WO2012032574A1 - デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法 - Google Patents

デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法 Download PDF

Info

Publication number
WO2012032574A1
WO2012032574A1 PCT/JP2010/005499 JP2010005499W WO2012032574A1 WO 2012032574 A1 WO2012032574 A1 WO 2012032574A1 JP 2010005499 W JP2010005499 W JP 2010005499W WO 2012032574 A1 WO2012032574 A1 WO 2012032574A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
filter
unit
weighing
vibration component
Prior art date
Application number
PCT/JP2010/005499
Other languages
English (en)
French (fr)
Inventor
幸恵 伊東
孝幸 長井
清水 亮
Original Assignee
大和製衡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大和製衡株式会社 filed Critical 大和製衡株式会社
Priority to EP10856927.8A priority Critical patent/EP2615434B1/en
Priority to US13/820,130 priority patent/US9970809B2/en
Priority to PCT/JP2010/005499 priority patent/WO2012032574A1/ja
Priority to CN201080068545.6A priority patent/CN103038616B/zh
Priority to ES10856927.8T priority patent/ES2559179T3/es
Publication of WO2012032574A1 publication Critical patent/WO2012032574A1/ja
Priority to US15/346,581 priority patent/US9927283B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/01Testing or calibrating of weighing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/06Means for damping oscillations, e.g. of weigh beams
    • G01G23/10Means for damping oscillations, e.g. of weigh beams by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • G01G3/142Circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/16Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of frequency of oscillations of the body

