WO2012060029A1 - 燃料電池及び燃料電池の製造方法 - Google Patents

燃料電池及び燃料電池の製造方法 Download PDF

Info

Publication number
WO2012060029A1
WO2012060029A1 PCT/JP2011/003834 JP2011003834W WO2012060029A1 WO 2012060029 A1 WO2012060029 A1 WO 2012060029A1 JP 2011003834 W JP2011003834 W JP 2011003834W WO 2012060029 A1 WO2012060029 A1 WO 2012060029A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fuel cell
resin
catalyst layer
catalyst
Prior art date
Application number
PCT/JP2011/003834
Other languages
English (en)
French (fr)
Inventor
暢 小田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112011103670.1T priority Critical patent/DE112011103670B4/de
Priority to CN201180004842.9A priority patent/CN102652376B/zh
Priority to US13/504,080 priority patent/US8877404B2/en
Publication of WO2012060029A1 publication Critical patent/WO2012060029A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell.
  • Patent Document 1 a catalyst layer formed on both surfaces of an electrolyte membrane of a fuel cell, a fuel cell in which the gas diffusion layer is not joined, a gas diffusion layer is formed slightly larger than the catalyst layer, and a catalyst is formed.
  • a fuel cell is described in which a gas diffusion layer portion protruding outside the layer and a portion protruding outside the catalyst layer of the electrolyte membrane are adhered to each other.
  • the present invention has been made to solve at least a part of the above-described problems, and an object thereof is to improve the durability of an electrolyte membrane.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms or application examples.
  • a fuel cell wherein an electrolyte membrane, first and second catalyst layers formed on both surfaces of the electrolyte membrane, and first and second sandwiching the electrolyte membrane and the first and second catalyst layers
  • Two reinforcing layers wherein the first catalyst layer and the first reinforcing layer are joined with a force equal to or greater than a predetermined bonding force capable of suppressing expansion and contraction of the electrolyte membrane, and the second catalyst layer
  • the second reinforcing layer is joined with a force less than a predetermined binding force capable of releasing stress due to expansion and contraction of the electrolyte membrane, or the second catalyst layer and the second reinforcing layer are A fuel cell that is not bonded.
  • the first catalyst layer and the first reinforcing layer are joined with a force equal to or greater than a predetermined binding force capable of suppressing the expansion and contraction of the electrolyte membrane, the degree of the expansion and contraction of the electrolyte membrane is reduced. It is possible to reduce the occurrence of fatigue breakage and crease in the electrolyte membrane, and as a result, the occurrence of cross leak can be suppressed.
  • the second catalyst layer and the second reinforcing layer are joined with a force less than a predetermined bonding force capable of releasing stress due to expansion and contraction of the electrolyte membrane, or the second catalyst layer and the second catalyst layer Since the reinforcing layer is not joined, the joining of the first catalyst layer and the first reinforcing layer and the joining of the second catalyst layer and the second reinforcing layer are joined. In comparison, stress due to expansion and contraction of the electrolyte membrane can be released. As a result, the force applied to the catalyst layer can be reduced and damage to the catalyst layer can be prevented. Therefore, according to this embodiment, the durability of the electrolyte membrane can be improved. Furthermore, the durability of the catalyst layer can be improved. For this reason, it is possible to suppress the performance deterioration of the fuel cell.
  • each of the first and second catalyst layers and the first and second reinforcing layers contains a resin, and the first reinforcing layer of the first catalyst layer.
  • the space occupancy of the resin on the surface on the side and the space occupancy of the resin on the surface of the first reinforcing layer on the first catalyst layer side are caused by heat pressure or heat generated during fuel cell power generation.
  • a space occupation ratio of the resin on the surface of the second catalyst layer on the second reinforcement layer side which is equal to or greater than a value capable of joining the first catalyst layer and the first reinforcement layer;
  • the space occupancy rate of the resin on the surface of the reinforcing layer on the second catalyst layer side is also caused by heat pressure or heat generated during fuel cell power generation, and the second catalyst layer and the second reinforcing layer A fuel cell that is less than a value capable of maintaining a non-bonded state.
  • the space occupation ratio of the resin in the first catalyst layer before joining the first and second catalyst layers and the first and second reinforcing layers is 35%.
  • the space occupancy of the resin in the first reinforcing layer satisfies 18% or more, and the space occupancy of the resin in the second catalyst layer is less than 35%, or the second reinforcing layer.
  • the same heat pressure is applied to both surfaces of the electrolyte membrane, or the fuel cell During operation, the first catalyst layer and the first reinforcing layer can be joined with a force greater than a predetermined bonding force.
  • the joining of the second catalyst layer and the second reinforcing layer it is possible to maintain the joining with a force less than a predetermined binding force or the unbonded state.
  • the catalyst layer and the reinforcing layer contain a resin
  • the catalyst layer and the reinforcing layer can be obtained by adjusting the space occupation ratio of the resin in the catalyst layer and the reinforcing layer without using a new binder. The coupling force between the two can be adjusted.
  • the space occupancy ratio of the resin in the first and second catalyst layers and the first and second reinforcing layers is , Fourier transform infrared spectroscopy A fuel cell that is calculated using the attenuated total reflection method. Fourier transform infrared spectroscopy If the attenuated total reflection method is used, the resin space occupancy of the first and second catalyst layers and the first and second reinforcing layers can be easily calculated.
  • the first catalyst layer is an anode catalyst layer
  • the second catalyst layer is a cathode catalyst layer.
  • Foel cell It is preferable to join the anode side and leave the cathode side unbonded from the viewpoint of preventing cross leak of the fuel cell and improving performance.
  • the cathode side which has a high contribution rate to power generation performance, is coupled with a force less than a predetermined value (a force that can release stress due to the expansion and contraction of the electrolyte membrane), thereby suppressing damage to the catalyst layer due to the expansion and contraction of the electrolyte membrane.
  • a predetermined value a force that can release stress due to the expansion and contraction of the electrolyte membrane
  • a fuel cell manufacturing method comprising: (a) a step of preparing an electrolyte membrane; and (b) a first catalyst in which a space occupancy of a resin included in the first surface of the electrolyte membrane is 35% or more. Forming a layer and forming a second catalyst layer having a predetermined space occupancy ratio of the resin to be included on the second surface; and (c) the space occupancy ratio of the resin to be included is 18% or more.
  • the space occupancy of the resin included in the second catalyst layer is less than 35%, or the space occupancy of the resin included in the second gas diffusion layer is 18 At least one of the meets, manufacturing method of a fuel cell of the two conditions below. According to this application example, it is possible to easily manufacture a fuel cell in which the first catalyst layer and the first reinforcement layer are joined and the second catalyst layer and the second reinforcement layer are not joined. .
  • the present invention can be realized in various forms, for example, in various forms such as a fuel cell manufacturing method in addition to a fuel cell.
  • FIG. 4 is an explanatory diagram showing the relationship between the resin space occupation ratio on the surfaces of a catalyst layer and a gas diffusion layer and the bonding strength between the catalyst layer and the gas diffusion layer. It is explanatory drawing which shows the measuring method of the space occupation rate of resin. It is an example of a spectrum obtained by the FT-IR ATR method. It is explanatory drawing which shows each step of the electric power generation test of a fuel cell.
  • FIG. 4 is an explanatory diagram showing the relationship between the resin space occupation ratio on the surfaces of a catalyst layer and a gas diffusion layer and the bonding strength between the catalyst layer and the gas diffusion layer.
  • FIG. 3 is an explanatory diagram showing a method for measuring the bonding strength between a catalyst layer and a gas diffusion layer. It is explanatory drawing which shows the determination result of the amount of cross leaks of an electrolyte membrane. It is explanatory drawing which shows the performance fall rate of a fuel cell.
  • FIG. 1 is an explanatory diagram showing a configuration of a fuel cell according to the present embodiment.
  • the fuel cell 10 includes a series battery 100, current collecting plates 200 and 201, insulating plates 210 and 211, a pressing plate 220, end plates 230 and 231, a tension rod 240, a nut 250, and a pressing spring 260. .
  • the series battery 100 includes a plurality of power generation units 110. Each power generation unit 110 is a single cell. The power generation units 110 are stacked and connected in series, and generate a high voltage as the series battery 100.
  • the current collector plates 200 and 201 are disposed on both sides of the series battery 100, and are used to extract voltage and current generated by the series battery 100 to the outside.
  • the insulating plates 210 and 211 are disposed further outside the current collecting plates 200 and 201, respectively, and between the current collecting plates 200 and 201 and other members such as the end plates 230 and 231 and the tension rod 240. Insulate so that no current flows.
  • the end plate 230 and the pressing plate 220 are disposed further outside the insulating plates 210 and 211, respectively.
  • a pressing spring 260 is disposed further outside the pressing plate 220, and an end plate 231 is disposed further outside the pressing spring 260.
  • the end plate 231 is disposed at a predetermined distance from the end plate 230 by the tension rod 240 and the nut 250.
  • the pressing plate 260 is pressed in the direction of the insulating plate 211 by the pressing spring 260 and gives a predetermined fastening force to the power generation unit 110.
  • FIG. 2 is an explanatory diagram showing, in an enlarged manner, a joint portion between the membrane electrode assembly of the power generation unit and the gas diffusion layer.
  • the power generation unit 110 includes a membrane electrode assembly 120, a cathode side gas diffusion layer 130, and an anode side gas diffusion layer 140.
  • the membrane electrode assembly 120 includes an electrolyte membrane 121, a cathode side catalyst layer 122, and an anode side catalyst layer 123.
  • the electrolyte membrane 121 is a proton conductive ion exchange membrane made of a solid polymer material, for example, a fluorine-based resin such as perfluorocarbon sulfonic acid polymer.
  • the cathode side catalyst layer 122 and the anode side catalyst layer 123 include a proton conductive electrolyte and a catalyst that promotes an electrochemical reaction, such as a platinum catalyst or a platinum alloy catalyst made of platinum and another metal.
  • the platinum catalyst or platinum alloy catalyst is supported on a conductive carrier such as carbon.
  • the cathode side catalyst layer 122 is formed on one surface of the electrolyte membrane 121, and the anode side catalyst layer 123 is formed on the other surface of the electrolyte membrane 121.
  • the cathode side gas diffusion layer 130 is disposed so as to contact the cathode side catalyst layer 122.
  • the cathode side gas diffusion layer 130 is a member that allows the oxidizing gas to pass therethrough and diffuses the oxidizing gas and supplies it to the cathode side catalyst layer 122.
  • the cathode side gas diffusion layer 130 includes, from the cathode side catalyst layer 122 side, a microporous layer (MPL) 131, a carbon base layer 132, and a metal porous body layer 133.
  • the microporous layer 131 is formed by kneading fine carbon powder and a fluororesin (polytetrafluoroethylene).
  • the microporous layer 131 is applied to a carbon base material layer 132 made of, for example, carbon cloth.
  • a material of the carbon cloth for example, polyacrylonitrile, pitch, or rayon can be employed.
  • the shape of carbon paper and a nonwoven fabric other than carbon cloth may be sufficient.
  • the metal porous body layer 133 uses a metal porous body made of a metal such as titanium.
  • an expanded metal may be used instead of the metal porous body.
  • the anode also includes an anode-side gas diffusion layer 140 having a microporous layer (MPL) 141, a carbon base material layer 142, and a metal porous body layer 143.
  • MPL microporous layer
  • the cathode side catalyst layer 122 on the cathode side and the microporous layer 131 are in a non-bonded state
  • the anode side catalyst layer 123 on the anode side and the microporous layer 141 are in a bonded state.
  • FIG. 3 is an explanatory view showing the resin space occupancy ratio on the surfaces of the catalyst layer and the gas diffusion layer.
  • the resin space occupancy in the cathode catalyst layer 122 may be less than 35% or the resin space occupancy in the microporous layer 131 may be less than 18%.
  • the resin space occupancy in the anode catalyst layer 123 may satisfy 35% or more, and the resin space occupancy in the microporous layer 141 may satisfy 18% or more.
  • the space occupation ratio of the resin in the anode catalyst layer 123 is preferably 38% or more, and the resin space occupation ratio of the microporous layer 141 is preferably 20% or more.
  • the substance other than the resin is, for example, fine carbon powder in the microporous layers 131 and 141, and carbon that supports the catalyst in the cathode side catalyst layer 122 and the anode side catalyst layer 123. The reason for the numerical value will be described later.
  • FIG. 4 is an explanatory diagram showing the relationship between the resin space occupancy ratio on the surfaces of the catalyst layer and the gas diffusion layer and the bonding strength between the catalyst layer and the gas diffusion layer.
  • the surface resin occupation ratio of the microporous layer 131 can be adjusted.
  • the surface resin occupation ratio can be increased by increasing the ratio of the fluororesin to the fine carbon powder.
  • the anode-side gas diffusion layer 130 is formed by coating the carbon base material layer 132 with a mixture of fine carbon powder and fluororesin (polytetrafluoroethylene).
  • the surface of the fluorocarbon resin 131 tends to settle to the carbon substrate layer 132 (FIG. 2) side when the microporous layer 131 is formed if the particle size of the carbon powder is increased.
  • the resin occupancy can be reduced, and if the particle size of the carbon powder is reduced, the surface resin occupancy can be increased because the fluororesin hardly settles to the carbon substrate layer 132 (FIG. 2) when the microporous layer 131 is formed. .
  • the cathode-side catalyst layer 122 includes a proton-conductive electrolyte and a conductive carrier that supports a catalyst.
  • the surface resin occupancy of the cathode-side catalyst layer 122 can be changed by changing the weight ratio between the proton-conducting electrolyte and the conductive carrier carrying the catalyst, or by adjusting the drying time when the cathode-side catalyst layer 122 is formed. The rate can be adjusted.
  • the resin in the catalyst layer is a proton conductive electrolyte. By increasing the ratio of the proton conductive electrolyte to the conductive support, the surface resin occupancy can be increased.
  • the drying at the time of forming the cathode side catalyst layer 122 is performed rapidly, the resin is dried before the resin is settled, so that the surface resin occupation ratio can be increased. Conversely, if the drying at the time of forming the cathode catalyst layer 122 is performed slowly, the surface resin occupancy can be reduced. The same applies to the anode side catalyst layer 123.
  • the above-described example is an example of an adjustment method for adjusting the surface resin occupancy.
  • the surface resin occupancy can be adjusted by adjusting the particle size of the conductive carrier, the length (molecular weight) of the fluororesin or proton conductive electrolyte, and the like.
  • FIG. 5 is an explanatory diagram showing a method for measuring the resin space occupancy.
  • the resin space occupancy is calculated using the FT-IR ATR method.
  • FT-IR ATR method Fullier transform infrared spectroscopic attenuated total reflection method
  • a germanium crystal ATR crystal
  • the incident angle is larger than the critical angle. Irradiate with infrared light at an angle ⁇ .
  • the infrared light is totally reflected at the interface between the ATR crystal and the cathode side catalyst layer 122, but part of the infrared light penetrates into the cathode side catalyst layer 122 side as an evanescent wave and is reflected by the cathode side catalyst layer 122.
  • part of the energy of the evanescent wave is absorbed by the cathode side catalyst layer 122 and attenuated.
  • the structure of the cathode-side catalyst layer 122 can be identified by the frequency at which the attenuation occurs, and can be quantified based on the amount of attenuation.
  • the refractive index n2 of the cathode side catalyst layer 122 is 1.75 and the incident angle ⁇ of infrared light is 60 °, the penetration depth dp of the evanescent wave is 440 nm. Therefore, a structure having a depth of 440 nm from the surface of the cathode side catalyst layer 122 can be identified.
  • FIG. 6 is an example of a spectrum obtained by the FT-IR ATR method.
  • the peak height h2 from the baseline at 8.30 ⁇ m is obtained.
  • h1 / h2 is normalized, and the surface resin occupation ratio of the sample is calculated.
  • a membrane electrode assembly 120 having various catalyst surface resin occupancy rates and gas diffusion layers 130 and 140 were prepared, and the surface resin occupancy rates were calculated. Next, the membrane electrode assembly 120 and the gas diffusion layers 130 and 140 were held at a temperature of 100 ° C. and a hot pressure of 1.2 MPa for 4 minutes, and the relationship between the surface resin occupancy and the bonded state was judged. The results are shown in FIG. When the surface resin occupancy of the gas diffusion layers 130 and 140 is 20% or more and the surface resin occupancy of the catalyst layers 122 and 123 is 38% or more, the bonding strength is 15 N / m or more.
  • the bond strength is 10 N / m or more.
  • the bonding strength of 10 N / m or higher is obtained when the surface resin occupancy of the gas diffusion layers 130 and 140 is 18% or higher.
  • heat at a temperature of 100 ° C. and a pressure of 1.2 MPa is used.
  • FIG. 7 is an explanatory diagram showing each step of the power generation test of the fuel cell.
  • the fuel cell 10 (FIG. 1) was fastened at a fastening pressure of 2 MPa.
  • the flow rate of the reaction gas is 500 Ncc / min for hydrogen gas, 2000 Ncc / min for air
  • the temperature of the reaction gas is 85 ° C.
  • the dew point of the reaction gas is 80 ° C.
  • the back pressure is 0.04 Mpa for hydrogen, 0.04 Mpa for air
  • the cooling water temperature is 80
  • the fuel cell was generated under the condition of ° C. At this time, the current density of the current draw from the fuel cell from 0.2 A / cm 2 every 5 minutes, and 0.5,1.0,1.2,1.5A / cm 2, began to increase.
  • the temperature of the fuel cell 10 at this time was 80 ° C. or higher.
  • the conditions of the 2 MPa fastening pressure and the temperature of 80 ° C. or more are values close to the hot pressure conditions (1.2 Mpa, 100 ° C.) for joining the membrane electrode assembly 120 and the gas diffusion layers 130 and 140 to the fuel. It is sufficiently expected to be joined during the power generation test of the battery 10.
  • the condition of the hot pressure (1.2 Mpa, 100 ° C.) or The catalyst layers 122 and 123 and the gas diffusion layers 130 and 140 could be joined under the conditions during power generation (2 MPa, 80 ° C. or higher). Furthermore, when the surface resin occupancy of the gas diffusion layers 130 and 140 is 20% or more and the surface resin occupancy of the catalyst layers 122 and 123 is 35% or more, under the condition of hot pressure (1.2 Mpa, 100 ° C.) The gas diffusion layers 130 and 140 could be joined.
  • the surface resin occupancy of the gas diffusion layers 130 and 140 is 18% or more and the surface resin occupancy of the catalyst layers 122 and 123 is 38% or more, under the condition of hot pressure (1.2 Mpa, 100 ° C.)
  • the gas diffusion layers 130 and 140 could be joined.
  • the surface resin occupancy of the gas diffusion layers 130 and 140 is 20% or more and the surface resin occupancy of the catalyst layers 122 and 123 is 38% or more, under the condition of hot pressure (1.2 Mpa, 100 ° C.)
  • the gas diffusion layers 130 and 140 were strongly bonded (15 N / m).
  • FIG. 8 is an explanatory view showing a method for measuring the bonding strength between the catalyst layer and the gas diffusion layer.
  • the sample 400 in which the membrane electrode assembly 120 and the cathode side gas diffusion layer 130 are joined is cut into a size of 15 mm ⁇ 15 mm square.
  • the anode side catalyst layer 123 is deleted from the membrane electrode assembly 120 in advance, or only the cathode side catalyst layer 122 is formed on the electrolyte membrane 121 and the anode side catalyst layer 123 is not formed. It is preferable to keep it.
  • the gas diffusion layer 130 of the sample 400 is attached and fixed to the substrate 410 using the double-sided tape 420.
  • the tape 430 is attached to the membrane electrode assembly 120 of the sample 400.
  • an autograph registered trademark manufactured by Shimadzu Corporation, the tape 430 was pulled at a speed of 1 mm / sec, and a stress-displacement curve was measured. From the obtained stress-displacement curve, the bonding strength between the membrane electrode assembly 120 and the cathode side gas diffusion layer 130 was calculated.
  • FIG. 9 is an explanatory diagram showing the determination result of the cross leak amount of the electrolyte membrane.
  • the cathode-side gas diffusion layer 130 and the anode gas diffusion layer were bonded to the membrane electrode assembly 120, and a thermal cycle test was performed. In the cold cycle test, the temperature was held at ⁇ 20 ° C. for 60 minutes and then at 70 ° C. for 30 minutes. This was repeated 800 times. Then, the presence / absence of cross leak was determined by setting the determination value of cross leak of hydrogen gas to 100 nmol / (cm 2 ⁇ sec ⁇ atm).
  • the cathode side gas diffusion layer 130 and the cathode side catalyst layer 122 are joined. Nevertheless, no cross leak occurred.
  • FIG. 10 is an explanatory view showing the performance deterioration rate of the fuel cell.
  • the OCV before the cold cycle test was V1
  • the OCV after the cold cycle test was V2
  • the performance degradation rate of the fuel cell 10 was calculated by (V2 ⁇ V1) / V1 ⁇ 100 (%).
  • the performance deterioration rate due to the thermal cycle test Is 14% or more
  • at least one of the cathode-side gas diffusion layer 130 and the cathode-side catalyst layer 122 or the anode-side gas diffusion layer 140 and the anode-side catalyst layer 123 is at least one of
  • the performance degradation rate by the thermal cycle test was 6% or less.
  • the cathode side gas diffusion layer 130 and the cathode side catalyst layer 122 are joined, and the anode side gas diffusion layer 140 and the anode side catalyst layer 123 are not joined. Then, even if a cold cycle test is performed, cross-leakage does not easily occur and performance is not easily lowered. That is, when the cathode side gas diffusion layer 130 and the cathode side catalyst layer 122 and between the anode side gas diffusion layer 140 and the anode side catalyst layer 123 are both joined, or both The durability of the membrane electrode assembly 120, that is, the fuel cell 10, can be improved as compared with the case where the non-bonded state is set.
  • the membrane electrode assembly 120 sandwiches the electrolyte membrane 121, the cathode side catalyst layer 122 and the anode side catalyst layer 123 formed on both surfaces of the electrolyte membrane 121, and the membrane electrode assembly, respectively.
  • the cathode side gas diffusion layer 130 and the anode side gas diffusion layer 140 are provided, the anode side catalyst layer 123 and the anode side gas diffusion layer 140 are joined, and the cathode side catalyst layer 122 and the cathode side gas diffusion layer 130 are joined.
  • the gas diffusion layers 130 and 140 are used. However, since the gas diffusion layers 130 and 140 are used to reinforce the membrane electrode assembly 120, a reinforcing layer may be used.
  • the resin space occupation ratio of the anode side catalyst layer 123 is 35% or more, the resin space occupation ratio of the anode side gas diffusion layer 140 is 18% or more, and the resin space occupation ratio of the cathode side catalyst layer 122 is 35%. %, Or the space occupancy of the resin in the cathode side gas diffusion layer 130 is preferably less than 18%, more preferably the resin space occupancy in the anode side catalyst layer 123 is 38% or more, Alternatively, the resin space occupation ratio of the anode-side gas diffusion layer 140 is 20% or more.
  • the force that is greater than or equal to a predetermined bonding force that can suppress the expansion and contraction of the electrolyte membrane 121 is X [N / m] or more, and the force that is less than the predetermined bonding force that can release the stress due to the expansion and contraction of the electrolyte membrane 121.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

 燃料電池であって、電解質膜121と、前記電解質膜の両面に形成される第1、第2の触媒層123、122と、前記電解質膜121と前記第1、第2の触媒層123、122とを挟持する第1、第2の補強層140、130と、を備え、前記第1の触媒層123と前記第1の補強層140とが電解質膜の膨張収縮を抑制できる所定の結合力以上の力で接合され、前記第2の触媒層122と前記第2の補強層130とが電解質膜の膨張収縮による応力を逃すことができる所定の結合力未満の力で接合されているか、または、前記第2の触媒層と前記第2の補強層とが接合されていない。

Description

燃料電池及び燃料電池の製造方法
 本発明は、燃料電池に関する。
 特許文献1には、燃料電池の電解質膜の両面に形成されている触媒層と、ガス拡散層とが非接合である燃料電池と、ガス拡散層を触媒層よりも一回り大きく形成し、触媒層よりも外側にはみ出たガス拡散層部分と、電解質膜の触媒層よりも外側に突出する部分と、の間を接着した燃料電池が記載されている。
特開2008-251290号公報
 しかし、従来の技術では、電解質膜の膨張収縮を抑制できないため、電解質膜に疲労が生じ燃料電池の性能が低下する恐れがあった。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、電解質膜の耐久性を向上させることを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
 燃料電池であって、電解質膜と、前記電解質膜の両面に形成される第1、第2の触媒層と、前記電解質膜と前記第1、第2の触媒層とを挟持する第1、第2の補強層と、を備え、前記第1の触媒層と前記第1の補強層とが電解質膜の膨張収縮を抑制できる所定の結合力以上の力で接合され、前記第2の触媒層と前記第2の補強層とが電解質膜の膨張収縮による応力を逃すことができる所定の結合力未満の力で接合されているか、または、前記第2の触媒層と前記第2の補強層とが接合されていない、燃料電池。
 この適用例によれば、第1の触媒層と第1の補強層とが電解質膜の膨張収縮を抑制できる所定の結合力以上の力で接合されているので、電解質膜の膨張収縮の程度を低減させることができ、電解質膜の疲労破壊、折れジワの発生を抑制し、その結果クロスリークの発生を抑制できる。第2の触媒層と第2の補強層とが電解質膜の膨張収縮による応力を逃すことができる所定の結合力未満の力で接合されているか、または、前記第2の触媒層と前記第2の補強層とが接合されていないので、第1の触媒層と第1の補強層との接合及び第2の触媒層と第2の補強層との接合の2つの接合がされているものと比較すると、電解質膜の膨張収縮による応力を逃すことができる。その結果、触媒層に掛かる力を低減し、触媒層の損傷を防止することができる。したがって、この実施例によれば、電解質膜の耐久性を向上させることが可能となる。さらに、触媒層の耐久性を向上させることができる。そのため、燃料電池の性能低下も抑制することができる。
[適用例2]
 適用例1に記載の燃料電池において、前記第1、第2の触媒層及び前記第1、第2の補強層はそれぞれ樹脂を含んでおり、前記第1の触媒層の前記第1の補強層側の表面における前記樹脂の空間占有率と、前記第1の補強層の前記第1の触媒層側の表面における前記樹脂の空間占有率とが、熱圧もしくは燃料電池発電中に生じる熱により前記第1の触媒層と前記第1の補強層とを接合可能な値以上であり、前記第2の触媒層の前記第2の補強層側の表面における前記樹脂の空間占有率と、前記第2の補強層の前記第2の触媒層側の表面における前記樹脂の空間占有率と、が熱圧もしくは燃料電池発電中に生じる熱によっても前記第2の触媒層と前記第2の補強層とを非接合状態を維持可能な値未満である、燃料電池。
[適用例3]
 適用例2に記載の燃料電池において、前記第1、第2の触媒層及び前記第1、第2の補強層の接合前における、前記第1の触媒層の前記樹脂の空間占有率が35%以上、かつ、前記第1の補強層の前記樹脂の空間占有率が18%以上を満たし、前記第2の触媒層の前記樹脂の空間占有率が35%未満、もしくは、前記第2の補強層の前記樹脂の空間占有率が18%未満のいずれかを満たす、燃料電池。
 第1の触媒層における樹脂の空間占有率及び第1の補強層における樹脂の空間占有率について上記条件を満たすことにより、電解質膜の両面に同様の熱圧を加えたとき、あるいは、燃料電池の運転中に、第1の触媒層と第1の補強層とを所定の結合力以上の力で接合させることができる。一方、第2の触媒層と第2の補強層との接合については、所定の結合力未満の力での接合、または、結合されていない状態を維持させることができる。
 また、触媒層、補強層には樹脂が含まれているので、新たな結合材を用いなくても、触媒層及び補強層の樹脂の空間占有率を調整することで、触媒層と補強層との間の結合力を調整することができる。
[適用例4]
 適用例3に記載の燃料電池において、前記第1の触媒層の前記樹脂の空間占有率が38%以上である燃料電池。
 この条件をさらに満たすことにより、第1の触媒層と第1の補強層とをより強く接合し易い。
[適用例5]
 適用例3または適用例4に記載の燃料電池において、前記第1の補強層の前記樹脂の空間占有率が20%以上である、燃料電池。
 この条件をさらに満たすことにより、第1の触媒層と第1の補強層とをより強く接合し易い。
[適用例6]
 適用例3から適用例5のうちのいずれか一つの適用例に記載の燃料電池において、前記第1、第2の触媒層、及び前記第1、第2の補強層の樹脂の空間占有率は、フーリエ変換赤外分光 減衰全反射法を用いて算出されている、燃料電池。
 フーリエ変換赤外分光 減衰全反射法を用いれば、第1、第2の触媒層、及び第1、第2の補強層の樹脂の空間占有率を容易に算出することができる。
[適用例7]
 適用例1から適用例6のうちのいずれか一つの適用例に記載の燃料電池において、前記第1の触媒層はアノード側触媒層であり、前記第2の触媒層はカソード側触媒層である、燃料電池。
 アノード側を接合し、カソード側を非接合状態にした方が燃料電池のクロスリークの防止及び性能向上の観点から好ましい。また、発電性能に対する寄与率が高いカソード側について、所定値未満の力(電解質膜の膨張収縮による応力を逃すことが出来る力)で結合させるので、電解質膜の膨張収縮による触媒層の損傷を抑制し、燃料電池の性能低下を防止できる。
[適用例8]
 適用例1から適用例7のうちのいずれか一つの適用例に記載の燃料電池において、前記補強層は、ガス拡散層である、燃料電池。
 ガス拡散層が補強層を兼ねることが好ましい。
[適用例9]
 燃料電池の製造方法であって、(a)電解質膜を準備する工程と、(b)前記電解質膜の第1の面に、包含する樹脂の空間占有率が35%以上である第1の触媒層を形成し、第2の面に、包含する樹脂の空間占有率が所定の値である第2の触媒層を形成する工程と、(c)包含する樹脂の空間占有率が18%以上である第1のガス拡散層と、包含する樹脂の空間占有率が所定の値である第2のガス拡散層と、を準備する工程と、(d)前記第1の触媒層と前記第1のガス拡散層とを熱圧で接合し、前記第2の触媒層と前記第2のガス拡散層とを熱圧で接合する工程と、を備え、前記工程(b)(c)において、前記第2の触媒層が包含する樹脂の空間占有率が35%未満、あるいは、前記第2のガス拡散層が包含する樹脂の空間占有率が18%未満の2つの条件のうち少なくとも一方を満たしている、燃料電池の製造方法。
 この適用例によれば、第1の触媒層と第1の補強層とが接合され、第2の触媒層と第2の補強層とが接合されていない燃料電池を容易に製造することができる。
 本発明は、種々の形態で実現することが可能であり、例えば、燃料電池の他、燃料電池の製造方法等、様々な形態で実現することができる。
本実施例に掛かる燃料電池の構成を示す説明図である。 発電ユニットの膜電極接合体とガス拡散層の接合部分を拡大して示す説明図である。 触媒層とガス拡散層の表面の樹脂の空間占有率を示す説明図である。 触媒層とガス拡散層の表面の樹脂の空間占有率と触媒層-ガス拡散層の接合強度の関係を示す説明図である。 樹脂の空間占有率の測定方法を示す説明図である。 FT-IR ATR法により得られたスペクトルの一例である。 燃料電池の発電テストの各ステップを示す説明図である。 触媒層-ガス拡散層の接合強度の測定方法を示す説明図である。 電解質膜のクロスリーク量の判定結果を示す説明図である。 燃料電池の性能低下率を示す説明図である。
 図1は、本実施例に掛かる燃料電池の構成を示す説明図である。燃料電池10は、直列電池100と、集電板200、201と、絶縁板210、211と、押圧プレート220と、エンドプレート230、231と、テンションロッド240と、ナット250と、押圧バネ260と、を備える。
 直列電池100は、複数の発電ユニット110を備えている。各発電ユニット110は、それぞれが1個の単電池である。発電ユニット110は、積層されて直列に接続されており、直列電池100として高電圧を発生させる。集電板200、201は、直列電池100の両側にそれぞれ配置されており、直列電池100が発生した電圧、電流を外部に取り出すために用いられる。絶縁板210、211は、それぞれ集電板200、201のさらに外側に配置されており、集電板200、201と、他の部材、例えばエンドプレート230、231やテンションロッド240と、の間に電流が流れないように、絶縁する。エンドプレート230と押圧プレート220は、それぞれ絶縁板210、211のさらに外側に配置されている。押圧プレート220のさらに外側には、押圧バネ260が配置され、押圧バネ260のさらに外側にエンドプレート231が配置されている。エンドプレート231は、テンションロッド240とナット250により、エンドプレート230から所定の間隔となるように配置される。この場合、押圧バネ260により、押圧プレート220は、絶縁板211方向に押圧され、発電ユニット110に所定の締結力を与える。
 図2は、発電ユニットの膜電極接合体とガス拡散層の接合部分を拡大して示す説明図である。発電ユニット110は、膜電極接合体120と、カソード側ガス拡散層130と、アノード側ガス拡散層140と、を備える。
 膜電極接合体120は、電解質膜121と、カソード側触媒層122と、アノード側触媒層123と、を備える。電解質膜121は、固体高分子材料、例えばパーフルオロカーボンスルホン酸ポリマなどのフッ素系樹脂から成るプロトン伝導性のイオン交換膜である。カソード側触媒層122とアノード側触媒層123は、プロトン伝導性電解質と、電気化学反応を促進する触媒、例えば、白金触媒、あるいは白金と他の金属から成る白金合金触媒とを含んでいる。白金触媒あるいは白金合金触媒は、カーボンなどの導電性担体に担持されている。カソード側触媒層122は電解質膜121の一方の面に形成され、アノード側触媒層123は、電解質膜121の他方の面に形成されている。
 カソード側ガス拡散層130は、カソード側触媒層122に接するように配置されている。カソード側ガス拡散層130、酸化ガスを通過させるとともに、酸化ガスを拡散してカソード側触媒層122に供給するための部材である。カソード側ガス拡散層130は、カソード側触媒層122側から、マイクロポーラス層(MPL)131と、カーボン基材層132と、金属多孔体層133と、を有する。マイクロポーラス層131は、微細カーボン粉末とフッ素樹脂(ポリテトラフルオロエチレン)とを混練して形成されている。マイクロポーラス層131は、例えばカーボンクロスで形成されたカーボン基材層132に塗布されている。カーボンクロスの材料としては、例えば、ポリアクリロニトリル、ピッチ、レーヨンを採用することができる。また、カーボンクロスの他、カーボンペーパー、不織布の形状であってもよい。金属多孔体層133は、チタンなどの金属で構成された金属多孔体を用いている。なお、金属多孔体層133として、金属多孔体の代わりにエキスパンドメタルを用いてもよい。アノードについても、同様に、マイクロポーラス層(MPL)141と、カーボン基材層142と、金属多孔体層143と、を有するアノード側ガス拡散層140を備えている。ここで、カソード側のカソード側触媒層122と、マイクロポーラス層131とは、非接合状態にあり、アノード側のアノード側触媒層123と、マイクロポーラス層141とは接合状態にある。
 図3は、触媒層とガス拡散層の表面の樹脂の空間占有率を示す説明図である。カソード側については、カソード側触媒層122における樹脂の空間占有率が35%未満と、マイクロポーラス層131の樹脂の空間占有率が18%未満と、のいずれかを満たせばよい。また、アノード側については、アノード側触媒層123における樹脂の空間占有率が35%以上、且つマイクロポーラス層141の樹脂の空間占有率が18%以上を満たせばよい。なお、アノード側触媒層123における樹脂の空間占有率は、38%以上が好ましく、マイクロポーラス層141の樹脂の空間占有率は20%以上が好ましい。樹脂の空間占有率は、樹脂の空間占有率+樹脂以外の空間占有率+気孔率=100%となる関係を有している。ここで、樹脂以外の物質とは、例えば、マイクロポーラス層131、141では微細カーボン粉末であり、カソード側触媒層122、アノード側触媒層123では、触媒を担持するカーボンである。数値の根拠については、後述する。
 図4は、触媒層とガス拡散層の表面の樹脂の空間占有率と、触媒層-ガス拡散層の接合強度の関係を示す説明図である。マイクロポーラス層131を形成する微細カーボン粉末とフッ素樹脂の比率及びカーボン粒子の粒径を調整することにより、マイクロポーラス層131の表面樹脂占有率を調整することができる。例えば、微細カーボン粉末に対するフッ素樹脂の比率を上げることにより、表面樹脂占有率を上げることができる。また、カーボン基材層132に、微細カーボン粉末とフッ素樹脂(ポリテトラフルオロエチレン)とを混練したものを塗ることによりアノード側ガス拡散層130を形成する。このとき、微細カーボン粉末に対するフッ素樹脂の比率を一定とした場合、カーボン粉末の粒径を大きくするとマイクロポーラス層131形成時にフッ素樹脂がカーボン基材層132(図2)側に沈降し易いため表面樹脂占有率を下げることができ、カーボン粉末の粒径を小さくするとマイクロポーラス層131形成時にフッ素樹脂がカーボン基材層132(図2)側に沈降し難いため表面樹脂占有率を上げることができる。アノード側ガス拡散層140のマイクロポーラス層141についても同様である。
 カソード側触媒層122は、上述したように、プロトン伝導性電解質と触媒を担持した導電性担体とを含んでいる。ここで、プロトン伝導性電解質と触媒を担持した導電性担体との重量比率を変更すること、あるいは、カソード側触媒層122形成時における乾燥時間を調整することによりカソード側触媒層122の表面樹脂占有率を調整することができる。ここで、触媒層における樹脂とは、プロトン伝導性電解質のことである。導電性担体に対するプロトン伝導性電解質の比率を上げることにより、表面樹脂占有率を上げることができる。また、カソード側触媒層122形成時における乾燥を急速に行うと、樹脂が沈降する前に乾燥するので、表面樹脂占有率を上げることが出来る。逆にカソード側触媒層122形成時における乾燥をゆっくり行うと、表面樹脂占有率を下げることが出来る。アノード側触媒層123についても同様である。
 なお、上述した例は表面樹脂占有率を調整するための調整方法の一例であり、上記記載の項目を調整する他、マイクロポーラス層131、132形成時の乾燥時間、触媒層122、123の導電性担体の粒径、フッ素樹脂やプロトン伝導性電解質の長さ(分子量)等を調整することにより、表面樹脂占有率を調整することができる。
 図5は、樹脂の空間占有率の測定方法を示す説明図である。本実施例では、樹脂の空間占有率を、FT-IR ATR法を用いて算出する。FT-IR ATR法(フーリエ変換型赤外分光 減衰全反射法)では、ゲルマニウム結晶(ATR結晶)を測定対象である触媒層(例えばカソード側触媒層122)に密着させ、臨界角よりも大きな入射角θで赤外光を照射する。このとき、赤外光は、ATR結晶とカソード側触媒層122との界面で全反射するが、一部は、エバネッセント波としてカソード側触媒層122側に浸透し、カソード側触媒層122で反射される。このとき、エバネッセント波のエネルギーの一部はカソード側触媒層122により吸収されて減衰する。このときの減衰が起こる周波数により、カソード側触媒層122の構造を同定でき、減衰量の大きさから定量を行うことが出来る。本実施例では、赤外光の波長をC-F結合(炭素-フッ素結合)に由来するピークが現れる値8.30μm(波数=1206cm-1)、ゲルマニウム結晶の屈折率n1を4.00、カソード側触媒層122の屈折率n2を1.75、赤外光の入射角θを60°とすると、エバネッセント波の浸透深さdpは、440nmとなる。したがって、カソード側触媒層122の表面から440nmまでの深さの構造を同定することができる。
 図6は、FT-IR ATR法により得られたスペクトルの一例である。波数=1206cm-1(波長=8.30μm)の赤外線の吸光度は、サンプル中のC-F結合の存在量に比例する。したがって、膜全部がフッ素樹脂で構成されている標準サンプル(表面樹脂占有率を100%)のFT-IRスペクトルを測定し、波数=1206cm-18.30μmにおけるベースラインからのピーク高さh1を求める。次に、サンプルについても同様に、8.30μmにおけるベースラインからのピーク高さh2を求める。h1/h2を規格化して、サンプルの表面樹脂占有率を算出する。
 様々な触媒表面樹脂占有率を有する膜電極接合体120と、ガス拡散層130、140を準備し、表面樹脂占有率を算出した。次に、膜電極接合体120と、ガス拡散層130、140とを、温度100℃、圧力1.2MPaの熱圧で4分保持し、表面樹脂占有率と接合状態との関係を判断した。結果を図4に示す。ガス拡散層130、140の表面樹脂占有率が20%以上、且つ、触媒層122、123の表面樹脂占有率が38%以上であれば、結合強度15N/m以上の結合強度を有する。ここで、ガス拡散層130、140の表面樹脂占有率が20%以上の場合、触媒層122、123の表面樹脂占有率が35%以上であれば、結合強度10N/m以上の結合強度を有し、触媒層122、123の表面樹脂占有率が38%以上の場合、ガス拡散層130、140の表面樹脂占有率が18%以上であれば、結合強度10N/m以上の結合強度を有する。また、ガス拡散層130、140の表面樹脂占有率が18%であり、触媒層122、123の表面樹脂占有率が35%あるいは36%の場合には、温度100℃、圧力1.2MPaの熱圧で4分保持しただけでは接合しなかったが、燃料電池を図7に示す発電テストを行った後に接合強度を測定した場合には、結合強度10N/m以上の結合強度で接合していた。結合強度の測定法については、後述する。
 図7は、燃料電池の発電テストの各ステップを示す説明図である。燃料電池10(図1)を2MPaの締結圧力で締結した。反応ガスの流量を水素ガス500Ncc/min、空気を2000Ncc/min、反応ガスの温度を85℃、反応ガスの露点を80℃、背圧を水素0.04Mpa、空気0.04Mpa、冷却水温度80℃の条件で、燃料電池を発電させた。このとき、5分ごとに燃料電池から引く電流の電流密度を0.2A/cm2から、0.5、1.0、1.2、1.5A/cm2と、大きくしていった。このときの燃料電池10の温度は80℃以上であった。この2MPaの締結圧力、温度80℃以上の条件は、膜電極接合体120と、ガス拡散層130、140とを接合する熱圧の条件(1.2Mpa、100℃)に近い値であり、燃料電池10の発電テスト中に接合することが十分に期待される。
 図4に示すように、ガス拡散層130、140の表面樹脂占有率が18%未満、あるいは、触媒層122、123の表面樹脂占有率が35%未満の場合、熱圧の条件(1.2Mpa、100℃)あるいは、発電中の条件(2MPa、80℃以上)では触媒層122、123と、ガス拡散層130、140と、を接合することができなかった。一方、ガス拡散層130、140の表面樹脂占有率が18%以上、且つ、触媒層122、123の表面樹脂占有率が35%以上の場合、熱圧の条件(1.2Mpa、100℃)あるいは、発電中の条件(2MPa、80℃以上)において、触媒層122、123と、ガス拡散層130、140と、を接合することができた。さらに、ガス拡散層130、140の表面樹脂占有率が20%以上、且つ、触媒層122、123の表面樹脂占有率が35%以上の場合、熱圧の条件(1.2Mpa、100℃)で、ガス拡散層130、140と、を接合することができた。また、ガス拡散層130、140の表面樹脂占有率が18%以上、且つ、触媒層122、123の表面樹脂占有率が38%以上の場合、熱圧の条件(1.2Mpa、100℃)で、ガス拡散層130、140と、を接合することができた。さらに、ガス拡散層130、140の表面樹脂占有率が20%以上、且つ、触媒層122、123の表面樹脂占有率が38%以上の場合、熱圧の条件(1.2Mpa、100℃)で、ガス拡散層130、140と、を強く接合(15N/m)することができた。
 図8は、触媒層-ガス拡散層の接合強度の測定方法を示す説明図である。まず、膜電極接合体120とカソード側ガス拡散層130とを接合したサンプル400を15mm×15mm角の大きさに切る。このとき、膜電極接合体120からアノード側触媒層123を予め削除しておくか、あるいは、電解質膜121にカソード側触媒層122のみを形成し、アノード側触媒層123を形成しておかない状態にしておくことが好ましい。
 次に、サンプル400のガス拡散層130を、両面テープ420を用いて基板410に貼り付けて固定する。次いで、サンプル400の膜電極接合体120にテープ430を貼り付ける。島津製作所製のオートグラフ(登録商標)を用いて速度1mm/secでテープ430を引っ張り、応力-変位曲線を測定した。得られた応力-変位曲線から、膜電極接合体120とカソード側ガス拡散層130との接合強度を算出した。
 図9は、電解質膜のクロスリーク量の判定結果を示す説明図である。膜電極接合体120にカソード側ガス拡散層130とアノードガス拡散層を接合し、冷熱サイクル試験を行った。冷熱サイクル試験では、-20℃で60分保持し、次いで、70℃で30分保持した。これを800回繰り返した。そして、水素ガスのクロスリークの判定値を100nmol/(cm2×sec×atm)としてクロスリークの有無を判定した。アノードについて、アノード側ガス拡散層140と、アノード側触媒層123とが接合されていれば(図の◎、○、□)、カソード側ガス拡散層130とカソード側触媒層122との接合状態に関わらずクロスリークが生じなかった。
 図10は、燃料電池の性能低下率を示す説明図である。冷熱サイクル試験を行う前のOCVをV1、冷熱サイクル試験後のOCVをV2とし、燃料電池10の性能低下率を(V2-V1)/V1×100(%)で算出した。カソード側ガス拡散層130と、カソード側触媒層122とが接合され、かつ、アノード側ガス拡散層140と、アノード側触媒層123とが接合されている場合には、冷熱サイクル試験による性能低下率が14%以上であるのに対し、カソード側ガス拡散層130と、カソード側触媒層122との間、あるいは、アノード側ガス拡散層140と、アノード側触媒層123との間について、少なくとも一方が接合されていない場合には、冷熱サイクル試験による性能低下率は6%以下であった。
 図9、図10に示す結果から、カソード側ガス拡散層130と、カソード側触媒層122との間を接合し、アノード側ガス拡散層140と、アノード側触媒層123との間について接合しない状態にすると、冷熱サイクル試験を行っても、クロスリークが起こりにくく、性能も低下し難い。すなわち、カソード側ガス拡散層130と、カソード側触媒層122との間、及び、アノード側ガス拡散層140と、アノード側触媒層123との間について、両方を接合状態にする場合あるいは、両方を非接合状態にする場合に比べて、膜電極接合体120、すなわち燃料電池10の耐久性を向上させることができる。
 以上本実施例によれば、膜電極接合体120は、電解質膜121と、電解質膜121の両面にそれぞれ形成されるカソード側触媒層122とアノード側触媒層123と、膜電極接合体を挟持するカソード側ガス拡散層130とアノード側ガス拡散層140と、を備え、アノード側触媒層123とアノード側ガス拡散層140とが接合され、カソード側触媒層122とカソード側ガス拡散層130が接合されていないので、カソード側ガス拡散層130と、カソード側触媒層122との間、及び、アノード側ガス拡散層140と、アノード側触媒層123との間について、両方を接合状態にする場合あるいは、両方を非接合状態にする場合に比べて、膜電極接合体120、すなわち燃料電池10の耐久性を向上させることができる。
 なお、本実施例では、ガス拡散層130、140を用いたが、ガス拡散層130、140は膜電極接合体120を補強するために用いられているため、補強層を用いてもよい。
 アノード側触媒層123の樹脂の空間占有率が35%以上、かつ、アノード側ガス拡散層140の樹脂の空間占有率が18%以上を満たし、カソード側触媒層122の樹脂の空間占有率が35%未満、もしくは、カソード側ガス拡散層130の樹脂の空間占有率が18%未満のいずれかを満たすことが好ましく、より好ましくは、アノード側触媒層123の樹脂の空間占有率が38%以上、あるいは、アノード側ガス拡散層140の樹脂の空間占有率が20%以上である。
 本実施例では、電解質膜121の膨張収縮を抑制できる所定の結合力以上の力としてX[N/m]以上、電解質膜121の膨張収縮による応力を逃すことができる所定の結合力未満の力としてY[N/m]未満としたとき、X=Y=10を用いているが、電解質膜121の構成により、X、Yの値として10以外の値を採用してもよい。また、X≧Yでああれば、XとYの値は異なっていてもよい。
 以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。
  10…燃料電池
  100…直列電池
  110…発電ユニット
  120…膜電極接合体
  121…電解質膜
  122…カソード側触媒層
  123…アノード側触媒層
  130…カソード側ガス拡散層
  131…マイクロポーラス層
  132…カーボン基材層
  133…金属多孔体層
  140…アノード側ガス拡散層
  141…マイクロポーラス層
  142…カーボン基材層
  143…金属多孔体層
  200…集電板
  210…絶縁板
  220…押圧プレート
  230…エンドプレート
  231…エンドプレート
  240…テンションロッド
  250…ナット
  260…押圧バネ
  400…サンプル
  410…基板
  420…面テープ
  430…テープ

Claims (9)

  1.  燃料電池であって、
     電解質膜と、
     前記電解質膜の両面に形成される第1、第2の触媒層と、
     前記電解質膜と前記第1、第2の触媒層とを挟持する第1、第2の補強層と、
     を備え、
     前記第1の触媒層と前記第1の補強層とが電解質膜の膨張収縮を抑制できる所定の結合力以上の力で接合され、
     前記第2の触媒層と前記第2の補強層とが電解質膜の膨張収縮による応力を逃すことができる所定の結合力未満の力で接合されているか、または、前記第2の触媒層と前記第2の補強層とが接合されていない、
     燃料電池。
  2.  請求項1に記載の燃料電池において、
     前記第1、第2の触媒層及び前記第1、第2の補強層はそれぞれ樹脂を含んでおり、
     前記第1の触媒層の前記第1の補強層側の表面における前記樹脂の空間占有率と、前記第1の補強層の前記第1の触媒層側の表面における前記樹脂の空間占有率とが、熱圧もしくは燃料電池発電中に生じる熱により前記第1の触媒層と前記第1の補強層とを接合可能な値以上であり、
     前記第2の触媒層の前記第2の補強層側の表面における前記樹脂の空間占有率と、前記第2の補強層の前記第2の触媒層側の表面における前記樹脂の空間占有率と、が熱圧もしくは燃料電池発電中に生じる熱によっても前記第2の触媒層と前記第2の補強層とを非接合状態を維持可能な値未満である、燃料電池。
  3.  請求項2に記載の燃料電池において、
     前記第1、第2の触媒層及び前記第1、第2の補強層の接合前における、
     前記第1の触媒層の前記樹脂の空間占有率が35%以上、かつ、前記第1の補強層の前記樹脂の空間占有率が18%以上を満たし、
     前記第2の触媒層の前記樹脂の空間占有率が35%未満、もしくは、前記第2の補強層の前記樹脂の空間占有率が18%未満のいずれかを満たす、
     燃料電池。
  4.  請求項3に記載の燃料電池において、
     前記第1の触媒層の前記樹脂の空間占有率が38%以上である燃料電池。
  5.  請求項3または請求項4に記載の燃料電池において、
     前記第1の補強層の前記樹脂の空間占有率が20%以上である、燃料電池。
  6.  請求項3から請求項5のうちのいずれか一項に記載の燃料電池において、
     前記第1、第2の触媒層、及び前記第1、第2の補強層の樹脂の空間占有率は、フーリエ変換赤外分光 減衰全反射法を用いて算出されている、燃料電池。
  7.  請求項1から請求項6のうちのいずれか一項に記載の燃料電池において、
     前記第1の触媒層はアノード側触媒層であり、
     前記第2の触媒層はカソード側触媒層である、燃料電池。
  8.  請求項1から請求項7のうちのいずれか一項に記載の燃料電池において、
     前記補強層は、ガス拡散層である、燃料電池。
  9.  燃料電池の製造方法であって、
     (a)電解質膜を準備する工程と、
     (b)前記電解質膜の第1の面に、包含する樹脂の空間占有率が35%以上である第1の触媒層を形成し、第2の面に、包含する樹脂の空間占有率が所定の値である第2の触媒層を形成する工程と、
     (c)包含する樹脂の空間占有率が18%以上である第1のガス拡散層と、包含する樹脂の空間占有率が所定の値である第2のガス拡散層と、を準備する工程と、
     (d)前記第1の触媒層と前記第1のガス拡散層とを熱圧で接合し、前記第2の触媒層と前記第2のガス拡散層とを熱圧で接合する工程と、
     を備え、
     前記工程(b)(c)において、前記第2の触媒層が包含する樹脂の空間占有率が35%未満、あるいは、前記第2のガス拡散層が包含する樹脂の空間占有率が18%未満の2つの条件のうち少なくとも一方を満たしている、燃料電池の製造方法。
     
PCT/JP2011/003834 2010-11-04 2011-07-05 燃料電池及び燃料電池の製造方法 WO2012060029A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011103670.1T DE112011103670B4 (de) 2010-11-04 2011-07-05 Elektrolytmembran mit Verstärkungsschicht für eine Brennstoffzelle und Verfahren zum Herstellen einer Elektrolytmembran mit Verstärkungsschicht
CN201180004842.9A CN102652376B (zh) 2010-11-04 2011-07-05 燃料电池及燃料电池的制造方法
US13/504,080 US8877404B2 (en) 2010-11-04 2011-07-05 Fuel cell and method of manufacturing a fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010247491A JP5429137B2 (ja) 2010-11-04 2010-11-04 燃料電池及び燃料電池の製造方法
JP2010-247491 2010-11-04

Publications (1)

Publication Number Publication Date
WO2012060029A1 true WO2012060029A1 (ja) 2012-05-10

Family

ID=46024157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003834 WO2012060029A1 (ja) 2010-11-04 2011-07-05 燃料電池及び燃料電池の製造方法

Country Status (5)

Country Link
US (1) US8877404B2 (ja)
JP (1) JP5429137B2 (ja)
CN (1) CN102652376B (ja)
DE (1) DE112011103670B4 (ja)
WO (1) WO2012060029A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007163B2 (ja) * 2012-11-22 2016-10-12 本田技研工業株式会社 電解質膜・電極構造体
JP6163934B2 (ja) * 2013-07-18 2017-07-19 トヨタ車体株式会社 燃料電池のセパレータの製造方法
JP2021034133A (ja) * 2019-08-19 2021-03-01 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 電池及び膜電極接合体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331718A (ja) * 2005-05-24 2006-12-07 Hitachi Ltd 燃料電池
JP2008516393A (ja) * 2004-10-07 2008-05-15 ゼネラル・モーターズ・コーポレーション Pem燃料電池用のユニット化された電極集合体の製造
JP2008251290A (ja) * 2007-03-29 2008-10-16 Toyota Motor Corp 燃料電池とその製造方法
JP2009032438A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp 燃料電池用膜−電極接合体の製造方法および膜−電極接合体
JP2009170244A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 樹脂製の膜構造
JP2009238495A (ja) * 2008-03-26 2009-10-15 Toyota Motor Corp 燃料電池およびこれに用いられる膜−電極−ガス拡散層接合体
JP2010049933A (ja) * 2008-08-21 2010-03-04 Toyota Motor Corp 燃料電池の電極体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448168B1 (ko) 2001-12-27 2004-09-10 현대자동차주식회사 연료전지용 막-전극-가스켓 접합체의 제조방법
JP2007328935A (ja) * 2006-06-06 2007-12-20 Toyota Motor Corp 燃料電池に用いられる膜電極接合体、燃料電池、および、膜電極接合体の製造方法
JP2008293856A (ja) * 2007-05-25 2008-12-04 Toshiba Corp 燃料電池
JP4600500B2 (ja) 2007-11-26 2010-12-15 トヨタ自動車株式会社 燃料電池の製造方法
US8338052B2 (en) 2007-11-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Method for manufacturing a membrane-electrode assembly, with folding process
EP2254181B1 (en) * 2008-03-21 2012-10-24 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell comprising the same
JP5275070B2 (ja) 2009-02-06 2013-08-28 本田技研工業株式会社 燃料電池及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516393A (ja) * 2004-10-07 2008-05-15 ゼネラル・モーターズ・コーポレーション Pem燃料電池用のユニット化された電極集合体の製造
JP2006331718A (ja) * 2005-05-24 2006-12-07 Hitachi Ltd 燃料電池
JP2008251290A (ja) * 2007-03-29 2008-10-16 Toyota Motor Corp 燃料電池とその製造方法
JP2009032438A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp 燃料電池用膜−電極接合体の製造方法および膜−電極接合体
JP2009170244A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 樹脂製の膜構造
JP2009238495A (ja) * 2008-03-26 2009-10-15 Toyota Motor Corp 燃料電池およびこれに用いられる膜−電極−ガス拡散層接合体
JP2010049933A (ja) * 2008-08-21 2010-03-04 Toyota Motor Corp 燃料電池の電極体の製造方法

Also Published As

Publication number Publication date
JP2012099393A (ja) 2012-05-24
US20120270134A1 (en) 2012-10-25
US8877404B2 (en) 2014-11-04
DE112011103670T5 (de) 2013-08-29
CN102652376A (zh) 2012-08-29
CN102652376B (zh) 2014-12-10
DE112011103670B4 (de) 2017-09-14
JP5429137B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5107050B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
US20080318116A1 (en) Gas diffusion electrode substrate, gas diffusion electrode and process for its procution, and fuel cell
JP5987440B2 (ja) 燃料電池用微細多孔質層シート及びその製造方法
JP5397375B2 (ja) 固体高分子形燃料電池用膜電極接合体
US20120141914A1 (en) Gas Diffusion Layer Member For Solid Polymer Fuel Cells, and Solid Polymer Fuel Cell
JP2022549103A (ja) 膜電極接合体
JP5429137B2 (ja) 燃料電池及び燃料電池の製造方法
CN111837278A (zh) 固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池
JP2008300347A (ja) 電気伝導度が向上した5層meaの製造方法
US11424467B2 (en) Method for manufacturing membrane electrode assembly, and stack
US9088026B2 (en) Adhesive material for fuel cell and fuel cell
JP5413056B2 (ja) 燃料電池用冷却層およびその製造方法ならびにそれを用いた燃料電池
JP5885007B2 (ja) 燃料電池用電極シートの製造方法
CN112048248A (zh) 粘性离型膜及其制造方法
US20080248358A1 (en) Polymer electrolyte fuel cell and production method thereof
KR101877750B1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
CN113381045A (zh) 一种燃料电池膜电极及其制备方法
JP6278932B2 (ja) 燃料電池用膜−電極接合体及び固体高分子形燃料電池
JP5423108B2 (ja) 燃料電池
JP2011165359A (ja) 燃料電池に用いられる膜・電極・ガス拡散層接合体及びその製造方法
WO2013080421A1 (ja) 直接酸化型燃料電池およびこれに用いる膜触媒層接合体の製造方法
JP2012074319A (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP2009231123A (ja) 燃料電池用膜−電極接合体およびその製造方法
JP2007165260A (ja) 固体高分子型燃料電池の製造方法
JP2009032546A (ja) 膜電極接合体の製造方法と膜電極接合体および燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004842.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13504080

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111036701

Country of ref document: DE

Ref document number: 112011103670

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837685

Country of ref document: EP

Kind code of ref document: A1