WO2012032811A1 - びびり振動検出方法及びびびり振動回避方法、並びに工作機械 - Google Patents

びびり振動検出方法及びびびり振動回避方法、並びに工作機械 Download PDF

Info

Publication number
WO2012032811A1
WO2012032811A1 PCT/JP2011/060679 JP2011060679W WO2012032811A1 WO 2012032811 A1 WO2012032811 A1 WO 2012032811A1 JP 2011060679 W JP2011060679 W JP 2011060679W WO 2012032811 A1 WO2012032811 A1 WO 2012032811A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
calculated
tool
chatter vibration
workpiece
Prior art date
Application number
PCT/JP2011/060679
Other languages
English (en)
French (fr)
Inventor
近藤 英二
Original Assignee
株式会社牧野フライス製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社牧野フライス製作所 filed Critical 株式会社牧野フライス製作所
Priority to EP11823290.9A priority Critical patent/EP2614922B1/en
Priority to US13/820,996 priority patent/US9285797B2/en
Priority to KR1020137005653A priority patent/KR101472890B1/ko
Priority to CN201180043232.XA priority patent/CN103079757B/zh
Publication of WO2012032811A1 publication Critical patent/WO2012032811A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/08Control or regulation of cutting velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0971Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
    • B23Q17/0976Detection or control of chatter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37434Measuring vibration of machine or workpiece or tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41256Chattering control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/303752Process
    • Y10T409/303808Process including infeeding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/304536Milling including means to infeed work to cutter
    • Y10T409/304648Milling including means to infeed work to cutter with control means energized in response to activator stimulated by condition sensor
    • Y10T409/304704In response to cutter or cutter carriage

Definitions

  • the present invention relates to a chatter vibration detecting method for detecting chatter vibration generated when a workpiece is machined, particularly chatter vibration called regenerative chatter, a chatter vibration avoiding method for avoiding chatter vibration, and a machine tool.
  • Patent Document 1 an apparatus that suppresses chatter vibration generated during the processing is known (for example, Patent Document 1). reference).
  • Patent Document 1 Fourier analysis of vibration acceleration is performed in an FFT arithmetic unit, each maximum acceleration calculated by Fourier analysis is compared with a preset reference value, and any one of the maximum accelerations is a reference. When the value is exceeded, it is determined that chatter vibration to be suppressed has occurred.
  • the present invention has been made to solve this problem, and an object of the present invention is to detect chatter vibration almost in real time and to quickly avoid the vibration.
  • the present invention is a chatter vibration detection method for detecting chatter vibration generated when a tool having a cutting edge is attached to a rotary spindle and the workpiece is processed by moving the tool relative to the workpiece.
  • the time required for the cutting blade to contact the workpiece multiple times based on the data acquisition procedure for acquiring vibration data correlated with the tool vibration at a predetermined sampling period and the time-series vibration data acquired by the data acquisition procedure The calculation procedure for calculating the autocorrelation function of the minute, the calculation period for calculating the characteristic or frequency of the calculated autocorrelation function, and the contact period at which the cutting blade contacts the workpiece are not integer multiples of the period calculated by the calculation procedure If the vibration frequency calculated by the calculation procedure is not an integral multiple of the product of the number of blades of the tool and the rotation speed of the rotating spindle, Characterized in that it comprises a decision procedure for a constant to.
  • the chatter vibration avoidance method provides the phase difference obtained from the contact cycle of the cutting blade and the cycle calculated by the calculation procedure, or the number of blades and rotation of the tool when it is determined that chatter vibration is generated by the above determination procedure.
  • the phase difference obtained from the product of the rotation speed of the spindle and the vibration frequency calculated by the calculation procedure is calculated, and the rotation speed of the rotation spindle is increased or decreased by a predetermined ratio based on the calculated phase difference, so that the calculated phase difference becomes almost zero.
  • the present invention is a machine tool in which a tool having a cutting edge is attached to a rotary spindle, and the tool is moved relative to the workpiece to process the workpiece, and has a correlation with the vibration of the tool during workpiece processing. Based on data acquisition means for acquiring vibration data at a predetermined sampling period and time-series vibration data acquired by the data acquisition means, an autocorrelation function is calculated for the time required for the cutting blade to contact the workpiece multiple times.
  • calculating means for calculating the characteristic period or frequency of the calculated autocorrelation function and the contact period at which the cutting blade contacts the workpiece is not an integral multiple of the period calculated by the calculating means, or calculating means And determining means for determining that chatter vibration has occurred when the frequency calculated by the step is not an integral multiple of the product of the number of blades of the tool and the rotational speed of the rotary spindle. And wherein the Rukoto.
  • FIG. 1 is a diagram showing a schematic configuration of a machine tool according to an embodiment of the present invention.
  • FIG. 2A is a diagram illustrating an example of a stability limit diagram.
  • FIG. 2B is a diagram illustrating an example of a stability limit diagram.
  • FIG. 3 is a diagram schematically showing a workpiece processing surface during cutting.
  • FIG. 4 is a block diagram showing a control configuration of the machine tool of FIG.
  • FIG. 5A is a diagram illustrating an example of a waveform of vibration data when chatter vibration does not occur.
  • FIG. 5B is a diagram illustrating an example of a waveform of vibration data when chatter vibration occurs.
  • FIG. 6 is a diagram showing an autocorrelation coefficient obtained from the vibration data of FIG. 5B.
  • FIG. 7 is a flowchart showing an example of processing executed by the control device of FIG.
  • FIG. 8 is a diagram for explaining another method of calculating the phase difference.
  • FIG. 1 is a diagram showing a schematic configuration of a machine tool 10 according to an embodiment of the present invention, and shows a vertical machining center as an example.
  • a column 2 is erected on the bed 1, and a spindle head 3 is supported on the column 2 through a linear feed mechanism so as to be movable up and down (Z direction).
  • a cutting tool 4 is attached to the spindle head 3 downward via a rotating spindle.
  • the tool 4 is an end mill having, for example, two cutting edges (a first cutting edge 4a and a second cutting edge 4b) at circumferentially symmetrical positions, and is rotated by a spindle motor in the spindle head 3.
  • a saddle 5 is supported on the bed 1 so as to be movable in a horizontal direction (Y direction) via a linear feed mechanism.
  • a horizontal direction (X direction) orthogonal to the Y direction is provided on the saddle 5 via a linear feed mechanism.
  • the X-direction, Y-direction, and Z-direction linear feed mechanisms are each configured by, for example, a ball screw and a servo motor that rotationally drives the ball screw.
  • the spindle motor in the spindle head 3 is a spindle motor
  • the motor for moving the spindle head 3 in the Z direction is the Z axis motor
  • the motor for moving the saddle 5 in the Y direction is a Y axis motor.
  • the motor that moves the table 6 in the X direction is referred to as an X-axis motor.
  • Each of these motors is controlled by a control device 30 provided later in the machine tool 10. In such a machine tool 10, if the cut amount of the workpiece W is increased, chatter vibration is generated during machining, which not only lowers the quality of the machined surface but also adversely affects the durability of the rotary spindle and the tool 4. There is a risk of giving.
  • Typical chatter vibration includes regenerative chatter vibration which is a kind of self-excited vibration generated between the tool 4 and the workpiece W, and forced chatter vibration in which the machine tool 10 having the tool 4 is a vibration source.
  • regenerative chatter vibration can be suppressed if the operating point determined by the rotational speed S of the main shaft and the cutting depth z is below the stability limit diagram determined by the combination of the machine tool 10 and the tool.
  • 2A and 2B are diagrams illustrating examples of stability limit diagrams. In the figure, the lower side of the stability limit diagram is the stable region, and the upper side is the unstable region. In the stability limit diagram, there are a plurality of peak regions (stability pockets) where the stability limit is partially increased as shown in the figure.
  • FIG. 3 is a diagram schematically showing a workpiece processing surface during cutting. On the right side of the drawing, enlarged views of part A in the case of no chatter vibration and in the case of chatter vibration are shown, respectively.
  • Wa is the movement locus of the first cutting edge 4a
  • Wb is the movement locus of the second cutting edge 4b
  • the thickness between Wa and Wb is the second cutting edge after cutting by the first cutting edge 4a.
  • the movement trajectories Wa and Wb of the cutting blades 4a and 4b fluctuate unevenly when viewed microscopically. For this reason, if there is no phase difference in the waveforms of the movement trajectories Wa and Wb, the cutting thickness h is constant. In this case, since the cutting load is constant, chatter vibration does not occur.
  • FIG. 4 is a block diagram showing a control configuration of the machine tool 10 that executes the chatter vibration detection method and chatter vibration avoidance method according to the present embodiment.
  • an input device 21 for inputting various types of information related to workpiece processing and a displacement sensor 22 for detecting axial displacement of the main shaft in the radial direction.
  • signals from the input device 21 and the displacement sensor 22 are read and a predetermined machining program is executed in advance, and a spindle motor 25, an X-axis motor 26 provided in the machine tool 10, The Y-axis motor 27 and the Z-axis motor 28 are controlled.
  • the input device 21 includes an operation panel, a keyboard, and the like, and a setting value z1 of the cutting depth, a setting value S1 of the spindle rotation speed S, a data sampling cycle, a machining start command for the workpiece W, and the like are input via the input device 21. Is done.
  • the displacement sensor 22 includes, for example, two eddy current displacement sensors that detect an axial displacement dx in the X direction and an axial displacement dy in the Y direction.
  • 5A and 5B are examples of the axial displacement dx in the X direction obtained by the displacement sensor 22 when the tool 4 is relatively moved in the X direction with respect to the workpiece W, and the characteristics of time-series vibration data are shown in FIGS. FIG. In particular, FIG.
  • FIG. 5A shows a waveform of vibration data when chatter vibration does not occur
  • FIG. 5B shows a waveform of vibration data when chatter vibration occurs.
  • T0 is the rotation period of the spindle
  • the vibration data in T0 corresponds to vibration data obtained when the first cutting edge 4a and the second cutting edge 4a contact the workpiece W once each.
  • the vibration data shown in FIGS. 5A and 5B periodically fluctuate corresponding to the movement trajectories Wa and Wb in FIG.
  • the periodicity of the vibration data can be evaluated by calculating a correlation value (autocorrelation function Rxx) between the current vibration data and vibration data obtained by shifting the vibration data by the delay time ⁇ using an autocorrelation function.
  • FIG. 6 is a diagram showing the characteristics of the autocorrelation function Rxx obtained from the vibration data of FIG. 5B.
  • the autocorrelation function Rxx is averaged and distributed using standard deviation, and the autocorrelation coefficient is set so that all data are included between -1 and +1.
  • Rxx ′ is converted.
  • the autocorrelation coefficient Rxx ′ is 1 when the delay time ⁇ is 0, and repeatedly increases and decreases as the delay time ⁇ increases, and has a waveform of a period Tx having a maximum value and a minimum value (hereinafter referred to as autocorrelation). (Referred to as waveform g).
  • the maximum value of the autocorrelation waveform g coincides with the contact cycle T1
  • what is generated is forced vibration generated when the cutting edge contacts the workpiece W, and regenerative chatter vibration occurs.
  • a deviation (phase difference ⁇ ) occurs between the maximum value of the autocorrelation waveform g and the contact period T1
  • the cutting thickness h varies and chatter vibration occurs. In this case, as shown in FIG.
  • the control device 30 of FIG. 4 includes an arithmetic processing device having a CPU, a ROM, a RAM, and other peripheral circuits, and has a data acquisition unit 31, a calculation unit 32, a determination unit 33, and a motor control unit as functional configurations. 34.
  • the data acquisition unit 31 acquires vibration data from the displacement sensor 22 at a predetermined sampling period.
  • the calculation unit 32 calculates the autocorrelation coefficient Rxx ′ from the time-series vibration data acquired by the data acquisition unit 31, and calculates the period Tx of the autocorrelation waveform g.
  • the determination unit 33 calculates the phase difference ⁇ using the period Tx calculated by the calculation unit 32, and determines whether chatter vibration has occurred based on the phase difference ⁇ .
  • the motor control unit 34 controls the main shaft motor 25 and the X-axis motor 26 so that the phase difference ⁇ becomes zero when the determination unit 33 determines that chatter vibration has occurred.
  • FIG. 7 is a flowchart illustrating an example of processing executed by the control device 30.
  • the process shown in this flowchart is started when a machining start command for the workpiece W is input from the input device 21, for example.
  • the control device 30 is preset with a spindle rotational speed setting value S1, a cutting depth setting value z1, a sampling period ⁇ t, a data sample number N, and the like.
  • N is the number of data samples necessary for the determination of chatter vibration, and the number of samples required for the cutting blade to contact the workpiece W four times is necessary. If the number C of tool blades is 2 as in the present embodiment, vibration data for two rotations of the main shaft may be present.
  • the control device 30 stores vibration data measured in advance during no-load rotation of the spindle.
  • step S1 a control signal is output to the motors 25 to 29, and workpiece machining is started under predetermined setting conditions. That is, the spindle is rotated at the set rotational speed S1, and the tool 4 is relatively moved from the machining start position at the set cutting depth z1 in the X direction at the feed speed V set by the machining program.
  • step S2 a signal from the displacement sensor 22 is read, and vibration data is acquired at a predetermined sampling period ⁇ t.
  • step S3 vibration data at the time of no-load rotation of the spindle stored in advance is subtracted from the vibration data to correct the vibration data. By performing this correction, the vibration component due to the main shaft shake is canceled, and the reliability of the subsequent calculation results is improved.
  • step S4 the autocorrelation function Rxx for the current vibration data after correction is calculated by the following equation (I) using the autocorrelation function.
  • the above equation (I) is an equation representing an autocorrelation function as a discrete function, and m means a shift time when calculating the autocorrelation function, and corresponds to a delay time ⁇ (FIG. 6) of the continuous function.
  • step S5 the autocorrelation function Rxx is averaged and distributed using the standard deviation according to the following equation (II), and Rxx is converted into an autocorrelation coefficient Rxx ′.
  • step S6 the period Tx of the autocorrelation waveform g of the autocorrelation coefficient Rxx ′ is calculated.
  • the predetermined value Ra is determined in advance by experiments or the like, and may be 0.6 or 0.7.
  • the phase difference ⁇ (FIG. 6) between the contact cycle T1 and the cycle Tx is calculated by the following equation (III).
  • step S8 based on the phase difference ⁇ , it is determined whether or not chatter vibration that can be avoided by increasing or decreasing the spindle rotational speed after step S9 has occurred.
  • step S9 it is determined whether or not the phase difference ⁇ is ⁇ 180 ° or more. If step S9 is affirmed, the process proceeds to step S10, and if not, the process proceeds to step S12.
  • step S10 a control signal is output to the spindle motor 25, and the rotation speed S of the spindle is reduced.
  • the contact period T1 increases and the phase difference ⁇ approaches 0 °.
  • the phase difference ⁇ is ⁇ 180 ° or more and less than ⁇ 150 °
  • the speed is reduced by 5% of the set rotational speed S1
  • the set rotational speed is 3 Decrease by%.
  • step S11 a control signal is output to the X-axis motor 26, and the feed speed V is also reduced as the rotational speed S is reduced so that the feed per cutting edge is constant before and after the rotational speed S is reduced.
  • step S12 a control signal is output to the spindle motor 25 to increase the rotation speed S of the spindle.
  • the contact period T1 decreases and the phase difference ⁇ approaches -360 °.
  • step S13 a control signal is output to the X-axis motor 26, and the feed speed V is increased as the rotational speed S is increased so that the feed per cutting edge is constant before and after the rotational speed S is increased. Speed up.
  • step S13 ends, the process returns to step S2 and the same processing is repeated.
  • step S14 it is determined whether or not forced chatter vibration or regenerative chatter vibration that cannot be avoided due to increase / decrease in the spindle rotational speed has occurred. For example, when the displacement detected by the displacement sensor 22 exceeds a predetermined value, it is determined that forced chatter vibration or regenerative chatter vibration that cannot be avoided by increasing or decreasing the spindle rotational speed is generated. When step S14 is affirmed, the process proceeds to step S15, and when negative, the process returns to step S2.
  • step S15 a control signal is output to the X-axis motor 26, and only the feed speed V is reduced by a predetermined amount while the rotational speed S is maintained.
  • the cutting load is reduced, that is, the vibration force is reduced to avoid forced chatter vibration, or regenerative chatter vibration that cannot be avoided by increasing or decreasing the spindle rotational speed.
  • step S15 ends, the process returns to step S2 and the same processing is repeated.
  • the operations in the control device 30 are summarized as follows. First, a signal from the displacement sensor 22 during workpiece machining is acquired at a predetermined sampling period ⁇ t (step S2).
  • the acquired time-series vibration data is corrected with vibration data during no-load rotation of the spindle (step S3), and based on the corrected vibration data, the time T0 required for the cutting blade to contact the workpiece W four times.
  • Minute autocorrelation function Rxx is calculated (step S4). That is, in order to evaluate the periodicity of the vibration data, the autocorrelation function Rxx for the current vibration data is calculated using the vibration data of N samples. Further, in order to facilitate the handling of the autocorrelation function Rxx, the autocorrelation function Rxx is averaged and distributed, and Rxx is converted into an autocorrelation coefficient Rxx ′ so that all data is included between ⁇ 1 and +1.
  • step S5 the period Tx of the characteristic (autocorrelation waveform g in FIG. 6) of the autocorrelation coefficient Rxx ′ is calculated (step S6).
  • step S7 the phase difference ⁇ between the contact period T1 of the cutting edge and the period Tx is calculated in the range of ⁇ 360 ° to 0 ° (step S7).
  • the phase difference ⁇ is approximately 0 ° or approximately ⁇ 360 °, it is determined that regenerative chatter vibration has not occurred or regenerative chatter vibration that cannot be avoided by increasing or decreasing the spindle rotational speed has occurred.
  • phase difference ⁇ deviates from 0 ° and ⁇ 360 °, for example, by 5 ° or more, it is determined that the regenerative chatter vibration that can be avoided by increasing or decreasing the spindle rotational speed is generated.
  • the phase difference ⁇ is ⁇ 180 ° or more
  • the rotational speed S of the main shaft is reduced.
  • the operation point P1 moves to P1 ′ as shown in FIG. 2A (step S10).
  • the phase difference ⁇ is smaller than ⁇ 180 °, the rotational speed S of the main shaft is increased.
  • the operating point P2 moves to P2 ′ as shown in FIG. 2A (step S12).
  • the operating point moves to the stable region of the stability limit diagram, so that chatter vibration can be suppressed and a stable workpiece machining operation can be realized.
  • the feed speed V is decelerated or increased so that the feed per tooth is constant (step S11, step S13).
  • the cutting load becomes constant, so that the finishing surface quality of the workpiece W and the machining operation preferable for the tool 4 are possible.
  • the setting value z1 of the cut depth is too large, for example, when the operating point is P3 in FIG.
  • the feed speed V is decelerated without changing the rotation speed S (step S15).
  • the control device 30 acquires vibration data at the time of workpiece machining at a predetermined sampling cycle (data acquisition procedure), and the cutting blade contacts the workpiece W a plurality of times based on the acquired time-series vibration data.
  • the autocorrelation coefficient Rxx ′ for the time required for the calculation is calculated, the period Tx of the characteristic of the autocorrelation coefficient Rxx ′ is calculated (calculation procedure), and the contact period T1 when the cutting blade contacts the workpiece W is calculated.
  • the regenerative chatter vibration can be avoided by increasing or decreasing the spindle rotational speed (determination procedure). Accordingly, chatter vibration can be determined with a small number of data samples N, and chatter vibration can be detected immediately after chatter vibration has occurred.
  • the integral multiple in the determination procedure is not set to an integral multiple in a strict sense. Therefore, the control becomes stable.
  • the spindle rotation speed is 30000 min ⁇ 1
  • the number of tool blades is 2
  • the sampling period is 0.1 ms
  • the time required for the cutting blade to contact the workpiece W four times is 4 ms. There are 40 data samples in between.
  • chatter vibration is detected almost in real time (4 ms), and its avoidance procedure Will be started. Compared with the conventional Fourier analysis method, chatter vibration is avoided quickly.
  • the rotational speed S of the main shaft is such that the phase difference ⁇ is 0, that is, the contact period T1 is an integral multiple of the period Tx by the autocorrelation coefficient.
  • the spindle rotational speed is increased or decreased by a predetermined ratio according to the calculated phase difference until the phase difference becomes almost zero.
  • the machine stability limit diagram is obtained in advance. Even if it is not, chatter vibration can be avoided immediately, and deterioration of the quality of the workpiece surface can be suppressed.
  • Rxx is converted to Rxx ′ so that the autocorrelation coefficient Rxx is included in the range of ⁇ 1 to 1, the characteristics of the autocorrelation coefficient Rxx ′ can be easily grasped, and the period Tx can be calculated with high accuracy.
  • the feed speed V of the tool 4 is increased or decreased in accordance with the increase or decrease of the rotational speed S so that the feed per cutting edge is constant.
  • the load can be made constant, and the quality of the finished surface of the workpiece W and the life of the tool 4 can be extended.
  • the vibration data obtained by the displacement sensor 22 is corrected with the vibration data during no-load rotation of the spindle, the occurrence of regenerative chatter vibration can be accurately determined.
  • the phase difference ⁇ is calculated by the equation (III), but the phase difference ⁇ may be calculated by the following equation (IV) instead.
  • 360 ⁇ ( ⁇ / Tx ⁇ 1) (IV)
  • corresponds to the delay time of the peak point of the autocorrelation coefficient Rxx ′ with respect to the contact period T1 in the characteristics of the autocorrelation coefficient Rxx ′.
  • the vibration data from the displacement sensor 22 at the time of workpiece machining is read by the data acquisition unit 31 to acquire the vibration data.
  • the vibration data having a correlation with the vibration of the tool 4 is obtained at a predetermined sampling period. Any data acquisition means may be used as long as it is acquired by ⁇ t.
  • the vibration acceleration or cutting load of the main shaft may be detected, or the processing sound may be detected, and the detected value may be used as vibration data.
  • the calculation unit 32 calculates an autocorrelation function Rxx of time-series vibration data, converts the autocorrelation function Rxx by a predetermined conversion formula (II), and calculates an autocorrelation waveform of the converted autocorrelation coefficient Rxx ′.
  • the period Tx of g may be calculated without using the conversion formula (II), and the configuration of the calculation means is not limited to that described above.
  • the determination unit 33 determines that chatter vibration has occurred when the contact period T1 when the cutting blade contacts the workpiece W is not an integral multiple of the period Tx obtained by the autocorrelation coefficient Rxx ′.
  • the configuration of the means is not limited to this. For example, when the frequency f of the autocorrelation coefficient Rxx ′ is calculated by the calculation unit 32 and the frequency f is not an integral multiple of the product of the tool blade number C and the spindle rotational speed S, the chatter is determined by the determination unit 33. You may make it determine with generation
  • a control signal is output from the motor control unit 34 to the spindle motor 25, thereby increasing or decreasing the rotation speed S of the spindle so that the contact cycle T1 is an integral multiple of the cycle Tx.
  • the rotational speed S of the main spindle may be increased or decreased so that the frequency f of the autocorrelation coefficient Rxx ′ is an integral multiple of the product of the number C of tool blades and the rotational speed S of the main spindle.
  • the configuration is not limited to that described above.
  • the chatter vibration detection method and chatter vibration avoidance method are realized by using the vertical machining center as the machine tool 10. A vibration avoidance method can be realized.
  • the occurrence of chatter vibration is determined using the autocorrelation function of vibration data, it is possible to immediately detect and avoid the occurrence of chatter vibration during machining. As a result, the quality of the finished surface of the workpiece can be improved, and wear of the rotating spindle and tool of the machine tool can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Theoretical Computer Science (AREA)
  • Numerical Control (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

 ワーク加工時における工具(4)の振動データを所定のサンプリング周期(Δt)で取得し、取得した時系列の振動データに基づき、切刃(4a,4b)が複数回ワーク(W)に接触するのに要する時間分の自己相関係数(Rxx')を算出するとともに、算出した自己相関係数(Rxx')の特性の周期(Tx)を算出し、切刃(4a,4b)がワーク(W)に接触する際の接触周期(T1)が、算出した周期(Tx)の整数倍でないとき、びびり振動の発生と判定する。

Description

びびり振動検出方法及びびびり振動回避方法、並びに工作機械
 本発明は、ワークを加工する際に発生するびびり振動、とくに再生びびりと呼ばれるびびり振動を検出するびびり振動検出方法及びびびり振動を回避するびびり振動回避方法、並びに工作機械に関する。
 従来より、回転主軸に取り付けられた工具をワークに対し相対移動させてワークを加工する工作機械において、加工中に発生するびびり振動を抑制するようにした装置が知られている(例えば特許文献1参照)。この特許文献1記載の装置では、FFT演算装置において振動加速度のフーリエ解析を行い、フーリエ解析により算出された各最大加速度と予め設定された基準値とを比較し、何れか一つの最大加速度が基準値を超えた場合に、抑制すべきびびり振動が発生していると判定する。
特開2008−290164号公報
 しかしながら、上記特許文献1記載の装置は、フーリエ解析を行うことによりびびり振動の発生を判定するため、多くのデータ数が必要である。そのため、例えば1秒程度の長いデータサンプリング時間が必要となり、加工中のびびり振動の発生を即座に検出および回避することが困難である。
 本発明は、この問題点を解決するためになされたものであり、本発明の目的は、ほぼリアルタイムでびびり振動を検出し、その振動を迅速に回避することである。
 本発明は、切刃を有する工具を回転主軸に取り付け、この工具をワークに対し相対移動させてワークを加工した際に発生するびびり振動を検出するびびり振動検出方法であって、ワーク加工時における工具の振動と相関関係を有する振動データを所定のサンプリング周期で取得するデータ取得手順と、データ取得手順により取得した時系列の振動データに基づき、切刃が複数回ワークに接触するのに要する時間分の自己相関関数を算出するとともに、算出した自己相関関数の特性の周期もしくは振動数を算出する算出手順と、切刃がワークに接触する接触周期が、算出手順により算出した周期の整数倍でないとき、もしくは算出手順により算出した振動数が、工具の刃数と回転主軸の回転速度との積の整数倍でないとき、びびり振動の発生と判定する判定手順とを含むことを特徴とする。
 また、本発明によるびびり振動回避方法は、上述の判定手順によりびびり振動の発生と判定したとき、切刃の接触周期と算出手順により算出した周期とから求まる位相差、もしくは工具の刃数および回転主軸の回転速度の積と算出手順により算出した振動数とから求まる位相差を算出し、算出した位相差に基づいて回転主軸の回転速度を所定割合だけ増減し、算出した位相差がほぼ0になるまで、回転主軸の回転速度の増減を繰り返す回転速度増減手順とを含むことを特徴とする。
 さらに、本発明は、切刃を有する工具が回転主軸に取り付けられ、この工具がワークに対し相対移動されてワークを加工する工作機械であって、ワーク加工時における工具の振動と相関関係を有する振動データを所定のサンプリング周期で取得するデータ取得手段と、データ取得手段により取得された時系列の振動データに基づき、切刃が複数回ワークに接触するのに要する時間分の自己相関関数を算出するとともに、算出された自己相関関数の特性の周期もしくは振動数を算出する算出手段と、切刃がワークに接触する接触周期が、算出手段により算出された周期の整数倍でないとき、もしくは算出手段により算出された振動数が、工具の刃数と回転主軸の回転速度との積の整数倍でないとき、びびり振動の発生と判定する判定手段とを備えることを特徴とする。
 図1は、本発明の実施の形態に係る工作機械の概略構成を示す図である。
 図2Aは、安定限界線図の一例を示す図である。
 図2Bは、安定限界線図の一例を示す図である。
 図3は、切削中のワーク加工面を模式的に示す図である。
 図4は、図1の工作機械の制御構成を示すブロック図である。
 図5Aは、びびり振動が発生していない場合の振動データの波形の一例を示す図である。
 図5Bは、びびり振動が発生している場合の振動データの波形の一例を示す図である。
 図6は、図5Bの振動データから得られる自己相関係数を示す図である。
 図7は、図4の制御装置で実行される処理の一例を示すフロー図である。
 図8は、位相差の他の算出方法を説明する図である。
 以下、図1~図8を参照して、本発明の実施の形態を説明する。図1は、本発明の実施の形態に係る工作機械10の概略構成を示す図であり、一例として立形のマシニングセンタを示している。
 ベッド1上にコラム2が立設され、コラム2には、直線送り機構を介して主軸頭3が上下方向(Z方向)に昇降可能に支持されている。主軸頭3には、回転主軸を介して下向きに切削用工具4が取り付けられている。工具4は、例えば周方向対称位置に2枚の切刃(第1切刃4aと第2切刃4b)を有するエンドミルであり、主軸頭3内のスピンドルモータにより回転駆動される。ベッド1上には、直線送り機構を介して水平方向(Y方向)に移動可能にサドル5が支持され、サドル5上には、直線送り機構を介してY方向と直交する水平方向(X方向)に移動可能にテーブル6が支持されている。X方向、Y方向およびZ方向の直線送り機構は、例えばボールねじとボールねじを回転駆動するサーボモータとによりそれぞれ構成される。
 以上の構成により、ワークWに対して工具14がX,Y,Z方向に相対移動し、ワークWが加工される。なお、以下では、主軸頭3内のスピンドルモータを主軸用モータと、主軸頭3をZ方向に移動させるモータをZ軸用モータと、サドル5をY方向に移動させるモータをY軸用モータと、テーブル6をX方向に移動させるモータをX軸用モータと、それぞれ称する。これら各モータは、工作機械10に設けられた後述する制御装置30により制御される。
 このような工作機械10においては、ワークWの切り込み量を大きくすると、加工中にびびり振動が発生し、加工面の品位を低下させるだけでなく、回転主軸や工具4の耐久性等にも悪影響を与えるおそれがある。びびり振動の代表的なものに、工具4とワークWとの間に生じる自励振動の一種である再生びびり振動と、工具4を有する工作機械10が振動源となる強制びびり振動とがある。このうち、とくに再生びびり振動は、主軸の回転速度Sと切り込み深さzとで定まる動作ポイントが、工作機械10と工具の組合せで定まる安定限界線図の下側に存在すれば、抑えることができる。
 図2A,図2Bは、安定限界線図の一例を示す図である。図中、安定限界線図より下側が安定領域、上側が不安定領域である。安定限界線図には、図示のように安定限界が部分的に高くなる複数のピーク領域(安定ポケット)が存在する。したがって、動作ポイントが不安定領域にある場合に、主軸の回転速度Sまたは切り込み深さzを変更し、動作ポイントを安定ポケットの内側にずらせば、びびり振動の発生を抑えつつ効率よくワークWを加工することができる。例えば、動作ポイントが図2AのP2である場合に、切り込み深さを設定値z1に維持しつつ、主軸の回転速度を増速して動作ポイントをP2’にずらせば、びびり振動なく加工効率を落とさずに良好にワークWを加工できる。
 ところで、びびり振動の検出には、振動データをFFT解析してびびり振動周波数を算出する方法がある。しかし、この方法では、周波数分解能を高めるために長いサンプリング時間が必要となる。例えば、主軸回転速度が30000min−1において振動解析を行う場合、主軸回転速度の分解能として最低60min−1が必要であるとすると、周波数分解能は1Hzとなり、1秒のサンプリング時間が必要となる。そのため、びびり振動を検出して回避するまでに最低1秒かかることとなり、その間の加工動作により、ワーク加工面の品位が損なわれる。これを防止するためには、サンプリング時間を短くしてびびり振動をできるだけ早く検出する必要がある。
 ここで、びびり振動の発生メカニズムについて説明する。図3は、切削中のワーク加工面を模式的に示す図であり、図の右側には、びびり振動なしの場合およびありの場合のA部拡大図をそれぞれ示している。図中、Waは第1切刃4aの移動軌跡、Wbは第2切刃4bの移動軌跡であり、WaとWbとの間の厚さが、第1切刃4aによる切削後に第2切刃4bによって切削される切削厚さhに相当する。
 各切刃4a,4bの移動軌跡Wa,Wbは、微視的に見ると凹凸に変動する。このため、移動軌跡Wa,Wbの波形に位相差がなければ、切削厚さhは一定となる。この場合には、切削負荷が一定となるため、びびり振動は発生しない。これに対し、移動軌跡Wa,Wbの波形に位相差があると、切削厚さhが変化するため、切削負荷が変動し、これによりびびり振動が発生する。位相差は、ワーク加工面に切刃が4回接触するだけの振動データがあれば求めることができる。この点を考慮し、本実施の形態では、以下のように少ないデータサンプリング数で、短時間でのびびり振動の検出を可能とする。