Definitions

  • the present invention relates to a digital filter for a digital scale applied to a digital scale and a digital scale equipped with the same.
  • the present invention also relates to a filtering method using the digital filter for digital scale.
  • an analog weighing signal of an object to be measured detected by a weight sensor such as a load cell is converted into a digital weighing signal, and various controls are performed based on the digital weighing signal. Since the digital weighing signal includes vibration components such as vibration inherent to the digital scale and vibration due to external factors, the digital weighing signal is removed using a digital filter.
  • the input digital measurement is performed.
  • the frequency domain of the vibration component to be removed is changed by changing the transfer function according to the signal.
  • the method of changing the transfer function includes a method of recalculating filter coefficients and a method of changing the filter order (number of unit filters).
  • the method of recalculating the filter coefficient requires a large amount of repetitive calculation and requires a complicated calculation, resulting in a long calculation time. That is, when the filter coefficient is recalculated during the weighing of the weighing object, the time until the digital weighing signal falls within the predetermined allowable attenuation range (time until the weight value of the weighing object can be adopted) There is a problem that becomes longer.
  • the preset filter coefficient can be removed from the frequency domain of the vibration component and the digital weighing signal. If the frequency range of the vibration component is significantly different, the amplitude of the vibration component included in the filtered digital weighing signal may not converge within the allowable attenuation range, or the time until convergence may be increased. There is. As a result, there arises a problem that the weighing accuracy of the digital balance is deteriorated or the calculation time of the filter becomes long and the weighing time becomes long. In particular, in a combination weigher that performs combination calculation among digital scales, it is necessary to shorten the time for weighing one object (that is, one weighing cycle) as the combination calculation speeds up. It is not desirable for the to be long.
  • the present invention has been made to solve the above-described problems.
  • a digital filter for a digital scale capable of shortening a calculation time of a filter to be applied while maintaining weighing accuracy, a digital scale equipped with the same, and
  • An object of the present invention is to provide a filtering method using a digital filter for a digital scale.
  • a digital filter for a digital scale includes an FIR filter for filtering a digital weighing signal including a vibration component, and an amplitude of a vibration component included in the digital weighing signal filtered by the FIR filter within a predetermined allowable attenuation range.
  • a determination unit that determines whether or not the signal is within a predetermined cycle for each predetermined sampling of the digital weighing signal, and a control unit, wherein the FIR filter removes a vibration component in a predetermined frequency region.
  • an adaptive unit that removes a vibration component in a frequency region that can be changed, and the control unit determines a frequency region of the vibration component to be removed in the adaptive unit according to a determination result of the determination unit. It is configured to change.
  • vibration components in a predetermined frequency region are removed from the input digital measurement signal in the fixed part of the FIR filter. Components are reliably removed.
  • the frequency range of the vibration component to be removed from the input digital weighing signal is changed. Various generated vibration components are removed.
  • the frequency range of the vibration component that is generated from time to time is removed from the input digital weighing signal by the fixed unit without performing computation during one weighing cycle. Only for the adaptive portion, the calculation is performed to change the frequency region of the vibration component to be removed, so that the calculation amount of the filtering process in the FIR filter is reduced and the calculation time is shortened while preventing the measurement accuracy from being lowered. Can do. As described above, according to the present invention, it is possible to reduce the calculation time of the filter to be adapted while maintaining the measurement accuracy.
  • the control means may be configured to change a frequency region of a vibration component to be removed by the adaptive unit by changing a filter coefficient of the adaptive unit.
  • the filter coefficient of the adaptive unit by changing the filter coefficient of the adaptive unit, the frequency region of the vibration component to be removed in the adaptive unit can be greatly changed. Therefore, when it is determined that the filtered digital weighing signal is not easily within the allowable attenuation range based on the determination result of the determining means, the control means changes the filter coefficient of the adaptive unit, thereby enabling more reliable and early digital weighing.
  • the vibration component of the signal can be attenuated.
  • since the filter coefficient is changed only when necessary according to the determination result by the determination means, it is possible to reduce the number of times the filter coefficient is calculated.
  • control means may be configured to change the frequency region of the vibration component to be removed by the adaptive unit by increasing the filter order by a predetermined number. Accordingly, the vibration component to be removed is changed by changing the filter order of the adaptive unit according to whether the amplitude of the vibration component included in the filtered digital measurement signal is within a predetermined allowable attenuation range. The amount of computation of the filtering process in the adaptation unit can be reduced.
  • the fixing unit may be configured to remove the natural frequency of the weight sensor of the digital scale that weighs an object to be weighed from the input digital weighing signal.
  • the vibration component based on the natural frequency of the weight sensor of the digital scale which is the largest vibration component among the vibration components assumed in advance, is removed by the fixed portion. Can be quickly attenuated to the allowable attenuation range, and the amount of filtering processing in the allowable portion can be further reduced.
  • the adaptation unit may be configured by connecting a predetermined number of lattice type FIR filters. According to this configuration, since the lattice type FIR filter is employed as the adaptation unit, it is possible to reduce the calculation error of the filtering process in the adaptation unit.
  • the fixed portion may be configured by connecting a predetermined number of lattice type FIR filters. According to this configuration, since the lattice type FIR filter is employed as the fixed portion, it is possible to reduce the calculation error of the filtering process in the fixed portion.
  • the fixed unit may filter the digital weighing signal input to the FIR filter
  • the adaptive unit may filter the digital weighing signal filtered by the fixed unit. It may be configured. According to this configuration, of the vibration components included in the digital measurement signal, after the vibration component assumed in advance is removed in the fixed portion, the vibration component to be removed in the adaptive portion is removed in order to remove the remaining vibration component. Since the calculation for changing the frequency domain is performed, the calculation amount in the adaptive unit can be further reduced.
  • the digital scale according to the present invention includes a digital filter for digital scale having any one of the above-described configurations. Since the digital balance of the present invention includes the digital filter for digital balance that exhibits the above-described effects, the measurement speed of the digital balance can be increased without reducing the measurement accuracy of the digital balance.
  • the filtering method using the digital filter for a digital scale includes an FIR filter for filtering a digital weighing signal including a vibration component, and a vibration component included in the digital weighing signal filtered by the FIR filter.
  • Determining means for determining whether or not the amplitude of the signal is within a predetermined allowable attenuation range for each predetermined sampling of the digital weighing signal in one weighing cycle, and a control means, wherein the FIR filter has a predetermined frequency range
  • a fixing unit that removes the vibration component of the filter, and an adaptation unit that removes the vibration component in the frequency domain that can be changed, wherein the control unit filters the adaptive unit according to a determination result of the determination unit
  • the filter coefficient of the fixed part is calculated based on the natural frequency of the weight sensor of the digital balance, the weight of the digital balance which is the largest vibration component among the vibration components assumed in advance. A vibration component based on the natural frequency of the sensor is removed by the fixed portion.
  • the filter coefficient of the adaptive unit is calculated based on a predetermined integrated metric signal, the frequency component that the FIR filter removes in the adaptive unit can be set to a frequency region that matches the vibration component that can actually be generated. .
  • the filter coefficient is updated, the filter coefficient is calculated based on the digital weighing signal in the previous weighing cycle, so that the vibration component that is actually generated can be reliably removed in the adaptive unit. Accordingly, when the filtering process is performed using the digital filter, the number of times the filter coefficient is updated in the adaptive unit can be reduced. Accordingly, it is possible to shorten the calculation time of the filter to be applied while maintaining the weighing accuracy.
  • the “FIR filter” in the claims and the specification does not mean an actual filter circuit such as an electric circuit or an electronic circuit, and the fact that the digital weighing signal is filtered by the FIR filter is a control function.
  • the control unit (for example, the CPU of the microcomputer) of the device performs a control operation based on a control program stored in the storage unit (for example, the internal memory of the microcomputer) of the control device, so that the digital weighing signal is processed.
  • the transfer function is changed by changing the filter coefficient and / or the filter order.
  • one weighing cycle means that after a digital weighing signal obtained by detecting the weight of a certain weighing object is inputted, the weighing end processing of the weighing object is performed. Means between.
  • the “integrated weighing signal” in the claims and the specification means, for example, the sum of a plurality of digital weighing signals obtained when actually weighing a plurality of objects or samples of the objects to be weighed. Signal.
  • the present invention is configured as described above, and has an effect that the calculation time of the filter to be adapted can be shortened while maintaining the measurement accuracy.
  • FIG. 1 is a block diagram showing a schematic configuration of a digital scale to which a digital filter for a digital scale according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing a specific example of the fixing portion of the FIR filter provided in the digital filter for the digital scale of the digital scale shown in FIG.
  • FIG. 3 is a block diagram showing a specific example of the adaptation unit of the FIR filter provided in the digital filter for the digital scale of the digital scale shown in FIG.
  • FIG. 4 is a block diagram showing a specific example of the unit filter in the adaptive part of the FIR filter provided in the digital filter for the digital scale of the digital scale shown in FIG.
  • FIG. 5 is a flowchart showing the control operation in the filter coefficient calculation mode of the digital filter for the digital scale of this embodiment.
  • FIG. 6 is a flowchart showing a control operation in the filtering process mode of the digital filter for the digital scale according to the present embodiment.
  • FIG. 7 is a block diagram showing a reflection coefficient calculation filter in the digital filter for digital scale of the present embodiment.
  • FIG. 8 is a graph showing an example of the digital weighing signal x (n) input to the digital filter for the digital scale of this embodiment.
  • FIG. 9 is a graph showing an example of the digital weighing signal y (n) (m) after filtering the digital weighing signal x (n) shown in FIG.
  • FIG. 10 is an enlarged view of the graph shown in FIG. FIG.
  • FIG. 11 is a graph exemplifying before the change of the filter coefficient of the digital weighing signal y (n) (m) filtered by the digital filter for the digital scale of the present embodiment.
  • FIG. 12 is a graph exemplifying after changing the filter coefficient of the digital weighing signal y (n) (m) filtered by the digital filter for the digital scale of this embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a digital balance to which a digital filter for a digital balance according to an embodiment of the present invention is applied.
  • the digital balance 1 includes a weight sensor 2 for weighing an object to be weighed as shown in FIG.
  • a weight sensor 2 for example, a load cell is used.
  • the weight sensor 2 is connected to the control device 3, and the weight detected by the weight sensor 2 is amplified by the amplifier 4 and transmitted to the control device 3.
  • the amplifier 4 may be provided with a low pass filter for attenuating unnecessary high frequency components.
  • the control device 3 includes a control unit 30 that performs various calculations and a storage unit 34 that stores the results of the various calculations.
  • the control device 3 includes a control board (not shown) on which the control unit 30 and the storage unit 34 are mounted.
  • the control device 3 includes a microcomputer, for example, and the control unit 30 uses, for example, a CPU of the microcomputer.
  • As the storage unit 34 for example, an internal memory of this microcomputer is used.
  • the control unit 30 and the storage unit 34 are connected to each other.
  • the storage unit 34 stores various control programs for filtering processing and the like. Further, the storage unit 34 stores various data such as filter coefficients.
  • the control unit 30 reads out and executes the control program stored in the storage unit 34 to perform processing such as calculation and control.
  • control unit 30 may use a microcomputer that performs drive control of a hopper or the like provided in the digital balance 1, or a microcomputer or DSP dedicated to filtering processing in a digital filter, separately from the drive control microcomputer. (Digital signal processor) may be used.
  • the control device 3 has an A / D converter 35 that digitizes an analog weighing signal.
  • the A / D converter 35 digitizes the analog weighing signal amplified by the amplifier 4 and inputs it to the control unit 30 as a digital weighing signal.
  • This digital weighing signal includes various vibration components in addition to the DC component corresponding to the weight of the object to be weighed.
  • the digital scale 1 includes a display unit 5 that displays processing results of the control device 3, an operation unit 6 that inputs various settings of the control device 3, and a communication unit 7 that can communicate with an external computer 10. I have.
  • the display unit 5, the operation unit 6, the communication unit 7, and the control unit 30 exchange signals via the input / output interface 36.
  • the control unit 30 receives signals from the A / D converter 35, the operation unit 6, and the communication unit 7, and activates the filter coefficient calculation mode and the filtering processing mode based on these signals.
  • the control unit 30 performs filter calculation processing and determination processing in the filtering processing mode, and performs control to change the filter order and filter coefficient in accordance with the result of the determination processing in the filter coefficient calculation mode. Is stored in the storage unit 34.
  • the control unit 30 functions as an FIR (finite impulse response) filter 31, a determination unit 32, and a control unit 33. Therefore, the digital filter for a digital scale according to the present embodiment is realized by the control unit 30 that functions as the FIR filter 31, the determination unit 32, and the control unit 33.
  • control device 3 is configured by one control board, but the present invention is not limited to this as long as the same control can be performed. That is, for example, a plurality of control boards may be provided according to various controls, and the control device 3 may be configured by the plurality of control boards.
  • control device 3 is not necessarily provided in the digital scale 1.
  • the control device 3 may be controlled by the external control device 3 by connecting a personal computer or the like as the external control device 3.
  • control unit 30 functioning as the FIR filter 31 performs a filtering process on the digital weighing signal including the vibration component input from the A / D converter 35.
  • the FIR filter 31 includes a fixed unit 311 that removes vibration components in a predetermined frequency region and an adaptation unit 312 that removes vibration components in a frequency region that can be changed. Therefore, the digital weighing signal input from the A / D converter 35 is freed from predetermined vibration components such as the natural frequency of the digital balance in the fixing unit 311, and the adaptive unit 312, for example, uses the digital weighing signal 1. Thus, various vibration components generated during measurement due to opening / closing of the hopper provided in the combination weigher and external factors are removed.
  • the control unit 30 functioning as the determination unit 32 determines whether or not the amplitude of the vibration component included in the digital weighing signal filtered by the FIR filter 31 is within a predetermined allowable attenuation range. A determination is made every predetermined sampling of the weighing signal. Then, the control unit 33 changes the frequency component of the vibration component to be removed in the adaptation unit 312 according to the determination result of the determination unit 32, so that the fixed unit among the vibration components included in the input digital measurement signal is changed. The vibration component that is not removed in 311 is removed.
  • one weighing cycle means that a weighing end process (discharge process) of a weighing object is performed after a digital weighing signal obtained by detecting the weight of the weighing object is input. It means until it is called.
  • the frequency range of the vibration component that is assumed in advance in the input digital measurement signal is removed by the fixing unit 311 without performing the calculation during the measurement, and the frequency region of the vibration component that is generated as needed. Only the calculation of changing the frequency region of the vibration component to be removed in the adaptation unit 312 reduces the calculation amount of the filtering process in the adaptation unit 312 and reduces the computation time while preventing the measurement accuracy from being lowered. be able to. As described above, according to the digital filter for a digital scale of the present embodiment, it is possible to reduce the calculation time of the filter to be adapted while maintaining the weighing accuracy.
  • the control unit 30 increases the filter order of the adaptation unit 312 by a predetermined number, thereby removing the vibration component by the adaptation unit 312.
  • the frequency range of is changed. Thereby, the calculation amount of the filtering process in the adaptation part 312 can be reduced.
  • the adaptation unit 312 is configured by connecting m unit filters, which will be described later, and the number m of connections of the unit filters corresponds to the filter order.
  • FIGS. 2 to 4 are block diagrams showing specific examples of FIR filters provided in the digital filter for the digital scale of the digital scale shown in FIG. 2 is a block diagram showing the fixed unit
  • FIG. 3 is a block diagram showing the adaptive unit
  • FIG. 4 is a block diagram showing a unit filter of the adaptive unit.
  • the FIR filters shown in FIGS. 2 to 4 do not mean an actual filter circuit configured by an electric circuit, an electronic circuit, or the like, but are based on a control program stored in the storage unit 34. It is comprised by the control part 30 which carries out a control operation.
  • the adaptation unit 312 illustrated in FIG. 3 will be described.
  • the adaptation unit 312 is configured by virtually connecting m unit filters 310 illustrated in FIG. 4 in series.
  • the unit filter 310 is connected the m series, the filter coefficient calculation control unit 30 in the unit filter 310 (reflection coefficient will be described later in the present embodiment k m) in accordance with the filter order m while (k 1, k 2, ... , k m) means that repeated m times.
  • the unit filter 310 of this embodiment is configured by a lattice type FIR filter. By adopting the lattice type FIR filter, it is possible to reduce the calculation error of the filtering process in the adaptation unit 312.
  • m lattice FIR filters which are unit filters 310, are connected in series.
  • the lattice FIR filter has a forward prediction error f (n) (m) and a backward prediction error g (n) (for two inputs f (n) (m-1) and g (n) (m-1). m) is output.
  • each of the forward prediction errors f (n) (m) and g (n) (m) is input to the unit filter 310 in the next stage.
  • the unit filter 310 has a predetermined reflection coefficient k m. That is, the adaptive unit 312, the virtual, and the reflection coefficient k m is the number of connections have the same structural unit filter 310 vary depending on (filter order) m is constituted by m number connected.
  • Relationship of the reflection coefficient k m, forward prediction error f (n) (m) and backward prediction errors g (n) (m) is represented by the formula (4) from the following equation (1).
  • x (n) represents a digital weighing signal (input signal)
  • the adaptation unit 312 has a predetermined filter coefficient a i (m) .
  • the transfer function F (z) of the adaptation unit 312 is expressed using the filter coefficient a i (m) , the following equation (5) is obtained.
  • the filter coefficients a i (m) and the reflection coefficient k m has a relationship shown in the following equation (6).
  • Equation (7) The output signal y (n) (m) of the adaptation unit 312 that has been filtered using the transfer function F (z) shown in Equation (5) is expressed by Equation (7) below.
  • the input digital weighing signal x (n) in this embodiment, y ′ (n) (m ′ described later) will be described later. )
  • the output y (n) (m ) of the adaptation unit 312 can be obtained.
  • the unit filter 310 of the present embodiment is outputted in advance 1 / (1 + k m) is multiplied by the forward prediction error f (n) (m) and backward prediction errors g (n) (m) by the multiplier Therefore, the steady gain is 1. Therefore, regardless of the number of unit filters 310 connected (filter order m), the steady-state gain of the adaptation unit 312 can be made constant at 1.
  • the present invention is not limited to this.
  • the forward prediction error f (n) (m) and the backward prediction error g that are finally output without connecting such a multiplier to each of the unit filters 310 are used.
  • (N) (m) may be multiplied by a multiplication value corresponding to the filter order m at that time.
  • the transfer function F (z) of the adaptation unit 312 changes as the filter order, that is, the number of connections m of the unit filters 310 changes.
  • the transfer function F (z) of the adaptation unit 312 also changes when the filter coefficient a i (m) changes.
  • the filter coefficients a i (m) is changed has the same meaning as that a change in the reflection coefficient k m.
  • the relationship between the filter coefficient a ′ i (m) and the reflection coefficient k ′ m of the fixed unit 311 is also obtained in the same manner as the application unit 312. Accordingly, similarly, the output y ′ (n) (m) of the fixed unit 311 with respect to the digital weighing signal x (n) can be obtained.
  • Such a digital scale 1 can be applied to, for example, a combination scale.
  • the combination weigher includes a plurality of weight sensors 2, a plurality of amplifiers 4 corresponding thereto, a multiplexer (not shown) to which output signals of the plurality of amplifiers 4 are input, and a control device 3. Yes.
  • the analog weighing signals detected by the plurality of weight sensors 2 are amplified by the corresponding amplifiers 4 and input to the A / D converter 35 of the control device 3 via the multiplexer.
  • the analog weighing signal input to the A / D converter 35 is digitized and output as a digital weighing signal x (n).
  • the digital weighing signal x (n) is input to the control unit 30 and filtered by the control unit 30 that functions as the FIR filter 31.
  • the control unit 30 outputs the filtered output signal y (n) (m) .
  • the filtered output signal y (n) (m) is converted into a weight value by the control unit 30.
  • the converted weight value is stored in the storage unit 34 and displayed on the display unit 5.
  • FIG. 5 is a flowchart showing the control operation in the filter coefficient calculation mode of the digital filter for the digital balance of the present embodiment
  • FIG. 6 is a flowchart showing the control operation in the filtering process mode of the digital filter for the digital scale of the present embodiment. It is.
  • the control unit 30 executes the filter coefficient calculation mode shown in FIG.
  • the control unit 30 calculates the reflection coefficient k ′ m of the fixed unit 311 of the FIR filter 31 and stores it in the storage unit 34 (step SA1). Specifically, by inputting a sine wave corresponding to the natural frequency of the weight sensor 2 of the digital scale as a sample signal to the reflection coefficient calculation filter, the control unit 30 sets the reflection coefficient k ′ m of the fixed unit 311. Calculate.
  • the control unit 30 calculates the reflection coefficient k m of the adaptive part 312 of the FIR filter 31, the storage unit 34 (step SA2 and SA3). Specifically, by acquiring sample data x s (n) related to the digital weighing signal (step SA2) and inputting the sample data x s (n) to the reflection coefficient calculation filter, the control unit 30 adapts. calculating a reflection coefficient k m of the parts 312 (step SA3).
  • the sample data x s (n) may be, for example, a digital weighing signal obtained when actually weighing an object to be weighed or a sample of an object to be weighed, or actually sample a plurality of objects to be weighed or objects to be weighed.
  • a plurality of digital weighing signals obtained at the time of weighing may be added together and averaged integrated weighing signal or a signal obtained by filtering the digital weighing signal or the integrated weighing signal with some filter.
  • FIG. 7 is a block diagram showing a reflection coefficient calculation filter in the digital filter for a digital scale of the present embodiment.
  • the reflection coefficient calculation filter is used separately from the filter for filtering processing.
  • each reflection coefficient is calculated based on the filter for filtering processing (that is, the filters shown in FIGS. 2 and 3). You may calculate.
  • the reflection coefficient calculation filter 330 shown in FIG. 7 is obtained by connecting m units obtained by removing the forward-side and backward-facing multipliers from the unit filter 310 shown in FIG. 5 (filter order is m). is there.
  • the forward prediction error when the input to the reflection coefficient calculation filter 330 shown in FIG. 7 u (n) (m) , when the backward prediction errors and v (n) (m), the reflection coefficient k m and the filter coefficients a i (m) has the following relationship.
  • the reflection coefficients k m and k ′ m calculated in this way are stored in the storage unit 34.
  • the reflection coefficient k 'm, k m of the fixed portion 311 and / or adaptation unit 312, as shown in FIG. 1, may be computed in an external computer 10 connected via the communication unit 7 of the digital balance 1.
  • Reflection coefficient k 'm as described above, filtering processing using a fixed portion 311 and the adaptive unit 312 k m is set is performed.
  • the control unit 30 executes the following filtering processing mode using the number of measurement cycles j and the counter c (step SA5).
  • the filtering processing mode may be executed after receiving the operator's mode switching operation, or may be automatically executed by the control unit 30.
  • the filter order m of the fixed unit 311 is also set to a predetermined value M ′ (fixed value).
  • the number of weighing cycles j is given for the sake of convenience to mean the order of a plurality of input signals sent from the gravity sensor 2. That is, when the number of weighing cycles j increases by 1, this means that the next weighing cycle is started.
  • the control unit 30 inputs the acquired digital input signal x j (n) to the fixed unit 311 of the FIR filter 31, and calculates and outputs the output signal y ′ j (n) (m) (step SB3).
  • control unit 30 uses the fixed unit 311 based on the acquired digital input signal x j (n), the set reflection coefficient k ′ m, and the filter order m ′. Equation (7) is calculated and an output signal y ′ j (n) (m) is output.
  • control unit 30 inputs the signal y ′ j (n) (m) output from the fixing unit 311 to the adaptation unit 312 and calculates and outputs the output signal y j (n) (m) (step). SB4). That is, the control unit 30, the adaptation section 312, the input signal y 'j (n) (m), based on the reflection coefficient is set k m and filter order m, the formula (4) from equation (1) and (7) is calculated and an output signal y j (n) (m) is output.
  • the control unit 30 stores the signal y j (n) (m) output from the adaptation unit 312 in the storage unit 34 and displays it on the display unit 5 via the input / output interface 36 (step SB5).
  • the control unit 30 functions as the determination unit 32. That is, the control unit 30 determines whether or not the amplitude of the vibration component included in the digital weighing signal y j (n) (m) filtered by the FIR filter 31 is within a predetermined allowable attenuation range V ( Steps SB6 and SB7). Specifically, first, the digital weighing signal y j (n) (m) output from the adaptation unit 312 and the digital weighing signal y j (n ⁇ 1) (m) output from the adaptation unit 312 in the previous sampling. Then, the fluctuation amount ⁇ y j (n) (m) is calculated (step SB6).
  • the fluctuation amount ⁇ y j (n) (m) is expressed by the following equation (15).
  • a moving average of the digital weighing signal y j (n) (m) may be calculated.
  • the control unit 30 reads a predetermined allowable attenuation range V stored in the storage unit 34 and compares it with the calculated variation ⁇ y j (n) (m) (step SB7). When the fluctuation amount ⁇ y j (n) (m) is smaller than the allowable attenuation range V, that is, when it is determined that the filtered digital weighing signal y j (n) (m) is sufficiently attenuated (Yes in step SB7). ), The control unit 30 determines whether or not the measurement end processing (discharge processing in the combination weigher) has been performed (step SB8). If the measurement end process has been performed (Yes in step SB8), the filtering process mode is terminated.
  • the measurement end processing discharge processing in the combination weigher
  • the filtering process in step SB4 is performed by the adaptation unit 312 whose filter order is m + q.
  • the control unit 30 performs subsequent sampling until the measurement end process is performed without further increasing the filter order m of the adaptation unit 312. (Steps SB8 and SB9).
  • the filter order m (() of the adaptive unit 312 depends on whether or not the amplitude of the vibration component included in the filtered digital weighing signal y j (n) (m) is within the predetermined allowable attenuation range V.
  • the vibration component to be removed is changed by changing the number m) of unit filters 330 connected in the adaptation unit 312, the amount of filtering processing in the adaptation unit 312 can be reduced.
  • a predetermined number of sampling filter order m from equal to or greater than the maximum value M not smaller than the allowable attenuation range V, it is necessary to update the reflection coefficients k m Error notification.
  • the filter order m of the adaptation unit 312 is reset to the initial set value p (step SB1).
  • step SA6 When the filter order m of the adaptation unit 312 is equal to or greater than the maximum value M (Yes in step SA6), the control unit 30 increases the counter c by 1 (step SA9), and whether the counter c has reached the predetermined value C. It is determined whether or not (step SA10). That is, the control unit 30 determines whether or not the filter order m of the adaptation unit 312 is equal to or greater than the maximum value M continuously in a preset number C of measurement cycles. If the counter c is not equal to the predetermined value C (No in step SA10), the count cycle number j is incremented by 1 without resetting the counter c (step SA8).
  • the filter coefficient a i (m) of the adaptation unit 312 By changing the filter coefficient a i (m) of the adaptation unit 312, the frequency region of the vibration component to be removed by the adaptation unit 312 can be greatly changed. Therefore, when it is determined that the digital weighing signal y j (n) (m) subjected to the filtering process based on the determination result of the predetermined weighing cycle by the determination unit 32 is not easily within the allowable attenuation range V, the control unit 33 performs the adaptation unit.
  • the filter coefficient a i (m) of 312 By changing the filter coefficient a i (m) of 312, the vibration component of the digital weighing signal x j (n) in the next and subsequent weighing cycles can be attenuated more reliably and quickly.
  • the determination unit 32 determines each time the digital weighing signal x j (n) is sampled once.
  • the present invention is not limited to this, and for example, every predetermined number of samplings.
  • the filtered digital weighing signal y j (n) (m) may be determined.
  • the frequency region of the vibration component assumed in advance is removed by the fixing unit 311 without performing calculation during one weighing cycle, and at any time. Since only the frequency region of the generated vibration component is changed by the adaptive unit 312 to change the frequency region of the vibration component to be removed, the calculation amount of the filtering process in the FIR filter 31 is reduced while preventing the measurement accuracy from being lowered. The calculation time can be shortened.
  • the input digital weighing signal x j (n) is filtered by the fixing unit 311 and then filtered by the adaptation unit 312.
  • the vibration component assumed in advance is removed by the fixing unit 311 and then removed by the adaptation unit 312 in order to remove the remaining vibration component. Since the calculation for changing the frequency domain of the vibration component to be performed is performed, the calculation amount in the adaptation unit 312 can be further reduced.
  • the filter coefficient (reflection coefficient k ′ m ) of the fixed portion 311 is calculated based on the natural frequency of the weight sensor 2 of the digital balance 1, it is the largest vibration component among the vibration components assumed in advance. A vibration component based on the natural frequency of the weight sensor 2 of the digital balance 1 is removed by the fixing unit 311. Moreover, since the filter coefficient of the adaptive part 312 (the reflection coefficient k m) is calculated on the basis of a predetermined integration weighing signal, immediately the vibration component FIR filter 31 may actually generate a frequency component to be removed by the adaptive unit 312 Frequency range can be set.
  • the filter coefficient is updated, the filter coefficient is calculated based on the digital weighing signal in the previous weighing cycle, so that the vibration component that is actually generated can be reliably removed in the adaptation unit 312.
  • the filtering process is performed using the digital filter, the number of times the filter coefficient is updated in the adaptation unit 312 can be reduced. Accordingly, it is possible to shorten the calculation time of the filter to be applied while maintaining the weighing accuracy.
  • FIG. 8 is a graph showing an example of the digital weighing signal x (n) input to the digital filter for the digital scale according to the present embodiment
  • FIG. 9 shows a state after filtering the digital weighing signal x (n) shown in FIG. It is a graph which shows an example of digital measurement signal y (n) (m) of.
  • FIG. 10 is an enlarged view of the graph shown in FIG.
  • the digital weighing signal x (n) shown in FIG. 8 is obtained by weighing 40 g of an object to be measured, and the sampling time T is 5 milliseconds.
  • the fixed portion 311 has a reflection coefficient k ′ m so as to remove the natural frequency of the weight sensor 2 of the digital balance 1 that measures the object to be weighed.
  • the dot line is the input signal x (n)
  • the broken line is the output signal y ′ (n) (m ′) of the fixing unit 311
  • the output signal y (n) (20) in the case, the output signal y (n) (40) when the chain line is fixed at the filter order m 40 in the adaptation unit 312, and the circles in the adaptation unit 312.
  • Each of the output signals y (n) (m) filtered while changing the filter order m based on the adapted control is shown.
  • FIG. 11 and FIG. 12 are graphs illustrating the change before and after the change of the filter coefficient of the digital weighing signal y (n) (m) filtered by the digital filter for the digital scale of this embodiment.
  • FIG. 11 shows the filter coefficient before change
  • FIG. 12 shows the filter coefficient after change.
  • the output signal obtained for the same digital weighing signal input x (n) (not shown) is shown, and the broken line indicates the output signal y ′ (n) of the fixing unit 311.
  • the filter coefficients a i of the adaptive part 312 (m) the reflection coefficient k m
  • the filter coefficients a i of the adaptive part 312 (m) the reflection coefficient k m
  • the present invention is not limited to the above-described embodiments, and various improvements, changes, and modifications can be made without departing from the spirit of the present invention.
  • the same lattice type filter as that of the adaptation unit 312 is applied as the fixed unit 311, but the present invention is not limited to this, and a digital filter such as a moving average filter or a notch filter is also applied. Is possible.
  • a plurality of fixing portions 311 may be provided according to the vibration component unique to the device.
  • the determination means 32 in one weighing cycle When the filter order m exceeds the maximum value M, the filter coefficient a i (m) is calculated and updated, and the digital weighing signal x j (n) is updated again with the updated filter coefficient a i (m) . It may be refiltered.
  • the processes of the fixed unit 311 and the adaptive unit 312 are performed in series, but may be performed in parallel.
  • either the fixed unit 311 or the adaptive unit 312 may be processed first.
  • the adaptive unit 312 performs processing after the fixed unit 311 as in the present embodiment. This is preferable for reducing the amount of calculation in the unit 312.
  • the digital filter for a digital scale is applied to a combination scale that is a digital scale.
  • the present invention is not limited to this example.
  • only one weight sensor 2 is provided. It can also be applied to a digital scale or the like.
  • a digital filter for a digital balance according to the present invention, a digital balance including the digital filter, and a filtering method using the digital filter are applied to a digital balance that performs various controls using a digital measurement signal including a vibration component whose frequency characteristics change with time. Useful.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Feedback Control In General (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

 計量精度を保持しつつ適応させるフィルタの演算時間を短縮することができるデジタル秤用デジタルフィルタ、これを備えたデジタル秤及びデジタル秤用デジタルフィルタを用いた濾波処理方法を提供する。 FIRフィルタ31の固定部311によって、デジタル計量信号xj(n)のうち、所定の周波数領域の振動成分が除去される。判定手段32は、FIRフィルタ31によって濾波処理されたデジタル計量信号yj(n)(m)に含まれる振動成分の振幅が所定の許容減衰範囲V内であるか否かを判定する。制御手段33は、判定手段32の判定結果に応じてFIRフィルタ31の適応部312において除去する振動成分の周波数領域を変化させる。FIRフィルタ31の適応部312においては、制御手段33において変更された周波数領域の振動成分が濾波処理される。

Description

デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法
 本発明は、デジタル秤に適用されるデジタル秤用デジタルフィルタ及びそれを備えたデジタル秤に関する。また、当該デジタル秤用デジタルフィルタを用いた濾波処理方法に関する。
 デジタル秤においては、ロードセル等の重量センサによって検出された被計量物のアナログ計量信号がデジタル計量信号に変換された上で当該デジタル計量信号に基づいて各種制御が行われる。デジタル計量信号には、デジタル秤に固有の振動や外的要因による振動等の振動成分が含まれているため、デジタルフィルタを用いてこれを除去している。
 このようなデジタルフィルタにおいては、デジタル計量信号に含まれる振動成分のうち、外的要因による振動等のように、周波数特性が時間的に変化する振動成分を除去するために、入力されるデジタル計量信号に応じて伝達関数を変化させることで除去する振動成分の周波数領域を変化させている。ここで、伝達関数を変化させる方法には、フィルタ係数を再演算する方法と、フィルタ次数(単位フィルタの数)を変化させる方法とがある。
 しかし、フィルタ係数を再演算する方法は、繰り返し演算量が多く、複雑な演算を要するため、演算時間が長くなる。即ち、被計量物の計量中にフィルタ係数を再演算することとなると、デジタル計量信号が所定の許容減衰範囲内になるまでの時間(被計量物の重量値として採用可能となるまでの時間)が長くなる問題がある。
 このような問題に対し、例えば、下記特許文献1には、フィルタ手段で濾波処理されたデジタル計量信号に含まれる振動成分の振幅が所定の許容減衰範囲内であるか否かを1計量サイクル中のデジタル計量信号の所定サンプリングごとに判定し、振動成分の振幅が許容減衰範囲内でない場合に、フィルタ手段のフィルタ次数を増加させることにより、フィルタ手段で除去する振動成分の周波数領域を変化させるデジタルフィルタが開示されている。このようなデジタルフィルタによれば、濾波処理されたデジタル計量信号に含まれる振動成分の振幅が所定の許容減衰範囲内であるか否かに応じてフィルタ手段のフィルタ次数を変化させることにより除去する振動成分を変化させるため、フィルタ手段における濾波処理の演算量を低減させることができる。
特許3394302号公報
 しかし、特許文献1に記載のデジタルフィルタのようにフィルタ次数を変化させる方法では、伝達関数が大きく変化しないため、予め設定されたフィルタ係数が除去可能な振動成分の周波数領域とデジタル計量信号に含まれる振動成分の周波数領域とが大きく異なる場合には、濾波処理されたデジタル計量信号に含まれる振動成分の振幅が許容減衰範囲内に収束しなかったり、収束するまでの時間が長くなったりするおそれがある。この結果、デジタル秤の計量精度が悪化したり、フィルタの演算時間が長くなって計量時間が長くなったりする問題が生じる。特に、デジタル秤のうち、組合せ演算を行う組合せ秤においては、組合せ演算の高速化に伴い、1つの被計量物を計量する時間(即ち、1計量サイクル)も短くする必要があるため、計量時間が長くなることは望ましくない。
 本発明は、以上のような課題を解決すべくなされたものであり、計量精度を保持しつつ適応させるフィルタの演算時間を短縮することができるデジタル秤用デジタルフィルタ、これを備えたデジタル秤及びデジタル秤用デジタルフィルタを用いた濾波処理方法を提供することを目的とする。
 本発明に係るデジタル秤用デジタルフィルタは、振動成分を含むデジタル計量信号を濾波処理するFIRフィルタと、前記FIRフィルタで濾波処理されたデジタル計量信号に含まれる振動成分の振幅が所定の許容減衰範囲内であるか否かを1計量サイクル中のデジタル計量信号の所定サンプリングごとに判定する判定手段と、制御手段と、を備え、前記FIRフィルタは、所定の周波数領域の振動成分を除去する固定部と、変化させることが可能な周波数領域の振動成分を除去する適応部とを有し、前記制御手段は、前記判定手段の判定結果に応じて、前記適応部において除去する振動成分の周波数領域を変化させるように構成されている。
 上記デジタル秤用デジタルフィルタによれば、FIRフィルタの固定部において、入力されたデジタル計量信号のうち所定の周波数領域の振動成分が除去されるため、デジタル秤の固有振動等の予め想定される振動成分が確実に除去される。FIRフィルタの適応部においては、入力されたデジタル計量信号から除去する振動成分の周波数領域を変化させることにより、被計量物を投入することにより発生するデジタル秤の揺れや外的要因によって計量中に生じた様々な振動成分が除去される。
 このように、入力されるデジタル計量信号のうち、予め想定される振動成分の周波数領域については、1計量サイクル中に演算を行うことなく固定部で除去しつつ、随時発生する振動成分の周波数領域についてのみ、適応部において除去する振動成分の周波数領域を変化させる演算を行うため、計量精度が低下することを防止しつつ、FIRフィルタにおける濾波処理の演算量を減少させ、演算時間を短縮することができる。以上のように、本発明によれば、計量精度を保持しつつ適応させるフィルタの演算時間を短縮することができる。
 上記デジタル秤用デジタルフィルタにおいて、前記制御手段は、前記適応部のフィルタ係数を変更することにより、前記適応部において除去する振動成分の周波数領域を変化させるように構成されていてもよい。この構成によれば、適応部のフィルタ係数を変更することにより、適応部において除去する振動成分の周波数領域を大きく変えることができる。従って、判定手段による判定結果により濾波処理されたデジタル計量信号が許容減衰範囲内になり難いと判断された際、制御手段が適応部のフィルタ係数を変更することにより、より確実且つ早期にデジタル計量信号の振動成分を減衰させることができる。このように、判定手段による判定結果に応じて必要なときのみフィルタ係数が変更されるため、フィルタ係数の演算回数を減少させることができる。
 上記デジタル秤用デジタルフィルタにおいて、前記制御手段は、フィルタ次数を所定数増加させることにより、適応部で除去する振動成分の周波数領域を変化させるように構成されていてもよい。これにより、濾波処理されたデジタル計量信号に含まれる振動成分の振幅が所定の許容減衰範囲内であるか否かに応じて適応部のフィルタ次数を変化させることにより除去する振動成分を変化させるため、適応部における濾波処理の演算量を低減させることができる。
 上記デジタル秤用デジタルフィルタにおいて、前記固定部は、入力されたデジタル計量信号のうち、被計量物を計量するデジタル秤の重量センサの固有振動数を除去するように構成されていてもよい。この構成によれば、予め想定される振動成分のうち、最も大きい振動成分であるデジタル秤の重量センサの固有振動数に基づく振動成分が固定部で除去されるため、濾過処理されたデジタル計量信号を迅速に許容減衰範囲に減衰させることができ、許容部における濾波処理の演算量をより低減させることができる。
 上記デジタル秤用デジタルフィルタにおいて、前記適応部は、格子型FIRフィルタが所定数接続されることにより構成されていてもよい。この構成によれば、適応部として格子型FIRフィルタが採用されているため、適応部における濾波処理の演算誤差を少なくすることができる。
 上記デジタル秤用デジタルフィルタにおいて、前記固定部は、格子型FIRフィルタが所定数接続されることにより構成されていてもよい。この構成によれば、固定部として格子型FIRフィルタが採用されているため、固定部における濾波処理の演算誤差を少なくすることができる。
 上記デジタル秤用デジタルフィルタにおいて、前記固定部は、前記FIRフィルタに入力されたデジタル計量信号を濾波処理し、前記適応部は、前記固定部で濾波処理されたデジタル計量信号を濾波処理するように構成されていてもよい。この構成によれば、デジタル計量信号に含まれる振動成分のうち、予め想定される振動成分が固定部において除去された後、残りの振動成分を除去するために、適応部において除去する振動成分の周波数領域を変化させるための演算が行われるため、適応部における演算量をより低減させることができる。
 また、本発明に係るデジタル秤は、上記何れかの構成を有するデジタル秤用デジタルフィルタを備えている。本発明のデジタル秤は、上記効果を奏するデジタル秤用デジタルフィルタを備えているため、デジタル秤の計量精度を低下させることなくデジタル秤の計量速度を高速化することができる。
 また、本発明に係るデジタル秤用デジタルフィルタを用いた濾波処理方法は、振動成分を含むデジタル計量信号を濾波処理するFIRフィルタと、前記FIRフィルタで濾波処理されたデジタル計量信号に含まれる振動成分の振幅が所定の許容減衰範囲内であるか否かを1計量サイクル中のデジタル計量信号の所定サンプリングごとに判定する判定手段と、制御手段と、を備え、前記FIRフィルタは、所定の周波数領域の振動成分を除去する固定部と、変化させることが可能な周波数領域の振動成分を除去する適応部とを有し、前記制御手段は、前記判定手段の判定結果に応じて前記適応部のフィルタ係数を変更するように構成されているデジタル秤用デジタルフィルタを用いた濾波処理方法であって、固定部のフィルタ係数をデジタル秤の重量センサの固有振動数に応じた正弦波に基づいて演算するステップと、適応部の格子型フィルタのフィルタ係数を所定の積算計量信号に基づいて演算するステップと、前記デジタル計量信号を前記デジタル秤用デジタルフィルタに入力するステップと、入力された前記デジタル計量信号を前記固定部及び前記適応部においてそれぞれ演算されたフィルタ係数に基づいて濾波処理するステップと、を含み、前記判定手段が、所定の計量サイクルの後、前記フィルタ係数を変更すべきと判断した場合、前記制御手段が、前記適応部のフィルタ係数を前回の計量サイクルにおけるデジタル計量信号に基づいて演算し、更新するものである。
 上記濾波処理方法によれば、固定部のフィルタ係数がデジタル秤の重量センサの固有振動数に基づいて演算されるため、予め想定される振動成分のうち、最も大きい振動成分であるデジタル秤の重量センサの固有振動数に基づく振動成分が固定部で除去される。また、適応部のフィルタ係数が所定の積算計量信号に基づいて演算されるため、FIRフィルタが適応部で除去する周波数成分を実際に発生し得る振動成分に即した周波数領域に設定することができる。さらに、フィルタ係数を更新する際、当該フィルタ係数が前回の計量サイクルにおけるデジタル計量信号に基づいて演算されるため、実際に発生している振動成分を適応部において確実に除去することができる。これにより、デジタルフィルタを用いて濾波処理する際に、適応部においてフィルタ係数の更新する回数を減少させることができる。従って、計量精度を保持しつつ適応させるフィルタの演算時間を短縮することができる。
 以下、特許請求の範囲及び明細書の記載に用いられる用語の定義について説明する。
 特許請求の範囲及び明細書にいう「FIRフィルタ」は、電気回路や電子回路等のような現実のフィルタ回路を意味するものではなく、FIRフィルタによってデジタル計量信号が濾波処理されることは、制御装置の制御部(例えば、マイクロコンピュータのCPU等)が制御装置の記憶部(例えば、マイクロコンピュータの内部メモリ)に記憶された制御プログラムに基づいて制御動作することによって、デジタル計量信号が演算処理されることを意味する。FIRフィルタは、伝達関数がフィルタ係数及び/又はフィルタ次数を変更することにより変化するものである。
 特許請求の範囲及び明細書にいう「1計量サイクル」とは、ある被計量物の重量を検出することによって得られたデジタル計量信号が入力されてから当該被計量物の計量終了処理が行われるまでの間を意味する。
 特許請求の範囲及び明細書にいう「積算計量信号」とは、例えば、複数の被計量物又は被計量物のサンプルを実際に計量した際に得られた複数のデジタル計量信号を足し合わせ、平均した信号を意味する。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明は以上に説明したように構成され、計量精度を保持しつつ適応させるフィルタの演算時間を短縮することができるという効果を奏する。
図1は本発明の一実施形態に係るデジタル秤用デジタルフィルタが適用されたデジタル秤の概略構成を示すブロック図である。 図2は図1に示すデジタル秤のデジタル秤用デジタルフィルタに設けられたFIRフィルタの固定部の具体例を示すブロック図である。 図3は図1に示すデジタル秤のデジタル秤用デジタルフィルタに設けられたFIRフィルタの適応部の具体例を示すブロック図である。 図4は図1に示すデジタル秤のデジタル秤用デジタルフィルタに設けられたFIRフィルタの適応部における単位フィルタの具体例を示すブロック図である。 図5は本実施形態のデジタル秤用デジタルフィルタのフィルタ係数演算モードにおける制御動作を示すフローチャートである。 図6は本実施形態のデジタル秤用デジタルフィルタの濾波処理モードにおける制御動作を示すフローチャートである。 図7は本実施形態のデジタル秤用デジタルフィルタにおける反射係数演算用フィルタを示すブロック図である。 図8は本実施形態のデジタル秤用デジタルフィルタに入力されるデジタル計量信号x(n)の一例を示すグラフである。 図9は図8に示すデジタル計量信号x(n)を濾波処理した後のデジタル計量信号y(n)(m)の一例を示すグラフである。 図10は図9に示すグラフを拡大して示した図である。 図11は本実施形態のデジタル秤用デジタルフィルタで濾波処理したデジタル計量信号y(n)(m)のフィルタ係数の変更前を例示するグラフである。 図12は本実施形態のデジタル秤用デジタルフィルタで濾波処理したデジタル計量信号y(n)(m)のフィルタ係数の変更後を例示するグラフである。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 まず、本発明の一実施形態に係るデジタル秤用デジタルフィルタが適用されたデジタル秤の概略構成について説明する。図1は、本発明の一実施形態に係るデジタル秤用デジタルフィルタが適用されたデジタル秤の概略構成を示すブロック図である。
 本実施形態のデジタル秤1は、図1に示すように、被計量物を計量する重量センサ2を備えている。重量センサ2には、例えば、ロードセルが用いられる。重量センサ2は、制御装置3に接続されており、重量センサ2で検出された重量は、増幅器4で増幅された上で制御装置3に送信される。なお、増幅器4には、不要な高周波成分を減衰させるためのローパスフィルタが設けられていてもよい。
 制御装置3は、各種演算を行う制御部30及び各種演算の結果を記憶する記憶部34を有している。制御装置3は、例えば、制御部30及び記憶部34が実装された制御基板(図示せず)により構成される。制御装置3は、例えば、マイクロコンピュータを備えており、制御部30には、例えばこのマイクロコンピュータのCPUが用いられる。記憶部34には、例えばこのマイクロコンピュータの内部メモリが用いられる。制御部30と記憶部34とは相互に接続されている。記憶部34には濾波処理等のための各種制御プログラムが格納されている。さらに、記憶部34はフィルタ係数等の各種データを記憶する。また、制御部30は、記憶部34に格納された制御プログラムを読み出して実行することにより、演算等の処理や制御を行う。なお、制御部30は、デジタル秤1に設けられるホッパ等の駆動制御を行うマイクロコンピュータを用いてもよいし、駆動制御用のマイクロコンピュータとは別に、デジタルフィルタにおける濾波処理専用のマイクロコンピュータ又はDSP(デジタルシグナルプロセッサ)を用いてもよい。
 制御装置3は、アナログ計量信号をデジタル化するA/D変換器35を有している。A/D変換器35は、増幅器4で増幅されたアナログ計量信号をデジタル化し、デジタル計量信号として制御部30に入力する。このデジタル計量信号には、被計量物の重量に相当する直流成分の他に種々の振動成分が含まれている。
 また、デジタル秤1は、制御装置3の処理結果等を表示する表示部5と、制御装置3の各種設定入力等を行う操作部6と、外部のコンピュータ10と通信可能な通信部7とを備えている。表示部5、操作部6及び通信部7と制御部30とは、入出力インターフェイス36を介して信号の授受を行う。
 制御部30は、A/D変換器35、操作部6及び通信部7から信号を受け取り、これらの信号に基づいてフィルタ係数演算モード及び濾波処理モードを起動する。制御部30は、濾波処理モードにおいては、フィルタ演算処理及び判定処理を行い、フィルタ係数演算モードにおいては、判定処理の結果に応じてフィルタ次数及びフィルタ係数を変更する制御を行い、これらの処理結果を記憶部34に記憶する。換言すると、制御部30は、FIR(有限インパルス応答)フィルタ31、判定手段32及び制御手段33として機能する。従って、本実施形態のデジタル秤用デジタルフィルタは、FIRフィルタ31、判定手段32及び制御手段33として機能する制御部30によって実現される。
 なお、本実施形態においては1つの制御基板で制御装置3を構成しているが、本発明は同様の制御を行い得る限りこれに限られない。即ち、例えば、各種制御に応じて複数の制御基板を設け、その複数の制御基板で制御装置3を構成してもよい。また、この制御装置3を、必ずしもデジタル秤1に備える必要はなく、例えば、パソコン等を外部の制御装置3として接続することにより当該外部の制御装置3で制御することとしてもよい。
 本実施形態のデジタル秤用デジタルフィルタにおいて、FIRフィルタ31として機能する制御部30は、A/D変換器35から入力される振動成分を含むデジタル計量信号を濾波処理する。
 より詳しくは、FIRフィルタ31は、所定の周波数領域の振動成分を除去する固定部311と、変化させることが可能な周波数領域の振動成分を除去する適応部312とを有している。従って、A/D変換器35から入力されるデジタル計量信号は、固定部311においてデジタル秤の固有振動数等の予め想定される所定の振動成分が除去され、適応部312において例えば、デジタル秤1である組合せ秤に設けられたホッパの開閉や外的要因によって計量中に生じた様々な振動成分が除去される。
 また、判定手段32として機能する制御部30は、FIRフィルタ31で濾波処理されたデジタル計量信号に含まれる振動成分の振幅が所定の許容減衰範囲内であるか否かを1計量サイクル中のデジタル計量信号の所定サンプリングごとに判定する。そして、制御手段33は、判定手段32の判定結果に応じて、適応部312において除去する振動成分の周波数成分を変更することにより、入力されたデジタル計量信号に含まれる振動成分のうち、固定部311で除去されない振動成分を除去する。なお、本実施形態においては、1計量サイクルとは、ある被計量物の重量を検出することによって得られたデジタル計量信号が入力されてから当該被計量物の計量終了処理(排出処理)が行われるまでの間を意味する。
 このように、入力されるデジタル計量信号のうち、予め想定される振動成分の周波数領域については、計量中に演算を行うことなく固定部311で除去しつつ、随時発生する振動成分の周波数領域についてのみ、適応部312において除去する振動成分の周波数領域を変化させる演算を行うため、計量精度が低下することを防止しつつ、適応部312における濾波処理の演算量を減少させ、演算時間を短縮することができる。以上のように、本実施形態のデジタル秤用デジタルフィルタによれば、計量精度を保持しつつ適応させるフィルタの演算時間を短縮することができる。
 本実施形態においては、制御部30は、濾波処理後の振動成分の振幅が許容減衰範囲内でない場合に、適応部312のフィルタ次数を所定数増加させることにより、適応部312で除去する振動成分の周波数領域を変化させる。これにより、適応部312における濾波処理の演算量を低減させることができる。適応部312は、後述する単位フィルタがm個接続されて構成されており、当該単位フィルタの接続数mがフィルタ次数に相当している。
 ここで、FIRフィルタ31の構成について、より詳細に説明する。図2から図4は、図1に示すデジタル秤のデジタル秤用デジタルフィルタに設けられたFIRフィルタの具体例を示すブロック図である。図2は固定部を示すブロック図であり、図3は適応部を示すブロック図であり、図4は適応部の単位フィルタを示すブロック図である。なお、前述したように、図2から図4に示すFIRフィルタは、電気回路や電子回路等により構成される現実のフィルタ回路を意味するものではなく、記憶部34に記憶された制御プログラムに基づいて制御動作する制御部30によって構成されるものである。
 まず、図3に示す適応部312について説明する。適応部312は、仮想的には図4に示す単位フィルタ310がm個直列接続されて構成されている。ここで、単位フィルタ310がm個直列接続されているとは、制御部30が単位フィルタ310における演算をフィルタ係数(本実施形態においては後述する反射係数km)をフィルタ次数mに応じて変化させつつ(k1,k2,…,km)m回繰り返すことを意味する。本実施形態の単位フィルタ310は、格子型FIRフィルタにより構成されている。格子型FIRフィルタを採用することにより適応部312における濾波処理の演算誤差を少なくすることができる。
 適応部312においては、単位フィルタ310である格子型FIRフィルタがm個直列接続されている。格子型FIRフィルタは、2つの入力f(n)(m-1)及びg(n)(m-1)に対し、前向き予測誤差f(n)(m)及び後ろ向き予測誤差g(n)(m)を出力するものである。このような単位フィルタ310を直列接続することで、前向き予測誤差f(n)(m)及びg(n)(m)のそれぞれが次段の単位フィルタ310に入力される。さらに、単位フィルタ310は、所定の反射係数kmを有している。即ち、適応部312は、仮想的には、同じ構成を有し且つ反射係数kmが接続数(フィルタ次数)mに応じて異なる単位フィルタ310がm個接続されて構成されている。
 反射係数km、前向き予測誤差f(n)(m)及び後向き予測誤差g(n)(m)の関係式は、以下の式(1)から式(4)で表される。なお、x(n)は、デジタル計量信号(入力信号)を示し、n(n=0,1,2,…,N)は、サンプリング数を示している。単位フィルタ310の接続数m(m=1,2,…,M)は、以下の式におけるフィルタ次数として示される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 適応部312は、所定のフィルタ係数ai (m)を有している。適応部312の伝達関数F(z)をフィルタ係数ai (m)を用いて表すと、以下の式(5)が得られる。
Figure JPOXMLDOC01-appb-M000005
 このフィルタ係数ai (m)と反射係数kmとは、以下の式(6)に示す関係を有している。
Figure JPOXMLDOC01-appb-M000006
 そして、式(5)に示す伝達関数F(z)を用いて濾波処理された適応部312の出力信号y(n)(m)は、以下の式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 このように、式(1)から式(4)及び式(7)を演算することにより、入力されるデジタル計量信号x(n)(本実施形態においては後述するy’(n)(m'))に対する適応部312の出力y(n)(m)を得ることができる。なお、本実施形態の単位フィルタ310は、乗算器によって前向き予測誤差f(n)(m)及び後向き予測誤差g(n)(m)に予め1/(1+km)が乗算されて出力されるため、定常ゲインが1となる。従って、単位フィルタ310の接続数(フィルタ次数m)に拘わらず、適応部312の定常ゲインを、1で一定とすることができる。ただし、本発明はこれに限られず、例えば、このような乗算器を単位フィルタ310のそれぞれに接続せずに、最終的に出力された前向き予測誤差f(n)(m)及び後向き予測誤差g(n)(m)にそのときのフィルタ次数mに対応する乗算値を乗算することとしてもよい。
 さらに、式(5)に示すように、フィルタ次数、即ち、単位フィルタ310の接続数mが変化することにより、適応部312の伝達関数F(z)が変化する。また、フィルタ係数ai (m)が変化することによっても、適応部312の伝達関数F(z)が変化する。なお、フィルタ係数ai (m)が変化することは反射係数kmが変化することと同じ意味を持つ。このように、フィルタ次数m及び/又はフィルタ係数ai (m)(反射係数km)を変化させることにより、適応部312において除去する振動成分の周波数領域を変化させることができる。なお、伝達関数F(z)のタップ数Lは、L=m+1である。
 次に、図3に示す固定部311について説明する。固定部311は、適応部312と同様に、図4に示す単位フィルタ310と同様の格子型FIRフィルタがM’個(m=1,2,…,M’)接続されて構成されている。格子型FIRフィルタを採用することにより固定部311における濾波処理の演算誤差を少なくすることができる。
 固定部311のフィルタ係数a’i (m)及び反射係数k’mの関係も上記適用部312で求めたのと同様に求められる。従って、同様にデジタル計量信号x(n)に対する固定部311の出力y’(n)(m)を得ることができる。
 このようなデジタル秤1は、例えば、組合せ秤に適用され得る。この場合、組合せ秤は、複数の重量センサ2と、これに対応する複数の増幅器4と、複数の増幅器4の出力信号が入力されるマルチプレクサ(図示せず)と、制御装置3とを備えている。複数の重量センサ2で検出されたアナログ計量信号は、対応する増幅器4で増幅され、マルチプレクサを介して制御装置3のA/D変換器35に入力される。A/D変換器35に入力されたアナログ計量信号は、デジタル化され、デジタル計量信号x(n)として出力される。デジタル計量信号x(n)は、制御部30に入力され、FIRフィルタ31として機能する制御部30において濾波処理される。制御部30は、濾波処理された出力信号y(n)(m)を出力する。この濾波処理された出力信号y(n)(m)は、制御部30において重量値に変換される。変換された重量値は、記憶部34に記憶され、表示部5に表示される。
 続いて、本実施形態のデジタル秤用デジタルフィルタ及びこれを用いた濾波処理方法における濾波処理の流れについて詳しく説明する。図5は、本実施形態のデジタル秤用デジタルフィルタのフィルタ係数演算モードにおける制御動作を示すフローチャートであり、図6は、本実施形態のデジタル秤用デジタルフィルタの濾波処理モードにおける制御動作を示すフローチャートである。
 まず、濾波処理を行う前に、固定部311及び適応部312の反射係数k’m,kmを設定するために、制御部30は、図5に示すフィルタ係数演算モードを実行する。フィルタ係数演算モードでは、まず、制御部30は、FIRフィルタ31の固定部311の反射係数k’mを演算し、記憶部34に記憶する(ステップSA1)。具体的には、デジタル秤の重量センサ2の固有振動数に応じた正弦波をサンプル信号として反射係数演算用フィルタに入力することにより、制御部30は、固定部311の反射係数k’mを演算する。
 また、制御部30は、FIRフィルタ31の適応部312の反射係数kmを演算し、記憶部34に記憶する(ステップSA2及びSA3)。具体的には、デジタル計量信号に関するサンプルデータxs(n)を取得し(ステップSA2)、当該サンプルデータxs(n)を反射係数演算用フィルタに入力することにより、制御部30は、適応部312の反射係数kmを演算する(ステップSA3)。サンプルデータxs(n)は、例えば、被計量物又は被計量物のサンプルを実際に計量した際に得られたデジタル計量信号でもよいし、複数の被計量物又は被計量物のサンプルを実際に計量した際に得られた複数のデジタル計量信号を足し合わせ、平均した積算計量信号でもよいし、当該デジタル計量信号又は積算計量信号を何らかのフィルタで濾波処理した信号でもよい。
 図7は、本実施形態のデジタル秤用デジタルフィルタにおける反射係数演算用フィルタを示すブロック図である。なお、本実施形態においては反射係数演算用フィルタを濾波処理用のフィルタとは別に用いているが、濾波処理用のフィルタ(即ち、図2及び図3に示すフィルタ)に基づいて各反射係数を演算してもよい。
 ここで、適応部312の反射係数kmを演算する例を説明する。図7に示す反射係数演算用フィルタ330は、図5に示す単位フィルタ310から前向き及び後向き双方における出力側の乗算器を取り除いたものをm個接続したもの(フィルタ次数がmとなるもの)である。反射係数演算用フィルタ330の伝達関数をH(z)とし、サンプルデータxs(n)の離散時間系列における差分値Δxs(n)=xs(n)-xs(n-1)を図7に示す反射係数演算用フィルタ330に入力したときの前向き予測誤差をu(n)(m)、後ろ向き予測誤差をv(n)(m)とすると、反射係数km及びフィルタ係数ai (m)は、以下の式のような関係を有する。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 式(12)に示す伝達関数H(z)は、サンプルデータxs(n)に含まれる持続的な振動成分が存在する周波数領域に対して大きい減衰率でフィルタリングすることができるため、濾波処理におけるフィルタ次数mを比較的少なくすることができる。
 以上の式(8)から式(14)に基づいて適応部312の反射係数km(m=1,2,…,M)が演算される。固定部311の反射係数k’m(m=1,2,…,M’)も入力信号をデジタル秤の重量センサ2の固有振動数に応じた正弦波に変えることにより同様に演算される。このときのフィルタ次数mの最大値M、M’は特に限定されないが、ある程度大きな値まで演算することが好ましい。例えば、M=40,M’=20に設定する。このようにして演算された反射係数km,k’mは記憶部34に記憶される。
 なお、固定部311及び/又は適応部312の反射係数k’m,kmは、図1に示すように、デジタル秤1の通信部7を通じて接続された外部コンピュータ10において演算されてもよい。
 以上のように反射係数k’m,kmが設定された固定部311及び適応部312を用いて濾波処理が行われる。濾波処理においては、初期設定として後述する計量サイクル数j=1及びカウンタc=1が設定される(ステップSA4)。制御部30は、このような計量サイクル数j及びカウンタcを用いて以下に示す濾波処理モードを実行する(ステップSA5)。濾波処理モードは、作業者のモード切替操作を受けてから実行することとしてもよいし、制御部30が自動的に実行することとしてもよい。
 濾波処理モードにおいては、図6に示すように、初期設定として適応部312のフィルタ次数m=p及びサンプリング数n=1が設定される(ステップSB1)。適応部312のフィルタ次数mの初期設定値pは、特に限定されないが、例えば、p=20に設定される。また、図示しないが、固定部311のフィルタ次数mも所定値M’(固定値)に設定される。固定部311のフィルタ次数mの固定値M’も特に限定されないが、例えば、M’=20に設定される。
 制御部30は、デジタル入力信号xj(n)(j=1,2,…)を取得する(ステップSB2)。ここで、計量サイクル数jは、重力センサ2から送られてくる複数の入力信号の順番を意味するべく便宜的に付与したものである。即ち、計量サイクル数jが1増加することは、次の計量サイクルに移行することを意味する。制御部30は、取得したデジタル入力信号xj(n)をFIRフィルタ31の固定部311に入力し、出力信号y’j(n)(m)を演算して出力する(ステップSB3)。即ち、制御部30は、固定部311において、取得したデジタル入力信号xj(n)、設定された反射係数k’m及びフィルタ次数m’に基づいて、式(1)から式(4)及び式(7)を演算し、出力信号y’j(n)(m)を出力する。
 さらに、制御部30は、固定部311から出力された信号y’j(n)(m)を適応部312に入力し、出力信号yj(n)(m)を演算して出力する(ステップSB4)。即ち、制御部30は、適応部312において、入力信号y’j(n)(m)、設定された反射係数km及びフィルタ次数mに基づいて、式(1)から式(4)及び式(7)を演算し、出力信号yj(n)(m)を出力する。制御部30は、適応部312から出力された信号yj(n)(m)を記憶部34に記憶し、入出力インターフェイス36を介して表示部5に表示させる(ステップSB5)。
 続いて、制御部30は、判定手段32として機能する。即ち、制御部30は、FIRフィルタ31で濾波処理されたデジタル計量信号yj(n)(m)に含まれる振動成分の振幅が所定の許容減衰範囲V内であるか否かを判定する(ステップSB6,SB7)。具体的には、まず、適応部312から出力されたデジタル計量信号yj(n)(m)と前回のサンプリングにおいて適応部312から出力されたデジタル計量信号yj(n-1)(m)から変動量Δyj(n)(m)を演算する(ステップSB6)。本実施形態において、変動量Δyj(n)(m)は、以下の式(15)で表される。ここで、変動量Δyj(n)(m)は、サンプリング数nに基づいた所定の幅u(u=0,1,2,…,w)を有している。
Figure JPOXMLDOC01-appb-M000015
 なお、変動量Δyj(n)(m)を式(15)により算出する代わりに、例えば、デジタル計量信号yj(n)(m)の移動平均を加算して算出してもよい。
 制御部30は、記憶部34に記憶されている所定の許容減衰範囲Vを読み出し、演算された変動量Δyj(n)(m)と比較する(ステップSB7)。変動量Δyj(n)(m)が許容減衰範囲Vより小さい場合、即ち、濾波処理されたデジタル計量信号yj(n)(m)が十分減衰されたと判断された場合(ステップSB7でYes)、制御部30は、計量終了処理(組合せ秤においては排出処理)が行われたか否かを判定する(ステップSB8)。計量終了処理が行われた場合(ステップSB8でYes)は、濾波処理モードを終了し、計量終了処理が行われなかった場合(ステップSB8でNo)は、サンプリング数nに1を加えて(ステップSB9)、次のデジタル計量信号xj(n)(n=n+1)のサンプリングを行う(ステップSB2)。以降、計量終了処理が行われるまで(ステップSB8がYesとなるまで)、ステップSB2からステップSB9が繰り返される。組合せ秤の場合、記憶部34に逐次記憶される信号yj(n)(m)に基づいて組合せ演算が行われる。
 変動量Δyj(n)(m)が許容減衰範囲Vより大きい場合、即ち、濾波処理されたデジタル計量信号yj(n)(m)が十分に減衰されていないと判断された場合(ステップSB7でNo)、制御部30は、フィルタ次数mが最大値M以上か否かを判定する(ステップSB10)。フィルタ次数mが最大値M未満である場合(ステップSB10でNo)、制御部30は、制御手段33として機能し、適応部312のフィルタ次数mを所定数q(例えば、q=1)だけ増加させる(ステップSB11)。そして、次回のサンプリング(サンプリング数n=n+1)においては、フィルタ次数がm+qとなった適応部312によってステップSB4の濾波処理が行われる。フィルタ次数mが最大値M以上である場合(ステップSB10でYes)、制御部30は、それ以上適応部312のフィルタ次数mを増やすことなく計量終了処理が行われるまで、次回以降のサンプリングを行う(ステップSB8,SB9)。このように、濾波処理されたデジタル計量信号yj(n)(m)に含まれる振動成分の振幅が所定の許容減衰範囲V内であるか否かに応じて適応部312のフィルタ次数m(即ち、適応部312における単位フィルタ330の接続数m)を変化させることにより除去する振動成分を変化させるため、適応部312における濾波処理の演算量を低減させることができる。なお、図示していないが、フィルタ次数mが最大値M以上となってから所定数のサンプリングを繰り返しても許容減衰範囲Vより小さくならない場合には、反射係数kmの更新が必要であるとしてエラー報知する。
 計量終了処理が行われた場合(ステップSB8でYes)、制御部30は、モード切替操作を受けて又は自動的に濾波処理モードを終了し、フィルタ係数演算モードに復帰する。制御部30は、図5に示すように、当該濾波処理モードで演算処理したデジタル計量信号yj(n)(m)について適応部312のフィルタ次数mが最大値M以上となったか否かを判定する(ステップSA6)。適応部312のフィルタ次数mが最大値M以上となっていない場合(ステップSA6でNo)には、制御部30は、カウンタcをリセットし、c=1の状態で計量サイクル数jを1増やし(ステップSA8)、次に入力されるデジタル計量信号xj(n)(j=j+1)について濾波処理を行う(ステップSA5)。なお、次回の計量サイクルの開始時において、適応部312のフィルタ次数mは、初期設定値pに再設定される(ステップSB1)。
 適応部312のフィルタ次数mが最大値M以上となった場合(ステップSA6でYes)には、制御部30は、カウンタcを1増やし(ステップSA9)、当該カウンタcが所定値Cになったか否かを判定する(ステップSA10)。即ち、制御部30は、予め設定された回数Cの計量サイクルで連続して適応部312のフィルタ次数mが最大値M以上となったか否かを判定する。カウンタcが所定値Cになっていない場合(ステップSA10でNo)には、カウンタcをリセットせずに計量サイクル数jを1増やす(ステップSA8)。
 カウンタcが所定値Cになった場合(ステップSA10でYes)、制御部30は、制御手段33として機能し、適応部312のフィルタ係数ai (m)を変更することにより、適応部312において除去する振動成分の周波数領域を変化させる(ステップSA11,SA12)。より詳しくは、制御部30は、適応部312のフィルタ係数ai (m)を前回の計量サイクルにおけるデジタル計量信号xj(n)に基づいて演算する。具体的には、制御部30は、デジタル計量信号xj(n)の離散時間系列における差分値Δxj(n)=xj(n)-xj(n-1)を図7に示す反射係数演算用フィルタ330に入力し、式(8)から式(14)に基づいて適応部312の反射係数kmjを演算する(ステップSA11)。そして、制御部30は、演算された反射係数kmjを適応部312の反射係数kmとして設定し(ステップSA12)、次回(j=j+1)の計量サイクルを実行する(ステップSA8,SA5)。
 このように、適応部312のフィルタ係数ai (m)を変更することにより、適応部312において除去する振動成分の周波数領域を大きく変えることができる。従って、判定手段32による所定の計量サイクルの判定結果により濾波処理されたデジタル計量信号yj(n)(m)が許容減衰範囲V内になり難いと判断された際、制御手段33が適応部312のフィルタ係数ai (m)を変更することにより、より確実且つ早期に次回以降の計量サイクルにおけるデジタル計量信号xj(n)の振動成分を減衰させることができる。このように、判定手段32による判定結果に応じて必要なときのみフィルタ係数ai (m)が変更されるため、フィルタ係数ai (m)の演算回数を減少させることができる。なお、本実施形態においては、デジタル計量信号xj(n)を1回サンプリングするごとに判定手段32が判定することとしているが、本発明はこれに限られず、例えば、所定回数のサンプリングごとに濾波処理されたデジタル計量信号yj(n)(m)について判定することとしてもよい。
 以上のように、入力されるデジタル計量信号xj(n)のうち、予め想定される振動成分の周波数領域については、1計量サイクル中に演算を行うことなく固定部311で除去しつつ、随時発生する振動成分の周波数領域についてのみ、適応部312において除去する振動成分の周波数領域を変化させる演算を行うため、計量精度が低下することを防止しつつ、FIRフィルタ31における濾波処理の演算量を減少させ、演算時間を短縮することができる。
 また、本実施形態においては、前述した通り、入力されるデジタル計量信号xj(n)に対し、固定部311で濾波処理された後、適応部312で濾波処理される。これにより、デジタル計量信号xj(n)に含まれる振動成分のうち、予め想定される振動成分が固定部311において除去された後、残りの振動成分を除去するために、適応部312において除去する振動成分の周波数領域を変化させるための演算が行われるため、適応部312における演算量をより低減させることができる。
 さらに、固定部311のフィルタ係数(反射係数k’m)がデジタル秤1の重量センサ2の固有振動数に基づいて演算されるため、予め想定される振動成分のうち、最も大きい振動成分であるデジタル秤1の重量センサ2の固有振動数に基づく振動成分が固定部311で除去される。また、適応部312のフィルタ係数(反射係数km)が所定の積算計量信号に基づいて演算されるため、FIRフィルタ31が適応部312で除去する周波数成分を実際に発生し得る振動成分に即した周波数領域に設定することができる。さらに、フィルタ係数を更新する際、当該フィルタ係数が前回の計量サイクルにおけるデジタル計量信号に基づいて演算されるため、実際に発生している振動成分を適応部312において確実に除去することができる。これにより、デジタルフィルタを用いて濾波処理する際に、適応部312においてフィルタ係数の更新する回数を減少させることができる。従って、計量精度を保持しつつ適応させるフィルタの演算時間を短縮することができる。
 ここで、本実施形態のデジタル秤用デジタルフィルタを用いて濾波処理したデジタル計量信号の例を示す。まず、適応部312においてフィルタ次数mを変更した場合の濾波処理の効果について説明する。図8は本実施形態のデジタル秤用デジタルフィルタに入力されるデジタル計量信号x(n)の一例を示すグラフであり、図9は図8に示すデジタル計量信号x(n)を濾波処理した後のデジタル計量信号y(n)(m)の一例を示すグラフである。さらに、図10は図9に示すグラフを拡大して示した図である。
 図8に示すデジタル計量信号x(n)は、40gの被計量物を計量したものであり、サンプリング時間Tは、5ミリ秒である。固定部311のフィルタ次数m’は20、適応部312のフィルタ次数mは、初期設定値p=20及び最大値M=40としている。固定部311は、被計量物を計量するデジタル秤1の重量センサ2の固有振動数を除去するように、反射係数k’mが設定されている。
 ここでは、適応部312の反射係数kmは、当該入力されたデジタル計量信号x(n)から演算されている。より具体的には、図8に示すグラフにおいて被計量物のデジタル秤1への投入が終了した状態を示す所定のデータサンプル時間Dにおけるデジタル計量信号x(n)をサンプルデータxs(n)としている。図8において、データサンプル時間Dは、サンプリング数n=50から250の間を採用している。
 図9及び図10においては、ドット線が入力信号x(n)、破線が固定部311の出力信号y’(n)(m')、実線が適応部312においてフィルタ次数m=20で固定した場合の出力信号y(n)(20)、鎖線が適応部312においてフィルタ次数m=40で固定した場合の出力信号y(n)(40)、及び、丸印が適応部312において本発明が適応された制御に基づいてフィルタ次数mを変更しつつ濾波処理された出力信号y(n)(m)をそれぞれ示している。
 図10に特に示されるように、本発明が適応された制御に基づいて濾波処理された出力信号y(n)(m)は、サンプリング数n=70まではフィルタ次数m=20のフィルタとして機能する適応部312によって濾波処理されたものであり、サンプリング数n=90からはフィルタ次数m=40のフィルタとして機能する適応部312によって濾波処理されたものであることが示されている。そして、サンプリング数n=70から90の間では適応部312のフィルタ次数mが20から40まで順次増加していることが示されている。これにより、濾波処理された出力信号y(n)(m)の信号波形を短時間で減衰させつつ演算量の増加を抑えることができる。
 続いて、適応部312においてフィルタ係数ai (m)を変更した場合の濾波処理の効果について説明する。図11及び図12は本実施形態のデジタル秤用デジタルフィルタで濾波処理したデジタル計量信号y(n)(m)のフィルタ係数の変更前後における変化を例示するグラフである。図11はフィルタ係数の変更前を示し、図12はフィルタ係数の変更後を示している。図11及び図12のいずれにおいても、同じデジタル計量信号入力x(n)(図示せず)に対して得られた出力信号を示しており、破線が固定部311の出力信号y’(n)(m)、実線が適応部312においてフィルタ次数m=20で固定した場合の出力信号y(n)(20)、鎖線が適応部312においてフィルタ次数m=40で固定した場合の出力信号y(n)(40)、及び、丸印が適応部312において本発明が適応された制御に基づいてフィルタ次数mを変更しつつ濾波処理された出力信号y(n)(m)をそれぞれ示している。
 図11の例において、フィルタ次数m=40における出力信号y(n)(40)の波形は、サンプリング数nが増えても所定の範囲で振動してしまっているため、図8から図10に示す例と同様に、フィルタ次数mをサンプリング数n=70から90の間で増加させても濾波処理後のデジタル計量信号y(n)(m)を所定の許容減衰範囲V内に抑えることができない。このようなデジタル計量信号入力x(n)に対しては、適応部312のフィルタ係数ai (m)(反射係数km)を変更することにより、適応部312において除去する振動成分の周波数領域を変化させる(前述したステップSA11,SA12)。これにより、同じデジタル計量信号x(n)であっても、図12に示すフィルタ次数m=40における出力信号y(n)(40)は、図11の波形に比べて減衰した波形を得ることができる。さらに、適応部312のフィルタ係数ai (m)(反射係数km)を変更することにより、図8から図10に示す例と同様に、フィルタ次数mをサンプリング数n=70から90の間で増加させることで、デジタル計量信号y(n)(m)を迅速に許容減衰範囲V内に減衰させて出力することができる。
 以上、本発明の実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。例えば、本実施形態においては、固定部311として適応部312と同様の格子型フィルタを適用しているが、本発明はこれに限られず、例えば、移動平均フィルタ、ノッチフィルタ等のデジタルフィルタも適用可能である。また、固定部311は、装置固有の振動成分に応じて複数設けられてもよい。
 また、本実施形態においては、1計量サイクル中にフィルタ係数ai (m)(反射係数km)を演算することはないが、これに限られず、例えば、判定手段32が1計量サイクル中にフィルタ次数mが最大値M以上になった際、フィルタ係数ai (m)を演算、更新した上で、再度当該デジタル計量信号xj(n)を更新されたフィルタ係数ai (m)で濾波処理し直すこととしてもよい。
 さらに、デジタル計量信号の濾波処理において、本実施形態においては、固定部311及び適応部312の処理を直列的に行っているが、並列的に処理してもよい。また、直列的に処理する場合は、固定部311及び適応部312の何れを先に処理させてもよいが、本実施形態のように、固定部311の後に適応部312で処理させる方が適応部312における演算量を低減させるために好ましい。
 また、本実施形態においては、デジタル秤用デジタルフィルタをデジタル秤である組合せ秤に適用した例について主に説明しているが、本発明はこれに限られず、例えば、重量センサ2を1つだけ有するデジタル秤等にも適用可能である。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明のデジタル秤用デジタルフィルタ、これを備えたデジタル秤及びこれを用いた濾波処理方法は、周波数特性が時間的に変化する振動成分を含むデジタル計量信号を用いて各種制御を行うデジタル秤に有用である。
1          デジタル秤
2          重量センサ
3          制御装置
4          増幅器
5          表示部
6          操作部
7          通信部
10         外部コンピュータ
30         制御部(FIRフィルタ、判定手段、制御手段)
31        FIRフィルタ
32        判定手段
33        制御手段
34        記憶部
35        A/D変換器
36        入出力インターフェイス
310       単位フィルタ
311       固定部
312       適応部
330       反射係数演算用フィルタ

Claims (9)

  1.  振動成分を含むデジタル計量信号を濾波処理するFIRフィルタと、
     前記FIRフィルタで濾波処理されたデジタル計量信号に含まれる振動成分の振幅が所定の許容減衰範囲内であるか否かを1計量サイクル中のデジタル計量信号の所定サンプリングごとに判定する判定手段と、
     制御手段と、を備え、
     前記FIRフィルタは、所定の周波数領域の振動成分を除去する固定部と、変化させることが可能な周波数領域の振動成分を除去する適応部とを有し、
     前記制御手段は、前記判定手段の判定結果に応じて、前記適応部において除去する振動成分の周波数領域を変化させるように構成されているデジタル秤用デジタルフィルタ。
  2.  前記制御手段は、前記適応部のフィルタ係数を変更することにより、前記適応部において除去する振動成分の周波数領域を変化させるように構成されている請求項1に記載のデジタル秤用デジタルフィルタ。
  3.  前記制御手段は、前記適応部のフィルタ次数を所定数増加させることにより、前記適応部で除去する振動成分の周波数領域を変化させるように構成されている請求項1に記載のデジタル秤用デジタルフィルタ。
  4.  前記固定部は、入力されたデジタル計量信号のうち、被計量物を計量するデジタル秤の重量センサの固有振動数を除去するように構成されている請求項1に記載のデジタル秤用デジタルフィルタ。
  5.  前記適応部は、格子型FIRフィルタが所定数接続されることにより構成されている請求項1に記載のデジタル秤用デジタルフィルタ。
  6.  前記固定部は、格子型FIRフィルタが所定数接続されることにより構成されている請求項1に記載のデジタル秤用デジタルフィルタ。
  7.  前記固定部は、前記FIRフィルタに入力されたデジタル計量信号を濾波処理し、前記適応部は、前記固定部で濾波処理されたデジタル計量信号を濾波処理するように構成されている請求項1に記載のデジタル秤用デジタルフィルタ。
  8.  請求項1から6の何れかに記載のデジタル秤用デジタルフィルタを備えているデジタル秤。
  9.  振動成分を含むデジタル計量信号を濾波処理するFIRフィルタと、前記FIRフィルタで濾波処理されたデジタル計量信号に含まれる振動成分の振幅が所定の許容減衰範囲内であるか否かを1計量サイクル中のデジタル計量信号の所定サンプリングごとに判定する判定手段と、制御手段と、を備え、前記FIRフィルタは、所定の周波数領域の振動成分を除去する固定部と、変化させることが可能な周波数領域の振動成分を除去する適応部とを有し、前記制御手段は、前記判定手段の判定結果に応じて前記適応部のフィルタ係数を変更するように構成されているデジタル秤用デジタルフィルタを用いた濾波処理方法であって、
     固定部のフィルタ係数をデジタル秤の重量センサの固有振動数に応じた正弦波に基づいて演算するステップと、
     適応部の格子型フィルタのフィルタ係数を所定の積算計量信号に基づいて演算するステップと、
     前記デジタル計量信号を前記デジタル秤用デジタルフィルタに入力するステップと、
     入力された前記デジタル計量信号を前記固定部及び前記適応部においてそれぞれ演算されたフィルタ係数に基づいて濾波処理するステップと、を含み、
     前記判定手段が、所定の計量サイクルの後、前記フィルタ係数を変更すべきと判断した場合、前記制御手段が、前記適応部のフィルタ係数を前回の計量サイクルにおけるデジタル計量信号に基づいて演算し、更新する濾波処理方法。
PCT/JP2010/005499 2010-09-08 2010-09-08 デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法 WO2012032574A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10856927.8A EP2615434B1 (en) 2010-09-08 2010-09-08 Digital filter for digital weigher, digital weigher including digital filter for digital weigher and wave filtering process method
US13/820,130 US9970809B2 (en) 2010-09-08 2010-09-08 Digital filter for digital weigher, digital weigher including digital filter for digital weigher and wave filtering process method
PCT/JP2010/005499 WO2012032574A1 (ja) 2010-09-08 2010-09-08 デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法
CN201080068545.6A CN103038616B (zh) 2010-09-08 2010-09-08 数字秤用数字滤波器、具备该数字滤波器的数字秤及滤波处理方法
ES10856927.8T ES2559179T3 (es) 2010-09-08 2010-09-08 Filtro digital para báscula digital, báscula digital que incluye filtro digital para báscula digital y método de proceso de filtrado por ondas
US15/346,581 US9927283B2 (en) 2010-09-08 2016-11-08 Digital filter for digital weigher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005499 WO2012032574A1 (ja) 2010-09-08 2010-09-08 デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/820,130 A-371-Of-International US9970809B2 (en) 2010-09-08 2010-09-08 Digital filter for digital weigher, digital weigher including digital filter for digital weigher and wave filtering process method
US15/346,581 Division US9927283B2 (en) 2010-09-08 2016-11-08 Digital filter for digital weigher

Publications (1)

Publication Number Publication Date
WO2012032574A1 true WO2012032574A1 (ja) 2012-03-15

Family

ID=45810203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005499 WO2012032574A1 (ja) 2010-09-08 2010-09-08 デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法

Country Status (5)

Country Link
US (1) US9970809B2 (ja)
EP (1) EP2615434B1 (ja)
CN (1) CN103038616B (ja)
ES (1) ES2559179T3 (ja)
WO (1) WO2012032574A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892306A (zh) * 2016-03-31 2016-08-24 北京润科通用技术有限公司 一种数据振荡抑制方法及装置
WO2020008880A1 (ja) * 2018-07-05 2020-01-09 株式会社 エー・アンド・デイ 電子天びん

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011075577B4 (de) * 2011-05-10 2013-01-31 MULTIPOND Wägetechnik GmbH Signalverarbeitungsverfahren, Vorrichtung zur Signalverarbeitung und Waage mit Vorrichtung zur Signalverarbeitung
CN106104228B (zh) * 2014-03-20 2024-06-18 株式会社石田 计量装置
JP6447530B2 (ja) 2016-01-29 2019-01-09 オムロン株式会社 信号処理装置、信号処理装置の制御方法、制御プログラム、および記録媒体
JP6447531B2 (ja) * 2016-01-29 2019-01-09 オムロン株式会社 信号処理装置、信号処理装置の制御方法、制御プログラム、および記録媒体
JP6694156B2 (ja) * 2016-03-30 2020-05-13 三菱自動車工業株式会社 ハイブリッド車両の制御装置
CN109556696A (zh) * 2017-09-26 2019-04-02 无锡市科宇电控设备厂 一种无线智能抓斗秤采集处理系统
JP7462295B2 (ja) * 2020-03-19 2024-04-05 株式会社イシダ 計量装置
CN113959549B (zh) * 2021-09-16 2023-07-21 三一汽车制造有限公司 称重数据处理方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130938A (en) * 1989-11-29 1992-07-14 Yamato Scale Company, Limited Device and method for filtering weight indicative signal from weighing device
JPH0534189A (ja) * 1991-07-29 1993-02-09 Kubota Corp 重量計測装置
JPH07134058A (ja) * 1993-11-09 1995-05-23 Yamato Scale Co Ltd デジタル秤用適応フィルタ
JP2008182367A (ja) * 2007-01-23 2008-08-07 Ishida Co Ltd ノイズ除去装置、重量測定装置、ノイズ除去方法、及びディジタルフィルタの設計方法
JP2010203972A (ja) * 2009-03-04 2010-09-16 Yamato Scale Co Ltd デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2678047B2 (ja) * 1989-02-18 1997-11-17 大和製衡株式会社 計量機
JPH11108751A (ja) * 1997-10-08 1999-04-23 Ishida Co Ltd フィルタ自動調整機能付き計量装置
JP3771195B2 (ja) 2002-05-17 2006-04-26 株式会社イシダ 重量測定用ノイズ除去装置および重量測定用ノイズ除去方法
JP2006078410A (ja) 2004-09-13 2006-03-23 Yamato Scale Co Ltd 計量器
EP1736748B1 (de) * 2005-06-21 2012-05-02 Mettler-Toledo AG Verfahren zur Verarbeitung des Ausgangssignals eines Messumformers sowie eine Kraftmessvorrichtung zur Durchführung des Verfahrens.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130938A (en) * 1989-11-29 1992-07-14 Yamato Scale Company, Limited Device and method for filtering weight indicative signal from weighing device
JPH0534189A (ja) * 1991-07-29 1993-02-09 Kubota Corp 重量計測装置
JPH07134058A (ja) * 1993-11-09 1995-05-23 Yamato Scale Co Ltd デジタル秤用適応フィルタ
JP2008182367A (ja) * 2007-01-23 2008-08-07 Ishida Co Ltd ノイズ除去装置、重量測定装置、ノイズ除去方法、及びディジタルフィルタの設計方法
JP2010203972A (ja) * 2009-03-04 2010-09-16 Yamato Scale Co Ltd デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAO IKEDA ET AL.: "Dynamic Mass Measurement of Moving Vehicles", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 28, no. 1, 31 January 1992 (1992-01-31), pages 50 - 58 *
See also references of EP2615434A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892306A (zh) * 2016-03-31 2016-08-24 北京润科通用技术有限公司 一种数据振荡抑制方法及装置
WO2020008880A1 (ja) * 2018-07-05 2020-01-09 株式会社 エー・アンド・デイ 電子天びん
GB2587974A (en) * 2018-07-05 2021-04-14 A&D Co Ltd Electronic balance
GB2587974B (en) * 2018-07-05 2022-05-25 A&D Co Ltd Electronic balance
US11467021B2 (en) 2018-07-05 2022-10-11 A&D Company, Limited Electronic balance displaying a magnitude of external disturbance in real time

Also Published As

Publication number Publication date
CN103038616B (zh) 2015-01-21
CN103038616A (zh) 2013-04-10
EP2615434A1 (en) 2013-07-17
ES2559179T3 (es) 2016-02-10
US20130226494A1 (en) 2013-08-29
EP2615434A4 (en) 2014-01-29
EP2615434B1 (en) 2015-12-16
US9970809B2 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2012032574A1 (ja) デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法
CN108168680B (zh) 一种动态称重滤波方法及其系统
JP5669360B2 (ja) デジタル秤用デジタルフィルタ、それを備えたデジタル秤及び濾波処理方法
JP2008182367A (ja) ノイズ除去装置、重量測定装置、ノイズ除去方法、及びディジタルフィルタの設計方法
JP4546926B2 (ja) 流量計フィルタ・システム及び方法
JP2007003524A (ja) 測定変換器の出力信号を処理する方法、および力測定デバイス
JP4752528B2 (ja) 歪みゲージ式ロードセルおよびそれを用いた電子はかり
JP5901126B2 (ja) ノイズ除去装置、重量測定装置、ノイズ除去方法、及びディジタルフィルタの設計方法
US9927283B2 (en) Digital filter for digital weigher
JP2004150883A (ja) 重量測定装置、ノイズ除去方法およびディジタルフィルタの設計方法
JP7200890B2 (ja) 液体クロマトグラフ
JP5139009B2 (ja) 荷重検出器のクリープ特性同定装置およびこれを用いたクリープ誤差補償装置、ならびにクリープ回復特性同定装置およびこれを用いたクリープ回復誤差補償装置
JP4246006B2 (ja) 重量信号のクリープ誤差補償装置および補償方法
JP5281983B2 (ja) クリープ誤差補償装置及びクリープ誤差補償方法
JP4931666B2 (ja) 計量器
JP3394302B2 (ja) デジタル秤用適応フィルタ
JP4572536B2 (ja) サンプリング式測定装置
JP2009053211A (ja) 重量信号のクリープ誤差補償装置
JP4157236B2 (ja) 信号処理装置
JP5570787B2 (ja) 流量計フィルタ・システム及び方法
JP5110030B2 (ja) 材料試験機
JP5369944B2 (ja) ディジタルフィルタおよび材料試験機
JP4693353B2 (ja) 重量測定装置
JP2634594B2 (ja) 調節計
JP7190639B2 (ja) 演算装置、指示計、温度調節計、および方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068545.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010856927

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13820130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP