WO2012029142A1 - レーザ加工装置および基板位置検出方法 - Google Patents

レーザ加工装置および基板位置検出方法 Download PDF

Info

Publication number
WO2012029142A1
WO2012029142A1 PCT/JP2010/064948 JP2010064948W WO2012029142A1 WO 2012029142 A1 WO2012029142 A1 WO 2012029142A1 JP 2010064948 W JP2010064948 W JP 2010064948W WO 2012029142 A1 WO2012029142 A1 WO 2012029142A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
mark
processing
imaging
Prior art date
Application number
PCT/JP2010/064948
Other languages
English (en)
French (fr)
Inventor
浩一 印藤
充弘 金田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/064948 priority Critical patent/WO2012029142A1/ja
Priority to CN2010800687983A priority patent/CN103079746A/zh
Priority to KR1020137007152A priority patent/KR101435352B1/ko
Priority to JP2012531613A priority patent/JP5383920B2/ja
Priority to TW099143916A priority patent/TWI415703B/zh
Publication of WO2012029142A1 publication Critical patent/WO2012029142A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane

Definitions

  • the present invention relates to a laser processing apparatus and a substrate position detection method for calculating the amount of displacement of a substrate with respect to a processing table.
  • a laser processing apparatus microwave laser processing machine which irradiates a laser beam to a work and performs a drilling process etc. as one of the apparatuses which process work (process target object), such as a printed circuit board.
  • process work process target object
  • position correction positional displacement correction
  • a workpiece on which laser processing is performed may undergo expansion and contraction in the surface of the workpiece, it is necessary to increase the number of positioning marks in order to improve the positioning accuracy of the workpiece.
  • the camera is moved onto the positioning mark, and the image processing of the positioning mark is performed. Then, the displacement amount (position) of the positioning mark is detected. By repeating these processes for all the positioning marks, the position detection of all the positioning marks is completed. Thereafter, positional deviation correction is performed.
  • one of the positioning marks is moved below the camera by moving the XY table. Thereafter, the camera captures an image of the positioning mark, and the image processing apparatus obtains coordinates of the positioning mark in the imaging region. Then, based on the coordinates of the current position of the XY table and the coordinates of the positioning mark in the imaging area, the shift amount of the positioning mark with respect to the machine origin is obtained. In the laser processing apparatus, the amount of deviation of each of the plurality of positioning marks is obtained. Then, the NC device corrects the processing position command value to the substrate at the time of processing based on the deviation amount.
  • JP 2000-176666 A Japanese Patent Application Laid-Open No. 10-328863
  • the present invention has been made in view of the above, and it is an object of the present invention to obtain a laser processing apparatus and a substrate position detection method capable of detecting displacement of a substrate in a short time.
  • the present invention mounts a substrate to be laser-processed and moves in a plane parallel to the main surface of the substrate, and on the substrate
  • An imaging unit provided for sequentially imaging the positioning marks used for position detection on the substrate; and the imaging unit sequentially moving on the positioning marks without stopping the processing table.
  • a movement instruction unit for outputting a movement instruction to the processing table, an imaging instruction unit for outputting an imaging instruction to the imaging unit when the imaging unit has moved onto the positioning mark, and the movement A mark position for calculating the position of the positioning mark based on the image of the positioning mark captured by the imaging unit while the instruction unit is outputting the movement command to the processing table
  • a position shift amount calculation unit that calculates a position shift amount of the substrate with respect to the processing table using the position and the position of the positioning mark calculated by the mark position calculation unit;
  • a laser processing unit that performs laser processing while performing position correction with the position shift amount calculated by the position shift amount calculation unit.
  • FIG. 1 is a view showing the configuration of a laser processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the processing control device and the XY table.
  • FIG. 3 is a block diagram showing a configuration of a processing position calculation unit according to the embodiment.
  • FIG. 4 is a flowchart of a process of calculating the amount of misalignment of a substrate.
  • FIG. 5 is a view showing an example of an image obtained by capturing an image of a mark.
  • FIG. 6 is a view showing an example of the arrangement position of the mark.
  • FIG. 7 is a diagram showing an example of the imaging order of marks.
  • FIG. 8 is a diagram for explaining the difference between the process of calculating the amount of misalignment of a substrate according to the embodiment and the process of calculating the amount of misalignment of a substrate used conventionally.
  • FIG. 1 is a view showing the configuration of a laser processing apparatus according to an embodiment of the present invention.
  • the laser processing apparatus 100 is an apparatus that performs laser drilling processing on a substrate (workpiece) 4 that is a workpiece by irradiating a laser beam L (pulsed laser beam).
  • the laser processing apparatus 100 according to the present embodiment simultaneously performs the processing of moving the camera 39 onto the positioning mark and the image processing of the positioning mark (processing of calculating the position of the positioning mark). The amount of positional deviation of the position where 4 is placed is calculated.
  • the laser processing apparatus 100 includes a laser oscillator 1 that oscillates a laser beam L, a laser processing unit 3 that performs laser processing of a substrate 4, and a processing control device 2.
  • the laser oscillator 1 oscillates the laser light L and sends it to the laser processing unit 3.
  • the laser processing unit 3 includes galvano mirrors 35X and 35Y, galvano scanners 36X and 36Y, a condensing lens (f ⁇ lens) 34, an XY table (processing table) 30, and a camera 39.
  • the galvano scanners 36X and 36Y have a function of changing the trajectory of the laser beam L to move the irradiation position on the substrate 4, and the laser beam L is two-dimensionally processed in each processing area set in the substrate 4 Scan to
  • the galvano scanners 36X and 36Y rotate the galvano mirrors 35X and 35Y to a predetermined angle in order to scan the laser light L in the XY direction.
  • the galvano mirrors 35X and 35Y reflect the laser beam L and deflect it to a predetermined angle.
  • the galvano mirror 35X deflects the laser beam L in the X direction
  • the galvano mirror 35Y deflects the laser beam L in the Y direction.
  • the condenser lens 34 is a telecentric condenser lens.
  • the condensing lens 34 deflects the laser beam L in a direction perpendicular to the main surface of the substrate 4 and condenses (irradiates) the laser beam L on the processing position (hole position Hx) of the substrate 4.
  • the substrate 4 is an object to be processed such as a printed wiring board, and a plurality of holes are drilled to form through holes.
  • the substrate 4 has, for example, a three-layer structure of a copper foil (conductor layer), a resin (insulation layer), and a copper foil (conductor layer).
  • the XY table 30 mounts the substrate 4 and moves in the XY plane by driving of motors 42X and 42Y described later. Thereby, the XY table 30 moves the substrate 4 in the in-plane direction.
  • a range (scannable area) in which laser processing can be performed by operation of the galvano mechanism (movement of the galvano scanners 36X and 36Y) without moving the XY table 30 is a processing area (scan area).
  • the galvano scanners 36X and 36Y two-dimensionally scan the laser light L after moving the XY table 30 in the XY plane.
  • the XY table 30 moves in order such that the center of each processing area is directly below the center of the condenser lens 34 (galvano origin).
  • the galvano mechanism operates such that each hole position Hx set in the processing area becomes the irradiation position of the laser light L in order.
  • the movement between the processing areas by the XY table 30 and the two-dimensional scanning of the laser light L in the processing area by the galvano mechanism are sequentially performed in the substrate 4. Thereby, all the hole positions Hx in the substrate 4 are all laser processed.
  • the camera (imaging unit) 39 is disposed in the vicinity of a processing head (not shown) that irradiates the substrate 4 with the laser light L.
  • the camera 39 picks up a plurality of positioning marks (hereinafter referred to as marks 6) provided in advance on the substrate 4 and sends the picked up image to the processing control device 2.
  • marks 6 a plurality of positioning marks
  • the camera 39 captures an image of the mark 6 while moving the camera 39 on the substrate 4. Therefore, the camera 39 acquires an image in a short time by a shutter function or the like.
  • the mark 6 is an alignment mark for correcting the positional deviation of the substrate 4 caused by the expansion and contraction of the substrate 4 and the like.
  • the position of the camera 39 is fixed, and in the laser processing apparatus 100, the relative position between the camera 39 and the substrate 4 is changed by moving the position of the substrate 4 by the XY table 30.
  • the operation of the laser processing apparatus 100 may be described as the relative position between the camera 39 and the substrate 4 is changed by moving the position of the camera 39.
  • the processing control device 2 is connected to the laser oscillator 1 and the laser processing unit 3 (not shown), and controls the laser oscillator 1 and the laser processing unit 3.
  • the processing control device 2 is the difference between the actual position (detection result) of the mark 6 and the expected position (theoretical value when there is no positional deviation) of the mark 6 with respect to the machine origin (reference position on the XY table 30)
  • the laser processing position (coordinates) of the substrate 4 is corrected based on the positional displacement amount 208) described later.
  • the processing control device 2 calculates the positional deviation amount 208 based on the detection result of the mark position by the camera 39, and controls the laser processing position of the substrate 4 so as to correct the positional deviation amount 208.
  • the processing control device 2 instructs the laser oscillator 1 and the laser processing unit 3 on the laser processing conditions set in the processing program. Further, before laser processing the substrate 4, the processing control device 2 calculates the amount of positional deviation 208 in the surface of the substrate 4 based on the detection position of the mark 6.
  • the processing control device 2 moves the camera 39 onto the mark 6 in order without stopping the movement of the camera 39 (XY table 30). Then, the processing control device 2 captures an image of the mark 6 by the camera 39 when the camera 39 comes on the mark 6 while moving the camera 39 in the XY plane. Thereby, the processing control device 2 simultaneously performs the movement processing of the camera 39 and the image processing using the captured image of the mark 6 (processing of calculating the position of the mark 6).
  • the processing control device 2 is configured by a computer or the like, and controls the laser oscillator 1 and the laser processing unit 3 by NC (Numerical Control) control or the like.
  • the processing control device 2 is configured to include a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the processing control device 2 controls the laser oscillator 1 and the laser processing unit 3
  • the CPU reads the processing program stored in the ROM by the user's input from the input unit (not shown), and the RAM Expand in the internal program storage area and execute various processing.
  • Various data generated during this process are temporarily stored in a data storage area formed in the RAM.
  • the processing control device 2 controls the laser oscillator 1 and the laser processing unit 3.
  • FIG. 2 is a diagram showing the configuration of the processing control device and the XY table.
  • the processing control device 2 is connected to the servo amplifiers 41X and 41Y, and the servo amplifiers 41X and 41Y are connected to the motors 42X and 42Y, respectively.
  • the motors 42X and 42Y are connected to the encoders 43X and 43Y, respectively, and to the XY table 30.
  • the processing control device 2 outputs a control signal (X direction control command) for controlling the position of the XY table 30 in the X direction to the servo amplifier 41X.
  • the processing control device 2 also outputs a control signal (Y direction control command) for controlling the position of the XY table 30 in the Y direction to the servo amplifier 41Y.
  • the servo amplifiers 41X and 41Y respectively amplify the X-direction control command and the Y-direction control command sent from the processing control device 2 and send them to the motors 42X and 42Y.
  • the motor 42X moves the XY table 30 to a position (X coordinate) according to the X direction control command in the XY plane (in a plane parallel to the main surface of the substrate 4). Further, the motor 42Y moves the XY table 30 to a position (Y coordinate) according to the Y direction control command in the XY plane.
  • the XY table 30 includes a linear scale 40X that detects the position (coordinates) of the XY table 30 in the X direction, and a linear scale 40Y that detects the position of the XY table 30 in the Y direction.
  • the linear scales 40X and 40Y send the detected position (hereinafter referred to as the table position 101) of the detected XY table 30 to the processing control device 2.
  • the table position 101 is information indicating the relative position of the XY table 30 with respect to the camera 39.
  • the linear scales 40X and 40Y may be disposed in the vicinity of the XY table 30, or may be disposed at another position different from the XY table 30 and configured separately from the XY table 30.
  • the encoders 43X and 43Y are connected to the motors 42X and 42Y and the processing control device 2.
  • the encoder 43X detects the state of the motor 42X (the operating state corresponding to the X-direction control command), and sends the detection result to the processing control device 2.
  • the encoder 43Y detects the state of the motor 42Y (the operation state according to the Y direction control command), and sends the detection result to the processing control device 2.
  • the camera 39 captures an image of the mark 6 disposed on the substrate 4, and sends the captured image to the processing control device 2.
  • the processing control device 2 includes a processing position calculation unit 20.
  • the processing position calculation unit 20 determines the position of the substrate 4 (coordinates in the XY plane) (hereinafter referred to as substrate coordinates) based on the image of the mark 6 captured by the camera 39, the table position 101 measured by the linear scales 40X and 40Y, and the like. Calculate 201).
  • the processing position calculation unit 20 uses the correspondence relationship (substrate positional deviation information 151 described later) between the moving speed of the XY table 30 and the positional deviation amount G of the substrate 4 caused by the movement of the XY table 30 to obtain substrate coordinates 201. Correct the
  • the processing position calculation unit 20 causes the camera 39 to capture the image of the mark 6, and based on the captured image, Coordinates (mark coordinates 205 described later) are calculated.
  • the processing position calculation unit 20 uses the correspondence relationship between the moving speed of the XY table 30 and the time required from the imaging command of the mark 6 to the actual imaging of the mark 6 after the imaging command of the mark 6 is output. to correct.
  • the processing position calculation unit 20 calculates the difference between the mark coordinates 206 obtained by correcting the mark coordinates 205 and the coordinates of the mark 6 on the processing program (mark position information 152 described later) Calculated as The processing position calculation unit 20 calculates the positional deviation amount 208 of the substrate 4 for each of the marks 6.
  • the processing control device 2 corrects the laser processing position on the substrate 4 based on the displacement amount 208 of the substrate 4 calculated by the processing position calculation unit 20.
  • FIG. 3 is a block diagram showing a configuration of a processing position calculation unit according to the embodiment.
  • the processing position calculation unit 20 includes a movement command output unit 21, a speed calculation unit 22, a table position input unit 23, a substrate position calculation unit 24, an imaging command output unit 25, an image input unit 26, an image processing unit 27, and a coordinate correction unit 28.
  • a misalignment amount calculation unit 29, a substrate misalignment information storage unit M1, a processing program storage unit M2, and an imaging required time storage unit M3 are provided.
  • the substrate positional deviation information storage unit M1 is a memory for storing substrate positional deviation information 151 indicating the correspondence between the moving speed of the XY table 30 and the positional deviation amount G of the substrate 4 caused by the movement of the XY table 30. .
  • the substrate positional deviation information 151 is read by the substrate position calculation unit 24.
  • the processing program storage unit M2 is a memory or the like that stores a processing program used for laser processing of the substrate 4 and detection of misalignment.
  • the processing program stored in the processing program storage unit M2 includes mark position information 152 indicating the position of the mark 6 (coordinates within the substrate 4).
  • the mark position information 152 is read by the movement command output unit 21 and the imaging command output unit 25.
  • the imaging required time storage unit M3 is a memory or the like that stores, as imaging required time information 153, the time required for the camera 39 to capture an image of the mark 6 after the imaging command of the mark 6 is output.
  • the imaging required time information 153 is read by the coordinate correction unit 28.
  • the movement command output unit 21 instructs the servo amplifiers 41X and 41Y to control (X-direction control instruction, Y-direction control instruction) based on the origin coordinates of the substrate 4 with respect to the reference position on the XY table 30 and the mark position information 152. Output).
  • the X-direction control command and the Y-direction control command are information for instructing the movement amount of the substrate 4 in the X direction and the movement amount in the Y direction, respectively.
  • the movement command output unit 21 outputs control commands to the servo amplifiers 41X and 41Y so that the camera 39 sequentially passes over the marks 6 with respect to the marks 6 arranged on the substrate 4.
  • the movement command output unit 21 also sends the control command output to the servo amplifiers 41X and 41Y to the speed calculation unit 22.
  • the speed calculation unit 22 calculates the moving speed of the XY table 30 based on the control command output from the movement command output unit 21.
  • the velocity calculating unit 22 sends the calculated moving velocity to the substrate position calculating unit 24 and the coordinate correcting unit 28 as the table moving velocity Tv.
  • the table position input unit 23 inputs the position (table position 101) of the XY table 30 sent from the linear scales 40X and 40Y, and sends the position to the substrate position calculation unit 24.
  • the substrate position calculation unit 24 calculates the substrate coordinates 201 based on the table position 101 from the table position input unit 23 which changes momentarily and the origin coordinates of the substrate 4 with respect to the reference position on the XY table 30.
  • the substrate 4 and the XY table 30 have rigidity. For this reason, there is a positional deviation between the actual relative position between the camera 39 and the substrate 4 and the substrate coordinates 201 calculated based on the table position 101 detected by the linear scales 40X and 40Y. 4) has occurred.
  • the substrate coordinates 201 are corrected based on the substrate positional deviation information 151 in the substrate positional deviation information storage unit M1, and the substrate coordinates 202 are calculated.
  • the substrate position calculation unit 24 calculates the positional deviation amount Gv of the substrate 4 corresponding to the movement speed of the XY table 30 based on the table movement speed Tv and the substrate positional deviation information 151.
  • the substrate position calculation unit 24 calculates the substrate coordinates 202 by adding the calculated positional displacement amount Gv of the substrate 4 to the substrate coordinates 201.
  • the substrate position calculation unit 24 sends the calculated substrate coordinates 202 to the imaging command output unit 25 as the position of the substrate 4.
  • the imaging command output unit 25 outputs an imaging command to the camera 39 based on the mark position information 152 and the position of the substrate 4 calculated by the substrate position calculating unit 24.
  • the imaging command output unit 25 outputs an imaging command to the camera 39 at the timing when the camera 39 reaches the mark 6.
  • the image input unit 26 inputs an image of the mark 6 captured by the camera 39 and sends the image to the image processing unit 27.
  • the image processing unit 27 calculates the barycentric position of the mark 6 based on the image of the mark 6.
  • the image processing unit 27 sends the calculated barycentric position to the coordinate correction unit 28 as the mark coordinate 205.
  • the coordinate correction unit 28 corrects the mark coordinates 205 on the basis of the imaging required time information 153 and the table movement speed Tv from the speed calculation unit 22, thereby calculating the mark coordinates 206. Specifically, the coordinate correction unit 28 calculates the positional deviation amount of the mark coordinates 205 according to the moving speed of the XY table 30 based on the imaging required time information 153 and the table moving speed Tv. The coordinate correction unit 28 calculates the mark coordinates 206 by adding the calculated positional displacement amount to the mark coordinates 205. The coordinate correction unit 28 calculates mark coordinates 206 for each of the marks 6. The coordinate correction unit 28 sends the calculated mark coordinates 206 to the displacement amount calculation unit 29.
  • the positional deviation amount calculation unit 29 calculates a difference between the mark coordinates 206 and the ideal coordinates of the mark 6 calculated based on the processing program (mark position information 152) as the positional deviation amount 208 of the substrate 4.
  • the misregistration amount calculation unit 29 calculates the misregistration amount 208 for each of the marks 6.
  • the displacement amount calculation unit 29 stores the calculated displacement amount 208 in the processing program storage unit M2.
  • FIG. 4 is a flowchart of a process of calculating the amount of misalignment of a substrate by the laser processing apparatus.
  • the processing position calculation unit 20 After the substrate 4 to be laser-processed is placed on the XY table 30 of the laser processing apparatus 100, the processing position calculation unit 20 starts calculation processing of the displacement amount (displacement amount from the ideal value) of the substrate 4 .
  • the movement command output unit 21 reads the mark position information 152 in the machining program from the machining program storage unit M2.
  • the movement command output unit 21 outputs a control command to the servo amplifiers 41X and 41Y based on the mark position information 152.
  • the control command is sent to the servo amplifiers 41X and 41Y to pass over the mark 6 in order without stopping the movement of the camera 39. It is output. Thereby, the camera 39 moves in order without stopping on the mark 6.
  • the movement command output unit 21 also sends the control command output to the servo amplifiers 41X and 41Y to the speed calculation unit 22.
  • the speed calculation unit 22 calculates the moving speed of the XY table 30 based on the control command output from the movement command output unit 21.
  • the velocity calculating unit 22 sends the calculated moving velocity to the substrate position calculating unit 24 as a table moving velocity Tv.
  • the linear scales 40X and 40Y detect the position of the XY table 30 and send it to the table position input unit 23.
  • the table position input unit 23 inputs the position of the XY table 30 sent from the linear scales 40X and 40Y as the table position 101, and sends it to the substrate position calculation unit 24.
  • the substrate position calculation unit 24 calculates the substrate coordinates 201 based on the table position 101 from the table position input unit 23 which changes momentarily. Furthermore, the substrate position calculation unit 24 calculates the positional deviation amount Gv of the substrate 4 corresponding to the movement speed of the XY table 30 based on the table movement speed Tv and the substrate positional deviation information 151. The substrate position calculation unit 24 calculates a substrate coordinate 202 which is a relative position between the camera 39 and the substrate 4 by adding the calculated positional deviation amount Gv of the substrate 4 to the substrate coordinate 201. As a result, the substrate position calculation unit 24 can calculate the accurate position of the substrate 4 even for the mark 6 at the corner where the XY table 30 moves simultaneously in the X direction and the Y direction. The substrate position calculation unit 24 sends the calculated substrate coordinates 202 to the imaging command output unit 25 as the position of the substrate 4.
  • the imaging command output unit 25 calculates the distance to the position (imaging position) of the mark 6 based on the mark position information 152 and the substrate coordinates 202 calculated by the substrate position calculation unit 24 (step S10).
  • the imaging command output unit 25 determines whether the camera 39 has reached the mark position (step S20). The imaging command output unit 25 determines that the camera 39 has reached the mark position when the substrate coordinates 202 become the same as the coordinates of the mark 6.
  • the imaging command output unit 25 continues calculating the distance to the imaging position of the mark 6 (step S10).
  • the imaging command output unit 25 outputs an imaging command to the camera 39.
  • the camera 39 captures an image of the mark 6 (step S30). Since the camera 39 captures an image of the mark 6 while moving, the camera 39 captures an image of the mark 6 using a sufficient amount of light (illumination) sufficient to capture the mark 6.
  • the camera 39 sends the captured image to the image input unit 26.
  • the image input unit 26 inputs an image of the mark 6 captured by the camera 39 and sends the image to the image processing unit 27.
  • the image processing unit 27 performs image processing of the image sent from the image input unit 26 (step S40). Specifically, the image processing unit 27 calculates the feature amount of the mark 6 (for example, the barycentric position of the mark 6) based on the image of the mark 6.
  • the image processing unit 27 sends the calculated barycentric position to the coordinate correction unit 28 as the mark coordinate 205.
  • the coordinate correction unit 28 calculates the mark position by correcting the result of the image processing (step S50). Specifically, the coordinate correction unit 28 corrects the mark coordinates 205 based on the imaging required time information 153 and the table moving speed Tv, and thereby calculates the mark coordinates 206 as the mark position.
  • the coordinate correction unit 28 calculates the amount of positional deviation of the mark coordinates 205 according to the moving speed of the XY table 30 based on the imaging required time information 153 and the table moving speed Tv. . Then, by adding the calculated positional displacement amount to the mark coordinates 205, the mark coordinates 206 are calculated.
  • FIG. 5 is a view showing an example of an image obtained by capturing an image of a mark.
  • the central portion 81 of the image 8 and the center of gravity 61 of the mark 6 do not always overlap due to the expansion and contraction of the substrate 4 and the like.
  • the amount of positional deviation between the central portion 81 which is the view center of the camera 39 and the center of gravity 61 of the mark 6 is calculated as the mark coordinate 205. Further, the positional deviation amount 205 is corrected based on the imaging required time information 153, whereby the mark coordinates 206 are calculated.
  • FIG. 6 is a view showing an example of the arrangement position of the mark.
  • FIG. 7 is a diagram showing an example of the imaging order of marks. 6 and 7 show a top view of the substrate 4.
  • the marks 6 are formed in the vicinity of four apexes on the substrate 4 or in the vicinity of the periphery of the processing hole area (processing hole pattern) 5 where processing holes are formed (outside the processing hole area). Keep it.
  • FIG. 6 shows the case where a plurality of machined hole areas 5 are set on the substrate 4 and four marks 6 are arranged in the vicinity of the periphery of each machined hole area 5.
  • FIG. 7 shows the case where the marks 6 are imaged in the order of the marks 61 to 68.
  • the mark 61 disposed in the vicinity of the top left vertex on the substrate 4 is imaged
  • the mark 62 disposed in the vicinity of the first processing area 5 closest to the mark 61 is imaged.
  • the marks 63, the marks 64, and the marks 65 arranged around the first processing hole area 5 are imaged in order.
  • the mark 66, the mark 67, and the mark 68 arranged around the second processing hole area 5 arranged next to the first processing hole area 5 are imaged in order.
  • the marks 6 are sequentially imaged in a predetermined order in which the moving distance of the camera 39 becomes short.
  • the coordinate correction unit 28 calculates mark coordinates 206 for each of the marks 6.
  • the coordinate correction unit 28 sends the calculated mark coordinates 206 to the displacement amount calculation unit 29.
  • the positional deviation amount calculation unit 29 calculates the difference between the mark coordinates 206 and the coordinates (mark position information 152) on the processing program of the mark 6 as the positional deviation amount 208 of the substrate 4.
  • the displacement amount calculation unit 29 stores the calculated displacement amount 208 in the processing program storage unit M2.
  • the imaging command output unit 25 determines whether an imaging command has been output to the camera 39 for all the marks 6 based on the mark position information 152 and the substrate coordinates 202 calculated by the substrate position calculating unit 24. Do. In other words, it is determined whether all the marks 6 have been imaged (step S60).
  • the imaging command output unit 25 If the imaging command output unit 25 has not output an imaging command to the camera 39 for all the marks 6 (No at Step S60), the imaging command output unit 25 performs the processes at Steps S10 to S50 for the next mark 6. The imaging command output unit 25 repeats the processing of steps S10 to S50 until an imaging command is output to the camera 39 for all the marks 6.
  • the laser processing apparatus 100 ends the imaging process on the marks 6. Thereby, all the marks 6 set in each processing hole area 5 are imaged by the camera 39. Since the marks 6 are arranged at various positions on the substrate 4, the position shift amount 208 in the substrate 4 is calculated by the processing position calculation unit 20 calculating the position shift amount 208 of the substrate 4 on each mark 6. It is possible to calculate the in-plane distribution of
  • the output processing of the movement command to the XY table 30 and the image processing of the mark 6 are performed independently of each other.
  • the operation of the movement command output unit 21 (movement of the XY table 30) and the operation of the image processing unit 27 are made independent of each other.
  • FIG. 8 is a diagram for explaining the difference between the process of calculating the amount of misalignment of a substrate according to the embodiment and the process of calculating the amount of misalignment of a substrate used conventionally.
  • the movement of the XY table 30 is stopped 72, and then the image processing 73 of the mark 6 is performed.
  • the movement 71, the stop 72, and the image processing 73 are repeated in order. Therefore, the stop 72 of the XY table 30 and the image processing 73 of the mark 6 are performed between the movement 71 and the movement 71 of the XY table 30. Therefore, in the process of calculating the positional deviation of the substrate 4, the time required for the stop 72 and the image processing 73 is required for the same number of times as the number of the marks 6. Therefore, when the number of marks 6 increases, the number of stops 72 increases and the productivity decreases.
  • the movement 71 of the XY table 30 is continuously performed without stopping the XY table 30. Further, image processing 73 of the mark 6 is performed while moving the XY table 30. In other words, while moving the XY table 30, acquisition of mark images and image processing (feature extraction) are performed. As described above, in the present embodiment, since the task of the movement 71 and the task of the image processing 73 are separated, it is possible to execute the image processing 73 during the movement 71.
  • the processing time for the stop 72 and the image processing 73 can be reduced, and the tact time can be shortened.
  • the processing control device 2 After the positional displacement amount calculation unit 29 stores the positional displacement amounts 208 of all the marks 6 in the processing program storage unit M2, the processing control device 2 starts laser processing of the substrate 4. When the laser processing of the substrate 4 is performed, the processing control device 2 corrects the laser processing position on the substrate 4 based on the displacement amount 208 of the substrate 4 calculated by the processing position calculation unit 20.
  • the movement command output unit 21 reads the machining program and the positional deviation amount 208 from the machining program storage unit M2. Then, the movement command output unit 21 corrects the coordinates of the machining hole Hx set in the machining program based on the positional deviation amount 208 for each position of the machining hole Hx. Then, a movement command corresponding to the coordinates of the processing hole Hx after correction is output to the servo amplifiers 41X and 41Y. Thereby, the laser processing of the processed hole Hx is performed while the coordinates of the processed hole Hx are corrected by the position according to the positional displacement amount of the substrate 4.
  • the calculation of the displacement amount of the substrate 4 is performed each time the substrate 4 is placed on the XY table 30.
  • the substrate 4 is placed on the XY table 30, the amount of displacement of the substrate 4 is calculated, and the substrate 4 is laser-processed.
  • substrate 4 is mounted in XY table 30, and positional offset amount of the following board
  • the laser processing apparatus 100 may calculate the substrate coordinates 201 without using the linear scales 40X and 40Y.
  • the substrate coordinates 201 are calculated using deviation information (droop amount) which is a difference between the command values to the motors 42X and 42Y and the actual rotation numbers of the motors 42X and 42Y.
  • the table position 101 is calculated by subtracting the deviation information from the integrated value (total value) of the control command output from the movement command output unit 21 by the substrate position calculation unit 24.
  • the command values to the motors 42X and 42Y correspond to control commands to the servo amplifiers 41X and 41Y. Further, the actual rotational speeds of the motors 42X and 42Y are detected by the encoders 43X and 43Y. Therefore, the deviation information is the difference between the current value of the control command to the servo amplifiers 41X and 41Y and the number of rotations (current value) detected by the encoders 43X and 43Y.
  • the substrate coordinates 201 calculated using the deviation information also change according to the moving speed of the XY table 30.
  • the encoders 43X and 43Y are unnecessary, and when the substrate coordinates 201 are calculated using the deviation information, the linear scales 40X and 40Y are unnecessary. Become.
  • the correction from the mark coordinates 205 to the mark coordinates 206 is not limited to the correction using the imaging required time information 153 and the table moving speed Tv.
  • the correction amount of coordinates from the mark coordinates 205 to the mark coordinates 206 according to the table moving speed Tv may be stored in advance in a predetermined database or the like. In this case, the coordinate correction amount according to the table moving speed Tv is calculated in advance using the imaging required time information 153 and the table moving speed Tv.
  • the shutter speed of the camera 39 may be included in the imaging required time information 153.
  • the imaging command output unit 25 may output an imaging command to the camera 39 slightly earlier in consideration of the shutter speed of the camera 39.
  • the number of cameras 39 is not limited to one, and may be plural. In this case, the plurality of marks 6 are simultaneously imaged by the plurality of cameras 39.
  • the movement of the substrate 4 (XY table 30) may be constant velocity movement or unequal velocity movement.
  • the moving speed of the XY table 30 is not limited to the case of calculating based on the control command to the servo amplifiers 41X and 41Y, and may be obtained by actually measuring the moving speed of the XY table 30 directly.
  • the image processing processing for calculating the position of the mark 6
  • the movement processing to each mark 6 is performed. It is possible to detect the misalignment of the substrate 4 in a short time.
  • the substrate coordinates 201 are corrected to the substrate coordinates 202 using the substrate positional deviation information 151 and the table moving speed Tv, the accurate position on the substrate 4 can be calculated. Therefore, it becomes possible to capture the image of the mark 6 at the correct position on the substrate 4.
  • the mark coordinates 205 are corrected to the mark coordinates 206 using the imaging required time information 153 and the table moving speed Tv, it is possible to calculate the accurate position of the mark 6. Therefore, the positional deviation of the substrate 4 can be accurately calculated.
  • the linear scale 40X , And 40Y are unnecessary, so that the substrate coordinates 201 can be calculated with a simple configuration.
  • the laser processing apparatus and the substrate position detection method according to the present invention are suitable for calculating the amount of displacement of the substrate with respect to the processing table.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

 レーザ加工装置が、基板上に設けられた位置決め用マークを順番に撮像するカメラ39と、加工テーブルが停止することなく連続的にカメラ39が位置決め用マーク上に順番に移動してくるよう、加工テーブルへの移動指令を出力する移動指令出力部21と、カメラ39が位置決め用マーク上に移動してきた際に、カメラ39に撮像指示を出力する撮像指令出力部25と、加工テーブルへの移動指令が出力されている間に、カメラ39が撮像した位置決め用マークの画像に基づいて、位置決め用マークの位置を算出する画像処理部27と、位置決め用マークの位置を用いて、基板の加工テーブルに対する位置ずれ量を算出する位置ずれ量算出部29と、基板のレーザ加工位置を、位置ずれ量算出部29が算出した位置ずれ量で位置補正しながらレーザ加工を行うレーザ加工部と、を備える。

Description

レーザ加工装置および基板位置検出方法
 本発明は、基板の加工テーブルに対する位置ずれ量を算出するレーザ加工装置および基板位置検出方法に関する。
 プリント基板などのワーク(加工対象物)を加工する装置の1つとして、ワークにレーザ光を照射して穴あけ加工などを行うレーザ加工装置(マイクロレーザ加工機)がある。このようなレーザ加工装置では、ワーク上に配置されている位置決めマークの位置を検出し、検出結果に基づいて、レーザ加工時の位置補正(位置ズレ補正)を行なっている。位置決めマークの位置を検出する際には、例えば、カメラ等を用いて位置決めマークの画像が映し出され、映し出された画像に画像処理を施すことによって位置決めマークの位置が検出される。
 レーザ加工が行われるワークは、ワーク面内で伸縮が発生する場合があるので、ワークの位置決め精度を向上させるためには、位置決めマークの個数を多数にしておく必要がある。例えば、特許文献1に記載のレーザ加工装置では、位置決めマーク上にカメラを移動させ、位置決めマークの画像処理を行っている。そして、位置決めマークのズレ量(位置)を検出している。これらの処理を全ての位置決めマークについて繰り返すことにより、全ての位置決めマークの位置検出が完了する。その後、位置ズレ補正が行なわれる。
 また、特許文献2に記載のレーザ加工装置では、XYテーブルを移動させることによって、位置決めマークの1つをカメラの下方に移動させている。その後、カメラで位置決めマークを撮像し、画像処理装置によって撮像領域内における位置決めマークの座標を求めている。そして、XYテーブルの現在位置の座標と、撮像領域内における位置決めマークの座標と、に基づいて、機械原点に対する位置決めマークのずれ量を求めている。レーザ加工装置では、複数の位置決めマークに対して、それぞれのずれ量を求めている。そして、NC装置がずれ量に基づいて、加工時における基板への加工位置指令値を補正している。
特開2000-176666号公報 特開平10-328863号公報
 しかしながら、上記前者および後者の従来技術では、カメラを位置決めマークへ移動させて停止した後に、画像取得および画像処理を行い、その後、再びカメラを位置決めマークへ移動させるといった処理を繰り返している。このため、画像処理に要する時間は、位置決めマークの個数に比例して増加する。その結果、位置決めマークの位置検出に長時間を要するといった問題があった。
 本発明は、上記に鑑みてなされたものであって、基板の位置ずれ検出を短時間で行うことができるレーザ加工装置および基板位置検出方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、レーザ加工対象である基板を載置するとともに前記基板の主面と平行な面内で移動する加工テーブルと、前記基板上に設けられて前記基板上の位置検出に用いられる位置決め用マークを順番に撮像する撮像部と、前記加工テーブルが停止することなく連続的に前記撮像部が前記位置決め用マーク上に順番に移動してくるよう、前記加工テーブルへの移動指令を出力する移動指示部と、前記撮像部が前記位置決め用マーク上に移動してきた際に、前記撮像部に撮像指示を出力する撮像指示部と、前記移動指示部が前記加工テーブルへの移動指令を出力している間に、前記撮像部が撮像した前記位置決め用マークの画像に基づいて、前記位置決め用マークの位置を算出するマーク位置算出部と、前記マーク位置算出部が算出した前記位置決め用マークの位置を用いて、前記基板の前記加工テーブルに対する位置ずれ量を算出する位置ずれ量算出部と、前記基板のレーザ加工位置を、前記位置ずれ量算出部が算出した位置ずれ量で位置補正しながらレーザ加工を行うレーザ加工部と、を備えることを特徴とする。
 本発明によれば、基板の位置ずれ検出を短時間で行うことが可能になるという効果を奏する。
図1は、本発明の実施の形態に係るレーザ加工装置の構成を示す図である。 図2は、加工制御装置とXYテーブルの構成を示す図である。 図3は、実施の形態に係る加工位置算出部の構成を示すブロック図である。 図4は、基板の位置ずれ量算出処理手順を示すフローチャートである。 図5は、マークを撮像した画像の一例を示す図である。 図6は、マークの配置位置の一例を示す図である。 図7は、マークの撮像順序の一例を示す図である。 図8は、実施の形態における基板の位置ずれ量算出処理と、従来用いられていた基板の位置ずれ量算出処理と、の相違点を説明するための図である。
 以下に、本発明の実施の形態に係るレーザ加工装置および位置検出方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、本発明の実施の形態に係るレーザ加工装置の構成を示す図である。レーザ加工装置100は、レーザ光L(パルスレーザ光)を照射することによって被加工物である基板(ワーク)4にレーザ穴あけ加工を行う装置である。本実施の形態のレーザ加工装置100は、位置決め用マーク上へカメラ39を移動させる処理と、位置決め用マークの画像処理(位置決め用マークの位置を算出する処理)と、を同時に行うことによって、基板4を載置した位置の位置ずれ量を算出する。
 レーザ加工装置100は、レーザ光Lを発振するレーザ発振器1と、基板4のレーザ加工を行うレーザ加工部3と、加工制御装置2と、を備えている。レーザ発振器1は、レーザ光Lを発振し、レーザ加工部3に送出する。レーザ加工部3は、ガルバノミラー35X,35Y、ガルバノスキャナ36X,36Y、集光レンズ(fθレンズ)34、XYテーブル(加工テーブル)30、カメラ39を備えている。
 ガルバノスキャナ36X,36Yは、レーザ光Lの軌道を変化させて基板4への照射位置を移動させる機能を有しており、レーザ光Lを基板4に設定された各加工エリア内で2次元的に走査する。ガルバノスキャナ36X,36Yは、レーザ光LをX-Y方向に走査するために、ガルバノミラー35X,35Yを所定の角度に回転させる。
 ガルバノミラー35X,35Yは、レーザ光Lを反射して所定の角度に偏向させる。ガルバノミラー35Xは、レーザ光LをX方向に偏向させ、ガルバノミラー35Yは、レーザ光LをY方向に偏向させる。
 集光レンズ34は、テレセントリック性を有した集光レンズである。集光レンズ34は、レーザ光Lを基板4の主面に対して垂直な方向に偏向させるとともに、レーザ光Lを基板4の加工位置(穴位置Hx)に集光(照射)させる。
 基板4は、プリント配線板などの加工対象物であり、複数の穴あけ加工が行なわれて貫通穴が形成される。基板4は、例えば、銅箔(導体層)、樹脂(絶縁層)、銅箔(導体層)の3層構造をなしている。
 XYテーブル30は、基板4を載置するとともに、後述するモータ42X,42Yの駆動によってXY平面内を移動する。これにより、XYテーブル30は、基板4を面内方向に移動させる。
 XYテーブル30を移動させることなくガルバノ機構の動作(ガルバノスキャナ36X,36Yの移動)によってレーザ加工が可能な範囲(走査可能領域)が加工エリア(スキャンエリア)である。レーザ加工装置100では、XYテーブル30をXY平面内で移動させた後、ガルバノスキャナ36X,36Yによってレーザ光Lを2次元走査する。XYテーブル30は、各加工エリアの中心が集光レンズ34の中心直下(ガルバノ原点)となるよう順番に移動していく。ガルバノ機構は、加工エリア内に設定されている各穴位置Hxが順番にレーザ光Lの照射位置となるよう動作する。XYテーブル30による加工エリア間の移動とガルバノ機構による加工エリア内でのレーザ光Lの2次元走査とが、基板4内で順番に行なわれていく。これにより、基板4内の全ての穴位置Hxが全てレーザ加工される。
 カメラ(撮像部)39は、レーザ光Lを基板4に照射する加工ヘッド(図示せず)の近傍に配置されている。カメラ39は、基板4に予め設けられている複数の位置決め用のマーク(以下、マーク6という)を撮像し、撮像した画像を加工制御装置2に送る。本実施の形態では、カメラ39を基板4上で移動させながらカメラ39がマーク6の画像を撮像する。このため、カメラ39は、シャッタ機能などによって、画像を短時間で取得する。
 マーク6は、基板4の伸縮などによって生じる基板4の位置ずれを補正するためのアライメントマークである。カメラ39の位置は固定されており、レーザ加工装置100では、XYテーブル30が基板4の位置を移動させることによって、カメラ39と基板4との間の相対位置を変化させている。なお、以下では説明の便宜上、カメラ39の位置を移動させることによって、カメラ39と基板4との間の相対位置が変化するものとして、レーザ加工装置100の動作を説明する場合がある。
 加工制御装置2は、レーザ発振器1およびレーザ加工部3に接続されており(図示せず)、レーザ発振器1およびレーザ加工部3を制御する。加工制御装置2は、マーク6の実際の位置(検出結果)と、機械原点(XYテーブル30上の基準位置)に対するマーク6の予想位置(位置ずれが無い場合の理論値)と、の差(後述の位置ずれ量208)に基づいて、基板4のレーザ加工位置(座標)を補正する。換言すると、加工制御装置2は、カメラ39によるマーク位置の検出結果に基づいて位置ずれ量208を算出し、位置ずれ量208を補正するよう基板4のレーザ加工位置を制御する。
 加工制御装置2は、基板4をレーザ加工する際には、加工プログラムに設定されたレーザ加工条件をレーザ発振器1とレーザ加工部3に指示する。また、加工制御装置2は、基板4をレーザ加工する前に、マーク6の検出位置に基づいて、基板4面内の位置ずれ量208を算出しておく。本実施の形態の加工制御装置2は、マーク6を撮像する際に、カメラ39(XYテーブル30)の移動を停止させることなく、カメラ39を順番にマーク6上に移動させる。そして、加工制御装置2は、カメラ39をXY平面内で移動させながら、カメラ39がマーク6上に来た際に、カメラ39によってマーク6を撮像する。これにより、加工制御装置2は、カメラ39の移動処理と、マーク6の撮像画像を用いた画像処理(マーク6の位置を算出する処理)と、を同時に行う。
 加工制御装置2は、コンピュータなどによって構成されており、レーザ発振器1やレーザ加工部3をNC(Numerical Control)制御等によって制御する。加工制御装置2は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備えて構成されている。加工制御装置2がレーザ発振器1やレーザ加工部3を制御する際には、CPUが、ユーザによる入力部(図示せず)からの入力によって、ROM内に格納されている加工プログラムを読み出してRAM内のプログラム格納領域に展開して各種処理を実行する。この処理に際して生じる各種データは、RAM内に形成されるデータ格納領域に一時的に記憶される。これにより、加工制御装置2は、レーザ発振器1およびレーザ加工部3を制御する。
 つぎに、加工制御装置2とXYテーブル30の構成について説明する。図2は、加工制御装置とXYテーブルの構成を示す図である。加工制御装置2は、サーボアンプ41X,41Yに接続されており、サーボアンプ41X,41Yは、それぞれモータ42X,42Yに接続されている。また、モータ42X,42Yは、それぞれエンコーダ43X,43Yに接続されるとともに、XYテーブル30に接続されている。
 加工制御装置2は、XYテーブル30のX方向の位置を制御するための制御信号(X方向制御指令)をサーボアンプ41Xに出力する。また、加工制御装置2は、XYテーブル30のY方向の位置を制御するための制御信号(Y方向制御指令)をサーボアンプ41Yに出力する。サーボアンプ41X,41Yは、それぞれ加工制御装置2から送られてくるX方向制御指令、Y方向制御指令を増幅してモータ42X,42Yに送る。
 モータ42Xは、XY平面内(基板4の主面に平行な面内)で、X方向制御指令に応じた位置(X座標)にXYテーブル30を移動させる。また、モータ42Yは、XY平面内で、Y方向制御指令に応じた位置(Y座標)にXYテーブル30を移動させる。
 XYテーブル30は、XYテーブル30のX方向の位置(座標)を検出するリニアスケール40Xと、XYテーブル30のY方向の位置を検出するリニアスケール40Yと、を具備している。リニアスケール40X,40Yは、検出したXYテーブル30のXY平面内での位置(以下、テーブル位置101という)を加工制御装置2に送る。テーブル位置101は、カメラ39に対するXYテーブル30の相対位置を示す情報である。
 なお、リニアスケール40X,40Yは、XYテーブル30の近傍に配置してもよいし、XYテーブル30とは異なる別の位置に配置してXYテーブル30とは別構成としてもよい。
 エンコーダ43X,43Yは、モータ42X,42Yおよび加工制御装置2に接続されている。エンコーダ43Xは、モータ42Xの状態(X方向制御指令に応じた動作状態)を検出し、検出結果を加工制御装置2に送る。また、エンコーダ43Yは、モータ42Yの状態(Y方向制御指令に応じた動作状態)を検出し、検出結果を加工制御装置2に送る。
 カメラ39は、基板4上に配置されたマーク6を撮像し、撮像した画像を加工制御装置2に送る。加工制御装置2は、加工位置算出部20を有している。加工位置算出部20は、カメラ39が撮像したマーク6の画像、リニアスケール40X,40Yが測定したテーブル位置101などに基づいて、基板4の位置(XY平面内での座標)(以下、基板座標201という)を算出する。加工位置算出部20は、XYテーブル30の移動速度と、XYテーブル30の移動に伴う基板4の位置ずれ量Gと、の対応関係(後述の基板位置ずれ情報151)を用いて、基板座標201を補正する。
 加工位置算出部20は、基板座標201を補正した後の基板座標202がマーク6の座標となった際に、カメラ39にマーク6の画像を撮像させ、撮像した画像に基づいて、マーク6の座標(後述するマーク座標205)を算出する。加工位置算出部20は、XYテーブル30の移動速度と、マーク6の撮像指令が出力されてから実際にマーク6が撮像されるまでに要する時間と、の対応関係を用いて、マーク座標205を補正する。加工位置算出部20は、マーク座標205の補正によって得られたマーク座標206と、マーク6の加工プログラム上の座標(後述のマーク位置情報152)と、の差を、基板4の位置ずれ量208として算出する。加工位置算出部20は、マーク6毎に基板4の位置ずれ量208を算出する。加工制御装置2は、加工位置算出部20が算出した基板4の位置ずれ量208に基づいて、基板4へのレーザ加工位置を補正する。
 つぎに、加工位置算出部20の構成について説明する。図3は、実施の形態に係る加工位置算出部の構成を示すブロック図である。加工位置算出部20は、移動指令出力部21、速度算出部22、テーブル位置入力部23、基板位置算出部24、撮像指令出力部25、画像入力部26、画像処理部27、座標補正部28、位置ずれ量算出部29、基板位置ずれ情報記憶部M1、加工プログラム記憶部M2、撮像所要時間記憶部M3を備えている。
 基板位置ずれ情報記憶部M1は、XYテーブル30の移動速度と、XYテーブル30の移動に伴う基板4の位置ずれ量Gと、の対応関係を示す基板位置ずれ情報151を記憶するメモリなどである。基板位置ずれ情報151は、基板位置算出部24によって読み出される。
 加工プログラム記憶部M2は、基板4のレーザ加工や位置ずれ検出に用いる加工プログラムを記憶するメモリなどである。加工プログラム記憶部M2が記憶する加工プログラムには、マーク6の位置(基板4内での座標)を示すマーク位置情報152が含まれている。マーク位置情報152は、移動指令出力部21、撮像指令出力部25によって読み出される。
 撮像所要時間記憶部M3は、マーク6の撮像指令が出力されてから、カメラ39がマーク6の画像を撮像するまでに要する時間を、撮像所要時間情報153として記憶するメモリなどである。撮像所要時間情報153は、座標補正部28によって読み出される。
 移動指令出力部21は、XYテーブル30上の基準位置に対する基板4の原点座標と、マーク位置情報152と、に基づいて、サーボアンプ41X,41Yに制御指令(X方向制御指令、Y方向制御指令)を出力する。X方向制御指令、Y方向制御指令は、それぞれ基板4のX方向の移動量、Y方向の移動量を指示する情報である。
 移動指令出力部21は、基板4上に配置された各マーク6に対し、カメラ39が順番にマーク6上を通過するよう、サーボアンプ41X,41Yに制御指令を出力する。移動指令出力部21は、サーボアンプ41X,41Yに出力する制御指令を、速度算出部22にも送る。
 速度算出部22は、移動指令出力部21が出力する制御指令に基づいて、XYテーブル30の移動速度を算出する。速度算出部22は、算出した移動速度を、テーブル移動速度Tvとして基板位置算出部24および座標補正部28に送る。テーブル位置入力部23は、リニアスケール40X,40Yから送られてくるXYテーブル30の位置(テーブル位置101)を入力し、基板位置算出部24に送る。
 基板位置算出部24は、時々刻々と変化するテーブル位置入力部23からのテーブル位置101と、XYテーブル30上の基準位置に対する基板4の原点座標と、に基づいて、基板座標201を算出する。基板4やXYテーブル30は、剛性を有している。このため、カメラ39と基板4上との間の実際の相対位置と、リニアスケール40X,40Yで検出されたテーブル位置101に基づいて算出した基板座標201と、の間には、位置ずれ(基板4の位置ずれ)が生じている。この位置ずれ量Gvを算出するため、本実施の形態では、基板位置ずれ情報記憶部M1内の基板位置ずれ情報151に基づいて、基板座標201が補正され、基板座標202が算出される。
 基板位置算出部24は、テーブル移動速度Tvと、基板位置ずれ情報151と、に基づいて、XYテーブル30の移動速度に対応する基板4の位置ずれ量Gvを算出する。基板位置算出部24は、算出した基板4の位置ずれ量Gvを、基板座標201に加算することによって、基板座標202を算出する。基板位置算出部24は、算出した基板座標202を、基板4の位置として撮像指令出力部25に送る。
 撮像指令出力部25は、マーク位置情報152と、基板位置算出部24が算出した基板4の位置と、に基づいて、カメラ39に撮像指令を出力する。撮像指令出力部25は、カメラ39がマーク6上に到達したタイミングで、カメラ39に撮像指令を出力する。
 画像入力部26は、カメラ39で撮像されたマーク6の画像を入力して画像処理部27に送る。画像処理部27は、マーク6の画像に基づいて、マーク6の重心位置を算出する。画像処理部27は、算出した重心位置をマーク座標205として、座標補正部28に送る。
 座標補正部28は、撮像所要時間情報153と、速度算出部22からのテーブル移動速度Tvと、に基づいて、マーク座標205を補正し、これによりマーク座標206を算出する。具体的には、座標補正部28は、撮像所要時間情報153と、テーブル移動速度Tvと、に基づいて、XYテーブル30の移動速度に応じたマーク座標205の位置ずれ量を算出する。座標補正部28は、算出した位置ずれ量をマーク座標205に加算することによって、マーク座標206を算出する。座標補正部28は、マーク6毎にマーク座標206を算出する。座標補正部28は、算出したマーク座標206を位置ずれ量算出部29に送る。
 位置ずれ量算出部29は、マーク座標206と加工プログラム(マーク位置情報152)に基づいて算出されるマーク6の理想座標と、の差を、基板4の位置ずれ量208として算出する。位置ずれ量算出部29は、マーク6毎に位置ずれ量208を算出する。位置ずれ量算出部29は、算出した位置ずれ量208を、加工プログラム記憶部M2に記憶させる。
 つぎに、レーザ加工装置100による基板4の位置ずれ量算出処理(マーク位置検出処理)の処理手順について説明する。図4は、レーザ加工装置による基板の位置ずれ量算出処理手順を示すフローチャートである。
 レーザ加工装置100のXYテーブル30上にレーザ加工対象の基板4が載置された後、加工位置算出部20は、基板4の位置ずれ量(理想値からのずれ量)の算出処理を開始する。
 移動指令出力部21は、加工プログラム記憶部M2から加工プログラム内のマーク位置情報152を読み出す。移動指令出力部21は、マーク位置情報152に基づいて、サーボアンプ41X,41Yに制御指令を出力する。本実施の形態では、カメラ39の動作や画像処理部27による画像処理に関わらず、カメラ39の移動が停止することなく順番にマーク6上を通過するよう、サーボアンプ41X,41Yに制御指令が出力される。これにより、カメラ39はマーク6上を停止することなく順番に移動する。移動指令出力部21は、サーボアンプ41X,41Yに出力する制御指令を、速度算出部22にも送る。
 速度算出部22は、移動指令出力部21が出力する制御指令に基づいて、XYテーブル30の移動速度を算出する。速度算出部22は、算出した移動速度を、テーブル移動速度Tvとして基板位置算出部24に送る。
 リニアスケール40X,40Yは、XYテーブル30が移動すると、XYテーブル30の位置を検出して、テーブル位置入力部23に送る。テーブル位置入力部23は、リニアスケール40X,40Yから送られてくるXYテーブル30の位置をテーブル位置101として入力し、基板位置算出部24に送る。
 基板位置算出部24は、時々刻々と変化するテーブル位置入力部23からのテーブル位置101に基づいて、基板座標201を算出する。さらに、基板位置算出部24は、テーブル移動速度Tvと、基板位置ずれ情報151と、に基づいて、XYテーブル30の移動速度に対応する基板4の位置ずれ量Gvを算出する。基板位置算出部24は、算出した基板4の位置ずれ量Gvを、基板座標201に加算することによって、カメラ39と基板4上との間の相対位置である基板座標202を算出する。これにより、基板位置算出部24は、XYテーブル30がX方向およびY方向の同時に移動するようなコーナ部のマーク6に対しても基板4の正確な位置を算出することができる。基板位置算出部24は、算出した基板座標202を、基板4の位置として撮像指令出力部25に送る。
 撮像指令出力部25は、マーク位置情報152と、基板位置算出部24が算出した基板座標202と、に基づいて、マーク6の位置(撮像位置)までの距離を算出する(ステップS10)。
 撮像指令出力部25は、カメラ39がマーク位置に到達したか否かを判断する(ステップS20)。撮像指令出力部25は、基板座標202がマーク6の座標と同じ座標になると、カメラ39がマーク位置に到達したと判断する。
 撮像指令出力部25は、カメラ39がマーク位置に到達していないと判断すると(ステップS20、No)、マーク6の撮像位置までの距離算出を続行する(ステップS10)。撮像指令出力部25は、カメラ39がマーク位置に到達したと判断すると(ステップS20、Yes)、カメラ39に撮像指令を出力する。これにより、カメラ39は、マーク6を撮像する(ステップS30)。カメラ39は、移動しながらマーク6を撮像するので、カメラ39はマーク6を撮像できる程度の十分な光量(照明)を用いてマーク6を撮像する。
 カメラ39は、撮像した画像を画像入力部26に送る。画像入力部26は、カメラ39で撮像されたマーク6の画像を入力して画像処理部27に送る。画像処理部27は、画像入力部26から送られてくる画像の画像処理を行う(ステップS40)。具体的には、画像処理部27は、マーク6の画像に基づいて、マーク6の特徴量(例えば、マーク6の重心位置)を算出する。画像処理部27は、算出した重心位置をマーク座標205として、座標補正部28に送る。
 座標補正部28は、画像処理の結果を補正することによって、マーク位置を算出する(ステップS50)。具体的には、座標補正部28は、撮像所要時間情報153と、テーブル移動速度Tvと、に基づいて、マーク座標205を補正し、これによりマーク位置としてのマーク座標206を算出する。
 マーク座標206を算出するため、座標補正部28は、撮像所要時間情報153と、テーブル移動速度Tvと、に基づいて、XYテーブル30の移動速度に応じたマーク座標205の位置ずれ量を算出する。そして、算出した位置ずれ量をマーク座標205に加算することによって、マーク座標206を算出する。
 図5は、マークを撮像した画像の一例を示す図である。マーク6は、基板4の伸縮などが原因で画像8の中心部81と、マーク6の重心61とが、重なるとは限らない。本実施の形態では、カメラ39の視野中心である中心部81と、マーク6の重心61と、の位置ずれ量がマーク座標205として算出される。さらに、この位置ずれ量205が、撮像所要時間情報153に基づいて補正され、これによりマーク座標206が算出される。
 ここで、マーク6の配置位置とマーク6の撮像順序について説明する。図6は、マークの配置位置の一例を示す図である。図7は、マークの撮像順序の一例を示す図である。図6および図7では、基板4を上面から見た図を示している。
 図6に示すように、マーク6は、基板4上の4つの頂点近傍や、加工穴が形成される加工穴領域(加工穴パターン)5の周辺部近傍(加工穴領域の外側)などに形成しておく。図6では、基板4上に複数の加工穴領域5が設定され、各加工穴領域5の周辺部近傍に、4つずつのマーク6が配置されている場合を示している。
 図7では、マーク6を、マーク61~68の順番で撮像する場合を示している。例えば、基板4上の左上の頂点近傍に配置されたマーク61が撮像された後、このマーク61に最も近い1つ目の加工領域5の近傍に配置されたマーク62が撮像される。さらに、1つ目の加工穴領域5の周辺に配置されたマーク63、マーク64、マーク65が順番に撮像される。
 つぎに、1つ目の加工穴領域5の隣に配置された2つ目の加工穴領域5の周辺に配置されたマーク66、マーク67、マーク68が順番に撮像される。マーク6は、カメラ39の移動距離が短くなる所定の順番に従って順に撮像される。
 座標補正部28は、マーク6毎にマーク座標206を算出する。座標補正部28は、算出したマーク座標206を位置ずれ量算出部29に送る。位置ずれ量算出部29は、マーク座標206とマーク6の加工プログラム上の座標(マーク位置情報152)と、の差を、基板4の位置ずれ量208として算出する。位置ずれ量算出部29は、算出した位置ずれ量208を、加工プログラム記憶部M2に記憶させる。
 撮像指令出力部25は、マーク位置情報152と、基板位置算出部24が算出した基板座標202と、に基づいて、全てのマーク6に対してカメラ39に撮像指令を出力したか否かを判断する。換言すると、全てのマーク6を撮像したか否かが判断される(ステップS60)。
 撮像指令出力部25は、全てのマーク6に対してカメラ39に撮像指令を出力していなければ(ステップS60、No)、次のマーク6に対してステップS10~S50の処理を行う。撮像指令出力部25は、全てのマーク6に対してカメラ39に撮像指令を出力するまで、ステップS10~S50の処理を繰り返す。
 撮像指令出力部25は、全てのマーク6に対してカメラ39に撮像指令を出力すると(ステップS60、Yes)、レーザ加工装置100は、マーク6への撮像処理を終了する。これにより、各加工穴領域5に設定された全てのマーク6がカメラ39によって撮像される。マーク6は、基板4上の種々の位置に配置されているので、加工位置算出部20が各マーク6上での基板4の位置ずれ量208を算出することによって、基板4における位置ずれ量208の面内分布を算出することが可能となる。
 このように、本実施の形態では、XYテーブル30への移動指令の出力処理と、マーク6の画像処理とを、それぞれ独立して行っている。換言すると、移動指令出力部21の動作(XYテーブル30の移動)と、画像処理部27の動作とを、それぞれ独立させている。
 ここで、本実施の形態における基板4の位置ずれ量算出処理と、従来用いられていた基板4の位置ずれ量算出処理と、の相違点について説明する。図8は、実施の形態における基板の位置ずれ量算出処理と、従来用いられていた基板の位置ずれ量算出処理と、の相違点を説明するための図である。
 図8の(1)に示すように、従来は、XYテーブル30の移動71の後、XYテーブル30の移動を停止72させ、その後、マーク6の画像処理73を行っていた。従来、基板4の位置ずれ量を算出する際には、移動71、停止72、画像処理73が順番に繰り返される。このため、XYテーブル30の移動71と移動71の間にXYテーブル30の停止72とマーク6の画像処理73とが行われることとなる。このため、基板4の位置ずれ量算出処理には、マーク6の個数と同じ回数分だけ、停止72と画像処理73の時間が必要となる。したがって、マーク6の個数が増加すると、停止72が増大し、生産性が落ちてしまう。
 一方、本実施の形態では、図8の(2)に示すように、XYテーブル30を停止させることなくXYテーブル30の移動71を連続して行っている。さらに、XYテーブル30を移動させながら、マーク6の画像処理73を行っている。換言すると、XYテーブル30を移動させながら、マーク画像の取得と画像処理(特徴量抽出)を行っている。このように、本実施の形態では、移動71のタスクと画像処理73のタスクを別にしているので、移動71の間に画像処理73を実行することが可能となる。
 このため、位置検出を行うマーク6の個数が増加しても、マーク6の特徴量抽出に要する時間は増大せず、XYテーブル30の移動に要する時間が増加するにすぎない。したがって、停止72、画像処理73の処理時間を削減することが可能となるので、タクト時間を短縮することが可能となる。これにより、本実施の形態では、従来の方法よりも短時間で基板4の位置ずれ量を算出することが可能となり、生産性を落とすことなく基板4をレーザ加工することが可能となる。
 位置ずれ量算出部29が、全てのマーク6の位置ずれ量208を、加工プログラム記憶部M2に記憶させた後、加工制御装置2は、基板4のレーザ加工を開始する。基板4のレーザ加工を行う際、加工制御装置2は、加工位置算出部20が算出した基板4の位置ずれ量208に基づいて、基板4へのレーザ加工位置を補正する。
 具体的には、移動指令出力部21は、加工プログラム記憶部M2から、加工プログラムと位置ずれ量208を読み出す。そして、移動指令出力部21は、加工プログラムに設定されている加工穴Hxの座標を、加工穴Hxの位置ごとに位置ずれ量208に基づいて補正する。そして、補正後の加工穴Hxの座標に対応する移動指令をサーボアンプ41X,41Yに出力する。これにより、加工穴Hxの座標が基板4の位置ずれ量に応じた位置だけ補正されながら、加工穴Hxのレーザ加工が行われる。
 基板4の位置ずれ量の算出は、基板4をXYテーブル30に載置する度に行われる。換言すると、基板4をレーザ加工する際には、基板4がXYテーブル30に載置されて基板4の位置ずれ量が算出され、基板4がレーザ加工される。そして、次の基板4をレーザ加工する際には、次の基板4がXYテーブル30に載置されて次の基板4の位置ずれ量が算出される。これにより、レーザ加工装置100では、XYテーブル30上への基板4の載置、基板4の位置ずれ量の算出処理、基板4へのレーザ加工が繰り返される。
 なお、レーザ加工装置100は、リニアスケール40X,40Yを用いることなく基板座標201を算出してもよい。この場合、モータ42X,42Yへの指令値と、モータ42X,42Yの実際の回転数と、の差である偏差情報(ドループ量)を用いて、基板座標201が算出される。
 具体的には、基板位置算出部24が、移動指令出力部21から出力される制御指令の積算値(合計値)から前記偏差情報を減算することによって、テーブル位置101が算出される。モータ42X,42Yへの指令値は、サーボアンプ41X,41Yへの制御指令に対応している。また、モータ42X,42Yの実際の回転数は、エンコーダ43X,43Yによって検出される。したがって、偏差情報は、サーボアンプ41X,41Yへの制御指令の現在値と、エンコーダ43X,43Yで検出される回転数(現在値)との差である。XYテーブル30の移動速度は、サーボアンプ41X,41Yへの制御指令に応じて変化するので、偏差情報もXYテーブル30の移動速度に応じて変化することとなる。したがって、偏差情報を用いて算出される基板座標201もXYテーブル30の移動速度に応じて変化することとなる。
 リニアスケール40X,40Yを用いて基板座標201を算出する場合には、エンコーダ43X,43Yが不要であり、偏差情報を用いて基板座標201を算出する場合には、リニアスケール40X,40Yが不要となる。
 また、マーク座標205からマーク座標206への補正は、撮像所要時間情報153とテーブル移動速度Tvを用いた補正に限らない。例えば、テーブル移動速度Tvに応じたマーク座標205からマーク座標206への座標補正量を、予め所定のデータベースなどに格納しておいてもよい。この場合、撮像所要時間情報153とテーブル移動速度Tvを用いて、予めテーブル移動速度Tvに応じた座標補正量を算出しておく。
 また、撮像所要時間情報153にカメラ39のシャッタスピードを含めてもよい。また、撮像指令出力部25は、カメラ39のシャッタスピードを考慮して、少し早めにカメラ39に撮像指令を出力してもよい。また、カメラ39は、1つに限らず複数配置してもよい。この場合、複数のカメラ39によって複数のマーク6が同時に撮像される。また、基板4(XYテーブル30)の移動は、等速度運動であってもよいし、不等速度運動であってもよい。
 基板4の移動が等速度運動の場合、基板座標201から基板座標202への補正が容易になる。また、基板4の移動が等速度運動の場合、マーク座標205からマーク座標206への補正が容易になる。
 また、XYテーブル30の移動速度は、サーボアンプ41X,41Yへの制御指令に基づいて算出する場合に限らず、実際にXYテーブル30の移動速度を直接測定することによって求めてもよい。
 このように実施の形態によれば、各マーク6への移動処理を行いながら、マーク6を撮像した画像の画像処理(マーク6の位置を算出する処理)を行うので、XYテーブル30に載置された基板4の位置ずれ検出を短時間で行うことが可能になる。
 また、基板位置ずれ情報151とテーブル移動速度Tvを用いて基板座標201を基板座標202に補正するので、正確な基板4上の位置を算出することができる。したがって、正確な基板4上の位置でマーク6の画像を撮像することが可能となる。
 また、撮像所要時間情報153とテーブル移動速度Tvを用いてマーク座標205をマーク座標206に補正するので、正確なマーク6の位置を算出することが可能となる。したがって、基板4の位置ずれを正確に算出することが可能となる。
 また、モータ42X,42Yへの指令値と、モータ42X,42Yの実際の回転数と、の差である偏差情報(ドループ量)を用いて、基板座標201を算出する場合には、リニアスケール40X,40Yが不要となるので、簡易な構成で基板座標201を算出することが可能となる。
 以上のように、本発明に係るレーザ加工装置および基板位置検出方法は、基板の加工テーブルに対する位置ずれ量の算出に適している。
 1 レーザ発振器
 2 加工制御装置
 3 レーザ加工部
 4 基板
 5 加工穴領域
 6 マーク
 20 加工位置算出部
 21 移動指令出力部
 22 速度算出部
 23 テーブル位置入力部
 24 基板位置算出部
 25 撮像指令出力部
 26 画像入力部
 27 画像処理部
 28 座標補正部
 29 位置ずれ量算出部
 30 XYテーブル
 39 カメラ
 40X,40Y リニアスケール
 43X,43Y エンコーダ
 100 レーザ加工装置
 L レーザ光
 M1 基板位置ずれ情報記憶部
 M2 加工プログラム記憶部
 M3 撮像所要時間記憶部

Claims (6)

  1.  レーザ加工対象である基板を載置するとともに前記基板の主面と平行な面内で移動する加工テーブルと、
     前記基板上に設けられて前記基板上の位置検出に用いられる位置決め用マークを順番に撮像する撮像部と、
     前記加工テーブルが停止することなく連続的に前記撮像部が前記位置決め用マーク上に順番に移動してくるよう、前記加工テーブルへの移動指令を出力する移動指示部と、
     前記撮像部が前記位置決め用マーク上に移動してきた際に、前記撮像部に撮像指示を出力する撮像指示部と、
     前記移動指示部が前記加工テーブルへの移動指令を出力している間に、前記撮像部が撮像した前記位置決め用マークの画像に基づいて、前記位置決め用マークの位置を算出するマーク位置算出部と、
     前記マーク位置算出部が算出した前記位置決め用マークの位置を用いて、前記基板の前記加工テーブルに対する位置ずれ量を算出する位置ずれ量算出部と、
     前記基板のレーザ加工位置を、前記位置ずれ量算出部が算出した位置ずれ量で位置補正しながらレーザ加工を行うレーザ加工部と、
     を備えることを特徴とするレーザ加工装置。
  2.  前記撮像部と前記基板との間の相対位置を、前記加工テーブルの位置に基づいて算出する基板位置算出部をさらに備え、
     前記基板位置算出部は、前記加工テーブルの移動速度に応じて変化する前記加工テーブルと前記基板との間の位置ずれ量を、前記加工テーブルの移動速度に基づいて算出し、算出した位置ずれ量を用いて前記相対位置を補正し、
     前記撮像指示部は、前記基板位置算出部が補正した前記相対位置に基づいて、前記撮像部に撮像指示を出力することを特徴とする請求項1に記載のレーザ加工装置。
  3.  前記加工テーブルの位置を検出するリニアスケールをさらに備え、
     前記基板位置算出部は、前記リニアスケールが検出した前記加工テーブルの位置に基づいて前記相対位置を算出することを特徴とする請求項2に記載のレーザ加工装置。
  4.  前記加工テーブルを移動させるモータと、
     前記モータの回転数を検出するエンコーダと、
     をさらに備え、
     前記基板位置算出部は、前記加工テーブルへの移動指令に対応する前記モータへの制御指令、前記エンコーダによる検出結果および前記加工テーブルへの移動指令の積算値を用いて前記相対位置を算出することを特徴とする請求項2に記載のレーザ加工装置。
  5.  前記撮像指示を出力してから前記位置決め用マークの画像が撮像されるまでに要する時間と、前記加工テーブルの移動速度と、に基づいて、前記マーク位置算出部が算出した前記位置決め用マークの位置を補正する位置補正部をさらに備え、
     前記位置ずれ量算出部は、前記位置補正部が補正した位置決め用マークの位置を用いて、前記基板の前記加工テーブルに対する位置ずれ量を算出することを特徴とする請求項1~4のいずれか1つに記載のレーザ加工装置。
  6.  レーザ加工対象である基板を載置するとともに前記基板の主面と平行な面内で移動する加工テーブルと、前記基板上に設けられて前記基板上の位置検出に用いられる位置決め用マークを順番に撮像する撮像部と、を備えたレーザ加工装置が、前記加工テーブルが停止することなく連続的に前記撮像部が前記位置決め用マーク上に順番に移動してくるよう、前記加工テーブルへの移動指令を出力する移動指示ステップと、
     前記撮像部が前記位置決め用マーク上に移動してきた際に、前記撮像部に撮像指示を出力する撮像指示ステップと、
     前記加工テーブルへの移動指令が出力されている間に、前記撮像部が撮像した前記位置決め用マークの画像に基づいて、前記位置決め用マークの位置を算出するマーク位置算ステップと、
     算出された前記位置決め用マークの位置を用いて、前記基板の前記加工テーブルに対する位置ずれ量を算出する位置ずれ量算出ステップと、
     を含むことを特徴とする基板位置検出方法。
     
     
     
     
     
     
PCT/JP2010/064948 2010-09-01 2010-09-01 レーザ加工装置および基板位置検出方法 WO2012029142A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/064948 WO2012029142A1 (ja) 2010-09-01 2010-09-01 レーザ加工装置および基板位置検出方法
CN2010800687983A CN103079746A (zh) 2010-09-01 2010-09-01 激光加工装置及基板位置检测方法
KR1020137007152A KR101435352B1 (ko) 2010-09-01 2010-09-01 레이저 가공장치 및 기판위치 검출방법
JP2012531613A JP5383920B2 (ja) 2010-09-01 2010-09-01 レーザ加工装置および基板位置検出方法
TW099143916A TWI415703B (zh) 2010-09-01 2010-12-15 雷射加工裝置及基板位置檢測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064948 WO2012029142A1 (ja) 2010-09-01 2010-09-01 レーザ加工装置および基板位置検出方法

Publications (1)

Publication Number Publication Date
WO2012029142A1 true WO2012029142A1 (ja) 2012-03-08

Family

ID=45772278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064948 WO2012029142A1 (ja) 2010-09-01 2010-09-01 レーザ加工装置および基板位置検出方法

Country Status (5)

Country Link
JP (1) JP5383920B2 (ja)
KR (1) KR101435352B1 (ja)
CN (1) CN103079746A (ja)
TW (1) TWI415703B (ja)
WO (1) WO2012029142A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708158A (zh) * 2015-02-13 2015-06-17 佛山市中科源自动化设备有限公司 一种电路板自动焊接方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2969373A4 (en) * 2013-03-13 2016-11-16 Applied Materials Inc LASER DISPLAY PLATFORM FOR SOLAR CELLS
JP6174906B2 (ja) * 2013-05-23 2017-08-02 中村留精密工業株式会社 機械の自己診断及び機械精度の補正方法
DE102013217126B4 (de) 2013-08-28 2015-09-03 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Feststellen von Abweichungen einer Ist-Lage eines Laserbearbeitungskopfes von einer Soll-Lage, Laserbearbeitungsmaschine und Computerprogrammprodukt
CN103528513B (zh) * 2013-09-30 2016-08-17 上海大学 Oled玻璃基板对准方法及装置
CN103852801A (zh) * 2014-01-10 2014-06-11 凯迈(洛阳)电子有限公司 一种红外枪在位检测装置
CN104439726B (zh) * 2014-11-19 2017-01-25 苏州德龙激光股份有限公司 激光实时纠偏装置及其纠偏方法
WO2016088203A1 (ja) * 2014-12-02 2016-06-09 三菱電機株式会社 変位センサ、変位検出装置及び変位検出方法
JP2017113788A (ja) * 2015-12-24 2017-06-29 株式会社リコー 光加工装置
TWI641933B (zh) * 2016-01-15 2018-11-21 施教競 Processing method of processing machine
WO2018012199A1 (ja) * 2016-07-14 2018-01-18 三菱電機株式会社 基板計測装置およびレーザ加工システム
JP6919622B2 (ja) * 2018-04-26 2021-08-18 オムロン株式会社 制御システム、制御方法、および制御プログラム
JP7084227B2 (ja) * 2018-06-22 2022-06-14 株式会社Screenホールディングス マーク位置検出装置、描画装置およびマーク位置検出方法
WO2020090075A1 (ja) * 2018-10-31 2020-05-07 株式会社ニコン 加工システム、及び、加工方法
CN113597356B (zh) * 2019-03-20 2024-02-06 鲍勃斯脱梅克斯股份有限公司 用于具有移动片材或卷筒的激光加工机器的表征方法及系统
JP7344047B2 (ja) * 2019-08-22 2023-09-13 株式会社ジェーイーエル 基板の位置合わせ方法
CN113059516A (zh) * 2021-04-30 2021-07-02 湖州铭沅科技合伙企业(有限合伙) 一种可旋转真空吸气移动工作平台装置
CN113298076B (zh) * 2021-06-18 2022-08-26 蓝思智能机器人(长沙)有限公司 平面加工设备的校正数据采集方法、装置、设备及介质
CN113532316B (zh) * 2021-07-05 2023-01-20 深圳市先地图像科技有限公司 一种能同时检测多块pcb板形位偏差的装置及检测方法
TWI789068B (zh) * 2021-10-22 2023-01-01 健鼎科技股份有限公司 電路板的漲縮值的計算方法及多層電路板的孔洞成形方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017763A (ja) * 2005-07-08 2007-01-25 Fujifilm Holdings Corp 画像位置計測装置及び露光装置
JP2009239310A (ja) * 2009-07-14 2009-10-15 Integrated Solutions:Kk 露光装置
JP2010085210A (ja) * 2008-09-30 2010-04-15 Toray Ind Inc 欠陥検査装置
JP2010162559A (ja) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp レーザ加工方法および加工装置並びに被加工物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593877A (en) * 1993-03-11 1997-01-14 The Rockefeller University Nucleic acid and recombinant production of vespid venom hyaluronidase
JPH10323783A (ja) * 1997-05-26 1998-12-08 Japan Tobacco Inc 帯状材の開孔装置
JP3855684B2 (ja) * 2001-06-05 2006-12-13 松下電器産業株式会社 レーザ加工装置およびレーザ加工方法
JP4348199B2 (ja) * 2004-01-16 2009-10-21 日立ビアメカニクス株式会社 レーザ加工方法およびレーザ加工装置
CN201076969Y (zh) * 2007-09-28 2008-06-25 北京工业大学 紫外激光微加工精确定位系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017763A (ja) * 2005-07-08 2007-01-25 Fujifilm Holdings Corp 画像位置計測装置及び露光装置
JP2010085210A (ja) * 2008-09-30 2010-04-15 Toray Ind Inc 欠陥検査装置
JP2010162559A (ja) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp レーザ加工方法および加工装置並びに被加工物
JP2009239310A (ja) * 2009-07-14 2009-10-15 Integrated Solutions:Kk 露光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708158A (zh) * 2015-02-13 2015-06-17 佛山市中科源自动化设备有限公司 一种电路板自动焊接方法

Also Published As

Publication number Publication date
JP5383920B2 (ja) 2014-01-08
KR20130042035A (ko) 2013-04-25
KR101435352B1 (ko) 2014-08-28
TWI415703B (zh) 2013-11-21
JPWO2012029142A1 (ja) 2013-10-28
CN103079746A (zh) 2013-05-01
TW201210725A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
JP5383920B2 (ja) レーザ加工装置および基板位置検出方法
EP2769800B1 (en) Laser processing machine
JP3855684B2 (ja) レーザ加工装置およびレーザ加工方法
CN109475974B (zh) 基板测量装置及激光加工系统
JP5089827B1 (ja) レーザ加工方法およびレーザ加工装置
TWI750336B (zh) 工件加工裝置、工件加工方法及電腦記憶媒體
KR102230321B1 (ko) 레이저 가공 장치
JP2003069288A (ja) 部品実装方法及び部品実装装置
WO2020202440A1 (ja) レーザ加工装置、レーザ加工方法、および誤差調整方法
JPH10301052A (ja) レーザ加工装置の加工位置ずれ補正方式
JP3644846B2 (ja) 描画装置の移動誤差検出装置及びその方法
JP4048873B2 (ja) 位置決め加工方法
JP2010147401A (ja) 電子部品装着装置及び画像歪補正方法
JP7073127B2 (ja) レーザマーキング装置
WO2022091927A1 (ja) 位置ずれ検出方法、位置ずれ検出装置、位置合せ装置および検査装置
JP2007064698A (ja) 画像処理装置および画像処理装置のキャリブレーション方法
JP2008083520A (ja) 露光装置およびアライメント方法
JPH02147182A (ja) レーザトリミング装置
JP3697948B2 (ja) 電子部品の実装方法
JP6422622B1 (ja) レーザ加工装置
JP2009170586A (ja) 電子部品認識方法及び装置
JP7015709B2 (ja) 基板作業装置
JP2010227962A (ja) レーザ加工方法
JP2002160347A (ja) クリーム半田印刷装置及びその制御方法並びに記憶媒体
JP2003101297A (ja) 電子部品実装装置におけるオフセット補正方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068798.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012531613

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137007152

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10856693

Country of ref document: EP

Kind code of ref document: A1