JP2007017763A - 画像位置計測装置及び露光装置 - Google Patents

画像位置計測装置及び露光装置 Download PDF

Info

Publication number
JP2007017763A
JP2007017763A JP2005200139A JP2005200139A JP2007017763A JP 2007017763 A JP2007017763 A JP 2007017763A JP 2005200139 A JP2005200139 A JP 2005200139A JP 2005200139 A JP2005200139 A JP 2005200139A JP 2007017763 A JP2007017763 A JP 2007017763A
Authority
JP
Japan
Prior art keywords
exposure
image
unit
position measuring
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005200139A
Other languages
English (en)
Inventor
Takashi Fukui
隆史 福井
Hiroshi Kamimura
寛 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fujifilm Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Holdings Corp filed Critical Fujifilm Holdings Corp
Priority to JP2005200139A priority Critical patent/JP2007017763A/ja
Publication of JP2007017763A publication Critical patent/JP2007017763A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 撮像素子の歪みに起因する画像の歪みを抑制でき、ワークに付与されている基準マークの位置計測精度の向上が図れる画像位置計測装置と、それを備えた露光装置の提供を課題とする。
【解決手段】 ワーク60に形成された基準マークMを撮影する撮影手段38を備えた画像位置計測装置30、50において、1次元に配列された撮像素子38Aで撮影手段38を構成し、基準マークMを走査方向に分割して撮影する。そして、この画像位置計測装置30、50を備えた露光装置10とする。
【選択図】 図10

Description

本発明は、ワークに形成された基準マークを撮影する撮影手段を備えた画像位置計測装置と、その画像位置計測装置を備え、それにより計測された基準マークの位置情報を基に、ワークに形成する画像の位置を調整する露光装置に関する。
従来から、例えばワークとしてのプリント配線基板(以下、単に「基板」又は「感光材料」という場合がある)等に配線パターンを形成するレーザー露光装置が知られている。このレーザー露光装置には、画像露光の対象となるプリント配線基板を載置する露光ステージが備えられ、その露光ステージを所定の搬送経路に沿って移動させるようになっている。
具体的に説明すると、プリント配線基板が載置された露光ステージは、所定の速度で副走査方向へ移動し、所定の読取位置において、そのプリント配線基板の例えばコーナー部に設けられた位置合わせ孔(以下、「アライメントマーク」又は「基準マーク」という)がCCDカメラによって撮影される。そして、その撮影によって得られたプリント配線基板の位置に合わせて、描画座標系中の描画対象領域を座標変換することにより、画像データに対するアライメント処理が実行される。
アライメント処理の実行後、露光ステージ上のプリント配線基板は、所定の露光位置において、画像データに基づいて変調され、ポリゴンミラーにより主走査方向へ偏向されたレーザービームによって、その上面に形成された感光性塗膜が走査、露光処理される。これにより、プリント配線基板上における所定の領域(描画領域)に、画像データに基づく(配線パターンに対応する)画像(潜像)が形成される。
なお、画像(潜像)が形成されたプリント配線基板は、露光ステージが初期位置に復帰移動した後、露光ステージから取り出され、プリント配線基板が取り除かれた露光ステージは、次のプリント配線基板を露光する工程に移行するようになっている(例えば、特許文献1参照)。
このように、プリント配線基板を搬送しながらレーザービームを変調・照射することにより、その基板上に画像を形成するレーザー露光装置では、プリント配線基板の描画領域に対する露光位置を正確に合わせるため、露光位置の基準となるアライメントマークを撮影し、その位置(基準位置データ)の測定結果に基づいて、露光位置を適正位置に合わせるようにしている。すなわち、露光ステージ上の基板の位置及び基板自体の変形を測定し、それに合わせて画像を露光する位置を補正するようにしている。
特開2000−338432号公報
しかしながら、撮影に用いるレンズには歪みが存在し、CCDカメラ等の撮像素子にも、画素ピッチの誤差や、素子自体に歪みが存在する。これらの歪みは微小であるが、要求されるアライメントマークの位置計測精度が高い場合には、アライメントマークの撮影精度に与える影響を無視できなくなる問題がある。
そこで、本発明は、上記事情に鑑み、撮像素子やレンズの歪みに起因する画像の歪みを抑制でき、ワークに付与されている基準マークの位置計測精度の向上が図れる画像位置計測装置と、それを備えた露光装置を得ることを目的とする。
上記の目的を達成するために、本発明に係る請求項1に記載の画像位置計測装置は、ワークに形成された基準マークの位置を計測するための撮影手段を備えた画像位置計測装置であって、前記撮影手段が、前記基準マークを走査方向に分割して撮影する構成とされていることを特徴としている。
そして、請求項2に記載の画像位置計測装置は、請求項1に記載の画像位置計測装置において、前記撮影手段が、1次元に配列された撮像素子で構成されていることを特徴としている。
請求項1及び請求項2に記載の発明によれば、1次元に配列された撮像素子により、基準マークを走査方向に分割して撮影できるので、撮像素子の歪みに起因する画像の歪みを抑制することができる。したがって、ワークに付与されている基準マークの位置計測精度を向上させることができる。
また、請求項3に記載の画像位置計測装置は、請求項2に記載の画像位置計測装置において、前記撮像素子の歪みを補正する補正手段を備えていることを特徴としている。
そして、請求項4に記載の画像位置計測装置は、請求項3に記載の画像位置計測装置において、前記補正手段が、前記撮影素子の歪みによる撮影画像の歪みを予め測定し、これを基に撮影画像データを補正することを特徴としている。
請求項3及び請求項4に記載の発明によれば、撮像素子の歪みを補正した撮影画像データが得られるので、基準マークの撮影精度(位置計測精度)を向上させることができる。また、その歪み補正データが1次元で済むため、撮影画像データの補正が容易にできる。
また、請求項5に記載の画像位置計測装置は、請求項3又は請求項4に記載の画像位置計測装置において、前記撮影手段が、レンズを、光軸を中心に回動及び固定できる機構を備えていることを特徴としている。
請求項5に記載の発明によれば、撮像素子が1次元で、レンズの使用領域が狭いため、レンズの歪みが最小となる領域を選択して使用することが容易にできる。したがって、レンズの歪みに起因する画像の歪みを抑制することができる。また、一般にレンズの倍率を上げると歪みが増えるが、レンズの倍率を上げても歪みの影響を最小にできる領域を選択できるため、比較的低価格なレンズを使用することが可能となる。よって、コストの面でもメリットがある。
また、請求項6に記載の画像位置計測装置は、請求項1乃至請求項5の何れか1項に記載の画像位置計測装置において、前記ワークが載置可能とされ、所定の搬送路に沿って移動可能とされたステージを有し、該ステージを移動させつつ、ワークに形成された前記基準マークを撮影することを特徴としている。
請求項6に記載の発明によれば、ワークに対する処理効率の向上が図れる。したがって、生産性を高められる。
また、本発明に係る請求項7に記載の露光装置は、請求項1乃至請求項6の何れか1項に記載の画像位置計測装置と、前記画像位置計測装置によって撮影された前記基準マークの位置情報に基づいて補正された画像データを前記ワークに露光する露光手段と、を備えたことを特徴としている。
請求項7に記載の発明によれば、ワークに対する露光処理が正確に実行できる。
以上、何れにしても本発明によれば、撮像素子やレンズの歪みに起因する画像の歪みを抑制でき、ワークに付与されている基準マークの位置計測精度の向上が図れる画像位置計測装置と、それを備えた露光装置を提供することができる。
以下、本発明の最良な実施の形態を図面に示す実施例を基に詳細に説明する。図1は本発明に係る露光装置の概略斜視図であり、図2は露光装置の概略側面図、図3は露光装置の概略平面図である。なお、図3において、矢印Wを幅方向、矢印Dを移動方向又は走査方向とする。また、図2において、矢印DAを往路方向、矢印DBを復路方向とする。
[露光装置の構成]
図1乃至図3で示すように、露光装置10は、棒状の角パイプを枠状に組み付けて構成された矩形状の枠体12に各部が収容されて構成されており、その枠体12には、図示しないパネルが張り付けられている。これにより、露光装置10は外部と遮断される構成である。
枠体12は、背高の筐体部12Aと、この筐体部12Aの一側面から突出するように設けられたステージ部12Bと、で構成されている。ステージ部12Bは、その上面が筐体部12Aよりも低位とされ、オペレーターがステージ部12Bの前に立ったときに、略腰高の位置になる構成とされている。
ステージ部12Bの上面には、開閉蓋14が設けられている。開閉蓋14の筐体部12A側の一辺には、図示しない蝶番が取り付けられており、この一辺を中心として、開閉動作可能とされている。そして、開閉蓋14を開放した状態のステージ部12Bの上面には、露光ステージ20(図4参照)が露出可能になっている。
また、ステージ部12Bから筐体部12Aまで、露光ステージ20の移動軌跡の基準となる定盤18が延設されている。この定盤18は、筐体部12Aを構成する角パイプに対して強固に固定された架台16に支持されている。なお、定盤18の長手方向(移動方向)一端部は、ステージ部12Bまで至っており、この位置に露光ステージ20が位置している状態で、オペレーターは露光ステージ20上に感光材料60を載置、あるいは取り出すことが可能となっている。
また、定盤18の上面には、その長手方向に沿って互いに平行とされた一対の摺動レール22が配設されており、露光ステージ20の下面に取り付けられた断面視略「コ」字状の脚部20A(図4参照)が、その摺動レール22に摺動可能に支持されている。したがって、露光ステージ20は、この摺動レール22に支持されることで、ほとんど摩擦抵抗なく(ベアリング等を介している場合は、そのベアリングの転がり抵抗のみで)走査方向へ摺動可能となっている。
また、定盤18の上面で、一対の摺動レール22の間には、リニアモーター部24が配設されている。リニアモーター部24は、ステッピングモーターの駆動力を応用した直線型の駆動源であり、定盤18の長手方向に沿って設けられた棒状のステータ部(磁石部)24A(図2参照)と、露光ステージ20の下面側に設けられ、ステータ部24Aとは所定の間隔を持って配置されたコイル部24Bと、で構成されている。
したがって、露光ステージ20は、コイル部24Bへの通電によって発生する磁界とステータ部24Aの磁界との磁力作用により駆動力を得て、摺動レール22に沿って定盤18上を、その長手方向(走査方向)に移動する構成である。なお、その原理はステッピングモーターと同様であるため、露光ステージ20は、定速性、位置決め精度、並びに始動時、停止時のトルク変動等、電気的な制御により、精度の高い駆動制御が可能となっている。
また、リニアモーター部24には、図示しないリニアエンコーダーが付設されている。このリニアエンコーダーは、露光ステージ20と共にコイル部24Bがステータ部24Aに対して走査方向へ相対移動する際に、その往復移動方向に対応する極性のパルス信号を、移動量に比例するパルス数だけパルスカウンターへ出力する構成になっている。
露光ステージ20の上面には、露光対象物となる矩形平板状の感光材料60が、図示しない位置決め手段により所定の位置に位置決めされた状態で載置される。露光ステージ20は、その載置面に複数の溝(図示省略)が設けられており、感光材料60が所定位置に位置決めされた状態で載置された後、バキュームポンプ等によって溝内が負圧とされることにより、感光材料60を吸着保持できる構成になっている。
感光材料60には、その露光面上の描画領域における露光位置の基準を示すアライメントマーク(基準マーク)Mが複数個設けられている。このアライメントマークMは、例えば図3で示すように、円形の貫通孔によって構成され、感光材料60のコーナー部近傍にそれぞれ1個ずつ計4個配設されている。
露光ステージ20における定盤18上での移動軌跡の略中間位置には、露光ヘッドユニット28(図5参照)が配設されている。露光ヘッドユニット28は、定盤18の幅方向両端部の外側にそれぞれ立設された一対の支柱26に架け渡されるように設けられており、露光ヘッドユニット28と定盤18との間を露光ステージ20が通過可能となる構成とされている。
露光ヘッドユニット28は、複数のヘッドアッセンブリ28Aが定盤18の幅方向に沿って配列されて構成されており、露光ステージ20を定速度で移動させながら、所定のタイミングで、それぞれのヘッドアッセンブリ28Aから複数の光ビームを露光ステージ20上の感光材料60へ照射することで、その感光材料60の露光面(描画領域)を露光できるようになっている。
露光ヘッドユニット28を構成するヘッドアッセンブリ28Aは、図6(B)で示すように、m行n列(例えば2行5列)の略マトリックス状に配列されており、これら複数のヘッドアッセンブリ28Aが露光ステージ20の移動方向(走査方向)と直交する方向(幅方向)に配列されている。ここでは、感光材料60の幅との関係で、2行5列で合計10個のヘッドアッセンブリ28Aとしている。
更に、1つのヘッドアッセンブリ28Aによる露光エリア28Bは、走査方向を短辺とする矩形状とされ、かつ、その走査方向に対して所定の傾斜角度で傾斜しており、露光ステージ20の移動に伴い、感光材料60には、ヘッドアッセンブリ28A毎に帯状の露光済み領域28Cが形成されるようになっている(図6(A)参照)。
一方、図1で示すように、筐体部12A内には、定盤18上の露光ステージ20の移動を妨げない別の場所に、光源ユニット48が配設されている。この光源ユニット48は複数のレーザー(半導体レーザー)を収容しており、このレーザーから出射する光を、光ファイバー(図示省略)を介して、それぞれのヘッドアッセンブリ28Aへ案内するようになっている。
各ヘッドアッセンブリ28Aは、光ファイバーによって案内され、入射された光ビームを空間光変調素子である図示しないデジタル・マイクロミラー・デバイス(DMD)によって、ドット単位で制御し、感光材料60に対してドットパターンを露光するようになっている。ここでは、複数のドットパターンを用いて1画素の濃度を表現するようになっている。
また、図7で示すように、露光エリア28B(1つのヘッドアッセンブリ28A)は、2次元配列(例えば4×5)された20個のドットによって形成されている。そして、2次元配列のドットパターンは、走査方向に対して傾斜されていることで、走査方向に並ぶ各ドットが、走査方向と交差する方向に並ぶドット間を通過するようになっており、実質的なドット間ピッチを狭めることができるようになっている。これにより、高解像度化が図れる構成である。
なお、上記のように、ヘッドアッセンブリ28Aの傾斜は、露光装置10の標準解像度の設定によっては、同一走査線上に複数のドットパターンが重複する場合がある。このような場合には、何れか一方のドットパターン(例えば図7で斜線としたドットパターン)に対応するDMDを常にオフ状態にして、不使用のドットパターンを設ければよい。
ここで、露光ステージ20上に位置決め載置された感光材料60への露光処理は、露光ステージ20に感光材料60を載置し、定盤18上の摺動レール22に沿って奥側へ移動するとき(往路)ではなく、一旦、定盤18の奥側(筐体部12A側)端部へ到達して、ステージ部12Bへ戻るとき(復路)に実行される。
すなわち、露光ステージ20の往路走行は、露光ステージ20上の感光材料60の位置情報を得るための移動であり、この位置情報を得るためのユニットとして、定盤18上には、図8で示すようなアライメントユニット30(画像位置計測装置)が配設されている。アライメントユニット30は、露光ヘッドユニット28よりも往路方向奥側に配設されており、定盤18の幅方向両端部の外側にそれぞれ立設された一対の支柱26に架設されている。
このアライメントユニット30は、一対の支柱26に両端が固定されるベース部32と、このベース部32の走査方向における片面(露光ヘッドユニット28に対向する面)に対し、定盤18の幅方向へ移動可能に設けられる複数(例えば4台)のカメラ部38と、で構成されている。カメラ部38は、ベース部32に沿って配設された互いに平行な一対のレール部34に、カメラベース40を介して摺動可能に取り付けられており、それぞれ独立して移動可能となっている。
更に、カメラ部38は、カメラ本体38A(撮像素子)の下面にレンズ部38Bが設けられ、レンズ部38Bの突出先端部には、リング状のストロボ光源(LEDストロボ光源)38Cが取り付けられている。レンズ部38Bは、レンズ光軸が略垂直になるように、下方へ向けて配置されており、ストロボ光源38Cからの光が、露光ステージ20上の感光材料60へ照射され、その反射光を、レンズ部38Bを介してカメラ本体38Aに入力させることで、感光材料60上のアライメントマークMを撮影できる構成になっている。
カメラベース40は、それぞれボールねじ機構部36の駆動によって、定盤18の幅方向へ移動可能となっており、露光ステージ20の移動と、ボールねじ機構部36の駆動力による定盤18の幅方向への移動とによって、感光材料60の所望の位置にレンズ部38Bの光軸を配置することが可能となっている。
ここで、カメラ本体38A(撮像素子)は、図9で示すように、1次元(x方向のみ)に配列されたリニアイメージセンサー(ラインCCD)とされている。このような構成にすると、図10で示すように、アライメントマークMを撮影する際には、走査方向(矢印D方向)に複数列に分割して撮影することになるため、画素ピッチの誤差や、素子自体の歪みを抑制して撮影することができる。
また、この歪みを更に抑制するために、カメラ本体38Aには、歪み補正手段70が設けられている。歪み補正手段70としては、例えば図11で示すように、歪み更正用の基準チャート72(点線で示す)を撮影し、視野内における画像の歪み(補正ベクトルH)を測定して補正することが考えられる。
すなわち、この基準チャート72は、例えばガラスなどの精度が狂わない(経時的に寸法変化しない)材質で構成され、画素(ドット)単位で、実際の撮影画像(実線で示す)との相対位置関係が判るように、クロムメッキパターンKが複数形成されて構成されている。
したがって、この測定結果に基づいて、補正ベクトルH(補正方向と補正量)を算出し、その補正ベクトルHから導出される歪み補正データを固定値として保持すれば、アライメントマークMを撮影したときに、撮影画像データの画素単位での補正が自動的に実行可能となる。
特に、リニアイメージセンサー(ラインCCD)の場合、カメラ本体38A及びレンズ部38Bの歪みの影響(補正ベクトルH)は、走査方向(y方向)においては影響が小さいため、一方向(x方向)の影響(ライン状)に対して補正を行う構成としてもよい。このような構成とすることで、撮影画像データを容易に補正することができる。
なお、図12(A)は、図11で示すクロムメッキパターンK上(x方向)における歪み量(補正量)Hxをグラフで示したものである。また、補正ベクトルHを視野内におけるx座標の関数fとして保持して補正する構成にしてもよい。すなわち、補正ベクトルHの補正量Hxを、Hx=f(x)、(f:xの関数)とし、アライメントマークMを撮影したときに、その関数fにより、自動的に補正される構成にしてもよい。
また、更に走査方向(y方向)における歪みに対して補正を行ってもよい。図12(B)は、図11で示すクロムメッキパターンK上(y方向)における歪み量(補正量)Hyをグラフで示したものである。また、補正ベクトルHを視野内におけるx座標の関数fとして保持して補正する構成にしてもよい。すなわち、補正ベクトルHの補正量Hyを、Hy=f(x)、(f:xの関数)とし、アライメントマークMを撮影したときに、その関数fにより、自動的に補正される構成にしてもよい。
更に、レンズ部38Bにも歪み補正手段70が設けられている。この歪み補正手段70は、レンズ部38Bが、光軸を中心として回動(正逆方向へ回転)可能及び任意の位置で固定可能に構成される。すなわち、例えば図13で示すように、レンズ部38Bの上部に光軸と同軸になるように軸支された従動ギア76を固着し、その従動ギア76に噛合する駆動ギア78を備えたステッピングモーター80を配設する。
このような構成にすれば、ステッピングモーター80の正逆方向への回転により、駆動ギア78を介して従動ギア76を正逆方向へ回転させることができるので、レンズ部38Bを正逆方向へ回転させることができる。つまり、カメラ本体38Aはリニアイメージセンサー(ラインCCD)になっているため、レンズ部38Bにおけるレンズの使用領域が狭い。したがって、その回動(正逆方向への回転)により、レンズ部38Bにおいて、歪みが最小となる部位を容易に選択することができる。
例えば、図14で示すように、x方向における歪み量Hxを表す曲線α、β、γが、それぞれ図9で示す部位α、β、γに対応しているとすると、歪み量(補正量)Hxの値が最も小さくなるγの部位を選択して、アライメントマークMを撮影することが可能となる。よって、アライメントマークMの撮影精度(位置計測精度)を向上させることができる。また、これにより、レンズの倍率を上げても、歪みの影響が最小となる領域を容易に選択できるため、比較的低価格なレンズを使用できるメリットもある。
何れにしても、露光ステージ20と感光材料60とは、オペレーターが感光材料60を露光ステージ20に載置することで、その相対位置関係が決まるため、若干のずれが生じることがある。そのため、カメラ部38によってアライメントマークMを撮影することが必要となる。
これにより、露光ステージ20に載置された感光材料60の位置ずれが認識され、露光ステージ20と既知の相対関係となっている露光ヘッドユニット28による露光タイミングに補正をかけることにより、感光材料60と画像データとの相対位置(露光開始位置)を最適化できる構成である。
なお、図4で示すように、露光ステージ20上面の往路方向奥側の端部には、カメラ部38の位置を検出し、その位置を基準としてアライメント処理を行う、カメラ更正用の基準スケールSが配設されている。この基準スケールSは、例えばガラスなどの精度が狂わない(経時的に寸法変化しない)材質で構成され、その上面には複数のマークが一定間隔で配置されている。このマークをカメラ部38で撮影することにより、カメラ部38の露光ステージ20上面に対する位置が正確に判り、感光材料60がずれて露光ステージ20上に載置された場合でも、カメラ部38でのアライメントマークMの撮影(測定)が可能となる構成である。
また、露光ステージ20を移動させるリニアモーター部24、ヘッドアッセンブリ28A、カメラ部38等は、これらを制御するコントローラー部50に接続されている。このコントローラー部50により、露光ステージ20は所定の速度で移動するように制御され、カメラ部38は所定のタイミングで感光材料60のアライメントマークMを撮影するように制御され、ヘッドアッセンブリ28Aは所定のタイミングで感光材料60を露光するように制御される。
なお、このコントローラー部50により、カメラ本体38Aやレンズ部38Bの歪みが補正される。つまり、このコントローラー部50は歪み補正手段70を備えた画像位置計測装置としても機能する。また、リニアイメージセンサー(ラインCCD)であるカメラ本体38AでアライメントマークMを分割撮影している間、ストロボ光源38Cは、感光材料60(アライメントマークM)に対して光を照射し続ける。
ここで更に、感光材料60に付与されたアライメントマークMを検出し、感光材料60と露光ヘッドユニット28との相対位置関係を把握する方法について説明する。コントローラー部50におけるカメラ動作制御部では、露光ステージ動作制御信号が入力されると、カメラ部38に対して起動信号を送出する。この起動信号によりカメラ部38は起動して撮影待機状態になる。
また、コントローラー部50におけるトリガー信号生成部では、リニアエンコーダーの出力パルスをカウントするパルスカウンターが所定のカウント値を取ると(例えば、往路移動する露光ステージ20に搬送された感光材料60のアライメントマークMがカメラ部38の撮影画角内に入った位置に対応するパルス数をカウントした際には)、トリガー信号を生成してカメラ動作制御部及びストロボ発光制御部へ送出する。
このトリガー信号の入力タイミングで、カメラ動作制御部ではカメラ部38に対してタイミング信号を送出し、カメラ部38は撮影を行う。また、ストロボ発光制御部ではストロボ光源38Cに対してタイミング信号を送出し、ストロボ光源38Cはカメラ部38の撮影動作に連動して発光するようになっている。このように、露光ステージ20の動作タイミング(移動動作)と、カメラ部38による撮影タイミング及びストロボ光源38Cの発光タイミングとは同期が取られている。
また、露光ステージ動作制御信号とともに、感光材料60のサイズデータが幅方向位置設定部に入力され、この幅方向位置設定部により、ボールねじ機構部36の動作が制御され、カメラ部38の定盤18に対する幅方向位置が調整される。これにより、アライメントマークMが、カメラ部38の視野から外れ難くなる構成であり、露光ステージ20の往路移動中に、アライメントマークMがカメラ部38によって撮影可能となる構成である。
カメラ部38によって撮影されたデータは、撮影データ解析部へ送出され、撮影データの解析が行われる。基本的には、撮影された画像データはアナログデータ(光電変換直後は、光量が電圧に変換される)であるため、このアナログデータをデジタル画像データに変換し、デジタル画像データが位置データと共に数値(濃度値)管理される。
撮影データ解析部で解析されたデジタル画像データは、マーク抽出部へ送出されて、そのアライメントマークMが抽出され、マーク照合部へ送出される。なお、デジタル画像データに対応付けられた位置データは、露光位置補正係数演算部へ送出される。そして、マーク照合部では、抽出したアライメントマークMの画像データと、予めマークデータメモリーに記憶されたマークデータとを照合し、一致/不一致を示す信号を露光位置補正係数演算部へ送出する。
露光位置補正係数演算部では、照合の結果、一致していると判別されたマークデータに対応する位置データと、本来の(設計上の)アライメントマークMの位置データとの誤差を認識し、露光位置(露光ステージ20の移動方向における露光開始位置、並びに露光ステージ20の幅方向におけるドットのシフト位置)の補正係数を演算し、露光制御系へ送出する。そして、この補正係数に基づいて、感光材料60上に記録する画像の位置が適正位置になるように、露光ヘッドユニット28の各ヘッドアッセンブリ28Aによる画像記録(露光)開始時期等を補正する。
つまり、入力された各アライメントマークMの画像データ(基準位置データ)から判明する画像内におけるアライメントマークMの位置及びアライメントマークM間のピッチ等と、そのアライメントマークMを撮影したときの露光ステージ20の位置及びカメラ部38の位置から、演算処理によって、露光ステージ20上における感光材料60の位置ずれ、移動方向に対する傾き、寸法精度誤差等を把握し、感光材料60の露光面(描画領域)に対する適正な露光位置を算出する。
また、露光パターンに応じた画像データは、コントローラー部50内のメモリーに一旦記憶されている。したがって、各ヘッドアッセンブリ28Aによる画像露光時には、そのメモリーに記憶されている露光パターンの画像データに基づいて生成する制御信号が、適正な露光位置に合わせ込んで画像露光されるように、補正制御(アライメント)される。なお、この画像データは、画像を構成する各画素の濃度を2値(ドットの記録の有無)で表したデータである。
また、図2で示すように、定盤18における露光ヘッドユニット28を含む奥側は、筐体部12A内の空間に対して更に隔離されるように、チャンバー42が設けられている。すなわち、このチャンバー42内には、露光ヘッドユニット28とアライメントユニット30が配設され、定盤18がチャンバー42内からステージ部12Bへ延設されており、露光ステージ20のみが、チャンバー42内外へ移動する構造とされている。
チャンバー42の天井部には、送風ダクト44の一端部が取り付けられており、送風ダクト44の他端部は、送風機46のエアー排出口に取り付けられている。したがって、送風機46が作動すると、エアーが送風ダクト44を介してチャンバー42内へ送り込まれる構成である。
チャンバー42内にエアーが送り込まれると、チャンバー42内は正圧となり、露光ステージ20の移動空間を通って、ステージ部12Bへと流動する。この流動により、最も塵埃を回避するべき、露光ヘッドユニット28周辺及びアライメントユニット30周辺の塵埃を排出することができ、かつ開閉蓋14の開放時(感光材料60の露光ステージ20上への着脱時)であっても、圧力差によって新たな塵埃の侵入を防止することができる。
また、露光ヘッドユニット28における露光ステージ20の往路方向手前側、即ちステージ部12Bに近い側には、定盤18の幅方向に亘って、除電装置(イオナイザー)52が配設されている。除電装置52は、中空パイプ状の吹出部52Aと、この吹出部52Aへイオン化されたエアーを供給するイオン発生部52Bと、で構成されており、定盤18に向けて、イオン化されたエアーを吹き出す構成になっている。
感光材料60は、そのベースの材質により静電気を帯び、電荷が帯電することで、塵埃を引き寄せる性質がある。静電気によって引き寄せられて付着している塵埃は、エアーの流動のみでは払拭しきれないため、除電装置52によって払拭する。具体的には、イオン発生部52Bにおいて、アース電極と放電電極との間でコロナ放電が発生することでイオンを生成し、このイオンを送風源によって吹出部52Aへ案内して吹き出し、静電気によって帯電している塵埃と異極のイオンによる中和を行い、除電する。
これにより、感光材料60が載置された露光ステージ20が定盤18上を移動するときに、感光材料60の表面が除電され、静電気によって付着している塵埃を除去できるとともに、エアーブローにより、露光ステージ20の上方空間に浮遊する塵埃を除去することが可能となる。
[露光装置の作用]
次に、以上のような露光装置10の作用について説明する。なお、露光装置10により画像露光を行う感光材料60としては、プリント配線基板や液晶表示素子等のパターンを形成(画像露光)する材料としての基板やガラスプレート等の表面に感光性エポキシ樹脂等のフォトレジストを塗布、又はドライフィルムの場合はラミネートしたものなどが挙げられる。
図15には、露光開始時期補正ルーチンを示すフローチャートが示されている。まず、感光材料60が露光ステージ20上(載置面)に載置される。そして、バキュームポンプ等により、溝内を負圧にし、感光材料60をその載置面に吸着保持する。その後、ステップ100にて、露光開始指示があったか否かが判断され、肯定判定されると、ステップ102へ移行して、カメラ部38を起動させるように指示する。なお、ステップ100で否定判定の場合は、このルーチンは終了する。
ステップ102にてカメラ部38の起動を指示すると、次いで、ステップ104へ移行して、感光材料60のサイズデータが入力されたか否かが判断される。このステップ104で肯定判定されると、ステップ106へ移行して、入力したサイズデータに基づいて、カメラ部38の定盤18に対する幅方向位置を、ボールねじ機構部36を駆動制御して調整する。
ステップ108では、調整が完了したか否かが判断され、肯定判定されると、ステップ110へ移行して、感光材料60を載置面に吸着保持した露光ステージ20の往路移動を開始する。すなわち、露光ステージ20を、リニアモーター部24の駆動力により、定盤18の摺動レール22に沿ってステージ部12Bから筐体部12Aの奥側へ向かって定速度で移動させる。
なお、露光ステージ20の往路移動中、ステップ112では、リニアモーター部24に設けられたリニアエンコーダーの出力パルスをパルスカウンターがカウントすることによって、露光ステージ20の位置を認識し(リニアモーター部24の駆動パルスでも判別可能)、ステップ114において、撮影タイミングか否かが判断される。
すなわち、露光ステージ20の移動方向先端がカメラ部38の真下を通過する直前の位置であるか否かが判断され、肯定判定されると、ステップ116へ移行して撮影を開始する。これにより、感光材料60に予め付与されているアライメントマークMがカメラ部38によって撮影される。
つまり、アライメントマークMが所定の撮影位置に至ったタイミングで、カメラ部38のストロボ光源38Cを発光させる。そして、感光材料60へ照射したストロボ光の感光材料60上面での反射光を、レンズ部38Bを介してカメラ本体38Aに入力させることにより、そのアライメントマークMを撮影する。
そして、次のステップ118において、露光ステージ20の位置を確認し、ステップ120において、撮影終了タイミングであるか否かが判断される。すなわち、露光ステージ20の移動方向後端がアライメントユニット30の真下を通過し終えたか否かを判断し、肯定判定されると、ステップ122へ移行して撮影を終了する。
なお、アライメントマークMの撮影時、カメラ本体38A(撮像素子)は、図9で示すように、1次元のリニアイメージセンサー(ラインCCD)とされているので、アライメントマークMは、図10で示すように、走査方向(矢印D方向)に複数列に分割されて撮影される。したがって、カメラ本体38Aにおける歪みの影響が抑制される。
また、カメラ本体38Aの歪みに起因する撮影画像の歪みは、図11、図12(A)、図12(B)で示すように、一方向に対してのみ(x方向のみ)であるため、歪み補正手段70により容易に補正ができる。すなわち、基準チャート72を撮影することによって得られた1次元の補正ベクトルHx、Hy(歪み補正データ)を固定値として保持することにより、撮影画像データを容易に補正することができる。
また更に、図13で示すように、レンズ部38Bが回動可能及び固定可能になっていると、その歪み量が最小となる部位を容易に選択することができるので、レンズ部38Bにおける歪みの影響を抑制できる。したがって、アライメントマークMの撮影精度(位置計測精度)を向上させることができる。
なお、一般にはレンズの倍率を上げると歪みが増えるが、上記のような構成にしたことにより、レンズの倍率を上げても、歪みの影響が最小になる領域を容易に選択することができるため、比較的低価格なレンズを使用することが可能となる。よって、コストの面でもメリットがある。
こうして、アライメントマークMをカメラ部38で撮影したら、ステップ124にて、撮影したデータを解析し、次いで、ステップ126へ移行してアライメントマークMに相当する画像データを抽出する。そして、次のステップ128では、マークデータメモリーから基準データを読出し、ステップ130において、撮影し、かつ抽出したマーク画像データと、予め記憶されている基準データとを照合する。
その後、次のステップ132では、照合結果に基づいて露光位置補正係数を演算し、ステップ134へ移行して、露光制御系へ演算した補正係数データを送出する。これにより、露光ヘッドユニット28における各ヘッドアッセンブリ28Aによる露光開始時期等が補正され、感光材料60上に記録する画像位置が適正な位置になる。
なお、感光材料60に付与されているアライメントマークMは、露光ステージ20が所定の速度で移動しながら検出される。したがって、本来のアライメントマークMが円形とした場合でも、露光ステージ20を移動させながら撮影すると、撮影画像は撮影時のシャッタースピード等にもよるが、略長円形となる。
そのため、マークデータメモリーに記憶するマークデータは、カメラ部38の撮影環境(シャッタースピード、露光ステージ20の移動速度等)を加味した画像(長円形画像)となっている。すなわち、本来の円形状ではなく、撮影環境下で実際に露光ステージ20を移動しながら撮影した画像に対応したマークデータを記憶することで、照合の適正化を図っている。
こうして、画像記録位置補正(露光開始時期補正)を終えると、感光材料60を載置面に吸着保持した露光ステージ20の復路移動が開始される。すなわち、露光ステージ20を、リニアモーター部24の駆動力により、定盤18の摺動レール22に沿って筐体部12Aからステージ部12B側へ向かって定速度で移動させる。
なお、露光ステージ20の復路移動中、リニアモーター部24に設けられたリニアエンコーダーの出力パルスをパルスカウンターがカウントすることによって、露光ステージ20の位置を認識している(リニアモーター部24の駆動パルスでも判別可能)。
そして、露光ステージ20は、露光ヘッドユニット28を通過するが、このとき、露光ヘッドユニット28では、補正された露光開始時期に基づいて、DMDにレーザー光が照射され、DMDのマイクロミラーがオン状態のときに反射されたレーザー光が光学系を介して感光材料60へと案内され、感光材料60上(露光面)に結像される。
つまり、コントローラー部50のメモリーに記憶された画像データが複数ライン分ずつ順次読み出され、読み出された画像データに基づいて各ヘッドアッセンブリ28A毎に制御信号が生成される。この制御信号には、補正制御(アライメント)により、アライメント測定した感光材料60に対する露光位置ずれの補正が加えられており、感光材料60がDMDの使用画素数と略同数の画素単位で露光される。
こうして、感光材料60が露光ステージ20と共に定速度で移動することにより、露光ステージ20の移動方向と反対の方向に、各ヘッドアッセンブリ28A毎に帯状の露光済み領域28Cが形成される(図6(A)参照)。そして、感光材料60に対する露光処理が完了し、露光ステージ20が初期位置へ復帰移動すると、感光材料60は、露光ステージ20による吸着状態が解除されて、図示しない機外の搬送コンベアへ搬送され、次工程へ搬送される。
以上、説明したように、この露光装置10では、カメラ本体38A(撮像素子)が、1次元に配列されたリニアイメージセンサー(ラインCCD)とされ、アライメントマークMを走査方向に分割して撮影する構成とされているので、カメラ本体38Aにおける歪みの影響を抑制することができ、アライメントマークMの撮影精度(位置計測精度)を向上させることができる。したがって、感光材料60の描画領域(露光面)に対する露光処理が正確に実行できる。
また、本実施例では、感光材料60上に記録する画像位置を補正するためのアライメントマークMの読み取りが、露光ステージ20(感光材料60)を移動させつつ行われるので、処理効率(生産性)を向上させることができる。更に、本実施例では、露光ステージ20を往復移動させる構成にしているので、露光ヘッドユニット28とアライメントユニット30とを接近配置することができ、露光装置10自体のコンパクト化が図れる(設置スペースの省スペース化が図れる)。
また、本実施例では、空間光変調素子としてDMDを用い、点灯時間を一定にしてオン/オフすることで、ドットパターンを生成するようにしたが、オン時間比(デューティー)制御によるパルス幅変調を行ってもよい。また、1回の点灯時間を極めて短時間として、点灯回数によってドットパターンを生成してもよい。
更に、本実施例では、空間光変調素子としてDMDを備えた露光ヘッドユニット28について説明したが、このような反射型空間光変調素子の他に、透過型空間光変調素子(LCD)を使用することもできる。例えば、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)や、電気光学効果により透過光を変調する光学素子(PLZT素子)や液晶光シャッター(FLC)等の液晶シャッターアレイなど、MEMSタイプ以外の空間光変調素子を用いることもできる。
なお、MEMSとは、IC製造プロセスを基盤としたマイクロマシニング技術によるマイクロサイズのセンサー、アクチュエーター、そして制御回路を集積化した微細システムの総称であり、MEMSタイプの空間光変調素子とは、静電気力を利用した電気機械動作により駆動される空間光変調素子を意味している。更に、Grating Light Valve(GLV)を複数並べて2次元状に構成したものを用いることもできる。これらの反射型空間光変調素子(GLV)や透過型空間光変調素子(LCD)を使用する構成では、上記したレーザーの他にランプ等も光源として使用可能である。
また、光源としては、合波レーザー光源を複数備えたファイバーアレイ光源、1個の発光点を有する単一の半導体レーザーから入射されたレーザー光を出射する1本の光ファイバーを備えたファイバー光源をアレイ化したファイバーアレイ光源、複数の発光点が2次元状に配列された光源(例えばLDアレイ、有機ELアレイ)等が適用可能である。
また、このような露光装置には、露光により直接情報が記録されるフォトンモード感光材料、露光により発生した熱で情報が記録されるヒートモード感光材料の何れも使用することができる。フォトンモード感光材料を使用する場合、レーザー装置にはGaN系半導体レーザー、波長変換固体レーザー等が使用され、ヒートモード感光材料を使用する場合、レーザー装置にはAlGaAs系半導体レーザー(赤外レーザー)、固体レーザー等が使用される。
露光装置を示す概略斜視図 露光装置を示す概略側面図 露光装置を示す概略平面図 露光ステージを示す概略斜視図 露光ヘッドユニットを示す概略斜視図 (A)露光ヘッドユニットによる露光領域を示す概略平面図、(B)ヘッドアッセンブリの配列パターンを示す概略平面図 単一のヘッドアッセンブリにおけるドットパターンの配列状態を示す概略平面図 アライメントユニットを示す概略斜視図 リニアイメージセンサーとレンズを示す概略平面図 アライメントマークをリニアイメージセンサーで撮影する様子を示す説明図 リニアイメージセンサーでの撮影画像と基準チャートを示す概略平面図 撮影画像と基準チャートから導出される補正量を示すグラフ カメラ部の構成を示す概略斜視図 撮影画像と基準チャートから導出される補正量を示すグラフ 露光開始時期補正ルーチンを示す制御フローチャート
符号の説明
10 露光装置
20 露光ステージ(ステージ)
28 露光ヘッドユニット(露光手段)
30 アライメントユニット(画像位置計測装置)
38 カメラ部(撮影手段)
38A カメラ本体(撮像素子)
38B レンズ部(レンズ)
50 コントローラー部(画像位置計測装置)
60 感光材料(ワーク)
70 歪み補正手段(補正手段)

Claims (7)

  1. ワークに形成された基準マークの位置を計測するための撮影手段を備えた画像位置計測装置であって、
    前記撮影手段は、前記基準マークを走査方向に分割して撮影する構成とされていることを特徴とする画像位置計測装置。
  2. 前記撮影手段は、1次元に配列された撮像素子で構成されていることを特徴とする請求項1に記載の画像位置計測装置。
  3. 前記撮像素子の歪みを補正する補正手段を備えていることを特徴とする請求項2に記載の画像位置計測装置。
  4. 前記補正手段は、前記撮影素子の歪みによる撮影画像の歪みを予め測定し、これを基に撮影画像データを補正することを特徴とする請求項3に記載の画像位置計測装置。
  5. 前記撮影手段は、レンズを、光軸を中心に回動及び固定できる機構を備えていることを特徴とする請求項3又は請求項4に記載の画像位置計測装置。
  6. 前記ワークが載置可能とされ、所定の搬送路に沿って移動可能とされたステージを有し、該ステージを移動させつつ、ワークに形成された前記基準マークを撮影することを特徴とする請求項1乃至請求項5の何れか1項に記載の画像位置計測装置。
  7. 請求項1乃至請求項6の何れか1項に記載の画像位置計測装置と、
    前記画像位置計測装置によって撮影された前記基準マークの位置情報に基づいて補正された画像データを前記ワークに露光する露光手段と、
    を備えたことを特徴とする露光装置。
JP2005200139A 2005-07-08 2005-07-08 画像位置計測装置及び露光装置 Pending JP2007017763A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200139A JP2007017763A (ja) 2005-07-08 2005-07-08 画像位置計測装置及び露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200139A JP2007017763A (ja) 2005-07-08 2005-07-08 画像位置計測装置及び露光装置

Publications (1)

Publication Number Publication Date
JP2007017763A true JP2007017763A (ja) 2007-01-25

Family

ID=37754982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200139A Pending JP2007017763A (ja) 2005-07-08 2005-07-08 画像位置計測装置及び露光装置

Country Status (1)

Country Link
JP (1) JP2007017763A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096011A (ja) * 2009-10-29 2011-05-12 Toshiba Corp 搬送監視装置および搬送監視方法
WO2012029142A1 (ja) * 2010-09-01 2012-03-08 三菱電機株式会社 レーザ加工装置および基板位置検出方法
JP2021047331A (ja) * 2019-09-19 2021-03-25 キヤノン株式会社 マーク位置決定方法、リソグラフィー方法、物品製造方法、プログラムおよびリソグラフィー装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096011A (ja) * 2009-10-29 2011-05-12 Toshiba Corp 搬送監視装置および搬送監視方法
WO2012029142A1 (ja) * 2010-09-01 2012-03-08 三菱電機株式会社 レーザ加工装置および基板位置検出方法
CN103079746A (zh) * 2010-09-01 2013-05-01 三菱电机株式会社 激光加工装置及基板位置检测方法
TWI415703B (zh) * 2010-09-01 2013-11-21 Mitsubishi Electric Corp 雷射加工裝置及基板位置檢測方法
JP5383920B2 (ja) * 2010-09-01 2014-01-08 三菱電機株式会社 レーザ加工装置および基板位置検出方法
KR101435352B1 (ko) 2010-09-01 2014-08-28 미쓰비시덴키 가부시키가이샤 레이저 가공장치 및 기판위치 검출방법
JP2021047331A (ja) * 2019-09-19 2021-03-25 キヤノン株式会社 マーク位置決定方法、リソグラフィー方法、物品製造方法、プログラムおよびリソグラフィー装置
JP7339826B2 (ja) 2019-09-19 2023-09-06 キヤノン株式会社 マーク位置決定方法、リソグラフィー方法、物品製造方法、プログラムおよびリソグラフィー装置

Similar Documents

Publication Publication Date Title
JP2007010736A (ja) 画像位置計測装置及び露光装置
KR100742597B1 (ko) 노광장치의 교정방법, 노광방법 및 노광장치
JP4113418B2 (ja) 露光装置
JP4450739B2 (ja) 露光装置
JP2008249958A (ja) 基準位置計測装置及び方法、並びに描画装置
JP2006198725A (ja) クランプ装置及び画像形成装置
KR101306056B1 (ko) 얼라인먼트 유닛 및 얼라인먼트 유닛을 이용한 화상 기록장치
JP2006308994A (ja) 露光装置
JP4485381B2 (ja) 画像形成装置および画像形成方法
JP2006337873A (ja) 露光装置及び露光方法
JP2006098725A (ja) 描画位置の補正方法と、描画位置を補正可能な描画装置
JP2007017763A (ja) 画像位置計測装置及び露光装置
JP2006337878A (ja) 露光装置及び露光方法
JP4441310B2 (ja) 画像記録装置
JP5209946B2 (ja) 焦点位置検出方法および描画装置
JP2006293314A (ja) 画像形成装置および画像形成方法
JP2006337874A (ja) 露光装置及び露光方法
JP2008242218A (ja) 描画装置及び描画方法
JP2006201516A (ja) クランプ装置及び画像形成装置並びにクランプ方法
JP2006337700A (ja) 露光装置、露光装置システム、及び露光方法
JP2007010735A (ja) アライメントマーク撮影方法と装置及び露光方法と装置
JP4533777B2 (ja) シート体位置検出方法及び装置並びにそれを用いた描画装置
JP2005189365A (ja) 吸着固定装置、画像形成装置
JP4359475B2 (ja) 画像記録装置
JP2007010733A (ja) 露光装置及び露光方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070202