WO2012053227A1 - 建設車両用重荷重空気入りタイヤ - Google Patents

建設車両用重荷重空気入りタイヤ Download PDF

Info

Publication number
WO2012053227A1
WO2012053227A1 PCT/JP2011/005946 JP2011005946W WO2012053227A1 WO 2012053227 A1 WO2012053227 A1 WO 2012053227A1 JP 2011005946 W JP2011005946 W JP 2011005946W WO 2012053227 A1 WO2012053227 A1 WO 2012053227A1
Authority
WO
WIPO (PCT)
Prior art keywords
tread
groove
block
width
tire
Prior art date
Application number
PCT/JP2011/005946
Other languages
English (en)
French (fr)
Inventor
秀敏 依田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US13/880,528 priority Critical patent/US9038681B2/en
Priority to CN201180057640.0A priority patent/CN103237665B/zh
Priority to JP2012539615A priority patent/JP5727502B2/ja
Priority to EP11834073.6A priority patent/EP2631089B1/en
Publication of WO2012053227A1 publication Critical patent/WO2012053227A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • B60C2011/0313Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation directional type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • B60C2200/065Tyres specially adapted for particular applications for heavy duty vehicles for construction vehicles

Definitions

  • the present invention relates to a heavy-duty pneumatic tire suitable for use in construction vehicles for transporting ores and topsoil in mines and the like, and particularly to a tread pattern, and in particular, due to heat generation while ensuring excellent wear resistance.
  • a technology for effectively preventing tread failures is proposed.
  • the center area of the tread (the tread tread width around the tire equator line, that is, the specified air pressure and maximum load capacity are applied to the tire mounted on the applicable rim.
  • 50% of the tread contact width that is the linear distance in the tire axial direction between the outermost contact end positions in the tire axial direction on the contact surface with the flat plate under a vertical posture with a camber angle of zero degrees) It is effective to increase the rigidity of the land portion by reducing the negative rate, that is, the ratio of the groove area, and thus suppressing the deformation of the land portion, but in this case, the heat dissipation efficiency of the heated tire tread is reduced.
  • appcable rim refers to the rim specified in the following standards according to the tire size
  • specified air pressure refers to the air pressure specified in accordance with the maximum load capacity in the following standards.
  • Maximum load capacity refers to the maximum mass allowed to be loaded on a tire according to the following standards. The air here can be replaced with an inert gas such as nitrogen gas or the like.
  • the standard is an industrial standard valid for the region where tires are produced or used. For example, in the United States, it is “THE TIRE and RIM ASSOCIATION INC. YEAR BOOK”, and in Europe “THE European Tyre and” It is “STANDARDS MANUAL” of Rim Technical ganOrganisation, and “JATMA YEAR BOOK” of Japan Automobile Tire Association in Japan.
  • the tread surface deforms inward in the tread width direction when stepping on the tire, and outside in the tread width direction when kicking out.
  • the tread surface In the tire mounted on the front wheel of a heavy-duty vehicle, centering on the position of 1 ⁇ 4 of the tread tread width from the tire equator line. Due to the large deformation in the width direction, there is a problem that wear progresses from a quarter of the deformation.
  • the circumferential groove in the central area of the tread surface is formed as a narrow groove as described in Patent Document 1, for example, so that deformation of the central area is suppressed, thereby improving the wear resistance. Can be planned.
  • the tread tread center area from the tire equator line to a position that is 1/4 of the tread tread width is placed.
  • the circumferential narrow groove is provided, the amount of deformation toward the inner side in the width direction of the side region land portion on the outer side in the width direction from the 1/4 position increases due to the formation mode of the circumferential narrow groove. As a result, premature wear occurs in each side area land.
  • the circumferential narrow groove is provided only at the position of the tire equator line, or the groove width of the circumferential narrow groove is narrowed to suppress the deformation amount of the side region land portion. It was common to deal with.
  • the present invention further improves the wear resistance of the land portion of the tread tread center area and the land portions of each side area, and can effectively prevent thermal failure in the tread tread center area. In providing tires.
  • the heavy duty pneumatic tire for a construction vehicle includes, on both side regions of the tread surface, each side lug row composed of a plurality of lugs that are partitioned by lug grooves that open at respective side edges in the tread width direction.
  • a plurality of blocks from the tire equator line to the tire equator line side from the 1/4 position within the tread tread width in the tread tread width in the range of 1/4 of the tread ground contact width described above.
  • a central block row arranged on the tire equator line, and each of the circumferential groove and the width direction groove defining each block of the central block row is narrower than the groove width of the lug groove.
  • a tire having a directional pattern and having a directional pattern which is a narrow groove having a width, which contributes to the division of each block, for example, a straight line inclined with respect to the tire equator line
  • the groove wall of the circumferential groove extending a distance from the tire equator line, at the leading edge of the block, is made to higher than the trailing edge of the block.
  • the “directional pattern” means that a plurality of lug grooves formed on one half of the tread surface extend in the same direction with respect to the circumferential direction of the tread and are formed on the other half. It is assumed that the lug groove formed extends in a reverse direction with respect to the tire equator line.
  • the negative resistance of the central region of the tread surface between the tire equator line and the position of 1/4 of the tread surface width is set to 20% or less to ensure the wear resistance of the central block row.
  • the block on the tire equator line has a trapezoidal shape with the stepping edge as the lower base and the kicking edge as the upper base in the development plan view of the tread pattern.
  • the amount is increased particularly on the stepping edge side, thereby causing the circular groove from the stepping edge side of the opposing groove wall of the circumferential groove based on the crushing deformation of the block, resulting in the width direction of the side lug row Effectively prevents inward deformation.
  • the circumferential groove is disposed on the tire equator line side from the position of 1/4 of the tread tread width while being separated from the tire equator line by 10% or more of the tread tread width. It is preferable to reliably realize the desired close contact of the opposed groove walls of the circumferential groove based on the crushing deformation of the block while maintaining the heat dissipation efficiency of the block.
  • each of the circumferential groove and the width direction groove is set to a dimension in which the opposing groove walls come into contact with each other within the ground contact surface when the tire is loaded and rolled. It is preferable to improve the wear resistance based on the increase in rigidity due to the increase in the hardness.
  • the inclination angle of the circumferential groove that contributes to each block section with respect to the tire equator line is in the range of 15 to 30 °, and the groove width of the circumferential groove is 0.5 to The range is 2.5%.
  • the "inclination angle” here refers to the circumferential groove at each end in the circumferential direction substantially corresponding to the circumferential end of each block in relation to various required forms of extension of the circumferential groove. The angle of intersection between the straight line connecting the groove width centers and the tire equator line.
  • the width direction groove contributing to the section of each block extends from the tire equator line over a range of 10% or more and less than 25% of the tread surface width, and opens at each side edge in the tread width direction. It is preferable that both the lug grooves are provided so as to communicate with each other, and the groove width of the width direction groove is in a range of 3 to 8% of the pitch length of the block on the central block side.
  • both the circumferential groove and the widthwise groove that define each block of the central block row are more than the groove width of the lug groove.
  • the movement or deformation of the block within the ground plane is such that the center side block is less circumferentially moved by closing the width direction groove and / or the circumferential direction groove, while the side lug is related to the lug groove. If it sees, it will move greatly in the circumferential direction until it closes, but in fact the side lug is also partly divided by the width direction groove and the circumferential direction groove, so the side lug Since the circumferential movement or deformation of the side lugs is restricted by the closing of the width direction grooves and / or the circumferential grooves, the amount of movement or deformation of the side lugs in the circumferential direction is determined by the blocks in the central block row. It will be almost the same as that.
  • the distance between the groove wall of the circumferential groove contributing to the partition of each block from the tire equator line is made larger than the kicking end at the stepped end of the block, so that the grounding of the block is achieved. Therefore, from the step-in side, the counter-groove wall of the circumferential narrow groove can be gradually brought into close contact or approached to suppress the movement of the side lugs in the tread width direction. Early wear on the lug row and the central block row can be effectively prevented.
  • both the circumferential groove and the width direction groove contributing to the block division of the central block row can sufficiently function as a heat radiation groove for the amount of heat generated due to the deformation of the block. Sufficient cooling can effectively prevent the occurrence of thermal damage to the central region.
  • the center of the tread tread is secured while ensuring the heat radiation efficiency.
  • the wear resistance of the tread tread surface central region can be further improved by increasing the land region rigidity and suppressing the deformation of the central region land portion.
  • the block on the tire equator line has a trapezoidal shape with the stepping edge at the bottom and the kicking edge at the top in the development plan view of the tread pattern, based on the large deformation when the block is stepped on,
  • the facing groove walls of the circumferential narrow grooves in a particularly strong or close proximity, the movement of the side lug row inward in the tread width direction is suppressed, and early wear on the side lug row is prevented.
  • production can be prevented effectively.
  • the circumferential groove which becomes a narrow groove, is separated from the tire equator line by 10% or more of the tread tread width, it is on the tire equator line side from the position of 1/4 of the tread tread width. While ensuring the heat dissipation effect by the circumferential groove, it is possible to reliably realize the required close contact of the opposed groove walls of the circumferential groove.
  • the circumferential groove when the circumferential groove is disposed at a position less than 10% from the tire equator line, the volume of the blocks in the central block row becomes too small, and the opposing groove walls are sufficiently adhered based on the crushing deformation of the blocks.
  • the distance from the tire equator line is 1 ⁇ 4 or more, there is a possibility that heat dissipation in the central region of the tread surface by the circumferential groove cannot be effectively performed.
  • each groove width of the circumferential groove and the width direction groove is a dimension in which the opposed groove walls are in contact with each other within the ground contact surface at the time of tire rolling
  • the tread width of the side lug row To prevent the occurrence of uneven wear such as heel and toe wear by effectively preventing deformation inward in the direction and also effectively preventing deformation in the tread circumferential direction of the blocks in the central block row. Can do.
  • the inclination angle of the circumferential groove that contributes to the section of each block is in the range of 15 to 30 ° corresponding to the tire equator line, and in addition to this, the groove width of the circumferential groove is the tread tread width.
  • a range of 0.5 to 2.5% is preferable. In other words, if the angle of the former is less than 15 °, it becomes difficult to achieve sufficient contact or approach of the opposed groove walls of the circumferential narrow groove generated by the difference in movement between the center block and the side lugs, and the side lug row It becomes difficult to effectively suppress the inward movement in the tread width direction.
  • the width direction groove that divides the block in cooperation with the circumferential direction groove extends over a range of 10% or more and less than 25% of the tread width from the tire equator line, and each of the tread width direction It is preferable that both the lug grooves opened on the side edges of the block are communicated with each other, and the groove width of the width direction groove is in a range of 3 to 8% of a predetermined pitch length of the block.
  • the groove width of the width direction groove is less than 3% of the block pitch length, it becomes difficult to expect the air cooling effect by the width direction groove at the time of tire rolling, and more than 8%. When it does, it becomes difficult to bring a mutual contact of the opposing groove wall in a tread contact area.
  • FIG. 1 shows other embodiment which changed the extension form of the lug groove.
  • FIG. 1, 2 shows the tread pattern of the tire used for the Example.
  • the heavy-duty pneumatic tire for construction vehicles according to the present invention has a distance of 1/4 of the tread tread width TW from the tire equator edge E on both sides of the tire equator line E of the tread tread 1.
  • the tread tread has a central block row 4 in which a plurality of blocks 3 are arranged on the equator line E, and the tread tread 1 has both sides in the tread width direction.
  • Each side lug row 7 consisting of a plurality of lugs 6 defined by a plurality of lug grooves 5 having a predetermined pitch is provided on both sides of the central block row 4.
  • the internal structure of the illustrated tire can be the same as the internal structure of a conventional heavy-duty pneumatic tire for a general construction vehicle, for example, a pneumatic radial tire. .
  • both the circumferential groove 8 and the width direction groove 9 that define each block 3 of the central block row 4 are both narrower than the groove width of the lug groove 5, more preferably , Narrow grooves to the extent that the opposing groove walls of those grooves that will be located in the ground contact surface under the rolling load of the tire are in close contact with each other, that is, the filling of air pressure defined by the standard such as TRA Below, when the load corresponding to the maximum load capacity is applied, the width is narrow enough to be in close contact with each other in the ground plane, and the entire tread pattern is formed based on the formation mode of the respective grooves 5, 8, and 9.
  • each of the plurality of lug grooves 5 and circumferential grooves 8 extends in the same direction with respect to the tire equator line E, and on the other side of the tread half, Each of these grooves 5, 8 is a tire equator A rotation direction designation pattern having directionality is set so that the inclination direction with respect to the line E is opposite to the tire equator line.
  • the separation distance (HS, HE) from the tire equator line E of the groove wall of each circumferential groove 8 that contributes to the section of each block 3 is set at the stepping end 10 of the block 3 and the block 3 is kicked out. It is made larger than the end 11.
  • each lug groove 5 is measured from the tire equator line E, and is slightly inserted into the equator line E side from the position of 1 ⁇ 4 of the tread tread width TW. Both lug rows 7 are projected to the tread tread central region 2 side.
  • the groove widths of the circumferential groove 8 and the width direction groove 9 are made narrow as required, and as described above, the side lug row 7 and the central block row 4 are inward in the tread width direction. And / or deformation of the circumferential width of the tread exceeding a predetermined amount is prevented by the close contact of the opposing groove walls of the narrow grooves 8 and 9, thereby preventing the side lug row 7 and the central block row 4 from resisting. Abrasion can be effectively improved.
  • the separation distance (HS, HE) from the tire equator line of the circumferential groove 8 that contributes to the section of each block 3 is made larger than the kicking end 11 at the step-in end 10 of the block 3.
  • the length in the tread width direction of the stepping end 10 is made longer than the length in the tread width direction of the kicking end 11, and the amount of extension in the tread width direction when the block 3 is crushed is determined by the stepping end 10 of the block.
  • the land rigidity of the tread tread central area 2 is less than 20%. And the deformation of the central region 2 can be suppressed, and as a result, the wear resistance of the tread tread surface central region 2 can be further improved.
  • the block 3 on the tire equator line E is a development view of a tread pattern as shown in FIG. 1 and has a trapezoidal shape with the stepping edge as the bottom and the kicking edge as the top.
  • the circumferential groove 8 is separated from the tire equator line E by 10% or more of the tread tread width TW, and is disposed on the tire equator line E side from the position of 1 ⁇ 4 of the tread tread width TW.
  • the groove widths MW and GW of the circumferential groove 8 and the width direction groove 9 are set such that the opposing groove walls are in contact with each other within the ground contact surface at the time of load rolling of the tire.
  • the separation distance (HS, HE) of the wall from the tire equator line E is in the range of 1.2 to 2.5 times that of the kicking end 11 at the stepping end 10 of the block 3, and the circumferential groove 8 is within the range of 0.5 to 2.5% of the tread tread width TW, and for the widthwise grooves 9 contributing to the section of the block 3, the widthwise grooves 9 are From the equator line E, it extends over a range of 10% or more and less than 25% of the tread tread width TW, communicates with each lug groove 5 opened at each side edge in the tread width direction, and the width direction groove 9 groove width GW with a predetermined pitch of block 3 Is it is preferred that the range of 3-8% of the PL.
  • the pair of circumferential grooves 8 that are located apart from the tire equator line E and contribute to the section of the block 3 extend linearly between the width grooves 9. Is not essential, and can be bent or curved once or multiple times. Further, the width direction groove 9 can be extended obliquely with respect to the tire equator line E.
  • the pneumatic tire of FIG. 2 showing another embodiment of the present invention in a developed view of a tread pattern is obtained by changing the extending form of each lug groove 5 from that shown in FIG.
  • the lug groove 5 that inclines toward the upper side of the figure as it is separated from the equator line E is inclined toward the lower side of the figure as shown in FIG.
  • This pneumatic tire shown in FIG. 2 can also provide the same effects as described for the embodiment shown in FIG.
  • Each of the example tire and the comparative example tire 1 having the basic form is mounted on the front wheel of a 240-ton dump truck in use at a mine, between the tire equator line and a point that is 1/4 of the tread tread width from there.
  • the tread rubber temperature and the wear rate (amount of wear / running time) were obtained and indexed, the results shown in Table 1 were obtained.
  • wear in the circumferential direction is generally reduced to reduce the temperature of the tread rubber, whereas wear resistance generally decreases. It can be seen that the temperature of the tread rubber can be reduced without substantially reducing the tire contrast and the wear resistance. Also, among the tires of the examples, those in which the inclination angle of the circumferential groove with respect to the equator line is in the range of 15 ° to 30 ° is effective in the heat dissipation function in the center region of the tread surface without substantially reducing the wear resistance. It can be seen that it can be demonstrated.
  • tread tread 2 tread tread central area 3 block 4 center block row 5 lug groove 6 lug 7 side lug row 8 circumferential groove 9 width direction groove 10 step end 11 kick end E tire equator line TW tread tread width HS, HE Separation distance MW Circumferential groove width GW Width groove width PL Pitch length

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 トレッド踏面中央域の陸部、および、各側部域の陸部の耐摩耗性をより一層高めるとともに、トレッド踏面中央域の熱的故障を有効に防止できる建設車両用重荷重空気入りタイヤを提供するものであり、トレッド踏面1の両側部域に、トレッド幅方向のそれぞれの側縁に開口するラグ溝5により区画される複数のラグ6からなるそれぞれの側部ラグ列7を設けるとともに、タイヤ赤道線Eから、トレッド踏面幅TWの1/4の位置よりタイヤ赤道線側に、複数のブロック3からなって、タイヤ赤道線上に整列する一列の中央ブロック列4を設けてなり、該中央ブロック列4の各ブロック3を区画する周方向溝8および幅方向溝9のそれぞれをともに、前記ラグ溝6の溝幅より狭幅の細溝としてなる、方向性パターンを有する、回転方向指定のものであって、各ブロック3の区画に寄与する前記周方向溝8の溝壁の、タイヤ赤道線Eからの離隔距離(HS、HE)を、該ブロック3の踏込み端10で、該ブロック3の蹴り出し端11より大きくしてなる。

Description

建設車両用重荷重空気入りタイヤ
 この発明は、鉱山その他で鉱石や表土を運搬する建設車両に用いて好適な重荷重空気入りタイヤ、なかでも、トレッドパターンに関し、とくには、すぐれた耐摩耗性を確保しつつ、発熱に起因するトレッド故障を有効に防止する技術を提案するものである。
 タイヤトレッドの摩耗耐久性を向上させるに当っては、トレッド踏面の中央域(タイヤ赤道線を中心として、トレッド踏面幅、すなわち、適用リムに装着したタイヤに、規定の空気圧および最大負荷能力を作用させた、キャンバー角零度の垂直姿勢の下での、平板との接触面における、タイヤ軸方向最外側の接地端位置間のタイヤ軸方向の直線距離になるトレッド接地幅の50%の範囲)のネガティブ率、すなわち、溝面積比率を小さくして、陸部剛性を高めること、ひいては、陸部の変形を抑えることが有効であるが、この場合は、発熱したタイヤトレッドの放熱効率が低下することに起因して、タイヤトレッドの中央域が、ベルトの外周面から剥離などの熱的故障を発生し易くなる。
 ここで、「適用リム」とは、タイヤのサイズに応じて下記の規格に規定されたリムを、「規定の空気圧」とは、下記の規格において最大負荷能力に対応して規定される空気圧をいい、「最大負荷能力」とは、下記の規格で、タイヤに負荷することが許容される最大の質量をいう。
 なお、ここでいう空気は、窒素ガス等の不活性ガスその他に置換することも可能である。
 そして規格とは、タイヤが生産されまたは使用される地域に有効な産業規格であり、たとえば、アメリカ合衆国では、“THE TIRE and RIM ASSOCIATION INC.のYEAR BOOK”であり、欧州では、“THE European Tyre and Rim Technical OrganisationのSTANDARDS MANUAL”であり、日本では日本自動車タイヤ協会の“JATMA YEAR BOOK”である。
 これがため従来は、トレッド踏面の中央域に、直線状、ジグサグ状等の延在形態でトレッド周方向へ連続して延びる周方向溝を設けることで、トレッドの放熱効果を高めることが一般的であった。
 ところが、トレッド踏面中央域に周方向溝を配設した場合は、タイヤの負荷転動に当り、トレッド踏面が、踏込み時にトレッド幅方向の内側に向けて変形し、蹴出し時にトレッド幅方向の外側に向けて弾性復帰する、幅方向変形が助長されることになり、とくに、重荷重車両の前輪に装着されたタイヤでは、タイヤ赤道線から、トレッド踏面幅の1/4の位置を中心とした大きな幅方向変形が生じることに起因して、その1/4の部分から摩耗が進行するという問題があった。
 このような問題に対しては、トレッド踏面中央域の周方向溝を、たとえば特許文献1に記載されているような細溝として、該中央域の変形を抑制することで、耐摩耗性の改善を図ることはできる。
特開2008-279976号
 しかるに、耐摩耗性の向上のためにトレッド踏面中央域のネガティブ率を小さくしたタイヤにおいて、放熱効果を高めるべく、タイヤ赤道線から、トレッド踏面幅の1/4の位置までのトレッド踏面中央域に周方向細溝を設けた場合は、周方向細溝の形成態様のいかんにより、前記1/4の位置より幅方向外側の側部域陸部の、幅方向内側に向かう変形量が多くなって、各側部域陸部に早期の摩耗が生じることになる。
 かかる現象の発生に対しては、周方向細溝を、タイヤ赤道線位置だけに設けたり、周方向細溝の溝幅を狭くしたりして、側部域陸部の変形量を抑制することで対処することが一般的であった。
 この発明は、トレッド踏面中央域の陸部、および、各側部域の陸部の耐摩耗性をより一層高めるとともに、トレッド踏面中央域の熱的故障を有効に防止できる建設車両用重荷重空気入りタイヤを提供するにある。
 この発明の建設車両用重荷重空気入りタイヤは、トレッド踏面の両側部域に、トレッド幅方向のそれぞれの側縁に開口するラグ溝により区画される複数のラグからなるそれぞれの側部ラグ列を設けるとともに、タイヤ赤道線から、トレッド踏面幅、すなわち、先に述べたトレッド接地幅の1/4の範囲のトレッド踏面中央域内で、その1/4の位置よりタイヤ赤道線側に、複数のブロックからなって、タイヤ赤道線上に整列する一列の中央ブロック列を設けてなり、該中央ブロック列の各ブロックを区画する周方向溝および幅方向溝のそれぞれをともに、前記ラグ溝の溝幅より狭幅の細溝としてなる、方向性パターンを有する、回転方向指定のタイヤであって、各ブロックの区画に寄与する、たとえば、タイヤ赤道線に対して傾斜して直線状に延在する前記周方向溝の溝壁の、タイヤ赤道線からの離隔距離を、該ブロックの踏込み端で、該ブロックの蹴り出し端より大きくしてなるものである。
 ここで「方向性パターン」とは、トレッド踏面の一方の半部に形成された複数本のラグ溝が、トレッド周方向に対してともに同方向に傾いて延在し、他方の半部に形成されたラグ溝が、タイヤ赤道線に対して逆方向に傾いて延在するパターンをいうものとする。
 ここにおいて好ましくは、タイヤ赤道線と、トレッド踏面幅の1/4の位置との間の、トレッド踏面の中央域のネガティブ率を20%以下として、中央ブロック列の耐摩耗性を確保する。
 また好ましくは、タイヤ赤道線上のブロックを、トレッドパターンの展開平面視で、踏込み縁を下底とし、蹴出し縁を上底とする台形形状として、タタヤの負荷転動に際するブロックの圧潰変形量を、前記踏込み縁側でとくに大きくし、これにより、ブロックの潰れ変形に基く、周方向溝の対向溝壁の、踏込み縁側からの円溝なる密着をもたらして、側部ラグ列の、幅方向内側への変形を有効に防止する。
 ところで、前記周方向溝の配設位置は、タイヤ赤道線から、トレッド踏面幅の10%以上離隔させる一方、トレッド踏面幅の1/4の位置よりタイヤ赤道線側とすることが、陸部からの放熱効率を維持しつつ、ブロックの圧潰変形に基く、周方向溝の対向溝壁の所期した通りの密着を確実に実現する上で好ましい。
 また、周方向溝および幅方向溝のそれぞれの溝幅はともに、タイヤの負荷転動時の接地面内で、対向溝壁が相互に接触する寸法とすることが、中央ブロック列のブロックが一体化することによる剛性増加に基いて、耐摩耗性を向上させる上で好ましい。
 そして好ましくは、各ブロックの区画に寄与する周方向溝の、タイヤ赤道線に対する傾き角を15~30°の範囲とするとともに、その周方向溝の溝幅を、トレッド踏面幅の0.5~2.5%の範囲とする。
 なお、ここにおける「傾き角」は、周方向溝の、所要の各種の延在形態との関連において、周方向溝の、各ブロックの周方向端とほぼ対応する、周方向の各端の、溝幅中心どうしを結ぶ直線とタイヤ赤道線との交角をいうものとする。
 この一方で、各ブロックの区画に寄与する幅方向溝は、タイヤ赤道線から、トレッド踏面幅の10%以上、25%未満の範囲にわたって延在させて、トレッド幅方向のそれぞれ側縁に開口する両ラグ溝に連通させて設けるとともに、その幅方向溝の溝幅を、中央ブロック側のブロックの、ピッチ長さの3~8%の範囲とすることが好ましい。
 この発明の建設車両用重荷重空気入りタイヤ、たとえば、重荷重用空気入りラジアルタヤでは、とくに、中央ブロック列の各ブロックを区画する周方向溝および幅方向溝のそれぞれをともに、ラグ溝の溝幅より狭幅の所要の細溝とすることで、側部ラグ列および中央ブロック列の、トレッド幅方向内向きおよび/またはトレッド周方向の所定量を越える変形に対しては、それらの細溝の対向溝壁を相互に密着させることで、それぞれの陸部の余剰の変形を有効に防止することができるので、側部ラグ列および中央ブロック列への、意図しない早期の摩耗の発生を十分に防止することができる。
 すなわち、接地面内でのブロックの動きないしは変形は、センター側のブロックは幅方向溝および/または周方向溝が閉じることで周方向の動きが小さくなる一方で、側部ラグは、ラグ溝に関してみれば、それが閉じるまでには周方向に大きく動くことになるも、実際には、側部ラグもその一部で幅方向溝および周方向溝にて区画されていることから、側部ラグの周方向の動きないしは変形は、幅方向溝および/または周方向溝が閉じることで拘束されることになるので、側部ラグの、周方向の動き量ないしは変形量は、中央ブロック列のブロックのそれとほぼ同様のものとなる。
 そしてまた、このタイヤでは、各ブロックの区画に寄与する周方向溝の溝壁のタイヤ赤道線からの離隔距離を、ブロックの踏込み端で蹴出し端より大きくした形状とする事により、ブロックの接地に当って、踏込み側から、周方向細溝の対抗溝壁を徐々に密着あるいは接近させて、側部ラグのトレッド幅方向内側への動きを抑制することができ、これらのことから、側部ラグ列および中央ブロック列への早期の摩耗の発生を効果的に防止することができる。
 なおここで、中央ブロック列のブロックの区画に寄与する周方向溝および幅方向溝はともに、ブロックの変形に起因する発熱熱量の放熱溝として十分に機能することができるので、トレッド踏面中央域を十分に冷却して、その中央域への熱的損傷の発生を有効に防止することができる。
 このようなタイヤにおいて、タイヤ赤道線と、トレッド踏面幅の1/4の位置との間のトレッド踏面中央域のネガティブ率を20%以下としたときは、放熱効率を確保しつつ、トレッド踏面中央域の陸部剛性を高めて、該中央域陸部の変形を抑制することで、トレッド踏面中央域の耐摩耗性をより向上させることができる。
 また、タイヤ赤道線上のブロックを、トレッドパターンの展開平面視で、踏込み縁を下底とし、蹴出し縁を上底とする台形形状としたときは、ブロックの踏込み時の大きな変形に基いて、周方向細溝の対向溝壁を特に強く密着させ、あるいは大きく接近させる事により、側部ラグ列のラグのトレッド幅方向内側への動きを抑制して、側部ラグ列への早期の摩耗の発生を効果的に防止することができる。
 そしてまた、細溝になる周方向溝の配設位置を、タイヤ赤道線から、トレッド踏面幅の10%以上離隔させる一方、トレッド踏面幅の1/4の位置よりタイヤ赤道線側とした場合は、周方向溝による放熱効果を確保しつつ、その周方向溝の対向溝壁の、所要の密着を確実に実現することができる。
 すなわち、周方向溝の配設位置が、タイヤ赤道線から10%未満では、中央ブロック列のブロックの体積が小さくなりすぎて、ブロックの圧潰変形に基く、対向溝壁の密着を十分に行わせることができないおそれがあり、一方、タイヤ赤道線から1/4以上離隔すると、周方向溝による、トレッド踏面中央域の放熱を効果的に行わせることができなくなるおそれがある。
 ところで、周方向溝および幅方向溝のそれぞれの溝幅を、タイヤの負荷転動時の接地面内で、対向溝壁が相互に接触する寸法とした場合は、側部ラグ列の、トレッド幅方向内側への変形をより効果的に防止し、また、中央ブロック列のブロックの、トレッド周方向の変形をもまた効果的に防止して、ヒールアンドトゥ摩耗等の偏摩耗の発生のおそれを取り除くことができる。
 なおここでは、各ブロックの区画に寄与する周方向溝の、タイヤ赤道線に対応する傾き角を15~30°の範囲とし、これと併せて、周方向溝の溝幅を、トレッド踏面幅の0.5~2.5%の範囲とすることが好ましい。
これをいいかえれば、前者の角度が15°未満では、センターブロックと側部ラグの動きの差で発生する周方向細溝の対向溝壁の十分な密着あるいは接近を期し難くなり、側部ラグ列のトレッド幅方向の内側への動きを効果的に抑制させることが困難になる。
一方、30°を越えるとセンターブロックおよび側部ラグの周方向細溝側の隅部が鋭角になりすぎることで充分な剛性を確保できなくなって、その箇所の動きが大きくなることで、局所的な摩耗や、陸部隅部の欠けが発生しやすくなるうれいがある。
 また、後者の比率が0.5%未満では、タイヤの負荷転動時の、周方向細溝による空冷効果を期し難しくなって、中央ブロック列が高温になりすぎるおそれがある。逆に、2.5%を越えると、トレッド接地域での対向溝壁の相互の接触をもたらすことが難しくなって、中央ブロック列の一体化による剛性の増加をもたらすことができなくなるおそれがある。
 そしてここでは、周方向溝との協働下でブロックを区画する幅方向溝を、タイヤ赤道線からトレッド踏面幅の10%以上、25%未満の範囲にわたって延在させて、トレッド幅方向のそれぞれの側縁に開口する両ラグ溝に連通させるとともに、この幅方向溝の溝幅を、ブロックの所定のピッチ長さの3~8%の範囲とすることが好ましい。
 ここで、幅方向溝の溝幅を、ブロックのピッチ長さの3%未満としたときは、タイヤの負荷転動時の、幅方向溝による空冷効果を期し難しくなり、また、8%超としたときは、トレッド接地域での対向溝壁の相互の接触をもたらすことが難しくなる。
この発明の実施の形態を示すトレッドパターンの部分展開図である。 ラグ溝の延在形態を変更した他の実施形態を示す、図1と同様の展開図である。 実施例に用いたタイヤのトレッドパターンを示す図1、2と同様の図である。
 以下にこの発明の実施の形態を図1に示すところに基いて説明する。
 この発明の建設車両用重荷重空気入りタイヤ、なかでもトレッドパターンは、トレッド踏面1の、タイヤ赤道線Eの両側に、タイヤ赤道縁Eからトレット踏面幅TWの1/4の距離をとってなるトレッド踏面中央域2内に、タイヤ赤道線E上に複数のブロック3を整列させて配置してなる一列の中央ブロック列4を有するとともに、トレッド踏面1の両側部域に、トレッド幅方向のそれぞれの側縁に開口する、複数本の所定のピッチのラグ溝5によって区画される複数のラグ6からなるそれぞれの側部ラグ列7を、中央ブロック列4の両側部に有してなる。
 ところで、図示のタイヤの内部構造は、従来の一般的な建設車両用重荷重空気入りタイヤ、たとえば、空気入りラジアルタイヤの内部構造と同様のものとすることができるので、ここでは図示を省略する。
 また、図1に示すところでは、中央ブロック列4の各ブロック3を区画する周方向溝8および幅方向溝9のそれぞれをともに、ラグ溝5の溝幅より狭幅の溝幅、より好ましくは、タイヤの負荷転動下で接地面内に位置することになるそれらの溝のそれぞれの対向溝壁が、相互に密着する程度の細溝、すなわち、TRA等の規格に規定される空気圧の充填下で、最大負荷能力に相当する負荷を加えたときに接地面内で相互に密着する程度の細幅とし、そして、それぞれの溝5,8,9の形成態様に基いて、トレッドパターンの全体を、トレッド半部の一方側では、複数本のラグ溝5および周方向溝8のそれぞれが、タイヤ赤道線Eに対してともに同方向に傾いて延在し、他方側のトレッド半部では、それらの溝5,8のそれぞれが、タイヤ赤道線Eに対する傾き方向がタイヤ赤道線を隔てて逆方向になるような、方向性を有する回転方向指定のパターンとする。
 そしてここでは、各ブロック3の区画に寄与する各周方向溝8の溝壁の、タイヤ赤道線Eからの離隔距離(HS,HE)をブロック3の踏込み端10で、該ブロック3の蹴出し端11より大きくする。
 なお図1に示すところでは、各ラグ溝5を、タイヤ赤道線Eから測って、トレッド踏面幅TWの1/4の位置より、赤道線E側へ幾分入り込ませることで、それぞれの側部ラグ列7をともに、トレッド踏面中央域2側へ食み出させている。
 このようなトレッドパターンを設けてなる空気入りタイヤでは、周方向溝8および幅方向溝9による放熱作用に基き、トレッド踏面中央域2の発熱熱量を十分に放熱して、その中央域2への熱的損傷の発生を有効に防止することができる。
 またこのタイヤでは、周方向溝8および幅方向溝9のそれぞれの溝幅を所要に応じた狭幅として、前述したように、側部ラグ列7および中央ブロック列4の、トレッド幅方向内向きおよび/またはトレッド周方向の、所定量を越える変形を、それらの狭幅溝8、9の、対向溝壁の相互の密着によって阻止することで、側部ラグ列7および中央ブロック列4の耐摩耗性を有効に向上させることができる。
 しかもここでは、各ブロック3の区画に寄与する周方向溝8の溝壁の、タイヤ赤道線からの離隔距離(HS,HE)を、ブロック3の踏込み端10で蹴出し端11より大きくすることにより、踏込み端10の、トレッド幅方向の長さを、蹴出し端11のトレッド幅方向長さより長くして、ブロック3の圧潰変形時のトレッド幅方向の伸長量を、ブロックの踏込み端10で蹴出し端11より多くし、ブロックの潰れ変形に基く、周方向溝の対向溝壁の相互の密着を、ブロック踏込み端10から蹴出し端11に向けて円滑に進行させることで、接地面内での、側部ラグ列7の、トレッド幅方向内側への変形を有効に拘束して、その側部ラグ列7への早期の摩耗の発生を防止することができる。
 なおここで、タイヤ赤道線Eと、トレッド踏面幅TWの1/4の位置との間のトレッド踏面中央域2のネガティブ率を20%以下としたときは、トレッド踏面中央域2の陸部剛性を高めて、当該中央域2の変形を抑制することができ、結果として、トレッド踏面中央域2の耐摩耗性をより向上させることができる。
 このようなタイヤにおいてより好ましくは、タイヤ赤道線E上のブロック3を、図1に示すような、トレッドパターンの展開図で、踏込み縁を下底とし、蹴出し縁を上底とする台形形状とし、また好ましくは、周方向溝8を、タイヤ赤道線Eから、トレッド踏面幅TWの10%以上離隔させる一方で、トレッド踏面幅TWの1/4の位置よりタイヤ赤道線E側に配設する。
 そしてまた好ましくは、周方向溝8および幅方向溝9のそれぞれの溝幅MWおよびGWを、タイヤの負荷転動時の接地面内で、対向溝壁が相互に接触する寸法とする。
 ところで、ブロック3の区画に寄与する周方向溝8については、該周方向溝8の、タイヤ赤道線Eに対する傾斜角との関連において、同周方向溝8の、ブロック3の区画に寄与する溝壁の、タイヤ赤道線Eからの離隔距離(HS,HE)を、そのブロック3の踏込み端10で、蹴出し端11の1.2~2.5倍の範囲とし、併せて、周方向溝8の溝幅MWを、トレッド踏面幅TWの0.5~2.5%の範囲とすること、また、ブロック3の区画に寄与する幅方向溝9については、該幅方向溝9を、タイヤ赤道線Eから、トレッド踏面幅TWの10%以上、25%未満の範囲にわたって延在させて、トレッド幅方向のそれぞれの側縁に開口するそれぞれのラグ溝5に連通させるとともに、該幅方向溝9の溝幅GWを、ブロック3の所定のピッチ長さPLの3~8%の範囲とすることが好適である。
 以上図示の実施形態に基いて説明したが、タイヤ赤道線Eを隔てて位置してブロック3の区画に寄与する一対の周方向溝8は、幅方向溝9間で直線状に延在することは必須ではなく、一回もしくは複数回にわたって折曲もしくは湾曲等させることもできる。
 また、幅方向溝9は、タイヤ赤道線Eに対して斜めに傾斜させて延在させることもできる。
 この発明の他の実施形態を、トレッドパターンの展開図で示す図2の空気入りタイヤは、各ラグ溝5の延在形態を、図1に示すところとは変更したものであって、図1に示すタイヤでは、赤道線Eから離隔するにつれて図の上方側に向けて傾斜するラグ溝5を、図2に示すところでは、図の下方側に向けて傾斜させたものであり、その他の点については図1に示す実施形態と同様の構成を有するものである。
 図2に示すこの空気入りタイヤによってもまた、図1に示す実施形態について述べたと同様の作用効果をもたらすことができる。
 サイズが46/90 R57のタイヤであって、図3(a)に示すトレッドパターンを有するコントロールタイヤ、図3(b)に示すトレッドパターンを有する比較例タイヤ2、ならびに、図1に示すトレッドパターンを基本形態とする実施例タイヤおよび比較例タイヤ1のそれぞれを、鉱山で使用中の240tダンプトラックの前輪に装着して、タイヤ赤道線と、そこからトレッド踏面幅の1/4の点の間の、トレッドゴム温度と、摩耗速度(摩耗量/走行時間)とを求めて指数評価したところ、表1に示す結果を得た。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、トレッドゴム温度の低減のために周方向の細溝を入れると、一般的には耐摩耗が低下してしまうのに対し、今回の細溝の入れ方によれば、コントロールタイヤ対比、耐摩耗性を実質的に低下させずにトレッドゴム温度を低減できることが解かる。
 また実施例タイヤのなかでも、とくに赤道線に対する周方向溝の傾き角度を15°~30°の範囲としたものは、耐摩耗性をほとんど低下させずに、トレッド踏面中央域の放熱機能を効果的に発揮させ得ることが解かる。
 1 トレッド踏面
 2 トレッド踏面中央域
 3 ブロック
 4 中央ブロック列
 5 ラグ溝
 6 ラグ
 7 側部ラグ列
 8 周方向溝
 9 幅方向溝
 10 踏込み端
 11 蹴出し端
 E タイヤ赤道線
 TW トレッド踏面幅
 HS、HE 離隔距離
 MW 周方向溝幅
 GW 幅方向溝幅
 PL ピッチ長さ
 

Claims (7)

  1.  トレッド踏面の両側部域に、トレッド幅方向のそれぞれの側縁に開口するラグ溝により区画される複数のラグからなるそれぞれの側部ラグ列を設けるとともに、タイヤ赤道線から、トレッド踏面幅の1/4の位置よりタイヤ赤道線側に、複数のブロックからなって、タイヤ赤道線上に整列する一列の中央ブロック列を設けてなり、
     該中央ブロック列の各ブロックを区画する周方向溝および幅方向溝のそれぞれをともに、前記ラグ溝の溝幅より狭幅の細溝としてなる、方向性パターンを有する、回転方向指定の建設車両用重荷重空気入りタイヤであって、
     各ブロックの区画に寄与する前記周方向溝の溝壁の、タイヤ赤道線からの離隔距離を、該ブロックの踏込み端で、該ブロックの蹴り出し端より大きくしてなる建設車両用重荷重空気入りタイヤ。
  2.  タイヤ赤道線と、トレッド踏面幅の1/4の位置との間の、トレッド踏面の中央域のネガティブ率を20%以下としてなる請求項1に記載の建設車両用重荷重空気入りタイヤ。
  3.  タイヤ赤道線上のブロックを、トレッドパターンの展開平坦視で、踏込み縁を下底とし、蹴出し縁を上底とする台形形状としてなる請求項1もしくは2に記載の建設車両用重荷重空気入りタイヤ。
  4.  前記周方向溝を、タイヤ赤道線から、トレッド踏面幅の10%以上離隔させる一方、トレッド踏面幅の1/4の位置よりタイヤ赤道線側に配設してなる請求項1~3のいずれかに記載の建設車両用重荷重空気入りタイヤ。
  5.  周方向溝および幅方向溝のそれぞれの溝幅を、接地面内で、対向溝壁が相互に接触する寸法としてなる請求項1~4のいずれかに記載の建設車両用重荷重空気入りタイヤ。
  6.  各ブロックの区画に寄与する周方向溝の、タイヤ赤道線に対する傾き角を15~30°の範囲とするとともに、該周方向溝の溝幅を、トレッド踏面の0.5~2.5%の範囲としてなる請求項1~5のいずれかに記載の建設車両用重荷重空気入りタイヤ。
  7.  各ブロックの区画に寄与する幅方向溝を、タイヤ赤道線から、トレッド踏面幅の10%以上、25%未満の範囲にわたって延在させて、トレッド幅方向のそれぞれの側縁に開口する両ラグ溝に連通させるとともに、該幅方向溝の溝幅を、前記ブロックのピッチ長さの3~8%の範囲としてなる請求項1~6のいずれかに記載の建設車両用重荷重空気入りタイヤ。
PCT/JP2011/005946 2010-10-22 2011-10-24 建設車両用重荷重空気入りタイヤ WO2012053227A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/880,528 US9038681B2 (en) 2010-10-22 2011-10-24 Heavy load pneumatic tire for construction vehicles
CN201180057640.0A CN103237665B (zh) 2010-10-22 2011-10-24 工程车辆用重载荷充气轮胎
JP2012539615A JP5727502B2 (ja) 2010-10-22 2011-10-24 建設車両用重荷重空気入りタイヤ
EP11834073.6A EP2631089B1 (en) 2010-10-22 2011-10-24 Heavy-duty pneumatic tire for construction vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-237740 2010-10-22
JP2010237740 2010-10-22

Publications (1)

Publication Number Publication Date
WO2012053227A1 true WO2012053227A1 (ja) 2012-04-26

Family

ID=45974956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005946 WO2012053227A1 (ja) 2010-10-22 2011-10-24 建設車両用重荷重空気入りタイヤ

Country Status (5)

Country Link
US (1) US9038681B2 (ja)
EP (1) EP2631089B1 (ja)
JP (1) JP5727502B2 (ja)
CN (1) CN103237665B (ja)
WO (1) WO2012053227A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002489A1 (fr) * 2013-02-28 2014-08-29 Michelin & Cie Bande de roulement amelioree pour pneu de genie civil
CN104044409A (zh) * 2013-03-15 2014-09-17 住友橡胶工业株式会社 充气轮胎

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3022493B1 (fr) * 2014-06-24 2016-07-01 Michelin & Cie Bande de roulement incisee pour pneu genie civil
CN106585279A (zh) * 2015-10-19 2017-04-26 杨双来 重型载重轮胎和轮辋
DE102017203014A1 (de) * 2017-02-24 2018-08-30 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
US20190054770A1 (en) * 2017-08-16 2019-02-21 The Goodyear Tire & Rubber Company Off the road tire
JP6624231B2 (ja) * 2018-04-17 2019-12-25 横浜ゴム株式会社 空気入りタイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138203U (ja) * 1987-03-05 1988-09-12
JPH04154407A (ja) * 1990-10-18 1992-05-27 Ohtsu Tire & Rubber Co Ltd :The 空気入りタイヤの周方向溝の設計方法
JPH09300917A (ja) * 1996-05-10 1997-11-25 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2000094907A (ja) * 1998-09-21 2000-04-04 Toyo Tire & Rubber Co Ltd 空気入りラジアルタイヤ
JP2003146017A (ja) * 2001-11-09 2003-05-21 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2004520998A (ja) * 2001-02-28 2004-07-15 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 冬用タイヤ用の方向性トレッドパターン
JP2008279976A (ja) 2007-05-14 2008-11-20 Bridgestone Corp 建設車両用重荷重空気入りラジアルタイヤ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231503A (ja) 1985-08-05 1987-02-10 Bridgestone Corp 空気入りタイヤ
JPS63138203A (ja) 1986-11-28 1988-06-10 Sharp Corp 原稿サイズ検知装置
FR2669274A1 (fr) 1990-11-15 1992-05-22 Michelin & Cie Bande de roulement d'enveloppe de pneumatique a carcasse radiale pour vehicules poids-lourds.
DE4300695A1 (de) * 1993-01-13 1994-07-14 Sp Reifenwerke Gmbh Lauffläche für Fahrzeugluftreifen
JP4227239B2 (ja) 1999-03-18 2009-02-18 株式会社ブリヂストン 空気入りタイヤ
US7270163B2 (en) 2001-02-28 2007-09-18 Pirelli Pneumatici S.P.A. Tyre for a vehicle wheel including specific tread patterns
JP4209319B2 (ja) * 2001-06-07 2009-01-14 株式会社ブリヂストン オフザロードタイヤ
JP4170066B2 (ja) 2002-11-07 2008-10-22 株式会社ブリヂストン 空気入りタイヤ
JP2006151083A (ja) 2004-11-26 2006-06-15 Bridgestone Corp 重荷重車両用タイヤ
EP2223812B1 (en) * 2007-11-28 2012-06-27 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP5265212B2 (ja) * 2008-02-12 2013-08-14 株式会社ブリヂストン 重荷重用空気入りラジアルタイヤ
JP5231275B2 (ja) 2009-02-06 2013-07-10 株式会社ブリヂストン 建設車両用空気入りタイヤ
JP5222334B2 (ja) * 2010-09-09 2013-06-26 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138203U (ja) * 1987-03-05 1988-09-12
JPH04154407A (ja) * 1990-10-18 1992-05-27 Ohtsu Tire & Rubber Co Ltd :The 空気入りタイヤの周方向溝の設計方法
JPH09300917A (ja) * 1996-05-10 1997-11-25 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2000094907A (ja) * 1998-09-21 2000-04-04 Toyo Tire & Rubber Co Ltd 空気入りラジアルタイヤ
JP2004520998A (ja) * 2001-02-28 2004-07-15 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 冬用タイヤ用の方向性トレッドパターン
JP2003146017A (ja) * 2001-11-09 2003-05-21 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2008279976A (ja) 2007-05-14 2008-11-20 Bridgestone Corp 建設車両用重荷重空気入りラジアルタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2631089A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002489A1 (fr) * 2013-02-28 2014-08-29 Michelin & Cie Bande de roulement amelioree pour pneu de genie civil
WO2014131692A1 (fr) * 2013-02-28 2014-09-04 Compagnie Generale Des Etablissements Michelin Bande de roulement améliorée pour pneu de génie civil
CN105026181A (zh) * 2013-02-28 2015-11-04 米其林企业总公司 改进的土木工程轮胎胎面
AU2014222852B2 (en) * 2013-02-28 2017-02-02 Compagnie Generale Des Etablissements Michelin Improved civil engineering tire tread
CN105026181B (zh) * 2013-02-28 2017-05-17 米其林企业总公司 改进的土木工程轮胎胎面
US10308080B2 (en) 2013-02-28 2019-06-04 Compagnie Generale Des Etablissements Michelin Civil engineering tire tread
CN104044409A (zh) * 2013-03-15 2014-09-17 住友橡胶工业株式会社 充气轮胎
US20140261937A1 (en) * 2013-03-15 2014-09-18 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2014177238A (ja) * 2013-03-15 2014-09-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ
US9096099B2 (en) * 2013-03-15 2015-08-04 Sumitomo Rubber Industries, Ltd. Pneumatic tire
EP2777950A3 (en) * 2013-03-15 2017-04-12 Sumitomo Rubber Industries Limited Pneumatic tire
AU2014200327B2 (en) * 2013-03-15 2017-04-20 Sumitomo Rubber Industries, Ltd. Pneumatic tyre

Also Published As

Publication number Publication date
CN103237665B (zh) 2015-09-09
EP2631089A4 (en) 2017-05-03
JP5727502B2 (ja) 2015-06-03
US20130206299A1 (en) 2013-08-15
EP2631089B1 (en) 2018-07-25
US9038681B2 (en) 2015-05-26
CN103237665A (zh) 2013-08-07
EP2631089A1 (en) 2013-08-28
JPWO2012053227A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5727502B2 (ja) 建設車両用重荷重空気入りタイヤ
US8813800B2 (en) Pneumatic tire
JP6490542B2 (ja) 重荷重用タイヤ
JP6306436B2 (ja) 空気入りタイヤ
JP2006151083A (ja) 重荷重車両用タイヤ
WO2009101931A1 (ja) 重荷重用空気入りラジアルタイヤ
CN109968916A (zh) 轮胎
JP6110070B2 (ja) タイヤ
JP5205222B2 (ja) 空気入りタイヤ
JP2023064576A (ja) タイヤ
JP2009202639A (ja) 空気入りタイヤ
EP2732984B1 (en) Pneumatic radial tire
JP7116709B2 (ja) 空気入りタイヤ
JP5524008B2 (ja) 空気入りタイヤ
JP2007083822A (ja) 空気入りタイヤ
JP2020203501A (ja) 空気入りタイヤ
JP4421432B2 (ja) 空気入りタイヤ
JP7333253B2 (ja) 空気入りタイヤ
JP2008230385A (ja) 空気入りタイヤ
JP7332453B2 (ja) 空気入りタイヤ
JP2006182179A (ja) 空気入りタイヤ
JP4191512B2 (ja) 重荷重用空気入りラジアルタイヤ
JP4528091B2 (ja) 空気入りタイヤ
JP2004216979A (ja) 重荷重用空気入りラジアルタイヤ
JP2014177230A (ja) 農業機械用空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539615

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13880528

Country of ref document: US

Ref document number: 2011834073

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE