WO2012057324A1 - 二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池 - Google Patents

二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池 Download PDF

Info

Publication number
WO2012057324A1
WO2012057324A1 PCT/JP2011/074947 JP2011074947W WO2012057324A1 WO 2012057324 A1 WO2012057324 A1 WO 2012057324A1 JP 2011074947 W JP2011074947 W JP 2011074947W WO 2012057324 A1 WO2012057324 A1 WO 2012057324A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
binder
porous membrane
separator
porous film
Prior art date
Application number
PCT/JP2011/074947
Other languages
English (en)
French (fr)
Inventor
琢也 石井
金田 拓也
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201180063547.0A priority Critical patent/CN103283061B/zh
Priority to KR1020137010660A priority patent/KR101927700B1/ko
Priority to US13/882,029 priority patent/US9437856B2/en
Priority to PL11836457T priority patent/PL2634839T3/pl
Priority to JP2012540962A priority patent/JP5803931B2/ja
Priority to EP11836457.9A priority patent/EP2634839B1/en
Publication of WO2012057324A1 publication Critical patent/WO2012057324A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous membrane, and more specifically, formed on the surface of an electrode or separator of a secondary battery such as a lithium ion secondary battery or a nickel hydride secondary battery, and has excellent heat resistance, flexibility and adhesion, and battery cycle.
  • the present invention relates to a porous membrane for a secondary battery that can contribute to improvement of characteristics.
  • the present invention also provides a slurry for a secondary battery porous film for forming such a porous film, an electrode for a lithium secondary battery provided with such a porous film, a separator for a lithium secondary battery, and these electrodes or separators.
  • the present invention relates to a secondary battery including either or both.
  • lithium ion secondary batteries exhibit the highest energy density, and are often used especially for small electronics. In addition to small-sized applications, development for automobiles is also expected. Among them, there is a demand for extending the life of lithium ion secondary batteries and further improving safety.
  • a lithium ion secondary battery generally includes a positive electrode and a negative electrode including an electrode mixture layer (hereinafter also referred to as an “electrode active material layer”) carried on a current collector, a separator, and a non-aqueous electrolyte. .
  • the electrode mixture layer includes an electrode active material and a binder.
  • the electrode is manufactured by applying a mixture slurry containing a powdered electrode active material on a current collector to form an electrode mixture layer.
  • a separator for separating the positive electrode and the negative electrode a very thin separator having a thickness of about 10 to 50 ⁇ m is used.
  • a polyolefin-based organic separator such as polyethylene or polypropylene is used. Since polyolefin-based organic separators have physical properties that melt at 200 ° C. or lower, when the battery becomes hotter than expected due to internal and / or external stimulation, volume changes such as shrinkage and melting occur, As a result, the positive electrode and the negative electrode may be short-circuited. Moreover, a lithium ion secondary battery is manufactured through the lamination process of an electrode and a separator, the cutting process cut
  • non-conductive particles such as inorganic particles or highly heat-resistant resin particles are placed on the polyolefin organic separator or on the electrode (positive electrode or negative electrode). It has been proposed to laminate a containing layer (porous film).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-327680
  • a porous material is applied by applying a paste containing rubber particles containing an acrylonitrile group as a binder and alumina particles, which are non-conductive inorganic oxides, as fillers. Creating a membrane.
  • the porous membrane is porous, the electrolytic solution penetrates into the porous membrane and does not inhibit the battery reaction.
  • secondary batteries are required to have higher heat resistance and longer life characteristics.
  • it is considered necessary to improve the dispersibility of the filler and to strengthen the binding property between the fillers and between the filler and the substrate.
  • the porous film described in Patent Document 1 tends to have insufficient adhesion between fillers and dispersibility of the filler, and as a result, a uniform porous film can be obtained. In some cases, a part of the filler peeled off (powders) from the porous membrane.
  • the object of the present invention is to provide a secondary battery porous membrane that is excellent in heat resistance, flexibility and adhesiveness and can contribute to improvement of the cycle characteristics of the battery, and high cycle characteristics using the porous membrane. It is in providing the secondary battery which has.
  • the present inventors have intensively studied and introduced a nonpolar linear alkylene structural unit and a monomer unit having a polar nitrile group into the polymer constituting the binder.
  • the dispersibility of the filler (non-conductive particles) in the slurry for forming the porous film is improved, and further, by introducing a monomer unit having a hydrophilic group into the polymer constituting the binder, It has been found that the adhesion between the conductive particles and between the non-conductive particles and the substrate is improved. Further, it has been found that when the iodine value of the polymer constituting the binder is 30 mg / 100 mg or less, high oxidation resistance is exhibited and cycle characteristics at high temperatures are improved. Furthermore, it has been found that by introducing an alkylene group having a chain length of a predetermined length or more, the swellability with respect to the electrolytic solution is optimized and the battery characteristics are improved.
  • the gist of the present invention completed based on the above findings is as follows.
  • the binder comprises a polymer comprising a nitrile group, a hydrophilic group, and a linear alkylene structural unit having 4 or more carbon atoms in the same molecule, and the inclusion of the nitrile group in the polymer constituting the binder
  • a secondary battery porous membrane having a ratio of 1 to 25% by mass and an iodine value of the polymer of 0 mg / 100 mg or more and 30 mg / 100 mg or less.
  • the content ratio of the nonconductive particles in the total amount of solids constituting the porous membrane is 70 to 97% by weight
  • the average particle diameter of the non-conductive particles is 0.1 to 20 ⁇ m, and the proportion of particles having an aspect ratio in the range of 3 to 100 is 50% or more of the total particles (1) to (6)
  • the secondary battery porous membrane according to any one of the above.
  • the binder comprises a polymer comprising a nitrile group, a hydrophilic group, and a linear alkylene structural unit having 4 or more carbon atoms in the same molecule, and the inclusion of the nitrile group in the polymer constituting the binder
  • a slurry for a secondary battery porous membrane having a ratio of 1 to 25% by mass and an iodine value of the polymer of 0 mg / 100 mg or more and 30 mg / 100 mg or less.
  • An electrode mixture layer comprising an electrode mixture layer binder and an electrode active material is attached to the current collector, and any of (1) to (7) is formed on the surface of the electrode mixture layer.
  • a secondary battery separator in which the porous film according to any one of (1) to (7) is laminated on an organic separator.
  • a secondary battery including a positive electrode, a negative electrode, a separator, and an electrolytic solution, wherein the porous film according to any one of (1) to (7) is laminated on at least one of the positive electrode, the negative electrode, and the separator.
  • a secondary battery porous membrane that is excellent in heat resistance, flexibility, and adhesiveness and can contribute to improvement of battery cycle characteristics. Further, the cycle characteristics and safety at a high temperature of the secondary battery using the porous film are improved. Furthermore, the slurry for a secondary battery porous film for forming the porous film has high dispersibility of non-conductive particles and is excellent in long-term storage stability.
  • the secondary battery porous membrane of the present invention (hereinafter sometimes referred to as “porous membrane”) is a porous membrane installed between the positive electrode and the negative electrode of the secondary battery, and a binder having a specific composition and And non-conductive particles.
  • the porous film can be used by being laminated on a separator or an electrode, or can be used as a separator itself.
  • binder consists of a polymer which contains a nitrile group, a hydrophilic group, and a linear alkylene structural unit in the same molecule
  • the dispersibility of the nonconductive particles in the slurry for forming the porous film is improved, and the slurry can be stored in a stable state for a long period of time. As a result, a uniform porous film can be easily manufactured. Moreover, since the lithium ion conductivity is good, the internal resistance in the battery can be reduced, and the output characteristics of the battery can be improved.
  • the content ratio of the nitrile group in the polymer constituting the binder is 1 to 25% by mass, preferably 5 to 25% by mass, and more preferably 9 to 25% by mass.
  • the hydrophilic group means a functional group that liberates protons in an aqueous solvent and a salt in which the proton is substituted with a cation, and specifically includes a carboxylic acid group, a sulfonic acid group, and phosphoric acid. Groups, hydroxyl groups and salts thereof.
  • Adhesion between non-conductive particles and between the non-conductive particles and the substrate is improved by introducing a hydrophilic group into the polymer constituting the binder, and the non-conductive particles in the production process of the porous film are improved. Stripping (powder falling) can be reduced.
  • the content ratio of the hydrophilic group in the polymer constituting the binder is preferably 0.05 to 10% by mass, more preferably 0.1 to 8% by mass, and particularly preferably 1 to 6% by mass. .
  • the linear alkylene structural unit has 4 or more carbon atoms, preferably 4 to 16, more preferably 4 to 12.
  • non-polar linear alkylene structural units By introducing non-polar linear alkylene structural units into the polymer constituting the binder, the dispersibility of the non-conductive particles in the slurry for forming the porous film is improved, and the slurry is stable for a long time. Can be saved. As a result, a uniform porous film can be easily manufactured. Moreover, by introducing a linear alkylene structural unit having a chain length of a predetermined length or more, the swellability of the porous membrane with respect to the electrolytic solution is optimized, and the battery characteristics are improved.
  • the content of the linear alkylene structural unit in the polymer constituting the binder is preferably 50 to 98% by mass, more preferably 50 to 80% by mass, and particularly preferably 50 to 70% by mass.
  • the content ratio of the linear alkylene structural unit is obtained by determining the amount of 1,2-addition bond of butadiene in the copolymer before hydrogenation by NMR. And the iodine value of the copolymer after hydrogenation.
  • the iodine value of the polymer constituting the binder is 0 mg / 100 mg or more and 30 mg / 100 mg or less, preferably 20 mg / 100 mg or less, more preferably 10 mg / 100 mg or less.
  • the iodine value exceeds 30 mg / 100 mg, the stability at the oxidation potential is low due to the unsaturated bond contained in the polymer, and the high-temperature cycle characteristics of the battery are inferior.
  • the minimum of an iodine value is 0 mg / 100 mg or more, Preferably it exceeds 0 mg / 100 mg, More preferably, it is 3 mg / 100 mg or more, More preferably, it is 5 mg / 100 mg or more.
  • the weight average molecular weight in terms of polystyrene by gel permeation chromatography of the polymer used in the present invention is preferably 10,000 to 700,000, more preferably 50,000 to 500,000, particularly preferably 100,000. ⁇ 300,000.
  • the porous membrane can be made flexible, and further, the viscosity can be adjusted to be easily applied during the production of the slurry composition.
  • the polymer constituting the binder contains a nitrile group, a hydrophilic group, and a linear alkylene structural unit in the same molecule.
  • a polymer polymerizes a monomer that leads to a monomer unit having a nitrile group, a monomer that leads to a monomer unit having a hydrophilic group, and a monomer that leads to a linear alkylene structural unit. Obtained.
  • the linear alkylene structural unit can be formed by obtaining a polymer having a structural unit having an unsaturated bond and then hydrogenating it.
  • Examples of the monomer unit having a nitrile group include an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group.
  • acrylonitrile For example, acrylonitrile; ⁇ -halogenoacrylonitrile such as ⁇ -chloroacrylonitrile and ⁇ -bromoacrylonitrile; ⁇ -alkylacrylonitrile such as methacrylonitrile; Among these, acrylonitrile and methacrylonitrile are preferable. These can be used individually by 1 type or in combination of multiple types.
  • the introduction of the hydrophilic group is performed by polymerizing a monomer containing a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a hydroxyl group, and a salt thereof.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acid and derivatives thereof, dicarboxylic acid, and derivatives thereof.
  • Examples of monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid, and the like.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Dicarboxylic acid derivatives include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid and the like methyl allyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, And maleate esters such as octadecyl maleate and fluoroalkyl maleate.
  • An acid anhydride that generates a carboxyl group by hydrolysis is also used.
  • dicarboxylic acid anhydrides include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • Examples of monomers having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • Examples of the monomer having a phosphate group include 2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl, and the like. .
  • Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol and 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid-2 Ethylenic acid such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, di-2-hydroxypropyl itaconate Alkanol esters of unsaturated carboxylic acids; general formula CH 2 ⁇ CR 1 —COO— (C n H 2n O) m —H (m is an integer from 2 to 9, n is an integer from 2 to 4, R 1 is hydrogen Or an ester of a polyalkylene glycol represented by (meth) acrylic acid represented by 2-hydro; Mono (meth) acrylic acid esters of dihydroxy esters of dicarboxylic acids such as cyethyl
  • the hydrophilic group is preferably a carboxylic acid group or a sulfonic acid group because it has excellent adhesion to the electrode active material layer or separator described later, and in particular, a transition metal that may be eluted from the positive electrode active material
  • a carboxylic acid group is preferred for the reason of efficiently capturing ions. Therefore, as the monomer having a hydrophilic group, among the above, monocarboxylic acids having 5 or less carbon atoms having carboxylic acid groups such as acrylic acid and methacrylic acid, and carboxylic acid groups such as maleic acid and itaconic acid are used. Two dicarboxylic acids having 5 or less carbon atoms are preferred. Furthermore, acrylic acid and methacrylic acid are preferable from the viewpoint that the prepared slurry has high storage stability.
  • the method for introducing the linear alkylene structural unit into the polymer is not particularly limited, but a method of hydrogenating the conjugated diene monomer unit after introducing it is simple and preferable.
  • the conjugated diene monomer forming the conjugated diene monomer unit is preferably a conjugated diene having 4 or more carbon atoms, such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadisubstituted ene. 1,3-pentadiene and the like. Of these, 1,3-butadiene is preferred. These can be used individually by 1 type or in combination of multiple types.
  • the polymer used in the present invention may contain other monomer units copolymerizable with the monomers forming these monomer units.
  • the content ratio of such other monomer units is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less with respect to the total monomer units.
  • Examples of such other copolymerizable monomers include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene; fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethyl styrene, pentafluoro Fluorine-containing vinyl compounds such as vinyl benzoate, difluoroethylene and tetrafluoroethylene; Non-conjugated diene compounds such as 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene and dicyclopentadiene; ethylene, propylene, 1-butene, ⁇ -olefin compounds such as 4-methyl-1-pentene, 1-hexene, 1-octene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2- (meth) acrylate 2- ⁇ , such as ethyl
  • the polymer constituting the binder used in the present invention may contain a monomer copolymerizable with these in addition to the monomer component described above.
  • Monomers copolymerizable with these include halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate and vinyl butyrate; methyl vinyl ether, ethyl vinyl ether, butyl vinyl Vinyl ethers such as ether; vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; heterocyclic-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole; Can be mentioned.
  • the binder having the above-described structure can be obtained.
  • the binder used in the present invention is used in the state of a dispersion or a solution in which the polymer is dispersed in a dispersion medium (water or an organic solvent). (Hereinafter, these may be collectively referred to as “binder dispersion”).
  • a dispersion medium water or an organic solvent
  • an organic solvent such as N-methylpyrrolidone (NMP) is used.
  • the average particle size (dispersed particle size) of the binder dispersed in the form of particles is preferably 50 to 500 nm, more preferably 70 to 400 nm, and most preferably. 100 to 250 nm.
  • the average particle size of the binder is within this range, the strength and flexibility of the obtained electrode are improved.
  • the solid content concentration of the dispersion is usually 15 to 70% by mass, preferably 20 to 65% by mass, and more preferably 30 to 60% by mass.
  • the solid content concentration is in this range, workability in producing a slurry for a porous film, which will be described later, is good.
  • the glass transition temperature (Tg) of the binder used in the present invention is preferably ⁇ 50 to 25 ° C., more preferably ⁇ 45 to 15 ° C., and particularly preferably ⁇ 40 to 5 ° C.
  • Tg of the binder is in the above range, since the porous film of the present invention has excellent strength and flexibility, the output characteristics of a secondary battery using the porous film can be improved.
  • the glass transition temperature of the binder can be adjusted by combining various monomers.
  • the production method of the polymer which is a binder used in the present invention is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization reaction any reaction such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • Organic peroxides, azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
  • the method of hydrogenation is not particularly limited, and a normal method can be used.
  • a hydrogenation catalyst such as Raney nickel, a titanocene compound, or an aluminum-supported nickel catalyst, Good.
  • a hydrogenation catalyst such as palladium acetate is added to the polymerization reaction solution to bring it into contact with hydrogen gas in an aqueous emulsion state. Can also be reacted.
  • the iodine value of the polymer containing a polymer unit derived from the conjugated diene monomer used in the present invention can be set to the above-described range.
  • the polymer as a binder used in the present invention is preferably a hydrogenated acrylonitrile-butadiene copolymer having a hydrophilic group (hereinafter sometimes referred to as “hydrogenated NBR”).
  • a method of carrying out hydrogenation in two or more stages is particularly preferable. Even when the same amount of hydrogenation catalyst is used, the hydrogenation efficiency can be increased by carrying out the hydrogenation in two or more stages. That is, when the polymerization unit derived from the conjugated diene monomer is added to the linear alkylene structural unit, the iodine value can be further reduced.
  • hydrogenation rate hydrogenation rate (hydrogenation rate) (%) in the first stage. That is, when the numerical value obtained by the following formula is the hydrogenation rate (%), this numerical value is preferably 50% or more, and more preferably 70% or more.
  • Hydrogenation rate (hydrogenation rate) (%) 100 ⁇ (carbon-carbon double bond amount before hydrogenation-carbon-carbon double bond amount after hydrogenation) / (carbon-carbon double bond amount before hydrogenation)
  • the amount of carbon-carbon double bond can be analyzed using NMR.
  • the hydrogenation catalyst is a hydrogenation catalyst containing a platinum group element (ruthenium, rhodium, palladium, osmium, iridium or platinum).
  • a platinum group element ruthenium, rhodium, palladium, osmium, iridium or platinum.
  • a palladium compound and a rhodium compound are preferable from the viewpoint of catalytic activity and availability, and a palladium compound is more preferable.
  • Two or more platinum group element compounds may be used in combination, but in this case as well, it is preferable to use a palladium compound as the main catalyst component.
  • palladium salts of carboxylic acids such as formic acid, acetic acid, propionic acid, lauric acid, succinic acid, oleic acid, stearic acid, phthalic acid, benzoic acid; palladium chloride, dichloro (cyclooctadiene) palladium, dichloro (Norbornadiene) palladium, dichloro (benzonitrile) palladium, dichlorobis (triphenylphosphine) palladium, hexachloropalladium (IV) ammonium ammonium and other chlorinated products; iodinated products such as palladium iodide; palladium sulfate dihydrate, etc. Can be mentioned.
  • carboxylic acids such as formic acid, acetic acid, propionic acid, lauric acid, succinic acid, oleic acid, stearic acid, phthalic acid, benzoic acid
  • palladium chloride dichloro (cyclooc
  • the amount of the hydrogenation catalyst used may be appropriately determined, but is preferably 5 to 6,000 ppm, more preferably 10 to 4,000 ppm per weight of the polymer.
  • the reaction temperature at the time of hydrogenation is 0 to 300 ° C, preferably 20 to 150 ° C.
  • the hydrogen pressure is 0.1 to 30 MPa, preferably 0.5 to 20 MPa, more preferably 1 to 10 MPa.
  • the reaction time for hydrogenation is selected in consideration of the reaction temperature, hydrogen pressure, target hydrogenation rate, etc., but is preferably 1 to 10 hours.
  • the hydrogenation catalyst in the dispersion is removed.
  • an adsorbent such as activated carbon or ion exchange resin can be added to adsorb the hydrogenation catalyst with stirring, and then the latex can be filtered or centrifuged. It is also possible to leave it in the latex without removing the hydrogenation catalyst.
  • the binder used in the present invention is preferably obtained through a particulate metal removal step of removing particulate metals contained in the binder dispersion in the binder production step.
  • the content of the particulate metal component contained in the binder is 10 ppm or less, it is possible to prevent metal ion cross-linking over time between the polymers in the porous film slurry described later, and to prevent an increase in viscosity. Furthermore, there is little concern about self-discharge increase due to internal short circuit of the secondary battery or dissolution / precipitation during charging, and the cycle characteristics and safety of the battery are improved.
  • the method for removing the particulate metal component from the binder dispersion in the particulate metal removal step is not particularly limited.
  • a method of removing by magnetic force is preferable.
  • the method for removing by magnetic force is not particularly limited as long as it is a method capable of removing a metal component, but in consideration of productivity and removal efficiency, it is preferably performed by arranging a magnetic filter in the production line of the binder.
  • the dispersant used in the above polymerization method may be one used in ordinary synthesis, and specific examples include sodium dodecylbenzenesulfonate, sodium dodecylphenylethersulfonate, and the like.
  • Benzene sulfonates alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecyl sulfate; sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dihexyl sulfosuccinate; fatty acid salts such as sodium laurate; sodium polyoxyethylene lauryl ether sulfate Salts, ethoxy sulfate salts such as polyoxyethylene nonyl phenyl ether sulfate sodium salt; alkane sulfonate salts; alkyl ether phosphate sodium salts; Nonionic emulsifiers such as oxyethylene nonylphenyl ether, polyoxyethylene sorbitan lauryl ester, polyoxyethylene-polyoxypropylene block copolymer; gelatin, maleic anhydride-styrene copolymer, polyvinylpyrrolidone
  • benzenesulfonates such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate
  • alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecylsulfate
  • oxidation resistance is more preferable.
  • it is a benzenesulfonate such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate.
  • the addition amount of the dispersing agent can be arbitrarily set, and is usually about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total monomer.
  • the pH when the binder used in the present invention is dispersed in the dispersion medium is preferably 5 to 13, more preferably 5 to 12, and most preferably 10 to 12.
  • the pH of the binder is in the above range, the storage stability of the binder is improved, and further, the mechanical stability is improved.
  • PH adjusting agents for adjusting the pH of the binder include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal oxides such as calcium hydroxide, magnesium hydroxide and barium hydroxide, Hydroxides such as hydroxides of metals belonging to Group IIIA in a long periodic table such as aluminum hydroxide; carbonates such as alkali metal carbonates such as sodium carbonate and potassium carbonate, alkaline earth metal carbonates such as magnesium carbonate
  • organic amines include alkylamines such as ethylamine, diethylamine and propylamine; alcohol amines such as monomethanolamine, monoethanolamine and monopropanolamine; ammonia such as ammonia water; Can be mentioned.
  • alkali metal hydroxides are preferable from the viewpoints of binding properties and operability, and sodium hydroxide, potassium hydroxide, and lithium hydroxide are particularly preferable.
  • the content ratio of the binder in the porous film is preferably 0.5 to 15% by mass, more preferably 5 to 15% by mass, and particularly preferably 8 to 15% by mass.
  • the content ratio of the binder in the porous film is in the above range, non-conductive particles described later are prevented from detaching (pouring) from the porous film of the present invention, and the flexibility of the porous film is improved. Therefore, the cycle characteristics of the secondary battery using the porous film can be improved.
  • Non-conductive particles It is desired that the non-conductive particles used in the present invention exist stably in a use environment of a secondary battery (such as a lithium ion secondary battery or a nickel hydride secondary battery) and are electrochemically stable.
  • a secondary battery such as a lithium ion secondary battery or a nickel hydride secondary battery
  • various inorganic particles and organic particles can be used.
  • Organic particles are preferable from the viewpoint of producing particles with less metal contamination (hereinafter sometimes referred to as “metal foreign matter”) that adversely affect battery performance at low cost.
  • inorganic particles include oxide particles such as aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, BaTiO 2 , ZrO, and alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; silicone and diamond Covalent crystal particles; poorly soluble ion crystal particles such as barium sulfate, calcium fluoride, and barium fluoride; clay fine particles such as talc and montmorillonite are used. These particles may be subjected to element substitution, surface treatment, solid solution, or the like, if necessary, or may be a single or a combination of two or more. Among these, oxide particles are preferable from the viewpoints of stability in an electrolytic solution and potential stability.
  • Organic particles include cross-linked polymethyl methacrylate, cross-linked polystyrene, cross-linked polydivinylbenzene, cross-linked styrene-divinylbenzene copolymer, polyimide, polyamide, polyamideimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensate, etc.
  • Examples thereof include crosslinked polymer particles, heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, and thermoplastic polyimide.
  • the organic resin (polymer) constituting these organic particles is a mixture, modified body, derivative, or copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) of the materials exemplified above. Polymer) or a crosslinked product (in the case of the above-mentioned heat-resistant polymer).
  • non-electrically conductive material such as carbon black, graphite, SnO 2 , ITO, metal powder and fine powders of conductive compounds and oxides
  • electrical insulation is achieved. It is also possible to use it with a certain character.
  • non-electrically conductive particles may be used in combination of two or more.
  • non-conductive particles having a metal foreign matter content of 100 ppm or less.
  • the metal foreign matter or metal ion is eluted, which causes ionic crosslinking with the polymer in the slurry for porous film,
  • the slurry for the porous film is aggregated, and as a result, the porosity of the porous film is lowered. Therefore, there is a possibility that the rate characteristic (output characteristic) of the secondary battery using the porous film is deteriorated.
  • the metal it is most preferable to contain Fe, Ni, Cr and the like which are particularly easily ionized.
  • the metal content in the non-conductive particles is preferably 100 ppm or less, more preferably 50 ppm or less.
  • the term “metal foreign matter” as used herein means a simple metal other than non-conductive particles.
  • the content of the metal foreign matter in the non-conductive particles can be measured using ICP (Inductively Coupled Plasma).
  • the volume average particle diameter (D50, hereinafter sometimes referred to as “50% volume cumulative diameter”) of the non-conductive particles used in the present invention is preferably 5 nm to 10 ⁇ m, more preferably 10 nm to 5 ⁇ m, and particularly preferably. 100 nm to 2 ⁇ m.
  • the BET specific surface area of the non-conductive particles used in the present invention is specifically 0.9 to 0.9 from the viewpoint of suppressing aggregation of the non-conductive particles and optimizing the fluidity of the slurry for a porous film described later.
  • 200 m 2 / g is preferable, and 1.5 to 150 m 2 / g is more preferable.
  • the non-conductive particles are organic particles
  • the organic particles have high heat resistance from the viewpoint of imparting heat resistance to the porous film and improving the stability of the secondary battery.
  • the temperature at which 10% by weight is reduced when heated at a heating rate of 10 ° C./min in thermobalance analysis is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and particularly preferably 350 ° C. or higher.
  • the upper limit of the temperature is not particularly limited, but can be, for example, 450 ° C. or less.
  • the particle size distribution (CV value) of the non-conductive particles is preferably 0.5 to 40%, more preferably 0.5 to 30%, and particularly preferably 0.5 to 20%. By setting the particle size distribution of the non-conductive particles within the above range, a predetermined gap can be maintained between the non-conductive particles, so that the lithium migration is inhibited and the resistance is increased in the secondary battery of the present invention. This can be suppressed.
  • the particle size distribution (CV value) of the non-conductive particles is obtained by observing the non-conductive particles with an electron microscope, measuring the particle size of 200 or more particles, and obtaining the average particle size and the standard deviation of the particle size. , (Standard deviation of particle diameter) / (average particle diameter). It means that the larger the CV value, the larger the variation in particle diameter.
  • the shape of the non-conductive particles used in the present invention is not particularly limited, such as a spherical shape, a needle shape, a rod shape, a spindle shape, a plate shape, and a scale shape, but a spherical shape, a needle shape, a spindle shape, a plate shape, and a scale shape are preferable.
  • porous particles can also be used as the non-conductive particles.
  • the impact resistance and long-term life characteristics of the battery may be improved by using plate-like non-conductive particles or scale-like non-conductive particles.
  • the general material and physical properties of the plate-like non-conductive particles or the scale-like non-conductive particles are the same as those of the above-described non-conductive particles.
  • the average particle diameter of the plate-like non-conductive particles or the flaky non-conductive particles is in the range of 0.1 to 20 ⁇ m, preferably 0.2 to 15 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the average particle diameter of the non-conductive particles is in the above range, it becomes easy to control the dispersion state of the slurry for the porous film, so that it is easy to produce a porous film having a uniform predetermined thickness.
  • the adhesiveness with the binder is improved, and even when the porous film is wound, non-conductive particles are prevented from being peeled off, and sufficient safety can be achieved even if the porous film is thinned.
  • the porous membrane of the present invention can be formed thin.
  • the average particle diameter of the plate-like non-conductive particles or the scale-like non-conductive particles is arbitrarily selected from 50 SEM (scanning electron microscope) images in an arbitrary field of view, and image analysis is performed. The average equivalent circle diameter of each particle was determined.
  • the proportion of particles having an aspect ratio in the range of 3 to 100 is 50% or more of the total number of particles on a number basis, and preferably the proportion of particles having an aspect ratio in the range of 5 to 80 It is 50% or more of all particles on the number basis, and more preferably, the proportion of particles having an aspect ratio in the range of 10 to 60 is 50% or more of all particles on the number basis.
  • the aspect ratio of the plate-like non-conductive particles or the scale-like non-conductive particles is the same as the average particle diameter described above.
  • SEM Sccanning Electron Microscope
  • the plate-like non-conductive particles or the scale-like non-conductive particles are preferably oriented in the porous film so that the non-conductive particles are substantially parallel to the plane of the porous film.
  • the occurrence of a short circuit of the battery can be suppressed more favorably.
  • the non-conductive particles are oriented as described above so that the non-conductive particles are arranged to overlap each other on a part of the flat plate surface.
  • Hole is considered to be formed in a curved shape rather than a straight line (ie, the curvature is increased), which can prevent lithium dendrite from penetrating the porous membrane and better occurrence of short circuits. It is presumed that it will be suppressed.
  • the plate-like non-conductive particles or the scale-like non-conductive particles various inorganic particles and organic particles as described above can be used.
  • Examples of the plate-like particles or scale-like particles that are preferably used include various commercially available products such as “Sun Green” (SiO 2 ) manufactured by Asahi Glass S-Tech Co., Ltd., and “NST-B1” pulverized products (TiO 2 manufactured by Ishihara Sangyo Co., Ltd.). 2 ) Plated barium sulfate “H series” and “HL series” manufactured by Sakai Chemical Industry Co., Ltd. “Micron White” (talc) manufactured by Hayashi Kasei Co., Ltd. “Bengel” (bentonite) manufactured by Hayashi Kasei Co., Ltd., manufactured by Kawai Lime Co., Ltd.
  • the proportion of particles having an aspect ratio in the range of 3 to 100 is 50% or more based on the number of all particles.
  • the shape of other non-conductive particles that may be contained in a proportion of less than 50% is not particularly limited, may be spherical, and may be particles having an aspect ratio of less than 3 or more than 100.
  • Other non-conductive particles may be inorganic particles or organic particles. When inorganic particles are used as non-conductive particles having an aspect ratio of 3 to 100, other non-conductive particles are also preferably inorganic particles. Similarly, non-conductive particles having an aspect ratio of 3 to 100 are used. In the case of using organic particles, other non-conductive particles are also preferably organic particles. Specific examples of inorganic particles and organic particles that can be used as other non-conductive particles are the same as those of the non-conductive particles except for the aspect ratio.
  • the content of non-conductive particles in the porous film is preferably 70 to 97% by mass, more preferably 75 to 97% by mass, and particularly preferably 80 to 97% by mass.
  • the porous membrane of the present invention may contain an isothiazoline-based compound.
  • an isothiazoline-based compound By containing an isothiazoline-based compound, it is possible to suppress the growth of fungi, so it is possible to prevent the generation of off-flavors and thickening of the slurry in the porous membrane slurry for forming the porous membrane, and long-term storage Excellent stability.
  • the chelate compound may be contained in the porous membrane of the present invention.
  • a chelate compound By adding a chelate compound, it is possible to capture transition metal ions that elute in the electrolyte during charge / discharge of a secondary battery using a porous membrane. A decrease in safety can be prevented.
  • the porous film may contain a pyrithione compound. Since pyrithione compounds are stable even when alkaline, they can be used in combination with isothiazoline-based compounds to extend the antiseptic performance effect even under alkaline conditions and to obtain a high antibacterial effect due to a synergistic effect.
  • the porous membrane slurry may further contain an optional component.
  • optional components include components such as a dispersant, a leveling agent, an antioxidant, a binder other than the above binder, a thickener, an antifoaming agent, and an electrolytic solution additive having a function of inhibiting decomposition of the electrolytic solution. Can be mentioned. These are not particularly limited as long as they do not affect the battery reaction.
  • dispersant examples include anionic compounds, cationic compounds, nonionic compounds, and polymer compounds.
  • a dispersing agent is selected according to the nonelectroconductive particle to be used.
  • the content ratio of the dispersing agent in the porous film is preferably within a range that does not affect the battery characteristics, and specifically 10% by weight or less.
  • leveling agents include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, repelling that occurs when the slurry for porous membrane of the present invention is applied to a predetermined substrate can be prevented, and the smoothness of the electrode can be improved.
  • surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • antioxidants examples include a phenol compound, a hydroquinone compound, an organic phosphorus compound, a sulfur compound, a phenylenediamine compound, and a polymer type phenol compound.
  • the polymer type phenol compound is a polymer having a phenol structure in the molecule, and a polymer type phenol compound having a weight average molecular weight of 200 to 1000, preferably 600 to 700 is preferably used.
  • binders other than the binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyacrylic acid derivatives, polyacrylonitrile derivatives, and soft polymers used in electrode binders described later. Can be used.
  • thickeners include cellulosic polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof; ) Polyvinyl alcohols such as polyvinyl alcohol, copolymers of acrylic acid or acrylate and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified Examples thereof include polyacrylic acid, oxidized starch, phosphoric acid starch, casein, various modified starches, acrylonitrile-butadiene copolymer hydride, and the like.
  • cellulosic polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salt
  • (modified) poly means “unmodified poly” or “modified poly”
  • (meth) acryl means “acryl” or “methacryl”.
  • antifoaming agent metal soaps, polysiloxanes, polyethers, higher alcohols, perfluoroalkyls and the like are used. By mixing the antifoaming agent, the defoaming step of the binder can be shortened.
  • the electrolytic solution additive vinylene carbonate used in a mixture slurry and an electrolytic solution described later can be used. By mixing the electrolyte additive, the cycle life of the battery is excellent.
  • nanoparticles such as fumed silica and fumed alumina.
  • the thixotropy of the slurry for forming a porous film can be controlled, and the leveling property of the porous film obtained thereby can be improved.
  • the content ratio of the optional component in the porous film is preferably within a range that does not affect the battery characteristics. Specifically, each component is 10% by weight or less, and the total content of the optional components is 40% by weight. Below, more preferably 20% by weight or less. However, if the total of the non-conductive particles, the predetermined binder, and optional components (excluding the binder) is less than 100% by weight, the content of the binder as an optional component is increased appropriately. May be.
  • the porous membrane of the present invention comprises a slurry for a secondary battery porous membrane (slurry for porous membrane) comprising the binder, non-conductive particles, components added as necessary, and an appropriate dispersion medium. It is obtained by applying and drying on a predetermined substrate.
  • the slurry for a porous membrane of the present invention is a slurry for forming the above-mentioned secondary battery porous membrane, and is uniformly dispersed in the binder, non-conductive particles, and a dispersion medium described later as a solid content.
  • the dispersion medium is not particularly limited as long as it can uniformly disperse solid contents (binder, non-conductive particles, and optional components).
  • Either water or an organic solvent can be used as the dispersion medium used in the slurry for the porous membrane.
  • organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; ketones such as acetone, ethylmethylketone, diisopropylketone, cyclohexanone, methylcyclohexane, and ethylcyclohexane.
  • Chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; Esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; Acylonitriles such as acetonitrile and propionitrile; Tetrahydrofuran, Ethers such as ethylene glycol diethyl ether: alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; N-methyl Amides such as lupyrrolidone and N, N-dimethylformamide are exemplified.
  • These dispersion media may be used alone or in combination of two or more as a mixed solvent.
  • a dispersion medium having excellent dispersibility of non-conductive particles and having a low boiling point and high volatility is preferable because it can be removed at a low temperature in a short time.
  • acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, water, N-methylpyrrolidone, or a mixed solvent thereof is preferable.
  • the solid content concentration of the slurry for the porous membrane is not particularly limited as long as the slurry can be applied and immersed, and has a fluid viscosity, but is generally about 10 to 50% by weight.
  • Components other than the solid content are components that volatilize in the drying step, and include, in addition to the solvent, for example, a medium in which these are dissolved or dispersed during preparation and addition of non-conductive particles and a binder.
  • the slurry for porous film of the present invention is for forming the porous film of the present invention
  • the content ratio of the binder and non-conductive particles in the total solid content of the slurry for porous film is naturally
  • the porous membrane of the invention is as described above. That is, the content of the binder is preferably 0.5 to 15% by mass, and the content of the non-conductive particles is preferably 70 to 97% by mass.
  • the method for producing the slurry for the porous membrane is not particularly limited, and can be obtained by mixing the above binder, non-conductive particles, dispersion medium, and optional components added as necessary.
  • the mixing device is not particularly limited as long as it can uniformly mix the above components, and a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and the like can be used.
  • a high dispersion apparatus such as a bead mill, a roll mill, or a fill mix that can add a high dispersion share.
  • the viscosity of the slurry for the porous membrane is preferably 10 to 10,000 mPa ⁇ s, more preferably 50 to 500 mPa ⁇ s, from the viewpoints of uniform coatability and slurry aging stability.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • a slurry for a porous film containing the binder, non-conductive particles, the optional components and the dispersion medium is applied on a predetermined substrate (positive electrode, negative electrode or separator).
  • III) Peeling the porous film slurry A method of coating and forming a film on a film, and transferring the obtained porous film onto a predetermined substrate (positive electrode, negative electrode or separator).
  • the method of applying the slurry for porous film to a substrate (positive electrode, negative electrode or separator) and then drying is most preferable because the film thickness of the porous film can be easily controlled.
  • the porous membrane of the present invention is manufactured by the methods (I) to (III) described above, and the detailed manufacturing method will be described below.
  • the porous film of the present invention is produced by applying the slurry for the porous film onto a predetermined substrate (positive electrode, negative electrode or separator) and drying.
  • the method for applying the slurry onto the substrate is not particularly limited, and examples thereof include a doctor blade method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the gravure method is preferable in that a uniform porous film can be obtained.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying temperature can vary depending on the type of solvent used. In order to completely remove the solvent, for example, when a low-volatility solvent such as N-methylpyrrolidone is used, it is preferably dried at a high temperature of 120 ° C. or higher with a blower-type dryer. Conversely, when a highly volatile solvent is used, it can be dried at a low temperature of 100 ° C. or lower. When the porous film is formed on the separator to be described later, it is necessary to dry the separator without causing shrinkage of the separator. Therefore, drying at a low temperature of 100 ° C. or lower is preferable.
  • the porous film of the present invention is produced by immersing the slurry for porous film in a base material (positive electrode, negative electrode or separator) and drying it.
  • the method for immersing the slurry in the substrate is not particularly limited, and for example, the slurry can be immersed by dip coating with a dip coater or the like.
  • Examples of the drying method include the same methods as the drying method in the method (I) described above.
  • the slurry for the porous film is applied on the release film and formed into a film to produce the porous film formed on the release film.
  • the porous film of this invention is manufactured by transcribe
  • the transfer method is not particularly limited.
  • the porous film obtained by the methods (I) to (III) is then subjected to pressure treatment using a die press or a roll press, if necessary, and a substrate (positive electrode, negative electrode or separator) and porous film It is also possible to improve the adhesion. However, at this time, if the pressure treatment is excessively performed, the porosity of the porous film may be impaired, so the pressure and the pressure time are controlled appropriately.
  • the film thickness of the porous film is not particularly limited and is appropriately set according to the use or application field of the porous film. However, if the film is too thin, a uniform film cannot be formed. Since the capacity per volume (weight) decreases, 0.5 to 50 ⁇ m is preferable, and 0.5 to 10 ⁇ m is more preferable.
  • the porous film of the present invention is formed on the surface of a substrate (positive electrode, negative electrode or separator) and is particularly preferably used as a protective film or separator for an electrode active material layer described later.
  • the porous film of the present invention may be formed on any surface of the positive electrode, negative electrode or separator of the secondary battery, or may be formed on all of the positive electrode, negative electrode and separator.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the porous film described above is laminated on any of the positive electrode, the negative electrode, and the separator.
  • Secondary batteries include lithium ion secondary batteries and nickel metal hydride secondary batteries, etc., but safety improvement is most demanded and the effect of introducing a porous film is the highest, and in addition, improvement of rate characteristics is cited as an issue Therefore, a lithium ion secondary battery is preferable. Hereinafter, the case where it uses for a lithium ion secondary battery is demonstrated.
  • the positive electrode and the negative electrode are generally formed by attaching an electrode active material layer containing an electrode active material as an essential component to a current collector.
  • the electrode active material used for the electrode for the lithium ion secondary battery is not particularly limited as long as it can reversibly insert and release lithium ions by applying a potential in the electrolyte, and can be an inorganic compound or an organic compound.
  • Electrode active materials (positive electrode active materials) for lithium ion secondary battery positive electrodes are broadly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • As the transition metal Fe, Co, Ni, Mn and the like are used.
  • the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
  • the positive electrode active material made of an organic compound for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
  • An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
  • the positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound.
  • the particle diameter of the positive electrode active material is appropriately selected in consideration of the arbitrary constituent requirements of the battery. From the viewpoint of improving battery characteristics such as rate characteristics and cycle characteristics, the 50% volume cumulative diameter is usually 0.1. It is ⁇ 50 ⁇ m, preferably 1 to 20 ⁇ m. When the 50% volume cumulative diameter is in this range, a secondary battery having a large charge / discharge capacity can be obtained, and handling when producing a mixture slurry and an electrode described later is easy.
  • the 50% volume cumulative diameter can be determined by measuring the particle size distribution by laser diffraction.
  • Examples of electrode active materials (negative electrode active materials) for negative electrodes of lithium ion secondary batteries include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, pitch-based carbon fibers, and high conductivity such as polyacene. Molecular compounds and the like.
  • carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, pitch-based carbon fibers, and high conductivity such as polyacene. Molecular compounds and the like.
  • metals such as silicon, tin, zinc, manganese, iron, nickel, alloys thereof, oxides or sulfates of the metals or alloys are used.
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, lithium transition metal nitride, silicone, and the like can be used.
  • the electrode active material a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method can be used.
  • the particle size of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, rate characteristics, and cycle characteristics, a 50% volume cumulative diameter is usually The thickness is 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m.
  • the electrode active material layer contains a binder (hereinafter sometimes referred to as “binder for active material layer”) in addition to the electrode active material.
  • binder for active material layer a binder in addition to the electrode active material.
  • Various resin components can be used as the binder for the active material layer.
  • polyethylene polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like can be used. These may be used alone or in combination of two or more.
  • the binder used for the porous film of this invention can also be used as a binder for active material layers.
  • the soft polymer exemplified below can also be used as the binder for the active material layer.
  • Acrylic acid such as polybutyl acrylate, polybutyl methacrylate, polyhydroxyethyl methacrylate, polyacrylamide, polyacrylonitrile, butyl acrylate / styrene copolymer, butyl acrylate / acrylonitrile copolymer, butyl acrylate / acrylonitrile / glycidyl methacrylate copolymer
  • an acrylic soft polymer which is a homopolymer of a methacrylic acid derivative or a copolymer with a monomer copolymerizable therewith Isobutylene-based soft polymers such as polyisobutylene, isobutylene-isoprene rubber, isobutylene-styrene copolymer; Polybutadiene, polyisoprene, butadiene / styrene random cop
  • Olefinic soft polymers of Vinyl-based soft polymers such as polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, vinyl acetate / styrene copolymer; Epoxy-based soft polymers such as polyethylene oxide, polypropylene oxide, epichlorohydrin rubber; Fluorine-containing soft polymers such as vinylidene fluoride rubber and tetrafluoroethylene-propylene rubber; Examples thereof include other soft polymers such as natural rubber, polypeptide, protein, polyester-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer. These soft polymers may have a cross-linked structure or may have a functional group introduced by modification.
  • the amount of the binder for the active material layer in the electrode active material layer is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, particularly preferably 100 parts by weight of the electrode active material. 0.5 to 3 parts by mass.
  • the amount of the binder for the active material layer in the electrode active material layer is within the above range, it is possible to prevent the active material from being detached from the electrode without inhibiting the battery reaction.
  • the binder for the active material layer is prepared as a solution or a dispersion to produce an electrode.
  • the viscosity at that time is usually in the range of 1 to 300,000 mPa ⁇ s, preferably 50 to 10,000 mPa ⁇ s.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the electrode active material layer may contain any additive such as a conductivity-imparting material and a reinforcing material in addition to the electrode active material and the binder for the active material layer.
  • a conductivity-imparting material conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used. Examples thereof include carbon powders such as graphite, and fibers and foils of various metals.
  • the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • the electrical contact between the electrode active materials can be improved, and the discharge rate characteristics can be improved when used in a lithium ion secondary battery.
  • the amount of the conductivity-imparting material and the reinforcing material used is usually 0 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the isothiazoline-based compound or chelate compound used in the present invention may be included in the electrode active material layer.
  • the electrode active material layer can be formed by attaching a slurry containing an electrode active material, a binder for the active material layer, and a solvent (hereinafter sometimes referred to as “mixture slurry”) to a current collector. .
  • any solvent that dissolves or disperses particles of the binder for the active material layer may be used.
  • organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ⁇ -butyrolactone, ⁇ -Esters such as caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether; Alcohols such as methanol, ethanol, isopropanol, ethylene glycol and ethylene glycol monomethyl ether; N-methyl Amides such as pyrrolidone and N, N-dimethylformamide are exemplified. These solvents may be used alone or in admixture of two or more
  • the mixture slurry may further contain additives that exhibit various functions such as a thickener.
  • a thickener a polymer soluble in the solvent used for the mixture slurry is used.
  • the thickener exemplified in the porous film of the present invention can be used.
  • the amount of the thickener used is preferably 0.5 to 1.5 parts by mass with respect to 100 parts by mass of the electrode active material. When the use amount of the thickener is within the above range, the coating property of the mixture slurry and the adhesion with the current collector are good.
  • the mixture slurry contains trifluoropropylene carbonate, vinylene carbonate, catechol carbonate, 1,6-dioxaspiro [4,4] nonane-2,7 in order to increase the stability and life of the battery.
  • -Dione, 12-crown-4-ether and the like can be used. These may be used by being contained in an electrolyte solution described later.
  • the amount of the solvent in the mixture slurry is adjusted so as to have a viscosity suitable for coating according to the type of the electrode active material and the binder for the active material layer.
  • the solid content concentration of the electrode active material, the binder for the active material layer, and any additive such as conductivity imparting agent is preferably 30 to 90% by mass, More preferably, the amount is adjusted to 40 to 80% by mass.
  • the mixture slurry is obtained by mixing an electrode active material, a binder for the active material layer, an optional additive such as a conductivity-imparting material added as necessary, and a solvent using a mixer. Mixing may be performed by supplying the above components all at once to a mixer.
  • the conductivity-imparting material and the thickener are mixed in a solvent to conduct electricity. Since the dispersibility of the slurry is improved, it is preferable to disperse the property-imparting material in the form of fine particles, and then add the active material layer binder and the electrode active material and further mix them.
  • a ball mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, Hobart mixer, etc. can be used. It is preferable because aggregation of the resin can be suppressed.
  • the particle size of the mixture slurry is preferably 35 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the conductivity imparting material is highly dispersible and a homogeneous electrode can be obtained.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, etc. Metal materials such as titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode of the lithium ion secondary battery, and copper is particularly preferable for the negative electrode of the lithium ion secondary battery.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength of the mixture, the current collector is preferably used after roughening in advance.
  • Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity of the electrode mixture layer.
  • the method for producing the electrode active material layer may be any method in which the electrode active material layer is bound in layers on at least one surface, preferably both surfaces of the current collector.
  • the mixture slurry is applied to a current collector, dried, and then heat-treated at 120 ° C. or higher for 1 hour or longer to form an electrode active material layer.
  • the method for applying the mixture slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the porosity of the electrode active material layer is lower by pressure treatment using a mold press or a roll press.
  • a preferable range of the porosity is 5 to 15%, more preferably 7 to 13%. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. When the porosity is too low, there are problems that it is difficult to obtain a high volume capacity, or that the electrode active material layer is easily peeled off and is likely to be defective. Further, when a curable polymer is used, it is preferably cured.
  • the thickness of the electrode active material layer is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m, for both the positive electrode and the negative electrode.
  • Separator As a separator for a lithium ion secondary battery, a known separator such as a separator containing a polyolefin resin such as polyethylene or polypropylene or an aromatic polyamide resin is used.
  • a porous membrane having a fine pore size, having no electron conductivity, ionic conductivity, high resistance to organic solvents, and a polyolefin type (polyethylene, polypropylene, polybutene, polyvinyl chloride, for example) is used.
  • a microporous film made of a resin such as a mixture or copolymer thereof, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide amide, polyaramid, polycycloolefin, nylon, polytetrafluoroethylene, etc.
  • Examples thereof include a microporous membrane made of the above resin or a woven fabric of polyolefin fibers, a nonwoven fabric thereof, an aggregate of insulating substance particles, or the like.
  • a microporous membrane made of the above resin or a woven fabric of polyolefin fibers, a nonwoven fabric thereof, an aggregate of insulating substance particles, or the like.
  • the coating property of the above-mentioned slurry for porous membrane is excellent, the thickness of the whole separator can be reduced and the active material ratio in the battery can be increased to increase the capacity per volume.
  • a microporous membrane is preferred.
  • the thickness of the separator is usually 0.5 to 40 ⁇ m, preferably 1 to 30 ⁇ m, more preferably 1 to 10 ⁇ m. Within this range, the resistance due to the separator in the battery is reduced. Moreover, the workability
  • examples of the polyolefin resin used as a material for the separator include homopolymers such as polyethylene and polypropylene, copolymers, and mixtures thereof.
  • examples of the polyethylene include low density, medium density, and high density polyethylene, and high density polyethylene is preferable from the viewpoint of piercing strength and mechanical strength. These polyethylenes may be mixed in two or more types for the purpose of imparting flexibility.
  • the polymerization catalyst used for these polyethylenes is not particularly limited, and examples thereof include Ziegler-Natta catalysts, Phillips catalysts, and metallocene catalysts.
  • the viscosity average molecular weight of polyethylene is preferably 100,000 or more and 12 million or less, more preferably 200,000 or more and 3 million or less.
  • polypropylene include homopolymers, random copolymers, and block copolymers, and one kind or a mixture of two or more kinds can be used.
  • the polymerization catalyst is not particularly limited, and examples thereof include Ziegler-Natta catalysts and metallocene catalysts.
  • the stereoregularity is not particularly limited, and isotactic, syndiotactic or atactic can be used. However, it is desirable to use isotactic polypropylene because it is inexpensive.
  • an appropriate amount of a polyolefin other than polyethylene or polypropylene, and an additive such as an antioxidant or a nucleating agent may be added to the polyolefin as long as the effects of the present invention are not impaired.
  • a publicly known one is used. For example, after polypropylene and polyethylene are melt-extruded to form a film, annealing is performed at a low temperature to grow a crystal domain, and stretching is performed in this state.
  • a wet method in which a microporous film is formed by removing a film that has started to form an island phase by using this solvent or low molecular weight solvent with another volatile solvent is selected.
  • a dry method is preferable in that a large void can be easily obtained for the purpose of reducing the resistance.
  • the separator used in the present invention may contain any filler or fiber compound for the purpose of controlling strength, hardness, and heat shrinkage.
  • a low molecular weight compound or a high molecular weight compound may be used in advance for the purpose of improving the adhesion between the separator and the porous membrane or improving the liquid impregnation property by lowering the surface tension against the electrolytic solution.
  • Coating treatment with a molecular compound electromagnetic radiation treatment such as ultraviolet rays, or plasma treatment such as corona discharge / plasma gas may be performed.
  • the coating treatment is preferably performed with a polymer compound containing a polar group such as a carboxylic acid group, a hydroxyl group, and a sulfonic acid group from the viewpoint that the impregnation property of the electrolytic solution is high and the adhesion with the porous film is easily obtained.
  • a polar group such as a carboxylic acid group, a hydroxyl group, and a sulfonic acid group
  • Electrode As the electrolytic solution, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is used.
  • a lithium salt is used as the supporting electrolyte.
  • the lithium salt is not particularly limited, LiPF 6, LiAsF 6, LiBF 4, LiSbF 6, LiAlCl 4, LiClO 4, CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable. Two or more of these may be used in combination. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, but dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Carbonates such as (BC) and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; Are preferably used. Moreover, you may use the liquid mixture of these solvents.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Since the lithium ion conductivity increases as the viscosity of the solvent used decreases, the lithium ion conductivity can be adjusted depending on the type of the solvent.
  • the concentration of the supporting electrolyte in the electrolytic solution is usually 1 to 30% by mass, preferably 5 to 20% by mass.
  • the concentration is usually 0.5 to 2.5 mol / L depending on the type of the supporting electrolyte. If the concentration of the supporting electrolyte is too low or too high, the ionic conductivity tends to decrease. Since the degree of swelling of the polymer particles increases as the concentration of the electrolytic solution used decreases, the lithium ion conductivity can be adjusted by the concentration of the electrolytic solution.
  • a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the shape of the battery.
  • the method of injecting and sealing is mentioned.
  • the porous film of the present invention is formed on any one of a positive electrode, a negative electrode, and a separator.
  • the method for forming the porous film of the present invention on the positive electrode, the negative electrode, and the separator is as described in the method (I) or (II).
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, or the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • the porous film of the present invention on the surface of the electrode active material layer of the positive electrode or the negative electrode.
  • the porous film of the present invention By forming the porous film of the present invention on the surface of the electrode active material layer, even if the separator shrinks due to heat, a short circuit between the positive electrode and the negative electrode does not occur, and high safety is maintained.
  • the porous membrane of the present invention can function as a separator even without a separator, making it possible to produce a secondary battery at low cost. Become. Further, even when a separator is used, higher rate characteristics can be expressed because the holes formed on the separator surface are not filled.
  • Example Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
  • the part and% in a present Example are a mass reference
  • various physical properties are evaluated as follows.
  • ⁇ Slurry characteristics for porous membrane dispersibility> A slurry for porous membrane is put in a test tube having a diameter of 1 cm to a height of 5 cm to obtain a test sample. Five test samples are prepared per measurement of one sample. The test sample is placed vertically on a desk. The state of the installed slurry for the porous membrane is observed for 10 days, and judged according to the following criteria. The time and number of days required for the settling of the five samples (referred to as average time required for sedimentation (days)) are determined, and the average time required for sedimentation (days) is defined as the day when sedimentation was observed. It shows that the dispersibility is so excellent that two-phase separation is not observed.
  • the solution dissolved in was used. This was enclosed in a 2032 type coin cell. I took the lead from the coin cell, put a thermocouple, and put it in the oven. While applying an alternating current with an amplitude of 10 mV and a frequency of 1 kHz, the temperature was raised to 200 ° C. at a rate of temperature rise of 1.6 ° C./min, and the cell resistance during this time was measured to confirm the occurrence of a short circuit.
  • a separator single-layer polypropylene separator, porosity 55%, thickness 25 ⁇ m, the same as that used as the “organic separator layer” in Example 1 is punched into a circle having a diameter of 19 mm, and a nonionic surfactant It was immersed in a 3% by weight methanol solution (produced by Kao Corporation; Emulgen 210P) and air-dried. On the other hand, the electrode to be measured was punched into a circle having a diameter of 19 mm.
  • the iodine value of the dried polymer was measured according to JIS K6235; It shows that there are few carbon-carbon unsaturated bonds, so that an iodine number is small.
  • the monomer mixture 2 and the polymerization initiator were completely absorbed by the seed polymer particles B. Thereafter, this was polymerized at 90 ° C. for 4 hours. Thereafter, steam was introduced to remove unreacted monomers. This obtained the water dispersion of the nonelectroconductive particle with an average particle diameter of 400 nm.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. under pressure with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • a dried product was obtained in the same manner as described in the above “Measurement of iodine value” and analyzed by NMR.
  • the nitrile group was 17% by mass with respect to the total amount of the polymer, carbon.
  • the linear alkylene structural unit obtained by hydrogenating the polymerization unit derived from the conjugated diene monomer of number 4 was 54.1% by mass, and the carboxylic acid group was 2.6% by mass.
  • the aqueous dispersion of non-conductive particles obtained in the step ⁇ 1-3>, the aqueous dispersion of the binder for porous membrane obtained in the step ⁇ 1-5>, and a 1% aqueous solution of carboxymethyl cellulose have a solid content weight ratio of 83.
  • the mixture was mixed in water to have a ratio of 1: 6.15: 4.6, water was further added as a solvent, and the mixture was dispersed using a bead mill to obtain a slurry for a porous membrane.
  • content of raw materials other than water (total solid content) in the slurry was set to 50% by mass.
  • negative electrode > 98 parts of graphite having a particle size of 20 ⁇ m and a specific surface area of 4.2 m 2 / g as a negative electrode active material, and 1 part in terms of solid content of SBR (styrene-butadiene rubber, glass transition temperature: ⁇ 10 ° C.) as a binder
  • SBR styrene-butadiene rubber, glass transition temperature: ⁇ 10 ° C.
  • a single-layer polypropylene separator (porosity 55%, thickness 25 ⁇ m) produced by a dry method was prepared as an organic separator layer.
  • the slurry for the porous membrane obtained in the step (1-5) is applied to one surface of the organic separator layer using a wire bar so that the thickness after drying is 5 ⁇ m, and the slurry layer is obtained.
  • a porous film was similarly formed on the other surface of the organic separator layer to obtain a separator with a porous film having porous films on both surfaces.
  • the positive electrode obtained in step (1-7) was cut into a circle having a diameter of 13 mm to obtain a circular positive electrode.
  • the negative electrode obtained in step (1-8) was cut into a circle having a diameter of 14 mm to obtain a circular negative electrode.
  • the separator with a porous membrane obtained in the step (1-9) was cut out into a circle having a diameter of 18 mm to obtain a circular separator with a porous membrane.
  • a circular positive electrode is placed on the inner bottom surface of a stainless steel coin-type outer container provided with polypropylene packing, a circular porous membrane separator is placed thereon, and a circular negative electrode is placed thereon. These were stored in a container.
  • the circular positive electrode was placed so that the surface on the aluminum foil side faced toward the bottom surface side of the outer container and the surface on the positive electrode active material layer side faced upward.
  • the circular negative electrode was placed so that the surface on the negative electrode active material layer side was directed to the circular separator with a porous film and the surface on the copper foil side was directed upward.
  • a lithium ion secondary battery (coin cell CR2032) having a thickness of about 3.2 mm was manufactured.
  • Example 2> (2-1. Production of negative electrode with porous film) On the negative electrode active material layer side surface of the negative electrode obtained in Step (1-8) of Example 1, the slurry for porous film obtained in Step (1-6) of Example 1 is completely transferred to the negative electrode active material layer. The slurry was coated so that the porous film thickness after drying was 5 ⁇ m to obtain a slurry layer. The slurry layer was dried at 50 ° C. for 10 minutes to form a porous film, and a negative electrode with a porous film was obtained. The obtained negative electrode with a porous film had a layer structure of (porous film) / (negative electrode active material layer) / (copper foil).
  • a secondary battery was manufactured in the same manner as in Example 1 except that the following points were changed.
  • an organic separator layer (single layer polypropylene separator, porosity 55%, thickness 25 ⁇ m, step 1 of Example 1 (1-9) The same as that used as the organic separator layer in) was used as a separator as it was.
  • the negative electrode with a porous film obtained in the above step (2-1) was used in place of the negative electrode.
  • Example 3 The same procedure as in Example 1 was conducted except that alumina particles (Alumina AKP-50 manufactured by Sumitomo Chemical Co., Ltd., average particle size: 0.3 ⁇ m) were used as the non-conductive fine particles.
  • alumina particles Al AKP-50 manufactured by Sumitomo Chemical Co., Ltd., average particle size: 0.3 ⁇ m
  • Examples 4 and 5 The same procedure as in Example 1 was carried out except that the amounts of palladium acetate shown in Table 1 were used in “first stage hydrogenation reaction” and “second stage hydrogenation reaction” in step 1-5.
  • Examples 6 to 13> The same procedure as in Example 1 was conducted except that the monomers used in Step 1-4 were changed to the types and amounts shown in Table 1.
  • Example 1 The same procedure as in Example 1 was carried out except that the amount of palladium acetate added in the “first stage hydrogenation reaction” in step 1-5 was 50 mg, and the second stage hydrogenation reaction was not performed.
  • Binder B In a reactor equipped with a stirrer, 70 parts of ion-exchanged water, 0.2 part of sodium dodecylbenzenesulfonate and 0.3 part of potassium persulfate were supplied, and the gas phase part was replaced with nitrogen gas. The temperature rose. On the other hand, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate, 93 parts of 2-ethylhexyl acrylate as a polymerizable monomer, 2 parts of acrylonitrile and 5 parts of methacrylic acid were mixed in a separate container.
  • a monomer mixture was obtained, and this monomer mixture was continuously added to the reactor over 4 hours for polymerization. During the addition, the reaction was carried out at 60 ° C. After completion of the conversion, the reaction was further completed by stirring at 70 ° C. for 3 hours. The polymerization conversion rate was 99%.
  • the obtained polymerization reaction liquid was cooled to 25 ° C., and ammonia water was converted to adjust the pH to 7, and then steam was introduced to remove unreacted monomers to obtain a binder B.
  • alumina particles Al AKP-50 manufactured by Sumitomo Chemical Co., Ltd., average particle size 0.3 ⁇ m
  • the dispersion stability of the slurry for the porous film is good, the reliability of the separator having the porous film obtained, and the reliability of the electrode are improved, and powder falling is prevented.
  • the use of such a separator or electrode improves the cycle characteristics and safety of the secondary battery at high temperatures.
  • a slurry, a porous membrane, and a secondary battery were manufactured using plate-like non-conductive particles or scale-like non-conductive particles.
  • (flexibility and powder fall-off property), (heat shrinkage test) and (average particle diameter of non-conductive particles, aspect ratio) were the same as above except that they were evaluated as follows. The evaluation method and evaluation standard were adopted.
  • An electrode having a porous film formed on the electrode mixture layer or an organic separator having the porous film cut into a rectangle having a width of 1 cm and a length of 5 cm is used as a test piece. Place the test piece on the desk with the current collector side facing down, and lay a stainless steel rod with a diameter of 1 mm on the current collector side surface in the short direction at the center in the length direction (position 2.5 cm from the end). Install. The test piece is bent 180 degrees around the stainless steel bar so that the porous membrane layer is on the outside. Ten test pieces are tested, and the bent portions of the porous film layer of each test piece are observed for cracks or powder fall off, and determined according to the following criteria. It shows that the porous film formed on the electrode mixture layer or the organic separator is more excellent in flexibility and powder fall-off as the cracks and peeling powder fall off are smaller.
  • ⁇ Heat shrinkage test> The separator with a porous membrane is cut into a 5 cm square, and then left in a constant temperature bath at a predetermined temperature for 1 hour. After 1 hour, the separator with the porous membrane was taken out from the thermostat, the area was measured, and the value obtained by calculating the percentage of shrinkage as a percentage was taken as the thermal shrinkage, and judged according to the following criteria. The smaller this value, the better the heat resistance, and the lower the shrinkage rate at higher temperatures, the better.
  • A Shrinkage of less than 1% at 160 ° C.
  • B Shrinkage of less than 1% at 150 ° C.
  • C Shrinkage of 1% or more and less than 10% at 150 ° C.
  • D Shrinkage of 10% or more at 150 ° C.
  • ⁇ Average particle size and aspect ratio of non-conductive particles Photographs of non-conductive particles were taken using an ultra-high resolution field emission scanning electron microscope (S-4700, manufactured by Hitachi High-Technologies Corporation), and 50 particles were arbitrarily selected from the arbitrary field of view. Analysis was performed to determine the average primary particle diameter of the non-conductive particles as the average value of the equivalent circle diameter.
  • the aspect ratio was similarly determined by selecting 50 particles from the SEM photograph, analyzing the image, and calculating the average value. Specifically, 50 non-conductive particle images that can be observed at a magnification of 100 times are selected in order from the largest, and each one is observed at a magnification of 1000 times. The average value of the short axis, long axis, and aspect ratio was obtained.
  • Example 1 ⁇ 1-6.
  • scaly boehmite having an average particle diameter of 5 ⁇ m and an aspect ratio of 50 (aspect ratio of 3 to 3)
  • the same procedure as in Example 1 was performed except that the ratio of particles in the range of 100 was 50% or more of all particles on the basis of the number). The results are shown in Table 4.
  • Example 15 In Example 2, it carried out similarly to Example 2 except having used the slurry for porous films obtained in Example 14 as the slurry for porous films. The results are shown in Table 4.
  • Example 16> Implemented except that plate-type boehmite with an average particle diameter of 1 ⁇ m and an aspect ratio of 10 (the ratio of particles having an aspect ratio in the range of 3 to 100 is 50% or more of all particles on the number basis) is used as non-conductive particles. Performed as in Example 14. The results are shown in Table 4.
  • Example 14 the same procedure as in Example 1 was carried out except that the amount of palladium acetate added in the “first stage hydrogenation reaction” was 50 mg and the second stage hydrogenation reaction was not performed. The results are shown in Table 4.
  • the dispersion stability of the slurry for the porous film is good, the reliability of the separator having the porous film obtained, and the reliability of the electrode are improved, and powder falling is prevented.
  • the use of such a separator or electrode improves the cycle characteristics and safety of the secondary battery at high temperatures.

Abstract

 【課題】 耐熱性、柔軟性、接着性に優れ、電池のサイクル特性の改善に寄与しうる二次電池多孔膜ならびに、該多孔膜を使用して、高いサイクル特性を有する二次電池を提供すること。 【解決手段】 本発明に係る二次電池多孔膜は、非導電性粒子、及びバインダーを含んでなり、 前記バインダーが、ニトリル基、親水性基、及び炭素数が4以上の直鎖アルキレン構造単位を同一の分子内に含んでなる重合体からなり、前記バインダーを構成する重合体における前記ニトリル基の含有割合が1~25質量%であり、該重合体のヨウ素価が0mg/100mg以上30mg/100mg以下であることを特徴としている。

Description

二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池
 本発明は多孔膜に関し、さらに詳しくはリチウムイオン二次電池やニッケル水素二次電池などの二次電池の電極またはセパレータの表面に形成され、耐熱性、柔軟性、接着性に優れ、電池のサイクル特性の改善に寄与しうる二次電池多孔膜に関する。また本発明は、かかる多孔膜を形成するための二次電池多孔膜用スラリー、及び、かかる多孔膜を備えたリチウム二次電池用電極、リチウム二次電池用セパレータならびに、これらの電極またはセパレータの何れか、あるいは両者を備えた二次電池に関する。
 実用化されている電池の中でも、リチウムイオン二次電池は最も高いエネルギー密度を示し、特に小型エレクトロニクス用に多く使用されている。また、小型用途に加えて自動車向けへの展開も期待されている。その中で、リチウムイオン二次電池の長寿命化と、安全性のさらなる向上が要望されている。     
 リチウムイオン二次電池は、一般に集電体に担持された電極合剤層(以下において「電極活物質層」と表すこともある。)を含む正極および負極、セパレータおよび非水電解液を具備する。電極合剤層は、電極活物質とバインダーとを含む。電極は集電体上に粉末の電極活物質を含んだ合剤スラリーを塗布して電極合剤層を形成して作製される。また、正極と負極を隔離するためのセパレータとしては、厚さ10~50μm程度の非常に薄いセパレータが使用されている。特にリチウムイオン二次電池のセパレータとしては、ポリエチレンやポリプロピレン等のポリオレフィン系の有機セパレータが用いられている。ポリオレフィン系の有機セパレータは200℃以下で溶融する物性を有している為、内部及びまたは外部の刺激により電池が想定を超えて高温になる場合には、収縮や溶融などの体積変化がおこり、その結果、正極及び負極の短絡を引き起こすことがある。またリチウムイオン二次電池は、電極とセパレータとの積層工程や所定の電極形状に裁断する裁断工程等を経て製造される。しかし、この一連の製造工程を通過する間に、電極合剤層から活物質が脱離し、脱離した活物質の一部が異物として電池内に含まれてしまうことがある。
 このような想定を超えた高温や異物により引き起こされる短絡を防止するため、ポリオレフィン系有機セパレータ上又は電極(正極や負極)上に無機粒子や、耐熱性の高い樹脂粒子などの非導電性粒子を含有する層(多孔膜)を積層することが提案されている。
 例えば、特許文献1(特開2005-327680号公報)では、アクリロニトリル基を含むゴム粒子をバインダーとし、非導電性の無機酸化物であるアルミナ粒子をフィラーとして含むペーストを電極に塗布することにより多孔膜を作成している。このような多孔膜を設けることで、電池の作成過程における活物質の脱離を防止し、また電池作動時の短絡を防止している。さらに多孔膜が多孔性であるため、多孔膜中に電解液が浸透し、電池反応を阻害することもない。
特開2005-327680号公報
 しかしながら、高温環境下での二次電池の使用等、二次電池の使用環境が多様化する中、二次電池にはさらに高い耐熱性と、長期寿命特性が必要とされている。耐熱性、長期寿命特性を向上させるためには、フィラーの分散性を向上させ、またフィラー間及びフィラーと基材との間の結着性を強固にすることが必要と考えられる。
 本発明者らの検討によれば、特許文献1に記載の多孔膜では、フィラー間の接着性、およびフィラーの分散性が不十分となる傾向があり、その結果、均一な多孔膜を得ることが出来ず、多孔膜からフィラーの一部が剥落(粉落ち)する場合があった。
 本発明の目的は上記事情を鑑み、耐熱性、柔軟性、接着性に優れ、電池のサイクル特性の改善に寄与しうる二次電池多孔膜ならびに、該多孔膜を使用して、高いサイクル特性を有する二次電池を提供することにある。
 かかる目的に鑑み、本発明者らが鋭意検討したところ、バインダーを構成する重合体中に、非極性の直鎖アルキレン構造単位と、極性のニトリル基を有する単量体単位とを導入することで、多孔膜を形成するためのスラリー中におけるフィラー(非導電性粒子)の分散性が向上し、更に、バインダーを構成する重合体中に親水性基を有する単量体単位を導入することで非導電性粒子間及び非導電性粒子と基材との間の接着性が向上することを見出した。また、バインダーを構成する重合体のヨウ素価を30mg/100mg以下とすることで、高い耐酸化性を示し、高温でのサイクル特性が向上すること見出した。更に、所定以上の鎖長のアルキレン基を導入することで、電解液に対する膨潤性が適正化され、電池特性の向上が図られることを見出した。
 上記の知見に基づいて完成された本発明の要旨は以下のとおりである。
(1)非導電性粒子、及びバインダーを含んでなり、
 前記バインダーが、ニトリル基、親水性基、及び炭素数が4以上の直鎖アルキレン構造単位を同一の分子内に含んでなる重合体からなり、前記バインダーを構成する重合体における前記ニトリル基の含有割合が1~25質量%であり、該重合体のヨウ素価が0mg/100mg以上30mg/100mg以下である二次電池多孔膜。
(2)前記バインダーを構成する重合体における、前記親水性基の含有割合が0.05~10質量%である(1)に記載の二次電池多孔膜。
(3)前記バインダーを構成する重合体における、前記直鎖アルキレン構造単位の含有割合が50~98質量%である(1)または(2)に記載の二次電池多孔膜。
(4)前記バインダーを構成する重合体が、親水性基を有する水素化アクリロニトリル・ブタジエン共重合体である(1)~(3)のいずれかに記載の二次電池多孔膜。
(5)前記親水性基がカルボン酸基、スルホン酸基、リン酸基、水酸基およびこれらの塩から選ばれる(1)~(4)のいずれかに記載の二次電池多孔膜。
(6)前記多孔膜用を構成する固形分全量中の、前記非導電性粒子の含有割合が70~97重量%であり、
 前記バインダーの含有割合が0.5~15重量%である(1)~(5)のいずれかに記載の二次電池多孔膜。
(7)前記非導電性粒子の平均粒子径が0.1~20μmであり、アスペクト比3~100の範囲にある粒子の割合が全粒子の50%以上である(1)~(6)のいずれかに記載の二次電池多孔膜。
(8)非導電性粒子、バインダー及び分散媒を含んでなり、
 前記バインダーが、ニトリル基、親水性基、及び炭素数が4以上の直鎖アルキレン構造単位を同一の分子内に含んでなる重合体からなり、前記バインダーを構成する重合体における前記ニトリル基の含有割合が1~25質量%であり、該重合体のヨウ素価が0mg/100mg以上30mg/100mg以下である二次電池多孔膜用スラリー。
(9)上記(8)に記載の多孔膜用スラリーを基材に塗布し、
 次いで乾燥する工程を含む二次電池多孔膜の製造方法。
(10)電極合剤層用バインダー及び電極活物質を含んでなる電極合剤層が、集電体に付着してなり、かつ電極合剤層の表面に、(1)~(7)の何れかに記載の多孔膜が積層されてなる、二次電池用電極。
(11)有機セパレータ上に、(1)~(7)の何れかに記載の多孔膜が積層されてなる、二次電池用セパレータ。
(12)正極、負極、セパレータ及び電解液を含む二次電池であって、前記正極、負極及びセパレータの少なくともいずれかに、(1)~(7)の何れかに記載の多孔膜が積層されてなる、二次電池。
 本発明によれば、耐熱性、柔軟性、接着性に優れ、電池のサイクル特性の改善に寄与しうる二次電池多孔膜が提供される。また、該多孔膜を用いた二次電池の高温でのサイクル特性及び安全性が向上する。さらにまた、該多孔膜を形成するための二次電池多孔膜用スラリーは、非導電性粒子の分散性が高く、長期保存安定性に優れる。
 以下、本発明の二次電池多孔膜、二次電池多孔膜用スラリー、及び二次電池について順次説明する。
(二次電池多孔膜)
 本発明の二次電池多孔膜(以下、「多孔膜」と表すことがある。)は、二次電池の正極と負極との間に設置される多孔性の膜であり、特定組成のバインダーと、非導電性粒子とを含有する。また多孔膜は、セパレータや電極に積層して用いたり、セパレータそのものとして用いることもできる。
(バインダー)
 バインダーは、ニトリル基、親水性基、及び直鎖アルキレン構造単位を同一の分子内に含んでなる重合体からなる。
 バインダーを構成する重合体中にニトリル基を有することで、多孔膜を形成するためのスラリー中における非導電性粒子の分散性が向上し、スラリーを長期間安定状態で保存することができる。この結果、均一な多孔膜の製造が容易になる。また、リチウムイオンの伝導性が良好となるため、電池内における内部抵抗を小さくし、電池の出力特性を向上させることができる。
 バインダーを構成する重合体における、前記ニトリル基の含有割合は、1~25質量%であり、好ましくは5~25質量%、さらに好ましくは9~25質量%の範囲にある。
 本発明において、親水性基とは、水性溶媒中でプロトンを遊離する官能基及び、プロトンがカチオンに置換された塩のことをいい、具体的には、カルボン酸基、スルホン酸基、リン酸基、水酸基およびこれらの塩などが挙げられる。
 バインダーを構成する重合体中に親水性基を導入することで非導電性粒子間及び非導電性粒子と基材との間の接着性が向上し、多孔膜の製造工程における非導電性粒子の剥落(粉落ち)を低減できる。
 バインダーを構成する重合体における、前記親水性基の含有割合は、好ましくは0.05~10質量%、さらに好ましくは0.1~8質量%、特に好ましくは1~6質量%の範囲にある。
 バインダーを構成する重合体における、直鎖アルキレン構造単位の炭素数は4以上であり、好ましくは4~16、さらに好ましくは4~12の範囲にある。
 バインダーを構成する重合体中に、非極性の直鎖アルキレン構造単位を導入することで、多孔膜を形成するためのスラリー中における非導電性粒子の分散性が向上し、スラリーを長期間安定状態で保存することができる。この結果、均一な多孔膜の製造が容易になる。また、所定以上の鎖長の直鎖アルキレン構造単位を導入することで、多孔膜の電解液に対する膨潤性が適正化され、電池特性の向上が図られる。
 バインダーを構成する重合体における、直鎖アルキレン構造単位の含有割合は、好ましくは50~98質量%、さらに好ましくは50~80質量%、特に好ましくは50~70質量%の範囲にある。なお、直鎖アルキレン構造単位の含有割合は、水素化アクリロニトリル・ブタジエン共重合体である場合は、NMRにより水素化前の共重合体中のブタジエンの1,2付加結合量を求めておき、これと、水素化後の共重合体のヨウ素価から求めることができる。
 前記バインダーを構成する重合体のヨウ素価は、0mg/100mg以上30mg/100mg以下であり、好ましくは20mg/100mg以下、より好ましくは10mg/100mg以下である。ヨウ素価が30mg/100mgを超えると、重合体に含まれる不飽和結合により酸化電位での安定性が低く電池の高温サイクル特性に劣る。また、ヨウ素価の下限は0mg/100mg以上であり、好ましくは0mg/100mgを超え、より好ましくは3mg/100mg以上、更に好ましくは5mg/100mg以上である。重合体のヨウ素価が上記範囲に含まれることにより、多孔膜の高い膜強度と優れた電池の高温サイクル特性を示す。ヨウ素価はJIS K 6235;2006に従って求められる。
 本発明に用いる重合体のゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値の重量平均分子量は、好ましくは10,000~700,000、より好ましくは50,000~500,000、特に好ましくは100,000~300,000である。重合体の重量平均分子量を上記範囲とすることで、多孔膜に柔軟性を持たせることができ、更にスラリー組成物の製造時に塗工しやすい粘度に調整ができる。
 上記のように、バインダーを構成する重合体は、ニトリル基、親水性基、及び直鎖アルキレン構造単位を同一の分子内に含む。このような重合体は、ニトリル基を有する単量体単位を導く単量体、親水性基を有する単量体単位を導く単量体および、直鎖アルキレン構造単位を導く単量体を重合して得られる。なお、直鎖アルキレン構造単位は、不飽和結合を有する構造単位を有する重合体を得た後に、これを水素添加して形成することができる。
 以下、該重合体の製造方法について、説明する。
 ニトリル基を有する単量体単位としては、α,β-エチレン性不飽和ニトリル単量体単位が挙げられる。α,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば、特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
 親水性基の導入は、カルボン酸基、スルホン酸基、リン酸基、水酸基およびこれらの塩などを含む単量体を重合して行われる。
 カルボン酸基を有する単量体としては、モノカルボン酸及びその誘導体やジカルボン酸、及びこれらの誘導体などが挙げられる。モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α―アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸などマレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステル;が挙げられる。また、加水分解によりカルボキシル基を生成する酸無水物も使用ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 リン酸基を有する単量体としては、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 水酸基を有する単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR-COO-(C2nO)-H(mは2ないし9の整数、nは2ないし4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
 これらの中でも、後述する電極活物質層またはセパレータへの密着性に優れることから親水性基は、カルボン酸基またはスルホン酸基であることが好ましく、特に正極活物質から溶出することがある遷移金属イオンを効率良く捕捉するという理由からカルボン酸基であることが好ましい。したがって、親水性基を有する単量体としては、上記の中でも、アクリル酸、メタクリル酸などのカルボン酸基を有する炭素数5以下のモノカルボン酸や、マレイン酸、イタコン酸などのカルボン酸基を2つ有する炭素数5以下のジカルボン酸が好ましい。さらには、作製したスラリーの保存安定性が高いという観点から、アクリル酸やメタクリル酸が好ましい。
 重合体中への直鎖アルキレン構造単位の導入方法は、特に限定はされないが、共役ジエン単量体単位を導入後にこれを水素添加する方法が簡便であり、好ましい。
 共役ジエン単量体単位を形成する共役ジエン単量体としては、炭素数4以上の共役ジエンが好ましく、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジ置換エン、1,3-ペンタジエンなどが挙げられる。これらのなかでも、1,3-ブタジエンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
 また、本発明に用いる重合体は、上記単量体単位以外に、これらの単量体単位を形成する単量体と共重合可能な他の単量体の単位を含有していてもよい。このような他の単量体単位の含有割合は、全単量体単位に対して、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。
 このような共重合可能な他の単量体としては、たとえば、スチレン、α-メチルスチレン、ビニルトルエンなどの芳香族ビニル化合物;フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどの非共役ジエン化合物;エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどのα-オレフィン化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどのα,β-エチレン性不飽和モノカルボン酸アルキルエステル;マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β-エチレン性不飽和カルボン酸のアルコキシアルキルエステル;ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリメタクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N’-ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物;などが挙げられる。
 さらに、本発明に用いるバインダーを構成する重合体は、上述した単量体成分以外に、これらと共重合可能な単量体を含んでいてもよい。これらと共重合可能な単量体としては、塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;が挙げられる。これらの単量体を、適宜の手法により、グラフト共重合させることにより、前記構成のバインダーが得られる。
 本発明に用いるバインダーは、分散媒(水または有機溶媒)に上記重合体が分散された分散液または溶解された溶液の状態で使用される。(以下、これらを総称して「バインダー分散液」と記載することがある)。本発明においては、環境の観点に優れ、乾燥速度が速いという観点から分散媒として水を用いることが好ましい。また、分散媒として有機溶媒を用いる場合、N-メチルピロリドン(NMP)等の有機溶剤が用いられる。
 バインダーが分散媒に粒子状で分散している場合において、粒子状で分散しているバインダーの平均粒径(分散粒子径)は、50~500nmが好ましく、70~400nmがさらに好ましく、最も好ましくは100~250nmである。バインダーの平均粒径がこの範囲であると得られる電極の強度および柔軟性が良好となる。
 バインダーが分散媒に粒子状で分散している場合において、分散液の固形分濃度は、通常15~70質量%であり、20~65質量%が好ましく、30~60質量%がさらに好ましい。固形分濃度がこの範囲であると、後述する多孔膜用スラリーを製造する際における作業性が良好である。
 本発明に用いるバインダーのガラス転移温度(Tg)は、好ましくは-50~25℃、より好ましくは-45~15℃、特に好ましくは-40~5℃である。バインダーのTgが前記範囲にあることにより、本発明の多孔膜が優れた強度と柔軟性を有するため、該多孔膜を用いた二次電池の出力特性を向上させることができる。なお、バインダーのガラス転移温度は、様々な単量体を組み合わせることによって調製可能である。
 本発明に用いるバインダーである重合体の製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。
 直鎖アルキレン構造単位を、共役ジエン単量体から導かれる重合単位の導入後にこれを水素添加して形成する場合、水素添加する方法は、特に限定されず、通常の方法を用いることができる。例えば、共役ジエン単量体から導かれる重合単位を含む重合体の有機溶媒溶液にラネーニッケルやチタノセン系化合物、アルミニウム担持ニッケル触媒などの水素添加触媒の存在下に水素ガスと接触させて反応させればよい。また、共役ジエン単量体から導かれる重合単位を含む重合体を乳化重合により作製した場合は、重合反応液に酢酸パラジウム等の水素添加触媒を加えて水性エマルジョン状態のまま、水素ガスと接触させて反応させることもできる。水素添加反応により、本発明に用いる共役ジエン単量体から導かれる重合単位を含む重合体のヨウ素価を上述した範囲とすることができる。本発明に用いるバインダーとしての重合体は、親水性基を有する水素化アクリロニトリル・ブタジエン共重合体(以下において「水添NBR」と記載することがある。)が好ましい。
 水素添加を2段階以上に分けて実施する方法が特に好ましい。同一量の水素化触媒を用いても、水素添加を2段階以上に分けて実施することにより、水素添加効率を高めることができる。即ち、共役ジエン単量体から導かれる重合単位を直鎖アルキレン構造単位への添加する際に、ヨウ素価を、より低くすることが可能となる。
 また、2段階以上に分けて水素添加を行なう場合、第1段階の水素添加率(水添率) (%)で、50%以上、より好ましくは70%以上の水素化を達成することが好ましい。即ち、下式で得られる数値を水素添加率(%)とするとき、この数値が50%以上となることが好ましく、70%以上となることがより好ましい。
 水素添加率(水添率)(%)
 =100×(水素添加前の炭素-炭素二重結合量-水素添加後の炭素-炭素二重結合量)/(水素添加前の炭素-炭素二重結合量)
 なお、炭素-炭素二重結合量は、NMRを用いて分析することができる。
 水素添加触媒は、白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム又は白金)を含有する水素添加触媒である。水素添加触媒としては、触媒活性や入手容易性の観点からパラジウム化合物及びロジウム化合物が好ましく、パラジウム化合物がより好ましい。また、2種以上の白金族元素化合物を併用してもよいが、その場合もパラジウム化合物を主たる触媒成分とすることが好ましい。その具体例としては、ギ酸、酢酸、プロピオン酸、ラウリン酸、コハク酸、オレイン酸、ステアリン酸、フタル酸、安息香酸等のカルボン酸のパラジウム塩;塩化パラジウム、ジクロロ(シクロオクタジエン)パラジウム、ジクロロ(ノルボルナジエン)パラジウム、ジクロロ(ベンゾニトリル)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ヘキサクロロパラジウム(IV)酸アンモニウム等のパラジウム塩素化物;ヨウ化パラジウム等のヨウ素化物;硫酸パラジウム・二水和物等が挙げられる。これらの中でもカルボン酸のパラジウム塩、ジクロロ(ノルボルナジエン)パラジウム、ヘキサクロロパラジウム(IV)酸アンモニウム等が特に好ましい。水素添加触媒の使用量は、適宜定めればよいが、重合体重量当たり、好ましくは5~6,000ppm、より好ましくは10~4,000ppmである。
 水素添加の際の反応温度は、0~300℃、好ましくは20~150℃である。また、水素圧は、0.1~30MPa、好ましくは0.5~20MPa、より好ましくは1~10MPaである。水素添加の反応時間は反応温度、水素圧、目標の水素添加率等を勘案して選定されるが、1~10時間が好ましい。
 水素添加反応終了後、分散液中の水素添加触媒を除去する。その方法として、例えば、活性炭、イオン交換樹脂等の吸着剤を添加して攪拌下で水素添加触媒を吸着させ、次いでラテックスをろ過又は遠心分離する方法を採ることができる。水素添加触媒を除去せずにラテックス中に残存させることも可能である。
 本発明に用いるバインダーは、バインダーの製造工程において、バインダー分散液に含まれる粒子状の金属を除去する粒子状金属除去工程を経て得られたものであることが好ましい。バインダーに含まれる粒子状金属成分の含有量が10ppm以下であることにより、後述する多孔膜用スラリー中のポリマー間の経時での金属イオン架橋を防止し、粘度上昇を防ぐことができる。さらに二次電池の内部短絡や充電時の溶解・析出による自己放電増大の懸念が少なく、電池のサイクル特性や安全性が向上する。
 前記粒子状金属除去工程におけるバインダー分散液から粒子状の金属成分を除去する方法は特に限定されず、例えば、濾過フィルターによる濾過により除去する方法、振動ふるいによる除去する方法、遠心分離により除去する方法、磁力により除去する方法等が挙げられる。中でも、除去対象が金属成分であるため磁力により除去する方法が好ましい。磁力により除去する方法としては、金属成分が除去できる方法であれば特に限定はされないが、生産性および除去効率を考慮すると、好ましくはバインダーの製造ライン中に磁気フィルターを配置することで行われる。
 本発明に用いるバインダーの製造工程において、上記の重合法に用いられる分散剤は、通常の合成で使用されるものでよく、具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウムなどのスルホコハク酸塩;ラウリン酸ナトリウムなどの脂肪酸塩;ポリオキシエチレンラウリルエーテルサルフェートナトリウム塩、ポリオキシエチレンノニルフェニルエーテルサルフェートナトリウム塩などのエトキシサルフェート塩;アルカンスルホン酸塩;アルキルエーテルリン酸エステルナトリウム塩;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンソルビタンラウリルエステル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体などの非イオン性乳化剤;ゼラチン、無水マレイン酸-スチレン共重合体、ポリビニルピロリドン、ポリアクリル酸ナトリウム、重合度700以上かつケン化度75%以上のポリビニルアルコールなどの水溶性高分子などが例示され、これらは単独でも2種類以上を併用して用いても良い。これらの中でも好ましくは、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩であり、更に好ましくは、耐酸化性に優れるという点から、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩である。分散剤の添加量は任意に設定でき、単量体総量100質量部に対して通常0.01~10質量部程度である。
 本発明に用いるバインダーが分散媒に分散している時のpHは、5~13が好ましく、更には5~12、最も好ましくは10~12である。バインダーのpHが上記範囲にあることにより、バインダーの保存安定性が向上し、さらには、機械的安定性が向上する。
 バインダーのpHを調整するpH調整剤は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム、水酸化バリウムなどのアルカリ土類金属酸化物、水酸化アルミニウムなどの長周期律表でIIIA属に属する金属の水酸化物などの水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、炭酸マグネシウムなどのアルカリ土類金属炭酸塩などの炭酸塩;などが例示され、有機アミンとしては、エチルアミン、ジエチルアミン、プロピルアミンなどのアルキルアミン類;モノメタノールアミン、モノエタノールアミン、モノプロパノールアミンなどのアルコールアミン類;アンモニア水などのアンモニア類;などが挙げられる。これらのなかでも、結着性や操作性の観点からアルカリ金属水酸化物が好ましく、特に水酸化ナトリウム、水酸化カリウム、水酸化リチウムが好ましい。
 多孔膜中のバインダーの含有割合は、好ましくは0.5~15質量%、より好ましくは5~15質量%、特に好ましくは8~15質量%である。多孔膜中のバインダーの含有割合が上記範囲にあることで、本発明の多孔膜から後述する非導電性粒子が脱離(粉落ち)することを防止し、多孔膜の柔軟性を向上させることができるため、該多孔膜を用いた二次電池のサイクル特性を向上させることができる。
(非導電性粒子)
 本発明に用いる非導電性粒子は、二次電池(リチウムイオン二次電池やニッケル水素二次電池など)の使用環境下で安定に存在し、電気化学的にも安定であることが望まれる。非導電性粒子としては、例えば各種の無機粒子や有機粒子を使用することができる。電池の性能に悪影響を及ぼす金属のコンタミネーション(以下において「金属異物」と表すことがある。)が少ない粒子を低コストで製造できる点からは、有機粒子が好ましい。
 無機粒子としては、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化チタン、BaTiO、ZrO、アルミナ-シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化硼素等の窒化物粒子;シリコーン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイトなどの粘土微粒子等が用いられる。これらの粒子は必要に応じて元素置換、表面処理、固溶体化等されていてもよく、また単独でも2種以上の組合せからなるものでもよい。これらの中でも電解液中での安定性と電位安定性の観点から酸化物粒子であることが好ましい。
 有機粒子としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、ポリアミド、ポリアミドイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子粒子や、ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子粒子などが例示できる。また、これらの有機粒子を構成する有機樹脂(高分子)は、前記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(前記の耐熱性高分子の場合)であってもよい。
 また、カーボンブラック、グラファイト、SnO、ITO、金属粉末などの導電性金属及び導電性を有する化合物や酸化物の微粉末の表面を、非電気伝導性の物質で表面処理することによって、電気絶縁性を持たせて使用することも可能である。これらの非電気伝導性粒子は、2種以上併用して用いてもよい。
 本発明においては、非導電性粒子として、金属異物の含有量が100ppm以下のものを用いることが好ましい。金属異物または金属イオンが多く含まれる非導電性粒子を用いると、後述する多孔膜用スラリー中において、前記金属異物又は金属イオンが溶出し、これが多孔膜用スラリー中のポリマーとイオン架橋を起こし、多孔膜用スラリーが凝集し結果として多孔膜の多孔性が下がる。そのため、該多孔膜を用いた二次電池のレート特性(出力特性)が悪化する恐れがある。前記金属としては、特にイオン化しやすいFe、NiおよびCr等の含有が最も好ましくない。従って、非導電性粒子中の金属含有量としては好ましくは100ppm以下、更に好ましくは50ppm以下である。上記含有量が少ないほど電池特性の劣化が起こりにくくなる。ここでいう「金属異物」とは、非導電性粒子以外の金属単体を意味する。非導電性粒子中の金属異物の含有量は、ICP(Inductively Coupled Plasma)を用いて測定することができる。
 本発明に用いる非導電性粒子の体積平均粒子径(D50、以下において「50%体積累積径」と表すことがある。)は、好ましくは5nm~10μm、より好ましくは10nm~5μm、特に好ましくは100nm~2μmである。非導電性粒子の体積平均粒子径を前記範囲とすることにより、後述する多孔膜用スラリーの分散状態の制御がしやすくなるため、均質な所定厚みの多孔膜の製造が容易になる。また、多孔膜中の粒子充填率が高くなることを抑制することができるため、多孔膜中のイオン伝導性が低下することを抑制することができる。さらにまた、本発明の多孔膜を薄く形成することができる。非導電性粒子の体積平均粒子径を、200nm~2μmの範囲にすると、分散、塗布の容易さ、空隙のコントロール性に優れるので特に好ましい。
 また、本発明に用いる非導電性粒子のBET比表面積は、非導電性粒子の凝集を抑制し、後述する多孔膜用スラリーの流動性を好適化する観点から具体的には、0.9~200m/gであることが好ましく、1.5~150m/gであることがより好ましい。
 非導電性粒子が有機粒子である場合、該有機粒子は高い耐熱性を有することが、多孔膜に耐熱性を付与し、二次電池の安定性を向上させる観点から好ましい。具体的には、熱天秤分析において昇温速度10℃/分で加熱したときに10重量%減量する温度が、好ましくは250℃以上、より好ましくは300℃以上、特に好ましくは350℃以上である。一方、当該温度の上限は特に制限されないが、例えば450℃以下とすることができる。
 非導電性粒子の粒子径分布(CV値)は、好ましくは0.5~40%、より好ましくは0.5~30%、特に好ましくは0.5~20%である。非導電性粒子の粒子径分布を前記範囲とすることにより、非導電性粒子間において所定の空隙を保つことができるため、本発明の二次電池中においてリチウムの移動を阻害し抵抗が増大することを抑制することができる。なお、非導電性粒子の粒子径分布(CV値)は、非導電性粒子の電子顕微鏡観察を行い、200個以上の粒子について粒子径を測定し、平均粒子径および粒子径の標準偏差を求め、(粒子径の標準偏差)/(平均粒子径)を算出して求めることができる。CV値が大きいほど、粒子径のバラツキが大きいことを意味する。
 本発明に用いる非導電性粒子の形状は、球状、針状、棒状、紡錘状、板状、鱗片状等特に限定されないが、球状、針状、紡錘状、板状、鱗片状が好ましい。また、非導電性粒子として、多孔性粒子を使用することもできる。
 特に板状の非導電性粒子又は鱗片状の非導電性粒子を用いることで、電池の耐衝撃性、長期寿命特性が改善されることがある。板状の非導電性粒子又は鱗片状の非導電性粒子の一般的な材質、物性等は、上述した非導電性粒子と同様である。
 板状非導電性粒子又は鱗片状非導電性粒子の平均粒子径は、0.1~20μm、好ましくは0.2~15μm、さらに好ましくは0.5~10μmの範囲にある。非導電性粒子の平均粒子径が上記範囲にあることで、多孔膜用スラリーの分散状態の制御がしやすくなるため、均質な所定厚みの多孔膜の製造が容易になる。さらに、バインダーとの接着性が向上し、多孔膜を巻回した場合であっても非導電性粒子の剥落が防止され、多孔膜を薄膜化しても十分な安全性を達成しうる。また、多孔膜中の粒子充填率が高くなることを抑制することができるため、多孔膜中のイオン伝導性が低下することを抑制することができる。さらにまた、本発明の多孔膜を薄く形成することができる。
 なお、板状非導電性粒子又は鱗片状の非導電性粒子の平均粒子径は、SEM(走査電子顕微鏡)画像から、任意の視野において50個の一次粒子を任意に選択し、画像解析を行い、各粒子の円相当径の平均値として求めた。
 また、板状非導電性粒子は、アスペクト比3~100の範囲にある粒子の割合が個数基準で全粒子の50%以上であり、好ましくはアスペクト比5~80の範囲にある粒子の割合が個数基準で全粒子の50%以上であり、さらに好ましくはアスペクト比10~60の範囲にある粒子の割合が個数基準で全粒子の50%以上である。
 アスペクト比が上記範囲にある板状、異形ないし扁平粒子を多孔膜中に配向して存在するため、リチウムデンドライトなどの針状物の成長が非導電性粒子により阻止され、リチウムデンドライトが多孔膜を貫通することもなく、短絡を有効に防止しうる。
 なお、板状非導電性粒子又は鱗片状非導電性粒子のアスペクト比は、上記平均粒子径と同様に、SEM(走査電子顕微鏡)画像から、任意の視野において全体像を観察できる50個の一次粒子を任意に選択し、画像解析を行い、長軸径および短軸径から求めることができる。
 板状非導電性粒子又は鱗片状非導電性粒子は、多孔質膜中において、非導電性粒子を、その平板面が多孔質膜の面にほぼ平行となるように配向させることが好ましく、このような多孔質膜を使用することで、電池の短絡の発生をより良好に抑制できる。これは、非導電性粒子を前記のように配向させることで、非導電性粒子同士が平板面の一部で重なるように配置されるため、多孔質膜の片面から他面に向かう空隙(貫通孔)が、直線ではなく曲折した形で形成される(すなわち、曲路率が大きくなる)と考えられ、これにより、リチウムデンドライトが多孔膜を貫通することを防止でき、短絡の発生がより良好に抑制されるものと推測される。
 板状非導電性粒子又は鱗片状非導電性粒子としては、前述したような各種の無機粒子や有機粒子を使用することができる。
 好ましく用いられる板状粒子又は鱗片状粒子としては、各種市販品が挙げられ、例えば、旭硝子エスアイテック社製「サンラブリー」(SiO)、石原産業社製「NST-B1」の粉砕品(TiO)、堺化学工業社製の板状硫酸バリウム「Hシリーズ」、「HLシリーズ」、林化成社製「ミクロンホワイト」(タルク)、林化成社製「ベンゲル」(ベントナイト)、河合石灰社製「BMM」や「BMT」(ベーマイト)、河合石灰社製「セラシュールBMT-B」[アルミナ(Al)]、キンセイマテック社製「セラフ」(アルミナ)、斐川鉱業社製「斐川マイカ Z-20」(セリサイト)などが入手可能である。この他、SiO、Al、ZrOについては、特開2003-206475号公報に開示の方法により作製することができる。
 板状非導電性粒子又は鱗片状非導電性粒子は、前述したように、アスペクト比3~100の範囲にある粒子の割合が、全粒子の個数基準で50%以上である。50%未満の割合で含まれていても良い他の非導電性粒子の形状は特に限定はされず、球状であってもよく、またアスペクト比が3未満または100超の粒子であってもよい。他の非導電性粒子は、無機粒子であっても、有機粒子であってもよい。なお、アスペクト比3~100の非導電性粒子として無機粒子を使用する場合には、他の非導電性粒子も無機粒子であることが好ましく、同様に、アスペクト比3~100の非導電性粒子として有機粒子を使用する場合には、他の非導電性粒子も有機粒子であることが好ましい。他の非導電性粒子として使用することができる無機粒子および有機粒子の具体例は、アスペクト比を除けば、前記非導電性粒子と同様である。
 多孔膜中における非導電性粒子の含有量は、好ましくは70~97質量%、より好ましくは75~97質量%、特に好ましくは80~97質量%である。多孔膜中における非導電性粒子の含有量を、前記範囲とすることにより、高い熱安定性を示す多孔膜を得ることができる。また、非導電性粒子の多孔膜からの脱離(粉落ち)を抑制することができるため、高い強度を示す多孔膜を得ることができる。
(その他の添加物)
 本発明の多孔膜には、イソチアゾリン系化合物が含まれていてもよい。イソチアゾリン系化合物を含有することで、菌類の繁殖を抑制することができるため、該多孔膜を形成するための多孔膜用スラリーにおける異臭の発生や該スラリーの増粘を防ぐことができ、長期保存安定性に優れる。
 本発明の多孔膜には、キレート化合物が含まれていてもよい。キレート化合物を添加することで、多孔膜を用いた二次電池の充放電時に電解液中に溶出する遷移金属イオンを捕捉することができるため、遷移金属イオンに起因した二次電池のサイクル特性と安全性の低下を防ぐことができる。
 また、多孔膜には、ピリチオン化合物が含まれていてもよい。ピリチオン化合物はアルカリ性でも安定である為、イソチアゾリン系化合物と併用使用することにより、アルカリ性条件下においても、防腐性能効果を延長でき、相乗効果により高い抗菌効果が得ることができる。
 多孔膜用スラリーには、上記成分のほかに、さらに任意の成分が含まれていてもよい。かかる任意の成分としては、分散剤、レベリング剤、酸化防止剤、上記バインダー以外の結着剤、増粘剤、消泡剤や、電解液分解抑制等の機能を有する電解液添加剤等の成分を挙げることができる。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は用いる非導電性粒子に応じて選択される。多孔膜中の分散剤の含有割合は、電池特性に影響が及ばない範囲が好ましく、具体的には10重量%以下である。
 レベリング剤としてはアルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。前記界面活性剤を混合することにより、本発明の多孔膜用スラリーを所定の基材に塗工する際に発生するはじきを防止し、電極の平滑性を向上させることができる。
 酸化防止剤としてはフェノール化合物、ハイドロキノン化合物、有機リン化合物、硫黄化合物、フェニレンジアミン化合物、ポリマー型フェノール化合物等が挙げられる。ポリマー型フェノール化合物は、分子内にフェノール構造を有する重合体であり、重量平均分子量が200~1000、好ましくは600~700のポリマー型フェノール化合物が好ましく用いられる。
 上記バインダー以外の結着剤としては、後述の電極用結着剤に使用されるポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体、軟質重合体などを用いることができる。
 増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル-ブタジエン共重合体水素化物などが挙げられる。増粘剤の使用量がこの範囲であると、本発明の多孔膜用スラリーの塗工性や、本発明の多孔膜と後述する電極活物質層やセパレータとの密着性が良好である。上記において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味し、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。
 消泡剤としては、金属石鹸類、ポリシロキサン類、ポリエーテル類、高級アルコール類、パーフルオロアルキル類などが用いられる。消泡剤を混合することにより、結着剤の消泡工程を短縮することができる。
 電解液添加剤は、後述する合剤スラリー中及び電解液中に使用されるビニレンカーボネートなどを用いることができる。電解液添加剤を混合することにより、電池のサイクル寿命が優れる。
 その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子が挙げられる。前記ナノ微粒子を混合することにより多孔膜形成用スラリーのチキソ性をコントロールすることができ、さらにそれにより得られる多孔膜のレベリング性を向上させることができる。
 前記任意の成分の多孔膜中の含有割合は、電池特性に影響が及ばない範囲が好ましく、具体的には各成分10重量%以下であり、任意の成分の含有割合の合計が、40重量%以下、より好ましくは20重量%以下である。ただし、非導電性粒子、前記所定のバインダー、及び任意の成分(但し結着剤を除く)の合計が100重量%に満たない場合は、任意成分としての結着剤の含有割合を適宜増量してもよい。
(多孔膜用スラリー)
 本発明の多孔膜は、上述したバインダーと、非導電性粒子と、必要に応じ添加される各成分、適当な分散媒とを含んでなる二次電池多孔膜用スラリー(多孔膜用スラリー)を所定の基材上に塗布・乾燥して得られる。
 本発明の多孔膜用スラリーは、前記の二次電池多孔膜を形成するためのスラリーであり、固形分として上記のバインダー、非導電性粒子、後述する分散媒に均一に分散したものである。分散媒としては、固形分(バインダー、非導電性粒子及び任意の成分)を均一に分散し得るものであれば特に制限されない。
 多孔膜用スラリーに用いる分散媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、エチルシクロヘキサンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素系脂肪族炭化水素;芳酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類があげられる。
 これらの分散媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、非導電性粒子の分散性にすぐれ、沸点が低く揮発性の高い分散媒が、短時間でかつ低温で除去できるので好ましい。具体的には、アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN-メチルピロリドン、またはこれらの混合溶媒が好ましい。
 多孔膜用スラリーの固形分濃度は、該スラリーの塗布、浸漬が可能な程度でかつ、流動性を有する粘度になる限り特に限定はされないが、一般的には10~50重量%程度である。
 固形分以外の成分は、乾燥の工程により揮発する成分であり、前記溶媒に加え、例えば、非導電性粒子及びバインダーの調製及び添加に際しこれらを溶解または分散させていた媒質をも含む。
 本発明の多孔膜用スラリーは、本発明の多孔膜を形成するためのものであるので、多孔膜用スラリーの固形分全量中の、バインダー及び非導電性粒子の含有割合は、当然ながら、本発明の多孔膜について上述した通りとされる。即ち、バインダーの含有割合は、好ましくは0.5~15質量%、非導電性粒子の含有割合は、好ましくは70~97質量%である。
 多孔膜用スラリーの製造方法は、特に限定はされず、上記のバインダー、非導電性粒子、分散媒及び必要に応じ添加される任意の成分を混合して得られる。
 本発明においては上記成分を用いることにより混合方法や混合順序にかかわらず、非導電性粒子が高度に分散された多孔膜用スラリーを得ることができる。混合装置は、上記成分を均一に混合できる装置であれば特に限定されず、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどを使用することができるが、中でも高い分散シェアを加えることができる、ビーズミル、ロールミル、フィルミックス等の高分散装置を使用することが特に好ましい。
 多孔膜用スラリーの粘度は、均一塗工性、スラリー経時安定性の観点から、好ましくは10~10,000mPa・s、更に好ましくは50~500mPa・sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
(多孔膜の製造方法)
 本発明の多孔膜を製造する方法としては、(I)上記のバインダー、非導電性粒子、前記任意の成分及び分散媒を含む多孔膜用スラリーを所定の基材(正極、負極またはセパレータ)上に塗布し、次いで乾燥する方法;(II)上記の多孔膜用スラリーを基材(正極、負極またはセパレータ)に浸漬後、これを乾燥する方法;(III)上記の多孔膜用スラリーを、剥離フィルム上に塗布、成膜し、得られた多孔膜を所定の基材(正極、負極またはセパレータ)上に転写する方法;が挙げられる。この中でも、(I)多孔膜用スラリーを基材(正極、負極またはセパレータ)に塗布し、次いで乾燥する方法が、多孔膜の膜厚を制御しやすいことから最も好ましい。
 本発明の多孔膜は、前述の(I)~(III)の方法で製造されるが、その詳細な製造方法を以下に説明する。
 (I)の方法では、多孔膜用スラリーを、所定の基材(正極、負極またはセパレータ)上に塗布し、乾燥することで本発明の多孔膜は製造される。
 該スラリーを基材上に塗布する方法は特に制限されず、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。中でも、均一な多孔膜が得られる点でグラビア法が好ましい。
 乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥温度は、使用する溶媒の種類によって変えることができる。溶媒を完全に除去するために、例えば、N-メチルピロリドン等の揮発性の低い溶媒を用いる場合には送風式の乾燥機で120℃以上の高温で乾燥させることが好ましい。逆に揮発性の高い溶媒を用いる場合には100℃以下の低温において乾燥させることもできる。多孔膜を後述するセパレータ上に形成する際は、セパレータの収縮を起こさずに乾燥させることが必要の為、100℃以下の低温での乾燥が好ましい。
 (II)の方法では、多孔膜用スラリーを基材(正極、負極またはセパレータ)に浸漬し、乾燥することで本発明の多孔膜は製造される。該スラリーを基材に浸漬する方法は特に制限されず、例えば、ディップコーター等でディップコーティングすることで浸漬することができる。
 乾燥方法としては、上述の(I)の方法での乾燥方法と同じ方法が挙げられる。
 (III)の方法では、多孔膜用スラリーを剥離フィルム上に塗布、成膜し、剥離フィルム上に形成された多孔膜を製造する。次いで、得られた多孔膜を基材(正極、負極またはセパレータ)上に転写することで本発明の多孔膜は製造される。
 塗布方法としては、上述の(I)の方法での塗布方法と同じ方法が挙げられる。転写方法は特に限定されない。
 (I)~(III)の方法で得られた多孔膜は、次いで、必要に応じ、金型プレスやロールプレスなどを用い、加圧処理により基材(正極、負極またはセパレータ)と多孔膜との密着性を向上させることもできる。ただし、この際、過度に加圧処理を行うと、多孔膜の空隙率が損なわれることがあるため、圧力および加圧時間を適宜に制御する。
 多孔膜の膜厚は、特に限定はされず、多孔膜の用途あるいは適用分野に応じて適宜に設定されるが、薄すぎると均一な膜を形成できず、逆に厚すぎると電池内での体積(重量)あたりの容量(capacity)が減ることから、0.5~50μmが好ましく、0.5~10μmがより好ましい。
 本発明の多孔膜は、基材(正極、負極またはセパレータ)の表面に成膜され、後述する電極活物質層の保護膜あるいはセパレータとして特に好ましく用いられる。本発明の多孔膜は、二次電池の正極、負極またはセパレータの何れの表面に成膜されてもよく、正極、負極およびセパレータの全てに成膜されてもよい。
(二次電池)
 本発明の二次電池は、正極、負極、セパレータ及び電解液を含み、正極、負極及びセパレータのいずれかに、上述の多孔膜が積層されてなる。
 二次電池としては、リチウムイオン二次電池やニッケル水素二次電池等が挙げられるが、安全性向上が最も求められており多孔膜導入効果が最も高いこと、加えてレート特性向上が課題として挙げられていることからリチウムイオン二次電池が好ましい。以下、リチウムイオン二次電池に使用する場合について説明する。
(正極および負極)
 正極、負極は、一般に、電極活物質を必須成分として含む電極活物質層が、集電体に付着してなる。
<電極活物質>
 リチウムイオン二次電池用電極に用いられる電極活物質は、電解質中で電位をかける事により可逆的にリチウムイオンを挿入放出できるものであればよく、無機化合物でも有機化合物でも用いることができる。
 リチウムイオン二次電池正極用の電極活物質(正極活物質)は、無機化合物からなるものと有機化合物からなるものとに大別される。無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。
 リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。正極活物質の粒子径は、電池の任意の構成要件との兼ね合いで適宜選択されるが、レート特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常0.1~50μm、好ましくは1~20μmである。50%体積累積径がこの範囲であると、充放電容量が大きい二次電池を得ることができ、かつ後述する合剤スラリーおよび電極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。
 リチウムイオン二次電池負極用の電極活物質(負極活物質)としては、たとえば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性高分子化合物などがあげられる。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩が用いられる。加えて、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコーン等を使用できる。電極活物質は、機械的改質法により表面に導電付与材を付着させたものも使用できる。負極活物質の粒径は、電池の他の構成要件との兼ね合いで適宜選択されるが、初期効率、レート特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常1~50μm、好ましくは15~30μmである。
<活物質層用結着剤>
 本発明において、電極活物質層は電極活物質の他に、結着剤(以下、「活物質層用結着剤」と記載することがある。)を含む。活物質層用結着剤を含むことにより電極中の電極活物質層の結着性が向上し、電極の捲回時等の工程上においてかかる機械的な力に対する強度が上がり、また電極中の電極活物質層が脱離しにくくなることから、脱離物による短絡等の危険性が小さくなる。
 活物質層用結着剤としては様々な樹脂成分を用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、本発明の多孔膜に用いるバインダーを活物質層用結着剤として用いることもできる。
 更に、下に例示する軟質重合体も活物質層用結着剤として使用することができる。
 ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体、ブチルアクリレート・アクリロニトリル共重合体、ブチルアクリレート・アクリロニトリル・グリシジルメタクリレート共重合体などの、アクリル酸またはメタクリル酸誘導体の単独重合体またはそれと共重合可能な単量体との共重合体である、アクリル系軟質重合体;
 ポリイソブチレン、イソブチレン・イソプレンゴム、イソブチレン・スチレン共重合体などのイソブチレン系軟質重合体;
 ポリブタジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ブタジエン・スチレン・ブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体などジエン系軟質重合体;
 ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサンなどのケイ素含有軟質重合体;
 液状ポリエチレン、ポリプロピレン、ポリ-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;
 ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などビニル系軟質重合体;
 ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;
 フッ化ビニリデン系ゴム、四フッ化エチレン-プロピレンゴムなどのフッ素含有軟質重合体;
 天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体などが挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性により官能基を導入したものであってもよい。
 電極活物質層における活物質層用結着剤の量は、電極活物質100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~4質量部、特に好ましくは0.5~3質量部である。電極活物質層における活物質層用結着剤量が前記範囲であることにより、電池反応を阻害せずに、電極から活物質が脱離するのを防ぐことができる。
 活物質層用結着剤は、電極を作製するために溶液もしくは分散液として調製される。その時の粘度は、通常1~300,000mPa・sの範囲、好ましくは50~10,000mPa・sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
<その他の任意の添加剤>
 本発明において、電極活物質層には、上記の電極活物質と活物質層用結着剤の他に、導電性付与材や補強材などの任意の添加剤を含有していてもよい。導電付与材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンを使用することができる。黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。導電性付与材を用いることにより電極活物質同士の電気的接触を向上させることができ、リチウムイオン二次電池に用いる場合に放電レート特性を改善することができる。導電性付与材や補強材の使用量は、電極活物質100質量部に対して通常0~20質量部、好ましくは1~10質量部である。また、本発明に用いるイソチアゾリン系化合物やキレート化合物を、電極活物質層中に含んでもよい。
<電極活物質層の形成>
 電極活物質層は、電極活物質、活物質層用結着剤及び溶媒を含むスラリー(以下、「合剤スラリー」と呼ぶことがある。)を集電体に付着させて形成することができる。
 溶媒としては、活物質層用結着剤を溶解または粒子状に分散するものであればよい。
 合剤スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;エチルメチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類;メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類があげられる。これらの溶媒は、単独または2種以上を混合して、乾燥速度や環境上の観点から適宜選択して用いることができる。
 合剤スラリーには、さらに増粘剤などの各種の機能を発現する添加剤を含有させることができる。増粘剤としては、合剤スラリーに用いる溶媒に可溶な重合体が用いられる。具体的には、本発明の多孔膜で例示した増粘剤を用いることができる。増粘剤の使用量は、電極活物質100質量部に対して、0.5~1.5質量部が好ましい。増粘剤の使用量が前記範囲であると、合剤スラリーの塗工性及び集電体との密着性が良好である。
 さらに、合剤スラリーには、上記成分の他に、電池の安定性や寿命を高めるため、トリフルオロプロピレンカーボネート、ビニレンカーボネート、カテコールカーボネート、1,6-ジオキサスピロ[4,4]ノナン-2,7-ジオン、12-クラウン-4-エーテル等が使用できる。また、これらは後述する電解液に含有せしめて用いてもよい。
 合剤スラリーにおける溶媒の量は、電極活物質や活物質層用結着剤などの種類に応じ、塗工に好適な粘度になるように調整して用いる。具体的には、合剤スラリー中の、電極活物質、活物質層用結着剤および導電性付与材などの任意の添加剤を合わせた固形分の濃度が、好ましくは30~90質量%、より好ましくは40~80質量%となる量に調整して用いられる。
 合剤スラリーは、電極活物質、活物質層用結着剤、必要に応じて添加される導電性付与材などの任意の添加剤、および溶媒を、混合機を用いて混合して得られる。混合は、上記の各成分を一括して混合機に供給し、混合してもよい。合剤スラリーの構成成分として、電極活物質、活物質層用結着剤、導電性付与材及び増粘剤を用いる場合には、導電性付与材および増粘剤を溶媒中で混合して導電性付与材を微粒子状に分散させ、次いで活物質層用結着剤、電極活物質を添加してさらに混合することがスラリーの分散性が向上するので好ましい。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができるが、ボールミルを用いると導電性付与材や電極活物質の凝集を抑制できるので好ましい。
 合剤スラリーの粒度は、好ましくは35μm以下であり、さらに好ましくは25μm以下である。スラリーの粒度が上記範囲にあると、導電性付与材の分散性が高く、均質な電極が得られる。
 集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、リチウムイオン二次電池の正極用としてはアルミニウムが特に好ましく、リチウムイオン二次電池の負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、合剤の接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、電極合剤層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
 電極活物質層の製造方法は、前記集電体の少なくとも片面、好ましくは両面に電極活物質層を層状に結着させる方法であればよい。例えば、前記合剤スラリーを集電体に塗布、乾燥し、次いで、120℃以上で1時間以上加熱処理して電極活物質層を形成する。合剤スラリーを集電体へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。
 次いで、金型プレスやロールプレスなどを用い、加圧処理により電極活物質層の空隙率を低くすることが好ましい。空隙率の好ましい範囲は5~15%、より好ましくは7~13%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量が得難かったり、電極活物質層が剥がれ易く不良を発生し易いといった問題を生じる。さらに、硬化性の重合体を用いる場合は、硬化させることが好ましい。
 電極活物質層の厚みは、正極、負極とも、通常5~300μmであり、好ましくは10~250μmである。
(セパレータ)
 リチウムイオン二次電池用セパレータとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や芳香族ポリアミド樹脂を含んでなるセパレータなどの公知のものが用いられる。
 本発明に用いるセパレータとしては、電子伝導性がなくイオン伝導性があり、有機溶媒の耐性が高い、孔径の微細な多孔質膜が用いられ、例えばポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜またはポリオレフィン系の繊維を織ったもの、またはその不織布、絶縁性物質粒子の集合体等が挙げられる。これらの中でも、前述の多孔膜用スラリーの塗工性が優れ、セパレータ全体の膜厚を薄くし電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
 セパレータの厚さは、通常0.5~40μm、好ましくは1~30μm、更に好ましくは1~10μmである。この範囲であると電池内でのセパレータによる抵抗が小さくなる。また、前述の多孔膜用スラリーをセパレータに塗工する際の作業性が良い。
 本発明において、セパレータの材料として用いるポリオレフィン系の樹脂としては、ポリエチレン、ポリプロピレン等のホモポリマー、コポリマー、更にはこれらの混合物が挙げられる。ポリエチレンとしては、低密度、中密度、高密度のポリエチレンが挙げられ、突き刺し強度や機械的な強度の観点から、高密度のポリエチレンが好ましい。また、これらのポリエチレンは柔軟性を付与する目的から2種以上を混合しても良い。これらポリエチレンに用いる重合触媒も特に制限はなく、チーグラー・ナッタ系触媒やフィリップス系触媒やメタロセン系触媒などが挙げられる。機械強度と高透過性を両立させる観点から、ポリエチレンの粘度平均分子量は10万以上1200万以下が好ましく、より好ましくは20万以上300万以下である。ポリプロピレンとしては、ホモポリマー、ランダムコポリマー、ブロックコポリマーが挙げられ、一種類または二種類以上を混合して使用することができる。また重合触媒も特に制限はなく、チーグラー・ナッタ系触媒やメタロセン系触媒などが挙げられる。また立体規則性にも特に制限はなく、アイソタクチックやシンジオタクチックやアタクチックを使用することができるが、安価である点からアイソタクチックポリプロピレンを使用するのが望ましい。さらに本発明の効果を損なわない範囲で、ポリオレフィンにはポリエチレン或いはポリプロピレン以外のポリオレフィン及び酸化防止剤、核剤などの添加剤を適量添加してもよい。
 ポリオレフィン系のセパレータを作製する方法としては、公知公用のものが用いられ、例えば、ポリプロピレン、ポリエチレンを溶融押し出しフィルム製膜した後に、低温でアニーリングさせ結晶ドメインを成長させて、この状態で延伸を行い非晶領域を延ばす事で微多孔膜を形成する乾式方法;炭化水素溶媒やその他低分子材料とポリプロピレン、ポリエチレンを混合した後に、フィルム形成させて、次いで、非晶相に溶媒や低分子が集まり島相を形成し始めたフィルムを、この溶媒や低分子を他の揮発し易い溶媒を用いて除去する事で微多孔膜が形成される湿式方法;などが選ばれる。この中でも、抵抗を下げる目的で、大きな空隙を得やすい点で、乾式方法が好ましい。
 本発明に用いるセパレータは、強度や硬度、熱収縮率を制御する目的で、任意のフィラーや繊維化合物を含んでもよい。また、本発明の多孔膜を積層する場合に、セパレータと多孔膜との密着性を向上させたり、電解液に対する表面張力を下げて液の含浸性を向上させる目的で、あらかじめ低分子化合物や高分子化合物で被覆処理したり、紫外線などの電磁線処理、コロナ放電・プラズマガスなどのプラズマ処理を行ってもよい。特に、電解液の含浸性が高く前記多孔膜との密着性を得やすい点から、カルボン酸基、水酸基及びスルホン酸基などの極性基を含有する高分子化合物で被覆処理するのが好ましい。
(電解液)
 電解液としては、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、リチウム塩が用いられる。リチウム塩としては、特に制限はないが、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。これらは、二種以上を併用してもよい。解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;が好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 電解液中における支持電解質の濃度は、通常1~30質量%、好ましくは5~20質量%である。また、支持電解質の種類に応じて、通常0.5~2.5モル/Lの濃度で用いられる。支持電解質の濃度が低すぎても高すぎてもイオン導電度は低下する傾向にある。用いる電解液の濃度が低いほど重合体粒子の膨潤度が大きくなるので、電解液の濃度によりリチウムイオン伝導度を調節することができる。
(二次電池の製造方法)
 リチウムイオン二次電池の具体的な製造方法としては、正極と負極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。本発明の多孔膜は、正極、負極、及びセパレータのいずれかに形成されてなる。本発明の多孔膜を、正極、負極、セパレータに形成する方法は、上述した(I)または(II)の方法の通りである。また、上述の(III)の方法の通り、独立で多孔膜のみを正極、負極またはセパレータに積層することも可能である。必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
 本発明の二次電池においては、本発明の多孔膜を、正極又は負極の電極活物質層表面に形成することが好ましい。本発明の多孔膜を電極活物質層表面に形成することにより、セパレータが熱による収縮を起こしても、正極・負極間の短絡を起こすことがなく、高い安全性が保たれる。加えて、本発明の多孔膜を電極活物質層表面に形成することにより、セパレータがなくても、多孔膜がセパレータとしての機能を果たすことができ、低コストで二次電池の作製が可能になる。また、セパレータを用いた場合においても、セパレータ表面に形成されている孔を埋めることがないため、より高いレート特性を発現することができる。
(実施例)
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。実施例および比較例において、各種物性は以下のように評価する。
<多孔膜用スラリー特性:分散性>
 直径1cmの試験管内に高さ5cmまで多孔膜用スラリーを入れ、試験サンプルとする。1種の試料の測定につき5本の試験サンプルを調製する。前記試験サンプルを机上に垂直に設置する。設置した多孔膜用スラリーの状態を10日間観測し、下記の基準により判定する。5本のサンプルでの沈降に有するまでにかかる時間・日数(平均沈降所要時間(日数)という)をそれぞれもとめ、それらの平均沈降所要時間(日数)を沈降が見られた日とする。2相分離が見られないほど分散性に優れることを示す。
A:10日後にも2相分離がみられない。
B:6~10日後に2相分離がみられる。
C:2~5日後に2相分離がみられる。
D:1日後に2相分離がみられる。
E:3時間以内に2相分離が見られる。
<多孔膜付セパレータの信頼性試験>
 多孔膜付セパレータを直径19mmの円形に打ち抜き、非イオン性界面活性剤(花王社製;エマルゲン210P)の3重量%メタノール溶液中に浸漬して風乾した。この円形のセパレータに電解液を含浸させ、一対の円形のSUS板(直径15.5mm)に挟み、(SUS板)/(円形のセパレータ)/(SUS板)という構成に重ね合わせた。ここで電解液はエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。振幅10mV、1kHzの周波数の交流を印加しながら、昇温速度1.6℃/分で200℃まで昇温させ、この間のセル抵抗を測定することで短絡の発生状況を確認した。本試験では温度上昇と共にシャットダウンにより抵抗値が上昇し少なくとも1000Ω/cm以上になる。その後、10Ω/cm以下まで急激に低下した場合に短絡が発生したものとした。尚、この試験を20回行ない、評価は下記の基準で評価した。短絡発生数が少ないほど信頼性に優れることを示す。
 (評価基準)
 A:短絡発生数0個
 B:短絡発生数1個
 C:短絡発生数2~3個
 D:短絡発生数4個以上
 <多孔膜付電極の信頼性試験>
 セパレータ(単層のポリプロピレン製セパレータ、気孔率55%、厚さ25μm、実施例1で「有機セパレータ層」として用いられているものと同じ)を直径19mmの円形に打ち抜き、非イオン性界面活性剤(花王社製;エマルゲン210P)の3重量%メタノール溶液中に浸漬して風乾した。一方、測定対象の電極を直径19mmの円形に打ち抜いた。これらに電解液を含浸させ、これらを重ねて、一対の円形のSUS板(直径15.5mm)に挟み、(SUS板)/(円形のセパレータ)/(円形の電極)/(SUS板)という構成に重ね合わせた。円形の電極は、その多孔膜側の面がセパレータ側となるよう配置した。ここで電解液はエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。振幅10mV、1kHzの周波数の交流を印加しながら、昇温速度1.6℃/分で200℃まで昇温させ、この間のセル抵抗を測定することで短絡の発生状況を確認した。本試験では温度上昇と共にシャットダウンにより抵抗値が上昇し少なくとも1000Ω/cm以上になる。その後、10Ω/cm以下まで急激に低下した場合に短絡が発生したものとした。尚、この試験を20回行ない、評価は下記の基準で評価した。短絡発生数が少ないほど信頼性に優れることを示す。
 (評価基準)
 A:短絡発生数0個
 B:短絡発生数1個
 C:短絡発生数2~3個
 D:短絡発生数4個以上
 <二次電池電極(多孔膜付電極)の粉落ち性>
 二次電池電極(多孔膜付電極)を5cm角で切り出して、500mlのガラス瓶に入れ、しんとう機で300rpmにて3時間しんとうさせた。落ちた粉の質量をa、しんとう前の二次電池電極の質量をb、多孔膜を積層する前の電極の質量をc、多孔膜を積層していない電極のみをしんとうさせた際の落ちた粉の質量をdとし、落ちた粉の比率X[質量%]を下記式で計算し、以下の基準で評価した。落ちた粉の比率Xが小さいほど、粉落ち防止効果に優れることを示す。
 X=(a-d)/(b-c-a)×100 [質量%]
(評価基準)
 A:2質量%未満
 B:2質量%以上5質量%未満
 C:5質量%以上
<二次電池セパレーター(多孔膜付有機セパレーター)の粉落ち性>
 二次電池セパレーター(多孔膜付有機セパレーター)を5cm角で切り出して、500mlのガラス瓶に入れ、しんとう機で300rpmにて3時間しんとうさせた。しんとう前の二次電池セパレーターの質量をa、しんとう後の二次電池セパレーターの質量をbとし、落ちた粉の比率X[質量%]を下記式で計算し、以下の基準で評価した。落ちた粉の比率Xが小さいほど、粉落ち防止効果に優れることを示す。
 X=(a-b)/a×100 [質量%]
(評価基準)
A:1質量%未満
B:1質量%以上3質量%未満
C:3質量%以上5質量%未満
D:5質量%以上10質量%未満
E:10質量%以上15質量%未満
F:15質量%以上
<二次電池の高温サイクル特性>
 フルセルコイン型のリチウムイオン二次電池について、60℃で0.1Cで3Vから4.3Vまで充電し、次いで0.1Cで4.3Vから3Vまで放電する充放電を、50サイクル繰り返し、5サイクル目の0.1C放電容量に対する50サイクル目の0.1C放電容量の割合を百分率で算出した値を容量維持率とし、下記の基準で判断した。この値が大きいほど放電容量の低下が少なく、高温特性に優れている。
A:90%以上
B:80%以上90%未満
C:70%以上80%未満
D:60%以上70%未満
E:60%未満
<ヨウ素価の測定>
 多孔膜用バインダーの水分散液100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥した。乾燥した重合体のヨウ素価をJIS K6235;2006に従って測定した。ヨウ素価が小さいほど、炭素-炭素不飽和結合が少ないことを示す。
(非導電性粒子の製造)
 <1-1.シードポリマー粒子Aの製造>
 撹拌機を備えた反応器に、スチレン100部、ドデシルベンゼンスルホン酸ナトリウム1.0部、イオン交換水100部、及び過硫酸カリウム0.5部を入れ、80℃で8時間重合させた。
 これにより、平均粒子径60nmのシードポリマー粒子Aの水分散体を得た。
 <1-2.シードポリマー粒子Bの製造>
 撹拌機を備えた反応器に、工程(1-1)で得たシードポリマー粒子A水分散体を固形分基準(即ちシードポリマー粒子A重量基準)で2部、ドデシルベンゼンスルホン酸ナトリウムを0.2部、過硫酸カリウムを0.5部、及びイオン交換水を100部入れて混合し混合物Aとし、80℃に昇温した。一方、別の容器中でスチレン97部、メタクリル酸3部、t-ドデシルメルカプタン4部、ドデシルベンゼンスルホン酸ナトリウム0.5部、及びイオン交換水100部を混合して、単量体混合物1の分散体を調製した。この単量体混合物1の分散体を、4時間かけて、上で得た混合物A中に、連続的に添加して重合させた。単量体混合物1の分散体の連続的な添加中の反応系の温度は80℃に維持し、反応を行った。連続的な添加の終了後、さらに90℃で3時間反応を継続させた。
 これにより、平均粒子径200nmのシードポリマー粒子Bの水分散体を得た。
 <1-3.非導電性粒子の製造>
 次に、撹拌機を備えた反応器に、工程(1-2)で得たシードポリマー粒子Bの水分散体を固形分基準(即ちシードポリマー粒子B重量基準)で10部、単量体混合物2(ジビニルベンゼンとエチルビニルベンゼンの混合物、単量体混合比:ジビニルベンゼン/エチルビニルベンゼン=60/40、新日鐵化学社製、製品名:DVB-570)を90部、ドデシルベンゼンスルホン酸ナトリウムを1部、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート(日油社製、商品名:パーブチルO)を5部、及びイオン交換水を200部入れ、35℃で12時間撹拌することで、シードポリマー粒子Bに単量体混合物2及び重合開始剤を完全に吸収させた。その後、これを90℃で4時間重合させた。その後、スチームを導入して未反応の単量体を除去した。
 これにより、平均粒子径400nmの非導電性粒子の水分散体を得た。
(多孔膜用バインダーの製造) 
<1-4.ニトリルゴムの製造>
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル35部、メタクリル酸5部をこの順で入れ、ボトル内を窒素で置換した後、ブタジエン60部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリルゴム-L1を得た。重合転化率は85%、ヨウ素価は280であった。また、NMRにより、ニトリルゴム-L1のブタジエンの1,2付加結合量を測定したところ、5.4%であった。
<1-5.多孔膜用バインダーの調整>
 全固形分濃度を12重量%に調整したニトリルゴム-L1を400ミリリットル(全固形分48グラム)、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流してニトリルゴム中の溶存酸素を除去した後、水素添加触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、ニトリルゴムのヨウ素価は35であった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してヨウ素価7の多孔膜用バインダーの水分散液を得た。多孔膜用バインダーの水分散液から、上記「ヨウ素価の測定」に記載した方法と同様にして乾燥体を得、NMRで分析したところ、ニトリル基が重合体全量に対して17質量%、炭素数4の共役ジエンモノマーから導かれる重合単位を水素添加した直鎖アルキレン構造単位が54.1質量%、カルボン酸基が2.6質量%であった。
<1-6.多孔膜用スラリーの製造>
 増粘剤として、エーテル化度が0.8~1.0で、1%水溶液粘度が10~20mPa・sであるカルボキシメチルセルロース(ダイセル化学工業株式会社製、ダイセル1220)を用いて、1%水溶液を調製した。
 工程<1-3>で得た非導電性粒子の水分散体、工程<1-5>で得た多孔膜用バインダーの水分散液及びカルボキシメチルセルロースの1%水溶液を、固形分重量比が83.1:6.15:4.6となるように水中で混合し、更に溶媒として水を加えて、ビーズミルを用いて分散させ多孔膜用スラリーを得た。なお、スラリーにおける水以外の原料(固形分の合計)の含有量は、50質量%となるようにした。
<1-7.正極の製造>
 正極活物質としてのスピネル構造を有するマンガン酸リチウム95部に、バインダーとしてのPVDF(ポリフッ化ビニリデン、呉羽化学社製、商品名:KF-1100)を固形分換算量で3部となるように加え、さらに、アセチレンブラック2部、及びN-メチルピロリドン20部を加えて、これらをプラネタリーミキサーで混合して、スラリー状の正極用電極組成物を得た。この正極組成物を厚さ18μmのアルミニウム箔の片面に塗布し、120℃で3時間乾燥した後、ロールプレスして全厚みが100μmの正極活物質層を有する正極を得た。
<1-8.負極の製造>
 負極活物質としての粒径20μm、比表面積4.2m/gのグラファイト98部と、バインダーとしてのSBR(スチレン-ブタジエンゴム、ガラス転移温度:-10℃)の固形分換算量1部とを混合し、この混合物にさらにカルボキシメチルセルロース1.0部を混合し、更に溶媒として水を加えて、これらをプラネタリーミキサーで混合して、スラリー状の負極用電極組成物を調製した。この負極用組成物を厚さ18μmの銅箔の片面に塗布し、120℃で3時間乾燥した後、ロールプレスして全厚みが60μmの、負極活物質層を有する負極を得た。
<1-9.多孔膜付セパレータの製造>
 乾式法により製造された単層のポリプロピレン製セパレータ(気孔率55%、厚さ25μm)を、有機セパレータ層として用意した。この有機セパレータ層の一方の面に、工程(1-5)で得た多孔膜用スラリーを、乾燥後の厚みが5μmとなるようにワイヤーバーを用いて塗布してスラリー層を得、スラリー層を50℃で10分間乾燥し、多孔膜を形成した。続いて、有機セパレータ層のもう一方の面にも、同様に多孔膜を形成し、両面に多孔膜を有する、多孔膜付セパレータを得た。
<1-10.多孔膜付セパレータを有する二次電池の製造>
 工程(1-7)で得られた正極を直径13mmの円形に切り抜いて、円形の正極を得た。工程(1-8)で得られた負極を直径14mmの円形に切り抜いて、円形の負極を得た。また、工程(1-9)で得た多孔膜付セパレータを直径18mmの円形に切り抜いて、円形の多孔膜付セパレータを得た。
 ポリプロピレン製パッキンを設けたステンレス鋼製のコイン型外装容器の内底面上に円形の正極を載置し、その上に円形の多孔膜付セパレータを載置し、さらにその上に円形の負極を載置し、これらを容器内に収納した。円形の正極は、そのアルミニウム箔側の面が外装容器の底面側に向き、正極活物質層側の面が上側に向くよう載置した。円形の負極は、その負極活物質層側の面が円形の多孔膜付セパレータ側に向き、銅箔側の面が上側に向くよう載置した。
 容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して
、直径20mm、厚さ約3.2mmのリチウムイオンニ次電池(コインセルCR2032)を製造した。電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
<1-11.評価>
 工程1-6によって得られたスラリーの分散安定性と工程1-9で得られた多孔膜付セパレータの多孔膜の信頼性、粉落ち性、並びに工程1-10で得られた二次電池の高温サイクル特性を評価した。結果を表2に示す。
<実施例2>
 (2-1.多孔膜付負極の製造)
 実施例1の工程(1-8)で得た負極の負極活物質層側の面に、実施例1の工程(1-6)で得た多孔膜用スラリーを、負極活物質層が完全に覆われ、乾燥後の多孔膜厚みが5μmとなるように塗布してスラリー層を得た。スラリー層を50℃で10分間乾燥し、多孔膜を形成し、多孔膜付負極を得た。得られた多孔膜付負極は、(多孔膜)/(負極活物質層)/(銅箔)の層構成を有していた。
 (2-2.二次電池等の製造)
 下記の点を変更した他は、実施例1の工程と同様に操作し、及び二次電池を製造した。
 ・工程(1-10)の電池の製造において、多孔膜付セパレータに代えて、有機セパレータ層(単層のポリプロピレン製セパレータ、気孔率55%、厚さ25μm、実施例1の工程(1-9)で有機セパレータ層として用いられているものと同じ)をそのままセパレータとして用いた。
 ・工程(1-10)の電池の製造において、負極に代えて、上記工程(2-1)で得た多孔膜付負極を用いた。円形の多孔膜付負極を外装容器内に載置するにあたっては、その多孔膜側の面が円形のセパレータ側に向き、銅箔側の面が上側に向くよう載置した。
<実施例3>
 非導電性微粒子にアルミナ粒子(住友化学社製アルミナ AKP-50、平均粒径0.3μm)を使用した以外は実施例1と同様に行った。
<実施例4、5>
 工程1-5において「第一段階の水素添加反応」及び「第二段階の水素添加反応」においてそれぞれ表1に示す量の酢酸パラジウムを使用した以外は実施例1と同様におこなった。
<実施例6~13>
 工程1-4において使用するモノマーを表1に示す種類と分量に変更した以外が実施例1と同様に行った。
<比較例1>
 工程1-5の「第一段階の水素添加反応」時に添加する酢酸パラジウムの量を50mgとし、第二段階の水素添加反応を行わなかった以外は実施例1と同様に行った。
 <比較例2~4>
 工程1-4において使用するモノマーを表1に示す組成に変えて行った以外は実施例1と同様にして行った。
 <比較例5>
 (5-1.バインダーBの合成)
 撹拌機を備えた反応器に、イオン交換水70部、ドデシルベンゼンスルホン酸ナトリウム0.2部及び過硫酸カリウム0.3部をそれぞれ供給し、気相部を窒素ガスで置換し、60度に昇温した。一方、別の容器でイオン交換水50部、ドデシルベンゼンスルホン酸ナトリウム0.5部及び、重合性単量体として2-エチルヘキシルアクリレート93部、アクリロニトリル2部、メタアクリル酸5部を混合して、単量体混合物を得た、この単量体混合物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。転化終了後、更に70℃で3時間撹拌して反応を終了した。重合転化率は99%であった。得られた重合反応液を25℃に冷却後アンモニア水を転化してpHを7に調整しその後スチームを導入して未反応の単量体を除去しバインダーBを得た。
 (多孔膜スラリーの調整)
 比較例4のバインダーとバインダーBの固形分比1:1の混合物を多孔膜用スラリー調整時のバインダーとして使用した以外は実施例1と同様に行った。
 <比較例6>
 バインダーとして、比較例5で使用した2種類混合バインダーを用い、非導電性微粒子に、アルミナ粒子(住友化学社製アルミナ AKP-50、平均粒径0.3μm)を使用した以外は実施例1と同様に行った。
 <比較例7>
 バインダーとして、比較例1で使用したバインダーを使用した以外は実施例2と同様に行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記より、本発明で規定するバインダーを用いることにより、多孔膜用スラリーの分散安定性が良好であり、また得られる多孔膜を有するセパレータ、電極の信頼性が向上し、粉落ちも防止される。さらに、かかるセパレータもしくは電極を用いることで、二次電池の高温でのサイクル特性及び安全性が向上することがわかる。
 一方、バインダーの水素添加が不十分であり、ヨウ素価が高いと、特に二次電池の高温サイクル特性が著しく損なわれる(比較例1,7)。また、ニトリル基含有量が高すぎ津と、多孔膜の粉落ち性が悪化し(比較例2)、一方少なすぎる場合には、スラリーの分散性が低下し、得られる多孔膜の信頼性、粉落ち性が悪化し、またサイクル特性も損なわれる(比較例3)。さらに、親水性基が含まれないバインダーでは、粉落ち性が悪化する(比較例4)。また、ニトリル基を有する重合体と、親水性基を有する重合体を組み合わせた場合にも、スラリーの分散性が低下し、得られる多孔膜の粉落ち性、サイクル特性が損なわれることがわかる(比較例5,6)。
 さらに板状の非電導性粒子又は鱗片状の非導電性粒子を用いて、スラリー、多孔膜および二次電池の製造を行った。なお、以下の実験においては、(柔軟性および粉落ち性)、(熱収縮試験)および(非電導性粒子の平均粒子径、アスペクト比)は、次のように評価した他は、上記と同様の評価方法、評価基準を採用した。
 <柔軟性および粉落ち性>
 多孔膜が電極合剤層上に形成された電極または多孔膜を形成した有機セパレータを幅1cm×長さ5cmの矩形に切って試験片とする。試験片の集電体側の面を下にして机上に置き、長さ方向の中央(端部から2.5cmの位置)において、集電体側の面に直径1mmのステンレス棒を短手方向に横たえて設置する。このステンレス棒を中心にして試験片を多孔膜層が外側になるように180度折り曲げる。10枚の試験片について試験し、各試験片の多孔膜層の折り曲げた部分について、ひび割れまたは粉落ちの有無を観察し、下記の基準により判定する。ひび割れ、剥がれ粉落ちが少ないほど、電極合剤層上または有機セパレータ上に形成した多孔膜が柔軟性及び粉落ち性に優れることを示す。
 A:10枚中全てに、ひび割れ及び粉落ちがみられない。
 B:10枚中1~2枚に、ひび割れまたは粉落ちがみられる。
 C:10枚中3~5枚に、ひび割れまたは粉落ちがみられる。
 D:10枚中6~7枚に、ひび割れまたは粉落ちがみられる。
 E:10枚中8~9枚に、ひび割れまたは粉落ちがみられる。
 F:10枚中全てに、ひび割れまたは粉落ちがみられる。
<熱収縮試験>
 多孔膜付セパレータを5cm四方に切断後、所定の温度の恒温槽内に1時間放置する。1時間経過後、恒温槽から多孔膜付セパレータを取り出し、その面積を測定し、収縮した割合を百分率で算出した値を熱収縮率とし、下記の基準で判断した。この値が小さいほど耐熱性に優れており、より高温においても収縮率が小さいほうがさらに優れている。
 A:160℃で収縮率1%未満
 B:150℃で収縮率1%未満
 C:150℃で収縮率1%以上10%未満
 D:150℃で収縮率10%以上
<非導電性粒子の平均粒子径、アスペクト比>
 非導電性粒子の写真を超高分解能電界放出形走査電子顕微鏡(株式会社日立ハイテクノロジーズ社製 S-4700)を使用して撮影し、その任意の視野から50個の粒子を任意に選び出して画像解析を行い、円相当径の平均値として非導電性粒子の平均一次粒子径を求めた。
 また、アスペクト比も同様に、SEM写真から50個の粒子の選び出し画像解析を行いその平均値として求めた。具体的には倍率100倍で全体像が観察できる非導電性粒子像を大きなものから順に50個選び、その一つ一つを倍率1000倍で観察し、印刷した写真から直接非導電性粒子の短軸、長軸、アスペクト比の平均値を求めた。
<実施例14>
 実施例1<1-6.多孔膜用スラリーの製造>において、工程<1-3>で得られた非導電性粒子の水分散体に代えて、平均粒子径が5μm、アスペクト比が50の鱗片状ベーマイト(アスペクト比3~100の範囲にある粒子の割合が個数基準で全粒子の50%以上)を用いた以外は、実施例1と同様に行った。結果を表4に示す。
<実施例15>
 実施例2において、多孔膜用スラリーとして、実施例14で得た多孔膜用スラリーを用いた以外は、実施例2と同様に行った。結果を表4に示す。
<実施例16>
 非導電性粒子として、平均粒子径が1μm、アスペクト比が10の板状ベーマイト(アスペクト比3~100の範囲にある粒子の割合が個数基準で全粒子の50%以上)を使用した以外は実施例14と同様に行った。結果を表4に示す。
<比較例8>
 実施例14において、「第一段階の水素添加反応」時に添加する酢酸パラジウムの量を50mgとし、第二段階の水素添加反応を行わなかった以外は実施例1と同様に行った。結果を表4に示す。
<比較例9>
 バインダーとして、比較例8で使用したバインダーを使用した以外は実施例15と同様に行った。結果を表4に示す。
<比較例10>
 工程1-4において使用するモノマーを表3に示す組成に変えて行った以外は実施例14と同様にして行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記より、本発明で規定するバインダーを用いることにより、多孔膜用スラリーの分散安定性が良好であり、また得られる多孔膜を有するセパレータ、電極の信頼性が向上し、粉落ちも防止される。さらに、かかるセパレータもしくは電極を用いることで、二次電池の高温でのサイクル特性及び安全性が向上することがわかる。
 一方、バインダーの水素添加が不十分であり、ヨウ素価が高いと、特に二次電池の高温サイクル特性が著しく損なわれる(比較例8,9)。さらに、親水性基が含まれないバインダーでは、接着性が低く、多孔膜の信頼性が損なわれる(比較例10)。

Claims (12)

  1.  非導電性粒子、及びバインダーを含んでなり、
     前記バインダーが、ニトリル基、親水性基、及び炭素数が4以上の直鎖アルキレン構造単位を同一の分子内に含んでなる重合体からなり、前記バインダーを構成する重合体における前記ニトリル基の含有割合が1~25質量%であり、該重合体のヨウ素価が0mg/100mg以上30mg/100mg以下である二次電池多孔膜。
  2.  前記バインダーを構成する重合体における、前記親水性基の含有割合が0.05~10質量%である請求項1に記載の二次電池多孔膜。
  3.  前記バインダーを構成する重合体における、前記直鎖アルキレン構造単位の含有割合が50~98質量%である請求項1または2に記載の二次電池多孔膜。
  4.  前記バインダーを構成する重合体が、親水性基を有する水素化アクリロニトリル・ブタジエン共重合体である請求項1~3のいずれかに記載の二次電池多孔膜。
  5.  前記親水性基がカルボン酸基、スルホン酸基、リン酸基、水酸基およびこれらの塩から選ばれる請求項1~4のいずれかに記載の二次電池多孔膜。
  6.  前記多孔膜用を構成する固形分全量中の、前記非導電性粒子の含有割合が70~97重量%であり、
     前記バインダーの含有割合が0.5~15重量%である請求項1~5のいずれかに記載の二次電池多孔膜。
  7.  前記非導電性粒子の平均粒子径が0.1~20μmであり、アスペクト比3~100の範囲にある粒子の割合が個数基準で全粒子の50%以上である請求項1~6のいずれかに記載の二次電池多孔膜。
  8.  非導電性粒子、バインダー及び分散媒を含んでなり、
     前記バインダーが、ニトリル基、親水性基、及び炭素数が4以上の直鎖アルキレン構造単位を同一の分子内に含んでなる重合体からなり、前記バインダーを構成する重合体における前記ニトリル基の含有割合が1~25質量%であり、該重合体のヨウ素価が0mg/100mg以上30mg/100mg以下である二次電池多孔膜用スラリー。
  9.  請求項8に記載の多孔膜用スラリーを基材に塗布し、
     次いで乾燥する工程を含む二次電池多孔膜の製造方法。
  10.  電極合剤層用バインダー及び電極活物質を含んでなる電極活物質層が、集電体に付着してなり、かつ電極活物質層の表面に、請求項1~7の何れかに記載の多孔膜が積層されてなる、二次電池用電極。
  11.  有機セパレータ上に、請求項1~7の何れかに記載の多孔膜が積層されてなる、二次電池用セパレータ。
  12.  正極、負極、セパレータ及び電解液を含む二次電池であって、前記正極、負極及びセパレータの少なくともいずれかに、請求項1~7の何れかに記載の多孔膜が積層されてなる、二次電池。
PCT/JP2011/074947 2010-10-28 2011-10-28 二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池 WO2012057324A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180063547.0A CN103283061B (zh) 2010-10-28 2011-10-28 二次电池多孔膜、二次电池多孔膜用浆料以及二次电池
KR1020137010660A KR101927700B1 (ko) 2010-10-28 2011-10-28 이차 전지 다공막, 이차 전지 다공막용 슬러리 및 이차 전지
US13/882,029 US9437856B2 (en) 2010-10-28 2011-10-28 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery
PL11836457T PL2634839T3 (pl) 2010-10-28 2011-10-28 Porowata membrana do baterii akumulatorowej, zawiesina do porowatej membrany do baterii akumulatorowej i bateria akumulatorowa
JP2012540962A JP5803931B2 (ja) 2010-10-28 2011-10-28 二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池
EP11836457.9A EP2634839B1 (en) 2010-10-28 2011-10-28 Secondary battery porous membrane, slurry for secondary battery porous membrane, and secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010242274 2010-10-28
JP2010-242274 2010-10-28
JP2010-267268 2010-11-30
JP2010267268 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012057324A1 true WO2012057324A1 (ja) 2012-05-03

Family

ID=45994026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074947 WO2012057324A1 (ja) 2010-10-28 2011-10-28 二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池

Country Status (8)

Country Link
US (1) US9437856B2 (ja)
EP (1) EP2634839B1 (ja)
JP (1) JP5803931B2 (ja)
KR (1) KR101927700B1 (ja)
CN (1) CN103283061B (ja)
HU (1) HUE036945T2 (ja)
PL (1) PL2634839T3 (ja)
WO (1) WO2012057324A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180168A1 (ja) * 2012-05-30 2013-12-05 日本ゼオン株式会社 二次電池用負極及びその製造方法
CN104335394A (zh) * 2012-09-11 2015-02-04 Jsr株式会社 用于制作保护膜的组合物和保护膜以及蓄电器件
JP2015026572A (ja) * 2013-07-29 2015-02-05 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015041601A (ja) * 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用保護層付きセパレータ、リチウムイオン二次電池用保護層付き電極、およびリチウムイオン二次電池
US20150086875A1 (en) * 2012-03-28 2015-03-26 Zeon Corporation Electrode for all solid-state secondary battery and method for producing same
JP2015141838A (ja) * 2014-01-29 2015-08-03 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体
JP2016046250A (ja) * 2014-08-21 2016-04-04 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 生物医学的装置のための生体適合性通電素子用セパレータを形成するための方法及び器具
JP2016167455A (ja) * 2016-04-08 2016-09-15 旭化成株式会社 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
JPWO2015049824A1 (ja) * 2013-10-02 2017-03-09 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR20170032887A (ko) * 2014-07-25 2017-03-23 니폰 제온 가부시키가이샤 리튬이온 이차전지용 다공막 및 리튬이온 이차전지
JP2017139111A (ja) * 2016-02-03 2017-08-10 日本ゼオン株式会社 二次電池用セパレーター
WO2017195562A1 (ja) * 2016-05-10 2017-11-16 日本ゼオン株式会社 非水系二次電池
KR20180097547A (ko) 2015-12-25 2018-08-31 니폰 제온 가부시키가이샤 비수계 이차 전지 다공막용 바인더 조성물, 비수계 이차 전지 다공막용 슬러리 조성물, 비수계 이차 전지용 다공막, 및 비수계 이차 전지
WO2019008827A1 (ja) * 2017-07-03 2019-01-10 日立オートモティブシステムズ株式会社 二次電池の製造方法
JP2019057488A (ja) * 2017-03-28 2019-04-11 荒川化学工業株式会社 熱架橋型リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
JP2019077785A (ja) * 2017-10-24 2019-05-23 住友化学株式会社 水系塗料
US10665841B2 (en) 2013-11-05 2020-05-26 Murata Manufacturing Co., Ltd. Battery, separator, electrode, coating material, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
US11095000B2 (en) * 2013-03-21 2021-08-17 Zeon Corporation Slurry for lithium ion secondary battery porous film, production method therefor, separator for lithium ion secondary battery, and lithium ion secondary battery

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
CN102386346B (zh) * 2011-11-22 2014-01-08 深圳市金钒能源科技有限公司 一种密封圈离子膜一体化组件的生产方法
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
JP6129419B2 (ja) * 2013-11-27 2017-05-17 エルジー・ケム・リミテッド ケーブル型二次電池
KR102234295B1 (ko) * 2014-01-10 2021-03-31 삼성에스디아이 주식회사 2차전지용 바인더 조성물, 이를 채용한 양극과 리튬전지
CN105960721B (zh) * 2014-02-27 2018-09-25 日本瑞翁株式会社 二次电池多孔膜用粘合剂组合物、二次电池多孔膜用浆料、二次电池用多孔膜及二次电池
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US9383593B2 (en) 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
PL3203545T3 (pl) * 2014-09-30 2021-11-15 Zeon Corporation Kompozycja dla porowatej membrany litowo-jonowej baterii wtórnej, porowata membrana dla litowo-jonowej baterii wtórnej i litowo-jonowa bateria wtórna
CN104538635B (zh) * 2014-12-11 2017-02-22 江西先材纳米纤维科技有限公司 一种锂离子电池硅材料用高性能粘结剂及其制备方法
KR20160128725A (ko) * 2015-04-29 2016-11-08 삼성에스디아이 주식회사 고내열성 및 난연성 분리막 및 전기 화학 전지
WO2016208028A1 (ja) * 2015-06-25 2016-12-29 ニッポン高度紙工業株式会社 電池用セパレータ、二次電池
EP3349279B1 (en) * 2015-09-10 2021-01-27 Zeon Corporation Binder composition for all-solid-state battery
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
FR3054728B1 (fr) * 2016-07-26 2018-08-17 Hutchinson Anode pour cellule de batterie lithium-ion, son procede de fabrication et cette batterie l'incorporant
CN106252564A (zh) * 2016-09-06 2016-12-21 深圳市星源材质科技股份有限公司 一种高穿刺强度锂离子电池隔膜的制备方法
JP6472822B2 (ja) * 2017-03-03 2019-02-20 住友化学株式会社 非水電解液二次電池用セパレータ
EP3598545A4 (en) * 2017-03-13 2021-03-10 Zeon Corporation BINDER COMPOSITION FOR ELECTRODE FOR WATER FREE SECONDARY BATTERIES FOR WATER slurry composition FREE SECONDARY BATTERY, ELECTRODE FOR WATER FREE SECONDARY BATTERY, NEGATIVE ELECTRODE FOR WATER FREE SECONDARY BATTERIES, WATER FREE SECONDARY BATTERY AND METHOD FOR PRODUCING ELECTRODE FOR WATER FREE SECONDARY BATTERIES
KR102563083B1 (ko) * 2017-03-13 2023-08-02 니폰 제온 가부시키가이샤 비수계 이차 전지 기능층용 슬러리 조성물, 비수계 이차 전지용 기능층 및 비수계 이차 전지
WO2019065471A1 (ja) * 2017-09-28 2019-04-04 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子
EP3734695A4 (en) * 2017-12-27 2021-11-17 Zeon Corporation NON-AQUEOUS COMPOSITION OF FUNCTIONAL SECONDARY BATTERY LAYERS, NON-AQUEOUS SECONDARY BATTERY ELEMENT, LAMINATE PRODUCTION PROCESS FOR NON-AQUEOUS SECONDARY BATTERIES, AND NON-AQUEOUS SECONDARY BATTERY
KR102209826B1 (ko) * 2018-03-06 2021-01-29 삼성에스디아이 주식회사 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
CN112189272A (zh) * 2018-06-29 2021-01-05 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物及其制造方法、非水系二次电池用电极、以及非水系二次电池
JP7340148B2 (ja) * 2020-01-14 2023-09-07 トヨタ自動車株式会社 樹脂多孔質体の製造方法
JP6927393B1 (ja) * 2020-08-31 2021-08-25 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物、電気化学素子用電極および電気化学素子
WO2023197255A1 (zh) * 2022-04-14 2023-10-19 宁德时代新能源科技股份有限公司 隔膜及其制备方法、二次电池及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111268A (ja) * 1997-10-08 1999-04-23 Sanyo Electric Co Ltd リチウム二次電池用負極
JP2003206475A (ja) 2001-09-26 2003-07-22 Hitachi Maxell Ltd 非磁性板状粒子とその製造方法、およびこの粒子を用いた研磨材、研磨体、研磨液
JP2005327680A (ja) 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2005353584A (ja) * 2004-05-14 2005-12-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池とその製造法
JP2007503517A (ja) * 2003-05-15 2007-02-22 ランクセス・ドイチュランド・ゲーエムベーハー 架橋剤としてのhxnbrゴム
JP2007173047A (ja) * 2005-12-22 2007-07-05 Mitsui Chemicals Inc 二次電池用バインダー
JP2008186722A (ja) * 2007-01-30 2008-08-14 Asahi Kasei Chemicals Corp 高耐熱性と高透過性を兼ね備えた多孔膜およびその製法
WO2010074202A1 (ja) * 2008-12-26 2010-07-01 日本ゼオン株式会社 リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391705A (zh) * 1999-09-30 2003-01-15 永备电池有限公司 具有超薄隔板的电化学电池及其制备方法
US7316864B2 (en) * 2001-10-26 2008-01-08 Zeon Corporation Slurry composition, electrode and secondary cell
KR100644063B1 (ko) * 2003-06-03 2006-11-10 주식회사 엘지화학 분산제가 화학결합된 전극용 복합 바인더 중합체
JP5061417B2 (ja) * 2004-04-23 2012-10-31 パナソニック株式会社 リチウムイオン二次電池
EP1869120B1 (en) * 2005-04-04 2014-12-31 Showa Denko K.K. Electrically conducting curable resin composition, cured product thereof and molded article of the same
JP5137312B2 (ja) * 2006-03-17 2013-02-06 三洋電機株式会社 非水電解質電池
HUE036933T2 (hu) * 2007-01-30 2018-08-28 Asahi Chemical Ind Többrétegû porózus membrán, és eljárás annak elõállítására
US8871387B2 (en) * 2007-10-26 2014-10-28 Sion Power Corporation Primer for battery electrode
JP2009146822A (ja) * 2007-12-17 2009-07-02 Panasonic Corp 非水電解質二次電池
JP5381974B2 (ja) * 2008-02-29 2014-01-08 日本ゼオン株式会社 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
JP5462016B2 (ja) * 2010-02-08 2014-04-02 日本エイアンドエル株式会社 二次電池耐熱保護層用バインダーおよび耐熱保護層用組成物
JP5522422B2 (ja) * 2010-09-30 2014-06-18 日本ゼオン株式会社 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111268A (ja) * 1997-10-08 1999-04-23 Sanyo Electric Co Ltd リチウム二次電池用負極
JP2003206475A (ja) 2001-09-26 2003-07-22 Hitachi Maxell Ltd 非磁性板状粒子とその製造方法、およびこの粒子を用いた研磨材、研磨体、研磨液
JP2007503517A (ja) * 2003-05-15 2007-02-22 ランクセス・ドイチュランド・ゲーエムベーハー 架橋剤としてのhxnbrゴム
JP2005353584A (ja) * 2004-05-14 2005-12-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池とその製造法
JP2005327680A (ja) 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2007173047A (ja) * 2005-12-22 2007-07-05 Mitsui Chemicals Inc 二次電池用バインダー
JP2008186722A (ja) * 2007-01-30 2008-08-14 Asahi Kasei Chemicals Corp 高耐熱性と高透過性を兼ね備えた多孔膜およびその製法
WO2010074202A1 (ja) * 2008-12-26 2010-07-01 日本ゼオン株式会社 リチウムイオン二次電池用セパレーター及びリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634839A4

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150086875A1 (en) * 2012-03-28 2015-03-26 Zeon Corporation Electrode for all solid-state secondary battery and method for producing same
US9455471B2 (en) * 2012-03-28 2016-09-27 Zeon Corporation Electrode for all solid-state secondary battery and method for producing same
KR102049819B1 (ko) 2012-05-30 2019-11-28 제온 코포레이션 2 차 전지용 부극 및 그 제조 방법
KR20150016937A (ko) * 2012-05-30 2015-02-13 제온 코포레이션 2 차 전지용 부극 및 그 제조 방법
US9793527B2 (en) 2012-05-30 2017-10-17 Zeon Corporation Negative electrode for secondary batteries and method for producing same
JPWO2013180168A1 (ja) * 2012-05-30 2016-01-21 日本ゼオン株式会社 二次電池用負極及びその製造方法
WO2013180168A1 (ja) * 2012-05-30 2013-12-05 日本ゼオン株式会社 二次電池用負極及びその製造方法
CN104335394A (zh) * 2012-09-11 2015-02-04 Jsr株式会社 用于制作保护膜的组合物和保护膜以及蓄电器件
US9758629B2 (en) 2012-09-11 2017-09-12 Jsr Corporation Composition for producing protective film, protective film, and electrical storage device
US11095000B2 (en) * 2013-03-21 2021-08-17 Zeon Corporation Slurry for lithium ion secondary battery porous film, production method therefor, separator for lithium ion secondary battery, and lithium ion secondary battery
JP2015026572A (ja) * 2013-07-29 2015-02-05 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015041601A (ja) * 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用保護層付きセパレータ、リチウムイオン二次電池用保護層付き電極、およびリチウムイオン二次電池
JPWO2015049824A1 (ja) * 2013-10-02 2017-03-09 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10665841B2 (en) 2013-11-05 2020-05-26 Murata Manufacturing Co., Ltd. Battery, separator, electrode, coating material, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
US11532853B2 (en) 2013-11-05 2022-12-20 Murata Manufacturing Co., Ltd. Transparent particle-containing resin layer, separator, electrode, and battery including the same, and coating material for making the same
JP2015141838A (ja) * 2014-01-29 2015-08-03 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池及び共重合体
KR20170032887A (ko) * 2014-07-25 2017-03-23 니폰 제온 가부시키가이샤 리튬이온 이차전지용 다공막 및 리튬이온 이차전지
KR102407599B1 (ko) * 2014-07-25 2022-06-10 니폰 제온 가부시키가이샤 리튬이온 이차전지용 다공막 및 리튬이온 이차전지
US10505169B2 (en) * 2014-07-25 2019-12-10 Zeon Corporation Porous membrane for lithium ion secondary battery and lithium ion secondary battery
JP2016046250A (ja) * 2014-08-21 2016-04-04 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 生物医学的装置のための生体適合性通電素子用セパレータを形成するための方法及び器具
KR20180097547A (ko) 2015-12-25 2018-08-31 니폰 제온 가부시키가이샤 비수계 이차 전지 다공막용 바인더 조성물, 비수계 이차 전지 다공막용 슬러리 조성물, 비수계 이차 전지용 다공막, 및 비수계 이차 전지
US10637063B2 (en) 2015-12-25 2020-04-28 Zeon Corporation Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery
JP2017139111A (ja) * 2016-02-03 2017-08-10 日本ゼオン株式会社 二次電池用セパレーター
JP2016167455A (ja) * 2016-04-08 2016-09-15 旭化成株式会社 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
WO2017195562A1 (ja) * 2016-05-10 2017-11-16 日本ゼオン株式会社 非水系二次電池
JPWO2017195562A1 (ja) * 2016-05-10 2019-03-07 日本ゼオン株式会社 非水系二次電池
JP7352352B2 (ja) 2016-05-10 2023-09-28 日本ゼオン株式会社 非水系二次電池
JP7388506B2 (ja) 2016-05-10 2023-11-29 日本ゼオン株式会社 非水系二次電池
JP2019057488A (ja) * 2017-03-28 2019-04-11 荒川化学工業株式会社 熱架橋型リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
JP7127325B2 (ja) 2017-03-28 2022-08-30 荒川化学工業株式会社 熱架橋型リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
JPWO2019008827A1 (ja) * 2017-07-03 2020-04-16 ビークルエナジージャパン株式会社 二次電池の製造方法
US11223038B2 (en) 2017-07-03 2022-01-11 Vehicle Energy Japan Inc. Method for manufacturing secondary battery
WO2019008827A1 (ja) * 2017-07-03 2019-01-10 日立オートモティブシステムズ株式会社 二次電池の製造方法
JP2019077785A (ja) * 2017-10-24 2019-05-23 住友化学株式会社 水系塗料

Also Published As

Publication number Publication date
KR101927700B1 (ko) 2018-12-11
CN103283061A (zh) 2013-09-04
PL2634839T3 (pl) 2018-08-31
CN103283061B (zh) 2015-07-15
JPWO2012057324A1 (ja) 2014-05-12
EP2634839B1 (en) 2018-02-21
US9437856B2 (en) 2016-09-06
EP2634839A1 (en) 2013-09-04
US20130266873A1 (en) 2013-10-10
EP2634839A4 (en) 2017-01-04
KR20140003412A (ko) 2014-01-09
JP5803931B2 (ja) 2015-11-04
HUE036945T2 (hu) 2018-08-28

Similar Documents

Publication Publication Date Title
JP5803931B2 (ja) 二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池
JP5765228B2 (ja) 二次電池用多孔膜及び二次電池
JP5605591B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池、及び二次電池多孔膜の製造方法
JP5549739B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
JP5522422B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
JP6191597B2 (ja) 二次電池用セパレータ
JP5751414B2 (ja) 二次電池多孔膜用スラリー組成物
JP5516919B2 (ja) 二次電池多孔膜、二次電池多孔膜用スラリー及び二次電池
JP5742717B2 (ja) 二次電池用多孔膜及び二次電池
JP5561276B2 (ja) 多孔膜及び二次電池
JP5867731B2 (ja) 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池及び二次電池多孔膜の製造方法
JP6375949B2 (ja) 二次電池用正極の製造方法、二次電池及び二次電池用積層体の製造方法
JP6024663B2 (ja) 二次電池用スラリー
JP2014149936A (ja) 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
JP2013206846A (ja) 二次電池多孔膜用スラリー組成物
JP2014149935A (ja) 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
JPWO2013147006A1 (ja) 二次電池用多孔膜、二次電池用多孔膜スラリー、非導電性粒子、二次電池用電極、二次電池用セパレータ及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137010660

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012540962

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011836457

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13882029

Country of ref document: US