WO2012032562A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2012032562A1
WO2012032562A1 PCT/JP2010/005457 JP2010005457W WO2012032562A1 WO 2012032562 A1 WO2012032562 A1 WO 2012032562A1 JP 2010005457 W JP2010005457 W JP 2010005457W WO 2012032562 A1 WO2012032562 A1 WO 2012032562A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
light emitting
line
driving
signal
Prior art date
Application number
PCT/JP2010/005457
Other languages
English (en)
French (fr)
Inventor
晋也 小野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/005457 priority Critical patent/WO2012032562A1/ja
Priority to KR1020127006570A priority patent/KR101291396B1/ko
Priority to JP2011548710A priority patent/JP5399521B2/ja
Priority to CN201080043673.5A priority patent/CN102714019B/zh
Publication of WO2012032562A1 publication Critical patent/WO2012032562A1/ja
Priority to US13/422,124 priority patent/US8698710B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • G09G3/325Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror the data current flowing through the driving transistor during a setting phase, e.g. by using a switch for connecting the driving transistor to the data driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor

Definitions

  • the present invention relates to a display device and a driving method thereof, and more particularly to a display device using a current-driven light emitting element and a driving method thereof.
  • a display device using an organic electroluminescence (EL) element As a display device using a current-driven light emitting element, a display device using an organic electroluminescence (EL) element is known.
  • the organic EL display device using the self-emitting organic EL element does not require a backlight necessary for a liquid crystal display device, and is optimal for thinning the device. Moreover, since there is no restriction
  • organic EL elements constituting pixels are usually arranged in a matrix.
  • An organic EL element is provided at the intersection of a plurality of row electrodes (scanning lines) and a plurality of column electrodes (data lines), and a voltage corresponding to a data signal is applied between the selected row electrodes and the plurality of column electrodes.
  • a device for driving an organic EL element is called a passive matrix type organic EL display.
  • a switching thin film transistor (TFT: Thin Film Transistor) is provided at the intersection of a plurality of scanning lines and a plurality of data lines, and a gate of a driving element is connected to the switching TFT, and the switching TFT is turned on through the selected scanning line. Then, a data signal is input to the drive element from the signal line.
  • TFT Thin Film Transistor
  • a device in which an organic EL element is driven by this drive element is called an active matrix type organic EL display device.
  • An active matrix organic EL display device differs from a passive matrix organic EL display device in which an organic EL element connected thereto emits light only during a period when each row electrode (scanning line) is selected. Since the organic EL element can emit light until the selection), the luminance of the display is not reduced even if the duty ratio is increased. Therefore, the active matrix organic EL display device can be driven at a low voltage and can reduce power consumption.
  • the active matrix type organic EL display has a drawback that even if the same data signal is given due to variations in characteristics of the drive transistor, the luminance of the organic EL element is different in each pixel and uneven luminance occurs. .
  • Patent Document 1 discloses a method of compensating for characteristic variation for each pixel using a simple pixel circuit as a method for compensating luminance unevenness due to variations in characteristics of drive transistors.
  • FIG. 9 is a block diagram showing a configuration of a conventional image display device described in Patent Document 1.
  • the image display device 500 shown in the figure includes a pixel array unit 502 and a drive unit that drives the pixel array unit 502.
  • the pixel array unit 502 includes scanning lines 701 to 70m arranged for each row, signal lines 601 to 60n arranged for each column, matrix-like light emitting pixels 501 arranged at a portion where both intersect, And feeder lines 801 to 80m arranged for each.
  • the driving unit includes a signal selector 503, a scanning line driving unit 504, and a power feeding line driving unit 505.
  • the scanning line driving unit 504 sequentially supplies the control signals to the scanning lines 701 to 70m at a horizontal period (1H) to scan the light emitting pixels 501 line by line.
  • the feeder line drive unit 505 supplies a power supply voltage to be switched between the first voltage and the second voltage to each of the feeder lines 801 to 80m in accordance with the line sequential scanning.
  • the signal selector 503 switches the luminance signal voltage to be a video signal and the reference voltage in accordance with the line sequential scanning, and supplies them to the column-like signal lines 601 to 60n.
  • two columnar signal lines 601 to 60n are arranged for each column, and one signal line supplies a reference voltage and a signal voltage to the odd-numbered rows of light emitting pixels 501 and the other signal line. Supplies a reference voltage and a signal voltage to the light emitting pixels 501 in even rows.
  • FIG. 10 is a circuit configuration diagram of a light emitting pixel included in a conventional image display device described in Patent Document 1.
  • the light emitting pixels 501 in the first row and the first column are shown.
  • a scanning line 701, a power supply line 801, and a signal line 601 are arranged for the light emitting pixel 501. Note that one of the two signal lines 601 is connected to the light emitting pixel 501.
  • the light-emitting pixel 501 includes a switching transistor 511, a drive transistor 512, a storage capacitor 513, and a light-emitting element 514.
  • the switching transistor 511 has a gate connected to the scanning line 701, one of the source and the drain connected to the signal line 601, and the other connected to the gate of the driving transistor 512.
  • the drive transistor 512 has a source connected to the anode of the light emitting element 514 and a drain connected to the power supply line 801.
  • the light emitting element 514 has a cathode connected to the ground wiring 515.
  • the storage capacitor 513 is connected to the source and gate of the drive transistor 512.
  • the feed line driving unit 505 switches the feed line 801 from the first voltage (high voltage) to the second voltage (low voltage) while the signal line 601 is at the reference voltage.
  • the scanning line driving unit 504 sets the voltage of the scanning line 701 to the “H” level to make the switching transistor 511 conductive, and applies the reference voltage to the gate of the driving transistor 512.
  • the source of the driving transistor 512 is set to the second voltage.
  • the feed line driver 505 switches the voltage of the feed line 801 from the second voltage to the first voltage in the correction period before the voltage of the signal line 601 is switched from the reference voltage to the signal voltage, so that the drive transistor 512 A voltage corresponding to the threshold voltage Vt (TFT) is held in the holding capacitor 513.
  • the voltage of the switching transistor 511 is set to “H” level, and the signal voltage is held in the holding capacitor 513. That is, this signal voltage is added to a voltage corresponding to the threshold voltage Vt (TFT) of the driving transistor 512 held previously and written in the holding capacitor 513.
  • the drive transistor 512 receives supply of current from the power supply line 801 at the first voltage, and flows a drive current corresponding to the holding voltage to the light emitting element 514.
  • FIG. 11 is an operation timing chart of the image display device described in Patent Document 1.
  • the scanning signal applied to the scanning line is sequentially shifted for each line by one horizontal period (1H).
  • a scanning signal applied to one scanning line includes two pulses.
  • the first pulse has a long time width and is 1H or more.
  • the second pulse has a narrow time width and is a part of 1H.
  • the first pulse corresponds to the threshold correction period described above, and the second pulse corresponds to the signal voltage sampling period and the mobility correction period. Further, the power supply pulse supplied to the power supply line is also shifted for each line at a cycle of 1H. On the other hand, each signal line is applied with a signal voltage once every 2H, and a time zone at the reference voltage can be secured for 1H or more.
  • the conventional image display device described in Patent Document 1 often has on / off signal levels of scanning lines and power supply lines arranged for each light emitting pixel row.
  • the threshold correction period must be set for each light emitting pixel row.
  • a light emission period must be provided subsequently. Therefore, it is necessary to set the threshold correction timing and the light emission timing for each pixel row. For this reason, as the display panel is increased in area, the number of rows also increases, so that more signals are output from each drive circuit, and the frequency of the signal switching is increased, and the scanning line drive circuit and the feed line are increased. The signal output load of the drive circuit increases.
  • Patent Document 1 has a limit as a display device that requires a highly accurate correction because the correction period of the threshold voltage Vt (TFT) of the driving transistor is less than 2H.
  • an object of the present invention is to provide a display device in which the output load of a drive circuit is reduced and the display quality is improved by highly accurate threshold voltage correction.
  • a display device is a display device including a plurality of light-emitting pixels arranged in a matrix, and is provided for each light-emitting pixel column.
  • the plurality of light-emitting pixels constitute two or more drive blocks having a plurality of light-emitting pixel rows as one drive block, and each of the plurality of light-emitting pixels has one terminal at the first terminal.
  • a light emitting element that is connected to two power supply lines and emits light when a signal current corresponding to the signal voltage flows; one of a source and a drain is connected to the first power supply line; the other of the source and the drain is the other of the light emitting elements Connected to A driving transistor that converts the signal voltage applied between the gate and the source into the signal current, one terminal connected to the gate of the driving transistor, and the other terminal connected to the source of the driving transistor.
  • a capacitive element; and a first switching transistor having a gate connected to the control line, one of a source and a drain connected to the other terminal of the capacitive element, and the other of the source and the drain connected to a fixed potential line.
  • the light emitting pixel further includes a gate connected to the scanning line, one of a source and a drain connected to a gate of the driving transistor, and the other of the source and the drain connected to the scanning line.
  • a second switching transistor connected to the first signal line, and the (k + 1) th driving block includes The light emitting pixel further includes a third switching in which a gate is connected to the scanning line, one of a source and a drain is connected to a gate of the driving transistor, and the other of the source and the drain is connected to the second signal line.
  • a transistor is provided, and the control line is shared by all the light emitting pixels in the same drive block, and is independent between different drive blocks.
  • the threshold correction period and timing of the driving transistor can be matched in the driving block, so that the number of signal level switching from on to off or off to on is reduced. This reduces the load on the driving circuit that drives the circuit of the light emitting pixel.
  • the drive block threshold correction period of the drive transistor can be increased with respect to one frame period by the drive block and the two signal lines arranged for each light emitting pixel column, so that a highly accurate drive current flows to the light emitting element. The image display quality is improved.
  • FIG. 1 is a block diagram showing an electrical configuration of a display device according to an embodiment of the present invention.
  • FIG. 2A is a specific circuit configuration diagram of the light-emitting pixels of the odd-numbered drive block in the display device according to the embodiment of the present invention.
  • FIG. 2B is a specific circuit configuration diagram of the light-emitting pixels of the even-numbered drive block in the display device according to the embodiment of the present invention.
  • FIG. 3 is a circuit configuration diagram showing a part of the display panel included in the display device according to the embodiment of the present invention.
  • FIG. 4A is an operation timing chart of the driving method of the display device according to the embodiment of the present invention.
  • FIG. 4A is an operation timing chart of the driving method of the display device according to the embodiment of the present invention.
  • FIG. 4B is a state transition diagram of a driving block that emits light by the driving method according to the embodiment of the present invention.
  • FIG. 5 is a state transition diagram of the light emitting pixels included in the display device according to the embodiment of the present invention.
  • FIG. 6 is an operation flowchart of the display device according to the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining the waveform characteristics of the scanning lines and the signal lines.
  • FIG. 8 is an external view of a thin flat TV incorporating the display device of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a conventional image display device described in Patent Document 1.
  • FIG. 10 is a circuit configuration diagram of a light emitting pixel included in the conventional image display device described in Patent Document 1.
  • FIG. 11 is an operation timing chart of the image display device described in Patent Document 1.
  • a display device is a display device including a plurality of light-emitting pixels arranged in a matrix, and is provided for each light-emitting pixel column.
  • the plurality of light-emitting pixels constitute two or more drive blocks having a plurality of light-emitting pixel rows as one drive block, and each of the plurality of light-emitting pixels has one terminal at the first terminal.
  • a light emitting element that is connected to two power supply lines and emits light when a signal current corresponding to the signal voltage flows; one of a source and a drain is connected to the first power supply line; the other of the source and the drain is the other of the light emitting elements Connected to A driving transistor that converts the signal voltage applied between the gate and the source into the signal current, one terminal connected to the gate of the driving transistor, and the other terminal connected to the source of the driving transistor.
  • a capacitive element; and a first switching transistor having a gate connected to the control line, one of a source and a drain connected to the other terminal of the capacitive element, and the other of the source and the drain connected to a fixed potential line.
  • the light emitting pixel further includes a gate connected to the scanning line, one of a source and a drain connected to a gate of the driving transistor, and the other of the source and the drain connected to the scanning line.
  • a second switching transistor connected to the first signal line, and the (k + 1) th driving block includes The light emitting pixel further includes a third switching in which a gate is connected to the scanning line, one of a source and a drain is connected to a gate of the driving transistor, and the other of the source and the drain is connected to the second signal line.
  • a transistor is provided, and the control line is shared by all the light emitting pixels in the same drive block, and is independent between different drive blocks.
  • the light-emitting pixel circuit in which the first switching transistor that connects the source of the driving transistor and the fixed potential line, the capacitor that holds the voltage corresponding to the threshold voltage and the luminance signal voltage of the driving transistor is disposed, and driving
  • the control lines, the scanning lines, and the signal lines By arranging the control lines, the scanning lines, and the signal lines to each of the light-emitting pixels that are made into blocks, the threshold correction period of the driving transistor and the timing thereof can be matched in the same driving block. Therefore, the load of the drive circuit that outputs the signal for controlling the current path and controls the signal voltage is reduced.
  • the threshold correction period of the drive transistor is made larger in one frame period Tf, which is the time for rewriting all the light emitting pixels, by using the drive block and the two signal lines arranged for each light emitting pixel column. Can do.
  • Tf the time for rewriting all the light emitting pixels
  • the threshold correction period is provided in the (k + 1) th drive block during the period in which the luminance signal is sampled in the kth drive block. Therefore, the threshold correction period is not divided for each light emitting pixel row, but is divided for each drive block. Therefore, the larger the display area, the longer the relative threshold correction period for one frame period can be set without reducing the light emission duty. As a result, a drive current based on the luminance signal voltage corrected with high accuracy flows to the light emitting element, and the image display quality is improved.
  • each of the plurality of light emitting pixels may further include a second capacitor element inserted between the source of the driving transistor and the fixed potential line. .
  • the second capacitor element stores the source potential of the driving transistor in a steady state.
  • the source potential in the steady state is a threshold voltage of the driving transistor. Even when the signal voltage is applied to the first electrode of the capacitor, the source potential remains at the node between the capacitor and the second capacitor. Therefore, by applying the signal voltage, a voltage corresponding to the voltage difference between the signal voltage and the reference voltage in the first signal line or the second signal line is applied to the capacitor element.
  • the display device further includes a drive circuit that drives the light-emitting pixel by controlling the first signal line, the second signal line, the control line, and the scanning line,
  • the driving circuit simultaneously applies a voltage for turning on all the second switching transistors of the k-th driving block from the scanning line to thereby apply a reference voltage from the first signal line to the k-th driving block.
  • a voltage for turning on all of the first switching transistors is applied.
  • a fixed voltage of the fixed potential line that is small and has a difference from the reference voltage equal to or higher than a threshold voltage of the drive transistor is set to a kth drive block
  • the reference voltage is simultaneously applied from the second signal line to the gates of all the drive transistors of the (k + 1) th drive block, and all of the (k + 1) th drive block is provided from the control line.
  • a voltage for simultaneously turning on the first switching transistor is applied.
  • the fixed voltage is simultaneously applied to the sources of all the driving transistors included in the (k + 1) th driving block, and all the third switching transistors included in the (k + 1) th driving block are turned off from the scanning line.
  • the drive circuit that controls the voltages of the first signal line, the second signal line, the control line, and the scanning line controls the threshold correction period, the signal voltage writing period, and the light emission period.
  • the signal voltage causes the capacitor to store a luminance signal voltage for causing the light-emitting element to emit light and a voltage corresponding to a threshold voltage of the driving transistor.
  • the display device further includes a signal line driver circuit for outputting the signal voltage to the first signal line and the second signal line, and a timing at which the signal line driver circuit outputs the signal voltage.
  • the timing control circuit controls the reference voltage to the second signal line while the signal line driving circuit outputs the luminance signal voltage to the first signal line.
  • the reference voltage is output to the first signal line while the luminance signal is output to the second signal line.
  • the threshold correction period is provided in the (k + 1) th drive block during the period in which the luminance signal is sampled in the kth drive block. Therefore, the threshold correction period is not divided for each light emitting pixel row, but is divided for each drive block. Thus, the larger the display area, the longer the relative threshold correction period can be provided.
  • the time for detecting the threshold voltage of the driving transistor is Tf at the maximum. / N.
  • the present invention can be realized not only as a display device having such characteristic means, but also as a display device driving method using the characteristic means included in the display device as a step. .
  • the display device in this embodiment is a display device having a plurality of light-emitting pixels arranged in a matrix, and includes a first signal line and a second signal line arranged for each light-emitting pixel column, and each light-emitting pixel row.
  • the plurality of light emitting pixels constitute two or more drive blocks each having a plurality of light emitting pixel rows as a unit.
  • Each of the plurality of light emitting pixels includes a drive transistor and both terminals.
  • a capacitive element connected to the gate and source of the driving transistor, a light emitting element connected to the source of the driving transistor, and a first element inserted between the source of the driving transistor and the fixed potential line with the gate connected to the control line.
  • a light-emitting pixel belonging to an odd-numbered drive block includes: a switching transistor; and a second capacitor element inserted between the source of the drive transistor and a fixed potential line. Furthermore, the second switching transistor is inserted between the first signal line and the gate of the driving transistor, and the light emitting pixel belonging to the even-numbered driving block is further between the second signal line and the gate of the driving transistor.
  • the control line is shared by all the light emitting pixels of the same drive block.
  • FIG. 1 is a block diagram showing an electrical configuration of a display device according to an embodiment of the present invention.
  • the display device 1 in FIG. 1 includes a display panel 10, a timing control circuit 20, and a voltage control circuit 30.
  • the display panel 10 includes a plurality of light emitting pixels 11A and 11B, a signal line group 12, a control line group 13, a scanning / control line driving circuit 14, and a signal line driving circuit 15.
  • the light emitting pixels 11A and 11B are arranged on the display panel 10 in a matrix.
  • the light emitting pixels 11A and 11B constitute two or more drive blocks having a plurality of light emitting pixel rows as one drive block.
  • the luminescent pixel 11A constitutes the k (k is a natural number) th drive block
  • the luminescent pixel 11B constitutes the (k + 1) th drive block.
  • (k + 1) is a natural number equal to or less than N. This means, for example, that the light emitting pixels 11A constitute odd-numbered drive blocks and the light-emitting pixels 11B constitute even-numbered drive blocks.
  • the signal line group 12 is composed of a plurality of signal lines arranged for each light emitting pixel column.
  • two signal lines are arranged for each light emitting pixel column, the light emitting pixels of the odd-numbered drive block are connected to the first signal line, and the light-emitting pixels of the even-numbered drive block are connected to the first signal line. It is connected to a different second signal line.
  • the control line group 13 includes scanning lines and control lines arranged for each light emitting pixel.
  • the scanning / control line driving circuit 14 drives the circuit elements of the light emitting pixels by outputting a scanning signal to each scanning line of the control line group 13 and a control signal to each control line.
  • the signal line driving circuit 15 drives a circuit element of the light emitting pixel by outputting a luminance signal or a reference signal to each signal line of the signal line group 12.
  • the timing control circuit 20 controls the output timing of the scanning signal and the control signal output from the scanning / control line driving circuit 14. In addition, the timing control circuit 20 controls the timing at which the luminance signal or the reference signal output from the signal line driving circuit 15 to the first signal line and the second signal line is output, and the timing signal is output to the first signal line and the second signal line.
  • the reference voltage is output to the second signal line while the luminance signal is output to the first signal line, and the reference voltage is applied to the first signal line while the luminance signal is output to the second signal line. Is output.
  • the voltage control circuit 30 controls the voltage level of the scanning signal and the control signal output from the scanning / control line driving circuit 14.
  • FIG. 2A is a specific circuit configuration diagram of the light-emitting pixels of the odd-numbered drive block in the display device according to the embodiment of the present invention
  • FIG. 2B is a diagram of the even-numbered drive block in the display device according to the embodiment of the present invention.
  • It is a specific circuit block diagram of a luminescent pixel.
  • Each of the light emitting pixels 11A and 11B described in FIGS. 2A and 2B includes an organic EL (electroluminescence) element 113, a driving transistor 114, switching transistors 115 and 116, electrostatic holding capacitors 117 and 118, A control line 131, a scanning line 133, a first signal line 151, and a second signal line 152 are provided.
  • the organic EL element 113 is a light emitting element whose cathode is connected to the power supply line 112 which is the second power supply line and whose anode is connected to the source of the drive transistor 114.
  • the drive current of the drive transistor 114 is Emits light by flowing.
  • the drive transistor 114 is a drive transistor whose drain is connected to the power supply line 110 that is the first power supply line and whose source is connected to the anode of the organic EL element 113.
  • the drive transistor 114 converts the signal voltage applied between the gate and the source into a drain current corresponding to the signal voltage. Then, this drain current is supplied to the organic EL element 113 as a drive current.
  • the drive transistor 114 is composed of, for example, an n-type thin film transistor (n-type TFT).
  • the switching transistor 115 has a gate connected to the scanning line 133 and one of a source and a drain connected to the gate of the driving transistor 114.
  • the other of the source and the drain is connected to the first signal line 151 in the light emitting pixel 11A in the odd driving block and functions as a second switching transistor, and the second signal is output in the light emitting pixel 11B in the even driving block. It is connected to the line 152 and functions as a third switching transistor.
  • the switching transistor 116 is a first switching transistor whose gate is connected to the control line 131, one of the source and the drain is connected to the source of the driving transistor 114, and the other of the source and the drain is connected to the fixed potential line 119.
  • the switching transistor 116 has a function of determining the timing at which the fixed voltage VR2 of the fixed potential line 119 is applied to the source of the driving transistor 114.
  • the switching transistors 115 and 116 are composed of, for example, n-type thin film transistors (n-type TFTs).
  • the electrostatic storage capacitor 117 is a capacitive element in which a first electrode as one terminal is connected to the gate of the driving transistor 114 and a second electrode as the other terminal is connected to the source of the driving transistor 114.
  • the electrostatic holding capacitor 117 holds electric charges corresponding to the luminance signal voltage supplied from the first signal line 151 or the second signal line 152 and the threshold voltage of the driving transistor 114, and for example, the switching transistor 115 is turned off. After that, it has a function of controlling a signal current supplied from the driving transistor 114 to the organic EL element 113.
  • the electrostatic storage capacitor 118 is a second capacitor element inserted between the source of the drive transistor 114 and the fixed potential line 120.
  • the electrostatic storage capacitor 118 first stores the source potential of the drive transistor 114 in a steady state.
  • the source potential in the steady state is a threshold voltage of the driving transistor 114.
  • the other terminal of the electrostatic holding capacitor 118 may be terminated with an arbitrary fixed potential, and may be connected to the fixed potential line 119. Further, for example, the power supply line 110 or 112 may be connected. In this case, the degree of freedom in layout is improved, a wider space between elements can be secured, and the yield is improved.
  • the electrostatic storage capacitor 118 may not be artificially arranged as a circuit element as described above.
  • the parasitic capacitance of the organic EL element 113 may be regarded as the electrostatic storage capacitor 118. .
  • the control line 131 is connected to the scanning / control line driving circuit 14 and is connected to each light emitting pixel belonging to the pixel row including the light emitting pixels 11A and 11B. Accordingly, the control line 131 has a function of generating a state in which the source of the driving transistor 114 and the fixed potential line 119 are turned on or off.
  • the scanning line 133 has a function of supplying a timing for writing a luminance signal voltage or a signal voltage that is a reference voltage to each light emitting pixel belonging to the pixel row including the light emitting pixels 11A and 11B.
  • the first signal line 151 and the second signal line 152 are connected to the signal line driving circuit 15 and connected to each light emitting pixel belonging to the pixel column including the light emitting pixels 11A and 11B, respectively, and detect the threshold voltage of the driving TFT. And a function of supplying a signal voltage for determining the emission intensity.
  • the power supply line 110 and the power supply line 112 are a positive power supply line and a negative power supply line, respectively, and are connected to other light emitting pixels and connected to a voltage source.
  • the fixed potential lines 119 and 120 are also connected to other light emitting pixels and are connected to a voltage source.
  • FIG. 3 is a circuit configuration diagram showing a part of the display panel included in the display device according to the embodiment of the present invention.
  • two adjacent drive blocks, control lines, scanning lines and signal lines are shown.
  • each control line, each scanning line, and each signal line are represented by “code (block number, row number in the block)” or “code (block number)”.
  • the drive block is composed of a plurality of light emitting pixel rows, and there are two or more drive blocks in the display panel 10.
  • each drive block shown in FIG. 3 is composed of m light emitting pixel rows.
  • the control line 131 (k) is connected in common to the gates of the switching transistors 116 of all the light emitting pixels 11A in the drive block.
  • the scanning lines 133 (k, 1) to 133 (k, m) are individually connected for each light emitting pixel row.
  • the (k + 1) th drive block shown in the lower part of FIG. 3 is connected in the same way as the kth drive block.
  • the control line 131 (k) connected to the kth drive block and the control line 131 (k + 1) connected to the (k + 1) th drive block are different control lines, and the scanning / control line drive circuit. 14, individual control signals are output. That is, the control line 131 is shared by all the light emitting pixels in the same drive block, and is independent between different drive blocks.
  • the common control line in the same drive block means that one control signal output from the scanning / control line drive circuit 14 is simultaneously supplied to the control line in the same drive block. That means.
  • one control line connected to the scanning / control line drive circuit 14 branches to the control line 131 arranged for each light emitting pixel row.
  • the control lines are independent between different drive blocks means that individual control signals output from the scanning / control line drive circuit 14 are supplied to a plurality of drive blocks.
  • the control lines 131 are individually connected to the scanning / control line drive circuit 14 for each drive block.
  • the first signal line 151 is connected to the other of the source and the drain of the switching transistor 115 included in all the light emitting pixels 11A in the drive block.
  • the second signal line 152 is connected to the other of the source and drain of the switching transistors 115 included in all the light emitting pixels 11B in the drive block.
  • control lines 131 for controlling the connection between the source of the drive transistor 114 and the fixed potential line 119 is reduced by the drive block. Therefore, the number of outputs of the scanning / control line drive circuit 14 that outputs drive signals to these control lines is reduced, and the circuit scale can be reduced.
  • FIG. 4A a driving method of the display device 1 according to the present embodiment will be described with reference to FIG. 4A.
  • a driving method for the display device having the specific circuit configuration described in FIGS. 2A and 2B will be described in detail.
  • FIG. 4A is an operation timing chart of the display device driving method according to the embodiment of the present invention.
  • the horizontal axis represents time.
  • the scanning lines 133 (k, 1), 133 (k, 2) and 133 (k, m), the first signal lines 151, and the control lines 131 (k) of the k-th driving block are sequentially arranged from the top.
  • the scanning lines 133 (k + 1, 1), 133 (k + 1, 2) and 133 (k + 1, m), the second signal line 152, and the control line 131 (k + 1) of the (k + 1) th driving block are connected.
  • a waveform diagram of the generated voltage is shown.
  • FIG. 5 is a state transition diagram of the light emitting pixels included in the display device according to the embodiment of the present invention.
  • FIG. 6 is an operation flowchart of the display device according to the embodiment of the present invention.
  • the scanning / control line driving circuit 14 changes the voltage level of the scanning line 133 (k, 1) from LOW to HIGH to turn on the switching transistor 115 included in the light-emitting pixels in the first row. .
  • the signal line driver circuit 15 changes the signal voltage of the first signal line 151 from the luminance signal voltage to the reference voltage VR1 at which the driving transistor 114 is turned off.
  • the reference voltage VR1 is applied to the gate of the drive transistor 114, whereby the light emitting pixels in the first row belonging to the kth drive block are extinguished.
  • V G and V S are expressed by Expression 1.
  • Vt (EL) is the threshold voltage of the organic EL element 113
  • V CAT is the potential of the power supply line 112.
  • V S the potential in the light emission state before time t01 is held by the electrostatic holding capacitor 118.
  • VR1 and VCAT are set according to the relationship represented by Expression 2.
  • Vt (TFT) of the driving transistor is> 0V
  • VR1 and VCAT are, for example, 0V.
  • the drive transistor 114 since the gate-source voltage Vgs of the drive transistor 114 is Vgs ⁇ Vt (TFT) ⁇ 0, the drive transistor 114 is turned off.
  • the scanning / control line driving circuit 14 changes the voltage level of the scanning line 133 (k, 1) from HIGH to LOW, and turns off the switching transistor 115 included in the light-emitting pixels in the first row. To do. Thereby, the quenching operation of the light emitting pixels in the first row is completed.
  • the scanning / control line driving circuit 14 simultaneously changes the voltage level of the scanning lines 133 (k, 1) to 133 (k, m) from LOW to HIGH and belongs to the kth driving block.
  • the switching transistors 115 included in all the light emitting pixels are turned on (S11 in FIG. 6).
  • the signal line driver circuit 15 changes the signal voltage of the first signal line 151 from the luminance signal voltage to the reference voltage VR1 at which the driving transistor 114 is turned off.
  • the operation of applying the reference voltage to the gate of the driving transistor 114 corresponds to a first reference voltage application step.
  • the scanning / control line driving circuit 14 simultaneously changes the voltage level of the control line 131 (k) from LOW to HIGH, and the switching transistors 116 included in all the light emitting pixels belonging to the kth driving block. Is turned on.
  • the fixed voltage VR2 is applied to the gate of the drive transistor 114 and the second electrode of the electrostatic holding capacitor 117 (S12 in FIG. 6).
  • V G and V S are expressed by Equation 3.
  • VR2 is a fixed potential of the fixed potential line 119.
  • VR1 and VR2 are set according to the relationship represented by Expression 4.
  • VR2 is, for example, ⁇ 5V.
  • the gate-source voltage Vgs of the drive transistor 114 is, for example, 5 V, and the drive transistor 114 is turned on. At this time, a drive current flows through a path of the power supply line 110 ⁇ the drive transistor 114 ⁇ the second electrode of the electrostatic holding capacitor 117 ⁇ the switching transistor 116 ⁇ the fixed potential line 119.
  • the operation of applying the fixed voltage VR2 to the gate of the driving transistor 114 and the second electrode of the electrostatic holding capacitor 117 corresponds to a first fixed voltage application step.
  • the scanning / control line driving circuit 14 simultaneously changes the voltage level of the control line 131 (k) from HIGH to LOW, and the switching transistors 116 included in all the light emitting pixels belonging to the kth driving block. Is turned off.
  • the discharge current starts to flow along the path of the power supply line 110 ⁇ the driving transistor 114 ⁇ the second electrode of the electrostatic holding capacitor 117 ⁇ the electrostatic holding capacitor 117. This discharge current continues until Vgs of the drive transistor 114 gradually approaches the threshold voltage Vt (TFT) of the drive transistor 114.
  • TFT threshold voltage
  • Vgs reaches the threshold voltage Vt (TFT) of the driving transistor 114
  • Vt (TFT) threshold voltage of the driving transistor 114
  • V G and V S are expressed by Expression 5, and Vt (TFT) is held in the electrostatic holding capacitor 117.
  • Vgs changes from (VR1-VR2) to Vt (TFT), but the anode-cathode voltage of the organic EL element 113 is the threshold voltage Vt (EL) of the organic EL element 113.
  • Vt the threshold voltage
  • the scanning / control line driving circuit 14 simultaneously changes the voltage level of the scanning lines 133 (k, 1) to 133 (k, m) from HIGH to LOW, and belongs to the kth driving block.
  • the switching transistors 115 included in all the light emitting pixels are turned off (S13 in FIG. 6). The operation of turning off the switching transistor 115 and stopping the supply of the reference voltage to the gate of the driving transistor 114 corresponds to the first non-conduction step.
  • the first reference voltage application step, the first fixed voltage application step, and the first non-conduction step described above correspond to a first threshold value holding step.
  • the voltage held in the electrostatic holding capacitor 117 is the threshold voltage Vt of the driving transistor 114. It takes time to asymptotically approach (TFT) and reach a steady state. Therefore, the longer the period, the more stable the voltage held in the electrostatic holding capacitor 117. By ensuring this period sufficiently long, highly accurate voltage compensation is realized.
  • the correction of the threshold voltage Vt (TFT) of the drive transistor 114 is performed simultaneously in the kth drive block, and all the light emitting pixels 11A of the kth drive block have static values.
  • a voltage corresponding to the threshold voltage Vt (TFT) of the drive transistor 114 is simultaneously held in the electricity storage capacitor 117.
  • the scanning / control line driving circuit 14 changes the voltage level of the scanning line 133 (k, 1) from LOW ⁇ HIGH ⁇ LOW, so that the light emitting pixels in the first row
  • the switching transistor 115 is turned on (S14 in FIG. 6).
  • the signal line drive circuit 15 changes the signal voltage of the first signal line 151 from the reference voltage to the luminance signal voltage Vdata.
  • the luminance signal voltage Vdata is applied to the gate of the driving transistor 114 as shown in FIG.
  • the potential V S at the second electrode of the electrostatic holding capacitor 117 and the source of the driving transistor 114 is equal to the voltage obtained by distributing the signal voltage change amount (Vdata ⁇ VR1) between C1 and C2, and V S at time t06. This is the sum of the potential (VR1 ⁇ Vt (TFT)) and is expressed by Equation 6.
  • an added voltage obtained by adding the voltage corresponding to the luminance signal voltage Vdata and the voltage corresponding to the threshold voltage Vt (TFT) of the driving transistor 114 held earlier is written in the electrostatic holding capacitor 117. .
  • the addition voltage writing operation corresponds to the first luminance maintaining step.
  • the scanning / control line driving circuit 14 changes the voltage level of the scanning line 133 (k, 1) from HIGH to LOW to turn off the switching transistor 115 included in the light-emitting pixels in the first row.
  • a state is set (S15 in FIG. 6).
  • Vgs is a voltage defined by Equation 7 above.
  • Vdata is, for example, 0 to 5 V
  • Vgs is a voltage equal to or higher than Vt (TFT)
  • the drive transistor 114 is turned on, a drive current flows through the organic EL element 113, and the organic EL element 113 emits light according to Vgs defined in Equation 7 above.
  • V GS is expressed by Expression 8 where the write time is ⁇ t.
  • the above-described light emission operation at time t08 is sequentially executed for the light emission pixels in the second to mth rows belonging to the kth drive block. That is, in all the light emitting pixels 11A in the kth drive block, writing and light emission are started in the row order.
  • the light emission operation corresponds to the first light emission step.
  • the drain current i d flowing through the driving transistor 114 a Vsg defined in equation 7, using the voltage value obtained by subtracting the threshold voltage Vt of the driving transistor 114 (TFT), is expressed by the formula 9 .
  • is a characteristic parameter relating to the mobility, the gate insulating film capacitance, and the shape of the channel region.
  • Vgs (0) is expressed as in Equation 10.
  • the drain current i d for causing the light organic EL element 113 has a current that does not depend on the threshold voltage Vt of the driving transistor 114 (TFT).
  • the threshold voltage Vt (TFT) compensation of the driving transistor 114 is simultaneously performed in the driving block by forming the light emitting pixel row as the driving block.
  • the control line 131 can be shared in the drive block.
  • the light emission duty defined by the threshold voltage detection period is set. Make a comparison.
  • FIG. 7 is a diagram for explaining the waveform characteristics of the scanning lines and the signal lines.
  • the detection period of the threshold voltage Vt (TFT) in one horizontal period t1H of each pixel row is a period in which the reference voltage is applied to the electrostatic storage capacitor of each pixel, and the scanning line is in a HIGH level state. It corresponds to a period PW S.
  • one horizontal period t IH includes a PW D is a period for supplying a signal voltage, and t D is the period for supplying the reference voltage.
  • Equation 15 PW S is expressed as Equation 15.
  • the light emission duty of a panel having a vertical resolution of 1080 scanning lines (+30 blanking) and driven at 120 Hz is compared.
  • one horizontal period t 1H in the case of having two signal lines is twice that in the case of having one signal line.
  • the detection period of Vt (TFT) there PW S is a 2.5 ⁇ S.
  • TFT threshold detection preparation period + threshold detection
  • the display device of the present invention is more suitable. It can be seen that a long threshold detection period can be secured.
  • the scanning / control line driving circuit 14 changes the voltage level of the scanning line 133 (k + 1, 1) from LOW to HIGH. Then, the switching transistors 115 included in the light-emitting pixels in the first row are turned on. Further, the signal line driver circuit 15 changes the signal voltage of the second signal line 152 from the luminance signal voltage to the reference voltage VR1 at which the driving transistor 114 is turned off. As a result, the reference voltage VR1 is applied to the gate of the driving transistor 114, whereby the light emitting pixels in the first row belonging to the (k + 1) th driving block are extinguished.
  • the scanning / control line driving circuit 14 changes the voltage level of the scanning line 133 (k + 1, 1) from HIGH to LOW, and turns off the switching transistor 115 included in the light-emitting pixels in the first row. To do. Thereby, the quenching operation of the light emitting pixels in the first row is completed.
  • the scanning / control line driving circuit 14 scans the scanning line 133 ( The voltage levels of k + 1, 1) to 133 (k + 1, m) are simultaneously changed from LOW to HIGH, and the switching transistors 115 of all the light emitting pixels belonging to the (k + 1) th drive block are turned on (FIG. 6). S21).
  • the signal line driver circuit 15 changes the signal voltage of the second signal line 152 from the luminance signal voltage to the reference voltage VR1 at which the driving transistor 114 is turned off.
  • the operation of applying the reference voltage to the gate of the driving transistor 114 corresponds to a second reference voltage application step.
  • the scanning / control line driving circuit 14 simultaneously changes the voltage level of the control line 131 (k + 1) from LOW to HIGH, and the switching of all the light emitting pixels belonging to the (k + 1) th driving block.
  • the transistor 116 is turned on.
  • the fixed voltage VR2 is applied to the gate of the drive transistor 114 and the second electrode of the electrostatic storage capacitor 117 (S22 in FIG. 6).
  • a drive current flows through a path of the power supply line 110 ⁇ the drive transistor 114 ⁇ the second electrode of the electrostatic holding capacitor 117 ⁇ the switching transistor 116 ⁇ the fixed potential line 119.
  • the operation of applying the fixed voltage VR2 to the gate of the drive transistor 114 and the second electrode of the electrostatic holding capacitor 117 corresponds to a second fixed voltage application step.
  • the scanning / control line driving circuit 14 simultaneously changes the voltage level of the control line 131 (k + 1) from HIGH to LOW, and switching that all the light emitting pixels belonging to the (k + 1) th driving block have.
  • the transistor 116 is turned off.
  • the discharge current starts to flow along the path of the power supply line 110 ⁇ the driving transistor 114 ⁇ the second electrode of the electrostatic holding capacitor 117 ⁇ the electrostatic holding capacitor 117.
  • This discharge current continues until Vgs of the drive transistor 114 gradually approaches the threshold voltage Vt (TFT) of the drive transistor 114.
  • Vgs reaches the threshold voltage Vt (TFT) of the drive transistor 114, the drive transistor 114 is turned off.
  • Vgs changes from (VR1-VR2) to Vt (TFT), but since the anode-cathode voltage of the organic EL element 113 is a negative voltage, the organic EL element No current flows through 113.
  • the scanning / control line driving circuit 14 simultaneously changes the voltage level of the scanning lines 133 (k + 1, 1) to 133 (k + 1, m) from HIGH to LOW, and the (k + 1) th driving block.
  • the switching transistors 115 included in all the light emitting pixels belonging to are turned off (S23 in FIG. 6). The operation of turning off the switching transistor 115 and stopping the supply of the reference voltage to the gate of the driving transistor 114 corresponds to a second non-conduction step.
  • the above-described second reference voltage application step, second fixed voltage application step, and second non-conduction step correspond to a second threshold holding step.
  • the voltage held in the electrostatic holding capacitor 117 is the threshold voltage Vt of the driving transistor 114. It takes time to asymptotically approach (TFT) and reach a steady state. Therefore, the longer the period, the more stable the voltage held in the electrostatic holding capacitor 117. By ensuring this period sufficiently long, highly accurate voltage compensation is realized.
  • the correction of the threshold voltage Vt (TFT) of the driving transistor 114 is simultaneously performed in the (k + 1) th driving block, and all the light emitting pixels of the (k + 1) th driving block are performed.
  • a voltage corresponding to the threshold voltage Vt (TFT) of the driving transistor 114 is simultaneously held in the electrostatic holding capacitor 117 of 11A.
  • the scanning / control line driving circuit 14 changes the voltage level of the scanning line 133 (k + 1, 1) from LOW ⁇ HIGH ⁇ LOW, and the light emitting pixels in the first row are changed.
  • the switching transistor 115 is turned on (S24 in FIG. 6).
  • the signal line driving circuit 15 changes the signal voltage of the second signal line 152 from the reference voltage to the luminance signal voltage Vdata.
  • the luminance signal voltage Vdata is applied to the gate of the driving transistor 114. That is, an added voltage obtained by adding the voltage corresponding to the luminance signal voltage Vdata and the voltage corresponding to the threshold voltage Vt (TFT) of the driving transistor 114 held earlier is written in the electrostatic holding capacitor 117. .
  • the operation of writing the added voltage corresponds to the second luminance holding step.
  • the scanning / control line driving circuit 14 changes the voltage level of the scanning line 133 (k + 1, 1) from HIGH to LOW to turn off the switching transistor 115 included in the light-emitting pixels in the first row.
  • a state is set (S25 in FIG. 6).
  • Vgs is equal to or higher than Vt (TFT)
  • the drive transistor 114 is turned on, a drive current flows through the organic EL element 113, and the organic EL element 113 is in accordance with Vgs defined in Equation 7 above. Flashes.
  • the above-described light emission operation at time t18 is sequentially performed for the light emitting pixels from the second row to the m-th row belonging to the (k + 1) th drive block. That is, in all the light emitting pixels 11B in the (k + 1) th driving block, writing and light emission are started in the row order.
  • the light emission operation corresponds to a second light emission step.
  • the light emission of the organic EL element 113 is executed in the row order in the (k + 1) th drive block.
  • the threshold voltage Vt (TFT) compensation of the driving transistor 114 is simultaneously performed in the driving block by forming the light emitting pixel row as the driving block. Further, by forming the light emitting pixel row as a drive block, the control line 131 can be shared in the drive block.
  • the scanning lines 133 (k + 1, 1) to 133 (k + 1, m) are individually connected to the scanning / control line driving circuit 14, but the timing of the driving pulse is the same in the threshold voltage compensation period. It is. Therefore, since the scanning / control line driving circuit 14 can suppress an increase in the frequency of the output pulse signal, the output load of the driving circuit can be reduced.
  • the light emission of the organic EL element 113 is simultaneously performed in the (k + 1) th drive block.
  • FIG. 4B is a state transition diagram of a drive block that emits light by the drive method according to the embodiment of the present invention.
  • the light emission period and the non-light emission period for each drive block in a certain light emitting pixel column are shown.
  • the vertical direction shows a plurality of drive blocks, and the horizontal axis shows the elapsed time.
  • the non-light emitting period includes the above-described threshold correction period.
  • the light emission period is sequentially set for each light emitting pixel row even in the same drive block. Therefore, even in the drive block, the light emission period appears continuously in the row scanning direction.
  • the light emitting pixel circuit in which the switching transistor 116 and the electrostatic storage capacitor 118 are arranged, the arrangement of the control line, the scanning line, and the signal line to each light emitting pixel in the driving block, and the driving method described above It is possible to match the threshold correction period and the timing within the same drive block. Therefore, the load on the scanning / control line driving circuit 14 for outputting a signal for controlling the current path and the signal line driving circuit 15 for controlling the signal voltage is reduced.
  • the threshold correction period of the drive transistor 114 is made larger in one frame period Tf, which is the time for rewriting all the light-emitting pixels, by the drive block and the two signal lines arranged for each light-emitting pixel column. be able to.
  • the threshold correction period is provided in the (k + 1) th drive block during the period in which the luminance signal is sampled in the kth drive block. Therefore, the threshold correction period is not divided for each light emitting pixel row but for each drive block. Therefore, even if the display area is increased, the relative threshold correction period for one frame period is lengthened without significantly increasing the number of outputs of the scanning / control line driving circuit 14 and without reducing the light emission duty. It becomes possible to set. As a result, a drive current based on the luminance signal voltage corrected with high accuracy flows to the light emitting element, and the image display quality is improved.
  • the threshold correction period given to each light emitting pixel is Tf / N at the maximum.
  • the threshold correction period according to the present invention includes a reset period and a threshold detection period in the timing chart shown in FIG. 4A.
  • the threshold correction period is set at a different timing for each light emitting pixel row, if the light emitting pixel row is M rows (M >> N), the maximum Tf / M is obtained. Further, even when two signal lines as described in Patent Document 1 are arranged for each light emitting pixel column, the maximum is 2 Tf / M.
  • a control line for controlling conduction between the source of the drive transistor 114 and the fixed potential line 119 can be shared in the drive block. Therefore, the number of control lines output from the scanning / control line driving circuit 14 is reduced. Therefore, the load on the drive circuit is reduced.
  • control lines feed line and scanning line
  • the total number of control lines is 2M.
  • the scanning / control line driving circuit 14 outputs one scanning line per light emitting pixel row and one control line for each driving block. Therefore, if the display device 1 is composed of M light emitting pixel rows, the total number of control lines (including scanning lines) is (M + N).
  • the number of control lines of the display device 1 according to the present invention is the same as that of the conventional image display device 500.
  • the number of control lines can be reduced to about 1 ⁇ 2.
  • the display device according to the present invention is not limited to the above-described embodiment. Another embodiment realized by combining arbitrary constituent elements in the embodiment, or modifications obtained by applying various modifications conceivable by those skilled in the art without departing from the gist of the present invention to the embodiment. Various devices incorporating the display device according to the present invention are also included in the present invention.
  • the switching transistor is described as an n-type transistor that is turned on when the voltage level of the gate of the switching transistor is HIGH.
  • the inverted image display device also has the same effect as the above-described embodiments.
  • the organic EL element is connected with the cathode side shared with other pixels.
  • the cathode side is connected to the pixel circuit.
  • the display device according to the present invention is built in a thin flat TV as shown in FIG.
  • a thin flat TV capable of displaying a highly accurate image reflecting a video signal is realized.
  • the present invention is particularly useful for an active organic EL flat panel display in which the luminance is varied by controlling the light emission intensity of the pixel by the pixel signal current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 駆動回路の出力負荷が低減され、表示品質が向上した画像表示装置を提供する。複数の発光画素を有する表示装置は、複数の発光画素行を一駆動ブロックとした2以上の駆動ブロックを構成し、各発光画素は、駆動トランジスタと、容量素子と、発光素子と、駆動トランジスタのソースと固定電位線とを導通させる第1スイッチングトランジスタとを備え、さらに、k番目の駆動ブロックに属する発光画素(11A)と第1信号線(151)とを接続する第2スイッチングトランジスタ、または、(k+1)番目の駆動ブロックに属する発光画素(11B)と第2信号線(152)とを接続する第3スイッチングトランジスタを備え、第1スイッチングトランジスタの導通を制御する制御線(131)は、同一駆動ブロック内の全発光画素で共通化されている。

