これら工具基体Aの表面にCVD装置を用いて、TiAlN層を形成した。CVDによる成膜条件は次のとおりである。
表3、表4に示される成膜条件A〜I、すなわち、NH3、Ar、H2からなるガス群Aと、AlCl3、TiCl4、N2、H2からなるガス群B、および各ガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bをあわせた全体に対する容量%)を、ガス群AとしてNH3:0.3〜0.6%、Ar:25.0〜35.0%、H2:20.0〜30.0%、ガス群BとしてAlCl3:0.04〜0.06%、TiCl4:0.01〜0.03%、N2:25.0〜30.0%、H2:残、反応雰囲気圧力:4.5〜5.5kPa、反応雰囲気温度:700〜850℃、供給周期8.0〜15.0秒、1周期当たりのガス供給時間0.2〜0.6秒、ガス群Aとガス群Bの供給の位相差0.10〜0.15秒とし、所定時間、成膜を行った。
表3、表4に示される成膜条件A〜I、すなわち、NH3、Ar、H2からなるガス群Aと、AlCl3、TiCl4、N2、H2からなるガス群B、および各ガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bをあわせた全体に対する容量%)を、ガス群AとしてNH3:0.3〜0.6%、Ar:25.0〜35.0%、H2:20.0〜30.0%、ガス群BとしてAlCl3:0.04〜0.06%、TiCl4:0.01〜0.03%、N2:25.0〜30.0%、H2:残、反応雰囲気圧力:4.5〜5.5kPa、反応雰囲気温度:700〜850℃、供給周期8.0〜15.0秒、1周期当たりのガス供給時間0.2〜0.6秒、ガス群Aとガス群Bの供給の位相差0.10〜0.15秒とし、所定時間、成膜を行った。
この条件で、TiAlN層を形成することにより、表6に示す平均層厚、Alの平均含有割合xを有する本発明被覆工具1〜9を製造した。
なお、本発明被覆工具1〜3および9については、表2に示される形成条件で、表5に示される下部層を形成した。
なお、本発明被覆工具1〜3および9については、表2に示される形成条件で、表5に示される下部層を形成した。
また、比較の目的で、工具基体Aの表面に表3、表4に示される形成条件でCVDにより成膜を行うことにより、表7に示される平均層厚を有し、少なくともTiAlN層を含む硬質被覆層を蒸着形成して比較被覆工具1〜8を製造した。
なお、比較被覆工具1〜3については、表2に示される形成条件で、表5に示される下部層を形成した。
なお、比較被覆工具1〜3については、表2に示される形成条件で、表5に示される下部層を形成した。
平均層厚は、本発明被覆工具1〜9、比較被覆工具1〜8の逃げ面およびすくい面において、各構成層の工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡を用いて倍率5000倍で観察し、観察視野内に於いて等間隔に基材表面に対して垂線を5本引き、各垂線上に於いて基体表面もしくは下部層とTiAlN層の境界線ならびにTiAlNの表面が垂線と交わる点間の距離を測ったものを、平均して求めた。
TiAlN層のAlの平均含有割合xについては、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、工具基体の表面を研磨した試料において、逃げ面およびすくい面に対して試料表面側から倍率2000倍で観察し、観察範囲内に於いて電子線を無作為に10点スポット照射し、それぞれのスポットに於いて得られる特性X線の解析結果を平均して求めた。
表6、表7に、前記で求めたxの値を示す(xは、TiとAlの原子数の合量に対するAlの原子数の比であって、TiとAlの測定結果を用い、Nや不可避的に含まれるCやOなどの他の元素は用いずに算出している)。
表6、表7に、前記で求めたxの値を示す(xは、TiとAlの原子数の合量に対するAlの原子数の比であって、TiとAlの測定結果を用い、Nや不可避的に含まれるCやOなどの他の元素は用いずに算出している)。
工具基体の表面の法線とNaCl型の面心立方構造を有する結晶粒の特定の結晶面の法線とのなす角度の測定とその割合、面心立方構造の面積割合(面積%)は、前述した方法で求め表6、表7に示した。なお、これら表において、「−」で示されるものは該当する配向層が存在しないことを示す。また、「下)配向割合」と記載している数値は、その欄の「上)」で示した位置の配向割合を示した。
次に、前記各種の被覆工具をいずれもカッタ径125mmの合金鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜9、比較被覆工具1〜8について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
切削試験:湿式高速正面フライス、センターカット切削加工
被削材:JIS・SCM440 幅100mm、長さ400mmのブロック材
回転速度:892 min−1
切削速度:350 m/min
切り込み:2.0 mm
一刃送り量:0.30 mm/刃
切削時間:5分
(通常切削速度:200 m/min)
被削材:JIS・SCM440 幅100mm、長さ400mmのブロック材
回転速度:892 min−1
切削速度:350 m/min
切り込み:2.0 mm
一刃送り量:0.30 mm/刃
切削時間:5分
(通常切削速度:200 m/min)
表8に示される結果から、本発明の被覆工具は合金鋼等の高速断続切削加工に用いた場合でも、チッピング、欠損の発生もなく、長期の使用にわたって優れた耐摩耗性を発揮する。
これに対して、TiAlN層において、本発明で規定する事項を一つでも満足していない比較被覆工具は、合金鋼等の高速断続切削加工において、チッピング等の異常損傷の発生、あるいは、摩耗進行により、短時間で寿命に至ることが明らかである。
前述のように、本発明の被覆工具は、合金鋼等の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分に満足する対応ができるものである。
Claims (3)
- 工具基体と、該工具基体の表面に設けた硬質被覆層を有する表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚が1.0〜20.0μmのTiとAlの複合窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物層は、NaCl型の面心立方構造を有する結晶粒を含み、
(c)前記TiとAlの複合窒化物層の組成を組成式:(Ti(1−x)Alx)Nで表した場合、AlのTiとAlの合量に占める平均含有割合x(但し、xは原子比)が、0.60≦x≦0.95を満足し、
(d)前記TiとAlの複合窒化物層は、前記工具基体の表面の法線方向に対して{111}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を、刃先稜線から逃げ面方向およびすくい面方向に、前記刃先稜線からの距離が50μmを超えない前記刃先稜線に最も近い点と、前記刃先稜線からの距離が100〜500μmの前記刃先稜線に最も遠い点との間に連続的に有し、
(e)前記TiとAlの複合窒化物層は、前記配向した層の前記刃先稜線から最も遠い点を起点に、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が50〜500μmの範囲の中の50μm以上の長さの領域において、前記工具基体の表面の法線方向に対して{100}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を有する、
ことを特徴とする表面被覆切削工具。 - 前記TiとAlの複合窒化物層は、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が100〜600μmの範囲の中の50μm以上の領域において、前記工具基体の表面の法線方向に対して{110}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が20%以上を占める配向した層を有する請求項1に記載の表面被覆切削工具。
- 前記TiとAlの複合窒化物層は、前記NaCl型の面心立方構造を有する結晶粒の占める割合が50面積%以上であることを特徴とする請求項1または2に記載の表面被覆切削工具。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/005695 WO2020166683A1 (ja) | 2019-02-14 | 2020-02-14 | 表面被覆切削工具 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019024537 | 2019-02-14 | ||
JP2019024537 | 2019-02-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020131424A true JP2020131424A (ja) | 2020-08-31 |
JP7453613B2 JP7453613B2 (ja) | 2024-03-21 |
Family
ID=72277344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020011402A Active JP7453613B2 (ja) | 2019-02-14 | 2020-01-28 | 表面被覆切削工具 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7453613B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022229429A1 (en) * | 2021-04-30 | 2022-11-03 | Walter Ag | A coated cutting tool |
JP7492678B2 (ja) | 2020-08-07 | 2024-05-30 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE532048C2 (sv) | 2008-03-07 | 2009-10-13 | Seco Tools Ab | Oxidbelagt skärverktygsskär för spånavskiljande bearbetning av stål |
JP6391045B2 (ja) | 2014-01-29 | 2018-09-19 | 三菱マテリアル株式会社 | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6578935B2 (ja) | 2015-12-24 | 2019-09-25 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
JP2018164961A (ja) | 2017-03-28 | 2018-10-25 | 三菱マテリアル株式会社 | 硬質被覆層が優れた耐摩耗性・耐チッピング性を発揮する表面被覆切削工具およびその製造方法 |
-
2020
- 2020-01-28 JP JP2020011402A patent/JP7453613B2/ja active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7492678B2 (ja) | 2020-08-07 | 2024-05-30 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
WO2022229429A1 (en) * | 2021-04-30 | 2022-11-03 | Walter Ag | A coated cutting tool |
WO2022229427A1 (en) * | 2021-04-30 | 2022-11-03 | Walter Ag | A coated cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JP7453613B2 (ja) | 2024-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6478100B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5924507B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6620482B2 (ja) | 耐チッピング性にすぐれた表面被覆切削工具 | |
JP6284034B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6391045B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6296294B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP2017030076A (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
WO2016052479A1 (ja) | 耐チッピング性にすぐれた表面被覆切削工具 | |
JP7231885B2 (ja) | 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具 | |
WO2020166683A1 (ja) | 表面被覆切削工具 | |
JP6617917B2 (ja) | 表面被覆切削工具 | |
JP2020131424A (ja) | 表面被覆切削工具 | |
JP6650108B2 (ja) | 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具 | |
JP7541279B2 (ja) | 表面被覆切削工具 | |
US11998992B2 (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP7453616B2 (ja) | 表面被覆切削工具 | |
JP4811787B2 (ja) | 硬質被覆層の改質κ型酸化アルミニウム層が優れた粒界面強度を有する表面被覆サーメット製切削工具 | |
JP7137149B2 (ja) | 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具 | |
JP6857299B2 (ja) | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 | |
JP6651130B2 (ja) | 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具 | |
JP7492678B2 (ja) | 表面被覆切削工具 | |
JP5286931B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具 | |
JP2019177424A (ja) | 硬質被覆層が優れた耐酸化性、耐溶着性を発揮する表面被覆切削工具 | |
JP4747338B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
WO2016084938A1 (ja) | 表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7453613 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |