WO2012053395A1 - 非水電解液 - Google Patents

非水電解液 Download PDF

Info

Publication number
WO2012053395A1
WO2012053395A1 PCT/JP2011/073347 JP2011073347W WO2012053395A1 WO 2012053395 A1 WO2012053395 A1 WO 2012053395A1 JP 2011073347 W JP2011073347 W JP 2011073347W WO 2012053395 A1 WO2012053395 A1 WO 2012053395A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
carbonate
compound
general formula
electrolytic solution
Prior art date
Application number
PCT/JP2011/073347
Other languages
English (en)
French (fr)
Inventor
明天 高
坂田 英郎
瞳 中澤
恭平 澤木
知世 佐薙
昭佳 山内
葵 中園
明範 谷
真裕 冨田
有希 足立
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020137012610A priority Critical patent/KR101556045B1/ko
Priority to CN201180050508.7A priority patent/CN103222102B/zh
Priority to EP11834235.1A priority patent/EP2631980B1/en
Priority to US13/880,233 priority patent/US9397368B2/en
Publication of WO2012053395A1 publication Critical patent/WO2012053395A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte.
  • non-aqueous electrolytes for electrochemical devices such as lithium ion secondary batteries
  • electrolytes such as LiPF 6 and LiBF 4 dissolved in non-aqueous solvents such as ethylene carbonate, propylene carbonate, and dimethyl carbonate.
  • non-aqueous solvents such as ethylene carbonate, propylene carbonate, and dimethyl carbonate.
  • an electrolyte salt containing fluorine as described above when used, a small amount of water contained in a non-aqueous solvent or an electrochemical device member such as each electrode or separator reacts with a solute containing fluorine. Hydrofluoric acid may be generated. When hydrofluoric acid is generated, it attacks the solvent in the electrolyte to generate gas. For example, in the case of a lithium ion secondary battery, the battery swells or the gas accumulates between the electrodes and the lithium ions move. Or hinder battery performance.
  • Patent Document 1 in order to obtain an electrolyte solution for a lithium secondary battery having excellent initial battery capacity and cycle characteristics, a benzenesulfonate ester having at least one fluorine atom and a sulfonate ester structure is used as a nonaqueous electrolyte solution. Is disclosed.
  • Patent Document 2 At least one carbon-carbon bond unsaturation is included in the molecular structure for the purpose of providing an electrolytic solution in which the battery is not easily swollen by the decomposition gas of the electrolytic solution and has excellent charge / discharge performance.
  • a compound composed of carbon, fluorine and hydrogen having a linking group wherein an unsaturated hydrocarbon having 6 to 16 carbon atoms in which at least one of hydrogen bonded to carbon is substituted with fluorine is disclosed. Has been.
  • Patent Documents 1 and 2 are known to form a film by reductive decomposition on the negative electrode, but are decomposed on the positive electrode side due to low oxidation resistance and generate gas. Have the potential to do.
  • the present invention has high oxidation resistance, and even when hydrofluoric acid is generated, the decomposition of the non-aqueous electrolyte is suppressed, and when used in a secondary battery, the non-aqueous battery is less likely to swell or deteriorate in battery performance.
  • An object is to provide an electrolytic solution.
  • the present invention is characterized by comprising (I) at least one compound selected from the group consisting of fluorinated chain sulfone and fluorinated chain sulfonate, and (II) an electrolyte salt. It is a non-aqueous electrolyte.
  • the nonaqueous electrolytic solution of the present invention has the above-described configuration, the nonaqueous electrolytic solution is hardly decomposed. Therefore, when the non-aqueous electrolyte of the present invention is used for a secondary battery, the battery is not easily swollen and the battery performance is not lowered, and can be used for a long time.
  • the nonaqueous electrolytic solution of the present invention contains (I) at least one compound selected from the group consisting of fluorinated chain sulfone and fluorinated chain sulfonate, and (II) an electrolyte salt. It is characterized by.
  • Electrolyte salt (II) can be appropriately selected according to the use of the nonaqueous electrolytic solution of the present invention, and the amount of use can be appropriately set. From the viewpoint that it will be remarkably exhibited, an electrolyte salt containing fluorine as described later is preferable.
  • examples of usable electrolyte salt (II) include inorganic lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 and LiBF 4 ; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 2 (CF 3 ) 2 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5) 2, LiBF 2 (CF 3 SO 2) 2, LiBF 2 (C 2 F 5 SO 2) 2, lithium difluoro (oxalato) borate, lithium Scan (oxalato) borate, lithium Scan (oxalato) borate, lithium
  • LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2) are able to suppress deterioration after the non-aqueous electrolyte is stored at a high temperature.
  • LiN (C 2 F 5 SO 2 ) 2 LiN (C 2 F 5 SO 2 ) 2 , lithium difluoro (oxalate) borate, lithium bis (oxalate) borate, and the formula: LiPF a (C n F 2n + 1 ) 6-a where a is 0 It is preferably at least one selected from the group consisting of salts represented by the following formula: n is an integer of ⁇ 5, and n is an integer of 1 to 6.
  • LiPF a (C n F 2n + 1 ) 6-a examples include LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (C 3 F 7 ) 3 LiPF 3 (C 4 F 9 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (C 3 F 7 ) 2 , LiPF 4 (C 4 F 9 ) 2
  • the alkyl group represented by C 3 F 7 or C 4 F 9 in the formula may be either a straight chain or a branched structure.
  • the concentration of the electrolyte salt (II) in the nonaqueous electrolytic solution is preferably 0.5 to 3 mol / liter. Outside this range, the electrical conductivity of the electrolytic solution tends to be low, and the battery performance tends to deteriorate.
  • the concentration of the electrolyte salt is more preferably 0.9 mol / liter or more, and more preferably 1.5 mol / liter or less.
  • usable electrolyte salts (II) include conventionally known ammonium salts and metal salts, as well as liquid salts (ionic liquids). , Inorganic polymer type salts, organic polymer type salts, and the like, and ammonium salts are preferred. However, it is not limited to the illustrated specific examples including the ammonium salt.
  • R 1a, R 2a, R 3a and R 4a are the same or different and each is an alkyl group which may contain an ether bond having 1 to 6 carbon atoms;
  • X - is an anion
  • tetraalkyl represented by Preferred examples include quaternary ammonium salts.
  • the ammonium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • R 5a is an alkyl group having 1 to 6 carbon atoms
  • R 6a is a divalent hydrocarbon group having 1 to 6 carbon atoms
  • R 7a is an alkyl group having 1 to 4 carbon atoms
  • z is 1 or 2
  • X - is an alkyl ether group containing trialkylammonium salt represented by the anion), Etc.
  • the anion X ⁇ may be an inorganic anion or an organic anion.
  • inorganic anions include AlCl 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , TaF 6 ⁇ , I ⁇ and SbF 6 ⁇ .
  • organic anion include CF 3 COO ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ and the like.
  • BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ and SbF 6 ⁇ are preferred from the viewpoint of good oxidation resistance and ion dissociation properties.
  • Preferred examples of tetraalkyl quaternary ammonium salts include Et 4 NBF 4 , Et 4 NClO 4 , Et 4 NPF 6 , Et 4 NAsF 6 , Et 4 NSbF 6 , Et 4 NCF 3 SO 3 , Et 4 N CF 3 SO 2) 2 N, Et 4 NC 4 F 9 SO 3, Et 3 MeNBF 4, Et 3 MeNClO 4, Et 3 MeNPF 6, Et 3 MeNAsF 6, Et 3 MeNSbF 6, Et 3 MeNCF 3 SO 3, Et 3 MeN (CF 3 SO 2) 2 N, may be used Et 3 MeNC 4 F 9 SO 3 , in particular, Et 4 NBF 4, Et 4 NPF 6, Et 4 NSbF 6, Et 4 NAsF 6, Et 3 MeNBF 4 N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium salt I can get lost.
  • R 8a and R 9a are the same or different and each is an alkyl group having 1 to 4 carbon atoms; X - is an anion; n2 is an integer of 0 to 5; n1 is an integer of 0 to 5) represented by Preferred examples include spirobipyridinium salts.
  • a part or all of hydrogen atoms of the spirobipyridinium salt are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms.
  • Anion X - of the preferred embodiment is the same as (IIA).
  • This spirobipyridinium salt is excellent in terms of solubility, oxidation resistance, and ionic conductivity.
  • imidazolium salts can be preferably exemplified represented by.
  • the imidazolium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • Anion X - of the preferred embodiment is the same as (IIA).
  • This imidazolium salt is excellent in terms of low viscosity and good solubility.
  • N- alkylpyridinium salt represented by the preferred examples.
  • the N-alkylpyridinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • Anion X - of the preferred embodiment is the same as (IIA).
  • This N-alkylpyridinium salt is excellent in that it has low viscosity and good solubility.
  • N represented by, N- dialkyl pyrrolidinium salts can be preferably exemplified. Further, the oxidation resistance of the N, N-dialkylpyrrolidinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is improved. It is preferable from the point.
  • Anion X - of the preferred embodiment is the same as (IIA).
  • This N, N-dialkylpyrrolidinium salt is excellent in that it has low viscosity and good solubility.
  • ammonium salts (IIA), (IIB) and (IIC) are preferable in terms of good solubility, oxidation resistance and ionic conductivity,
  • lithium salt as electrolyte salt.
  • the lithium salt for example LiPF 6, LiBF 4, LiAsF 6 , LiSbF 6, LiN (SO 2 C 2 H 5) 2 is preferred.
  • a magnesium salt may be used to improve the capacity.
  • the magnesium salt for example, Mg (ClO 4 ) 2 , Mg (OOC 2 H 5 ) 2 and the like are preferable.
  • spirobipyridinium tetraborate triethylmethylammonium tetraborate or tetraethylammonium tetraborate is preferable from the viewpoint of maintaining low temperature characteristics.
  • the concentration of the electrolyte salt (II) in the non-aqueous electrolyte varies depending on the required current density, application, type of electrolyte salt, etc. .3 mol / liter or more, more preferably 0.5 mol / liter or more, particularly preferably 0.8 mol / liter or more, 3.6 mol / liter or less, further 2.0 mol / liter or less, particularly It is preferably 1.6 mol / liter or less.
  • Compound Compound (I) is at least one compound selected from the group consisting of fluorinated chain sulfones and fluorinated chain sulfonates, and is used as a solvent component for non-aqueous electrolytes.
  • compound (I) general formula (1):
  • m is 0 or 1
  • R 1 and R 2 are the same or different and are an alkyl group or fluoroalkyl group having 1 to 7 carbon atoms. At least one of R 1 and R 2 is fluoro. An alkyl group) is preferable.
  • the case where m is 1 represents that the sulfur atom and R 2 are bonded via an oxygen atom
  • the case where m is 0 is a sulfur atom, It represents that R 2 is directly bonded.
  • R 1 and R 2 are preferably a linear or branched alkyl group having 1 to 6 carbon atoms, or a linear or branched fluoroalkyl group having 1 to 4 carbon atoms, more preferably —CH 3 , — C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —CF 3 , —C 2 F 5 , —CH 2 CF 3 , —CF 2 CF 2 H, —CH 2 CF 2 CF 3 , —CH 2 CF 2 CF 2 H, —CH 2 CF 2 CFH 2 , —CF 2 CH 2 CF 3, —CF 2 CHFCF 3 , —CF 2 CF 2 CF 3 , — CF 2 CF 2 CF 2 H, —CH 2 CF 2 CF 3 , —CH 2 CF 2 CF 2 H, —CH 2 CF 2 CF 3 , —CH 2
  • R 3 is an alkyl group having 1 to 7 carbon atoms
  • Rf 1 is a fluoroalkyl group having 1 to 7 carbon atoms
  • R 3 in the general formula (1 ′) is the same as the preferable form in the case where R 1 and R 2 in the general formula (1) are alkyl groups having 1 to 7 carbon atoms.
  • the preferred form of Rf 1 is the same as the preferred form when R 1 and R 2 in the general formula (1) are a fluoroalkyl group having 1 to 7 carbon atoms.
  • the compound represented by the general formula (1) include, for example, HCF 2 CF 2 CH 2 OSO 2 CH 3 , HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3 , CF 3 CH 2 OSO 2 CH 3 , CF 3 CH 2 OSO 2 CH 2 CH 3 , CF 3 CF 2 CH 2 OSO 2 CH 3 , CF 3 CF 2 CH 2 OSO 2 CH 2 CH 3 and the like.
  • a compound represented by General formula (1) As a compound represented by General formula (1),
  • Etc. can also be mentioned specifically.
  • 1 type may be used and 2 or more types may be used.
  • R 1 and R 2 are the same in the general formula (1) and R 1 and R 2) compound represented by the general, the following formula (2-1): R 2 —OH (2-1) (. Wherein, R 2 is the same as R 2 in the general formula (1)) the hydroxyl group-containing compound represented by (Compound (A)) and the following general formula (2-2): R 1 SO 2 Cl (2-2) (Wherein, R 1 is the same as R 1 in the general formula (1).) Represented by can be synthesized by reaction of a compound. In this way, the compound represented by the general formula (1) is synthesized by reacting the hydroxyl group-containing compound represented by the general formula (2-1) with the compound represented by the general formula (2-2).
  • the method for producing the compound represented by the general formula (1) including the step of the step is also one aspect of the present invention.
  • one kind of each of the hydroxyl group-containing compound represented by the general formula (2-1) and the compound represented by the general formula (2-2) may be used. The above may be used.
  • the blending ratio of the hydroxyl group-containing compound represented by the general formula (2-1) and the compound represented by the general formula (2-2) is appropriately set according to the combination of the types of the respective compounds.
  • the molar ratio of the hydroxyl group-containing compound represented by the general formula (2-1) and the compound represented by the general formula (2-2) is 1/1 to 1.2 / 1. It is preferable. More preferably, it is 1/1 to 1.06 / 1.
  • the reaction temperature is preferably 0 to 25 ° C.
  • reaction temperature is lower than 0 degreeC, reaction rate may become slow.
  • reaction temperature is higher than 25 ° C., the reaction rate increases, but there is a risk of increasing the danger in safety.
  • the above synthesis step may be performed with or without using a solvent, but when the compound represented by the general formula (1) synthesized as described later is used after purification, the purification is performed. Considering the process, it is preferable to carry out in a solvent-free system without using a solvent. Thus, it is also one of the preferred embodiments of the present invention that the method for producing the compound represented by the general formula (1) of the present invention is performed in a solvent-free system.
  • the solvent-free system is a compound (solvent component) capable of exhibiting the function as a solvent, when it is not present in the reaction system in an amount sufficient to exhibit the function as a solvent.
  • the solventless system means that a compound having only a function as a solvent (inactive in the reaction system) is not substantially contained in the reaction system.
  • the content of the compound having only a function as a solvent is 1% by mass or less with respect to 100% by mass of the hydroxyl group-containing compound represented by the general formula (2-1). ing.
  • the synthesis step is performed by adding a neutralizing agent. Is preferably carried out at a content of the solvent component other than the neutralizing agent of 1% by mass or less with respect to 100% by mass of the hydroxyl group-containing compound represented by the general formula (2-1).
  • Examples of the compound having only a function as the solvent (inactive in the reaction system) include tetrahydrofuran (THF), dioxane, diglyme, triglyme, and tetraglyme.
  • the hydroxyl group-containing compound represented by the general formula (2-1) is reacted with the compound represented by the general formula (2-2), so that hydrochloric acid or the like is generated as a by-product.
  • a neutralizing agent for neutralizing the hydrochloric acid or the like.
  • the neutralizing agent is not particularly limited as long as it can neutralize by-product hydrochloric acid and the like, and examples thereof include primary amines, secondary amines, and tertiary amines. Among these, pyridine, diethylamine, triethylamine and the like are preferable. As these neutralizing agents, 1 type may be used and 2 or more types may be used.
  • the amount of the neutralizing agent used is preferably 1 to 1.2 equivalents relative to the number of moles of the hydroxyl group-containing compound represented by the general formula (2-1).
  • the use amount of the neutralizing agent is within such a range, it is possible to sufficiently suppress the decomposition of the target product and the reaction raw material. More preferably, it is 1-1.16 equivalents.
  • the method for producing the compound represented by the general formula (1) of the present invention is represented by the hydroxyl group-containing compound represented by the general formula (2-1) and the general formula (2-2). It includes a step of synthesizing the compound represented by the general formula (1) by reacting with a compound. Therefore, depending on the method of purification, the compound (A) as a raw material and the compound represented by the general formula (2-2) are produced by reacting with protons, and the following general formula (2-3): R 1 SO 3 H (2-3) (Wherein, R 1 is the same as R 1 in the general formula (1).) A sulfo group-containing compound represented by (Compound (B)) is may remain as impurities.
  • R 2 in the general formula (2-1) is represented by the general formula It is the same as R 2 of (1-1).
  • R 1 is also the same as in (2-3) R 1 and the general formula (1-1) of the.
  • HCF 2 CF 2 CH 2 OSO 2 CH 3 which is a preferred specific example of the compound represented by the general formula (1) is synthesized by a reaction of HCF 2 CF 2 CH 2 OH and CH 3 SO 2 Cl. Can do. Therefore, HCF 2 CF 2 CH 2 OH ( Compound (A-1)) by way of purification is starting material, CH 3 SO 2 Cl is CH 3 SO 3 H generated by reaction with a proton (Compound (B -1)) may remain as impurities.
  • the structures of the compounds (A) and (B) are determined by the structure of the compound represented by the general formula (1). Accordingly, the impurities when the compound represented by the general formula (1) is as follows are as follows.
  • compound (A-2) when the compound represented by the general formula (1) is CF 3 CH 2 OSO 2 CH 3 ) CF 3 CH 2 OH (compound (A-2)) and compound (B-1) may remain as impurities.
  • compound (A-3)) and compound (B-1) may remain as impurities.
  • the compound (A-3) and the compound (B-2) may remain as impurities.
  • the compounds (A) and (B) are impurities that can remain when the compound represented by the general formula (1) is synthesized.
  • the content of the compounds (A) and (B) is, in the non-aqueous electrolyte, the general formula (1).
  • the total of the compounds (A) and (B) is preferably 5000 ppm or less with respect to the compound represented by When the total amount of the compounds (A) and (B) is more than 5000 ppm with respect to the compound represented by the general formula (1), the discharge characteristics after storage at high temperature are deteriorated or the cycle is deteriorated when the voltage is increased. Tend to grow. In particular, when the compound (A) remains, the compound (A) easily reacts with Li, so that the capacity tends to decrease.
  • the compound (B) since the compound (B) is a strong acid, it will decompose the electrolytic solution. Moreover, since the HOMO energy of the compounds (A) and (B) obtained by molecular activation calculation is higher than that of the compound represented by the general formula (1), the oxidation resistance is weak. Therefore, it is considered that when the voltage is increased, it is decomposed and becomes a cause of deterioration. From these facts, it is considered that the lower the content of the compounds (A) and (B) in the non-aqueous electrolyte, the smaller the decrease in storage characteristics of the battery.
  • the content of the compounds (A) and (B) is 3500 ppm or less in total of the compounds (A) and (B) with respect to the compound represented by the general formula (1) in the nonaqueous electrolytic solution. More preferred. More preferably, it is 2500 ppm or less.
  • content of the compounds (A) and (B) in the nonaqueous electrolytic solution can be within the above range by purifying the compound represented by the general formula (1) in advance.
  • ppm is based on weight. For example, 5000 ppm or less with respect to the compound represented by the general formula (1) is 0. 5 parts by weight with respect to 100 parts by weight of the compound represented by the general formula (1). It represents that it is 5 parts by weight or less.
  • purification for purifying the compound represented by the general formula (1) after the synthesis step for synthesizing the compound represented by the general formula (1), purification for purifying the compound represented by the general formula (1). It is preferable to include a process.
  • purification process what is used as a refinement
  • purification method for example, there is a method in which after separation, the layer containing the compound represented by the general formula (1) is rectified using a distillation column having 5 or more theoretical plates.
  • R 4 is an alkyl group having 1 to 7 carbon atoms
  • Y is an alkyl group or fluoroalkyl group having 1 to 5 carbon atoms
  • R 4 is an alkyl group having 1 to 7 carbon atoms
  • Y is an alkyl group or fluoroalkyl group having 1 to 5 carbon atoms
  • the base used in the production method is preferably at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides, and the oxidizing agent is an organic peroxide or perhalogenated oxide. Preferably, it is at least one selected from the group consisting of a product, permanganate, chromate, trifluoroacetic acid, and acetic acid.
  • the nonaqueous electrolytic solution of the present invention contains the compound (I) and the electrolyte salt (II), but may further contain a solvent other than the compound (I) as a solvent component for the nonaqueous electrolytic solution.
  • the nonaqueous electrolytic solution of the present invention contains a solvent other than the compound (I) as the solvent component for the nonaqueous electrolytic solution
  • the compound in the solvent for the nonaqueous electrolytic solution (the solvent other than the compound (I) and the compound (I))
  • the blending amount of (I) is preferably 0.01 to 20% by volume.
  • the allowable upper limit is 20% by volume.
  • Component (I) can exert its effect in a relatively small amount. More preferably, it is 10 volume% or less. A more preferred lower limit is 0.1% by volume, and a still more preferred lower limit is 0.5% by volume.
  • the compound (I), particularly HCF 2 CF 2 CH 2 OSO 2 CH 3 particularly forms a good film on the negative electrode, and as a result, reduces resistance. Therefore, when a carbonaceous material such as graphite is used for the negative electrode, the amount of compound (I) is particularly preferably 5% by volume or less in the solvent for non-aqueous electrolyte. Further, when an alloy-based material is used for the negative electrode, since the expansion and contraction are large, a coating more stable than the carbonaceous material-based material is required. Therefore, the compounding amount of compound (I) is 20 in the solvent for non-aqueous electrolyte. Volume% or less is preferable.
  • the compounding amount of compound (I) is less than 0.01% by volume in the solvent for non-aqueous electrolyte solution, the amount is too small, and the effect of stopping gas generation tends not to be seen. On the other hand, if it exceeds 20% by volume, the conductivity tends to deteriorate and the discharge capacity tends to decrease.
  • the non-aqueous electrolyte of the present invention preferably contains non-fluorine cyclic carbonate (III) and non-fluorine chain carbonate (IV) as a solvent other than the compound (I). That is, the solvent for non-aqueous electrolyte of the present invention described later and the non-aqueous electrolyte containing the electrolyte salt (II) are also one preferred embodiment of the present invention.
  • Non-fluorine cyclic carbonate Among non-fluorine cyclic carbonates, ethylene carbonate (EC), vinylene carbonate (VC), and propylene carbonate (PC) have a high dielectric constant and are particularly excellent in solubility of electrolyte salts. Therefore, it is preferable as the solvent component for the non-aqueous electrolyte solution of the present invention. Moreover, when using a graphite-type material for a negative electrode, a stable film can also be formed on a negative electrode. Butylene carbonate, vinyl ethylene carbonate, and the like can also be used.
  • At least one selected from the group consisting of ethylene carbonate, propylene carbonate, and butylene carbonate is more preferable in terms of dielectric constant and viscosity. More preferably, it is at least one selected from the group consisting of ethylene carbonate and propylene carbonate.
  • These non-fluorine cyclic carbonates may be used alone or in combination of two or more.
  • Non-fluorine chain carbonate examples include CH 3 CH 2 OCOOCH 2 CH 3 (diethyl carbonate: DEC), CH 3 CH 2 OCOOCH 3 (ethyl methyl carbonate: EMC), and CH 3 OCOOCH.
  • Hydrocarbon chain carbonates such as 3 (dimethyl carbonate: DMC), CH 3 OCOOCH 2 CH 2 CH 3 (methylpropyl carbonate), CH 3 CH 2 CH 2 OCOOCH 2 CH 2 CH 3 (di-n-propyl carbonate) 1 type, or 2 or more types.
  • DEC, EMC, and DMC are preferred because of their high boiling point, low viscosity, and good low temperature characteristics.
  • non-fluorine chain carbonate (IV) is at least one selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. is there.
  • These non-fluorine chain carbonates may be used alone or in combination of two or more.
  • the preferable upper limit is 50% by volume in the solvent for non-aqueous electrolyte, more preferably 40% by volume, still more preferably 35% by volume, and particularly preferably 30% by volume.
  • the solubility of the electrolyte salt in the entire solvent tends to decrease, and the desired electrolyte concentration (0.8 mol / liter or more) tends not to be achieved. Further, the load characteristics and cycle characteristics of the lithium secondary battery are improved.
  • the lower limit is preferably 5% by volume, more preferably 10% by volume.
  • the preferable upper limit of the compounding quantity is 94.9 volume% in the solvent for nonaqueous electrolytes, Furthermore, it is 89.9 volume%.
  • the lower limit is preferably 44.9% by volume.
  • the solvent for non-aqueous electrolyte used in the non-aqueous electrolyte of the present invention includes components (III), (IV), and (I), and includes components (III), (IV), and (IV)
  • the total of I) is 100% by volume
  • (III) is 5 to 50% by volume
  • (IV) is 44.9 to 94.9% by volume
  • (I) is 0.1 to 20% by volume.
  • a solvent in which (III) is 5 to 40% by volume, (IV) is 44.9 to 89.9% by volume, and a compound (I) is 0.1 to 10% by volume is more preferable.
  • the present invention also relates to the solvent for non-aqueous electrolyte. That is, at least one compound (I) selected from the group consisting of fluorinated chain sulfone and fluorinated chain sulfonate, non-fluorine cyclic carbonate (III), and non-fluorine chain carbonate (IV) Including (III), (IV), and (I) as a total of 100% by volume, (III) is 5-50% by volume, (IV) is 44.9-94.9% by volume, and A solvent for non-aqueous electrolytes in which (I) is 0.1 to 20% by volume is also one aspect of the present invention.
  • the solvent for the non-aqueous electrolyte solution can solve the problems of the present invention only with the components (III), (IV), and (I), but other solvents well known as solvents for the non-aqueous electrolyte solution can be used with the component (III). You may mix
  • the other solvent examples include at least one solvent selected from the group consisting of fluorine-containing carbonates, fluorine-containing ethers, fluorine-containing esters, fluorine-containing lactones, fluoroamides, non-fluorine ethers, and non-fluorine esters. it can. Among these, it is preferable to include at least one solvent selected from the group consisting of fluorine-containing ethers and fluorine-containing carbonates from the viewpoint of oxidation resistance.
  • fluorine carbonate examples include fluorine-containing chain carbonates and fluorine-containing cyclic carbonates.
  • Rf 2 OCOORf 3 (4) (Wherein Rf 2 and Rf 3 are the same or different and the fluorine-containing alkyl group having 1 to 4 carbon atoms) has high flame retardancy and good rate characteristics and oxidation resistance. It is preferable from the point.
  • Rf 2 and Rf 3 include, for example, —CF 3 , —CF 2 CF 3 , —CH (CF 3 ) 2 , CF 3 CH 2 —, C 2 F 5 CH 2 —, HCF 2 CF 2 CH 2 —, CF 2 CFHCF 2 CH 2 — and the like can be exemplified, and among them, CF 3 CH 2 — and C 2 F 5 CH 2 — are particularly preferable because of high flame retardancy and good rate characteristics and oxidation resistance.
  • fluorine-containing chain carbonate examples include, for example, CF 3 CH 2 OCOOCH 2 CF 3 , CF 3 CF 2 CH 2 OCOOCH 2 CF 2 CF 3 , CF 3 CF 2 CH 2 OCOOCH 3 , CF 3 CH 2 OCOOCH 3 and the like.
  • fluorine-containing chain carbonates can be exemplified, and among them, CF 3 CH 2 OCOOCH 2 CF 3 , CF 3 CF 2 CH 2 OCOOCH 2 CF 2 CF 3 are suitable for viscosity and flame retardant. In view of good compatibility with other solvents and rate characteristics, it is particularly preferable.
  • compounds described in JP-A-06-21992, JP-A-2000-327634, JP-A-2001-256983 and the like can also be exemplified.
  • the fluorine-containing cyclic carbonate is, for example, the following general formula (5):
  • X 1 to X 4 are the same or different and all are —H, —F, —CF 3 , —CF 2 H, —CFH 2 , —CF 2 CF 3 , —CH 2 CF 3 or —CH 2 OCH 2 CF 2 CF 3 ; provided that at least one of X 1 to X 4 is —F, —CF 3 , —CF 2 CF 3 , —CH 2 CF 3 or —CH 2 OCH 2 CF 2 CF 3 ).
  • X 1 to X 4 are —H, —F, —CF 3 , —CF 2 H, —CFH 2 , —CF 2 CF 3 , —CH 2 CF 3 or —CH 2 OCH 2 CF 2 CF 3 , -F, -CF 3 , and -CH 2 CF 3 are preferred from the viewpoint of good dielectric constant and viscosity and excellent compatibility with other solvents.
  • X 1 to X 4 when at least one of X 1 to X 4 is —F, —CF 3 , —CF 2 CF 3 , —CH 2 CF 3, or —CH 2 OCH 2 CF 2 CF 3 , —H , —F, —CF 3 , —CF 2 H, —CFH 2 , —CF 2 CF 3 , —CH 2 CF 3, or —CH 2 OCH 2 CF 2 CF 3 are present in only one of X 1 to X 4 It may be substituted or may be substituted at a plurality of locations. Among them, the number of substitution sites is preferably 1 to 2 from the viewpoint of good dielectric constant and oxidation resistance.
  • the nonaqueous electrolytic solution of the present invention When blending a fluorine-containing cyclic carbonate, it is preferable to contain 40% by volume or less in the nonaqueous electrolytic solution of the present invention. If the content of the fluorinated cyclic carbonate exceeds 40% by volume, the viscosity will be poor, and the rate characteristics will tend to be poor. More preferably, it is 30% by volume or less, more preferably 10% by volume or less, from the viewpoint of good rate characteristics. The lower limit is 3% by volume, more preferably 5% by volume, from the viewpoint of good oxidation resistance.
  • the lithium ion secondary battery according to the present invention is particularly advantageous in that it has excellent characteristics such as high dielectric constant and high withstand voltage, and also has good solubility of electrolyte salt and reduction of internal resistance. From the viewpoint of improving the characteristics, the following are preferable.
  • fluorine-containing cyclic carbonate having a high withstand voltage and good solubility of the electrolyte salt for example,
  • Etc. can also be used.
  • Fluorine-containing ether By containing the fluorinated ether, the stability and safety at high temperature and high voltage are improved.
  • the fluorine-containing ether for example, the following general formula (6): Rf 4 -O-Rf 5 (6) (Wherein, Rf 4 and Rf 5 are the same or different, and an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms; provided that at least one is a fluoroalkyl group) .
  • the solvent for a non-aqueous electrolyte of the present invention contains a fluorinated ether
  • the content of the compound represented by the following (A ′) or (B ′), which is an impurity of the fluorinated ether is It is preferable that it is 5000 ppm or less in total with respect to fluorine ether.
  • fluorine-containing ether examples include, for example, HCF 2 CF 2 OCH 2 CF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , CF 3 CF 2 CH 2 OCF 2 CFHCF 3 , C 6 F 13 OCH 3 , C 6 F 13 OC 2 H 5 , C 8 F 17 OCH 3 , C 8 F 17 OC 2 H 5 , CF 3 CFHCF 2 CH (CH 3 ) OCF 2 CFHCF 3 , HCF 2 CF 2 OCH (C 2 H 5 ) 2 , HCF 2 CF 2 OC 4 H 9 , HCF 2 CF 2 OCH 2 CH (C 2 H 5 ) 2, HCF 2 CF 2 OCH 2 CH (CH 3) 2 and the like, in particular, HCF 2 CF 2 CH 2 OCF 2 CF 2 , CF 3
  • the fluorine content of the fluorinated ether used in the present invention is preferably 50% by mass or more from the viewpoint of good oxidation resistance and safety.
  • a particularly preferred fluorine content is 55 to 66% by mass.
  • the fluorine content is calculated from the structural formula.
  • the fluorine-containing ether When blending the fluorine-containing ether, it is preferable to contain 60% by volume or less in the nonaqueous electrolytic solution of the present invention.
  • the content of the fluorinated ether exceeds 60% by volume, the compatibility is lowered and the rate characteristics tend to be deteriorated. More preferably, it is 45% by volume or less, more preferably 40% by volume or less from the viewpoint of good compatibility and rate characteristics.
  • the lower limit is 5% by volume, more preferably 10% by volume from the viewpoint of good oxidation resistance and safety.
  • the fluorine-containing unsaturated compound (A ′) is derived from a by-product generated when the fluorine-containing ether represented by the general formula (6) is synthesized. Specifically, hydrogen fluoride (HF) is eliminated from the fluorine-containing ether represented by the general formula (6) and an unsaturated bond is generated.
  • HF hydrogen fluoride
  • the hydroxyl group-containing compound (B ′) is derived from a raw material used in the synthesis of the fluorine-containing ether represented by the general formula (6), and the general formula (6-1): Rf 4 OH (6-1) It is shown by.
  • Rf 4 the same compounds as those in the general formula (6) can be exemplified.
  • the hydroxyl group-containing compound (B ′) specifically, (B′-1) HCF 2 CF 2 CH 2 OH can be mentioned.
  • Compounds (A ′) and (B ′) are impurities contained in the fluorinated ether. Therefore, when the fluorine-containing ether represented by the general formula (6) is used, the contents of the compounds (A ′) and (B ′) in the nonaqueous electrolytic solution are obtained by purifying the fluorine-containing ether in advance. Can be within the above range (a total of 5000 ppm or less with respect to the fluorine-containing ether). Here, ppm is based on weight, and 5000 ppm or less with respect to the fluorinated ether indicates 0.5 parts by weight or less with respect to 100 parts by weight of the fluorinated ether.
  • the upper limit of the content of the compounds (A ′) and (B ′) is more preferably 3500 ppm or less in total with respect to the fluorine-containing ether, and still more preferably 2000 ppm or less.
  • the cycle deterioration tends to increase when the discharge characteristics after high-temperature storage are lowered or the voltage is increased.
  • the compound (B ′) since the compound (B ′) easily reacts with Li, if it remains, the capacity tends to decrease.
  • the fluorine-containing unsaturated compound (A ′) has a double bond, when many of these remain, there is a tendency that they easily react with moisture and the like in the electrolytic solution and decompose.
  • fluorine-containing ester As the fluorine-containing ester, the following general formula (7): Rf 6 COORf 7 (7) (Wherein Rf 6 is a fluorine-containing alkyl group having 1 to 2 carbon atoms, and Rf 7 is a fluorine-containing alkyl group having 1 to 4 carbon atoms). From the viewpoint of good compatibility and oxidation resistance.
  • Rf 6 examples include CF 3- , CF 3 CF 2- , HCF 2 CF 2- , HCF 2- , CH 3 CF 2- , CF 3 CH 2- and the like, among which CF 3- , CF 3 CF 2 -is particularly preferable from the viewpoint of good rate characteristics.
  • Rf 7 examples include —CF 3 , —CF 2 CF 3 , —CH (CF 3 ) 2 , —CH 2 CF 3 , —CH 2 CH 2 CF 3 , —CH 2 CF 2 CFHCF 3 , —CH 2 C 2 F 5 , —CH 2 CF 2 CF 2 H, —CH 2 CH 2 C 2 F 5 , —CH 2 CF 2 CF 3 , —CH 2 CF 2 CF 2 CF 3 and the like can be exemplified, among them —CH 2 CF 3 , —CH (CF 3 ) 2 —CH 2 C 2 F 5 , and —CH 2 CF 2 CF 2 H are particularly preferable from the viewpoint of good compatibility with other solvents.
  • fluorine-containing ester examples include, for example, CF 3 C ( ⁇ O) OCH 2 CF 3 , CF 3 C ( ⁇ O) OCH 2 CH 2 CF 3 , CF 3 C ( ⁇ O) OCH 2 C 2 F 5 ,
  • CF 3 C ( ⁇ O) OCH 2 CF 2 CF 2 H, CF 3 C ( ⁇ O) OCH (CF 3 ) 2 and the like can be exemplified, and among them, CF 3 C ( ⁇ O) OCH 2 C 2 F 5 , CF 3 C ( ⁇ O) OCH 2 CF 2 CF 2 H, CF 3 C ( ⁇ O) OCH 2 CF 3 , CF 3 C ( ⁇ O) OCH (CF 3 ) 2 is another solvent. It is particularly preferred from the viewpoint of good compatibility with the above and rate characteristics.
  • fluorine-containing lactone examples include the following general formula (8):
  • X 5 to X 10 are the same or different and all are —H, —F, —Cl, —CH 3 or a fluorine-containing alkyl group; provided that at least one of X 5 to X 10 is a fluorine-containing alkyl
  • Examples of the fluorine-containing alkyl group in X 5 to X 10 include —CFH 2 , —CF 2 H, —CF 3 , —CH 2 CF 3 , —CF 2 CF 3 , —CH 2 CF 2 CF 3 , —CF (CF 3 ) 2 and the like are mentioned, and —CH 2 CF 3 and —CH 2 CF 2 CF 3 are preferable from the viewpoint of high oxidation resistance and an effect of improving safety.
  • X 5 to X 10 is a fluorine-containing alkyl group, —H, —F, —Cl, —CH 3 or the fluorine-containing alkyl group is substituted at only one position of X 5 to X 10.
  • a plurality of locations may be substituted. Preferably, it is 1 to 3 sites, more preferably 1 to 2 sites, from the viewpoint of good solubility of the electrolyte salt.
  • X 7 and / or X 8 are not particularly limited substitution position of the fluorine-containing alkyl group, since the synthesis yields good, X 7 and / or X 8, especially X 7 or X 8 is a fluorine-containing alkyl group, inter alia -CH 2 CF 3 , —CH 2 CF 2 CF 3 is preferable.
  • X 5 to X 10 other than the fluorine-containing alkyl group are —H, —F, —Cl or —CH 3 , and —H is particularly preferable from the viewpoint of good solubility of the electrolyte salt.
  • a and B is CX 16 X 17 (X 16 and X 17 are the same or different, and all are —H, —F, —Cl, —CF 3 , —CH 3 or a hydrogen atom)
  • Rf 8 is a fluorine-containing alkyl group or fluorine-containing which may have an ether bond
  • X 11 and X 12 are the same or different, all are —H, —F, —Cl, —CF 3 or —CH 3 ;
  • fluorine-containing lactone represented by the general formula (9) examples include the following general formula (10):
  • Etc. can also be used.
  • the fluoroamide has the general formula (13):
  • Rf 9 is —CF 3 , —CF 2 CF 3 , a fluorophenyl group or a fluoroalkylphenyl group.
  • R 5 and R 6 are the same or different and are alkyl groups having 1 to 8 carbon atoms. .).
  • fluorophenyl group those containing 1 to 5 fluorine atoms are preferred, and those containing 3 to 5 are more preferred from the viewpoint of good oxidation resistance.
  • fluoroalkyl group of the fluoroalkylphenyl group include —CF 3 , —C 2 F 5 , —HC (CF 3 ) 2, etc., from the viewpoint of good compatibility and low viscosity— CF 3 and —C 2 F 5 are preferred.
  • R 5 and R 6 include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 and the like. Among them, —CH 3 , -C 2 H 5 is preferred.
  • Particularly preferred compounds as the fluoroamide are the following compounds.
  • Fluoroamide may be contained in the nonaqueous electrolytic solution of the present invention in an amount of 10% by volume or less. If the fluoroamide content exceeds 10% by volume, the viscosity tends to increase and the ionic conductivity tends to decrease. Preferably, even if the viscosity is lowered, it is 6% by volume or less from the viewpoint of good stability at high temperature and high voltage, more preferably 3% by volume or less from the viewpoint of particularly good stability at high temperature and high voltage. A preferable lower limit is 0.01% by volume, and further 0.05% by volume from the viewpoint of stability at high temperature and high voltage.
  • Non-fluorine ether is preferably a cyclic ether such as tetrahydrofuran or 2-methyltetrahydrofuran; a chain ether such as dimethoxyethane or dimethoxymethane.
  • Non-fluorine ester Non-fluorinated esters have the effect of improving rate characteristics.
  • the non-fluorine ester cyclic carboxylic acid ester compounds such as ⁇ -butyrolactone and ⁇ -valerolactone; chain carboxylic acid ester compounds such as acetic acid ester, propionic acid ester and butyric acid ester are preferable.
  • the addition amount is preferably 30% by volume or less, and more preferably 20% by volume or less in order to ensure compatibility with the electrolyte salt. From the viewpoint of improving the rate characteristics, the lower limit is 1% by volume, and further 3% by volume.
  • One preferred form of the solvent other than the compound (I) includes a form containing 20 to 45% by volume of the non-fluorine cyclic carbonate (III) and 55 to 80% by volume of the non-fluorine chain carbonate (IV). It is done.
  • a solvent used as a solvent other than the compound (I)
  • the electric conductivity of the electrolytic solution is increased, and the cycle characteristics and the large current discharge characteristics are increased, which is preferable.
  • Another preferred form of the solvent other than the compound (I) includes a form containing 60% by volume or more of an organic solvent selected from ethylene carbonate, propylene carbonate, ⁇ -butyrolactone and ⁇ -valerolactone. Preferably it contains 85 volume% or more.
  • An electrolyte solution using such a form of solvent as a solvent other than the compound (I) and using a lithium salt as an electrolyte salt is less likely to evaporate or leak even when used at a high temperature.
  • the cycle characteristics and large current discharge are in the form containing 5 to 45% by volume of ethylene carbonate and 55 to 95% by volume of ⁇ -butyrolactone, or the form containing 30 to 60% by volume of ethylene carbonate and 40 to 70% by volume of propylene carbonate. This is preferable because the balance of characteristics and the like is good.
  • the solvent other than the compound (I) a form containing 10% by volume or more of the phosphorus-containing organic solvent can be mentioned.
  • the phosphorus-containing organic solvent include trimethyl phosphate, triethyl phosphate, dimethyl ethyl phosphate, methyl diethyl phosphate, ethylene methyl phosphate, and ethylene ethyl phosphate.
  • the content of the phosphorus-containing organic solvent is 10 to 80% by volume, and the other components are mainly composed of a solvent selected from ⁇ -butyrolactone, ⁇ -valerolactone, non-fluorine cyclic carbonate, and non-fluorine chain carbonate. It is preferable to use lithium salt as the electrolyte because the balance between the cycle characteristics and the large current discharge characteristics is improved.
  • one preferred form of the solvent other than the compound (I) includes a form containing 8% by volume or less of a cyclic carbonate having a carbon-carbon unsaturated bond in the molecule.
  • the content is preferably 0.01 to 8% by volume.
  • a cyclic carbonate having a carbon-carbon unsaturated bond in the molecule is contained in such a range, side reactions at the negative electrode of compound (I) are suppressed, and the storage characteristics and battery cycle characteristics are further improved. Is preferable. If the amount of cyclic carbonate added exceeds 8% by volume, battery characteristics after storage may be deteriorated, or the internal pressure of the battery may increase due to gas generation.
  • the lower limit value is more preferably 0.1% by volume, and the upper limit value is more preferably 3% by volume.
  • Examples of the cyclic carbonate having a carbon-carbon unsaturated bond in the molecule include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, fluoro vinylene carbonate, trifluoro Vinylene carbonate compounds such as methyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylene ethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4 Vinyl ethylene carbonate compounds such as diethyl 5-methylene ethylene carbonate.
  • vinylene carbonate 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate or 4,5-divinylethylene carbonate, particularly vinylene carbonate or 4-vinylethylene carbonate are preferred. Two or more of these may be used in combination.
  • the non-aqueous electrolyte of the present invention includes a non-flammable (flame retardant) agent, a surfactant, a high dielectric additive, a cycle characteristic and a rate characteristic improver and an overcharge as long as the effects of the present invention are not impaired.
  • a non-flammable (flame retardant) agent such as a surfactant, a high dielectric additive, a cycle characteristic and a rate characteristic improver and an overcharge as long as the effects of the present invention are not impaired.
  • Other additives such as an inhibitor, a dehydrating agent, and a deoxidizing agent may be blended.
  • Examples of the incombustible (incombustible) agent for improving incombustibility and flame retardancy include phosphate esters.
  • phosphate esters examples include fluorine-containing alkyl phosphate esters, non-fluorine-based alkyl phosphate esters, and aryl phosphate esters.
  • fluorine-containing alkyl phosphate esters contribute to the incombustibility of electrolytes in a small amount. It is preferable because of its non-flammable effect.
  • fluorine-containing alkyl phosphate ester examples include fluorine-containing dialkyl phosphate esters described in JP-A No. 11-233141, cyclic alkyl phosphate esters described in JP-A No. 11-283669, and fluorine-containing trialkyl phosphate esters. Examples thereof include alkyl phosphate esters.
  • a flame retardant such as (CH 3 O) 3 P ⁇ O, (CF 3 CH 2 O) 3 P ⁇ O can also be added.
  • the surfactant may be blended in order to improve capacity characteristics and rate characteristics.
  • any of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant may be used, but the fluorine-containing surfactant has good cycle characteristics and rate characteristics. It is preferable from the point.
  • Rf 10 COO ⁇ M + (14) (Wherein Rf 10 is a fluorine-containing alkyl group which may contain an ether bond having 3 to 10 carbon atoms; M + is Li + , Na + , K + or NHR ′ 3 + (R ′ is the same or different) , Each of which is H or an alkyl group having 1 to 3 carbon atoms)), or the following general formula (15): Rf 11 SO 3 - M + (15) (In the formula, Rf 11 is a fluorine-containing alkyl group which may contain an ether bond having 3 to 10 carbon atoms; M + is Li + , Na + , K + or NHR ′ 3 + (R ′ is the same or different) Are preferably H or an alkyl group having 1 to 3 carbon atoms).
  • the blending amount of the surfactant is preferably 0.01 to 2% by mass of the nonaqueous electrolytic solution of the present invention from the viewpoint of reducing the surface tension of the electrolytic solution without reducing the charge / discharge cycle characteristics.
  • high dielectric additive examples include sulfolane, methyl sulfolane, ⁇ -butyrolactone, ⁇ -valerolactone, acetonitrile, propionitrile and the like.
  • overcharge inhibitor examples include aromatic compounds such as cyclohexylbenzene, biphenyl, alkylbiphenyl, terphenyl, terphenyl partial hydride, t-butylbenzene, t-amylbenzene, diphenyl ether, benzofuran, and dibenzofuran; Partial or fully fluorinated products of aromatic compounds such as fluorobiphenyl, hexafluorobenzene and fluorobenzene; fluorinated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroanisole; dichloroaniline , Toluene and the like.
  • aromatic compounds such as cyclohexylbenzene, biphenyl, alkylbiphenyl, terphenyl, terphenyl partial hydride, t-butylbenzene, t-amylbenzene, di
  • cycle characteristic and rate characteristic improver examples include methyl acetate, ethyl acetate, tetrahydrofuran, 1,4-dioxane and the like.
  • additives include carbonate compounds such as fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate and erythritan carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride Carboxylic anhydrides such as diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, Sulfur-containing compounds such as methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, and tetramethylthiuram monosulfide; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperide Nitrogen
  • the non-aqueous electrolyte of the present invention described above includes, for example, an electrolytic capacitor, an electric double layer capacitor, a battery charged / discharged by ion charge transfer, a solid display element such as electroluminescence, a current sensor and a gas sensor. Can be used for sensors and the like. Among these, it is preferable to use for a lithium ion secondary battery.
  • the lithium ion secondary battery provided with the non-aqueous electrolyte of the present invention is also one aspect of the present invention.
  • this invention is also an electrical double layer capacitor provided with the non-aqueous electrolyte of this invention.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, and the nonaqueous electrolytic solution of the present invention.
  • a positive electrode is comprised from the positive electrode mixture containing the positive electrode active material which is a material of a positive electrode, and a collector.
  • the positive electrode active material is particularly preferably a lithium-containing transition metal composite oxide that produces a high voltage.
  • the lithium-containing transition metal composite oxide include: Formula: Li a Mn 2-b M 1 b O 4 (where 0.9 ⁇ a; 0 ⁇ b ⁇ 1.5; M 1 is Fe, Co, Ni, Cu, Zn, Al, Sn, Cr, A lithium-manganese spinel composite oxide represented by V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge).
  • LiNi 1-c M 2 c O 2 (where 0 ⁇ c ⁇ 0.5; M 2 is Fe, Co, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Lithium-nickel composite oxide represented by (at least one metal selected from the group consisting of Sr, B, Ga, In, Si and Ge), or Formula: LiCo 1-d M 3 d O 2 (where 0 ⁇ d ⁇ 0.5; M 3 is Fe, Ni, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Lithium-cobalt composite oxide represented by at least one metal selected from the group consisting of Sr, B, Ga, In, Si, and Ge.
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 can be provided because the lithium ion secondary battery with high energy density and high output can be provided. Or LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferred.
  • positive electrode active materials include LiFeO 2 , LiFePO 4 , LiNi 0.8 Co 0.2 O 2 , Li 1.2 Fe 0.4 Mn 0.4 O 2 , LiNi 0.5 Mn 0.5 O 2. , LiV 3 O 6 , V 2 O 5 and the like.
  • the positive electrode active material particles are mainly secondary particles. It is preferable that The particles of the positive electrode active material preferably contain 0.5 to 7.0% by volume of fine particles having an average secondary particle size of 40 ⁇ m or less and an average primary particle size of 1 ⁇ m or less. By containing fine particles having an average primary particle size of 1 ⁇ m or less, the contact area with the electrolytic solution is increased, and the diffusion of lithium ions between the electrode and the electrolytic solution can be further accelerated. Output performance can be improved.
  • the content of the positive electrode active material is preferably 50 to 99% by mass, more preferably 80 to 99% by mass of the positive electrode mixture, from the viewpoint of high battery capacity.
  • the positive electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • a binder any material can be used as long as it is a material that is safe with respect to the solvent and the electrolyte used in the production of the electrode.
  • any material can be used as long as it is a material that is safe with respect to the solvent and the electrolyte used in the production of the electrode.
  • thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
  • Examples of the conductive material include carbon materials such as graphite and carbon black.
  • Examples of the material for the positive electrode current collector include metals such as aluminum, titanium, and tantalum, and alloys thereof. Of these, aluminum or an alloy thereof is preferable.
  • the positive electrode may be manufactured by a conventional method.
  • the above-mentioned positive electrode active material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry-like positive electrode mixture, which is applied to a current collector, dried and then pressed.
  • a method of densification is mentioned.
  • the negative electrode is composed of a negative electrode mixture containing a negative electrode material and a current collector.
  • the negative electrode material it is possible to occlude and release lithium such as pyrolyzate of organic matter under various pyrolysis conditions, artificial graphite, natural graphite, cokes, mesocarbon microbeads, carbon fiber, activated carbon, pitch-coated graphite, etc.
  • Carbonaceous materials; metal oxide materials capable of inserting and extracting lithium such as tin oxide and silicon oxide; metal nitride materials capable of inserting and extracting lithium such as Li 2.6 Co 0.4 N; lithium metal; various The lithium alloy etc. can be mentioned. These negative electrode materials may be used in combination of two or more.
  • the negative electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • a binder the thing similar to the binder which can be used for a positive electrode mentioned above is mentioned.
  • a thickener the thing similar to the thickener which can be used for a positive electrode mentioned above is mentioned.
  • Examples of the conductive material for the negative electrode include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
  • Examples of the material for the negative electrode current collector include copper, nickel, and stainless steel. Of these, copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
  • the negative electrode may be manufactured by a conventional method.
  • the above-described negative electrode material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry, which is applied to a current collector, dried, pressed and densified. .
  • the lithium ion secondary battery of the present invention preferably further includes a separator.
  • the material and shape of the separator are not particularly limited as long as they are stable to the electrolytic solution and excellent in liquid retention, and known ones can be used.
  • the said separator is the porous sheet
  • Examples of such a separator include a microporous polyethylene film, a microporous polypropylene film, a microporous ethylene-propylene copolymer film, a microporous polypropylene / polyethylene bilayer film, and a microporous polypropylene / polyethylene / polypropylene trilayer. Examples include films.
  • the shape of the lithium ion secondary battery of the present invention is arbitrary, and examples thereof include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large shape.
  • the shape and structure of a positive electrode, a negative electrode, and a separator can be changed and used according to the shape of each battery.
  • non-aqueous electrolyte of the present invention is nonflammable, it is particularly useful as an electrolyte for a hybrid lithium battery or a large-sized lithium ion secondary battery for a distributed power source. It is also useful as a non-aqueous electrolyte for secondary batteries.
  • the module provided with the lithium ion secondary battery of this invention is also one of this invention.
  • the non-aqueous electrolyte of the present invention when used, a battery excellent in high temperature storage characteristics and high voltage cycle characteristics and a module using the battery can be suitably obtained.
  • VA propyl methanesulfonate
  • VC butyl butanesulfonate
  • VD propylsulfonylbutane
  • Example 1 Ethylene carbonate (IIIA) as component (III), dimethyl carbonate (IVA) as component (IV), and (IA) as component (I) are mixed so as to be 30/67/3 (volume%). Further, LiPF 6 (IIA) as an electrolyte salt (II) was added to the solvent for water electrolyte so as to have a concentration of 1.0 mol / liter, and the mixture was sufficiently stirred at 25 ° C. to prepare the nonaqueous electrolyte of the present invention. did.
  • Examples 2 to 9 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the types and amounts shown in Table 1 were used as Component (II), Component (III), Component (IV), and Component (I).
  • Examples 10-14 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the types and amounts shown in Table 2 were used as Component (II), Component (III), Component (IV), and Component (I).
  • Comparative Example 1 Non-aqueous electrolyte as in Example 1 except that the types and amounts shown in Table 3 were used as Component (II), Component (IV) and Component (III), and Component (I) was not blended. Was prepared.
  • Comparative Examples 2-5 As in Example 1, except that the types and amounts shown in Table 3 were used as Component (II), Component (IV), Component (III), and Component (V), and Component (I) was not blended. Thus, a non-aqueous electrolyte was prepared.
  • Test 1 Measurement of battery characteristics
  • a cylindrical secondary battery was produced by the following method.
  • a positive electrode active material obtained by mixing LiCoO 2 , carbon black and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd., trade name: KF-1000) at 90/3/7 (mass%) was mixed with N-methyl-2-pyrrolidone. What was dispersed and made into a slurry form was uniformly applied onto a positive electrode current collector (aluminum foil having a thickness of 15 ⁇ m) and dried to form a positive electrode mixture layer. Then, after compression-molding with a roller press machine, it cut
  • a negative electrode current collector (thickness 10 ⁇ m) was prepared by adding styrene-butadiene rubber dispersed in distilled water to artificial graphite powder to a solid content of 6% by mass and mixing with a disperser to form a slurry. On the copper foil) and dried to form a negative electrode mixture layer. Then, it was compression molded by a roller press, cut, dried, and the lead body was welded to produce a strip-shaped negative electrode.
  • the belt-like positive electrode was overlapped with the belt-like negative electrode through a microporous polyethylene film (separator) having a thickness of 20 ⁇ m and wound in a spiral shape to obtain a laminated electrode body having a spiral winding structure. In that case, it wound so that the rough surface side of the positive electrode current collector could be the outer peripheral side. Thereafter, the electrode body was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.
  • the battery was charged at 1.0 C at 4.5 V until the charging current became 1/10 C, discharged at a current equivalent to 0.2 C to 3.0 V, and the discharge capacity was determined. Thereafter, the battery was charged at 1.0 C and 4.5 V until the charging current became 1/10 C, and placed in a constant temperature bath at 85 ° C. for 2 days. Two days later, the battery was sufficiently placed to cool to room temperature, and discharged at a current corresponding to 0.2 to 3.0 V. Thereafter, the battery was charged at 1.0 C at 4.5 V until the charging current became 1/10 C, discharged at a current corresponding to 0.2 until 3.0 V, and the discharge capacity after storage was determined. The discharge capacity before storage and the discharge capacity charged after storage and discharged at 0.2 C were substituted into the following calculation formula to obtain high temperature storage characteristics.
  • Cycle characteristics As for the cycle characteristics, the charge / discharge cycle performed under the above charge / discharge conditions (charging at 1.0 C until the charging current becomes 1/10 C at 4.5 V and discharging to 3.0 V at a current equivalent to 1 C) is 1
  • the discharge capacity after the first cycle and the discharge capacity after 100 cycles were measured.
  • the value obtained by the following formula was used as the cycle retention rate.
  • the organic layer was purified by distillation using a 10-stage distillation purification tower. About 5% of the first fraction is discarded, and approximately equal amounts are sampled in the order of distillation, so that HCF 2 CF 2 CH 2 OH (compound (A-1)), CH 3 SO 3 H (compound (B-1) ) Of rectification A, B, C having different contents.
  • Rectification A to C was subjected to gas chromatography (manufactured by Shimadzu Corporation, GC-17A; column: DB624 (Length 60, ID 0.32, Film 1.8 ⁇ m); from 50 ° C. to 250 ° C. at 10 ° C./min. heating; injection, by measuring with a detector (FID) both 250 ° C.), the purity of the HCF 2 CF 2 CH 2 OSO 2 CH 3, and the compound (a-1), HCF 2 CF of (B-1) The content with respect to 2 CH 2 OSO 2 CH 3 was determined. The results are shown in Table 4.
  • Synthesis Example 2 Synthesis of HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3
  • a reactor was prepared by installing a reflux tube and a dropping funnel in a 10 L four-necked flask. Thereafter, HCF 2 CF 2 CH 2 OH (445.35 g; 3.37 mol) and pyridine (306.31 g; 3.88 mol) were added and stirred in an ice bath. Thereafter, ethanesulfonic acid chloride (411.4 g; 3.20 mol) was added dropwise using an addition funnel with attention to heat generation. The reaction solution gradually turned milky white with the formation of pyridine hydrochloride. After completion, the reaction solution was washed with 1N aqueous HCl. The separated organic layer was collected after washing.
  • the organic layer was purified by distillation using a 10-stage distillation purification tower. By discarding about 5% of the first fraction and sampling approximately equal amounts in the order of distillation, HCF 2 CF 2 CH 2 OH (compound (A-1)), CH 3 CH 2 SO 3 H (compound (B- The rectifications D, E and F having different contents of 2)) were obtained.
  • Rectification DF was subjected to gas chromatography (manufactured by Shimadzu Corporation, GC-17A; column: DB624 (Length 60, ID 0.32, Film 1.8 ⁇ m); from 50 ° C. to 250 ° C. at 10 ° C./min. The temperature is raised; both the injection and the detector (FID) are 250 ° C.), the purity of HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3 and the HCF of the compounds (A-1) and (B-2) The content with respect to 2 CF 2 CH 2 OSO 2 CH 2 CH 3 was determined. The results are shown in Table 5.
  • Synthesis Example 3 Synthesis of CF 3 CH 2 OSO 2 CH 3 A 10 L four-necked flask was equipped with a reflux tube and a dropping funnel to prepare a reaction apparatus. Thereafter, CF 3 CH 2 OH (337.1 g; 3.37 mol) and pyridine (306.31 g; 3.88 mol) were added and stirred in an ice bath. Thereafter, using a dropping funnel, methanesulfonic acid chloride (364.15 g; 3.20 mol) was added dropwise while paying attention to heat generation. The reaction solution gradually turned milky white with the formation of pyridine hydrochloride. After completion, the reaction solution was washed with 1N aqueous HCl. The separated organic layer was collected after washing.
  • the organic layer was purified by distillation using a 10-stage distillation purification tower. About 5% of the first distillate is discarded, and approximately the same amount is sampled in the order of distillation, so that CF 3 CH 2 OH (compound (A-2)), CH 3 SO 3 H (compound (B-1)) Rectification G, H and I having different contents were obtained.
  • Rectification G to I were subjected to gas chromatography (manufactured by Shimadzu Corporation, GC-17A; column: DB624 (Length 60, ID 0.32, Film 1.8 ⁇ m); from 50 ° C. to 250 ° C. at 10 ° C./min. heating; injection, by measuring with a detector (FID) both 250 ° C.), the purity of CF 3 CH 2 OSO 2 CH 3 , and the compound (a-2), CF 3 CH 2 OSO of (B-1) The content with respect to 2 CH 3 was determined. The results are shown in Table 6.
  • Synthesis Example 4 Synthesis of CF 3 CH 2 OSO 2 CH 2 CH 3 A 10 L four-necked flask was equipped with a reflux tube and a dropping funnel to prepare a reactor. Thereafter, CF 3 CH 2 OH (337.1 g; 3.37 mol) and pyridine (306.31 g; 3.88 mol) were added and stirred in an ice bath. Thereafter, ethanesulfonic acid chloride (364.15 g; 3.20 mol) was added dropwise using an addition funnel, taking note of heat generation. The reaction solution gradually turned milky white with the formation of pyridine hydrochloride. After completion, the reaction solution was washed with 1N aqueous HCl. The separated organic layer was collected after washing.
  • the organic layer was purified by distillation using a 10-stage distillation purification tower. By discarding about 5% of the first fraction and sampling approximately the same amount in the order of distillation, CF 3 CH 2 OH (compound (A-2)), CH 3 CH 2 SO 3 H (compound (B-2)) ) Of rectification J, K, and L having different contents.
  • Rectification J to L were subjected to gas chromatography (manufactured by Shimadzu Corporation, GC-17A; column: DB624 (Length 60, ID 0.32, Film 1.8 ⁇ m); from 50 ° C. to 250 ° C. at 10 ° C./min. heating; injection, by measuring with a detector (FID) both 250 ° C.), the purity of CF 3 CH 2 OSO 2 CH 2 CH 3, and the compound (a-2), CF 3 CH of (B-2) The content relative to 2 OSO 2 CH 2 CH 3 was determined. The results are shown in Table 7.
  • Example 15 Under a dry argon atmosphere, 3 parts by weight of HCF 2 CF 2 CH 2 OSO 2 CH 3 of rectified C was added to 97 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then thoroughly dried. LiPF 6 was dissolved to a ratio of 1 mol / liter to obtain an electrolytic solution.
  • Positive electrode active in which LiNi 1/3 Mn 1/3 Co 1/3 O 2 , carbon black, and polyvinylidene fluoride (Kureha Chemical Co., Ltd., trade name KF-7200) were mixed at 92/3/5 (% by mass).
  • a positive electrode mixture slurry was prepared by dispersing the substance in N-methyl-2-pyrrolidone to form a slurry.
  • the obtained positive electrode mixture slurry was uniformly applied and dried to form a positive electrode mixture layer (thickness 50 ⁇ m). Thereafter, the positive electrode laminate was manufactured by compression molding with a roller press.
  • the positive electrode laminate was punched into a diameter of 1.6 mm with a punching machine to produce a circular positive electrode.
  • a negative electrode current collector (thickness 10 ⁇ m) was prepared by adding styrene-butadiene rubber dispersed in distilled water to artificial graphite powder to a solid content of 6% by mass and mixing with a disperser to form a slurry. On the copper foil) and dried to form a negative electrode mixture layer. After that, compression molding was performed with a roller press machine, and a circular negative electrode was produced with a punching machine having a diameter of 1.6 mm.
  • the above-mentioned circular positive electrode is opposed to the positive electrode and the negative electrode through a microporous polyethylene film (separator) having a thickness of 20 ⁇ m, the electrolytic solution is injected, and the electrolytic solution sufficiently permeates the separator, and then sealed. Precharging and aging were performed to produce a coin-type lithium ion secondary battery.
  • the coin-type lithium ion secondary battery was examined for high voltage cycle characteristics and high temperature storage characteristics as follows.
  • the charge / discharge cycle performed under the above charge / discharge conditions (charging at 1.0 C at a predetermined voltage until the charging current becomes 1/10 C and discharging to 3.0 V at a current equivalent to 1 C) is 1
  • the discharge capacity after 5 cycles and the discharge capacity after 100 cycles are measured.
  • the value obtained by the following formula is used as the capacity retention rate.
  • Example 16 Except that the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C in HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification B made a fabricated test cell in the same manner as in Example 15.
  • Example 17 A battery was fabricated and tested in the same manner as in Example 15 except that rectified C HCF 2 CF 2 CH 2 OSO 2 CH 3 was changed to rectified F HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3 . .
  • Example 18 Except that the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C in HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3 rectification E was subjected to produced test cell in the same manner as in Example 15 .
  • Example 19 Except that the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C to CF 3 CH 2 OSO 2 CH 3 rectification I went The prepared test battery in the same manner as in Example 15.
  • Example 20 A battery was fabricated and tested in the same manner as in Example 15 except that rectified C HCF 2 CF 2 CH 2 OSO 2 CH 3 was changed to rectified H CF 3 CH 2 OSO 2 CH 3 .
  • Example 21 A battery was prepared and tested in the same manner as in Example 15 except that HCF 2 CF 2 CH 2 OSO 2 CH 3 of rectification C was changed to CF 3 CH 2 OSO 2 CH 2 CH 3 of rectification L.
  • Example 22 A battery was fabricated and tested in the same manner as in Example 15 except that HCF 2 CF 2 CH 2 OSO 2 CH 3 of rectification C was changed to CF 3 CH 2 OSO 2 CH 2 CH 3 of rectification K.
  • Example 23 Except that the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C in HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification A was subjected to produced test cell in the same manner as in Example 15.
  • Example 24 The HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C, the ratio of the HCF 2 CF 2 CH 2 OH (Compound (A-1)) in HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C to 10000ppm A battery was produced and tested in the same manner as in Example 15 except that the battery was added in the same manner as in Example 15.
  • Example 25 Add rectified C HCF 2 CF 2 CH 2 OSO 2 CH 3 to rectified C HCF 2 CF 2 CH 2 OSO 2 CH 3 at a rate of 10,000 ppm of CH 3 SO 3 H (compound (B-1)) A battery was fabricated and tested in the same manner as in Example 15 except that the above was changed.
  • Example 27 10000ppm the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C, CH 3 CH 2 SO 3 H ( Compound (B-2)) in HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3 rectification F a
  • a battery was manufactured and tested in the same manner as in Example 15 except that the battery was added at the ratio of.
  • Example 28 A battery was fabricated and tested in the same manner as in Example 15 except that HCF 2 CF 2 CH 2 OSO 2 CH 3 of rectification C was changed to CF 3 CH 2 OSO 2 CH 3 of rectification G.
  • Example 29 HCF 2 CF 2 CH 2 OSO 2 CH 3 of rectification C, and CF 3 CH 2 OH (compound (A-2)) added at a ratio of 10,000 ppm to CF 3 CH 2 OSO 2 CH 3 of rectification I
  • a battery was produced and tested in the same manner as in Example 15 except that the test was performed.
  • Example 30 A battery was fabricated and tested in the same manner as in Example 15 except that HCF 2 CF 2 CH 2 OSO 2 CH 3 of rectification C was changed to CF 3 CH 2 OSO 2 CH 2 CH 3 of rectification J.
  • LiPF 6 is 1.0 mol / liter
  • rectified C HCF 2 CF 2 CH 2 OSO 2 CH 3 is 1 ⁇ 10 ⁇ 5 mol / kg
  • polyethylene oxide monool and polyethylene oxide diol was added and mixed so as to be 2.5 ⁇ 10 ⁇ 5 mol / kg to obtain a nonaqueous electrolytic solution.
  • a coin-type lithium ion secondary battery was produced in the same manner as in Example 15 except that the obtained nonaqueous electrolytic solution was used, and the cycle characteristics at high voltage and the high-temperature storage characteristics were evaluated.
  • the capacity retention rate was 92.5%, and the recovery capacity was 91.0.
  • Example 32 A battery was produced and evaluated in the same manner as in Example 31 except that rectified C HCF 2 CF 2 CH 2 OSO 2 CH 3 was changed to rectified F HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3. It was. The capacity retention rate was 91.0% and the recovery capacity was 91.5.
  • Example 33 Except that the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C to CF 3 CH 2 OSO 2 CH 3 rectification I went The prepared evaluation test battery in the same manner as in Example 31. The capacity retention rate was 92.4% and the recovery capacity was 93.3.
  • mixing ratio 1: 1 (molar ratio), weight average molecular weight 2000 was 2.5 ⁇ 10 ⁇ 5 mol / kg.
  • a coin-type lithium ion secondary battery was produced in the same manner as in Example 15 except that the obtained nonaqueous electrolytic solution was used, and the cycle characteristics at high voltage and the high-temperature storage characteristics were evaluated.
  • the capacity retention rate was 90.5%, and the recovery capacity was 91.4.
  • Example 35 A battery was fabricated and evaluated in the same manner as in Example 34 except that rectified C HCF 2 CF 2 CH 2 OSO 2 CH 3 was changed to rectified F HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3. It was. The capacity retention rate was 93.1%, and the recovery capacity was 92.5.
  • Example 36 Except that the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C to CF 3 CH 2 OSO 2 CH 3 rectification I went The prepared evaluation test battery in the same manner as in Example 34. The capacity retention rate was 91.7% and the recovery capacity was 92.3.
  • EC ethylene carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • a coin-type lithium ion secondary battery was produced in the same manner as in Example 15 except that the obtained nonaqueous electrolytic solution was used, and the cycle characteristics at high voltage and the high-temperature storage characteristics were evaluated.
  • the capacity retention rate was 92.4% and the recovery capacity was 91.5.
  • Example 38 Except that the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C in HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3 rectification F in the same manner as in Example 37 to prepare a battery tested to evaluate It was.
  • the capacity retention rate was 93.4%, and the recovery capacity was 91.5.
  • Example 39 Except that the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C to CF 3 CH 2 OSO 2 CH 3 rectification I went The prepared evaluation test battery in the same manner as in Example 37. The capacity retention rate was 90.7%, and the recovery capacity was 90.4.
  • LiPF 6 was added at 1.0 mol / liter
  • rectified C HCF 2 CF 2 CH 2 OSO 2 CH 3 was added at 1 ⁇ 10 ⁇ 5 mol / kg
  • the mixture of ethylene oxide monool and polyethylene oxide diol (mixing ratio 1: 1 (molar ratio), weight average molecular weight 2000) was added and mixed so as to be 2.5 ⁇ 10 ⁇ 5 mol / kg, respectively.
  • An electrolytic solution was obtained.
  • a coin-type lithium ion secondary battery was produced in the same manner as in Example 15 except that the obtained nonaqueous electrolytic solution was used, and the cycle characteristics at high voltage and the high-temperature storage characteristics were evaluated.
  • the capacity retention rate was 91.2%, and the recovery capacity was 92.4.
  • Example 41 A battery was fabricated and evaluated in the same manner as in Example 40 except that rectified C HCF 2 CF 2 CH 2 OSO 2 CH 3 was changed to rectified F HCF 2 CF 2 CH 2 OSO 2 CH 2 CH 3. It was. The capacity retention rate was 93.5%, and the recovery capacity was 92.0.
  • Example 42 Except that the HCF 2 CF 2 CH 2 OSO 2 CH 3 rectification C to CF 3 CH 2 OSO 2 CH 3 rectification I went The prepared evaluation test battery in the same manner as in Example 40. The capacity retention rate was 91.0% and the recovery capacity was 90.7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、(I)フッ素化鎖状スルホン、及び、フッ素化鎖状スルホン酸エステルからなる群より選択される少なくとも1種の化合物、及び、(II)電解質塩を含むことを特徴とする非水電解液である。これにより、フッ酸が発生しても非水電解液の分解が抑制され、二次電池に用いた場合には、電池の膨れや電池性能の低下が起こりにくい非水電解液が提供される。

Description

非水電解液
本発明は、非水電解液に関する。
リチウムイオン二次電池などの電気化学デバイス用の非水電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネートなど非水系溶媒に、LiPF、LiBF等の電解質塩を溶解させたものが一般に使用されている。
しかし、上記のようなフッ素を含む電解質塩を用いた場合、非水系溶媒や、各電極、セパレータ等の電気化学デバイス部材に僅かに含有されている微量の水分が、フッ素を含む溶質と反応してフッ酸が生じることがある。フッ酸が生じると、これが電解液中の溶媒を攻撃してガスが発生することによって、例えば、リチウムイオン二次電池の場合には、電池が膨れたり、電極間にガスが溜まりリチウムイオンの移動を阻害して電池性能を低下させたりする。
特許文献1には、初期の電池容量やサイクル特性に優れたリチウム二次電池用電解液とするために、少なくとも一つのフッ素原子とスルホン酸エステル構造を有したベンゼンスルホン酸エステルを非水電解液に添加することが開示されている。
特許文献2には、電解液の分解ガスによる電池の膨れが起り難く、電池の充放電性能に優れた電解液を提供することを目的として、分子構造中に少なくとも一つの炭素―炭素結合不飽和結合基を有する、炭素、フッ素及び水素からなる化合物であって、炭素に結合する水素のうち少なくとも一つがフッ素で置換されてなる、炭素数6~16の不飽和炭化水素を使用することが開示されている。
また、特許文献1や2に記載されているスルホン酸エステルは、負極上で還元分解することにより皮膜を作るということが知られているが、正極側では耐酸化性が低いため分解されガス発生する可能性を有する。
特開2009-93839号公報 特開2004-172101号公報
本発明は、耐酸化性が高く、フッ酸が発生しても非水電解液の分解が抑制され、二次電池に用いた場合には、電池の膨れや電池性能の低下が起こりにくい非水電解液を提供することを目的とする。
すなわち、本発明は、(I)フッ素化鎖状スルホン、及び、フッ素化鎖状スルホン酸エステルからなる群より選択される少なくとも1種の化合物、及び、(II)電解質塩を含むことを特徴とする非水電解液である。
本発明の非水電解液は、上記の構成よりなるため、非水電解液の分解が起こりにくい。従って、本発明の非水電解液を二次電池に使用すると、電池の膨れや電池性能の低下も起こりにくく、長期の使用に耐えうる。
本発明の非水電解液は、(I)フッ素化鎖状スルホン、及び、フッ素化鎖状スルホン酸エステルからなる群より選択される少なくとも1種の化合物、及び、(II)電解質塩を含むことを特徴とする。
(II)電解質塩
電解質塩(II)としては、本発明の非水電解液を用いる用途に応じて適宜選択することができ、その使用量も適宜設定することができるが、本発明の効果が顕著に発揮されることになるという観点からは、後述するようなフッ素を含む電解質塩であることが好ましい。特に、本発明の非水電解液をリチウムイオン二次電池に使用する場合、使用可能な電解質塩(II)としては、例えば、LiClO、LiAsF、LiPF及びLiBF等の無機リチウム塩;LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO、リチウムジフルオロ(オキサレート)ボレート、リチウムビス(オキサレート)ボレート、及び、式:LiPF(C2n+16-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩等の含フッ素有機酸リチウム塩等が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
これらのなかでも、電解質塩(II)としては、非水電解液を高温保存した後の劣化を抑制することができる点で、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、リチウムジフルオロ(オキサレート)ボレート、リチウムビス(オキサレート)ボレート、及び、式:LiPF(C2n+16-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩からなる群より選択される少なくとも1種であることが好ましい。
式:LiPF(C2n+16-aで表される塩としては、例えば、LiPF(CF、LiPF(C、LiPF(C、LiPF(C、LiPF(CF、LiPF(C、LiPF(C、LiPF(C(ただし、式中のC、Cで表されるアルキル基は、直鎖、分岐構造のいずれであってもよい。)等が挙げられる。
非水電解液中の電解質塩(II)の濃度は、0.5~3モル/リットルが好ましい。この範囲外では、電解液の電気伝導率が低くなり、電池性能が低下してしまう傾向がある。
上記電解質塩の濃度は、0.9モル/リットル以上がより好ましく、1.5モル/リットル以下がより好ましい。
また、本発明の非水電解液を電気二重層キャパシタに使用する場合、使用可能な電解質塩(II)としては、従来公知のアンモニウム塩、金属塩のほか、液体状の塩(イオン性液体)、無機高分子型の塩、有機高分子型の塩などがあげられ、アンモニウム塩が好ましい。しかしながら、アンモニウム塩を含め、例示した具体例に限定されるものではない。
つぎにアンモニウム塩を例示する。
(IIA)テトラアルキル4級アンモニウム塩
 一般式(IIA):
Figure JPOXMLDOC01-appb-C000002
(式中、R1a、R2a、R3aおよびR4aは同じかまたは異なり、いずれも炭素数1~6のエーテル結合を含んでいてもよいアルキル基;Xはアニオン)で示されるテトラアルキル4級アンモニウム塩が好ましく例示できる。また、このアンモニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
具体例としては、
一般式(IIA-1):
Figure JPOXMLDOC01-appb-C000003
(式中、R1a、R2aおよびXは前記と同じ;xおよびyは同じかまたは異なり0~4の整数で、かつx+y=4)で示されるテトラアルキル4級アンモニウム塩、
一般式(IIA-2):
Figure JPOXMLDOC01-appb-C000004
(式中、R5aは炭素数1~6のアルキル基;R6aは炭素数1~6の2価の炭化水素基;R7aは炭素数1~4のアルキル基;zは1または2;Xはアニオン)で示されるアルキルエーテル基含有トリアルキルアンモニウム塩、
などがあげられる。
アニオンXとしては、無機アニオンでも有機アニオンでもよい。無機アニオンとしては、たとえばAlCl 、BF 、PF 、AsF 、TaF 、I、SbF があげられる。有機アニオンとしては、たとえばCFCOO、CFSO 、(CFSO、(CSOなどがあげられる。
これらのうち、耐酸化性やイオン解離性が良好な点から、BF 、PF 、AsF 、SbF が好ましい。
テトラアルキル4級アンモニウム塩の好適な具体例としては、EtNBF、EtNClO、EtNPF、EtNAsF、EtNSbF、EtNCFSO、EtN(CFSON、EtNCSO、EtMeNBF、EtMeNClO、EtMeNPF、EtMeNAsF、EtMeNSbF、EtMeNCFSO、EtMeN(CFSON、EtMeNCSOを用いればよく、特に、EtNBF、EtNPF、EtNSbF、EtNAsF、EtMeNBF、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム塩などがあげられる。
(IIB)スピロビピリジニウム塩
 一般式(IIB):
Figure JPOXMLDOC01-appb-C000005
(式中、R8aおよびR9aは同じかまたは異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n1は0~5の整数;n2は0~5の整数)で示されるスピロビピリジニウム塩が好ましく例示できる。また、このスピロビピリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIA)と同じである。
好ましい具体例としては、たとえば
Figure JPOXMLDOC01-appb-C000006
などがあげられる。
このスピロビピリジニウム塩は溶解性、耐酸化性、イオン伝導性の点で優れている。
(IIC)イミダゾリウム塩
 一般式(IIC):
Figure JPOXMLDOC01-appb-C000007
(式中、R10aおよびR11aは同じかまたは異なり、いずれも炭素数1~6のアルキル基;Xはアニオン)で示されるイミダゾリウム塩が好ましく例示できる。また、このイミダゾリウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIA)と同じである。
好ましい具体例としては、たとえば
Figure JPOXMLDOC01-appb-C000008
などがあげられる。
このイミダゾリウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IID)N-アルキルピリジニウム塩
 一般式(IID):
Figure JPOXMLDOC01-appb-C000009
(式中、R12aは炭素数1~6のアルキル基;Xはアニオン)で示されるN-アルキルピリジニウム塩が好ましく例示できる。また、このN-アルキルピリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIA)と同じである。
好ましい具体例としては、たとえば
Figure JPOXMLDOC01-appb-C000010
などがあげられる。
このN-アルキルピリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IIE)N,N-ジアルキルピロリジニウム塩
Figure JPOXMLDOC01-appb-C000011
(式中、R13aおよびR14aは同じかまたは異なり、いずれも炭素数1~6のアルキル基;Xはアニオン)で示されるN,N-ジアルキルピロリジニウム塩が好ましく例示できる。また、このN,N-ジアルキルピロリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIA)と同じである。
好ましい具体例としては、たとえば
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
などがあげられる。
このN,N-ジアルキルピロリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
これらのアンモニウム塩のうち、(IIA)、(IIB)および(IIC)が溶解性、耐酸化性、イオン伝導性が良好な点で好ましく、さらには
Figure JPOXMLDOC01-appb-C000014
(式中、Meはメチル基;Etはエチル基;Xは、一般式(IIA)と同じ;x、yは一般式(IIA-1)と同じ)が好ましい。
また、電解質塩としてリチウム塩を用いてもよい。リチウム塩としては、たとえばLiPF、LiBF、LiAsF、LiSbF、LiN(SOが好ましい。
さらに容量を向上させるためにマグネシウム塩を用いてもよい。マグネシウム塩としては、たとえばMg(ClO、Mg(OOCなどが好ましい。
これらのなかでも、低温特性の維持の点から、スピロビピリジニウムテトラボレート、トリエチルメチルアンモニウムテトラボレートまたはテトラエチルアンモニウムテトラボレートが好ましい。
本発明の非水電解液を電気二重層キャパシタに使用する場合における、電解質塩(II)の非水電解液中の濃度は要求される電流密度、用途、電解質塩の種類などによって異なるが、0.3モル/リットル以上、さらには0.5モル/リットル以上、特に0.8モル/リットル以上であることが好ましく、3.6モル/リットル以下、さらには2.0モル/リットル以下、特に1.6モル/リットル以下とすることが好ましい。
(I)化合物
化合物(I)は、フッ素化鎖状スルホン、及び、フッ素化鎖状スルホン酸エステルからなる群より選択される少なくとも1種の化合物であり、非水電解液用溶媒成分として用いられる。化合物(I)としては、一般式(1):
Figure JPOXMLDOC01-appb-C000015
(式中、mは0又は1であり、R及びRは同じかまたは異なり、炭素数1~7のアルキル基又はフルオロアルキル基である。R及びRのうち、少なくとも一方はフルオロアルキル基である。)で表される化合物であることが好ましい。
なお、一般式(1)において、mが1の場合とは、硫黄原子と、Rとが酸素原子を介して結合していることを表し、mが0の場合とは、硫黄原子と、Rとが直接結合していることを表す。
及びRとしては、炭素数1~6の鎖状又は分岐鎖状アルキル基、炭素数1~4の鎖状又は分岐鎖状フルオロアルキル基が好ましく、より好ましくは、-CH、-C、-C、-C、-C11、-C13、-CF、-C、-CHCF、-CFCFH、-CHCFCF、-CHCFCFH、-CHCFCFH、-CFCHCF3、-CFCHFCF、-CFCFCF、-CFCFCFH、-CHCFCF、-CHCFCFH、-CHCFCFH、-CHCFCH、-CHCFHCFH、-CHCFHCFH、-CHCFHCHである。更に好ましくは、-CH、-C、-C、-CHCF、-CFCHFCF、-CHCFCF、-CHCFCFHである。
一般式(1)で表される化合物のうち、一般式(1’):
Figure JPOXMLDOC01-appb-C000016
(式中、mは0又は1であり、Rは炭素数1~7のアルキル基であり、Rfは炭素数1~7のフルオロアルキル基である。)で表される化合物が好ましい形態として挙げられる。
一般式(1’)における、Rの好ましい形態としては、上述した一般式(1)におけるR及びRが炭素数1~7のアルキル基である場合の好ましい形態と同様である。また、Rfの好ましい形態としては、上述した一般式(1)におけるR及びRが炭素数1~7のフルオロアルキル基である場合の好ましい形態と同様である。
一般式(1)で表される化合物の好ましい具体例としては、例えば、HCFCFCHOSOCH、HCFCFCHOSOCHCH、CFCHOSOCH、CFCHOSOCHCH、CFCFCHOSOCH、CFCFCHOSOCHCH等を挙げることができる。
また、一般式(1)で表される化合物としては、
Figure JPOXMLDOC01-appb-C000017
等も具体的に挙げることができる。
これら化合物(I)としては、1種を用いてもよいし、2種以上を用いてもよい。
一般式(1)で表される化合物のうちmが1である化合物、すなわち、下記一般式(1-1):
Figure JPOXMLDOC01-appb-C000018
(式中、R及びRは一般式(1)におけるR及びRと同様である。)で表される化合物は、通常、下記一般式(2-1):
 R-OH      (2-1)
(式中、Rは、一般式(1)におけるRと同様である。)で表される水酸基含有化合物(化合物(A))と、下記一般式(2-2):
 RSOCl      (2-2)
(式中、Rは、一般式(1)におけるRと同様である。)で表される化合物との反応により合成することができる。このように、一般式(2-1)で表される水酸基含有化合物と、一般式(2-2)で表される化合物とを反応させることにより一般式(1)で表される化合物を合成する工程を含む一般式(1)で表される化合物の製造方法もまた、本発明の1つである。
なお、上記合成工程において、一般式(2-1)で表される水酸基含有化合物、及び、一般式(2-2)で表される化合物はそれぞれ、1種を用いてもよいし、2種以上を用いてもよい。
上記合成工程において、一般式(2-1)で表される水酸基含有化合物と一般式(2-2)で表される化合物との配合割合は、それぞれの化合物の種類の組合せに応じて適宜設定することができるが、一般式(2-1)で表される水酸基含有化合物と一般式(2-2)で表される化合物とのモル比が、1/1~1.2/1であることが好ましい。より好ましくは、1/1~1.06/1である。
上記合成工程において、反応温度は、0~25℃であることが好ましい。反応温度が0℃より低いと、反応速度が遅くなる場合がある。一方、反応温度が25℃より高いと、反応速度は速くなるが、安全性において危険性が増すおそれがある。
上記合成工程は、溶媒を用いて行ってもよいし、用いずに行ってもよいが、後述するように合成された一般式(1)で表される化合物を精製して用いる場合、当該精製工程を考慮して、溶媒を用いずに無溶媒系で行うことが好ましい。このように、本発明の一般式(1)で表される化合物の製造方法が、無溶媒系で行われることもまた、本発明の好適な実施形態の1つである。
ここで、本発明において、無溶媒系とは、溶媒としての機能を発揮することができる化合物(溶媒成分)が溶媒としての機能を発揮することができる程度の量反応系中に存在しない場合、すなわち、溶媒成分が実質的に存在しない場合だけでなく、溶媒としての機能を発揮することができる化合物であって、後述する中和剤のように、溶媒としての機能に加え、反応系中に存在する物質と反応する(反応系中において不活性でない)化合物が反応系中に含まれる場合も含むものである。すなわち、本発明において、無溶媒系とは、溶媒としての機能のみしか有さない(反応系中において不活性である)化合物が反応系中に実質的に含まれていないことを意味する。
具体的には、溶媒としての機能のみしか有さない化合物の含有量が、一般式(2-1)で表される水酸基含有化合物100質量%に対して、1質量%以下であることを表している。更に本発明においては、後述するように、合成工程を中和剤を添加して行うこともまた、好適な実施形態の1つであるが、合成工程を中和剤を添加して無溶媒系で行う場合には、中和剤以外の溶媒成分の含有量が一般式(2-1)で表される水酸基含有化合物100質量%に対して、1質量%以下で行うことが好ましい。
上記溶媒としての機能のみしか有さない(反応系中において不活性である)化合物としては、テトラヒドロフラン(THF)、ジオキサン、ジグライム、トリグライム、テトラグライムなどが挙げられる。
上記合成工程は、一般式(2-1)で表される水酸基含有化合物と、一般式(2-2)で表される化合物とを反応させるため、副生成物として塩酸等が発生することから、該塩酸等を中和するための中和剤を用いることが好ましい。中和剤を用いて反応系中の塩酸等を中和することにより、目的生成物や反応原料が分解してしまうのを防ぐことができる。
上記中和剤としては、副生する塩酸等を中和することができれば特に制限されず、1級アミン、2級アミン、3級アミンなどが挙げられる。これらの中でも、ピリジン、ジエチルアミン、トリエチルアミンなどが好ましい。
これら中和剤としては、1種を用いてもよいし、2種以上を用いてもよい。
上記中和剤の使用量としては、一般式(2-1)で表される水酸基含有化合物のモル数に対して、1~1.2当量であることが好ましい。中和剤の使用量がこのような範囲であると、目的生成物や反応原料の分解を充分に抑制することが可能である。より好ましくは、1~1.16当量である。
上述したように、本発明の一般式(1)で表される化合物の製造方法は、一般式(2-1)で表される水酸基含有化合物と、一般式(2-2)で表される化合物とを反応させることにより一般式(1)で表される化合物を合成する工程を含むものである。そのため、精製の仕方によっては原料物質である化合物(A)や、一般式(2-2)で表される化合物がプロトンと反応して生成される、下記一般式(2-3):
 RSOH      (2-3)
(式中、Rは、一般式(1)におけるRと同様である。)で表されるスルホ基含有化合物(化合物(B))が不純物として残る場合がある。
このように、化合物(A)、(B)は、一般式(1-1)で表される化合物の合成の際に生じる不純物であるため、一般式(2-1)のRは一般式(1-1)のRと同じものになる。また、一般式(2-2)、(2-3)のRと一般式(1-1)のRも同じものになる。
例えば、一般式(1)で表される化合物の好ましい具体例であるHCFCFCHOSOCHは、HCFCFCHOHとCHSOClとの反応により合成することができる。そのため、精製の仕方によっては原料物質であるHCFCFCHOH(化合物(A-1))やCHSOClがプロトンと反応して生成されるCHSOH(化合物(B-1))が不純物として残る場合がある。
このように、化合物(A)と(B)の構造は、一般式(1)で表される化合物の構造により決まるものである。従って、一般式(1)で表される化合物が以下のものである場合の不純物は以下のようになる。
(一般式(1)で表される化合物がHCFCFCHOSOCHCHである場合)
化合物(A-1)及びCHCHSOH(化合物(B-2))が不純物として残る場合がある。
(一般式(1)で表される化合物がCFCHOSOCHである場合)
CFCHOH(化合物(A-2))及び化合物(B-1)が不純物として残る場合がある。
(一般式(1)で表される化合物がCFCHOSOCHCHである場合)
化合物(A-2)及び化合物(B-2)が不純物として残る場合がある。
(一般式(1)で表される化合物がCFCFCHOSOCHである場合)
CFCFCHOH(化合物(A-3))及び化合物(B-1)が不純物として残る場合がある。
(一般式(1)で表される化合物がCFCFCHOSOCHCHである場合)
化合物(A-3)及び化合物(B-2)が不純物として残る場合がある。
化合物(A)、(B)は、一般式(1)で表される化合物を合成する際に残存し得る不純物であるが、それらの含有量としては、非水電解液中、一般式(1)で表される化合物に対して化合物(A)及び(B)の合計で5000ppm以下であることが好ましい。一般式(1)で表される化合物に対して化合物(A)及び(B)の合計量が5000ppmよりも多いと、高温保存後の放電特性が低下したり、高電圧化した場合にサイクル劣化が大きくなったりする傾向がある。特に化合物(A)が残っている場合、化合物(A)はLiと容易に反応してしまうため、容量が低下する傾向がある。また、化合物(B)は、強酸であるため電解液を分解してしまう。また、分子起動計算により求めた化合物(A)、(B)のHOMOエネルギーは、一般式(1)で表される化合物よりも高いため耐酸化性が弱い。そのため、高電圧化した場合に分解してしまい、劣化の要因になると考えられる。これらのことから非水電解液中の化合物(A)、(B)の含有量が少ないほど、電池の保存特性の低下は少ないと考えられる。
化合物(A)、(B)の含有量としては、非水電解液中、一般式(1)で表される化合物に対して化合物(A)及び(B)の合計で3500ppm以下であることがより好ましい。更に好ましくは、2500ppm以下である。
なお、一般式(1)で表される化合物を予め精製することにより、非水電解液中の化合物(A)、(B)の含有量を上記範囲内とすることができる。
ここで、ppmは、重量基準であり、例えば、一般式(1)で表される化合物に対して5000ppm以下とは、一般式(1)で表される化合物100重量部に対して、0.5重量部以下であることを表している。
本発明の一般式(1)で表される化合物の製造方法は、一般式(1)で表される化合物を合成する合成工程の後、一般式(1)で表される化合物を精製する精製工程を含むことが好ましい。上記精製工程としては、分液、蒸留、分留、濾過等の通常化合物の精製工程として用いられるものを用いることができる。好ましい精製方法としては、例えば、分液した後、一般式(1)で表される化合物を含む層を理論段数5段以上の蒸留塔を用いて精留する方法が挙げられる。
また、一般式(1)で表される化合物のうち、下記一般式(3):
Figure JPOXMLDOC01-appb-C000019
(式中、Rは炭素数1~7のアルキル基であり、Yは炭素数1~5のアルキル基あるいはフルオロアルキル基である。)で表される化合物は、新規化合物であり、以下の製造方法により製造することができる。
下記一般式(3-1):
-SH      (3-1)
(式中、Rは上記同様である。)で表されるチオールと、下記一般式:
CF=CYF
(式中、Yは上記同様である。)で表されるフルオロオレフィンとを塩基の存在下に反応させて、下記一般式(3-2):
Figure JPOXMLDOC01-appb-C000020
(式中、R、Yは上記同様である。)で表される含フッ素チオエーテルを得る工程、及び、
前記含フッ素チオエーテルを酸化剤と反応させて、下記一般式(3-3):
Figure JPOXMLDOC01-appb-C000021
(式中、R、Yは上記同様である。)で表される含フッ素スルホンを得る工程、を含む製造方法である。
前記製造方法で使用する塩基は、水酸化アルカリ金属、及び、水酸化アルカリ土類金属からなる群より選択される少なくとも1種であることが好ましく、酸化剤は、有機過酸化物、過ハロゲン酸化物、過マンガン酸塩、クロム酸塩、トリフルオロ酢酸、及び、酢酸からなる群より選択される少なくとも1種であることが好ましい。
本発明の非水電解液は、化合物(I)、及び、電解質塩(II)を含むものであるが、さらに、非水電解液用溶媒成分として、化合物(I)以外の溶媒を含んでいてもよい。本発明の非水電解液が非水電解液用溶媒成分として化合物(I)以外の溶媒を含む場合、非水電解液用溶媒(化合物(I)及び化合物(I)以外の溶媒)中、化合物(I)の配合量は、0.01~20体積%であることが好ましい。非水電解液用溶媒中の化合物(I)(成分(I))の配合量が多くなると放電容量が低下する傾向にあり、その許容できる上限が20体積%である。成分(I)は比較的少ない量でその効果を発揮できる。より好ましくは10体積%以下である。より好ましい下限値は、0.1体積%、更に好ましい下限値は0.5体積%である。
また、化合物(I)、特にはHCFCFCHOSOCH、は、特に負極に良質な被膜を形成し、その結果、抵抗を低減するものと考えられる。したがって、黒鉛などの炭素質材料を負極に用いた場合、化合物(I)の配合量は非水電解液用溶媒中特に5体積%以下が好ましい。また、合金系の材料を負極に用いた場合は、膨張、収縮が大きいため炭素質材料系よりも安定な被膜が必要なため、化合物(I)の配合量は非水電解液用溶媒中20体積%以下が好ましい。化合物(I)の配合量が、非水電解液用溶媒中0.01体積%未満であると、量が少なすぎるためガス発生を止める効果が見られない傾向がある。一方、20体積%を超えると伝導度が悪くなり放電容量が低下する傾向にある。
本発明の非水電解液としては中でも、上記化合物(I)以外の溶媒として、非フッ素環状カーボネート(III)、及び、非フッ素鎖状カーボネート(IV)を含むことが好ましい。
すなわち、後述する本発明の非水電解液用溶媒、及び、電解質塩(II)を含む非水電解液もまた、本発明の好適な実施形態の1つである。
(III)非フッ素環状カーボネート
非フッ素環状カーボネートのなかでも、エチレンカーボネート(EC)、ビニレンカーボネート(VC)、プロピレンカーボネート(PC)は誘電率が高く、また、電解質塩の溶解性に特に優れているため、本発明の非水電解液用溶媒成分として好ましい。また、黒鉛系材料を負極に用いる場合には、安定な被膜を負極に形成させることもできる。また、ブチレンカーボネート、ビニルエチレンカーボネートなどを使用することもできる。これらの中でも、特に、エチレンカーボネート、プロピレンカーボネート、及び、ブチレンカーボネートからなる群より選択される少なくとも1種であることが、誘電率、粘度の点からより好ましい。更に好ましくは、エチレンカーボネート、及び、プロピレンカーボネートからなる群より選択される少なくとも1種である。これら非フッ素環状カーボネートは、1種を用いてもよいし、2種以上を用いてもよい。
(IV)非フッ素鎖状カーボネート
非フッ素鎖状カーボネートとしては、たとえば、CHCHOCOOCHCH(ジエチルカーボネート:DEC)、CHCHOCOOCH(エチルメチルカーボネート:EMC)、CHOCOOCH(ジメチルカーボネート:DMC)、CHOCOOCHCHCH(メチルプロピルカーボネート)、CHCHCHOCOOCHCHCH(ジ-n-プロピルカーボネート)などの炭化水素系鎖状カーボネートなどの1種または2種以上があげられる。これらのうち沸点が高く、粘性が低く、かつ低温特性が良好なことから、DEC、EMC、DMCが好ましい。すなわち、非フッ素鎖状カーボネート(IV)が、ジメチルカーボネート、エチルメチルカーボネート、及び、ジエチルカーボネートからなる群より選択される少なくとも1種であることもまた、本発明の好適な実施形態の1つである。これら非フッ素鎖状カーボネートは、1種を用いてもよいし、2種以上を用いてもよい。
非フッ素鎖状カーボネートを含有させることにより、低温特性、粘性低下により負荷特性向上といった効果が得られる。
前記非フッ素環状カーボネート(III)を配合する場合は、その含有量が多くなりすぎると、他の成分との相溶性が低下し、特に冬季の外気温や冷凍庫の室温といった低温雰囲気下(たとえば-30~-20℃)において、他の成分と層分離を起こしてしまうことがある。この観点から、好ましい上限は、非水電解液用溶媒中50体積%であり、より好ましくは40体積%であり、更に好ましくは35体積%、特に好ましくは30体積%である。一方、少なすぎると溶媒全体の電解質塩の溶解性が低下し、所望の電解質濃度(0.8モル/リットル以上)が達成できない傾向があり、さらにリチウム二次電池の負荷特性、サイクル特性を向上させる点から、下限値としては、5体積%であることが好ましく、より好ましくは10体積%である。
また、前記非フッ素鎖状カーボネート(IV)を配合する場合は、その配合量の好ましい上限は、非水電解液用溶媒中94.9体積%であり、さらには89.9体積%である。上記配合量にすることで、粘度、誘電率の点から好ましい。一方、下限値としては、44.9体積%であることが好ましい。
以上の観点から、本発明の非水電解液に用いる非水電解液用溶媒としては、成分(III)、(IV)、及び、(I)を含み、成分(III)と(IV)と(I)の合計を100体積%としたときに、(III)が5~50体積%、(IV)が44.9~94.9体積%、及び、(I)が0.1~20体積%である溶媒が好ましく、(III)が5~40体積%、(IV)が44.9~89.9体積%、及び、化合物(I)が0.1~10体積%の溶媒がより好ましい。
また、本発明は、上記非水電解液用溶媒に関するものでもある。すなわち、フッ素化鎖状スルホン及びフッ素化鎖状スルホン酸エステルからなる群より選択される少なくとも1種の化合物(I)、非フッ素環状カーボネート(III)、及び、非フッ素鎖状カーボネート(IV)を含み、(III)と(IV)と(I)の合計を100体積%としたときに、(III)が5~50体積%、(IV)が44.9~94.9体積%、及び、(I)が0.1~20体積%である非水電解液用溶媒もまた、本発明の1つである。
前記非水電解液用溶媒は、成分(III)と(IV)と(I)のみで本発明の課題を解決できるが、非水電解液用溶媒として周知の他の溶媒を成分(III)と(IV)と(I)に加えて配合してもよい。その種類および配合量は本発明の課題の解決を損なわない範囲とする必要がある。
前記他の溶媒としては、含フッ素カーボネート、含フッ素エーテル、含フッ素エステル、含フッ素ラクトン、フルオロアミド、非フッ素エーテル、及び、非フッ素エステルよりなる群から選ばれる少なくとも1種の溶媒を挙げることができる。また、これらの中でも、耐酸化性の観点から含フッ素エーテル、及び、含フッ素カーボネートからなる群より選択される少なくとも1種の溶媒を含むことが好ましい。
(含フッ素カーボネート)
含フッ素カーボネートとしては、含フッ素鎖状カーボネートと含フッ素環状カーボネートが例示できる。
含フッ素鎖状カーボネートとしては、たとえば下記一般式(4):
RfOCOORf      (4)
(式中、Rf、Rfは同じかまたは異なり、炭素数1~4の含フッ素アルキル基)で示される含フッ素カーボネートが、難燃性が高く、かつレート特性や耐酸化性が良好な点から好ましい。
RfおよびRfとしては、たとえば-CF、-CFCF、-CH(CF、CFCH-、CCH-、HCFCFCH-、CFCFHCFCH-などが例示でき、なかでもCFCH-、CCH-が、難燃性が高く、レート特性や耐酸化性が良好な点から特に好ましい。
含フッ素鎖状カーボネートの具体例としては、たとえばCFCHOCOOCHCF、CFCFCHOCOOCHCFCF、CFCFCHOCOOCH、CFCHOCOOCHなどの含フッ素鎖状カーボネートの1種または2種以上が例示でき、なかでもCFCHOCOOCHCF、CFCFCHOCOOCHCFCFが、粘性が適切で、難燃性、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。また、たとえば特開平06-21992号公報、特開2000-327634号公報、特開2001-256983号公報などに記載された化合物も例示できる。
含フッ素鎖状カーボネートを配合するときは、耐酸化性向上という効果が期待できる。
含フッ素環状カーボネートは、たとえば下記一般式(5):
Figure JPOXMLDOC01-appb-C000022
(式中、X~Xは同じかまたは異なり、いずれも-H、-F、-CF、-CFH、-CFH、-CFCF、-CHCFまたは-CHOCHCFCF;ただし、X~Xの少なくとも1つは-F、-CF、-CFCF、-CHCFまたは-CHOCHCFCFである)で示されるものである。
~Xは、-H、-F、-CF、-CFH、-CFH、-CFCF、-CHCFまたは-CHOCHCFCFであり、誘電率、粘性が良好で、他の溶媒との相溶性に優れる点から-F、-CF、-CHCFが好ましい。
一般式(5)において、X~Xの少なくとも1つが-F、-CF、-CFCF、-CHCFまたは-CHOCHCFCFであれば、-H、-F、-CF、-CFH、-CFH、-CFCF、-CHCFまたは-CHOCHCFCFは、X~Xの1箇所のみに置換していてもよいし、複数の箇所に置換していてもよい。なかでも、誘電率、耐酸化性が良好な点から、置換箇所は1~2個が好ましい。
含フッ素環状カーボネートを配合する場合は、本発明の非水電解液中に40体積%以下含ませることが好ましい。含フッ素環状カーボネートの含有量が40体積%を超えると、粘度が悪くなるため、レート特性が悪くなる傾向にある。より好ましくはレート特性が良好な点から30体積%以下、さらに好ましくは10体積%以下である。下限は、耐酸化性が良好な点から3体積%、さらに好ましくは5体積%である。
含フッ素環状カーボネートのなかでも、高い誘電率、高い耐電圧といった優れた特性がとくに発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明におけるリチウムイオン二次電池としての特性が向上する点から、次のものが好ましい。
耐電圧が高く、電解質塩の溶解性も良好な含フッ素環状カーボネートとしては、たとえば、
Figure JPOXMLDOC01-appb-C000023
などがあげられる。
他にも、含フッ素環状カーボネートとしては、
Figure JPOXMLDOC01-appb-C000024
なども使用できる。
含フッ素環状カーボネートを含有させることにより、誘電率を上昇させる作用や耐酸化性、イオン伝導度の向上といった効果が得られる。
(含フッ素エーテル)
含フッ素エーテルを含有させることにより、高温高電圧での安定性、安全性が向上する。
含フッ素エーテルとしては、たとえば下記一般式(6):
Rf-O-Rf      (6)
(式中、RfおよびRfは同じかまたは異なり、炭素数1~10のアルキル基または炭素数1~10のフルオロアルキル基;ただし、少なくとも一方はフルオロアルキル基)で示される化合物が例示できる。ただし、本発明の非水電解液用溶媒は、含フッ素エーテルを含む場合、当該含フッ素エーテルの不純物である、下記(A’)、(B’)で示される化合物の含有量は、前記含フッ素エーテルに対して合計で5000ppm以下であることが好ましい。
(A’)含フッ素不飽和化合物(以下、化合物(A’)ということもある。)
(B’)一般式(6-1):
RfOH      (6-1)
(式中、Rfは一般式(6)と同様である。)で示される水酸基含有化合物(以下、化合物(B’)ということもある。)
含フッ素エーテルの具体例としては、たとえば、HCFCFOCHCFCFH、HCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF、C13OCH、C13OC、C17OCH、C17OC、CFCFHCFCH(CH)OCFCFHCF、HCFCFOCH(C、HCFCFOC、HCFCFOCHCH(C、HCFCFOCHCH(CHなどがあげられ、特に、HCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFOCHCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCFが、相溶性が高く、電解液に用いた場合の抵抗が小さい点、及び、耐酸化性の点から好ましい。より好ましくは、HCFCFOCHCFCFHである。
また、本発明で用いる含フッ素エーテルのフッ素含有率は50質量%以上であることが、耐酸化性、安全性が良好な点から好ましい。特に好ましいフッ素含有率は55~66質量%である。フッ素含有率は構造式から算出したものである。
含フッ素エーテルを配合する場合は、本発明の非水電解液中に60体積%以下含ませることが好ましい。含フッ素エーテルの含有量が60体積%を超えると、相溶性が低くなるほか、レート特性が悪くなる傾向にある。より好ましくは相溶性、レート特性が良好な点から45体積%以下、さらに好ましくは40体積%以下である。下限は、耐酸化性、安全性が良好な点から5体積%、さらに好ましくは10体積%である。
上記含フッ素不飽和化合物(A’)は、一般式(6)で示される含フッ素エーテルを合成する際に発生する副生成物に由来するものである。具体的には、一般式(6)で示される含フッ素エーテルからフッ化水素(HF)が脱離して不飽和結合が生じたものである。さらに具体的には、例えば、(A’-1)CF=CFCHOCFCFH、(A’-2)HCFCF=CHOCFCFH、(A’-3)CF=CFCHOCFCFHCF、(A’-4)HCFCFCHOCF=CFCF、(A’-5)HCFCFCHOCFCF=CF、(A’-6)HCFCF=CHOCFCFHCFを挙げることができる。
また、水酸基含有化合物(B’)は、一般式(6)で示される含フッ素エーテルを合成する際の原料に由来するものであり、一般式(6-1):
RfOH      (6-1)
で示されるものである。ここで、Rfとしては、一般式(6)と同様のものを挙げることができ、水酸基含有化合物(B’)としては、具体的には、(B’-1)HCFCFCHOHを挙げることができる。
具体的には、一般式(6)で示される含フッ素エーテルが、HCFCFCHOCFCFHであり、
含フッ素不飽和化合物(A’)が、
(A’-1)CF=CFCHOCFCFH、及び、
(A’-2)HCFCF=CHOCFCF
であり、
水酸基含有化合物(B’)が、
(B’-1)HCFCFCHOH
である組み合わせ、又は、
一般式(6)で示される含フッ素エーテルが、HCFCFCHOCFCFHCFであり、
含フッ素不飽和化合物(A’)が、
(A’-3)CF=CFCHOCFCFHCF
(A’-4)HCFCFCHOCF=CFCF
(A’-5)HCFCFCHOCFCF=CF、及び、
(A’-6)HCFCF=CHOCFCFHCF
であり、
水酸基含有化合物(B’)が、
(B’-1)HCFCFCHOH
である組み合わせが好ましい。
化合物(A’)、(B’)は、含フッ素エーテルに含まれる不純物である。従って、一般式(6)で示される含フッ素エーテルを用いる場合は、当該含フッ素エーテルを予め精製して用いることにより、非水電解液中の化合物(A’)、(B’)の含有量を前記範囲内(含フッ素エーテルに対して合計で5000ppm以下)とすることができる。
ここで、ppmは、重量基準であり、含フッ素エーテルに対して5000ppm以下とは、含フッ素エーテル100重量部に対して、0.5重量部以下であることを示す。
化合物(A’)、(B’)の含有量の上限値としては、前記含フッ素エーテルに対して合計で3500ppm以下であることがより好ましく、2000ppm以下であることが更に好ましい。化合物(A’)、(B’)の合計量が5000ppmより多いと、高温保存後の放電特性が低下や高電圧化した場合、サイクル劣化が大きくなる傾向がある。化合物(A’)、(B’)の中でも、化合物(B’)はLiと容易に反応をしてしまうため、これが残っている場合、容量が落ちてしまう傾向がある。また、含フッ素不飽和化合物(A’)は二重結合を有するため、これらが多く残っている場合、容易に電解液中の水分等と反応し分解してしまう傾向がある。
本発明においては、一般式(1)で示される化合物と一般式(6)で示される化合物を含む非水電解液を用いることで、さらに耐酸化性が高く安全性の高い電池を作製することが可能であるため好ましい。
(含フッ素エステル)
含フッ素エステルとしては、下記一般式(7):
RfCOORf      (7)
(式中、Rfは炭素数1~2の含フッ素アルキル基、Rfは炭素数1~4の含フッ素アルキル基)で示される含フッ素エステルが、難燃性が高く、かつ他溶媒との相溶性や耐酸化性が良好な点から好ましい。
Rfとしては、たとえばCF-、CFCF-、HCFCF-、HCF-、CHCF-、CFCH-などが例示でき、なかでもCF-、CFCF-が、レート特性が良好な点から特に好ましい。
Rfとしては、たとえば-CF、-CFCF、-CH(CF、-CHCF、-CHCHCF、-CHCFCFHCF、-CH、-CHCFCFH、-CHCH、-CHCFCF、-CHCFCFCFなどが例示でき、なかでも-CHCF、-CH(CF-CH、-CHCFCFHが、他溶媒との相溶性が良好な点から特に好ましい。
含フッ素エステルの具体例としては、たとえばCFC(=O)OCHCF、CFC(=O)OCHCHCF、CFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCH(CFなどの1種または2種以上が例示でき、なかでもCFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCHCF、CFC(=O)OCH(CFが、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。
含フッ素エステルを配合するときは、耐酸化性向上という効果が期待できる。
(含フッ素ラクトン)
含フッ素ラクトンとしては、たとえば、下記一般式(8):
Figure JPOXMLDOC01-appb-C000025
(式中、X~X10は同じかまたは異なり、いずれも-H、-F、-Cl、-CHまたは含フッ素アルキル基;ただし、X~X10の少なくとも1つは含フッ素アルキル基である)で示される含フッ素ラクトンがあげられる。
~X10における含フッ素アルキル基としては、たとえば、-CFH、-CFH、-CF、-CHCF、-CFCF、-CHCFCF、-CF(CFなどがあげられ、耐酸化性が高く、安全性向上効果がある点から-CHCF、-CHCFCFが好ましい。
~X10の少なくとも1つが含フッ素アルキル基であれば、-H、-F、-Cl、-CHまたは含フッ素アルキル基は、X~X10の1箇所のみに置換していてもよいし、複数の箇所に置換していてもよい。好ましくは、電解質塩の溶解性が良好な点から1~3箇所、さらには1~2箇所である。
含フッ素アルキル基の置換位置はとくに限定されないが、合成収率が良好なことから、Xおよび/またはXが、特にXまたはXが含フッ素アルキル基、なかでも-CHCF、-CHCFCFであることが好ましい。含フッ素アルキル基以外のX~X10は、-H、-F、-Clまたは-CHであり、とくに電解質塩の溶解性が良好な点から-Hが好ましい。
含フッ素ラクトンとしては、前記一般式(8)で示されるもの以外にも、たとえば、下記一般式(9):
Figure JPOXMLDOC01-appb-C000026
(式中、AおよびBはいずれか一方がCX1617(X16およびX17は同じかまたは異なり、いずれも-H、-F、-Cl、-CF、-CHまたは水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキレン基)であり、他方は酸素原子;Rfはエーテル結合を有していてもよい含フッ素アルキル基または含フッ素アルコキシ基;X11およびX12は同じかまたは異なり、いずれも-H、-F、-Cl、-CFまたは-CH;X13~X15は同じかまたは異なり、いずれも-H、-F、-Clまたは水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0または1)で示される含フッ素ラクトンなどもあげられる。
一般式(9)で示される含フッ素ラクトンとしては、下記一般式(10):
Figure JPOXMLDOC01-appb-C000027
(式中、A、B、Rf、X11、X12およびX13は一般式(9)と同じである)で示される5員環構造が、合成が容易である点、化学的安定性が良好な点から好ましくあげられ、さらには、AとBの組合せにより、下記一般式(11):
Figure JPOXMLDOC01-appb-C000028
(式中、Rf、X11、X12、X13、X16およびX17は一般式(9)と同じである)で示される含フッ素ラクトンと、下記一般式(12):
Figure JPOXMLDOC01-appb-C000029
(式中、Rf、X11、X12、X13、X16およびX17は一般式(9)と同じである)で示される含フッ素ラクトンがある。
これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電解液としての特性が向上する点から、
Figure JPOXMLDOC01-appb-C000030
が好ましい。
その他、
Figure JPOXMLDOC01-appb-C000031
なども使用できる。
含フッ素ラクトンを含有させることにより、イオン伝導度の向上、安全性の向上、高温時の安定性向上といった効果が得られる。
(フルオロアミド)
フルオロアミドは、一般式(13):
Figure JPOXMLDOC01-appb-C000032
(式中、Rfは、-CF、-CFCF、フルオロフェニル基またはフルオロアルキルフェニル基である。RおよびRは同じかまたは異なり、炭素数1~8のアルキル基である。)で示される化合物である。
フルオロフェニル基としてはフッ素原子を1~5個含むものが好ましく、耐酸化性が良好な点から特に3~5個含むものがさらに好ましい。また、フルオロアルキルフェニル基のフルオロアルキル基としては、たとえば-CF、-C、-HC(CFなどがあげられ、相溶性が良好な点、粘性が低くできる点から-CF、-Cが好ましい。
およびRとしては、具体的には、-CH、-C、-C、-Cなどが例示でき、なかでも粘性が低い点から-CH、-Cが好ましい。
フルオロアミドとして特に好ましい化合物は、つぎの化合物である。
Figure JPOXMLDOC01-appb-C000033
フルオロアミドは本発明の非水電解液中に10体積%以下含ませてもよい。フルオロアミドの含有量が10体積%を超えると、粘度が高くなりイオン伝導性が低くなる傾向にある。好ましくは粘度を下げても高温高電圧での安定性が良好な点から6体積%以下、さらに好ましくは高温高電圧での安定性が特に良好な点から3体積%以下である。好ましい下限は、高温高電圧での安定性の点から0.01体積%、さらには0.05体積%である。
(非フッ素エーテル)
非フッ素エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル;ジメトキシエタン、ジメトキシメタン等の鎖状エーテルなどが好ましい。
(非フッ素エステル)
非フッ素エステルはレート特性を向上させる効果がある。非フッ素エステルとしては、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル化合物;酢酸エステル、プロピオン酸エステル、ブチル酸エステル等の鎖状カルボン酸エステル化合物などが好ましい。添加量としては、30体積%以下、さらには20体積%以下が電解質塩との相溶性を担保するうえで好ましい。レート特性の向上の点から下限は1体積%、さらには3体積%である。
上記化合物(I)以外の溶媒の好ましい形態の1つとして、非フッ素環状カーボネート(III)を20~45体積%、及び、非フッ素鎖状カーボネート(IV)を55~80体積%含む形態が挙げられる。上記化合物(I)以外の溶媒としてこのような形態の溶媒を用いた場合、電解液の電気伝導率が高くなり、サイクル特性と大電流放電特性が高くなるため好ましい。
上記化合物(I)以外の溶媒の好ましい形態の他の1つとして、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン及びγ-バレロラクトンから選ばれる有機溶媒を60体積%以上含有する形態が挙げられる。好ましくは85体積%以上含有するものである。上記化合物(I)以外の溶媒としてこのような形態の溶媒を用い、電解質塩としてリチウム塩を用いた電解液は、高温で使用しても溶媒の蒸発や液漏れが少ない。なかでも、エチレンカーボネート5~45体積%とγ-ブチロラクトン55~95体積%を含む形態、またはエチレンカーボネート30~60体積%とプロピレンカーボネート40~70体積%を含む形態が、サイクル特性と大電流放電特性等のバランスがよいため、好ましい。
その他、上記化合物(I)以外の溶媒の好ましい形態の1つとして、含燐有機溶媒10体積%以上含む形態が挙げられる。含燐有機溶媒としては、リン酸トリメチル、リン酸トリエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸エチレンメチル及びリン酸エチレンエチル等が挙げられる。このような形態の溶媒を用いることで、電解液の燃焼性を低下させることができる。特に含燐有機溶媒の含有率が10~80体積%で、他の成分が主として、γ-ブチロラクトン、γ-バレロラクトン、非フッ素環状カーボネート及び非フッ素鎖状カーボネートから選ばれる溶媒を用い、電解質塩としてリチウム塩を用いて電解液とすると、サイクル特性と大電流放電特性とのバランスがよくなるため、好ましい。
また、上記化合物(I)以外の溶媒の好ましい形態の1つとして、分子内に炭素-炭素不飽和結合を有する環状炭酸エステルを8体積%以下含有する形態が挙げられる。好ましくは0.01~8体積%含有するものである。このような範囲で分子内に炭素-炭素不飽和結合を有する環状炭酸エステルを含有させると、化合物(I)の負極での副反応を抑制し、保存特性及び電池のサイクル特性をさらに向上させることができるため、好ましい。環状炭酸エステルの添加量が8体積%を超えると、保存後の電池特性が低下したり、ガス発生により電池の内圧が上昇する場合がある。下限値としては0.1体積%、上限値としては3体積%がより好ましい。
分子内に炭素-炭素不飽和結合を有する環状炭酸エステルとしては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート、フルオロビニレンカーボネート、トリフルオロメチルビニレンカーボネート等のビニレンカーボネート化合物;4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニレンエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4-ジメチル-5-メチレンエチレンカーボネート、4,4-ジエチル-5-メチレンエチレンカーボネート等のビニルエチレンカーボネート化合物などが挙げられる。このうち、ビニレンカーボネート、4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネートまたは4,5-ジビニルエチレンカーボネート、特にビニレンカーボネートまたは4-ビニルエチレンカーボネートが好ましい。これらの2種類以上を併用してもよい。
さらに、本発明の非水電解液には、本発明の効果を損なわない範囲で、不燃(難燃)化剤、界面活性剤、高誘電化添加剤、サイクル特性およびレート特性改善剤や過充電防止剤、脱水剤、脱酸剤などの他の添加剤を配合してもよい。
不燃性や難燃性の向上のため配合する不燃(難燃)化剤としてはリン酸エステルがあげられる。
リン酸エステルとしては、含フッ素アルキルリン酸エステル、非フッ素系アルキルリン酸エステル、アリールリン酸エステルなどがあげられるが、含フッ素アルキルリン酸エステルが電解液の不燃化に寄与する程度が高く、少量で不燃効果をあげることから好ましい。
含フッ素アルキルリン酸エステルとしては、特開平11-233141号公報に記載された含フッ素ジアルキルリン酸エステル、特開平11-283669号公報に記載された環状のアルキルリン酸エステルのほか、含フッ素トリアルキルリン酸エステルがあげられる。
難燃性を向上させることを目的として、(CHO)P=O、(CFCHO)P=Oなどの難燃化剤も添加することができる。
また、界面活性剤は、容量特性、レート特性の改善を図るために配合してもよい。
界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、含フッ素界面活性剤が、サイクル特性、レート特性が良好な点から好ましい。
たとえば、下記一般式(14):
Rf10COO      (14)
(式中、Rf10は炭素数3~10のエーテル結合を含んでいてもよい含フッ素アルキル基;MはLi、Na、KまたはNHR’ (R’は同じかまたは異なり、いずれもHまたは炭素数が1~3のアルキル基)である)で示される含フッ素カルボン酸塩や、下記一般式(15):
Rf11SO       (15)
(式中、Rf11は炭素数3~10のエーテル結合を含んでいてもよい含フッ素アルキル基;MはLi、Na、KまたはNHR’ (R’は同じかまたは異なり、いずれもHまたは炭素数が1~3のアルキル基)である)で示される含フッ素スルホン酸塩などが好ましく例示される。
界面活性剤の配合量は、充放電サイクル特性を低下させずに電解液の表面張力を低下させるという点から、本発明の非水電解液の0.01~2質量%が好ましい。
高誘電化添加剤としては、たとえばスルホラン、メチルスルホラン、γ-ブチロラクトン、γ-バレロラクトン、アセトニトリル、プロピオニトリルなどが例示できる。
過充電防止剤としては、たとえば、シクロヘキシルベンゼン、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化物、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ベンゾフラン及びジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、ヘキサフルオロベンゼン、フルオロベンゼン等の芳香族化合物の部分又は完全フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール及び2,6-ジフルオロアニソール等の含フッ素アニソール化合物;ジクロロアニリン、トルエンなどが挙げられる。
これら過充電防止剤を非水電解液中に0.1~5体積%含有させると、過充電等のときに電池の破裂・発火を抑制することができる。
サイクル特性およびレート特性改善剤としては、酢酸メチル、酢酸エチル、テトラヒドロフラン、1,4-ジオキサンなどが例示できる。
その他、添加剤として、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート及びエリスリタンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン及びテトラメチルチウラムモノスルフィド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシイミド等の含窒素化合物;へプタン、オクタン、シクロヘプタン等の炭化水素化合物などを用いることもできる。
これら添加剤を非水電解液中に0.1~5体積%含有させると、高温保存後の容量維持特性やサイクル特性が良好となる。
以上に説明した本発明の非水電解液は、たとえば、電解コンデンサー、電気二重層キャパシタ、イオンの電荷移動により充電/放電される電池、エレクトロルミネッセンスなどの固体表示素子、電流センサーやガスセンサーなどのセンサーなどに使用することができる。これらの中でも、リチウムイオン二次電池用として用いることが好ましい。このように、本発明の非水電解液を備えるリチウムイオン二次電池もまた、本発明の1つである。また、本発明は、本発明の非水電解液を備える電気二重層キャパシタでもある。
本発明のリチウムイオン二次電池は、正極、負極、及び、本発明の非水電解液を備える。
正極は、正極の材料である正極活物質を含む正極合剤と、集電体とから構成される。
上記正極活物質としては、特に、高電圧を産み出すリチウム含有遷移金属複合酸化物が好ましい。
上記リチウム含有遷移金属複合酸化物としては、例えば、
式:LiMn2-b (式中、0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、
式:LiNi1-c (式中、0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、又は、
式:LiCo1-d (式中、0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が挙げられる。
なかでも、エネルギー密度が高く、高出力なリチウムイオン二次電池を提供できる点から、LiCoO、LiMnO、LiNiO、LiMn、LiNi0.8Co0.15Al0.05、またはLiNi1/3Co1/3Mn1/3が好ましい。
その他の上記正極活物質として、LiFeO、LiFePO、LiNi0.8Co0.2、Li1.2Fe0.4Mn0.4、LiNi0.5Mn0.5、LiV、V等が挙げられる。
本発明のリチウムイオン二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5~7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、電解液との接触面積が大きくなり、電極と電解液との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
上記正極活物質の含有量は、電池容量が高い点で、正極合剤の50~99質量%が好ましく、80~99質量%がより好ましい。
上記正極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体等が挙げられる。
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
上記導電材としては、グラファイト、カーボンブラック等の炭素材料等が挙げられる。
正極用集電体の材質としては、アルミニウム、チタンもしくはタンタル等の金属、又は、その合金が挙げられる。なかでも、アルミニウム又はその合金が好ましい。
正極の製造は、常法によればよい。例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
負極は、負極材料を含む負極合剤と、集電体とから構成される。
上記負極材料としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛、コークス類、メソカーボンマイクロビーズ、炭素ファイバー、活性炭、ピッチ被覆黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化ケイ素等のリチウムを吸蔵・放出可能な金属酸化物材料;Li2.6Co0.4N等のリチウムを吸蔵・放出可能な金属窒化物材料;リチウム金属;種々のリチウム合金等を挙げることができる。これらの負極材料は、2種以上を混合して用いてもよい。
リチウムを吸蔵・放出可能な炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛もしくは精製天然黒鉛、又は、これらの黒鉛にピッチその他の有機物で表面処理を施した後炭化して得られるものが好ましい。
上記負極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、上述した、正極に用いることができる結着剤と同様のものが挙げられる。
上記増粘剤としては、上述した、正極に用いることができる増粘剤と同様のものが挙げられる。
負極の導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料等が挙げられる。
負極用集電体の材質としては、銅、ニッケルまたはステンレス等が挙げられる。なかでも、薄膜に加工しやすいという点、及び、コストの点から銅箔が好ましい。
負極の製造は、常法によればよい。例えば、上記負極材料に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
本発明のリチウムイオン二次電池は、更に、セパレータを備えることが好ましい。
上記セパレータの材質や形状は、電解液に安定であり、かつ、保液性に優れていれば特に限定されず、公知のものを使用することができる。
なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。そのようなセパレータとしては、例えば、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン-プロピレンコポリマーフィルム、微孔性ポリプロピレン/ポリエチレン2層フィルム、微孔性ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルムなどがあげられる。
本発明のリチウムイオン二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
なお、本発明の非水電解液は不燃性であることから、上記のハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池用の電解液として特に有用であるが、そのほか小型のリチウムイオン二次電池などの非水系電解液としても有用である。
また、本発明のリチウムイオン二次電池を備えたモジュールも本発明の一つである。
このように本発明の非水電解液を用いれば、高温での保存特性、及び、高電圧サイクル特性に優れた電池や、その電池を用いたモジュールを好適に得ることができる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
なお、以下の実施例および比較例で使用した各化合物は以下のとおりである。
成分(I)
 (IA):
Figure JPOXMLDOC01-appb-C000034
 (IB):
Figure JPOXMLDOC01-appb-C000035
 (IC):
Figure JPOXMLDOC01-appb-C000036
成分(II)
 (IIA):LiPF
 (IIB):LiN(CFSO
 (IIC):LiN(CSO
 (IID):LiBF
成分(III)
 (IIIA):エチレンカーボネート
 (IIIB):プロピレンカーボネート
成分(IV)
 (IVA):ジメチルカーボネート
 (IVB):エチルメチルカーボネート
 (IVC):ジエチルカーボネート
成分(V)
 (VA):メタンスルホン酸プロピル
 (VB):ブタンスルホン酸ブチル
 (VC):プロピルスルホニルブタン
 (VD):スルホラン
実施例1
成分(III)としてエチレンカーボネート(IIIA)、成分(IV)としてジメチルカーボネート(IVA)、成分(I)として(IA)を、30/67/3(体積%)となるように混合し、この非水電解液用溶媒にさらに電解質塩(II)としてLiPF(IIA)を1.0モル/リットルの濃度となるように加え、25℃にて充分に撹拌し本発明の非水電解液を調製した。
実施例2~9
成分(II)、成分(III)、成分(IV)、成分(I)として表1に示す種類と量を用いた以外は、実施例1と同様の方法により非水電解液を調製した。
実施例10~14
成分(II)、成分(III)、成分(IV)、成分(I)として表2に示す種類と量を用いた以外は、実施例1と同様にして非水電解液を調製した。
比較例1
成分(II)、成分(IV)、成分(III)として表3に示す種類と量を用い、かつ、成分(I)を配合しなかった以外は、実施例1と同様にして非水電解液を調製した。
比較例2~5
成分(II)、成分(IV)、成分(III)、成分(V)として表3に示す種類と量を用い、かつ、成分(I)を配合しなかった以外は、実施例1と同様にして非水電解液を調製した。
これらの非水電解液について、以下の試験1を行った。
試験1(電池特性の測定)
以下の方法で円筒型二次電池を作製した。
LiCoOとカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製、商品名:KF-1000)を90/3/7(質量%)で混合した正極活物質を、N-メチル-2-ピロリドンに分散してスラリー状としたものを正極集電体(厚さ15μmのアルミニウム箔)上に均一に塗布し、乾燥して正極合剤層を形成した。その後、ローラプレス機により圧縮成形した後、切断し、リード体を溶接して、帯状の正極を作製した。
別途、人造黒鉛粉末に、蒸留水で分散させたスチレン-ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成した。その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。
帯状の正極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して帯状の負極に重ね、渦巻状に巻回して渦巻状巻回構造の積層電極体とした。その際、正極集電材の粗面側が外周側になるようにして巻回した。その後、この電極体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。
ついで、実施例1~14および比較例1~5で調製した電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エージングを行い、筒形のリチウム二次電池を作製した。
このリチウム二次電池について、以下の手順で放電容量、負荷特性(高温貯蔵特性)およびサイクル特性を調べた。結果を表1~3に示す。
(放電容量)
充放電電流をCで表示した場合、1800mAを1Cとして以下の充放電測定条件で測定を行った。評価は、比較例1の放電容量の結果を100とした指数で行う。
充放電条件
充電:1.0C、4.5Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:1C 3.0Vcut(CC放電)
(高温貯蔵特性)
充電については、1.0Cで4.5Vにて充電電流が1/10Cになるまで充電し0.2C相当の電流で3.0Vまで放電し、放電容量を求めた。その後、1.0Cで4.5Vにて充電電流が1/10Cになるまで充電し85℃の恒温槽に二日間入れた。二日後、室温に冷えるまで十分に置き、0.2相当の電流で3.0Vになるまで放電した。その後、1.0Cで4.5Vにて充電電流が1/10Cになるまで充電し、0.2相当の電流で3.0Vになるまで放電し貯蔵後の放電容量を求めた。貯蔵前の放電容量と、貯蔵後充電し0.2Cで放電させた放電容量を、つぎの計算式に代入して高温貯蔵特性を求めた。
Figure JPOXMLDOC01-appb-M000037
(サイクル特性)
サイクル特性については、上記の充放電条件(1.0Cで4.5Vにて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、最初のサイクル後の放電容量と100サイクル後の放電容量を測定した。サイクル特性は、つぎの計算式で求められた値をサイクル維持率の値とした。
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
表1~3に示す結果より、化合物(I)を添加したものはこれらを加えていない比較例1よりも放電容量、高温貯蔵特性、サイクル特性が向上していることが分かる。また、構造式のフッ素の部分をすべて水素にした場合の比較例2~5よりも放電容量、高温貯蔵特性、サイクル特性ともに効果が大きいということが分かる。
また、電解質塩を変更しても(実施例10~12)、放電容量、高温貯蔵特性、サイクル特性ともに効果が大きいということが分かる。さらに、化合物(I)の配合量を0.1体積%と少なくしたとき(実施例13)、および20体積%と大きくしたとき(実施例14)は、いずれにおいても放電容量、高温貯蔵特性、サイクル特性はともに低下するが、比較例1との比較からは向上していることが分かる。
合成例1 HCFCFCHOSOCHの合成
10Lの四つ口フラスコに還流管と滴下ロートを設置し反応装置を準備した。その後、氷浴下でHCFCFCHOH(445.35g;3.37モル)とピリジン(306.31g;3.88モル)を加え攪拌した。その後、滴下ロートを用いてメタンスルホン酸クロリド(364.15g;3.20モル)を発熱に注意して滴下した。反応溶液が次第にピリジン塩酸塩の生成とともに乳白色へと変化した。終了後、反応溶液を1N HCl水溶液で洗浄した。洗浄後分液した有機層を採取した。
有機層を10段の蒸留精製塔により蒸留精製した。初留の約5%を廃棄し、留出順にほぼ等量をサンプリングすることにより、HCFCFCHOH(化合物(A-1))、CHSOH(化合物(B-1))の含有量の異なる精留A、B、Cを得た。
精留A~Cをガスクロマトグラフィー((株)島津製作所製、GC-17A;カラム:DB624(Length60、I.D 0.32、Film1.8μm);50℃から10℃/分で250℃まで昇温;インジェクション、ディテクター(FID)共に250℃)で測定することにより、HCFCFCHOSOCHの純度、及び、化合物(A-1)、(B-1)のHCFCFCHOSOCHに対する含有量を求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000042
合成例2 HCFCFCHOSOCHCHの合成
10Lの四つ口フラスコに還流管と滴下ロートを設置し反応装置を準備した。その後、氷浴下でHCFCFCHOH(445.35g;3.37モル)とピリジン(306.31g;3.88モル)を加え攪拌した。その後、滴下ロートを用いてエタンスルホン酸クロリド(411.4g;3.20モル)を発熱に注意して滴下した。反応溶液が次第にピリジン塩酸塩の生成とともに乳白色へと変化した。終了後、反応溶液を1N HCl水溶液で洗浄した。洗浄後分液した有機層を採取した。
有機層を10段の蒸留精製塔により蒸留精製した。初留の約5%を廃棄し、留出順にほぼ等量をサンプリングすることにより、HCFCFCHOH(化合物(A-1))、CHCHSOH(化合物(B-2))の含有量の異なる精留D、E、Fを得た。
精留D~Fをガスクロマトグラフィー((株)島津製作所製、GC-17A;カラム:DB624(Length60、I.D 0.32、Film1.8μm);50℃から10℃/分で250℃まで昇温;インジェクション、ディテクター(FID)共に250℃)で測定することにより、HCFCFCHOSOCHCHの純度、及び、化合物(A-1)、(B-2)のHCFCFCHOSOCHCHに対する含有量を求めた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000043
合成例3 CFCHOSOCHの合成
10Lの四つ口フラスコに還流管と滴下ロートを設置し反応装置を準備した。その後、氷浴下でCFCHOH(337.1g;3.37モル)とピリジン(306.31g;3.88モル)を加え攪拌した。その後、滴下ロートを用いてメタンスルホン酸クロリド(364.15g;3.20モル)を発熱に注意して滴下した。反応溶液が次第にピリジン塩酸塩の生成とともに乳白色へと変化した。終了後、反応溶液を1N HCl水溶液で洗浄した。洗浄後分液した有機層を採取した。
有機層を10段の蒸留精製塔により蒸留精製した。初留の約5%を廃棄し、留出順にほぼ等量をサンプリングすることにより、CFCHOH(化合物(A-2))、CHSOH(化合物(B-1))の含有量の異なる精留G、H、Iを得た。
精留G~Iをガスクロマトグラフィー((株)島津製作所製、GC-17A;カラム:DB624(Length60、I.D 0.32、Film1.8μm);50℃から10℃/分で250℃まで昇温;インジェクション、ディテクター(FID)共に250℃)で測定することにより、CFCHOSOCHの純度、及び、化合物(A-2)、(B-1)のCFCHOSOCHに対する含有量を求めた。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000044
合成例4 CFCHOSOCHCHの合成
10Lの四つ口フラスコに還流管と滴下ロートを設置し反応装置を準備した。その後、氷浴下でCFCHOH(337.1g;3.37モル)とピリジン(306.31g;3.88モル)を加え攪拌した。その後、滴下ロートを用いてエタンスルホン酸クロリド(364.15g;3.20モル)を発熱に注意して滴下した。反応溶液が次第にピリジン塩酸塩の生成とともに乳白色へと変化した。終了後、反応溶液を1N HCl水溶液で洗浄した。洗浄後分液した有機層を採取した。
有機層を10段の蒸留精製塔により蒸留精製した。初留の約5%を廃棄し、留出順にほぼ等量をサンプリングすることにより、CFCHOH(化合物(A-2))、CHCHSOH(化合物(B-2))の含有量の異なる精留J、K、Lを得た。
精留J~Lをガスクロマトグラフィー((株)島津製作所製、GC-17A;カラム:DB624(Length60、I.D 0.32、Film1.8μm);50℃から10℃/分で250℃まで昇温;インジェクション、ディテクター(FID)共に250℃)で測定することにより、CFCHOSOCHCHの純度、及び、化合物(A-2)、(B-2)のCFCHOSOCHCHに対する含有量を求めた。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000045
実施例15
乾燥アルゴン雰囲気下、エチレンカーボネート及びエチルメチルカーボネートの混合物(容量比3:7)97重量部に、精留CのHCFCFCHOSOCH 3重量部を添加し、次いで十分に乾燥したLiPFを1モル/リットルの割合となるように溶解して電解液とした。
(コイン型電池の作製)
LiNi1/3Mn1/3Co1/3とカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製、商品名KF-7200)を92/3/5(質量%)で混合した正極活物質をN-メチル-2-ピロリドンに分散してスラリー状とした正極合剤スラリーを準備した。アルミ集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥して正極合剤層(厚さ50μm)を形成した。その後、ローラプレス機により圧縮成形して、正極積層体を製造した。
正極積層体を打ち抜き機で直径1.6mmの大きさに打ち抜き、円状の正極を作製した。
別途、人造黒鉛粉末に、蒸留水で分散させたスチレン-ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成した。その後、ローラプレス機により圧縮成形し、打ち抜き機で直径1.6mmの大きさに打ち抜き円状の負極を作製した。
上記の円状の正極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して正極と負極を対向させ、電解液を注入し、電解液がセパレータなどに充分に浸透した後、封止し予備充電、エージングを行い、コイン型のリチウムイオン二次電池を作製した。
(電池特性の測定)
コイン型リチウムイオン二次電池について、つぎの要領で高電圧でのサイクル特性と高温保存特性を調べた。
充放電条件
充電:0.5C、4.3Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:0.5C 3.0Vcut(CC放電)
(高電圧サイクル特性)
サイクル特性については、上記の充放電条件(1.0Cで所定の電圧にて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、5サイクル後の放電容量と100サイクル後の放電容量を測定する。サイクル特性は、つぎの計算式で求められた値を容量維持率の値とする。
Figure JPOXMLDOC01-appb-M000046
(高温保存特性)
高温保存特性については上記の充放電条件(1.0Cで所定の電圧にて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)により充放電を行い、放電容量を調べた。その後、再度上記の充電条件で充電をし、85℃の恒温槽の中に1日保存した。保存後の電池を25℃において、上記の放電条件で放電終止電圧3Vまで放電させて残存容量を測定し、さらに上記の充電条件で充電した後、上記の放電条件での定電流で、放電終止電圧3Vまで放電を行って回復容量を測定した。保存前の放電容量を100とした場合の回復容量を表8に示す。
実施例16
精留CのHCFCFCHOSOCHを精留BのHCFCFCHOSOCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例17
精留CのHCFCFCHOSOCHを精留FのHCFCFCHOSOCHCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例18
精留CのHCFCFCHOSOCHを精留EのHCFCFCHOSOCHCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例19
精留CのHCFCFCHOSOCHを精留IのCFCHOSOCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例20
精留CのHCFCFCHOSOCHを精留HのCFCHOSOCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例21
精留CのHCFCFCHOSOCHを精留LのCFCHOSOCHCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例22
精留CのHCFCFCHOSOCHを精留KのCFCHOSOCHCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例23
精留CのHCFCFCHOSOCHを精留AのHCFCFCHOSOCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例24
精留CのHCFCFCHOSOCHを、精留CのHCFCFCHOSOCHにHCFCFCHOH(化合物(A-1))を10000ppmの割合で添加したものにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例25
精留CのHCFCFCHOSOCHを、精留CのHCFCFCHOSOCHにCHSOH(化合物(B-1))を10000ppmの割合で添加したものにした以外は実施例15と同様にして電池を作製し試験を行った。
比較例26
精留CのHCFCFCHOSOCHを精留DのHCFCFCHOSOCHCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例27
精留CのHCFCFCHOSOCHを、精留FのHCFCFCHOSOCHCHにCHCHSOH(化合物(B-2))を10000ppmの割合で添加したものにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例28
精留CのHCFCFCHOSOCHを精留GのCFCHOSOCHにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例29
精留CのHCFCFCHOSOCHを、精留IのCFCHOSOCHにCFCHOH(化合物(A-2))を10000ppmの割合で添加したものにした以外は実施例15と同様にして電池を作製し試験を行った。
実施例30
精留CのHCFCFCHOSOCHを精留JのCFCHOSOCHCHにした以外は実施例15と同様にして電池を作製し試験を行った。
Figure JPOXMLDOC01-appb-T000047
実施例15~22と実施例23~30との比較より、非水電解液用溶媒中の化合物(A-1)、(A-2)、(B-1)、(B-2)の合計含有量を5000ppm以下にすることで、高温での保存特性、高電圧サイクル特性をより向上させることが可能であることがわかる。特に、実施例15、17、19、21と、実施例16、18、20、22との比較より、非水電解液用溶媒中の上記(A-1)、(A-2)、(B-1)、(B-2)で示される化合物の合計含有量を2500ppm以下にすることで、さらに特性が向上することがわかる。
実施例31
攪拌翼の付いた縦型の混合槽を用いて、これにまずエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比がEC/EMC=3/7となるよう混合し、これに、LiPFが1.0モル/リットル、精留CのHCFCFCHOSOCHが1×10-5mol/kg、及び、添加剤として、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールとの混合物(混合比1:1(モル比)、重量平均分子量2000)が2.5×10-5mol/kgとなるようにそれぞれ添加して混合し、非水電解液を得た。得られた非水電解液を用いる以外は、実施例15と同様に、コイン型のリチウムイオン二次電池を作製し、高電圧でのサイクル特性及び高温保存特性を評価した。容量維持率は92.5%であり、回復容量は91.0であった。
実施例32
精留CのHCFCFCHOSOCHを精留FのHCFCFCHOSOCHCHにした以外は実施例31と同様にして電池を作製し評価試験を行った。容量維持率は91.0%であり、回復容量は91.5であった。
実施例33
精留CのHCFCFCHOSOCHを精留IのCFCHOSOCHにした以外は実施例31と同様にして電池を作製し評価試験を行った。容量維持率は92.4%であり、回復容量は93.3であった。
実施例34
攪拌翼の付いた縦型の混合槽を用いて、これにまずエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比がEC/DEC=3/7となるよう混合し、これに、LiPFが1.0モル/リットル、精留CのHCFCFCHOSOCHが1×10-5mol/kg、及び、添加剤として、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールとの混合物(混合比1:1(モル比)、重量平均分子量2000)が2.5×10-5mol/kgとなるようにそれぞれ添加して混合し、非水電解液を得た。得られた非水電解液を用いる以外は、実施例15と同様に、コイン型のリチウムイオン二次電池を作製し、高電圧でのサイクル特性及び高温保存特性を評価した。容量維持率は90.5%であり、回復容量は91.4であった。
実施例35
精留CのHCFCFCHOSOCHを精留FのHCFCFCHOSOCHCHにした以外は実施例34と同様にして電池を作製し評価試験を行った。容量維持率は93.1%であり、回復容量は92.5であった。
実施例36
精留CのHCFCFCHOSOCHを精留IのCFCHOSOCHにした以外は実施例34と同様にして電池を作製し評価試験を行った。容量維持率は91.7%であり、回復容量は92.3であった。
実施例37
攪拌翼の付いた縦型の混合槽を用いて、これにまずエチレンカーボネート(EC)とプロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)とを体積比がEC/PC/EMC=2/1/7となるよう混合し、これに、LiPFが1.0モル/リットル、精留CのHCFCFCHOSOCHが1×10-5mol/kg、及び、添加剤として、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールとの混合物(混合比1:1(モル比)、重量平均分子量2000)が2.5×10-5mol/kgとなるようにそれぞれ添加して混合し、非水電解液を得た。得られた非水電解液を用いる以外は、実施例15と同様に、コイン型のリチウムイオン二次電池を作製し、高電圧でのサイクル特性及び高温保存特性を評価した。容量維持率は92.4%であり、回復容量は91.5であった。
実施例38
精留CのHCFCFCHOSOCHを精留FのHCFCFCHOSOCHCHにした以外は実施例37と同様にして電池を作製し評価試験を行った。容量維持率は93.4%であり、回復容量は91.5であった。
実施例39
精留CのHCFCFCHOSOCHを精留IのCFCHOSOCHにした以外は実施例37と同様にして電池を作製し評価試験を行った。容量維持率は90.7%であり、回復容量は90.4であった。
実施例40
攪拌翼の付いた縦型の混合槽を用いて、これにまずエチレンカーボネート(EC)とプロピレンカーボネート(PC)とジエチルカーボネート(DEC)とを体積比がEC/PC/DEC=2/1/7となるよう混合し、これに、LiPFが1.0モル/リットル、精留CのHCFCFCHOSOCHが1×10-5mol/kg、及び、添加剤として、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールとの混合物(混合比1:1(モル比)、重量平均分子量2000)が2.5×10-5mol/kgとなるようにそれぞれ添加して混合し、非水電解液を得た。得られた非水電解液を用いる以外は、実施例15と同様に、コイン型のリチウムイオン二次電池を作製し、高電圧でのサイクル特性及び高温保存特性を評価した。容量維持率は91.2%であり、回復容量は92.4であった。
実施例41
精留CのHCFCFCHOSOCHを精留FのHCFCFCHOSOCHCHにした以外は実施例40と同様にして電池を作製し評価試験を行った。容量維持率は93.5%であり、回復容量は92.0であった。
実施例42
精留CのHCFCFCHOSOCHを精留IのCFCHOSOCHにした以外は実施例40と同様にして電池を作製し評価試験を行った。容量維持率は91.0%であり、回復容量は90.7であった。

Claims (12)

  1. (I)フッ素化鎖状スルホン、及び、フッ素化鎖状スルホン酸エステルからなる群より選択される少なくとも1種の化合物、及び、
    (II)電解質塩
    を含むことを特徴とする非水電解液。
  2. 化合物(I)は、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (但し、mは0又は1であり、R及びRは同じかまたは異なり、炭素数1~7のアルキル基又はフルオロアルキル基である。R及びRのうち、少なくとも一方はフルオロアルキル基である。)で表される化合物である請求項1記載の非水電解液。
  3. さらに、
    (III)非フッ素環状カーボネート、及び、
    (IV)非フッ素鎖状カーボネート
    を含む請求項1又は2記載の非水電解液。
  4. フッ素化鎖状スルホン及びフッ素化鎖状スルホン酸エステルからなる群より選択される少なくとも1種の化合物(I)、非フッ素環状カーボネート(III)、及び、非フッ素鎖状カーボネート(IV)を含み、(III)と(IV)と(I)の合計を100体積%としたときに、(III)が5~50体積%、(IV)が44.9~94.9体積%、及び、(I)が0.1~20体積%である非水電解液用溶媒。
  5. 請求項4記載の非水電解液用溶媒、及び、電解質塩(II)を含む非水電解液。
  6. 非フッ素環状カーボネート(III)が、エチレンカーボネート、プロピレンカーボネート、及び、ブチレンカーボネートからなる群より選択される少なくとも1種である請求項3、又は、5記載の非水電解液。
  7. 非フッ素鎖状カーボネート(IV)が、ジメチルカーボネート、エチルメチルカーボネート、及び、ジエチルカーボネートからなる群より選択される少なくとも1種である請求項3、5、又は、6記載の非水電解液。
  8. 電解質塩(II)は、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、リチウムジフルオロ(オキサレート)ボレート、リチウムビス(オキサレート)ボレート、及び、式:LiPF(C2n+16-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩からなる群より選択される少なくとも1種である請求項1、2、3、5、6、又は、7記載の非水電解液。
  9. リチウムイオン二次電池用である請求項1、2、3、5、6、7、又は、8記載の非水電解液。
  10. 請求項1、2、3、5、6、7、8、又は、9記載の非水電解液を備えるリチウムイオン二次電池。
  11. 請求項10記載のリチウムイオン二次電池を備えるモジュール。
  12. 請求項1、2、3、5、6、7、8、又は、9記載の非水電解液を備える電気二重層キャパシタ。
PCT/JP2011/073347 2010-10-19 2011-10-11 非水電解液 WO2012053395A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137012610A KR101556045B1 (ko) 2010-10-19 2011-10-11 비수 전해액
CN201180050508.7A CN103222102B (zh) 2010-10-19 2011-10-11 非水电解液
EP11834235.1A EP2631980B1 (en) 2010-10-19 2011-10-11 Non-aqueous electrolyte solution
US13/880,233 US9397368B2 (en) 2010-10-19 2011-10-11 Non-aqueous electrolyte solution

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010234974 2010-10-19
JP2010-234974 2010-10-19
JP2011080300 2011-03-31
JP2011-080300 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012053395A1 true WO2012053395A1 (ja) 2012-04-26

Family

ID=45975112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073347 WO2012053395A1 (ja) 2010-10-19 2011-10-11 非水電解液

Country Status (7)

Country Link
US (1) US9397368B2 (ja)
EP (1) EP2631980B1 (ja)
JP (3) JP5436512B2 (ja)
KR (1) KR101556045B1 (ja)
CN (1) CN103222102B (ja)
TW (1) TW201232873A (ja)
WO (1) WO2012053395A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814656A (zh) * 2013-12-12 2016-07-27 大金工业株式会社 电解液和电化学设备
US11374260B2 (en) 2016-06-03 2022-06-28 Solvay Sa Nonaqueous electrolyte compositions comprising fluorinated sulfones

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
US20180191033A1 (en) * 2012-11-02 2018-07-05 Natron Energy, Inc. Electrolyte additives for electrochemical devices
WO2014104221A1 (ja) * 2012-12-26 2014-07-03 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6064717B2 (ja) * 2013-03-21 2017-01-25 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6098878B2 (ja) 2013-04-17 2017-03-22 トヨタ自動車株式会社 非水電解液二次電池
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
KR101614016B1 (ko) 2014-12-31 2016-04-20 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
JP2016186915A (ja) * 2015-03-27 2016-10-27 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6672691B2 (ja) * 2015-04-23 2020-03-25 株式会社ジェイテクト リチウムイオンキャパシタ
CN109643787A (zh) * 2016-06-24 2019-04-16 宝马股份公司 电极材料、电极材料用于基于锂离子的电化学电池的用途、基于锂离子的电化学电池
US11114695B2 (en) * 2016-07-29 2021-09-07 Otsuka Chemical Co., Ltd. Electrolyte for electrochemical device, electrolytic solution, and electrochemical device
JP6911655B2 (ja) * 2016-09-16 2021-07-28 株式会社Gsユアサ 蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
CN107293791A (zh) * 2017-08-06 2017-10-24 长沙小新新能源科技有限公司 一种三元正极材料锂离子电池电解液及包含该电解液的锂离子电池
TW201921794A (zh) 2017-08-10 2019-06-01 日商昭和電工股份有限公司 鋰離子二次電池用負極材料及鋰離子二次電池
JP2019041091A (ja) * 2017-08-28 2019-03-14 アイシン精機株式会社 蓄電デバイス
KR102259744B1 (ko) * 2018-03-06 2021-06-02 주식회사 엘지에너지솔루션 비수 전해액 및 이를 포함하는 리튬 이차 전지
CN111740160B (zh) 2018-09-21 2022-04-15 宁德新能源科技有限公司 电解液和包含该电解液的电化学装置
CN110970659B (zh) 2018-09-28 2021-03-09 宁德时代新能源科技股份有限公司 非水电解液及锂离子电池
CN110970658B (zh) * 2018-09-28 2021-08-06 宁德时代新能源科技股份有限公司 锂离子电池
CN110970663A (zh) * 2018-09-28 2020-04-07 宁德时代新能源科技股份有限公司 非水电解液及锂离子电池
CN110970664A (zh) * 2018-09-28 2020-04-07 宁德时代新能源科技股份有限公司 非水电解液及锂离子电池
CN110970660A (zh) * 2018-09-28 2020-04-07 宁德时代新能源科技股份有限公司 非水电解液及锂离子电池
CN109802178B (zh) * 2018-12-26 2020-08-04 杉杉新材料(衢州)有限公司 一种含硅溶剂和磺酸酯类添加剂的电解液及使用该电解液的锂离子电池
KR20210029533A (ko) 2019-09-06 2021-03-16 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
TWI711203B (zh) 2019-12-19 2020-11-21 國立臺灣科技大學 非水性電解液的處理方法以及電池的製造方法
JPWO2022070646A1 (ja) * 2020-09-30 2022-04-07
CN114361595B (zh) * 2021-12-31 2024-01-30 远景动力技术(江苏)有限公司 一种锂电池用非水电解液及锂离子电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621992A (ja) 1992-06-30 1994-01-28 Nippon Telegr & Teleph Corp <Ntt> 復調器
JP2000327634A (ja) 1999-05-25 2000-11-28 Hitachi Ltd フッ素化炭酸エステル化合物
JP2001223024A (ja) * 2000-01-21 2001-08-17 Samsung Sdi Co Ltd リチウム二次電池用電解液
JP2001256983A (ja) 2000-03-13 2001-09-21 Central Glass Co Ltd 電気化学ディバイス用電解液
JP2004172101A (ja) 2002-10-28 2004-06-17 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2008078116A (ja) * 2006-08-25 2008-04-03 Sony Corp 電解液および電池
JP2009093839A (ja) 2007-10-04 2009-04-30 Ube Ind Ltd ベンゼンスルホン酸エステル、それを用いたリチウム二次電池用電解液、及びそれを用いたリチウム二次電池
WO2009116740A2 (en) * 2008-03-18 2009-09-24 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2009277427A (ja) * 2008-05-13 2009-11-26 Honda Motor Co Ltd 二次電池及び二次電池モジュール
JP2011187235A (ja) * 2010-03-05 2011-09-22 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2011187440A (ja) * 2010-02-12 2011-09-22 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245465B1 (en) * 1997-10-15 2001-06-12 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells
KR101017875B1 (ko) * 2006-04-27 2011-03-04 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 이차 전지
US8236191B2 (en) 2007-01-12 2012-08-07 Daikin Industries, Ltd. Electrical double layer capacitor
WO2010098116A1 (ja) 2009-02-25 2010-09-02 ダイキン工業株式会社 電気二重層キャパシタ
JP2011223024A (ja) * 2011-06-29 2011-11-04 Shimadzu Corp 半導体レーザ励起固体レーザ装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621992A (ja) 1992-06-30 1994-01-28 Nippon Telegr & Teleph Corp <Ntt> 復調器
JP2000327634A (ja) 1999-05-25 2000-11-28 Hitachi Ltd フッ素化炭酸エステル化合物
JP2001223024A (ja) * 2000-01-21 2001-08-17 Samsung Sdi Co Ltd リチウム二次電池用電解液
JP2001256983A (ja) 2000-03-13 2001-09-21 Central Glass Co Ltd 電気化学ディバイス用電解液
JP2004172101A (ja) 2002-10-28 2004-06-17 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
JP2008078116A (ja) * 2006-08-25 2008-04-03 Sony Corp 電解液および電池
JP2009093839A (ja) 2007-10-04 2009-04-30 Ube Ind Ltd ベンゼンスルホン酸エステル、それを用いたリチウム二次電池用電解液、及びそれを用いたリチウム二次電池
WO2009116740A2 (en) * 2008-03-18 2009-09-24 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2009277427A (ja) * 2008-05-13 2009-11-26 Honda Motor Co Ltd 二次電池及び二次電池モジュール
JP2011187440A (ja) * 2010-02-12 2011-09-22 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液二次電池
JP2011187235A (ja) * 2010-03-05 2011-09-22 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814656A (zh) * 2013-12-12 2016-07-27 大金工业株式会社 电解液和电化学设备
US11374260B2 (en) 2016-06-03 2022-06-28 Solvay Sa Nonaqueous electrolyte compositions comprising fluorinated sulfones

Also Published As

Publication number Publication date
US20130224606A1 (en) 2013-08-29
EP2631980B1 (en) 2017-10-11
KR20130092597A (ko) 2013-08-20
JP5436512B2 (ja) 2014-03-05
CN103222102B (zh) 2016-08-10
EP2631980A4 (en) 2014-07-23
JP2012216490A (ja) 2012-11-08
EP2631980A1 (en) 2013-08-28
JP2012216499A (ja) 2012-11-08
JP2014007161A (ja) 2014-01-16
KR101556045B1 (ko) 2015-09-25
US9397368B2 (en) 2016-07-19
CN103222102A (zh) 2013-07-24
TW201232873A (en) 2012-08-01
JP5733358B2 (ja) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5733358B2 (ja) 非水電解液
US11276883B2 (en) Electrolyte solution and method for producing sulfate salt
EP2840641B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
EP2840642B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2012133698A1 (ja) リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液
WO2014050877A1 (ja) 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6795041B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
EP3435472A1 (en) Liquid electrolyte comprising an alkali metal salt of a phosphate compound
JP5590192B2 (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
WO2019003776A1 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JP2014072102A (ja) 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6143410B2 (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216391A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216390A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216387A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216389A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13880233

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011834235

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011834235

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137012610

Country of ref document: KR

Kind code of ref document: A