Description

表示装置およびその駆動方法
 本発明は、表示装置およびその駆動方法に関し、特に電流駆動型の発光素子を用いた表示装置およびその駆動方法に関する。
 電流駆動型の発光素子を用いた表示装置として、有機エレクトロルミネッセンス(EL)素子を用いた表示装置が知られている。この自発光する有機EL素子を用いた有機EL表示装置は、液晶表示装置に必要なバックライトが不要で装置の薄型化に最適である。また、視野角にも制限がないため、次世代の表示装置として実用化が期待されている。また、有機EL表示装置に用いられる有機EL素子は、各発光素子の輝度がそこに流れる電流値により制御される点で、液晶セルがそこに印加される電圧により制御されるのとは異なる。
 有機EL表示装置では、通常、画素を構成する有機EL素子がマトリクス状に配置される。複数の行電極(走査線)と複数の列電極(データ線)との交点に有機EL素子を設け、選択した行電極と複数の列電極との間にデータ信号に相当する電圧を印加するようにして有機EL素子を駆動するものをパッシブマトリクス型の有機ELディスプレイと呼ぶ。
 一方、複数の走査線と複数のデータ線との交点にスイッチング薄膜トランジスタ(TFT:Thin Film Transistor)を設け、このスイッチングTFTに駆動素子のゲートを接続し、選択した走査線を通じてこのスイッチングTFTをオンさせて信号線からデータ信号を駆動素子に入力する。この駆動素子によって有機EL素子を駆動するものをアクティブマトリクス型の有機EL表示装置と呼ぶ。
 アクティブマトリクス型の有機EL表示装置は、各行電極(走査線)を選択している期間のみ、それに接続された有機EL素子が発光するパッシブマトリクス型の有機EL表示装置とは異なり、次の走査(選択)まで有機EL素子を発光させることが可能であるため、デューティ比が上がってもディスプレイの輝度減少を招くようなことはない。従って、アクティブマトリクス型の有機EL表示装置は、低電圧で駆動でき、低消費電力化が可能となる。しかしながら、アクティブマトリクス型の有機ELディスプレイでは、駆動トランジスタの特性のばらつきに起因して、同じデータ信号を与えても、各画素において有機EL素子の輝度が異なり、輝度むらが発生するという欠点がある。
 この問題に対し、例えば、特許文献1では、駆動トランジスタの特性のばらつきによる輝度ムラの補償方法として、簡単な画素回路で、画素ごとの特性バラツキを補償する方法が開示されている。
 図9は、特許文献1に記載された従来の画像表示装置の構成を示すブロック図である。同図に記載された画像表示装置500は、画素アレイ部502と、これを駆動する駆動部からなる。画素アレイ部502は、行ごとに配置された走査線701~70mと、列ごとに配置された信号線601~60nと、両者が交差する部分に配置された行列状の発光画素501と、行ごとに配置された給電線801~80mとを備える。また、駆動部は、信号セレクタ503と、走査線駆動部504と、給電線駆動部505とを備える。
 走査線駆動部504は、各走査線701~70mに水平周期(1H)で順次制御信号を供給して発光画素501を行単位で線順次走査する。給電線駆動部505は、この線順次走査に合わせて各給電線801~80mに第1電圧と第2電圧で切り換える電源電圧を供給する。信号セレクタ503は、この線順次走査に合わせて映像信号となる輝度信号電圧と基準電圧とを切り換えて列状の信号線601~60nに供給する。
 ここで、列状の信号線601~60nは、それぞれ、列ごとに2本配置されており、一方の信号線は奇数行の発光画素501に基準電圧及び信号電圧を供給し、他方の信号線は偶数行の発光画素501に基準電圧及び信号電圧を供給している。
 図10は、特許文献1に記載された従来の画像表示装置の有する発光画素の回路構成図である。なお、同図には1行目かつ1列目の発光画素501を記載している。この発光画素501に対して走査線701、給電線801及び信号線601が配されている。なお、信号線601は2本あるうちの1本が、発光画素501に接続されている。発光画素501は、スイッチングトランジスタ511と、駆動トランジスタ512と、保持容量513と、発光素子514とを備える。スイッチングトランジスタ511は、ゲートが走査線701に、ソース及びドレインの一方が信号線601に、その他方が駆動トランジスタ512のゲートにそれぞれ接続されている。駆動トランジスタ512は、ソースが発光素子514のアノードに、ドレインが給電線801にそれぞれ接続されている。発光素子514は、カソードが接地配線515に接続されている。保持容量513は、駆動トランジスタ512のソース及びゲートに接続されている。
 上記構成において、給電線駆動部505は、信号線601が基準電圧である状態で、給電線801を第1電圧(高電圧)から第2電圧(低電圧)に切り換える。走査線駆動部504は、同じく信号線601が基準電圧である状態で、走査線701の電圧を“H”レベルにしてスイッチングトランジスタ511を導通させ、基準電圧を駆動トランジスタ512のゲートに印加するとともに、駆動トランジスタ512のソースを第2電圧に設定する。以上の動作により、駆動トランジスタ512の閾値電圧Vt(TFT)の補正のための準備が完了する。続いて、給電線駆動部505は、信号線601の電圧が基準電圧から信号電圧に切り換わる前の補正期間で、給電線801の電圧を第2電圧から第1電圧に切り換えて、駆動トランジスタ512の閾値電圧Vt(TFT)に相当する電圧を保持容量513に保持させる。次に、スイッチングトランジスタ511の電圧を“H”レベルにして信号電圧を保持容量513に保持させる。つまり、この信号電圧は、先に保持された駆動トランジスタ512の閾値電圧Vt(TFT)に相当する電圧に加算されて保持容量513に書き込まれる。そして、駆動トランジスタ512は、第1電圧にある給電線801から電流の供給を受け、上記保持電圧に応じた駆動電流を発光素子514に流す。
 上述した動作では、信号線601は列ごとに2本配置されていることにより、各信号線が基準電圧にある時間帯を長くしている。よって、駆動トランジスタ512の閾値電圧Vt(TFT)に相当する電圧を保持容量513に保持するための補正期間を確保するようにしている。
 図11は、特許文献1に記載された画像表示装置の動作タイミングチャートである。同図には、上から順に、1ライン目の走査線701及び給電線801、2ライン目の走査線702及び給電線802、3ライン目の走査線703及び給電線803、奇数行の発光画素に割り当てられた信号線、偶数行の発光画素に割り当てられた信号線の信号波形が記載されている。走査線に印加される走査信号は、1水平期間(1H)ずつ順次1ラインごとにシフトしていく。1ライン分の走査線に印加される走査信号は、2個のパルスを含んでいる。1番目のパルスは時間幅が長く1H以上である。2番目のパルスは時間幅が狭く、1Hの一部である。1番目のパルスは上述した閾値補正期間に対応し、2番目のパルスは信号電圧サンプリング期間及び移動度補正期間に対応している。また、給電線に供給される電源パルスも1H周期で1ラインごとにシフトしていく。これに対して、各信号線は2Hに1回、信号電圧が印加され、基準電圧にある時間帯を1H以上確保することが可能となる。
 以上のように、特許文献1に記載された従来の画像表示装置では、発光画素ごとに駆動トランジスタ512の閾値電圧Vt(TFT)がばらついても、十分な閾値補正期間が確保されることにより、発光画素ごとに当該ばらつきはキャンセルされ、画像の輝度ムラ抑止が図られる。
特開2008-122633号公報
 しかしながら、特許文献1に記載された従来の画像表示装置は、発光画素行ごとに配置された走査線及び給電線の信号レベルのオンオフが多い。例えば、閾値補正期間を発光画素行ごとに設定しなければならない。また、信号線からスイッチングトランジスタを介して輝度信号電圧がサンプリングされると、引き続いて発光期間を設けなければならない。よって、画素行ごとの閾値補正タイミング及び発光タイミングを設定する必要がある。このため、表示パネルが大面積化されるにつれ、行数も増加するので、各駆動回路から出力される信号が多くなり、また、その信号切り換えの周波数が高くなり、走査線駆動回路及び給電線駆動回路の信号出力負荷が大きくなる。
 また、特許文献1に記載された従来の画像表示装置は、駆動トランジスタの閾値電圧Vt(TFT)の補正期間は2H未満であり、高精度の補正が要求される表示装置としては限界がある。
 上記課題に鑑み、本発明は、駆動回路の出力負荷が低減され、高精度の閾値電圧補正により表示品質が向上した表示装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る表示装置は、マトリクス状に配置された複数の発光画素を有する表示装置であって、発光画素列ごとに配置され、発光画素の輝度を決定する信号電圧を前記発光画素に与える第1信号線及び第2信号線と、第1電源線及び第2電源線と、発光画素行ごとに配置された走査線と、発光画素行ごとに配置された制御線とを備え、前記複数の発光画素は、複数の発光画素行を一駆動ブロックとした2以上の駆動ブロックを構成し、前記複数の発光画素のそれぞれは、一方の端子が前記第2電源線に接続され、前記信号電圧に応じた信号電流が流れることにより発光する発光素子と、ソース及びドレインの一方が第1電源線に接続され、ソース及びドレインの他方が前記発光素子の他方の端子に接続され、ゲート-ソース間に印加される前記信号電圧を前記信号電流に変換する駆動トランジスタと、一方の端子が前記駆動トランジスタのゲートに接続され、他方の端子が前記駆動トランジスタのソースに接続された容量素子と、ゲートが前記制御線に接続され、ソース及びドレインの一方が前記容量素子の他方の端子に接続され、ソース及びドレインの他方が固定電位線に接続された第1スイッチングトランジスタとを備え、k(kは自然数)番目の駆動ブロックに属する前記発光画素は、さらに、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記駆動トランジスタのゲートに接続され、ソース及びドレインの他方が前記第1信号線に接続された第2スイッチングトランジスタを備え、(k+1)番目の駆動ブロックに属する前記発光画素は、さらに、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記駆動トランジスタのゲートに接続され、ソース及びドレインの他方が前記第2信号線に接続された第3スイッチングトランジスタを備え、前記制御線は、同一駆動ブロック内の全発光画素では共通化されており、異なる駆動ブロック間では独立していることを特徴とする。
 本発明の表示装置およびその駆動方法によれば、駆動トランジスタの閾値補正期間及びタイミングを駆動ブロック内で一致させることが可能となるので信号レベルのオンからオフもしくはオフからオンへの切り換え回数を減らすことができ、発光画素の回路を駆動する駆動回路の負荷が低減する。上記駆動ブロック化及び発光画素列ごとに配置された2本の信号線により、駆動トランジスタの閾値補正期間を1フレーム期間に対して大きくとることができるので、高精度な駆動電流が発光素子に流れ、画像表示品質が向上する。
図1は、本発明の実施の形態に係る表示装置の電気的な構成を示すブロック図である。 図2Aは、本発明の実施の形態に係る表示装置における奇数駆動ブロックの発光画素の具体的な回路構成図である。 図2Bは、本発明の実施の形態に係る表示装置における偶数駆動ブロックの発光画素の具体的な回路構成図である。 図3は、本発明の実施の形態に係る表示装置の有する表示パネルの一部を示す回路構成図である。 図4Aは、本発明の実施の形態に係る表示装置の駆動方法の動作タイミングチャートである。 図4Bは、本発明の実施の形態に係る駆動方法により発光した駆動ブロックの状態遷移図である。 図5は、本発明の実施の形態に係る表示装置の有する発光画素の状態遷移図である。 図6は、本発明の実施の形態に係る表示装置の動作フローチャートである。 図7は、走査線及び信号線の波形特性を説明する図である。 図8は、本発明の表示装置を内蔵した薄型フラットTVの外観図である。 図9は、特許文献1に記載された従来の画像表示装置の構成を示すブロック図である。 図10は、特許文献1に記載された従来の画像表示装置の有する発光画素の回路構成図である。 図11は、特許文献1に記載された画像表示装置の動作タイミングチャートである。
 上記目的を達成するために、本発明の一態様に係る表示装置は、マトリクス状に配置された複数の発光画素を有する表示装置であって、発光画素列ごとに配置され、発光画素の輝度を決定する信号電圧を前記発光画素に与える第1信号線及び第2信号線と、第1電源線及び第2電源線と、発光画素行ごとに配置された走査線と、発光画素行ごとに配置された制御線とを備え、前記複数の発光画素は、複数の発光画素行を一駆動ブロックとした2以上の駆動ブロックを構成し、前記複数の発光画素のそれぞれは、一方の端子が前記第2電源線に接続され、前記信号電圧に応じた信号電流が流れることにより発光する発光素子と、ソース及びドレインの一方が第1電源線に接続され、ソース及びドレインの他方が前記発光素子の他方の端子に接続され、ゲート-ソース間に印加される前記信号電圧を前記信号電流に変換する駆動トランジスタと、一方の端子が前記駆動トランジスタのゲートに接続され、他方の端子が前記駆動トランジスタのソースに接続された容量素子と、ゲートが前記制御線に接続され、ソース及びドレインの一方が前記容量素子の他方の端子に接続され、ソース及びドレインの他方が固定電位線に接続された第1スイッチングトランジスタとを備え、k(kは自然数)番目の駆動ブロックに属する前記発光画素は、さらに、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記駆動トランジスタのゲートに接続され、ソース及びドレインの他方が前記第1信号線に接続された第2スイッチングトランジスタを備え、(k+1)番目の駆動ブロックに属する前記発光画素は、さらに、ゲートが前記走査線に接続され、ソース及びドレインの一方が前記駆動トランジスタのゲートに接続され、ソース及びドレインの他方が前記第2信号線に接続された第3スイッチングトランジスタを備え、前記制御線は、同一駆動ブロック内の全発光画素では共通化されており、異なる駆動ブロック間では独立している。
 本態様によれば、駆動トランジスタのソースと固定電位線とを接続する第1スイッチングトランジスタ、駆動トランジスタの閾値電圧及び輝度信号電圧に対応する電圧を保持する容量素子が配置された発光画素回路、駆動ブロック化された各発光画素への制御線、走査線及び信号線の配置により、駆動トランジスタの閾値補正期間及びそのタイミングを同一駆動ブロック内で一致させることが可能となる。よって、電流パスを制御する信号を出力し信号電圧を制御する駆動回路の負荷が低減する。また、さらに、上記駆動ブロック化及び発光画素列ごとに配置された2本の信号線により、駆動トランジスタの閾値補正期間を、全発光画素を書き換える時間である1フレーム期間Tfのなかで大きくとることができる。これは、k番目の駆動ブロックにおいて輝度信号がサンプリングされている期間に、(k+1)番目の駆動ブロックにおいて閾値補正期間が設けられることによるものである。よって、閾値補正期間は、発光画素行ごとに分割されるのではなく、駆動ブロックごとに分割される。よって、表示領域が大面積化されるほど、発光デューティを減少させることなく、1フレーム期間に対する相対的な閾値補正期間を長く設定することが可能となる。これにより、高精度に補正された輝度信号電圧に基づいた駆動電流が発光素子に流れ、画像表示品質が向上する。
 また、本発明の一態様に係る表示装置は、前記複数の発光画素のそれぞれは、さらに、前記駆動トランジスタのソースと前記固定電位線との間に挿入された第2容量素子を備えてもよい。
 本態様によれば、第2容量素子は、定常状態において駆動トランジスタのソース電位を記憶する。なお、定常状態でのソース電位とは駆動トランジスタの閾値電圧となる。信号電圧が容量素子の第1電極に印加された場合でも、そのソース電位は当該容量素子と第2容量素子との間のノードに残っている。よって、上記信号電圧の印加により、第1信号線もしくは第2信号線における信号電圧と基準電圧との電圧差に応じた電圧が、容量素子に印加されることになる。
 また、本発明の一態様に係る表示装置は、さらに、前記第1信号線、前記第2信号線、前記制御線び前記走査線を制御して前記発光画素を駆動する駆動回路を具備し、前記駆動回路は、前記走査線からk番目の駆動ブロックの有する全ての前記第2スイッチングトランジスタをオン状態とする電圧を同時に印加することにより、前記第1信号線から基準電圧をk番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートに同時に印加し、前記制御線からk番目の駆動ブロックの有する全ての前記第1スイッチングトランジスタをオン状態とする電圧を同時に印加することにより、前記基準電圧よりも小さく前記基準電圧との差が前記駆動トランジスタの閾値電圧以上となるような前記固定電位線の固定電圧をk番目の駆動ブロックの有する全ての前記駆動トランジスタのソースに同時に印加し、前記走査線からk番目の駆動ブロックの有する全ての前記第2スイッチングトランジスタをオフ状態とする電圧を同時に印加することにより、前記第1信号線とk番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートとを同時に非導通にし、前記走査線から(k+1)番目の駆動ブロックの有する全ての前記第3スイッチングトランジスタをオン状態とする電圧を同時に印加することにより、前記第2信号線から前記基準電圧を(k+1)番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートに同時に印加し、前記制御線から、(k+1)番目の駆動ブロックの有する全ての前記第1スイッチングトランジスタをオン状態とする電圧を同時に印加することにより、前記固定電圧を(k+1)番目の駆動ブロックの有する全ての前記駆動トランジスタのソースに同時に印加し、前記走査線から(k+1)番目の駆動ブロックの有する全ての前記第3スイッチングトランジスタをオフ状態とする電圧を同時に印加することにより、前記第2信号線と(k+1)番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートとを同時に非導通にするものである。
 本態様によれば、前記第1信号線、前記第2信号線、前記制御線及び前記走査線の電圧を制御する駆動回路が、閾値補正期間、信号電圧書き込み期間及び発光期間を制御する。
 また、本発明の一態様に係る表示装置は、前記信号電圧は、前記発光素子を発光させるための輝度信号電圧、及び、前記駆動トランジスタの閾値電圧に対応した電圧を前記容量素子に記憶させるための基準電圧からなり、前記表示装置は、さらに、前記信号電圧を前記第1信号線及び前記第2信号線に出力する信号線駆動回路と、前記信号線駆動回路が前記信号電圧を出力するタイミングを制御するタイミング制御回路とを備え、前記タイミング制御回路は、前記信号線駆動回路に前記第1信号線へ前記輝度信号電圧を出力させている間には前記第2信号線へ前記基準電圧を出力させ、前記第2信号線へ前記輝度信号を出力させている間には前記第1信号線へ前記基準電圧を出力させるものである。
 本態様によれば、k番目の駆動ブロックにおいて輝度信号がサンプリングされている期間に、(k+1)番目の駆動ブロックにおいて閾値補正期間が設けられる。よって、閾値補正期間は、発光画素行ごとに分割されるのではなく、駆動ブロックごとに分割される。よって、表示領域が大面積化されるほど、相対的な閾値補正期間を長く設けることが可能となる。
 また、本発明の一態様に係る表示装置は、全ての前記発光画素を書き換える時間をTfとし、前記駆動ブロックの総数をNとすると、前記駆動トランジスタの閾値電圧を検出する時間は、最大でTf/Nである。
 また、本発明は、このような特徴的な手段を備える表示装置として実現することができるだけでなく、表示装置に含まれる特徴的な手段をステップとする表示装置の駆動方法として実現することができる。
(実施の形態)
 本実施の形態における表示装置は、マトリクス状に配置された複数の発光画素を有する表示装置であって、発光画素列ごとに配置された第1信号線及び第2信号線と、発光画素行ごとに配置された制御線とを備え、複数の発光画素は、複数の発光画素行を一単位とした2以上の駆動ブロックを構成し、複数の発光画素のそれぞれは、駆動トランジスタと、両端子がそれぞれ駆動トランジスタのゲート及びソースに接続された容量素子と、駆動トランジスタのソースに接続された発光素子と、ゲートが制御線に接続され駆動トランジスタのソースと固定電位線との間に挿入された第1スイッチングトランジスタと、駆動トランジスタのソースと固定電位線との間に挿入された第2容量素子とを備え、奇数番目の駆動ブロックに属する発光画素は、さらに、第1信号線と駆動トランジスタのゲートとの間に挿入された第2スイッチングトランジスタを備え、偶数番目の駆動ブロックに属する発光画素は、さらに、第2信号線と駆動トランジスタのゲートとの間に挿入された第3スイッチングトランジスタを備え、制御線は、同一駆動ブロックの全発光画素では共通化されている。これにより、駆動トランジスタの閾値補正期間を駆動ブロック内で一致させることが可能となる。よって、駆動回路が出力すべき制御線の本数が削減され、駆動回路の回路規模が低減する。また、閾値補正期間を1フレーム期間に対して大きくとることができるので、画像表示品質が向上する。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 図1は、本発明の実施の形態に係る表示装置の電気的な構成を示すブロック図である。同図における表示装置1は、表示パネル10と、タイミング制御回路20と、電圧制御回路30とを備える。表示パネル10は、複数の発光画素11A及び11Bと、信号線群12と制御線群13と走査/制御線駆動回路14と、信号線駆動回路15とを備える。
 発光画素11A及び11Bは、表示パネル10上に、マトリクス状に配置されている。ここで、発光画素11A及び11Bは、複数の発光画素行を一駆動ブロックとする2以上の駆動ブロックを構成している。発光画素11Aは、k(kは自然数)番目の駆動ブロックを構成し、また、発光画素11Bは(k+1)番目の駆動ブロックを構成する。但し、表示パネル10をN個の駆動ブロックに分割したとすると、(k+1)はN以下の自然数である。これは、例えば、発光画素11Aは奇数番目の駆動ブロックを構成し、発光画素11Bは偶数番目の駆動ブロックを構成するということを意味する。
 信号線群12は、発光画素列ごとに配置された複数の信号線からなる。ここで、各発光画素列につき2本の信号線が配置されており、奇数番目の駆動ブロックの発光画素は第1信号線に接続され、偶数番目の駆動ブロックの発光画素は第1信号線と異なる第2信号線に接続されている。
 制御線群13は、発光画素ごとに配置された走査線及び制御線からなる。
 走査/制御線駆動回路14は、制御線群13の各走査線へ走査信号を、また、各制御線へ制御信号を出力することにより、発光画素の有する回路素子を駆動する。
 信号線駆動回路15は、信号線群12の各信号線へ輝度信号または基準信号を出力することにより、発光画素の有する回路素子を駆動する。
 タイミング制御回路20は、走査/制御線駆動回路14から出力される走査信号及び制御信号の出力タイミングを制御する。また、タイミング制御回路20は、信号線駆動回路15から第1信号線及び第2信号線に出力される輝度信号または基準信号を出力するタイミングを制御し、第1信号線及び第2信号線に対し、第1信号線に輝度信号を出力させている間には第2信号線に基準電圧を出力させ、第2信号線に輝度信号を出力させている間には第1信号線に基準電圧を出力させる。
 電圧制御回路30は、走査/制御線駆動回路14から出力される走査信号及び制御信号の電圧レベルを制御する。
 図2Aは、本発明の実施の形態に係る表示装置における奇数駆動ブロックの発光画素の具体的な回路構成図であり、図2Bは、本発明の実施の形態に係る表示装置における偶数駆動ブロックの発光画素の具体的な回路構成図である。図2A及び図2Bに記載された発光画素11A及び11Bは、いずれも、有機EL(エレクトロルミネッセンス)素子113と、駆動トランジスタ114と、スイッチングトランジスタ115及び116と、静電保持容量117及び118と、制御線131と、走査線133と、第1信号線151と、第2信号線152とを備える。
 図2A及び図2Bにおいて、有機EL素子113は、カソードが第2電源線である電源線112に接続されアノードが駆動トランジスタ114のソースに接続された発光素子であり、駆動トランジスタ114の駆動電流が流れることにより発光する。
 駆動トランジスタ114は、ドレインが第1電源線である電源線110に接続され、ソースが有機EL素子113のアノードに接続された駆動トランジスタである。駆動トランジスタ114は、ゲート-ソース間に印加された信号電圧を、当該信号電圧に対応したドレイン電流に変換する。そして、このドレイン電流を駆動電流として有機EL素子113に供給する。駆動トランジスタ114は、例えば、n型の薄膜トランジスタ(n型TFT)で構成される。
 スイッチングトランジスタ115は、ゲートが走査線133に接続され、ソース及びドレインの一方が駆動トランジスタ114のゲートに接続されている。また、そのソース及びドレインの他方は、奇数駆動ブロックの発光画素11Aにおいては、第1信号線151に接続され、第2スイッチングトランジスタとして機能し、偶数駆動ブロックの発光画素11Bにおいては、第2信号線152に接続され、第3スイッチングトランジスタとして機能する。
 スイッチングトランジスタ116は、ゲートが制御線131に接続され、ソース及びドレインの一方が駆動トランジスタ114のソースに接続され、ソース及びドレインの他方が固定電位線119に接続された第1スイッチングトランジスタである。スイッチングトランジスタ116は、固定電位線119の固定電圧VR2を駆動トランジスタ114のソースに印加するタイミングを決定する機能を有する。スイッチングトランジスタ115及び116は、例えば、n型の薄膜トランジスタ(n型TFT)で構成される。
 静電保持容量117は、一方の端子である第1電極が駆動トランジスタ114のゲートに接続され、他方の端子である第2電極が駆動トランジスタ114のソースに接続された容量素子である。静電保持容量117は、第1信号線151または第2信号線152から供給された輝度信号電圧及び駆動トランジスタ114の閾値電圧に対応した電荷を保持し、例えば、スイッチングトランジスタ115がオフ状態となった後に、駆動トランジスタ114から有機EL素子113へ供給する信号電流を制御する機能を有する。
 静電保持容量118は、駆動トランジスタ114のソースと固定電位線120との間に挿入された第2容量素子である。静電保持容量118は、まず、定常状態において駆動トランジスタ114のソース電位を記憶する。なお、定常状態でのソース電位とは駆動トランジスタ114の閾値電圧となる。輝度信号電圧がスイッチングトランジスタ115を介して静電保持容量117の第1電極に印加された場合でも、そのソース電位の情報は静電保持容量117と静電保持容量118との間のノードに残っている。よって、上記輝度信号電圧の印加により、第1信号線151もしくは第2信号線152における輝度信号電圧と基準電圧との電圧差に応じた電圧が、静電保持容量117に印加されることになる。
 なお、静電保持容量118の他方の端子は、任意の固定電位で終端されていればよく、固定電位線119に接続されていてもよい。また、例えば、電源線110または112に接続されていてもよい。この場合、レイアウトの自由度が向上し、素子間のスペースをより広く確保することが可能になり、歩留まりが向上する。
 また、静電保持容量118は、上述したように回路素子として人為的に配置されたものでなくてもよく、例えば、有機EL素子113の有する寄生容量を静電保持容量118と見立ててもよい。
 制御線131は、走査/制御線駆動回路14に接続され、発光画素11A及び11Bを含む画素行に属する各発光画素に接続されている。これにより、制御線131は、駆動トランジスタ114のソースと固定電位線119とを導通または非導通とする状態を発生する機能を有する。
 走査線133は、発光画素11A及び11Bを含む画素行に属する各発光画素へ輝度信号電圧または基準電圧である信号電圧を書き込むタイミングを供給する機能を有する。
 第1信号線151及び第2信号線152は、信号線駆動回路15に接続され、それぞれ、発光画素11A及び11Bを含む画素列に属する各発光画素へ接続され、駆動TFTの閾値電圧を検出するための基準電圧と、発光強度を決定する信号電圧とを供給する機能を有する。
 なお、図2A及び図2Bには記載されていないが、電源線110及び電源線112は、それぞれ、正電源線及び負電源線であり、他の発光画素にも接続されており電圧源に接続されている。また、固定電位線119及び120は、他の発光画素にも接続されており電圧源に接続されている。
 次に、制御線131、走査線133、第1信号線151及び第2信号線152の発光画素間における接続関係について説明する。
 図3は、本発明の実施の形態に係る表示装置の有する表示パネルの一部を示す回路構成図である。同図には、2つの隣接する駆動ブロック及び各制御線、各走査線及び各信号線が記載されている。図面及び以下の説明では、各制御線、各走査線及び各信号線を“符号(ブロック番号、当該ブロックにおける行番号)”、または、“符号(ブロック番号)”で表している。
 前述したように、駆動ブロックとは、複数の発光画素行で構成され、表示パネル10の中には2以上の駆動ブロックが存在する。例えば、図3に記載された各駆動ブロックは、m行の発光画素行で構成されている。
 図3の上段に記載されたk番目の駆動ブロックでは、制御線131(k)が当該駆動ブロック内の全発光画素11Aの有するスイッチングトランジスタ116のゲートに共通して接続されている。一方、走査線133(k、1)~走査線133(k、m)は、それぞれ、発光画素行ごとに個別に接続されている。
 また、図3の下段に記載された(k+1)番目の駆動ブロックでも、k番目の駆動ブロックと同様の接続がなされている。ただし、k番目の駆動ブロックに接続された制御線131(k)と(k+1)番目の駆動ブロックに接続された制御線131(k+1)とは、異なる制御線であり、走査/制御線駆動回路14から個別の制御信号が出力される。つまり、制御線131は、同一駆動ブロック内の全発光画素では共通化されており、異なる駆動ブロック間では独立している。ここで、同一の駆動ブロック内において、制御線が共通化されているとは、走査/制御線駆動回路14から出力される一の制御信号が、同一の駆動ブロック内の制御線に同時に供給されることをいう。例えば、同一の駆動ブロック内では、走査/制御線駆動回路14に接続された一本の制御線が、発光画素行ごとに配置された制御線131に分岐している。また、制御線が、異なる駆動ブロック間では独立しているとは、走査/制御線駆動回路14から出力される個別の制御信号が、複数の駆動ブロックに対して供給されることをいう。例えば、制御線131が、走査/制御線駆動回路14に、駆動ブロックごとに、個別に接続されている。
 また、k番目の駆動ブロックでは、第1信号線151が当該駆動ブロック内の全ての発光画素11Aの有するスイッチングトランジスタ115のソース及びドレインの他方に接続されている。一方、(k+1)番目の駆動ブロックでは、第2信号線152が当該駆動ブロック内の全発光画素11Bの有するスイッチングトランジスタ115のソース及びドレインの他方に接続されている。
 上記駆動ブロック化により、駆動トランジスタ114のソースと固定電位線119との接続を制御する制御線131の本数が削減される。よって、これらの制御線に駆動信号を出力する走査/制御線駆動回路14の出力本数が低減し、回路規模の削減を可能にする。
 次に、本実施の形態に係る表示装置1の駆動方法について図4Aを用いて説明する。なお、ここでは、図2A及び図2Bに記載された具体的回路構成を有する表示装置についての駆動方法を詳細に説明する。
 図4Aは、本発明の実施の形態に係る表示装置の駆動方法の動作タイミングチャートである。同図において、横軸は時間を表している。また縦方向には、上から順に、k番目の駆動ブロックの走査線133(k、1)、133(k、2)及び133(k、m)、第1信号線151及び制御線131(k)に発生する電圧の波形図が示されている。また、これらに続き、(k+1)番目の駆動ブロックの走査線133(k+1、1)、133(k+1、2)及び133(k+1、m)、第2信号線152及び制御線131(k+1)に発生する電圧の波形図が示されている。また、図5は、本発明の実施の形態に係る表示装置の有する発光画素の状態遷移図である。また、図6は、本発明の実施の形態に係る表示装置の動作フローチャートである。
 まず、時刻t01において、走査/制御線駆動回路14は、走査線133(k、1)の電圧レベルをLOWからHIGHに変化させ、1行目の発光画素の有するスイッチングトランジスタ115をオン状態とする。また、信号線駆動回路15は、第1信号線151の信号電圧を、輝度信号電圧から駆動トランジスタ114がオフとなる基準電圧VR1に変化させる。これにより、図5(b)に示すように、基準電圧VR1が駆動トランジスタ114のゲートに印加されることにより、k番目の駆動ブロックに属する1行目の発光画素が消光する。このとき、駆動トランジスタ114のゲート電位をV、ソース電位をVとすると、V及びVは式1で表される。
Figure JPOXMLDOC01-appb-M000001
 
 ここで、Vt(EL)は有機EL素子113の閾値電圧であり、VCATは、電源線112の電位である。Vは、時刻t01以前の発光状態における電位が、静電保持容量118により保持されている。また、このとき、式2で表される関係によりVR1及びVCATが設定される。駆動トランジスタの閾値電圧Vt(TFT)が>0Vである場合は、VR1及びVCATは、例えば、0Vである。
Figure JPOXMLDOC01-appb-M000002
 
 つまり、駆動トランジスタ114のゲート-ソース間電圧Vgsは、Vgs-Vt(TFT)<0となるので駆動トランジスタ114はオフ状態となる。
 次に、時刻t02において、走査/制御線駆動回路14は、走査線133(k、1)の電圧レベルをHIGHからLOWに変化させ、1行目の発光画素の有するスイッチングトランジスタ115をオフ状態とする。これにより、1行目の発光画素の消光動作が完了する。
 次に、上述した時刻t01~時刻t02の消光動作を、k番目の駆動ブロックに属する2行目からm行目の発光画素について、行順次に実行する。
 次に、時刻t03において、走査/制御線駆動回路14は、走査線133(k、1)~133(k、m)の電圧レベルを同時にLOWからHIGHに変化させ、k番目の駆動ブロックに属する全ての発光画素の有するスイッチングトランジスタ115をオン状態とする(図6のS11)。また、信号線駆動回路15は、このタイミングで、第1信号線151の信号電圧を、輝度信号電圧から駆動トランジスタ114がオフとなる基準電圧VR1に変化させている。上記基準電圧を駆動トランジスタ114のゲートに印加する動作は、第1基準電圧印加ステップに相当する。
 次に、時刻t04において、走査/制御線駆動回路14は、制御線131(k)の電圧レベルを同時にLOWからHIGHに変化させ、k番目の駆動ブロックに属する全ての発光画素の有するスイッチングトランジスタ116をオン状態とする。これにより、図5(c)に示すように、固定電圧VR2が駆動トランジスタ114のゲート及び静電保持容量117の第2電極に印加される(図6のS12)。このとき、V及びVは式3で表される。
Figure JPOXMLDOC01-appb-M000003
   
 ここで、VR2は固定電位線119の固定電位である。また、このとき、式4で表される関係により、VR1及びVR2が設定される。VR2は、例えば、-5Vである。
Figure JPOXMLDOC01-appb-M000004
 
 よって、駆動トランジスタ114のゲート-ソース間電圧Vgsは、例えば5Vとなり、駆動トランジスタ114がオン状態となる。このとき、電源線110→駆動トランジスタ114→静電保持容量117の第2電極→スイッチングトランジスタ116→固定電位線119の経路で駆動電流が流れる。駆動トランジスタ114のゲート及び静電保持容量117の第2電極に固定電圧VR2を印加する動作は、第1固定電圧印加ステップに相当する。
 次に、時刻t05において、走査/制御線駆動回路14は、制御線131(k)の電圧レベルを同時にHIGHからLOWに変化させ、k番目の駆動ブロックに属する全ての発光画素の有するスイッチングトランジスタ116をオフ状態とする。これにより、図5(d)に示すように、電源線110→駆動トランジスタ114→静電保持容量117の第2電極→静電保持容量117の経路で放電電流が流れ始める。この放電電流は、駆動トランジスタ114のVgsが駆動トランジスタ114の閾値電圧Vt(TFT)に漸近するまで継続する。そして、図5(e)に示すように、Vgsが駆動トランジスタ114の閾値電圧Vt(TFT)に到達したとき、駆動トランジスタ114はオフ状態となる。このとき、V及びVは式5で表され、静電保持容量117には、Vt(TFT)が保持される。
Figure JPOXMLDOC01-appb-M000005
  
 なお、時刻t05~時刻t06の間、Vgsは(VR1-VR2)からVt(TFT)へと変化するが、有機EL素子113のアノード-カソード間電圧は、有機EL素子113の閾値電圧Vt(EL)以下の電圧となっているので、有機EL素子113には電流は流れない。
 次に、時刻t06において、走査/制御線駆動回路14は、走査線133(k、1)~133(k、m)の電圧レベルを同時にHIGHからLOWに変化させ、k番目の駆動ブロックに属する全ての発光画素の有するスイッチングトランジスタ115をオフ状態とする(図6のS13)。上記スイッチングトランジスタ115をオフ状態として駆動トランジスタ114のゲートへの基準電圧の供給を停止させる動作は、第1非導通ステップに相当する。
 上述した第1基準電圧印加ステップ、第1固定電圧印加ステップ及び第1非導通ステップは、第1閾値保持ステップに相当する。
 なお、閾値電圧Vt(TFT)に相当する電圧を静電保持容量117に保持させるために流れる放電電流は微少であるため、静電保持容量117に保持された電圧が駆動トランジスタ114の閾値電圧Vt(TFT)に漸近して定常状態となるまでには時間を要する。よって、この期間が長いほど、静電保持容量117に保持される電圧は安定し、この期間を十分長く確保することにより、高精度な電圧補償が実現される。
 以上、時刻t03~時刻t06の期間では、駆動トランジスタ114の閾値電圧Vt(TFT)の補正が、k番目の駆動ブロック内において同時に実行され、k番目の駆動ブロックの全ての発光画素11Aの有する静電保持容量117には駆動トランジスタ114の閾値電圧Vt(TFT)に相当する電圧が同時に保持される。
 次に、時刻t07~時刻t08の間に、走査/制御線駆動回路14は、走査線133(k、1)の電圧レベルを、LOW→HIGH→LOWに変化させ、1行目の発光画素の有するスイッチングトランジスタ115を、オン状態とする(図6のS14)。また、この時、信号線駆動回路15は、第1信号線151の信号電圧を基準電圧から輝度信号電圧Vdataに変化させている。これにより、図5(f)に示すように、駆動トランジスタ114のゲートに輝度信号電圧Vdataが印加される。このとき、静電保持容量117の第2電極及び駆動トランジスタ114のソースにおける電位Vは、信号電圧の変化量(Vdata-VR1)がC1及びC2で分配された電圧と、時刻t06におけるV電位である(VR1-Vt(TFT))との和となり、式6で表される。
Figure JPOXMLDOC01-appb-M000006
 
 静電保持容量117に保持される電位差Vgsは、Vと上記式6で規定されたVとの差分でありV=Vdataより、式7で表される。
Figure JPOXMLDOC01-appb-M000007
 つまり、静電保持容量117には、この輝度信号電圧Vdataに応じた電圧と、先に保持された駆動トランジスタ114の閾値電圧Vt(TFT)に相当する電圧とが加算された加算電圧が書き込まれる。上記加算電圧の書き込み動作は、第1輝度保持ステップに相当する。
 次に、上述した時刻t07~時刻t08の書き込み動作を、k番目の駆動ブロックに属する2行目からm行目の発光画素について、行順次に実行する。
 次に、時刻t08において、走査/制御線駆動回路14は、走査線133(k、1)の電圧レベルを、HIGHからLOWに変化させ、1行目の発光画素の有するスイッチングトランジスタ115を、オフ状態とする(図6のS15)。このとき、Vgsは上記式7で規定された電圧となっている。また、Vdataは、例えば、0~5Vであることから、VgsがVt(TFT)以上の電圧となっており、駆動トランジスタ114はオン状態となり、有機EL素子113に駆動電流が流れ、有機EL素子113が上記式7に規定されたVgsに応じて発光する。このとき、VGSは、書込み時間をΔtとすると、式8で表される。
Figure JPOXMLDOC01-appb-M000008
 次に、上述した時刻t08の発光動作を、k番目の駆動ブロックに属する2行目からm行目の発光画素について、行順次に実行する。つまり、k番目の駆動ブロック内の全ての発光画素11Aでは、行順次に書き込み及び発光が開始される。上記発光動作は、第1発光ステップに相当する。
 以上、時刻t08以降の期間では、有機EL素子113の発光が、k番目の駆動ブロック内において行順次に実行されている。ここで、駆動トランジスタ114を流れるドレイン電流iは、式7で規定されたVsgから、駆動トランジスタ114の閾値電圧Vt(TFT)を減じた電圧値を用いて、式9のように表される。
Figure JPOXMLDOC01-appb-M000009
 ここで、βは移動度、ゲート絶縁膜容量およびチャネル領域の形状に関する特性パラメータである。Vgs(0)は式10のように表される。
Figure JPOXMLDOC01-appb-M000010
 式9および式10から、有機EL素子113を発光させるためのドレイン電流iは、駆動トランジスタ114の閾値電圧Vt(TFT)に依存しない電流となっていることが解る。
 以上、発光画素行を駆動ブロック化することにより、駆動ブロック内では、駆動トランジスタ114の閾値電圧Vt(TFT)補償が同時に実行される。また、発光画素行を駆動ブロック化することにより、制御線131を駆動ブロック内で共通化できる。
 ここで、特許文献1に記載された、2本の信号線を用いた従来の画像表示装置と、本発明の駆動ブロック化された表示装置とで、閾値電圧検出期間により規定される発光デューティの比較を行う。
 図7は、走査線及び信号線の波形特性を説明する図である。同図において、各画素行の1水平期間t1Hにおける閾値電圧Vt(TFT)の検出期間は、基準電圧が各画素の有する静電保持容量に印加される期間であり、走査線がHIGHレベル状態の期間であるPWに相当する。また、信号線においては、1水平期間t1Hは、信号電圧を供給する期間であるPWと、基準電圧を供給する期間であるtとを含む。また、PWの立ち上がり時間及び立ち下がり時間を、それぞれ、tR(S)及びtF(S)とし、PWの立ち上がり時間及び立ち下がり時間を、それぞれ、tR(D)及びtF(D)とすると、1水平期間t1Hは式11のように表される。
Figure JPOXMLDOC01-appb-M000011
 さらに、PW=tと仮定すると、1水平期間t1Hは式12のように表される。
Figure JPOXMLDOC01-appb-M000012

となる。式11及び式12より、tは式13で表される。
Figure JPOXMLDOC01-appb-M000013
 
となる。また、Vt(TFT)検出期間は基準電圧発生期間内に開始し終了しなければならないので、Vt(TFT)検出時間を最大で確保したとして、tは式14で表される。
Figure JPOXMLDOC01-appb-M000014
 
となり、式13及び式14より、PWは式15のように表される。
Figure JPOXMLDOC01-appb-M000015

が得られる。
 上記式15に対して、例として、走査線本数が1080本(+ブランキング30本)の垂直解像度を有し、120Hz駆動するパネルの発光デューティを比較する。
 従来の画像表示装置において、2本の信号線を有する場合の1水平期間t1Hは、1本の信号線を有する場合の2倍であるから、
 t1H={1秒/(120Hz×1110本)}×2=7.5μS×2=15μS
となる。ここで、tR(D)=tF(D)=2μS、tR(S)=tF(S)=1.5μSとし、これらを式15に代入すると、Vt(TFT)の検出期間であるPWは、2.5μSとなる。
 ここで、十分な精度を有するためのVt(TFT)検出期間が1000μS必要であるとすると、当該Vt(TFT)検出に必要な水平期間は、1000μS/2.5μS=400水平期間、が少なくとも非発光期間として必要となる。よって、2本の信号線を用いた従来の画像表示装置の発光デューティは、(1110水平期間-400水平期間)/1110水平期間=64%以下となる。
 次に、本発明の駆動ブロック化された表示装置の発光デューティを求める。上記条件と同様に、十分な精度を有するためのVt(TFT)検出期間が1000μS必要であるとすると、ブロック駆動の場合には、図4Aに記載された期間A(閾値検出準備期間+閾値検出期間)が上記1000μSに相当する。この場合、1フレームの非発光期間は、上記期間Aと書き込み期間とを含むことから、少なくとも1000μS×2=2000μSとなる。よって、本発明の駆動ブロック化された画像表示装置の発光デューティは、(1フレーム時間-2000μS)/1フレーム時間であり、1フレーム時間として(1秒/120Hz)を代入して、76%以下となる。
 以上の比較結果より、2本の信号線を用いた従来の画像表示装置に対して、本発明のようにブロック駆動を組み合わせることにより、同じ閾値検出期間を設定したとしても発光デューティをより長く確保することができる。よって、発光輝度が十分確保され、かつ、駆動回路の出力負荷が低減された長寿命の表示装置を実現することが可能となる。
 逆に言えば、2本の信号線を用いた従来の画像表示装置と、本発明のようにブロック駆動を組み合わせた表示装置とを同じ発光デューティに設定した場合、本発明の表示装置の方が、閾値検出期間を長く確保できることが解る。
 再び、本実施の形態に係る表示装置1の駆動方法について説明する。
 一方、k番目の駆動ブロックにおける駆動トランジスタ114の閾値電圧検出期間が完了した時刻t06の直後、(k+1)番目の駆動ブロックにおける駆動トランジスタ114の閾値電圧検出が開始される。
 まず、k番目の駆動ブロックにおけるm行の発光画素の消光動作の直後である時刻t11において、走査/制御線駆動回路14は、走査線133(k+1、1)の電圧レベルをLOWからHIGHに変化させ、1行目の発光画素の有するスイッチングトランジスタ115をオン状態とする。また、信号線駆動回路15は、第2信号線152の信号電圧を、輝度信号電圧から駆動トランジスタ114がオフとなる基準電圧VR1に変化させる。これにより、基準電圧VR1が駆動トランジスタ114のゲートに印加されることにより、(k+1)番目の駆動ブロックに属する1行目の発光画素が消光する。
 次に、時刻t12において、走査/制御線駆動回路14は、走査線133(k+1、1)の電圧レベルをHIGHからLOWに変化させ、1行目の発光画素の有するスイッチングトランジスタ115をオフ状態とする。これにより、1行目の発光画素の消光動作が完了する。
 次に、上述した時刻t11~時刻t12の消光動作を、(k+1)番目の駆動ブロックに属する2行目からm行目の発光画素について、行順次に実行する。
 次に、k番目の駆動ブロックにおける駆動トランジスタ114の閾値電圧検出期間が完了し、書き込み動作が開始される時刻t07の直後である時刻t13において、走査/制御線駆動回路14は、走査線133(k+1、1)~133(k+1、m)の電圧レベルを同時にLOWからHIGHに変化させ、(k+1)番目の駆動ブロックに属する全ての発光画素の有するスイッチングトランジスタ115をオン状態とする(図6のS21)。また、信号線駆動回路15は、このタイミングで、第2信号線152の信号電圧を、輝度信号電圧から駆動トランジスタ114がオフとなる基準電圧VR1に変化させている。上記基準電圧を駆動トランジスタ114のゲートに印加する動作は、第2基準電圧印加ステップに相当する。
 次に、時刻t14において、走査/制御線駆動回路14は、制御線131(k+1)の電圧レベルを同時にLOWからHIGHに変化させ、(k+1)番目の駆動ブロックに属する全ての発光画素の有するスイッチングトランジスタ116をオン状態とする。これにより、固定電圧VR2が駆動トランジスタ114のゲート及び静電保持容量117の第2電極に印加される(図6のS22)。このとき、電源線110→駆動トランジスタ114→静電保持容量117の第2電極→スイッチングトランジスタ116→固定電位線119の経路で駆動電流が流れる。駆動トランジスタ114のゲート及び静電保持容量117の第2電極に固定電圧VR2を印加する動作は、第2固定電圧印加ステップに相当する。
 次に、時刻t15において、走査/制御線駆動回路14は、制御線131(k+1)の電圧レベルを同時にHIGHからLOWに変化させ、(k+1)番目の駆動ブロックに属する全ての発光画素の有するスイッチングトランジスタ116をオフ状態とする。これにより、電源線110→駆動トランジスタ114→静電保持容量117の第2電極→静電保持容量117の経路で放電電流が流れ始める。この放電電流は、駆動トランジスタ114のVgsが駆動トランジスタ114の閾値電圧Vt(TFT)に漸近するまで継続する。そして、Vgsが駆動トランジスタ114の閾値電圧Vt(TFT)に到達したとき、駆動トランジスタ114はオフ状態となる。
 なお、時刻t15~時刻t16の間、Vgsは(VR1-VR2)からVt(TFT)へと変化するが、有機EL素子113のアノード-カソード間電圧は負電圧となっているので、有機EL素子113には電流は流れない。
 次に、時刻t16において、走査/制御線駆動回路14は、走査線133(k+1、1)~133(k+1、m)の電圧レベルを同時にHIGHからLOWに変化させ、(k+1)番目の駆動ブロックに属する全ての発光画素の有するスイッチングトランジスタ115をオフ状態とする(図6のS23)。上記スイッチングトランジスタ115をオフ状態として駆動トランジスタ114のゲートへの基準電圧の供給を停止させる動作は、第2非導通ステップに相当する。
 上述した第2基準電圧印加ステップ、第2固定電圧印加ステップ及び第2非導通ステップは、第2閾値保持ステップに相当する。
 なお、閾値電圧Vt(TFT)に相当する電圧を静電保持容量117に保持させるために流れる放電電流は微少であるため、静電保持容量117に保持された電圧が駆動トランジスタ114の閾値電圧Vt(TFT)に漸近して定常状態となるまでには時間を要する。よって、この期間が長いほど、静電保持容量117に保持される電圧は安定し、この期間を十分長く確保することにより、高精度な電圧補償が実現される。
 以上、時刻t13~時刻t16の期間では、駆動トランジスタ114の閾値電圧Vt(TFT)の補正が、(k+1)番目の駆動ブロック内において同時に実行され、(k+1)番目の駆動ブロックの全ての発光画素11Aの有する静電保持容量117には駆動トランジスタ114の閾値電圧Vt(TFT)に相当する電圧が同時に保持される。
 次に、時刻t17~時刻t18の間に、走査/制御線駆動回路14は、走査線133(k+1、1)の電圧レベルを、LOW→HIGH→LOWに変化させ、1行目の発光画素の有するスイッチングトランジスタ115を、オン状態とする(図6のS24)。また、この時、信号線駆動回路15は、第2信号線152の信号電圧を基準電圧から輝度信号電圧Vdataに変化させている。これにより、駆動トランジスタ114のゲートに輝度信号電圧Vdataが印加される。つまり、静電保持容量117には、この輝度信号電圧Vdataに応じた電圧と、先に保持された駆動トランジスタ114の閾値電圧Vt(TFT)に相当する電圧とが加算された加算電圧が書き込まれる。上記加算電圧の書き込み動作は、第2輝度保持ステップに相当する。
 次に、上述した時刻t17~時刻t18の書き込み動作を、(k+1)番目の駆動ブロックに属する2行目からm行目の発光画素について、行順次に実行する。
 次に、時刻t18において、走査/制御線駆動回路14は、走査線133(k+1、1)の電圧レベルを、HIGHからLOWに変化させ、1行目の発光画素の有するスイッチングトランジスタ115を、オフ状態とする(図6のS25)。このとき、VgsがVt(TFT)以上の電圧となっており、駆動トランジスタ114はオン状態となり、有機EL素子113に駆動電流が流れ、有機EL素子113が上記式7に規定されたVgsに応じて発光する。
 次に、上述した時刻t18の発光動作を、(k+1)番目の駆動ブロックに属する2行目からm行目の発光画素について、行順次に実行する。つまり、(k+1)番目の駆動ブロック内の全発光画素11Bでは、行順次に書き込み及び発光が開始される。上記発光動作は、第2発光ステップに相当する。
 以上、時刻t18以降の期間では、有機EL素子113の発光が、(k+1)番目の駆動ブロック内において行順次に実行されている。
 以上、発光画素行を駆動ブロック化することにより、駆動ブロック内では、駆動トランジスタ114の閾値電圧Vt(TFT)補償が同時に実行される。また、発光画素行を駆動ブロック化することにより、制御線131を駆動ブロック内で共通化できる。
 また、走査線133(k+1、1)~133(k+1、m)においては、走査/制御線駆動回路14とは個別に接続されているが、閾値電圧補償期間においては、駆動パルスのタイミングが同一である。よって、走査/制御線駆動回路14は、出力するパルス信号の高周波化を抑制することができるので、駆動回路の出力負荷を低減できる。
 以上、時刻t17以降の期間では、有機EL素子113の発光が、(k+1)番目の駆動ブロック内において同時に実行されている。
 以上の動作が、表示パネル10内の(k+2)番目の駆動ブロック以降においても順次実行される。
 図4Bは、本発明の実施の形態に係る駆動方法により発光した駆動ブロックの状態遷移図である。同図には、ある発光画素列における、駆動ブロックごとの発光期間及び非発光期間が表されている。縦方向は複数の駆動ブロックを、また、横軸は経過時間を示す。ここで、非発光期間とは、上述した閾値補正期間を含む。
 本発明の実施の形態に係る表示装置の駆動方法によれば、発光期間は、同一駆動ブロック内でも発光画素行ごとに順次設定される。よって、駆動ブロック内においても、行走査方向に対して発光期間が連続的に現れる。
 以上、スイッチングトランジスタ116及び静電保持容量118が配置された発光画素回路、駆動ブロック化された各発光画素への制御線、走査線及び信号線の配置、及び上記駆動方法により、駆動トランジスタ114の閾値補正期間及びそのタイミングを同一駆動ブロック内で一致させることが可能となる。よって、電流パスを制御する信号を出力する走査/制御線駆動回路14や信号電圧を制御する信号線駆動回路15の負荷が低減する。また、さらに、上記駆動ブロック化及び発光画素列ごとに配置された2本の信号線により、駆動トランジスタ114の閾値補正期間を、全発光画素を書き換える時間である1フレーム期間Tfのなかで大きくとることができる。これは、k番目の駆動ブロックにおいて輝度信号がサンプリングされている期間に、(k+1)番目の駆動ブロックにおいて閾値補正期間が設けられることによるものである。よって、閾値補正期間は、発光画素行ごとに分割されるのではなく、駆動ブロックごと分割される。よって、表示領域が大面積化されても走査/制御線駆動回路14の出力数をさほど増大させることなく、かつ、発光デューティを減少させることなく、1フレーム期間に対する相対的な閾値補正期間を長く設定することが可能となる。これにより、高精度に補正された輝度信号電圧に基づいた駆動電流が発光素子に流れ、画像表示品質が向上する。
 例えば、表示パネル10をN個の駆動ブロックに分割した場合、各発光画素に与えられる閾値補正期間は、最大Tf/Nとなる。ここで本発明における閾値補正期間は、図4Aに記載されたタイミングチャートにおけるリセット期間と閾値検出期間とで構成される。これに対し、発光画素行ごとに異なるタイミングで閾値補正期間を設定する場合、発光画素行がM行(M>>N)であるとすると、最大Tf/Mとなる。また、特許文献1に記載されたような信号線を発光画素列ごとに2本配置した場合でも、最大2Tf/Mである。
 また、駆動ブロック化により、駆動トランジスタ114のソースと固定電位線119との導通を制御する制御線を駆動ブロック内で共通化できる。よって、走査/制御線駆動回路14から出力される制御線の本数が削減される。よって、駆動回路の負荷が低減する。
 例えば、特許文献1に記載された従来の画像表示装置500では、発光画素行あたり2本の制御線(給電線及び走査線)が配置されている。画像表示装置500がM行の発光画素行から構成されているとすると、制御線は合計2M本となる。
 これに対し、本発明の実施の形態に係る表示装置1では、走査/制御線駆動回路14から、発光画素行あたり1本の走査線、駆動ブロックごとに1本の制御線が出力される。よって、表示装置1がM行の発光画素行から構成されているとすると、制御線(走査線を含む)の合計は(M+N)本となる。
 大面積化がなされ、発光画素の行数が大きい場合、M>>Nが実現されるので、この場合には、本発明に係る表示装置1の制御線本数は、従来の画像表示装置500の制御線本数に比べ、約1/2に削減することができる。
 以上、実施の形態について説明したが、本発明に係る表示装置は、上述した実施の形態に限定されるものではない。実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る表示装置を内蔵した各種機器も本発明に含まれる。
 なお、以上述べた実施の形態では、スイッチングトランジスタのゲートの電圧レベルがHIGHの場合にオン状態になるn型トランジスタとして記述しているが、これらをp型トランジスタで形成し、走査線の極性を反転させた画像表示装置でも、上述した各実施の形態と同様の効果を奏する。
 また、以上に述べた実施の形態では、有機EL素子はカソード側を他の画素と共通化して接続されているが、アノード側を共通化して、カソード側を画素回路と接続した画像表示装置でも、上述した各実施の形態と同様の効果を奏する。
 また、例えば、本発明に係る表示装置は、図8に記載されたような薄型フラットTVに内蔵される。本発明に係る表示装置が内蔵されることにより、映像信号を反映した高精度な画像表示が可能な薄型フラットTVが実現される。
 本発明は、特に、画素信号電流により画素の発光強度を制御することで輝度を変動させるアクティブ型の有機ELフラットパネルディスプレイに有用である。
 1  表示装置
 10  表示パネル
 11A、11B、501  発光画素
 12  信号線群
 13  制御線群
 14  走査/制御線駆動回路
 15  信号線駆動回路
 20  タイミング制御回路
 30  電圧制御回路
 110、112  電源線
 113  有機EL素子
 114、512  駆動トランジスタ
 115、116、511  スイッチングトランジスタ
 117、118  静電保持容量
 119、120  固定電位線
 131  制御線
 133、701、702、703  走査線
 151  第1信号線
 152  第2信号線
 500  画像表示装置
 502  画素アレイ部
 503  信号セレクタ
 504  走査線駆動部
 505  給電線駆動部
 513  保持容量
 514  発光素子
 515  接地配線
 601  信号線
 801、802、803  給電線

Claims (7)

  1.  マトリクス状に配置された複数の発光画素を有する表示装置であって、
     発光画素列ごとに配置され、発光画素の輝度を決定する信号電圧を前記発光画素に与える第1信号線及び第2信号線と、
     第1電源線及び第2電源線と、
     発光画素行ごとに配置された走査線と、
     発光画素行ごとに配置された制御線とを備え、
     前記複数の発光画素は、複数の発光画素行を一駆動ブロックとした2以上の駆動ブロックを構成し、
     前記複数の発光画素のそれぞれは、
     一方の端子が前記第2電源線に接続され、前記信号電圧に応じた信号電流が流れることにより発光する発光素子と、
     ソース及びドレインの一方が第1電源線に接続され、ソース及びドレインの他方が前記発光素子の他方の端子に接続され、ゲート-ソース間に印加される前記信号電圧を前記信号電流に変換する駆動トランジスタと、
     一方の端子が前記駆動トランジスタのゲートに接続され、他方の端子が前記駆動トランジスタのソースに接続された容量素子と、
     ゲートが前記制御線に接続され、ソース及びドレインの一方が前記容量素子の他方の端子に接続され、ソース及びドレインの他方が固定電位線に接続された第1スイッチングトランジスタとを備え、
     k(kは自然数)番目の駆動ブロックに属する前記発光画素は、さらに、
     ゲートが前記走査線に接続され、ソース及びドレインの一方が前記駆動トランジスタのゲートに接続され、ソース及びドレインの他方が前記第1信号線に接続された第2スイッチングトランジスタを備え、
     (k+1)番目の駆動ブロックに属する前記発光画素は、さらに、
     ゲートが前記走査線に接続され、ソース及びドレインの一方が前記駆動トランジスタのゲートに接続され、ソース及びドレインの他方が前記第2信号線に接続された第3スイッチングトランジスタを備え、
     前記制御線は、同一駆動ブロック内の全発光画素では共通化されており、異なる駆動ブロック間では独立している
     表示装置。
  2.  前記複数の発光画素のそれぞれは、さらに、
     前記駆動トランジスタのソースと前記固定電位線との間に挿入された第2容量素子を備える
     請求項1に記載の表示装置。
  3.  さらに、前記第1信号線、前記第2信号線、前記制御線び前記走査線を制御して前記発光画素を駆動する駆動回路を具備し、
     前記駆動回路は、
     前記走査線からk番目の駆動ブロックの有する全ての前記第2スイッチングトランジスタをオン状態とする電圧を同時に印加することにより、前記第1信号線から基準電圧をk番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートに同時に印加し、
     前記制御線からk番目の駆動ブロックの有する全ての前記第1スイッチングトランジスタをオン状態とする電圧を同時に印加することにより、前記基準電圧よりも小さく前記基準電圧との差が前記駆動トランジスタの閾値電圧以上となるような前記固定電位線の固定電圧をk番目の駆動ブロックの有する全ての前記駆動トランジスタのソースに同時に印加し、
     前記走査線からk番目の駆動ブロックの有する全ての前記第2スイッチングトランジスタをオフ状態とする電圧を同時に印加することにより、前記第1信号線とk番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートとを同時に非導通にし、
     前記走査線から(k+1)番目の駆動ブロックの有する全ての前記第3スイッチングトランジスタをオン状態とする電圧を同時に印加することにより、前記第2信号線から前記基準電圧を(k+1)番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートに同時に印加し、
     前記制御線から、(k+1)番目の駆動ブロックの有する全ての前記第1スイッチングトランジスタをオン状態とする電圧を同時に印加することにより、前記固定電圧を(k+1)番目の駆動ブロックの有する全ての前記駆動トランジスタのソースに同時に印加し、
     前記走査線から(k+1)番目の駆動ブロックの有する全ての前記第3スイッチングトランジスタをオフ状態とする電圧を同時に印加することにより、前記第2信号線と(k+1)番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートとを同時に非導通にする
     請求項1または2に記載の表示装置。
  4.  前記信号電圧は、前記発光素子を発光させるための輝度信号電圧、及び、前記駆動トランジスタの閾値電圧に対応した電圧を前記容量素子に記憶させるための基準電圧からなり、
     前記表示装置は、さらに、
     前記信号電圧を前記第1信号線及び前記第2信号線に出力する信号線駆動回路と、
     前記信号線駆動回路が前記信号電圧を出力するタイミングを制御するタイミング制御回路とを備え、
     前記タイミング制御回路は、前記信号線駆動回路に前記第1信号線へ前記輝度信号電圧を出力させている間には前記第2信号線へ前記基準電圧を出力させ、前記第2信号線へ前記輝度信号を出力させている間には前記第1信号線へ前記基準電圧を出力させる
     請求項1~3のうちいずれか1項に記載の表示装置。
  5.  全ての前記発光画素を書き換える時間をTfとし、前記駆動ブロックの総数をNとすると、
     前記駆動トランジスタの閾値電圧を検出する時間は、
     最大でTf/Nである
     請求項1~4のうちいずれか1項に記載の表示装置。
  6.  複数の信号線のうち一の信号線から供給された輝度信号電圧または基準電圧を当該電圧に対応した信号電流に変換する駆動トランジスタと、前記信号電流が流れることにより発光する発光素子とを備える発光画素がマトリクス状に配置され、複数の前記発光画素行を一駆動ブロックとした2以上の駆動ブロックを構成する表示装置の駆動方法であって、
     k(kは自然数)番目の駆動ブロックの有する全ての前記駆動トランジスタのゲート及びソースに接続された容量素子に、前記駆動トランジスタの閾値電圧に対応した電圧を同時に保持させる第1閾値保持ステップと、
     前記第1閾値保持ステップの後、k番目の駆動ブロックの有する前記発光画素において、前記容量素子に、前記閾値電圧に対応した電圧に前記輝度信号電圧が加算された加算電圧を発光画素行順に保持させる第1輝度保持ステップと、
     前記第1閾値保持ステップの後、(k+1)番目の駆動ブロックの有する全ての前記容量素子に、前記駆動トランジスタの閾値電圧に対応した電圧を同時に保持させる第2閾値保持ステップとを含み、
     前記第1閾値保持ステップは、
     発光画素列ごとに配置された第1信号線から前記基準電圧をk番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートに同時に印加する第1基準電圧印加ステップと、
     前記第1基準電圧印加ステップの後、全ての発光画素に共通に配置された固定電位線から、前記基準電圧よりも小さく前記基準電圧との差が前記駆動トランジスタの閾値電圧以上となるような固定電圧をk番目の駆動ブロックの有する全ての前記駆動トランジスタのソースに、所定の期間、同時に印加する第1固定電圧印加ステップと、
     前記第1固定電圧印加ステップの後、前記第1信号線とk番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートとを同時に非導通にする第1非導通ステップとを含み、
     前記第2閾値保持ステップは、
     発光画素列ごとに配置された第2信号線から前記基準電圧を(k+1)番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートに同時に印加する第2基準電圧印加ステップと、
     前記第2基準電圧印加ステップの後、前記固定電位線から、前記固定電圧を(k+1)番目の駆動ブロックの有する全ての前記駆動トランジスタのソースに、所定の期間、同時に印加する第2固定電圧印加ステップと、
     前記第2固定電圧印加ステップの後、前記第2信号線と(k+1)番目の駆動ブロックの有する全ての前記駆動トランジスタのゲートとを同時に非導通にする第2非導通ステップとを含む
     表示装置の駆動方法。
  7.  前記発光素子は、一方の端子が第1電源線に接続され、他方の端子が前記駆動トランジスタのソースに接続され、
     前記第1基準電圧印加ステップでは、
     ゲートが発光画素行ごとに配置された走査線に接続され、ソース及びドレインの一方が前記駆動トランジスタのゲートに接続され、ソース及びドレインの他方が前記第1信号線に接続された第2スイッチングトランジスタを導通させることにより、前記第1信号線から前記基準電圧を前記駆動トランジスタのゲートに印加し、
     前記第2基準電圧印加ステップでは、
     ゲートが発光画素行ごとに配置された走査線に接続され、ソース及びドレインの一方が前記駆動トランジスタのゲートに接続され、ソース及びドレインの他方が前記第2信号線に接続された第3スイッチングトランジスタを導通させることにより、前記第2信号線から前記基準電圧を前記駆動トランジスタのゲートに印加し、
     第1固定電圧印加ステップ及び第2固定電圧印加ステップでは、
     ゲートが発光画素行ごとに配置された制御線に接続され、ソース及びドレインの一方が前記駆動トランジスタのソース及び前記容量素子に接続され、ソース及びドレインの他方が前記固定電位線に接続された第1スイッチングトランジスタを導通させることにより、前記固定電圧を前記駆動トランジスタのソースに印加し、
     前記第1非導通ステップでは、
     前記第2スイッチングトランジスタを非導通にすることにより、前記第1信号線と前記駆動トランジスタのゲートとを非導通にし、
     前記第2非導通ステップでは、
     前記第3スイッチングトランジスタを非導通にすることにより、前記第2信号線と前記駆動トランジスタのゲートとを非導通にし、
     前記第1輝度保持ステップでは、
     前記第2スイッチングトランジスタを導通させることにより、前記第1信号線から前記輝度信号電圧を前記駆動トランジスタのゲートに印加する
     請求項6に記載の表示装置の駆動方法。
     
PCT/JP2010/005457 2010-09-06 2010-09-06 表示装置およびその駆動方法 WO2012032562A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/005457 WO2012032562A1 (ja) 2010-09-06 2010-09-06 表示装置およびその駆動方法
KR1020127006570A KR101291396B1 (ko) 2010-09-06 2010-09-06 표시 장치 및 그 구동 방법
JP2011548710A JP5399521B2 (ja) 2010-09-06 2010-09-06 表示装置およびその駆動方法
CN201080043673.5A CN102714019B (zh) 2010-09-06 2010-09-06 显示装置及其驱动方法
US13/422,124 US8698710B2 (en) 2010-09-06 2012-03-16 Display device and method of driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005457 WO2012032562A1 (ja) 2010-09-06 2010-09-06 表示装置およびその駆動方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/422,124 Continuation US8698710B2 (en) 2010-09-06 2012-03-16 Display device and method of driving the same

Publications (1)

Publication Number Publication Date
WO2012032562A1 true WO2012032562A1 (ja) 2012-03-15

Family

ID=45810192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005457 WO2012032562A1 (ja) 2010-09-06 2010-09-06 表示装置およびその駆動方法

Country Status (5)

Country Link
US (1) US8698710B2 (ja)
JP (1) JP5399521B2 (ja)
KR (1) KR101291396B1 (ja)
CN (1) CN102714019B (ja)
WO (1) WO2012032562A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141363B2 (ja) 2008-05-03 2013-02-13 ソニー株式会社 半導体デバイス、表示パネル及び電子機器
KR101809300B1 (ko) 2010-09-06 2018-01-18 가부시키가이샤 제이올레드 표시 장치 및 그 구동 방법
WO2014174905A1 (ja) * 2013-04-23 2014-10-30 シャープ株式会社 表示装置およびその駆動電流検出方法
US10803775B2 (en) * 2017-09-20 2020-10-13 Sharp Kabushiki Kaisha Display device and method for driving display device
CN109742134B (zh) * 2019-03-15 2022-07-05 合肥京东方卓印科技有限公司 有机发光二极管显示装置及其驱动方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186439A (ja) * 2001-12-21 2003-07-04 Matsushita Electric Ind Co Ltd El表示装置とその駆動方法および情報表示装置
JP2003195809A (ja) * 2001-12-28 2003-07-09 Matsushita Electric Ind Co Ltd El表示装置とその駆動方法および情報表示装置
JP2008122633A (ja) * 2006-11-13 2008-05-29 Sony Corp 表示装置
JP2008164796A (ja) * 2006-12-27 2008-07-17 Sony Corp 画素回路および表示装置とその駆動方法
JP2008287139A (ja) * 2007-05-21 2008-11-27 Sony Corp 表示装置及びその駆動方法と電子機器
JP2009139928A (ja) * 2007-11-14 2009-06-25 Sony Corp 表示装置及びその駆動方法と電子機器
JP2009237041A (ja) * 2008-03-26 2009-10-15 Sony Corp 画像表示装置及び画像表示方法
JP2010054564A (ja) * 2008-08-26 2010-03-11 Sony Corp 画像表示装置及び画像表示装置の駆動方法
WO2010100938A1 (ja) * 2009-03-06 2010-09-10 パナソニック株式会社 画像表示装置およびその駆動方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195815A (ja) * 2000-11-07 2003-07-09 Sony Corp アクティブマトリクス型表示装置およびアクティブマトリクス型有機エレクトロルミネッセンス表示装置
WO2003091977A1 (en) * 2002-04-26 2003-11-06 Toshiba Matsushita Display Technology Co., Ltd. Driver circuit of el display panel
JP4378087B2 (ja) * 2003-02-19 2009-12-02 奇美電子股▲ふん▼有限公司 画像表示装置
JP2004318093A (ja) * 2003-03-31 2004-11-11 Sanyo Electric Co Ltd 発光ディスプレイ及びその駆動方法及びエレクトロルミネッセンス表示回路及びエレクトロルミネッセンスディスプレイ
KR101076424B1 (ko) * 2004-03-31 2011-10-25 엘지디스플레이 주식회사 일렉트로 루미네센스 패널의 프리차지 방법 및 장치
JP4737587B2 (ja) * 2004-06-18 2011-08-03 奇美電子股▲ふん▼有限公司 表示装置の駆動方法
CA2495726A1 (en) * 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
US7907137B2 (en) * 2005-03-31 2011-03-15 Casio Computer Co., Ltd. Display drive apparatus, display apparatus and drive control method thereof
JP2008083680A (ja) * 2006-08-17 2008-04-10 Seiko Epson Corp 電気光学装置および電子機器
KR101517110B1 (ko) * 2007-11-14 2015-05-04 소니 주식회사 표시장치 및 그 구동 방법과 전자기기
JP2009157019A (ja) 2007-12-26 2009-07-16 Sony Corp 表示装置と電子機器
JP2009180765A (ja) * 2008-01-29 2009-08-13 Casio Comput Co Ltd 表示駆動装置、表示装置及びその駆動方法
JP2009211039A (ja) * 2008-03-04 2009-09-17 Samsung Mobile Display Co Ltd 有機電界発光表示装置
JP2009216869A (ja) * 2008-03-10 2009-09-24 Sony Corp 表示装置
JP2009244666A (ja) * 2008-03-31 2009-10-22 Sony Corp パネルおよび駆動制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186439A (ja) * 2001-12-21 2003-07-04 Matsushita Electric Ind Co Ltd El表示装置とその駆動方法および情報表示装置
JP2003195809A (ja) * 2001-12-28 2003-07-09 Matsushita Electric Ind Co Ltd El表示装置とその駆動方法および情報表示装置
JP2008122633A (ja) * 2006-11-13 2008-05-29 Sony Corp 表示装置
JP2008164796A (ja) * 2006-12-27 2008-07-17 Sony Corp 画素回路および表示装置とその駆動方法
JP2008287139A (ja) * 2007-05-21 2008-11-27 Sony Corp 表示装置及びその駆動方法と電子機器
JP2009139928A (ja) * 2007-11-14 2009-06-25 Sony Corp 表示装置及びその駆動方法と電子機器
JP2009237041A (ja) * 2008-03-26 2009-10-15 Sony Corp 画像表示装置及び画像表示方法
JP2010054564A (ja) * 2008-08-26 2010-03-11 Sony Corp 画像表示装置及び画像表示装置の駆動方法
WO2010100938A1 (ja) * 2009-03-06 2010-09-10 パナソニック株式会社 画像表示装置およびその駆動方法

Also Published As

Publication number Publication date
CN102714019A (zh) 2012-10-03
US8698710B2 (en) 2014-04-15
US20120176422A1 (en) 2012-07-12
JP5399521B2 (ja) 2014-01-29
JPWO2012032562A1 (ja) 2013-10-31
KR101291396B1 (ko) 2013-07-30
KR20120049914A (ko) 2012-05-17
CN102714019B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
JP4778115B2 (ja) 画像表示装置
JP5230806B2 (ja) 画像表示装置およびその駆動方法
JP5282146B2 (ja) 表示装置及びその制御方法
JP5415565B2 (ja) 表示装置およびその駆動方法
JP5456901B2 (ja) 表示装置およびその駆動方法
KR101095701B1 (ko) 표시 패널 장치, 표시 장치 및 그 제어 방법
JP5414808B2 (ja) 表示装置およびその駆動方法
KR101765778B1 (ko) 유기전계발광 표시장치
WO2010041426A1 (ja) 画像表示装置およびその制御方法
JP5627694B2 (ja) 表示装置
JP5284492B2 (ja) 表示装置及びその制御方法
JP5399521B2 (ja) 表示装置およびその駆動方法
KR100564183B1 (ko) 액티브 매트릭스형 표시 장치
JP2013088581A (ja) 表示装置及びその制御方法
JP5778545B2 (ja) 表示装置及びその駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043673.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011548710

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127006570

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856916

Country of ref document: EP

Kind code of ref document: A1