 図4は、本実施の形態に係るびびり振動検出方法およびびびり振動回避方法を実行する工作機械10の制御構成を示すブロック図である。制御装置30には、ワーク加工に関する各種情報を入力する入力装置21と、主軸の径方向の軸変位を検出する変位センサ22とが接続されている。制御装置30では、これら入力装置21および変位センサ22からの信号を読み込んで、予め定められた所定の加工プログラムを実行し、工作機械10に設けられた主軸用モータ25、X軸用モータ26、Y軸用モータ27およびZ軸用モータ28を制御する。
 入力装置21は、操作パネルやキーボード等により構成され、入力装置21を介して切り込み深さの設定値z1や主軸回転速度Sの設定値S1、データサンプリング周期、ワークWの加工開始指令等が入力される。変位センサ22は、例えば主軸のX方向の軸変位dxおよびY方向の軸変位dyを検出する二つの渦電流式変位センサによって構成される。
 図5A,図5Bは、それぞれ工具4をワークWに対しX方向に相対移動させた際に、変位センサ22によって得られたX方向の軸変位dxの一例であり、時系列の振動データの特性を示す図である。とくに図5Aは、びびり振動が発生していない場合の振動データの波形を、図5Bは、びびり振動が発生している場合の振動データの波形をそれぞれ示している。図中、T0は、主軸の回転周期であり、T0内の振動データは、第1切刃4aと第2切刃4aが各1回ずつワークWに接触した際に得られる振動データに相当する。
 図5A,図5Bに示す振動データは、図3の移動軌跡Wa,Wbに対応して周期的に変動している。この振動データの周期性は、自己相関関数を用いて、現在の振動データとこの振動データを遅れ時間τだけずらした振動データとの相関値(自己相関関数Rxx)を演算することにより評価できる。図6は、図5Bの振動データから求められた自己相関関数Rxxの特性を示す図である。なお、図ではデータの取り扱いを容易にするために、自己相関関数Rxxを標準偏差を用いて平均、分散化処理し、−1と+1との間に全データが含まれるように自己相関係数Rxx’に変換している。
 自己相関係数Rxx’は、遅れ時間τが0のときは1であり、遅れ時間τの増加に伴い増減を繰り返し、極大値と極小値とを有する周期Txの波形(以下、これを自己相関波形gと呼ぶ)をしている。図中、T1は、主軸回転速度Sと工具刃数C(ここでは2)との積の逆数(1/C・S)、つまり切刃がワークWに接触する周期T1(=T0/C)である。ここで、仮に自己相関波形gの極大値が接触周期T1に一致している場合、発生しているのは切刃がワークWに接触することによって生じる強制振動であり、再生びびり振動は発生していない。
 これに対し、自己相関波形gの極大値と接触周期T1との間に図示のようにずれ(位相差ε)が生じていると、切削厚さhがばらつき、びびり振動が発生する。この場合、図2Aに示したように切込み深さzが安定ポケットの極大値以下であれば、位相差εが0となるように主軸回転速度Sを増減させることにより、びびり振動の発生を抑えることができる。以上の点を考慮して、本実施の形態では図4の制御装置30を構成する。
 制御装置30は、CPU,ROM,RAM,その他の周辺回路などを有する演算処理装置を含んで構成され、機能的構成としてデータ取得部31と、算出部32と、判定部33と、モータ制御部34とを有する。データ取得部31では、所定のサンプリング周期で変位センサ22からの振動データを取得する。算出部32では、データ取得部31で取得した時系列の振動データから自己相関係数Rxx’を算出し、その自己相関波形gの周期Txを算出する。判定部33では、算出部32で算出した周期Txを用いて位相差εを算出し、位相差εに基づきびびり振動の発生の有無を判定する。モータ制御部34では、判定部33でびびり振動の発生と判定されたときに、位相差εが0となるように主軸用モータ25およびX軸用モータ26を制御する。
 以下、制御装置30における具体的な処理について説明する。図7は、制御装置30で実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、例えば入力装置21からワークWの加工開始指令が入力されると開始される。制御装置30には、予め主軸回転速度の設定値S1、切り込み深さの設定値z1、サンプリング周期Δt、データサンプル数N等が設定されている。なお、Nは、びびり振動の判定に必要なデータサンプル数であり、切刃がワークWに4回接触する分のサンプル数が必要である。本実施の形態のように工具刃数Cが2であれば、主軸の2回転分の振動データがあればよい。制御装置30には、予め計測された主軸の無負荷回転時における振動データが記憶されている。
 ステップS1では、モータ25~29に制御信号を出力し、予め定められた設定条件でワークの加工を開始する。すなわち、設定回転速度S1で主軸を回転させるとともに、工具4を設定切り込み深さz1の加工開始位置からX方向に加工プログラムで設定された送り速度Vで相対移動させる。
 ステップS2では、変位センサ22からの信号を読み込み、所定のサンプリング周期Δtにて振動データを取得する。ステップS3では、この振動データから予め記憶された主軸の無負荷回転時の振動データを差し引き、振動データを補正する。この補正を行うことにより、主軸の振れに起因する振動成分がキャンセルされ、以後の演算結果の信頼性が向上する。
 ステップS4では、自己相関関数を用いて、補正後の現在の振動データに対する自己相関関数Rxxを次式(I)により算出する。
Figure JPOXMLDOC01-appb-I000001
上式(I)は、離散関数としての自己相関関数を表す式であり、mは自己相関関数を演算するときのシフト時間を意味し、連続関数の遅れ時間τ(図6)に相当する。
 ステップS5では、自己相関関数Rxxを次式(II)により標準偏差を用いて平均、分散化処理し、Rxxを自己相関係数Rxx’に変換する。
Figure JPOXMLDOC01-appb-I000002
 ステップS6では、自己相関係数Rxx’の自己相関波形gの周期Txを算出する。この場合、自己相関係数Rxx’が所定値Ra(例えば0.5)以上のピーク点(極大値)を抽出し、Rxx’=1である始点からの時間間隔(図6)、あるいはピーク点間の時間間隔を算出すればよい。なお、所定値Raは、予め実験等により定められ、0.6や0.7としてもよい。
 ステップS7では、次式(III)により接触周期T1と周期Txとの位相差ε(図6)を算出する。
 ε=360・(1/(C・S・Tx)−int(1/(C・S・Tx))−1)   (III)
すなわち、接触周期T1(=1/C・S)を周期Txで割った値(1/(C・S・Tx))からその整数部分を減算し、さらに1を減算したものに、360を乗算する。ここで算出した位相差εは、常にマイナスの角度(deg)となる。
 ステップS8では、位相差εに基づき、ステップS9以降の主軸回転速度の増減により回避できるびびり振動が発生しているか否かを判定する。すなわち、位相差εがほぼ0°あるいはほぼ−360°であるか否かを判定する。より具体的には、εが所定値ε0(例えば−5°)以下あるいは所定値ε1(例えば−355°)以上のときに、再生びびり振動が発生しているとしてステップS9に進む。ε0やε1の値は、実験により適正値を求める。
 ステップS9では、位相差εが−180°以上であるか否かを判定する。ステップS9が肯定されるとステップS10に進み、否定されるとステップS12に進む。
 ステップS10では、主軸用モータ25に制御信号を出力し、主軸の回転速度Sを減速させる。これにより接触周期T1が増加し、位相差εが0°に近づく。この場合、位相差εに応じて回転速度Sの減速量を変更することが好ましい。例えば、位相差εが−180°以上かつ−150°未満のとき、設定回転速度S1の5%だけ減速させ、位相差εが−150°以上かつ−5°未満のとき、設定回転速度の3%だけ減速させる。このように位相差εの大きさに応じて主軸回転速度の変化率を変えるのは、早くびびり振動を回避できる主軸回転速度に収束させるためである。
 ステップS11では、X軸用モータ26に制御信号を出力し、回転速度Sの減速の前後で切刃1刃当たりの送りが一定となるように、回転速度Sの減速に伴い送り速度Vも減速させる。ステップS11が終了するとステップS2に戻り、同様の処理を繰り返す。
 一方、ステップS12では、主軸用モータ25に制御信号を出力し、主軸の回転速度Sを増速させる。これにより接触周期T1が減少し、位相差εが−360°に近づく。この場合、位相差εに応じて回転速度Sの増速量を変更することが好ましい。例えば、位相差εが−210°以上かつ−180°未満のとき、設定回転速度S1の5%だけ増速させ、位相差εが−355°以上かつ−210°未満のとき、設定回転速度の3%だけ増速させる。
 ステップS13では、X軸用モータ26に制御信号を出力し、回転速度Sの増速の前後で切刃1刃当たりの送りが一定となるように、回転速度Sの増速に伴い送り速度Vも増速させる。ステップS13が終了するとステップS2に戻り、同様の処理を繰り返す。
 ステップS8で、主軸回転速度の増減により回避可能な再生びびり振動が発生していないと判定されると、ステップS14に進む。ステップS14では、強制びびり振動、あるいは主軸回転速度の増減により回避できない再生びびり振動が発生しているか否かを判定する。例えば、変位センサ22により検出された変位が所定値を超えている場合に、強制びびり振動、あるいは主軸回転速度の増減により回避できない再生びびり振動が発生と判定される。ステップS14が肯定されるとステップS15に進み、否定されるとステップS2に戻る。
 ステップS15では、X軸用モータ26に制御信号を出力し、回転速度Sを維持したまま、送り速度Vのみを所定量減速させる。これにより切削負荷を減少させ、つまり加振力を減少させて強制びびり振動を回避する、あるいは主軸回転速度の増減により回避できない再生びびり振動を回避する。ステップS15が終了するとステップS2に戻り、同様の処理を繰り返す。
 以上の制御装置30における動作をまとめると次のようになる。まず、ワーク加工時における変位センサ22からの信号を所定のサンプリング周期Δtで取得する(ステップS2)。次いで、取得した時系列の振動データを主軸の無負荷回転時の振動データで補正し(ステップS3)、補正後の振動データに基づき、切刃が4回ワークWに接触するのに要する時間T0分の自己相関関数Rxxを算出する(ステップS4)。つまり振動データの周期性を評価するために、サンプル数Nの振動データを用いて、現在の振動データに対する自己相関関数Rxxを算出する。
 さらに、自己相関関数Rxxの取り扱いを容易にするため、自己相関関数Rxxを平均、分散化処理し、全データが−1~+1の間に含まれるようにRxxを自己相関係数Rxx’に変換した後(ステップS5)、この自己相関係数Rxx’の特性(図6の自己相関波形g)の周期Txを算出する(ステップS6)。続いて、切刃の接触周期T1と周期Txとの位相差εを、−360°~0°の範囲で算出する(ステップS7)。
 位相差εがほぼ0°もしくはほぼ−360°であるときは、再生びびり振動は発生していないか主軸回転速度の増減により回避できない再生びびり振動が発生していると判定する。これに対し、位相差εが0°および−360°から例えば5°以上乖離しているときは、主軸回転速度の増減により回避できる再生びびり振動の発生と判定する。この場合、位相差εが−180°以上のときは、主軸の回転速度Sを減速する。これにより、図2Aに示すように動作ポイントP1がP1’に移動する(ステップS10)。位相差εが−180°より小さいと、主軸の回転速度Sを増速する。これにより、図2Aに示すように動作ポイントP2がP2’に移動する(ステップS12)。このように主軸の回転速度Sを増減させることにより、動作ポイントが安定限界線図の安定領域に移動するため、びびり振動を抑えることができ、安定したワーク加工動作を実現できる。このとき、主軸の回転速度Sの変更に伴い、1刃当たりの送りが一定となるように送り速度Vを減速または増速する(ステップS11、ステップS13)。これにより切削負荷が一定となるため、ワークWの仕上げ面品位および工具4にとって好ましい加工動作が可能となる。
 一方、切り込み深さの設定値z1が大きすぎる場合、例えば動作ポイントが図2BのP3であるときは、主軸回転速度の増減により回避できない再生びびり振動の発生あるいは強制びびり振動の発生ありとして、主軸の回転速度Sを変更せずに送り速度Vを減速する(ステップS15)。これにより工具4の負荷が低減されるため、切り込み深さzを小さくしたのと同様の効果があり、動作ポイントP3がP3’に移動する。その後、主軸の回転速度Sが増速し(ステップS12)、動作ポイントP3’がP3’’に移動する。これにより安定領域においてびびり振動を抑えながら、ワークWを加工することができる。
 本実施の形態によれば、以下のような作用効果を奏することができる。
(1)制御装置30において、ワーク加工時の振動データを所定のサンプリング周期で取得し(データ取得手順)、この取得した時系列の振動データに基づき、切刃が複数回ワークWに接触するのに要する時間分の自己相関係数Rxx’を算出するとともに、その自己相関係数Rxx’の特性の周期Txを算出し(算出手順)、切刃がワークWに接触する際の接触周期T1が周期Txの整数倍でないとき、主軸回転速度の増減により回避できる再生びびり振動の発生と判定するようにした(判定手順)。これにより少ないデータサンプル数Nでのびびり振動の判定が可能となり、びびり振動の発生後、即座にびびり振動を検出することができる。この場合、判定手順における整数倍を厳密な意味での整数倍とせずに、位相差εがほぼ0°またはほぼ−360°のとき(例えば±5°の範囲に含まれるとき)に、整数倍であるとするので、制御が安定する。例えば、主軸回転速度30000min−1、工具刃数2、サンプリング周期0.1m秒の場合、切刃が4回ワークWに接触するのに要する時間(回転主軸が2回転する時間)は4m秒であり、その間のデータサンプル数は40個ある。自己相関係数Rxx’の算出、びびり振動の判定、びびり振動回避の主軸回転速度増減の算出等の演算時間は無視できるとすると、ほぼリアルタイム(4m秒)でびびり振動を検出し、その回避手順が開始されることになる。従来のフーリエ解析方式に比べ、びびり振動は迅速に回避される。
(2)制御装置30においてびびり振動の発生と判定したとき、位相差εが0となるように、つまり接触周期T1が自己相関係数による周期Txの整数倍となるように主軸の回転速度Sを増減させるようにした(回転速度増減手順)。この主軸回転速度の増減は、算出した位相差に応じて所定の割合ずつ増減する動作を、位相差がほぼ0になるまで繰り返す方法を採用しているので、予め機械の安定限界線図を求めておかなくても、びびり振動を即座に回避することができ、ワーク加工面の品位の低下を抑えることができる。
(3)自己相関係数Rxxが−1から1の範囲に含まれるようにRxxをRxx’に変換するようにしたので、自己相関係数Rxx’の特性を容易に把握することができ、周期Txを精度よく算出できる。
(4)主軸の回転速度Sを増減する際に、切刃1刃当たりの送りが一定となるように回転速度Sの増減に応じて工具4の送り速度Vを増減するようにしたので、切削負荷を一定とすることができ、ワークWの仕上げ面の品位および工具4の寿命を長くすることができる。
(5)変位センサ22によって得られる振動データを、主軸の無負荷回転時の振動データで補正するので、再生びびり振動の発生を精度よく判定できる。
 なお、上記実施の形態では、(III)式により位相差εを算出するようにしたが、これに代えて次式(IV)によって位相差εを算出するようにしてもよい。
 ε=360・(δ/Tx−1)            (IV)
ここで、δは、図8に示すように、自己相関係数Rxx’の特性において、接触周期T1に対する自己相関係数Rxx’のピーク点の遅れ時間に相当する。
 上記実施の形態では、ワーク加工時における変位センサ22からの振動をデータ取得部31により読み込んで振動データを取得するようにしたが、工具4の振動と相関関係を有する振動データを所定のサンプリング周期Δtで取得するのであれば、データ取得手段はいかなるものでもよい。例えば、主軸の振動加速度や切削負荷を検出したり、加工音を検出して、その検出値を振動データとしてもよい。算出部32において、時系列の振動データの自己相関関数Rxxを算出するとともに、この自己相関関数Rxxを所定の変換式(II)により変換し、変換後の自己相関係数Rxx’の自己相関波形gの周期Txを算出するようにしたが、変換式(II)を用いることなく周期Txを算出するようにしてもよく、算出手段の構成は上述したものに限らない。
 判定部33において、切刃がワークWに接触する際の接触周期T1が自己相関係数Rxx’により求めた周期Txの整数倍でないときに、びびり振動の発生と判定するようにしたが、判定手段の構成はこれに限らない。例えば、算出部32で自己相関係数Rxx’の振動数fを算出し、その振動数fが工具刃数Cと主軸の回転速度Sとの積の整数倍でないときに、判定部33でびびり振動の発生と判定するようにしてもよい。びびり振動の発生と判定されたときに、モータ制御部34から主軸用モータ25へ制御信号を出力することにより、接触周期T1が周期Txの整数倍となるように主軸の回転速度Sを増減させたが、自己相関係数Rxx’の振動数fが工具刃数Cと主軸の回転速度Sとの積の整数倍となるように主軸の回転速度Sを増減させてもよく、回転速度増減手段の構成は上述したものに限らない。
 以上では、立形のマシニングセンタを工作機械10として用いてびびり振動検出方法およびびびり振動回避方法を実現するようにしたが、横形のマシニングセンタや他の工作機械によっても本発明によるびびり振動検出方法およびびびり振動回避方法を実現可能である。
 本発明によれば、振動データの自己相関関数を用いてびびり振動の発生を判定するようにしたので、加工中のびびり振動の発生を即座に検出および回避することが可能となる。これにより、ワークの仕上げ面品位が向上し、また、工作機械の回転主軸および工具の損耗を防ぐことができる。
 4  工具
 4a  第1切刃
 4b  第2切刃
 10  工作機械
 22  変位センサ
 25  主軸用モータ
 26  X軸用モータ
 30  制御装置
 31  データ取得部
 32  算出部
 33  判定部
 34  モータ制御部

Claims (8)

  1.  切刃を有する工具を回転主軸に取り付け、この工具をワークに対し相対移動させてワークを加工した際に発生するびびり振動を検出するびびり振動検出方法であって、
     ワーク加工時における前記工具の振動と相関関係を有する振動データを所定のサンプリング周期で取得するデータ取得手順と、
     前記データ取得手順により取得した時系列の振動データに基づき、切刃が複数回ワークに接触するのに要する時間分の自己相関関数を算出するとともに、算出した自己相関関数の特性の周期もしくは振動数を算出する算出手順と、
     切刃がワークに接触する接触周期が、前記算出手順により算出した周期の整数倍でないとき、もしくは前記算出手順により算出した振動数が、前記工具の刃数と前記回転主軸の回転速度との積の整数倍でないとき、びびり振動の発生と判定する判定手順と、
     を含むことを特徴とするびびり振動検出方法。
  2.  切刃を有する工具を回転主軸に取り付け、この工具をワークに対し相対移動させてワークを加工した際に発生するびびり振動を回避するびびり振動回避方法であって、
     ワーク加工時における前記工具の振動と相関関係を有する振動データを所定のサンプリング周期で取得するデータ取得手順と、
     前記データ取得手順により取得した時系列の振動データに基づき、切刃が複数回ワークに接触するのに要する時間分の自己相関係数を算出するとともに、算出した自己相関関数の特性の周期もしくは振動数を算出する算出手順と、
     切刃がワークに接触する接触周期が、前記算出手順により算出した周期の整数倍でないとき、もしくは前記算出手順により算出した振動数が、前記工具の刃数と前記回転主軸の回転速度との積の整数倍でないとき、びびり振動の発生と判定する判定手順と、
     前記判定手順によりびびり振動の発生と判定したとき、切刃の接触周期と前記算出手順により算出した周期とから求まる位相差、もしくは前記工具の刃数および前記回転主軸の回転速度の積と前記算出手順により算出した振動数とから求まる位相差を算出し、算出した位相差に基づいて前記回転主軸の回転速度を所定割合だけ増減し、前記算出した位相差がほぼ0になるまで前記回転主軸の回転速度の増減を繰り返す回転速度増減手順と、
     を含むことを特徴とするびびり振動回避方法。
  3.  請求項2に記載のびびり振動回避方法において、
     前記算出手順では、標準偏差を用いて自己相関関数を自己相関係数に変換し、変換後の自己相関係数の特性の周期もしくは振動数を算出するびびり振動回避方法。
  4.  請求項2に記載のびびり振動回避方法において、
     前記回転速度増減手順では、切刃1刃当たりの送りが一定となるように前記回転主軸の回転速度の増減に応じて前記工具の送り速度を増減させるびびり振動回避方法。
  5.  請求項2に記載のびびり振動回避方法において、
     前記回転速度増減手順によって前記算出した位相差がほぼ0になっているのに前記振動データが所定値を超えているときは、前記工具の送り速度を下げるびびり振動回避方法。
  6.  請求項2に記載のびびり振動回避方法において、
     前記算出手順では、前記データ取得手順により取得した振動データから予め記憶された前記回転主軸の無負荷回転時の振動データを差し引くことにより振動データを補正し、この補正後の振動データに基づき前記自己相関関数の特性を導出するびびり振動回避方法。
  7.  切刃を有する工具が回転主軸に取り付けられ、この工具がワークに対し相対移動されてワークを加工する工作機械であって、
     ワーク加工時における前記工具の振動と相関関係を有する振動データを所定のサンプリング周期で取得するデータ取得手段と、
     前記データ取得手段により取得された時系列の振動データに基づき、切刃が複数回ワークに接触するのに要する時間分の自己相関関数を算出するとともに、算出された自己相関関数の特性の周期もしくは振動数を算出する算出手段と、
     切刃がワークに接触する接触周期が、前記算出手段により算出された周期の整数倍でないとき、もしくは前記算出手段により算出された振動数が、前記工具の刃数と前記回転主軸の回転速度との積の整数倍でないとき、びびり振動の発生と判定する判定手段と、
     を備えることを特徴とする工作機械。
  8.  請求項7に記載の工作機械において、
     前記判定手段によりびびり振動の発生と判定されたとき、切刃の接触周期と前記算出手段により算出された周期とから求まる位相差、もしくは前記工具の刃数および前記回転主軸の回転速度の積と前記算出手段により算出された振動数とから求まる位相差を算出し、算出した位相差に基づいて前記回転主軸の回転速度を所定割合だけ増減し、前記算出した位相差がほぼ0になるまで前記回転主軸の回転速度の増減を繰り返す回転速度増減手段をさらに備える工作機械。
PCT/JP2011/060679 2010-09-10 2011-04-27 びびり振動検出方法及びびびり振動回避方法、並びに工作機械 WO2012032811A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11823290.9A EP2614922B1 (en) 2010-09-10 2011-04-27 Chatter vibration detection method, chatter vibration avoidance method, and machine tool
US13/820,996 US9285797B2 (en) 2010-09-10 2011-04-27 Chatter vibration detection method, chatter vibration avoidance method, and machine tool
KR1020137005653A KR101472890B1 (ko) 2010-09-10 2011-04-27 채터진동 검출방법 및 채터진동 회피방법, 그리고 공작기계
CN201180043232.XA CN103079757B (zh) 2010-09-10 2011-04-27 颤动检测方法及颤动避免方法、以及工作机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010203276A JP4942839B2 (ja) 2010-09-10 2010-09-10 びびり振動検出方法及びびびり振動回避方法、並びに工作機械
JP2010-203276 2010-09-10

Publications (1)

Publication Number Publication Date
WO2012032811A1 true WO2012032811A1 (ja) 2012-03-15

Family

ID=45810418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060679 WO2012032811A1 (ja) 2010-09-10 2011-04-27 びびり振動検出方法及びびびり振動回避方法、並びに工作機械

Country Status (6)

Country Link
US (1) US9285797B2 (ja)
EP (1) EP2614922B1 (ja)
JP (1) JP4942839B2 (ja)
KR (1) KR101472890B1 (ja)
CN (1) CN103079757B (ja)
WO (1) WO2012032811A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150306720A1 (en) * 2012-12-20 2015-10-29 Mitsubishi Heavy Industries , Ltd. Control device for working device, working device, control program for working device, control method for working device, and working method
WO2018185993A1 (ja) * 2017-04-04 2018-10-11 Dmg森精機株式会社 主軸回転速度制御装置

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105102B2 (ja) * 2009-04-10 2012-12-19 エヌティーエンジニアリング株式会社 作業機械のびびり抑制方法及び装置
JP5258921B2 (ja) * 2011-03-31 2013-08-07 株式会社小松製作所 工作機械及びその加工制御装置
JP6040665B2 (ja) * 2012-09-21 2016-12-07 株式会社ジェイテクト びびり振動抑制方法および工作機械
JP2014061567A (ja) * 2012-09-21 2014-04-10 Jtekt Corp 工作機械
CN102873381B (zh) * 2012-09-29 2013-12-11 西安交通大学 一种基于动力学模型的高速铣削工艺参数优化方法
JP2014140918A (ja) * 2013-01-23 2014-08-07 Hitachi Ltd 切削振動抑止方法、演算制御装置、および工作機械
KR102191166B1 (ko) * 2013-06-10 2020-12-16 두산공작기계 주식회사 회전 절삭공구의 실시간 회전수 설정방법 및 제어장치
KR101514147B1 (ko) * 2013-10-30 2015-04-21 현대위아 주식회사 상쇄 간섭 효과를 이용한 공작 기계의 채터 진동의 제어 방법 및 그 장치
EP2916187B1 (en) 2014-03-05 2018-11-07 Mikron Agie Charmilles AG Improved database for chatter predictions
JP6625794B2 (ja) * 2014-05-21 2019-12-25 Dmg森精機株式会社 びびり振動を抑制可能な主軸安定回転数の算出方法、その報知方法、主軸回転数制御方法及びncプログラム編集方法、並びにその装置。
JP6276139B2 (ja) * 2014-08-26 2018-02-07 オークマ株式会社 工作機械
US10295475B2 (en) 2014-09-05 2019-05-21 Rolls-Royce Corporation Inspection of machined holes
KR102183278B1 (ko) * 2014-09-22 2020-11-26 시티즌 도케이 가부시키가이샤 공작기계 및 이 공작기계의 제어장치
TWI564110B (zh) * 2014-11-20 2017-01-01 財團法人工業技術研究院 回授控制數値加工機及其方法
KR20160093279A (ko) 2015-01-29 2016-08-08 두산공작기계 주식회사 공작 기계의 채터 회피 장치 및 방법
CN104786101A (zh) * 2015-04-29 2015-07-22 常州信息职业技术学院 立铣切削颤振的监测方法
CN106142081B (zh) 2015-05-14 2021-03-02 发那科株式会社 对加工工具转速和工件进给速度进行调整的加工系统
JP6407810B2 (ja) * 2015-05-14 2018-10-17 ファナック株式会社 加工ツール回転数とワーク送り速度とを調整する加工システム
US10228669B2 (en) 2015-05-27 2019-03-12 Rolls-Royce Corporation Machine tool monitoring
JP6333785B2 (ja) * 2015-09-11 2018-05-30 ファナック株式会社 ワークに対する工具の振動の周期を算出する振動解析装置
CN106552824B (zh) * 2015-09-28 2018-12-07 宝山钢铁股份有限公司 基于信号自相关性的轧机辊系故障自动判断方法及系统
JP6821297B2 (ja) * 2015-09-29 2021-01-27 大同特殊鋼株式会社 切削工具のびびり振動抑制装置
TWI583484B (zh) * 2015-10-07 2017-05-21 財團法人工業技術研究院 一種顫震迴避方法及其裝置
CN105467928B (zh) * 2015-10-22 2018-01-19 黑龙江科技大学 基于二维颤振稳定极限图确定工程用稳定加工工艺参数图的方法
US10983507B2 (en) 2016-05-09 2021-04-20 Strong Force Iot Portfolio 2016, Llc Method for data collection and frequency analysis with self-organization functionality
US11327475B2 (en) 2016-05-09 2022-05-10 Strong Force Iot Portfolio 2016, Llc Methods and systems for intelligent collection and analysis of vehicle data
US11774944B2 (en) 2016-05-09 2023-10-03 Strong Force Iot Portfolio 2016, Llc Methods and systems for the industrial internet of things
US20180284735A1 (en) 2016-05-09 2018-10-04 StrongForce IoT Portfolio 2016, LLC Methods and systems for industrial internet of things data collection in a network sensitive upstream oil and gas environment
US11237546B2 (en) 2016-06-15 2022-02-01 Strong Force loT Portfolio 2016, LLC Method and system of modifying a data collection trajectory for vehicles
CN106112697B (zh) * 2016-07-15 2018-07-17 西安交通大学 一种基于3σ准则的铣削颤振自动报警阈值设定方法
JP6922405B2 (ja) * 2016-07-25 2021-08-18 大同特殊鋼株式会社 振動抑制装置
WO2018020963A1 (ja) * 2016-07-25 2018-02-01 大同特殊鋼株式会社 振動抑制装置
US10850360B2 (en) * 2016-07-29 2020-12-01 Okuma Corporation Information measuring device
JP6754722B2 (ja) * 2016-07-29 2020-09-16 オークマ株式会社 情報測定装置
JP6726579B2 (ja) * 2016-09-14 2020-07-22 オークマ株式会社 工作機械
KR101865081B1 (ko) 2016-09-30 2018-06-08 화천기공 주식회사 가공 정밀도 향상을 위한 공작 기계의 채터 검출방법
JP6803192B2 (ja) * 2016-10-17 2020-12-23 オークマ株式会社 工作機械
JP6803248B2 (ja) * 2017-01-27 2020-12-23 オークマ株式会社 工作機械の振動抑制方法及び装置
CN107297649B (zh) * 2017-06-05 2019-05-28 天津大学 一种基于小波包和希尔伯特变换的机床颤振在线监测方法
DE102017005488A1 (de) * 2017-06-09 2018-12-13 Blum-Novotest Gmbh Vorrichtung und Verfahren zum Messen und Kontrollieren eines drehantreibbaren Werkzeugs in einer Werkzeugmaschine
US11442445B2 (en) 2017-08-02 2022-09-13 Strong Force Iot Portfolio 2016, Llc Data collection systems and methods with alternate routing of input channels
EP3662331A4 (en) 2017-08-02 2021-04-28 Strong Force Iot Portfolio 2016, LLC METHODS AND SYSTEMS FOR DETECTION IN AN INDUSTRIAL INTERNET OF THINGS DATA COLLECTION ENVIRONMENT WITH LARGE AMOUNTS OF DATA
JP6629816B2 (ja) * 2017-10-31 2020-01-15 ファナック株式会社 診断装置および診断方法
US11449027B2 (en) 2017-12-12 2022-09-20 Mandelli Srl Method and a system for reducing vibrations in a mechanical processing for removal of chippings
JP6735317B2 (ja) * 2018-06-21 2020-08-05 Dmg森精機株式会社 工作機械、制御方法、および制御プログラム
JP7084242B2 (ja) * 2018-07-30 2022-06-14 Dmg森精機株式会社 工具刃数推定装置およびこれを備えた工作機械、ならびに工具刃数推定方法
CN109357826B (zh) * 2018-09-26 2020-06-19 江苏师范大学 一种车削刀具-工件非线性振动系统耦合特征的研究方法
JP7125746B2 (ja) * 2018-09-28 2022-08-25 学校法人同志社 びびり振動抑制方法およびびびり振動抑制システム
WO2020079874A1 (ja) * 2018-10-18 2020-04-23 住友電気工業株式会社 検知装置、ゲートウェイ装置、検知方法および検知プログラム
JP7225715B2 (ja) * 2018-11-12 2023-02-21 株式会社ジェイテクト 歯車加工方法及び歯車加工装置
JP6702405B1 (ja) * 2018-12-27 2020-06-03 Jfeスチール株式会社 冷間圧延機のチャタリング検出方法、冷間圧延機のチャタリング検出装置、冷間圧延方法、及び冷間圧延機
JP6959278B2 (ja) * 2019-02-27 2021-11-02 ファナック株式会社 びびり振動判定装置、機械学習装置及びシステム
JP7053526B2 (ja) * 2019-03-25 2022-04-12 ファナック株式会社 主軸振動測定システム、主軸振動測定方法、およびプログラム
JP7131454B2 (ja) * 2019-03-27 2022-09-06 ブラザー工業株式会社 数値制御装置、工作機械、制御プログラム、及び記憶媒体
WO2020208685A1 (ja) * 2019-04-08 2020-10-15 三菱電機株式会社 数値制御装置およびびびり振動の発生判定方法
CN109940460B (zh) * 2019-04-10 2020-10-09 哈尔滨理工大学 一种铣削已加工表面几何误差分布特性的检测方法
DE102019002752A1 (de) * 2019-04-15 2020-10-15 Gleason-Pfauter Maschinenfabrik Gmbh Verfahren des Erzeugens oder Bearbeitens einer Verzahnung
JP7218701B2 (ja) * 2019-09-30 2023-02-07 ブラザー工業株式会社 工作機械、フィードバック制御方法及びコンピュータプログラム
CN111230592A (zh) * 2020-02-16 2020-06-05 中国工程物理研究院机械制造工艺研究所 一种精密切削微纳米力学测试实验平台及方法
CN111618651B (zh) * 2020-06-08 2021-09-10 清华大学 一种用于航空发动机叶片精密加工的切削过程时变调控系统及方法
CN112828680A (zh) * 2021-02-09 2021-05-25 福州大学 基于切削颤振加速度的刀具磨损判别方法
US20230286107A1 (en) * 2022-03-09 2023-09-14 Applied Materials, Inc. Eddy current monitoring to detect vibration in polishing
CN115673874B (zh) * 2022-12-30 2023-03-14 北京精雕科技集团有限公司 数控机床转台在机动平衡检测的方法与装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176049U (ja) * 1986-12-16 1988-11-15
JPH05200648A (ja) * 1992-01-23 1993-08-10 Toshiba Mach Co Ltd Nc工作機械の主軸速度制御方式
JPH106181A (ja) * 1996-06-18 1998-01-13 Hitachi Seiko Ltd Nc工作機における主軸回転数の制御方法
JP2005074568A (ja) * 2003-09-01 2005-03-24 Mitsubishi Heavy Ind Ltd 多軸加工機、ワークの加工方法
JP2008290164A (ja) 2007-05-22 2008-12-04 Okuma Corp 工作機械の振動抑制装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176049A (ja) 1987-01-16 1988-07-20 Nec Corp デ−タ圧縮方式
US5170358A (en) * 1990-12-06 1992-12-08 Manufacturing Laboratories, Inc. Method of controlling chatter in a machine tool
US5784273A (en) * 1996-11-07 1998-07-21 Madhavan; Poovanpilli G. Method and system for predicting limit cycle oscillations and control method and system utilizing same
CN1128040C (zh) * 2001-12-19 2003-11-19 北京工业大学 机床切削颤振在线智能控制方法
JP2006150504A (ja) * 2004-11-29 2006-06-15 Mitsubishi Heavy Ind Ltd びびり振動予測防止加工装置、びびり振動予測防止加工装置のびびり振動予測防止方法
EP1967320A1 (en) * 2007-03-08 2008-09-10 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Method and system for reducing milling failure
JP4582660B2 (ja) * 2007-05-24 2010-11-17 オークマ株式会社 工作機械の振動抑制装置
JP4582661B2 (ja) * 2007-05-24 2010-11-17 オークマ株式会社 工作機械の振動抑制装置
US8229598B2 (en) * 2007-09-06 2012-07-24 Okuma Corporation Vibration suppressing device for machine tool
US8005574B2 (en) * 2008-07-08 2011-08-23 Okuma Corporation Vibration suppressing method and device
JP5234772B2 (ja) 2008-10-28 2013-07-10 オークマ株式会社 工作機械の振動抑制方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176049U (ja) * 1986-12-16 1988-11-15
JPH05200648A (ja) * 1992-01-23 1993-08-10 Toshiba Mach Co Ltd Nc工作機械の主軸速度制御方式
JPH106181A (ja) * 1996-06-18 1998-01-13 Hitachi Seiko Ltd Nc工作機における主軸回転数の制御方法
JP2005074568A (ja) * 2003-09-01 2005-03-24 Mitsubishi Heavy Ind Ltd 多軸加工機、ワークの加工方法
JP2008290164A (ja) 2007-05-22 2008-12-04 Okuma Corp 工作機械の振動抑制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2614922A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150306720A1 (en) * 2012-12-20 2015-10-29 Mitsubishi Heavy Industries , Ltd. Control device for working device, working device, control program for working device, control method for working device, and working method
US10525561B2 (en) * 2012-12-20 2020-01-07 Mitsubishi Heavy Industries, Ltd. Control device for working device, working device, control program for working device, control method for working device, and working method
WO2018185993A1 (ja) * 2017-04-04 2018-10-11 Dmg森精機株式会社 主軸回転速度制御装置
JP2018176296A (ja) * 2017-04-04 2018-11-15 Dmg森精機株式会社 主軸回転速度制御装置

Also Published As

Publication number Publication date
CN103079757A (zh) 2013-05-01
JP4942839B2 (ja) 2012-05-30
EP2614922B1 (en) 2016-04-20
KR101472890B1 (ko) 2014-12-16
KR20130056895A (ko) 2013-05-30
EP2614922A1 (en) 2013-07-17
JP2012056051A (ja) 2012-03-22
CN103079757B (zh) 2015-07-15
US9285797B2 (en) 2016-03-15
EP2614922A4 (en) 2014-05-14
US20130164092A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP4942839B2 (ja) びびり振動検出方法及びびびり振動回避方法、並びに工作機械
JP5793200B2 (ja) 工作機械の切削力検出装置、切削力検出方法、加工異常検出方法、および加工条件制御システム
US8682456B2 (en) Machine tool
JP6719678B2 (ja) 数値制御装置
JP2009036699A (ja) 表面形状測定装置
JP2014140918A (ja) 切削振動抑止方法、演算制御装置、および工作機械
JP2010120150A (ja) 工作機械の熱変形補正のための推定方法
JP2008290188A (ja) 振動抑制装置
JP6311635B2 (ja) 数値制御装置と制御方法
CN107817760B (zh) 机床
JP5226484B2 (ja) びびり振動抑制方法
JP3926739B2 (ja) ねじ切り加工制御方法及びその装置
JP6893792B2 (ja) 工作機械および振動抑制方法
JP4709588B2 (ja) ネジ切削加工制御方法及びその装置
CN108717287B (zh) 半闭环控制方式下数控机床进给系统摩擦误差峰值预测方法
WO2019077948A1 (ja) 切削加工装置
JP5446889B2 (ja) 研削盤および研削方法
JPH1190769A (ja) 工作機械の加減速制御装置および加減速制御方法
CN113874798B (zh) 数控装置
US8090468B2 (en) Multi-spindle phase controlled machining
CN107662131B (zh) 信息测定装置
JP5890275B2 (ja) 高速同期軸位置制御装置
JP2000167744A (ja) 数値制御装置
JP2019214092A (ja) 工作機械の送り軸の制御量算出方法、工作機械における送り軸の制御方法、工作機械、プログラム
JP2019025617A (ja) 工作機械における工具切込方向の制御装置及び制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043232.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137005653

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13820996

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011823290

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE