WO2012055096A1 - 抗fgf-23抗体的制备方法及用途 - Google Patents

抗fgf-23抗体的制备方法及用途 Download PDF

Info

Publication number
WO2012055096A1
WO2012055096A1 PCT/CN2010/078143 CN2010078143W WO2012055096A1 WO 2012055096 A1 WO2012055096 A1 WO 2012055096A1 CN 2010078143 W CN2010078143 W CN 2010078143W WO 2012055096 A1 WO2012055096 A1 WO 2012055096A1
Authority
WO
WIPO (PCT)
Prior art keywords
fgf
fusion protein
terminus
amino acid
transferase
Prior art date
Application number
PCT/CN2010/078143
Other languages
English (en)
French (fr)
Inventor
李校堃
刘孝菊
Original Assignee
温州医学院生物与天然药物开发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州医学院生物与天然药物开发中心有限公司 filed Critical 温州医学院生物与天然药物开发中心有限公司
Priority to PCT/CN2010/078143 priority Critical patent/WO2012055096A1/zh
Publication of WO2012055096A1 publication Critical patent/WO2012055096A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/50Fibroblast growth factors [FGF]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/34Genitourinary disorders
    • G01N2800/347Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy

Definitions

  • the present invention relates to the field of screening and detection of polypeptide antibodies, and in particular, the present invention relates to fibroblast growth factor
  • FGF23 an antibody screening method for a fusion protein consisting of a fragment consisting of 73 amino acid residues and glutathione-S-transferase (referred to herein as GST), and screening using the method
  • CKD chronic kidney disease
  • More than 80% of the metabolic waste and toxins in the human body are cleaned and excreted by the kidneys. Up to 180 liters of blood is filtered through the kidneys every day. Once the kidneys are damaged, it is impossible to clean up toxic metabolites, which can cause systemic organ damage.
  • FGF23 antibody can be used for early diagnosis of chronic kidney disease, and it can monitor the effectiveness of treatment by detecting plasma levels before and after treatment in vivo.
  • a fusion protein that facilitates purification and enhances immunogenicity can be used directly to screen antibodies, even without cleavage of the glutathione-S-transferase portion of the fusion protein, directly using fusion
  • the protein is screened, and the number of monoclonal antibodies that recognize FGF23 is large and reproducible.
  • the monoclonal antibodies screened by this method have very good detection levels of FGF23 in blood samples of various actual sources, and can be used alone for detection and diagnosis, without the need to combine other antibodies, which also shows that although only increasing One amino acid residue is used, but the fusion protein of the present invention is used to enhance immunogenicity.
  • the object of the present invention is to select a 73 amino acid sequence between amino acid residues 179 and 251 on FGF23 as a target, and to fuse with glutathione-S-transferase in a specific order.
  • the fusion protein which is easy to purify and enhances immunogenicity can be directly used for screening antibodies, and on the other hand, even if the glutathione-S-transferase moiety on the fusion protein is not excised, the fusion protein is directly used for screening.
  • the selected monoclonal antibodies recognizing FGF23 are numerous, reproducible, and highly efficient, and the selected monoclonal antibodies can be used alone for detection and diagnosis.
  • the invention provides a method of screening or preparing a monoclonal antibody against human fibroblast growth factor-23 (FGF-23), comprising:
  • step (4) The positive hybridoma cell clone selected in step (4) is inoculated into the animal, and the ascites of the animal is collected, so that the ascites supernatant is precipitated by ammonium sulfate, dialysis and desalting, DEAE-cellulose chromatography and G protein agarose pro And purification by chromatography to thereby screen or prepare a monoclonal antibody against human FGF-23.
  • the invention provides a method of screening for a monoclonal antibody against human fibroblast growth factor-23 (FGF-23).
  • the method of screening necessarily includes the steps of the selection, but screening methods that do not include the purification step (i.e., step (5)) are also encompassed within the scope of the invention.
  • the screening method of the present invention comprises the above steps (1) to (5).
  • the present invention also provides a method of producing a monoclonal antibody against human fibroblast growth factor-23 (FGF-23).
  • a method comprising only the preparation of the above purification step (i.e., step (5)) can be encompassed within the scope of the invention.
  • the method of the present invention comprises the above steps (1) to (5).
  • the amino acid sequence of the 73 amino acid fragment of the C-terminus of FGF-23 is preferably as shown in SEQ ID NO: 4. More preferably, the fusion protein consists of a glutathione-S-transferase (abbreviated as GST), a flexible linker, and a 73 amino acid fragment of the C-terminus of FGF-23 from the N-terminus to the C-terminus, preferably The amino acid sequence of the fusion protein is shown in SEQ ID NO: 6.
  • step (2) comprises inducing expression with IPTG for 8 hours at 25 ° C and a final concentration of 0.4 mmol/L.
  • the expression time is shorter, the expression amount is smaller; the expression time is prolonged, the expression amount is not increased, and the expression itself is more uneconomical.
  • the glutathione-S-transferase affinity chromatography is GST affinity chromatography, such as using a commercially available GST affinity chromatography column. . Due to the presence of glutathione-S-transfer in the fusion protein The enzyme is transferred, so it is very convenient to purify the fusion protein.
  • the present inventors have found that the glutathione-S-transferase portion of the fusion protein is not immediately removed, and the fusion protein is directly used for screening, and the number of monoclonal antibodies recognizing FGF23 is large, reproducible, and screening efficiency. High, and the selected monoclonal antibodies can be used alone for detection and diagnosis.
  • the step of purifying or hydrolyzing the fusion protein is not included in the purification step of the step (2). That is, in the step (2), in addition to expressing the fusion protein, and then purifying the fusion protein by glutathione-S-transferase affinity chromatography, no further steps are included.
  • monoclonal antibody production can be produced using mature hybridoma technology, and positive hybridoma cell clones can be selected using a mature indirect ELISA assay.
  • the coated substrate determined by ELISA is human full length FGF-23.
  • the present inventors have found that a low human full-length FGF-23 concentration will greatly reduce the screening efficiency, while an excessively high concentration will result in a larger amount of false positive interference.
  • a solution of human full-length FGF-23 in an amount of 100 ng/ml is 50 ⁇ l/well.
  • the step (5) comprises: the ascites supernatant is precipitated in a 50% saturated ammonium sulfate solution, and the precipitated dialyzed salt is collected. It is also preferred that the step (5) comprises collecting the elution solution of the Tris buffer eluted from 40 mMol/L to 80 mMol/L NaCl in DEAE-cellulose chromatography and the Tris buffer of 120 mMol/L to 150 mMol/L NaCl. The eluent eluted from the solution. It has been found experimentally that both gradient elution intervals are capable of eluting monoclonal antibodies.
  • the present invention provides a monoclonal antibody against human FGF-23 which is screened or prepared according to the method of the first aspect of the present invention, which is capable of binding to a fusion protein from the N-terminus to the C-terminus
  • the glutathione-S-transferase, the flexible linker and the 73 amino acid fragment of the C-terminus of FGF-23 are sequentially contained.
  • the amino acid sequence of the fusion protein is shown in SEQ ID NO: 6.
  • a monoclonal antibody against human FGF-23 which has been screened or prepared by the method of the first aspect of the present invention, is capable of recognizing human full-length FGF-23 in a natural state (e.g., in human serum). protein. Without being bound by theory, this may be because the proper composition of the fusion protein of the present invention just mimics the spatial folding of the human full-length FGF-23 protein in the natural state, especially the space of the 73 amino acid fragment of the C-terminus of FGF-23.
  • the invention provides a kit for detecting human full length FGF-23 or for diagnosing chronic kidney disease, comprising the monoclonal antibody of the second aspect of the invention.
  • the present invention provides a kit for detecting human full-length FGF-23. Since the level of human full-length FGF-23 is directly related to chronic kidney disease in a natural state (e.g., in human serum), the present invention also provides a kit for diagnosing chronic kidney disease. Due to the use of monoclonal antibodies, all antibodies in the kit are theoretically uniform and do not have the ambiguity and poor reproducibility of the resulting interpretation criteria as in the prior art using polyclonal antibodies.
  • the kit may also include other auxiliary detection or diagnostic reagents, such as human full-length FGF-23 standard solution and reagents required for ELISA assays, such as HRP-labeled secondary antibodies and tetramethylbenzidine (TMB). Agents, etc.
  • the present invention provides the use of the monoclonal antibody of the second aspect of the invention for the preparation of a kit for detecting human full-length FGF-23 or for diagnosing chronic kidney disease.
  • the present invention provides the use of the monoclonal antibody of the second aspect of the invention for the preparation of a kit for detecting human full-length FGF-23. Since the level of human full-length FGF-23 is directly related to chronic kidney disease in a natural state (for example, in human serum), the present invention also provides the monoclonal antibody of the second aspect of the present invention for preparation for diagnosis of chronic kidney disease. The application in the kit.
  • the monoclonal antibody screened or prepared by the present invention can be effectively detected and diagnosed alone, without the assistance of the second antibody, which also contributes to the simplification of the detection and diagnosis standards, and thus is the third in the present invention.
  • the use of the monoclonal antibody of the second aspect of the invention as a sole antibody for the preparation of a kit for detecting human full-length FGF-23 or for diagnosing chronic kidney disease is preferred.
  • the present invention provides a fusion protein for screening or preparing a monoclonal antibody against FGF-23, which comprises glutathione-S-transferase, flexible linker and FGF in sequence from the N-terminus to the C-terminus.
  • -23 C-terminal 73 amino acid fragment preferably consisting of a glutathione-S-transferase, a flexible linker and a 73 amino acid fragment of the C-terminus of FGF-23 from the N-terminus to the C-terminus, more preferably an amino acid thereof
  • the sequence is shown in SEQ ID NO: 6. It can be used in the method of the first aspect of the invention for screening or preparing the monoclonal antibody of the second aspect of the invention, and thus is applied to the third and fourth aspects of the invention.
  • Figure 2 shows the SDS-PAGE electropherogram of the fusion protein-induced expression.
  • the lanes were loaded with molecular weight markers, uninduced expression of bacterial cells and induced expression of bacteria from left to right, respectively, which appeared in the bacterial cells that induced expression.
  • Figure 3 shows the SDS-PAGE electrophoresis pattern of the fusion protein induced by the fusion protein under optimized conditions (25 ° C and 0.4 mmol / L IPTG).
  • the lanes were loaded from left to right for 7 hours.
  • Figure 4 shows the SDS-PAGE electrophoresis pattern of the fusion protein before and after purification.
  • the lanes are loaded with molecular weight markers, the bacterial cells before induction, the bacterial cells after induction, and the supernatant collected after ultrasonication.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the invention will be described by way of specific examples. Unless otherwise specified, it may be according to the "Clon Spring Harbor Laboratory Press” (Clinical Laboratory Guide), Science Research Press, Beijing, China, which is familiar to those skilled in the art. 2001), “Immuno Detection Technology” (Science Press, Beijing, China, 1991) and other experimental manuals and methods listed in the references cited herein are implemented.
  • the Bioreactor Company prepares the GST-FGF23-73AA antigen, specifically: the DNA sequence (SEQ ID NO: 3) of the 73 amino acid fragment (SEQ ID NO: 4) of FGF23 encoding the fusion protein, using positive and negative
  • the primers (SEQ ID NOS: 7, 8) were subjected to PCR amplification, and the PCR products were digested with BamH I and Xho I, and then PGEX-4-T vector with the same enzyme cleavage (commercially available from Jilin Agricultural University) Linked, transformed into the cloning DH5a, picked a positive transformed clone, and the sequencing sequence obtained the encoded DNA sequence as SEQ ID NO: 5.
  • the cells were collected by centrifugation and 8 volumes of cell lysate (20 mmol/L Tris-Cl pH 8.0, 1 mmol/L EDTA pH 8.0, 20 mmol/L NaCl) were added, sonicated and centrifuged at 5 000 rpm for 30 minutes. The supernatant was collected; the pellet was again dissolved in an equal volume of lysate, sonicated and centrifuged at 5 000 rpm for 30 minutes, and the supernatant was collected.
  • cell lysate 20 mmol/L Tris-Cl pH 8.0, 1 mmol/L EDTA pH 8.0, 20 mmol/L NaCl
  • the supernatants were combined and applied to a 5 mL GST affinity chromatography column (purchased from GE) and eluted with glutathione buffer to obtain purified GST-FGF23-73AA fusion antigen (see Figure 4 for the results before and after purification). ). After dialysis, freeze-dry and store at -20 °C for use.
  • the first immunization was performed according to the 850 ug L- 1 GST-FGF23-73AA solution prepared in Example 1, 360 ul plus physiological saline to 1.50 mL plus an equal amount of Freund's complete adjuvant emulsified (; available from Gibco BRL), intraperitoneal injection (0.5 The mL/only) was boosted two weeks later, and the GST-FGF23-73AA dose was the same as above, and the Freund's incomplete adjuvant (available from Gibco BRL) was intraperitoneally injected (0.5 mL/mouse).
  • a booster immunization is performed every four weeks after the interval, and the method is the same as the second immunization.
  • mice Three days after the last booster immunization, the spleen of the mice was excised, and the splenocytes collected from the spleen were mixed with mouse myeloma SP2/0 (ATCC: CRL 1581) in a ratio of 10:1, centrifuged at 50 mL. The tube was washed once with serum-free incomplete medium 1640 (available from Gibco BRL), centrifuged, 1000 rpm, 8 min, the supernatant was discarded, the residual liquid was sucked up with a pipette, and the bottom of the centrifuge tube was gently bounced to make the cells paste. shape.
  • serum-free incomplete medium 1640 available from Gibco BRL
  • the plates were incubated in a 37 ° C incubator with 5% CO 2 . Every 3 days, gently absorb the 100UL supernatant, discard it, add HAT to select the culture solution (containing 20% calf serum), observe with an inverted microscope before each change. Hybridoma colonies can be seen in about 4 days, and hybridoma cells can be observed to grow in about 7 to 10 days. When the hybridoma cells grow to 1/3 of the well, the supernatant is aspirated and the antibody is detected.
  • FGF-23 specific antibodies were screened according to indirect ELISA. Specifically: 50 ⁇ l of a 50 mM sodium bicarbonate solution containing lug/ml of human full-length FGF-23 was added to each well of a 96-well plate, and incubated at 4 ° C for 12 hours to allow FGF-23 to be coated on a 96-well plate. . Then, it was washed 3 times with PBS, and blocked with a PBST solution (PBS pH 7.2, 0.05% Tween 20) containing 1% bovine serum albumin (BSA) at 4 ° C for 12 hours. Then, it was washed 3 times with PBST for 10 minutes each time.
  • PBST solution PBS pH 7.2, 0.05% Tween 20
  • BSA bovine serum albumin
  • the hybridoma cell culture supernatant was added, 100 ul per well, and incubated at 37 ° C for 2 hours, and PBS was used as a blank control. Then, HRP-labeled goat anti-mouse IgG (available from sigma) (1:10000) was added for 1 hour at 37 ° C, then tetramethylbenzidine (TMB) was added for color development, and the OD450 value was determined. The ratio (P/N) ⁇ 2.1 was judged to be a positive hybridoma cell.
  • each of the aforementioned positive clones was diluted with HT complete medium and added to the wells of a 96-well plate in an amount of 5 cells per bdO, and then completely cultured with HT containing 20% bovine serum. Base, 100L per hole.
  • the 96-well plate was incubated at 37 ° C in a 5% CO 2 incubator. The solution was changed every 3 days, and the growth state of the cells was observed with an inverted microscope. Mark the wells that are indeed grown for only one cell clone.
  • a well-positive culture well obtained by indirect ELISA was selected for cell expansion or a second clone until all subcloning wells were 100% positive. According to the above method, 13 hybridoma clones which specifically recognize FGF-23 were obtained.
  • Example 2 The immunological method of Example 2 and the above screening method were repeated, and seven hybridoma clones which specifically recognize FGF-23 were obtained again.
  • 12 of the antibodies were IgG1, 5 were IgG2b, and 3 were IgG2a.
  • Example 3 Preparation of hybridoma clones embodiment intraperitoneally klO 6 at a concentration of 1-injected mice, mice were injected per 1.0mL. After 7 days, the hybridoma cells were collected, centrifuged, and the supernatant was removed, and physiological saline was added to adjust the cell density to klO 6 ⁇ . Each mouse was intraperitoneally injected with 1.0 mL, and each of the hybridoma clones prepared in Example 3 was inoculated with 3 clones.
  • the abdomen of the mice was enlarged, ascites was collected, and a 16-gauge needle was used, and the abdominal cavity was aseptically injected into the abdominal cavity, and the ascites was naturally or squeezed out, collected into a 50 mL centrifuge tube, and shaken vigorously to prevent ascites from clotting. Centrifuge at 1500 rpm for 10 min, aspirate the supernatant, filter and sterilize with a 0.45 um filter, and store the -20 ° C refrigerator after dispensing. The mouse ascites was diluted 4 times with cold PBS solution, and then centrifuged at 1.00 x 10 for 30 min to precipitate.
  • the saturated ammonium sulfate solution was gradually added dropwise to the supernatant at 4 ° C, and stirred while stirring to make the solution finally have a saturated concentration of 50% ammonium sulfate.
  • the solution was placed in ice for 30 min to 60 min, then centrifuged at 5 OOOr/min for 10 min, and the supernatant was removed.
  • the precipitate was dissolved in Tris-HCl buffer (pH 7.2, 40 mMol/L NaCl) (the solution may be cloudy).
  • the dialysis bag was placed in a dialysis bag and dialyzed in a Tris-HCl buffer (pH 7.2, 20 mMol/L NaCl). Centrifugation to precipitate.
  • DEAE-cellulose column The cellulose column was 40 cm high and equilibrated with 20 mMol/L NaCl Tris buffer (pH 7.2). Dialysis samples were diluted in equal amounts with Tris buffer (pH 7.2). The sample enters the bed at a speed of 1 ml to 2 ml/min and is eluted with a linear gradient of NaCl.
  • the eluate collected above was separately applied to a G protein agarose affinity chromatography column (available from Amersham Pharmacia), and then eluted with a 0.1 M glycine buffer (pH 2.8). Tris-HCl was added to the eluted product to adjust the pH to 7.2, and then dialyzed against a dialysis membrane having a molecular weight cut off of 100 °D (available from Spectrum Corporation) in a PBS solution. After dialysis, the cells were sterilized by filtration through a membrane having a pore size of 0.22 ⁇ m to obtain a purified anti-FGF-23 antibody.
  • the antibody prepared in Example 4 was each diluted to a concentration of li ⁇ g/ml with a 50 mM sodium hydrogencarbonate solution. 50 ⁇ l of the antibody solution was added to the wells of a 96-well plate, respectively, and incubated at 4 ° C for 12 hours, so that FGF-23 was coated on a 96-well plate. Then, it was washed 3 times with PBS, and blocked with PBST solution (PBS pH 7.2, 0.05% Tween 20) containing 1% bovine serum albumin (BSA) for 12 hours at 4 °C. Then, it was washed 3 times with PBST for 10 minutes each time.
  • PBST solution PBS pH 7.2, 0.05% Tween 20
  • BSA bovine serum albumin

Description

抗 FGF-23抗体的制备方法及用途 技术领域 本发明属于多肽抗体筛选及检测领域, 具体而言, 本发明涉及成纤维细胞生长因子
-23 (本文简称 FGF23或 FGF-23 ) 中由 73个氨基酸残基组成的片段与谷胱甘肽 -S-转移 酶 (本文简称 GST) 形成的融合蛋白的抗体筛选方法, 以及利用该方法筛选得到的抗体 诊断慢性肾脏疾病 (本文简称 CKD ) 的应用等。 发明背景 人体 80%以上的代谢废物和毒素是通过肾脏清理并排出体外的。 每天流经肾脏过滤 的血液多达 180升, 一旦肾脏出现损伤,无法清理有毒的代谢物,会导致全身器官病变。 据中华医学会肾脏病学分会的资料显示, 目前我国慢性肾脏病患者已超过 1亿, 肾脏病 导致的死亡已占慢性病死亡的前五位, 成为影响我国国民健康的主要疾病之一; 2010年 美国的晚期慢性肾衰竭总人数为 66万多,早期的慢性肾病患者的数量超出晚期患者数量 的五十倍, 也就是近 3000万人,而根据美国现有实际统计数据, 利用回归方程推测出美 国在未来 10年内, 无论患病人数还是新发病人数都将呈明显上升趋势。
目前, 临床上诊断慢性肾病采用的是肌氨酸酐血浆检测法, 用血肌酐水平的升高来 反映肾小球滤过功能的受损, 但是血肌酐是在肾小球滤过功能、 肾小管功能严重受损后 才出现明显升高。 因此, 该方法不利于及早检测出肾病。 美国迈阿密大学的研究者在对 162例慢性肾脏疾病患者进行了横断面研究。 结果发现 CKD患者血液中 FGF-23水平明 显升高, 且与对照组相比成明显的指数对数关系。 该结果的得到无须复杂的修正, 仅需 单独对 FGF-23水平进行测量。由于 FGF-23的浓度在慢性肾病的晚期前已是正常人的 100 - 1000 倍, 事实上, 在慢性肾病的早期 FGF23 的浓度已很高 (Circulation , 2009;119;2545-2552), 所以, FGF23 抗体可用于早期诊断出慢性肾脏疾病, 同时, 它可 通过检测体内治疗前后血浆水平, 监测治疗有效性。
国际申请 WO0208271 A公开了全长人 FGF-23,用于诊断和治疗低血磷和高血磷紊乱、 骨质疏松、皮肌炎和冠状动脉疾病。随后,国际申请 WO2003057733A公开了识别 FGF-23 上介于第 180位和第 194位、 或第 237位和第 251位氨基酸残基之间的一段氨基酸序列 的抗体, 并最终优化出杂交瘤细胞 C10 产生的抗人 FGF23 抗体 (参见国际申请 WO2008099969A) , 主要用于治疗肿瘤性软骨病、 低血磷佝偻病等; 由于诊断对阳性检 测率的要求比治疗要高,因此尽管国际申请 WO2003057733A也提供了检测 FGF-23的方 法,但是其需要 2种识别不同 FGF23上不同区域的抗 FGF23抗体联合使用才能满足实际 检测的需要, 即需要识别介于 FGF23第 25位和第 179位氨基酸残基之间的部分氨基酸 序列的一种抗体和识别介于 FGF23第 180位和第 251位氨基酸残基之间的部分氨基酸序 列的另一种抗体的组合。 这种需要两种抗体的检测方法非常不方便, 因为这样的方法将 得出两个检测 FGF-23的值, 至于取何值代表 FGF23的水平, 需要对这些结果再进一步 研究出修正或综合的方法, 这样就大大弱化了 CKD患者与 FGF-23水平的对应关系的简 单性, 仍旧需要对检测结果进行复杂的修正。
经过长期研究,本发明人令人惊讶地发现,如果选取 FGF23上介于第 179位和第 251 位氨基酸残基之间的 73 个氨基酸的序列作为靶位, 而且采用特定的顺序与谷胱甘肽 -S- 转移酶融合, 这种便于纯化的且增强免疫原性的融合蛋白可以直接用来筛选抗体, 即使 是没有切除融合蛋白上的谷胱甘肽 -S-转移酶部分, 直接利用融合蛋白来筛选, 其筛选出 的识别 FGF23的单克隆抗体数量众多、重复性好,未见 GST融合部分影响抗体筛选的效 率, 这样节约了蛋白酶切及纯化的步骤, 大大提高了筛选的效率; 而且用该方法筛选出 的单克隆抗体对各种实际来源的血液标本中 FGF23的检出水平非常好, 完全可以单独用 于检测和诊断的方法, 无需再组合其他抗体, 这也说明了尽管仅仅增加了一个氨基酸残 基, 但是采用了本发明的融合蛋白具有增强免疫原性的作用。 发明内容 本发明的目的在于选取 FGF23上介于第 179位和第 251位氨基酸残基之间的 73个氨 基酸的序列作为靶位, 而且采用特定的顺序与谷胱甘肽 -S-转移酶融合, 一方面便于纯化 的且增强免疫原性的融合蛋白可以直接用来筛选抗体, 另一方面即使是没有切除融合蛋 白上的谷胱甘肽 -S-转移酶部分, 直接利用融合蛋白来筛选, 其筛选出的识别 FGF23的单 克隆抗体数量众多、 重复性好、 筛选效率高, 而且筛选出的单克隆抗体完全可以单独用 于检测和诊断。 具体而言, 在第一方面, 本发明提供了筛选或制备抗人成纤维细胞生长因子 -23 (FGF-23 ) 的单克隆抗体的方法, 其包括:
( 1 )构建表达融合蛋白的大肠杆菌, 所述融合蛋白从 N端向 C端方向依次包含谷胱 甘肽 -S-转移酶、 柔性接头和 FGF-23 C端的 73个氨基酸的片段;
(2) 表达所述融合蛋白, 然后利用谷胱甘肽 -S-转移酶亲和层析纯化所述融合蛋白;
(3 ) 用纯化的所述融合蛋白免疫动物, 收集脾细胞, 与骨髓瘤细胞融合, 产生杂交 瘤细胞;
(4)将步骤 (3 )获得的杂交瘤细胞的培养上清液在用人全长 FGF-23包被的板上进 行间接 ELISA测定, 选取培养上清液与人全长 FGF-23结合的阳性杂交瘤细胞克隆;
(5 ) 将步骤 (4) 选取的阳性杂交瘤细胞克隆接种于动物, 收集动物腹水, 使腹水上 清液依次经硫酸铵沉淀、 透析除盐、 DEAE-纤维素层析和 G蛋白琼脂糖亲和层析纯化, 从而筛选或制备获得抗人 FGF-23的单克隆抗体。
另外, 在本发明的第一方面中, 本发明提供了筛选抗人成纤维细胞生长因子 -23 (FGF-23 ) 的单克隆抗体的方法。 筛选的方法必然包括选取的步骤, 但不包括纯化的步 骤 (即步骤 (5 )) 的筛选方法也涵盖在本发明的范围中。 但是, 优选本发明的筛选的方 法包括上述步骤 (1 ) 〜 (5 )。
另外, 在本发明的第一方面中, 本发明还提供了制备抗人成纤维细胞生长因子 -23 (FGF-23 ) 的单克隆抗体的方法。 只包括上述纯化的步骤 (即步骤 (5 )) 的制备的方法 可以涵盖在本发明的范围中。 但是, 优选本发明的制备的方法包括上述步骤(1 ) 〜 (5 )。
优选在本发明的第一方面的方法中, 所述 FGF-23 C端的 73个氨基酸的片段的氨基 酸序列优选如 SEQ ID NO: 4所示。 更优选地, 所述融合蛋白从 N端向 C端方向依次由 谷胱甘肽 -S-转移酶 (简称为 GST)、 柔性接头和 FGF-23 C端的 73个氨基酸的片段组成, 优选所述融合蛋白的氨基酸序列如 SEQ ID NO: 6所示。
本发明发现,在优化的条件下诱导表达能够有更高的融合蛋白表达效率。优选在本发 明的第一方面的方法中,步骤(2)包括,在 25°C和终浓度为 0.4mmol/L的条件下用 IPTG 诱导表达 8小时。 表达时间更短, 则表达量较小; 表达时间延长, 表达量未见增长, 而 表达本身更为不经济。
优选在本发明的第一方面的方法中, 在步骤(2) 中, 谷胱甘肽 -S-转移酶亲和层析为 GST亲和层析, 如使用市售的 GST亲和层析柱。 由于融合蛋白中带有谷胱甘肽 -S-转 移酶, 因此非常方便纯化出融合蛋白。 本发明人研究发现, 即时没有切除融合蛋白上的 谷胱甘肽 -S-转移酶部分, 直接利用融合蛋白来筛选, 其筛选出的识别 FGF23的单克隆抗 体数量众多、 重复性好、 筛选效率高, 而且筛选出的单克隆抗体完全可以单独用于检测 和诊断。 因此, 其中步骤(2) 的纯化步骤中不包括蛋白酶酶切或水解所述融合蛋白的步 骤。 即在步骤(2) 中, 除了表达所述融合蛋白, 然后利用谷胱甘肽 -S-转移酶亲和层析纯 化所述融合蛋白之外, 不再包含其他步骤。
在本发明的第一方面的方法中,可以采用成熟的杂交瘤技术制备产生单克隆抗体,并 可以利用成熟的间接 ELISA测定来选取阳性杂交瘤细胞克隆。 其中优选, ELISA测定的 包被的底物是人全长 FGF-23。 本发明发现, 过低人全长 FGF-23浓度将使筛选效率大为 减小, 而过高浓度将产生较大量的假阳性干扰。 经实验摸索, 在本发明的具体实施方式 中, 用量为 100ng/ml的人全长 FGF-23的溶液 50μ1/孔。
优选在本发明的第一方面的方法中, 步骤 (5) 包括, 腹水上清液在 50%饱和浓度的 硫酸铵溶液中沉淀, 收集沉淀透析除盐。 也优选其中步骤(5 )包括, 收集 DEAE-纤维素 层析中 40 mMol/L~80mMol/L NaCl 的 Tris 缓冲液洗脱的洗脱液与 120 mMol/L~150 mMol/L NaCl的 Tris缓冲液洗脱的洗脱液。 经实验发现, 这两个梯度洗脱区间都能够洗 脱出单克隆抗体。
在第二方面, 本发明提供了根据本发明第一方面所述的方法筛选或制备的抗人 FGF-23的单克隆抗体, 其能够结合融合蛋白, 所述融合蛋白从 N端向 C端方向依次包 含谷胱甘肽 -S-转移酶、 柔性接头和 FGF-23 C端的 73个氨基酸的片段, 优选所述融合蛋 白的氨基酸序列如 SEQ ID NO: 6所示。 本发明人研究发现, 经过本发明第一方面所述 的方法筛选或制备的抗人 FGF-23的单克隆抗体, 其能够识别天然状态下(如, 人体血清 中)的人全长 FGF-23蛋白。不受理论所限, 这可能是因为本发明的融合蛋白的合适组成 恰好模拟了天然状态下的人全长 FGF-23蛋白的空间折叠,尤其是 FGF-23 C端的 73个氨 基酸的片段的空间折叠, 这一折叠结构比国际申请 WO2003057733A、 WO2008099969A 和 WO2003057733A所用于筛选 FGF-23的片断或融合蛋白更接近于天然状态下的人全长 FGF-23蛋白的空间折叠结构, 因而无需至少两种识别不同片断的单克隆抗体, 而只需要 一种单克隆抗体, 就能够高效检测出天然状态下的 FGF-23 水平以及由其表征的慢性肾 病。 在第三方面, 本发明提供了用于检测人全长 FGF-23或诊断慢性肾病的试剂盒, 其包 括本发明第二方面所述的单克隆抗体。其中,本发明提供了用于检测人全长 FGF-23的试 剂盒。 由于天然状态下(如, 人体血清中), 人全长 FGF-23的水平与慢性肾病直接相关, 因此本发明也提供了用于诊断慢性肾病的试剂盒。 由于采用单克隆抗体, 试剂盒中所有 抗体理论上都是均一的, 不会像现有技术采用多克隆抗体那样, 给结果判读标准造成模 糊性和重复性不佳等特点。 优选试剂盒中还可以包括其他辅助检测或诊断的试剂, 如人 全长 FGF-23标准溶液以及 ELISA检测中所需的试剂, 如 HRP标记的二抗和四基甲联苯 胺 (TMB) 显色剂等。
在第四方面,本发明提供了本发明第二方面所述的单克隆抗体在制备用于检测人全长 FGF-23或诊断慢性肾病的试剂盒中的应用。 其中, 本发明提供了本发明第二方面所述的 单克隆抗体在制备用于检测人全长 FGF-23的试剂盒中的应用。 由于天然状态下(如, 人 体血清中), 人全长 FGF-23的水平与慢性肾病直接相关, 因此本发明也提供了本发明第 二方面所述的单克隆抗体在制备用于诊断慢性肾病的试剂盒中的应用。相对于现有技术, 本发明筛选或制备出的单克隆抗体单独就能够进行有效检测和诊断, 无需第二种抗体的 辅助, 这也有助于检测和诊断标准的简化, 因此在本发明第三方面的应用中, 优选本发 明第二方面所述的单克隆抗体作为唯一抗体在制备用于检测人全长 FGF-23 或诊断慢性 肾病的试剂盒中的应用。
在第五方面, 本发明提供了用于筛选或制备抗 FGF-23的单克隆抗体的融合蛋白, 其 从 N端向 C端方向依次包含谷胱甘肽 -S-转移酶、 柔性接头和 FGF-23 C端的 73个氨基酸 的片段, 优选其从 N端向 C端方向依次由谷胱甘肽 -S-转移酶、 柔性接头和 FGF-23 C端 的 73个氨基酸的片段组成, 更优选其氨基酸序列如 SEQ ID NO: 6所示。 其可以在本发 明第一方面的方法中使用, 用于筛选或制备出本发明第二方面的单克隆抗体, 从而应用 于本发明第三和第四方面。
为了便于理解, 以下将通过具体的附图、 实施例对本发明进行详细地描述。 需要特 别指出的是, 这些描述仅仅是示例性的描述, 并不构成对本发明范围的限制。 依据本说 明书的论述, 本发明的许多变化、 改变对所属领域技术人员来说都是显而易见的。 另 外, 本发明引用了公开文献, 这些文献是为了更清楚地描述本发明, 它们的全文内容均 纳入本文进行参考, 就好像它们的全文已经在本文中重复叙述过一样。 附图说明 图 1显示了 pGEX-4-T质粒多克隆限制性酶切位点示意图, 其上构建了谷胱甘肽 -S-转 移酶基因。
图 2显示了融合蛋白诱导表达的 SDS-PAGE电泳图谱, 泳道从左至右分别上样的是 分子量标记、 未诱导表达的菌液和诱导表达的菌液, 其中在诱导表达的菌液中出现分子 量约 33kDa的融合蛋白条带。
图 3显示了融合蛋白在优化的条件下 (25°C和 0.4mmol/L IPTG) 不同时间融合蛋白 诱导表达的 SDS-PAGE电泳图谱,泳道从左至右分别上样的是未诱导表达 7小时的菌液、 诱导表达 7小时的菌液、 未诱导表达 8小时的菌液、 诱导表达 8小时的菌液、 未诱导表 达 9小时的菌液、 诱导表达 9小时的菌液、 诱导表达前的菌液和分子量标记, 其中诱导 表达 8小时是最优的。
图 4显示了融合蛋白纯化前后的 SDS-PAGE电泳图谱, 泳道从左至右分别上样的是 分子量标记、 诱导表达前的菌液、 诱导表达后的菌液、 超声波破碎后收集的上清液、 超 声波破碎后收集的沉淀和经过层析纯化后的融合蛋白。 具体实施方式 以下本文将通过具体的实施例来描述发明。 如未特别指明之处, 可根据本领域技术 人员所熟悉的《分子可隆实验指南》(第三版) (Cold Spring Harbor laboratory Press)、 《细 胞实验指南》 (科学出版社, 北京, 中国, 2001年) 、 《免疫检测技术》(科学出版社,北 京,中国, 1991)等实验手册以及本文所引用的参考文献中所列的方法来实施。
实施例 1 GST-FGF23-73AA抗原的制备
参照 GST和人 FGF23全长片段 (参见 SEQ ID NO: 2及及其编码序列 SEQ ID NO: 1 ) , 我们设计了 GST-FGF23-73AA抗原 (其序列为 SEQ ID NO: 6), 委托吉林农大生 物反应器公司制备 GST-FGF23-73AA抗原, 具体而言: 合成编码融合蛋白的 FGF23 的 73个氨基酸片段 (SEQ ID NO: 4) 的 DNA序列 (SEQ ID NO: 3 ), 利用正、 反向引物 ( SEQ ID NO: 7、 8)对其进行 PCR扩增, 用 BamH I和 Xho I双酶切 PCR产物后, 与 具有同样酶切割的 PGEX-4-T载体 (可购自吉林农大生物反应器公司) 连接, 转化入克 隆菌 DH5a中, 挑取阳性转化克隆, 测序序列得到编码的 DNA序列为 SEQ ID NO: 5, 能够表达设计的序列。
挑取上述阳性单菌落, 接种于 LB培养基中, 于 37°C震荡培养 15小时。 然后, 根据 我们摸索的最佳诱导条件, 将培养的菌体按 2% (v/v) 转接新鲜 LB培养基, 于 25 °C、 200rpm、 终浓度为 0.4mmol/L的 IPTG诱导 8小时 (表达后菌体破碎体的 SDS-PAGE检 测如图 2、 3所示)。离心收集菌体并加入 8倍体积的细胞裂解液 (20 mmol/L Tris-Cl pH 8.0, 1 mmol/L EDTA pH 8.0, 20 mmol/L NaCl),超声破碎后以 5 000 rpm离心 30分钟,收集上清 液;沉淀再次用等体积的裂解液溶解, 超声破碎后以 5 000 rpm离心 30分钟,收集上清液。 合并两次上清液, 上样于 5mLGST亲和层析柱 (购自 GE公司), 谷胱甘肽缓冲液洗脱, 得到纯化的 GST-FGF23-73AA融合抗原 (纯化前后的结果参见图 4)。 透析后冷冻干燥, 保存于 -20°C备用。
实施例 2 Balb/c小鼠的免疫
取 5只 6周龄的雌性健康 BALB/C小鼠。初次免疫取根据实施例 1制备的 850ug L— 1 GST-FGF23-73AA溶液 360ul加生理盐水至 1.50mL加等量的弗氏完全佐剂乳化 (;可购自 Gibco BRL 公司), 腹腔注射 (0.5mL/只)二周后进行加强免疫, GST-FGF23-73AA剂量同 上, 改为弗氏不完全佐剂 (可购自 Gibco BRL公司)乳化腹腔内注射 (0.5mL/只)。 以后每间 隔四周后进行一次加强免疫, 方法同第二次免疫。 共免疫 4次。 第四次免疫后的第七天, 鼠尾静脉采血测抗体效价。 融合前 3 天进行最后一次免疫, 取生理盐水 80ul, 加入
Figure imgf000008_0001
)120 ul混合, 尾静脉注射。
实施例 3特异性杂交瘤的筛选
最后一次加强免疫后 3天,切除小鼠的脾脏,从脾脏中采集到的脾细胞与小鼠的骨髓 瘤 SP2/0(ATCC: CRL 1581)以 10: 1的比例混合在一起, 在 50mL离心管中用无血清不 完全培养液 1640(可购自 Gibco BRL公司)洗 1次, 离心, 1000rpm, 8min弃上清, 用吸管吸 净残留液体,轻轻弹击离心管底,使细胞成糊状。将离心管置于 37°C水浴中, 吸取 0.7mL 50%PEG溶液, 慢慢加入细胞中, 边加边轻微摇动, lmin内加完。 600rpm离心 4min加 37°C预温的不完全培养 1640液以终止 PEG作用 (头 2min慢慢加入 2mL, 然后在 2min 内加入余下 8mL), lOOOrpm离心 8min, 弃上清, 用 50mL含 20%小牛血清的 HAT选择 培养液 (含 20%小牛血清培养液) 重悬, 上述细胞, 加到已有词养细胞层的 96孔板内, 每孔加 100UL。 将培养板置 5%C02的 37°C温箱中培育。 每隔 3天, 轻轻吸取 100UL上 清, 弃掉, 补加 HAT选择培养液(含 20%小牛血清), 在每次换液前用倒置显微镜观察, 一般在 4天左右即可见到有杂交瘤集落,大约在 7~10天左右就可观察到杂交瘤细胞生长 出来。 杂交瘤细胞长至孔的 1/3时, 吸取上清液, 检测抗体。
根据间接 ELISA法来筛选 FGF-23特异性抗体。 具体而言: 向 96孔板中每孔加入含 lug/ml的人全长 FGF-23的 50mM碳酸氢纳溶液 50μ1,在 4°C孵育 12小时, 使得 FGF-23 包被在 96孔板上。然后,用 PBS洗涤 3次, 用含 1%的牛血清蛋白 (BSA)的 PBST溶液 (PBS pH 7.2,0.05%Tween20)于 4°C封闭 12小时。 然后, 用 PBST洗涤 3次, 每次 10分钟。 加 入杂交瘤细胞培养上清液, 每孔 100ul, 于 37°C孵育 2小时, PBS为空白对照。 然后, 加入 HRP标记的山羊抗鼠 IgG (可购自 sigma公司) (1:10000)于 37°C孵育 1小时, 然后 加入四基甲联苯胺 (TMB) 显色, 测定 OD450值, 以阴阳性比值 (P/N)≥2.1判断为阳性 杂交瘤细胞。
为避免其他阴性细胞对其生长的影响,将前述经反复 2次检测均为阳性的杂交瘤细胞 阳性的杂交瘤细胞, 采用有限稀释法, 进行单细胞分离。 简而言之, 每一前述的阳性克 隆用 HT完全培养基稀释后分别加入 96孔板的孔中, 加入量为每孔 bdO5个细胞的量, 然 后加入含 20%牛血清的 HT完全培养基, 每孔 100L。 将 96孔板置于 37°C、 5% C02温箱 培养。 每隔 3天换液一次, 并用倒置显微镜观察细胞的生长状态。 对确为只有一个细胞 克隆生长的孔做好标记检测。 选择根据间接 ELISA法测定得到的阳性反应强的培养孔, 进行细胞扩增或进行第二次克隆,直到所有亚克隆孔 100%阳性反应为止。按照上述方法, 共得到 13种特异识别 FGF-23的杂交瘤克隆。
重复实施例 2的免疫方法以及上述筛选方法, 再次得到 7种特异识别 FGF-23的杂交 瘤克隆。这表明,本发明的筛选方法重复性佳,而且能够获得大量特异识别人全长 FGF-23 的单克隆抗体的杂交瘤克隆。根据抗体鉴定结果,其中 12种抗体是 IgGl, 5种是 IgG2b, 3种是 IgG2a。
实施例 4单克隆抗体的制备
实施例 3制备的杂交瘤克隆分别以 klO61的浓度腹腔注射于小鼠,每只小鼠注 射 1.0mL。 7天后收集杂交瘤细胞, 离心, 去上清, 加入生理盐水, 调节细胞密度至 klO6 个 ·ηιΐ 每只小鼠腹腔注射 l.OmL, 每一实施例 3制备的杂交瘤克隆接种 3只。 接种细 胞 10天后, 小鼠腹部增大, 收集腹水, 用 16号注射器针头, 无菌剌入腹腔, 使腹水自 然或挤压流出,收集至 50mL离心管中,并使劲晃动防止腹水凝结。 1500rpm离心 10min, 吸取上清, 以 0.45um的滤器过滤除菌, 分装后贮存 -20°C冰箱。 小鼠腹水用冷 PBS液稀释 4倍后, 于 l.OOxlO5转离心 30min, 去沉淀。 在 4°C于上 清中缓缓滴加饱和硫酸铵液, 边加边搅拌, 使溶液最终为 50%硫酸铵饱和浓度。 此溶液 置冰中 30min~60min, 然后 5 OOOr/min离心 10min, 去上清。 将沉淀溶于 Tris— HC1缓冲 液(pH7.2, 40mMol/L NaCl)中(溶液可能混浊)。装入透析袋于 Tris— HC1缓冲液(pH7.2, 20 mMol/L NaCl) 中透析除盐。 离心去沉淀。 溶液稀释 (1:200)后, 于 280nm测蛋白含 量, 蛋白质含量 lA 280unit=0.8mg蛋白质。 过 DEAE—纤维素柱: 纤维素柱高 40cm, 以 20mMol/L NaCl Tris缓冲液 (pH7.2) 平衡。 透析样品以 Tris缓冲液 (pH7.2) 等量稀释。 样品进入柱床速度为 lml~2ml/min, 以 NaCl线形梯度洗脱。 收集分别为 40 mMol/L~ 80mMol/L NaCl的 Tris缓冲液 (pH7.2) 洗脱的洗脱液与 120 mMol/L ~ 150 mMol/L NaCl 的 Tris缓冲液 (pH7.2) 洗脱的洗脱液, 流速均为 20mL h—
将以上收集的洗脱液分别上样于 G 蛋白琼脂糖亲和层析柱(可购 自 Amersham Pharmacia公司), 然后用 0.1M的甘氨酸缓冲液 (pH 2.8)洗脱。 向洗脱产物中加 入 Tris-HCl以调节 pH值为 7.2,然后用截留分子量为 lOOOODa的透析膜 (可购自 Spectrum 公司)在 PBS溶液中进行透析。 透析后通过孔径为 0.22μηι的滤膜过滤除菌, 得到纯化的 抗 FGF-23抗体。
实施例 5用 ELISA法检测 FGF23水平及诊断慢性肾病
用 50mM碳酸氢纳溶液将实施例 4制备的抗体分别稀释至 li^g/ml的浓度。 分别取 50μ1抗体溶液加入到 96孔板的孔中, 在 4°C孵育 12小时, 使得 FGF-23包被在 96孔板 上。 然后, 用 PBS 洗涤 3 次, 用含 1%的牛血清蛋白 (BSA)的 PBST 溶液 (PBS pH 7.2,0.05%Tween20)于 4°C封闭 12小时。 然后,用 PBST洗涤 3次, 每次 10分钟。 分别加 入浓度为 0、 0.01、 0.1和 l g/ml的人全长 FGF-23标准溶液以及取自健康和经诊断患有 慢性肾病的患者的血清, 每孔 100ul, 于 37°C孵育 2小时, PBS为空白对照然后, 加入 HRP标记的山羊抗鼠 IgG (可购自 sigma公司) (1:10000)于 37°C孵育 1小时, 然后加入 四基甲联苯胺 (TMB) 显色, 测定 OD450值。 结果表明, 应用筛选出的 20种抗体进行 检测均能够显示出标准溶液中 FGF-23的存在量,同时也能够显示出患有慢性肾病的患者 的血清中 FGF-23的量远远超过健康人体的 FGF-23的量, 而且呈现出良好的指数对数关 系, 可直接用于诊断慢性肾病。 序列表
<110> 温州医学院生物与天然药物研究开发中心有限公司
<120> FGF23抗体的筛选和制备以及其在慢性肾病诊断中的应用
<130> P4-104024CP
<160> 8
< 170> Patentln version 3.3
<210> 1
<211> 687
<212> DNA
<213> 智人
<400> 1
atgtatccca atgcctcccc actgctcggc tccagctggg gtggcctgat ccacctgtac 60 acagccacag ccaggaacag ctaccacctg cagatccaca agaatggcca tgtggatggc 120 gcaccccatc agaccatcta cagtgccctg atgatcagat cagaggatgc tggctttgtg 180 gtgattacag gtgtgatgag cagaagatac ctctgcatgg atttcagagg caacattttt 240 ggatcacact atttcgaccc ggagaactgc aggttccaac accagacgct ggaaaacggg 300 tacgacgtct accactctcc tcagtatcac ttcctggtca gtctgggccg ggcgaagaga 360 gccttcctgc caggcatgaa cccacccccg tactcccagt tcctgtcccg gaggaacgag 420 atccccctaa ttcacttcaa cacccccata ccacggcggc acacccggag cgccgaggac 480 gactcggagc gggaccccct gaacgtgctg aagccccggg cccggatgac cccggccccg 540 gcctcctgtt cacaggagct cccgagcgcc gaggacaaca gcccgatggc cagtgaccca 600 ttaggggtgg tcaggggcgg tcgagtgaac acgcacgctg ggggaacggg cccggaaggc 660 tgccgcccct tcgccaagtt catctag 687 dsy ηχο Biv JOS OJJ naq ηχο ujo J9S sKj jas ^χγ OJJ ^χγ OJJ J¾
9ZT OZT 99T
19γ( §jy §jy OJJ sA naq
Figure imgf000012_0001
usy naq OJJ dsy §jy nj¾ J9§ dsy
09T 99T 09T S T dsy ηχ9 T3JY jas §jy H1 STH §JV §JV 0Jd 9ΐΙ ojd J¾ usy aqa SIH
( 9CT OCT
9ii naq OJJ 9ii nj¾ usy §jy §jy jag naq aqj uj¾ J9§ Α OJJ OJJ
9ST OCT 9TT
0Jd usy dy^ Aj0 OJJ naq 9qj Τ3χγ §jy sAq Τ3χγ §jy Αχ^ naq J9§ Ι^Λ
OTT 90T 00T
Π9ΐ 9qj SIH "TO OJJ JOS SIH ΐ^Λ DSV J^I ^ΐθ usy ηχο naq
96 06 98
jqi "TO SIH "TO 3qd §JV s^3 usy ηχο OJJ dsy ^^d Αχ SIH ^10 08 9Z 0Z 99
9qd 911 usy Αχ^ §jy 9 dsy naq Α §jy §Jy J9S 1-9W
09 99 09
^ΐθ J¾ 3Π 3qd ^ΐθ dsV ηχο J9S §JV 9ΐΙ WW Π9ΐ ^χν
S 0 9C
J9S J丄 911 Jqi ujo SIH OJJ ^χγ ΐί) dsy Ι^Λ SIH ^ΐθ usy sAq SIH
OS Z 0Z
9ii ujo naq SIH J^I J3S usy §JV ^IV J¾ ^IV J¾ nai SIH 9ΐΙ 9T 0T 9 T naq Αχ0 Αχ0 djx jas J9S ^IO naq naq OJJ jas ΐ3χν "SV 0 d
Z <00V>
<£IZ> ∑&d <ZIZ> szz <uz>
Z <01Z>
960SS0/ZT0Z OAV ppy Ge se Ge Alalu As Asn Mt Alar Asl Val Lu ggye 〇 se Ge G Ar Ala Ar Mt Thr ϊ Ala ϊ Alasrlu Luin ggpppy G Gee Ar Alalu As Aslu Ar As Lu Asn Lu Ls Val
Figure imgf000013_0001
ggg ccccccccctt aattatt a
gggggg ggggggggggggggcccccc ccttata taaaata
gg ggg ggggggg cccccccccc ccccctttaaataaaaaa
ggggggggggggggggcc cccccccc cccccaataa ttaa
gyyyyy G G G G G Cοe Val Asn Thr His Alall Thrlluls Ar ϊ¥ lhu ggpyyyee G G G Mt Ala As Lul Val Val Arll Ar 35 40 45
Val Arg Gly Gly Arg Val Asn Thr His Ala Gly Gly Thr Gly Pro Glu
50 55 60
Gly Cys Arg Pro Phe Ala Lys Phe l ie
65 70
<210> 5
<211> 915
<212> DNA
<213> 融合蛋白基因
<400> 5
atgtccccta tactaggtta ttggaaaatt aagggccttg tgcaacccac tcgacttctt 60 ttggaatatc ttgaagaaaa atatgaagag catttgtatg agcgcgatga aggtgataaa 120 tggcgaaaca aaaagtttga attgggtttg gagtttccca atcttcctta ttatattgat 180 ggtgatgtta 3,3,t 13,3,C&C& gtctatggcc atcatacgtt atatagctga caagcacaac 240 atgttgggtg gttgtccaaa agagcgtgca gagatttcaa tgcttgaagg agcggttttg 300 gatattagat acggtgtttc gagaattgca tatagtaaag actttgaaac tctcaaagtt 360 gattttctta gcaagctacc tgaaatgctg aaaatgttcg aagatcgttt atgtcataaa 420
3,C&t &t 113,3, atggtgatca tgtaacccat cctgacttca tgttgtatga cgctcttgat 480 gttgttttat acatggaccc aatgtgcctg gatgcgttcc caaaattagt ttgttttaaa 540 aaacgtattg aagctatccc acaaattgat aagtacttga aatccagcaa gtatatagca 600 tggcctttgc agggctggca agccacgttt ggtggtggcg accatcctcc aaaatcggat 660 ctggaagttc tgttccaggg gcccctggga tcccggagcg ccgaggacga ctcggagcgg 720 gaccccctga acgtgctgaa gccccgggcc cggatgaccc cggccccggc ctcctgttca 780 caggagctcc cgagcgccga ggacaacagc ccgatggcca gtgacccatt aggggtggtc 840 aggggcggtc gagtgaacac gcacgctggg ggaacgggcc cggaaggctg ccgccccttc 900 gccaagttca tctag 915
<210> 6 ^IV "10 dJX Αχ0 ujo Π9ΐ OJJ djx ^ γ 9χι Αχ sAq J9S J9S sAq naq
06T 98T 08T
丄 sAq dsy 9χι ujg OJJ 9χι Ώχγ οχι §jy sAq sAq 9 sA3 χτ3Λ
9ZT OZT 99T
noq sAq OJJ aqj Τ3χγ dsy naq OJJ dsy Α naq χτ3Λ χτ3Λ
09T 99T 09T S T dsy naq ^χγ dsy Αχ naq q_9^ oqa dsy OJJ SIH H1 l^A s^H dsV Λΐ0
( 9CT OCT usy naq Α jqx sAq SIH
Figure imgf000015_0001
9ST OCT 9TT nj OJJ naq sA J9§ naq 9qj dsy
Figure imgf000015_0002
sA naq jq nj¾ 9qj dsy sA
OTT 90T 00T
J3S J^I ^IV 9ΐΙ §JV ^9S ΐΒΛ ^ΐθ J^I §JV 9U dsy naq ΙΒΛ BIV Αχ0
96 06 98
ηχο naq J9S 911
Figure imgf000015_0003
naq
08 9Z 0Z 99 usy SIH s 1 dsy Τ3χγ 9χι Αχ §jy 9χΐ 9χΐ ^ γ on J9S ujg J¾ naq
09 99 09 sAq χΐ3Λ dsy
Figure imgf000015_0004
f Of 9C naq ηχ0 9qd sAq sAq usy §jy L [丄 sAq dsy
Figure imgf000015_0005
Αχ
οε z oz
n91 SIH ηχο ηχο Αχ sAq ηχο ηχο naq Αχ ηχο naq naq naq §jy J¾
9T 0T 9 T
〇·¾ "TO noq Αχ0 sAq 9χι sAq d 丄 Αχ Αχ^ naq 9χι OJJ J9S
Figure imgf000015_0006
S虽 鞭 <£IZ> ∑&d <ZIZ> V0£ <UZ>
960SS0/ZT0Z OAV 195 200 205
Thr Phe Gly Gly Gly Asp His Pro Pro Lys Ser Asp Leu Glu Val Leu
210 215 220
Phe Gin Gly Pro Leu Gly Ser Arg Ser Ala Glu Asp Asp Ser Glu Arg
225 230 235 240
Asp Pro Leu Asn Val Leu Lys Pro Arg Ala Arg Met Thr Pro Ala Pro
245 250 255
Ala Ser Cys Ser Gin Glu Leu Pro Ser Ala Glu Asp Asn Ser Pro Met
260 265 270
Ala Ser Asp Pro Leu Gly Val Val Arg Gly Gly Arg Val Asn Thr His
275 280 285
Ala Gly Gly Thr Gly Pro Glu Gly Cys Arg Pro Phe Ala Lys Phe l ie
290 295 300
<210> 7
<211> 31
<212> DNA
<213> 正向引物
<400> 7
cgtgggatcc cggagcgccg aggacgactc g 31
<210> 8
<211> 29
<212> DNA
<213> 反向引物
<400> 8
cacgctcgag ttactagatg aacttggcg 29

Claims

权利要求 1, 筛选或制备抗人成纤维细胞生长因子 -23 (FGF-23 ) 的单克隆抗体的方法, 其包 括-
( 1 )构建表达融合蛋白的大肠杆菌, 所述融合蛋白从 N端向 C端方向依次包含谷胱 甘肽 -S-转移酶、 柔性接头和 FGF-23 C端的 73个氨基酸的片段;
(2) 表达所述融合蛋白, 然后利用谷胱甘肽 -S-转移酶亲和层析纯化所述融合蛋白;
(3 ) 用纯化的所述融合蛋白免疫动物, 收集脾细胞, 与骨髓瘤细胞融合, 产生杂交 瘤细胞;
(4)将步骤 (3 )获得的杂交瘤细胞的培养上清液在用人全长 FGF-23包被的板上进 行间接 ELISA测定, 选取培养上清液与人全长 FGF-23结合的阳性杂交瘤细胞克隆;
(5 ) 将步骤 (4) 选取的阳性杂交瘤细胞克隆接种于动物, 收集动物腹水, 使腹水上 清液依次经硫酸铵沉淀、 透析除盐、 DEAE-纤维素层析和 G蛋白琼脂糖亲和层析纯化, 从而筛选或制备获得抗人 FGF-23的单克隆抗体。
2, 权利要求 1所述的方法, 其中所述 FGF-23 C端的 73个氨基酸的片段的氨基酸序 列如 SEQ ID NO: 4所示。
3,权利要求 1或 2所述的方法, 其中所述融合蛋白从 N端向 C端方向依次由谷胱甘 肽 -S-转移酶、 柔性接头和 FGF-23 C端的 73个氨基酸的片段组成, 优选所述融合蛋白的 氨基酸序列如 SEQ ID NO: 6所示。
4, 权利要求 1 所述的方法, 其中步骤 (2) 的纯化步骤中不包括蛋白酶酶切或水解 所述融合蛋白的步骤。
5, 权利要求 1所述的方法, 其中步骤 (2) 包括, 在 25°C和终浓度为 0.4mmol/L的 条件下用 IPTG诱导表达 8小时。
6, 权利要求 1所述的方法, 其中步骤 (5 ) 包括, 收集 DEAE-纤维素层析中 40 mMol/L~80mMol/L NaCl的 Tris缓冲液洗脱的洗脱液与 120 mMol/L ~150 mMol/L NaCl 的 Tris缓冲液洗脱的洗脱液。
7, 根据权利要求 1-6之任一所述的方法筛选或制备的抗人 FGF-23 的单克隆抗体, 其能够结合融合蛋白,所述融合蛋白从 N端向 C端方向依次包含谷胱甘肽 -S-转移酶、 柔 性接头和 FGF-23 C端的 73个氨基酸的片段,优选所述融合蛋白的氨基酸序列如 SEQ ID NO: 6所示。
8, 用于检测人全长 FGF-23或诊断慢性肾病的试剂盒, 其包括权利要求 7所述的单 克隆抗体。
9, 权利要求 7所述的单克隆抗体在制备用于检测人全长 FGF-23或诊断慢性肾病的 试剂盒中的应用,优选其作为唯一抗体在制备用于检测人全长 FGF-23或诊断慢性肾病的 试剂盒中的应用。
10, 用于筛选或制备抗 FGF-23的单克隆抗体的融合蛋白, 其从 N端向 C端方向依 次包含谷胱甘肽 -S-转移酶、 柔性接头和 FGF-23 C端的 73个氨基酸的片段, 优选其从 N 端向 C端方向依次由谷胱甘肽 -S-转移酶、 柔性接头和 FGF-23 C端的 73个氨基酸的片段 组成, 更优选其氨基酸序列如 SEQ ID NO: 6所示。
PCT/CN2010/078143 2010-10-27 2010-10-27 抗fgf-23抗体的制备方法及用途 WO2012055096A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078143 WO2012055096A1 (zh) 2010-10-27 2010-10-27 抗fgf-23抗体的制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078143 WO2012055096A1 (zh) 2010-10-27 2010-10-27 抗fgf-23抗体的制备方法及用途

Publications (1)

Publication Number Publication Date
WO2012055096A1 true WO2012055096A1 (zh) 2012-05-03

Family

ID=45993056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078143 WO2012055096A1 (zh) 2010-10-27 2010-10-27 抗fgf-23抗体的制备方法及用途

Country Status (1)

Country Link
WO (1) WO2012055096A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101847A1 (zh) * 2014-12-23 2016-06-30 温州医科大学 一种慢性肾病诊断试剂盒

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1446227A (zh) * 2000-07-19 2003-10-01 先端研究与技术学院 新型成纤维细胞生长因子(fgf23)及其使用方法
US20050106755A1 (en) * 2002-09-17 2005-05-19 Zahradnik Richard J. Immunoassays, assay methods, antibodies and method of creating antibodies for detecting FGF-23
CN1639193A (zh) * 2001-12-28 2005-07-13 麒麟麦酒株式会社 抗成纤维细胞生长因子23的抗体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1446227A (zh) * 2000-07-19 2003-10-01 先端研究与技术学院 新型成纤维细胞生长因子(fgf23)及其使用方法
CN1639193A (zh) * 2001-12-28 2005-07-13 麒麟麦酒株式会社 抗成纤维细胞生长因子23的抗体
US20050106755A1 (en) * 2002-09-17 2005-05-19 Zahradnik Richard J. Immunoassays, assay methods, antibodies and method of creating antibodies for detecting FGF-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101847A1 (zh) * 2014-12-23 2016-06-30 温州医科大学 一种慢性肾病诊断试剂盒

Similar Documents

Publication Publication Date Title
CN108250296B (zh) 全人源抗人pd-l1单克隆抗体及其应用
DK175703B1 (da) Human vævsfaktor-relaterede DNA-segmenter, polypeptider og antistoffer, hybridomaer, bestemmelsesmetoder, diagnostiske systemer og metoder, isoleringsmetoder og fremstillingsmetoder
CA2522378C (en) Method of detecting probnp with a monoclonal antibody binding to the amino acids 41-46
TWI641622B (zh) 增進結合至新生fc受體之變異型fc-多肽
CN112424224A (zh) 抗白细胞介素-17a抗体、其药物组合物及其用途
JP7097364B2 (ja) グレムリン-1の結晶構造及び阻害抗体
US20160130336A1 (en) Anti-vegf antibodies and use thereof
CN102887943B (zh) 氨基末端脑钠肽的b细胞表位肽段及其应用
CA2519105A1 (en) Monoclonal antibody and hybridoma producing the same
CN112574311B (zh) 双mic结合活性的抗体及其应用
TW202128770A (zh) 新型多肽複合物
CN103476800A (zh) 融合蛋白
CN104098698B (zh) 一种抗cd3抗体及其制法和应用
CN112941081A (zh) 表达量高和活性强的纤连蛋白突变体的编码序列及其应用
JPH06505011A (ja) erbB−2受容体タンパク質に結合し且つ細胞性応答を誘導するリガンド成長因子
CN110387394A (zh) 高效表达抗体Fab片段的方法
CN107964045A (zh) 一种人鼠嵌合抗CXCR2全分子IgG及其应用
WO2012055096A1 (zh) 抗fgf-23抗体的制备方法及用途
WO2020125744A1 (zh) 双特异性蛋白
CN107417791A (zh) 抗人ErbB2双特异性抗体、其制备方法及用途
CN113637070A (zh) 抗spike蛋白的抗体或抗原结合片段及其应用
JP4651495B2 (ja) Isg15タンパク質と特異的に反応するモノクローナル抗体及びそれを産生するハイブリドーマ並びに癌およびウイルス感染の検出方法
NO169348B (no) Analogifremgangsmaate for fremstilling av en polypeptid-transformerende vekstfaktor
CN111763255B (zh) 一种经基因修饰的vegfa蛋白及其单克隆抗体与应用
CN112646035A (zh) Egfr的亲和力成熟结合蛋白及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858825

Country of ref document: EP

Kind code of ref document: A1