WO2012026497A1 - 光学積層体、偏光板及び画像表示装置 - Google Patents
光学積層体、偏光板及び画像表示装置 Download PDFInfo
- Publication number
- WO2012026497A1 WO2012026497A1 PCT/JP2011/069068 JP2011069068W WO2012026497A1 WO 2012026497 A1 WO2012026497 A1 WO 2012026497A1 JP 2011069068 W JP2011069068 W JP 2011069068W WO 2012026497 A1 WO2012026497 A1 WO 2012026497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hard coat
- coat layer
- martens hardness
- hardness
- optical laminate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B23/00—Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
- B32B23/04—Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B23/08—Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/022—Mechanical properties
-
- G02B1/105—
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2301/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2301/08—Cellulose derivatives
- C08J2301/10—Esters of organic acids
- C08J2301/12—Cellulose acetate
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/50—Protective arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/24983—Hardness
Definitions
- the present invention relates to an optical laminate, a polarizing plate, and an image display device.
- CTR cathode ray tube display
- LCD liquid crystal display
- PDP plasma display
- ELD electroluminescence display
- FED field emission display
- touch panel electronic paper
- tablet PC It is sometimes required to provide scratch resistance so as not to be scratched.
- a hard coat film in which a hard coat (HC) layer is provided on a base film and a hard coat film having optical functions such as antireflection and antiglare properties.
- HC hard coat
- optical functions such as antireflection and antiglare properties.
- the hardness of the hard coat layer surface of the hard coat film is high.
- Various methods for increasing the hardness of the surface of the hard coat layer have been conventionally studied.
- a hard coat film for example, in Patent Document 1, an intermediate layer obtained by curing a composition containing a photocurable resin and a thermosetting resin is provided on a transparent substrate, and further on the intermediate layer.
- a hard coat layer is provided to improve the hardness.
- the conventional hard coat film increases the hardness of the hard coat layer, causing the entire hard coat film to warp (curl) and bend, and when the hard coat film is applied to a polarizer or a display panel.
- conventionally there has been a demand for thinning for the purpose of reducing the weight of the hard coat film, but a hard coat film having an intermediate layer and a hard coat layer could not be sufficiently thinned. For this reason, it has been required to improve the hardness with a hard coat layer having a single layer structure and to further reduce the thickness of the transparent substrate.
- a hard coat film having a hard coat layer having such a single layer structure and a thin transparent substrate when the hardness of the hard coat layer is increased, the occurrence of curling and thermal wrinkles is a problem. It was.
- the present invention includes a hard coat layer having a single layer structure, and has high hardness even when the substrate thickness is thin, and can reduce the occurrence of curling and thermal wrinkles.
- An object of the present invention is to provide an optical laminate excellent in workability at the time of application to a panel, a polarizing plate and an image display device using the optical laminate.
- the present invention is an optical laminate having a hard coat layer on one side of a triacetyl cellulose base material, wherein the hard coat layer has a single layer structure, and the surface of the hard coat layer
- the difference (N1 ⁇ N2) between the Martens hardness (N1) and the Martens hardness (N2) is 0 to 150 N / mm 2
- the Martens hardness (N2) and the Martens hardness (N3) (N2 ⁇ N3) is preferably 0 to 150 N / mm 2
- the hardness of the surface of the said hard-coat layer of the pencil hardness test (4.9N load) is 3H or more.
- the hard coat layer is formed using a hard coat layer forming composition containing an ionizing radiation curable resin and a photopolymerization initiator, and the ionizing radiation curable resin is 6 or more.
- the urethane compound which has a polymerizable functional group, or the polymer which has a 10 or more polymerizable functional group, and the compound which has a 2 or more polymerizable functional group is preferable to contain the urethane compound which has a polymerizable functional group, or the polymer which has a 10 or more polymerizable functional group, and the compound which has a 2 or more polymerizable functional group.
- the content of the photopolymerization initiator in the composition for forming a hard coat layer is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the ionizing radiation curable resin.
- This invention is also a polarizing plate provided with a polarizing element, Comprising:
- the said polarizing plate is a polarizing plate characterized by providing the above-mentioned optical laminated body on the polarizing element surface.
- the present invention also provides an image display device comprising the above-described optical laminate or the above-described polarizing plate on the outermost surface. The present invention is described in detail below.
- the present inventors have found that curling occurs in the optical laminate.
- the balance of the hardness of each layer which comprises this optical laminated body was important. That is, the hardness of each layer constituting the optical layered body, in particular, the Martens hardness at the center of the surface and cross section of the hard coat layer and the Martens hardness at the center of the cross section of the triacetyl cellulose substrate are within predetermined ranges, respectively.
- the hard coat layer has a single layer structure, and even when the triacetyl cellulose base material is thinned, it has been found that curling can be suitably prevented and the present invention has been completed. It was.
- the hard coat layer has a single layer structure.
- the Martens hardness (N3) at the center of the cross-section of the triacetylcellulose base material measured by a nanoindentation method at a load of 10 mN the Martens hardness (N1) is 200 to 450 N / mm. 2
- the Martens hardness (N2) is 150 to 300 N / mm 2
- the Martens hardness (N3) is 100 to 250 N / mm 2 .
- the optical laminate of the present invention can prevent the occurrence of curling.
- the N1 is the surface of the hard coat layer 10 (the side opposite to the triacetyl cellulose base material).
- the Vickers indenter 12 with a diamond regular quadrangular pyramid shape with a diagonal angle of 136 ° from the vertical direction to the surface) was pushed in, and the Martens hardness was calculated from the obtained load-displacement curve.
- the Martens hardness (N1) of the surface of the layer is taken.
- the Martens hardness is calculated by calculating the surface area A (mm 2 ) from the length of the diagonal line of the pyramidal depression 13a formed by pushing the Vickers indenter, and dividing the test load F (N). (F / A). Further, the Martens hardness (N2) at the center of the cross section of the hard coat layer is, as shown in FIG. 1, at the center (AA line) of the cross section 10a of the hard coat layer 10 in a direction perpendicular to the cross section 10a. From the hollow 13b formed by pushing the Vickers indenter 12 into the same, the Martens hardness (average obtained for five locations) is obtained in the same manner as N1.
- the Martens hardness (N3) at the center of the cross section of the triacetyl cellulose base material is Vickers indenter 12 from the direction perpendicular to the cross section 11a at the center (BB line) of the cross section 11a of the triacetyl cellulose base material 11.
- the Martens hardness (average obtained for 5 locations) is obtained from the depression 13c formed by pushing.
- the Martens hardness can be measured by the nanoindentation method using a Picodenter HM-500 manufactured by Fischer Instrument Co., Ltd.
- the Martens hardness (N1) of the surface of the hard coat layer is less than 200 N / mm 2 , the surface hardness of the optical laminate of the present invention does not reach the target pencil hardness of 3H, and the scratch resistance is insufficient. It becomes.
- the Martens hardness (N1) exceeds 450 N / mm 2 , the Martens hardness (N1) is excessively hard and brittle, and crack properties (toughness) are deteriorated.
- the curl becomes stronger, and in the post-processing process, there is a problem (for example, the curl becomes stronger in the saponification process and does not pass through the production line. Curling, etc.).
- the surface hardness of the optical layered body of the present invention does not reach the target pencil hardness of 3H.
- Preferred lower limit to the Martens hardness (N1) is 210N / mm 2
- preferred upper limit is 400 N / mm 2
- more preferred lower limit is 230N / mm 2
- more preferable upper limit is 350 N / mm 2.
- the Martens hardness (N2) at the center of the cross section of the hard coat layer is less than 100 N / mm 2 , the surface hardness of the optical laminate of the present invention does not reach the target pencil hardness 3H.
- the Martens hardness (N2) exceeds 300 N / mm 2 , it becomes too hard and brittle, and the crack property (toughness) is lowered.
- a preferable lower limit of the Martens hardness (N2) is 150 N / mm 2
- a preferable upper limit is 250 N / mm 2
- a more preferable lower limit is 170 N / mm 2
- a more preferable upper limit is 240 N / mm 2 .
- the Martens hardness (N3) at the center of the cross section of the triacetylcellulose base material is less than 150 N / mm 2 , the surface hardness of the optical laminate of the present invention does not reach the target pencil hardness 3H.
- the Martens hardness (N3) exceeds 250 N / mm 2 it becomes too hard and brittle, and the crack property (toughness) is lowered. Moreover, heat damage (swelling in the width direction of the film) also becomes strong, causing poor appearance after panel bonding.
- Preferred lower limit to the Martens hardness (N3) is 160 N / mm 2, preferred upper limit is 240 N / mm 2, more preferred lower limit is 170N / mm 2, and more preferable upper limit is 230N / mm 2.
- the difference (N1 ⁇ N2) between the Martens hardness (N1) and the Martens hardness (N2) is 0 to 150 N / mm 2
- the Martens hardness (N2) and the Martens hardness (N3) (N2 ⁇ N3) is preferably 0 to 150 N / mm 2 .
- a more preferable lower limit of the above (N1-N2) and (N2-N3) is 5 N / mm 2
- a more preferable upper limit is 100 N / mm 2 .
- the hard coat layer preferably has a surface pencil hardness test (4.9 N load) hardness of 3H or more. If it is less than 3H, the hard coat properties of the optical layered body of the present invention will be insufficient.
- the pencil hardness test is a test according to the pencil hardness test specified in JIS K5600-5-4 (1999).
- the hardness by the pencil hardness test of the hard coat layer is the number of times that scratches occurred at a length of one-third or more of the length that was drawn once, after performing a scratch test five times. Is NG, and if NG is 1 or less, it means the result of evaluation based on the criterion of passing. In other words, if the scratch test is performed 5 times and the scratch is generated once, the description is “4/5” and the test is accepted. If the scratch test is performed 5 times and the scratch is generated 4 times, “1/5” is obtained. Will be rejected.
- the triacetyl cellulose base material has transparency, smoothness, and heat resistance, and is excellent in mechanical strength.
- the thickness of the triacetyl cellulose base material is preferably 10 to 65 ⁇ m, and more preferably 20 to 45 ⁇ m.
- the triacetyl cellulose base material is provided with an anchor agent or primer in addition to a physical or chemical treatment such as corona discharge treatment or oxidation treatment in order to improve adhesion when a hard coat layer is formed thereon.
- the hard coat layer is formed on the triacetyl cellulose substrate and contains a binder resin.
- a binder resin a transparent one is preferable.
- the binder resin is formed using a composition for forming a hard coat layer containing an ionizing radiation curable resin which is a resin curable by ultraviolet rays or an electron beam and a photopolymerization initiator. It is preferred that In the present specification, “resin” is a concept including resin components such as monomers and oligomers.
- Examples of the ionizing radiation curable resin include compounds having one or more unsaturated bonds such as compounds having an acrylate functional group.
- Examples of the compound having one unsaturated bond include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like.
- Examples of the compound having two or more unsaturated bonds include polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri ( Polyfunctional compounds such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentylglycol di (meth) acrylate, or the above polyfunctional compound and (meth) acrylate And the like (for example, poly (meth) acrylate esters of polyhydric alcohols).
- (meth) acrylate refers to methacrylate and acrylate.
- polyester resins having unsaturated double bonds polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, etc. It can be used as an ionizing radiation curable resin.
- the ionizing radiation curable resin may contain a urethane compound having 6 or more polymerizable functional groups, or a polymer having 10 or more polymerizable functional groups and a monomer having 2 or more polymerizable functional groups. preferable.
- a composition for forming a hard coat layer containing an ionizing radiation curable resin having such a composition a hard coat layer that satisfies the above-described relationships of Martens hardness (N1), (N2), and (N3) is suitably used.
- a composition for forming a hard coat layer a composition containing silica is known for the purpose of increasing the hardness of the hard coat layer to be formed.
- the hard coat layer forming composition does not contain silica, and as an ionizing radiation curable resin, the urethane compound having 6 or more polymerizable functional groups described above, or
- the hard coat layer-forming composition is applied onto a triacetyl cellulose substrate and coated
- a urethane compound having 6 or more polymerizable functional groups on the side opposite to the triacetyl cellulose substrate of the coating film hereinafter also referred to as the upper layer of the coating film
- the proportion of the polymer having 10 or more polymerizable functional groups is increased, and the two or more polymerizable functional groups on the triacetyl cellulose substrate side of the coating film (hereinafter also referred to as the lower layer of the coating film).
- a monomer having two or more polymerizable functional groups present in a large amount in the lower layer of the coating film is infiltrated into the triacetyl cellulose base material when a penetrating solvent described later is used.
- fills the relationship of the Martens hardness (N1), (N2), and (N3) mentioned above can be formed by hardening the said coating film.
- the entire coating film can be sufficiently cured, curling of the optical laminate can be controlled, and further, since the coating film is cured by ultraviolet irradiation, a hard coat having a sufficiently high hardness. A layer can be obtained.
- the proportion of the monomer having two or more polymerizable functional groups in the upper layer of the coating film is high, the reaction of the monomer having two or more polymerizable functional groups is accelerated when the coating film is cured. In some cases, curing does not reach the deep part of the coating film, and the hard coat layer may be insufficiently cured. Moreover, since the upper layer of the coating film is easily cured, the curing shrinkage is large, and as a result, the curl of the obtained optical laminate may be increased.
- the urethane compound having 6 or more polymerizable functional groups preferably has a weight average molecular weight of 1,000 to 10,000.
- examples of such urethane compounds having 6 or more polymerizable functional groups include: Nippon Synthetic Chemical Industry Co., Ltd .: UV1700B (2000 weight average molecular weight, 10 polymerizable functional groups), UV6300B (weight average molecular weight 3700, polymerizable) Functional group number 7), UV7640B (weight average molecular weight 1500, polymerizable functional group number 7), manufactured by Nippon Kayaku Co., Ltd .: DPHA40H (weight average molecular weight 7000, polymerizable functional group number 8), UX5001T (weight average molecular weight 6200, polymerizable functional group) 8), manufactured by Negami Kogyo Co., Ltd .: UN3320HS (weight average molecular weight 5000, polymerizable functional group number 15), UN904 (weight average molecular weight 4900, polymerizable functional group number
- the polymer having 10 or more polymerizable functional groups preferably has a weight average molecular weight of 10,000 to 50,000.
- examples of such a polymer having 10 or more polymerizable functional groups include Arakawa Chemical Industries, Ltd .: BS371, BS371MLV, BSDK1, BSDK2, BSDK3, Hitachi Chemical Co., Ltd .: Hitaroid 7975D series (for example, Hitaroid 7975D5). 7975D12, 7975D40, etc.).
- the said weight average molecular weight can be calculated
- Examples of the monomer having two or more polymerizable functional groups preferably include dipentaerythritol hexaacrylate (DPHA) and pentaerythritol triacrylate (PETA).
- the ionizing radiation curable resin is used in combination with a solvent-drying resin (a thermoplastic resin or the like, which is a resin that forms a film only by drying the solvent added to adjust the solid content during coating). You can also. By using the solvent-drying resin in combination, film defects on the coated surface can be effectively prevented.
- a solvent-drying resin a thermoplastic resin or the like, which is a resin that forms a film only by drying the solvent added to adjust the solid content during coating. You can also.
- the solvent-drying resin that can be used in combination with the ionizing radiation curable resin is not particularly limited, and a thermoplastic resin can be generally used.
- the thermoplastic resin is not particularly limited.
- a styrene resin for example, a (meth) acrylic resin, a vinyl acetate resin, a vinyl ether resin, a halogen-containing resin, an alicyclic olefin resin, a polycarbonate resin, or a polyester resin.
- examples thereof include resins, polyamide-based resins, cellulose derivatives, silicone-based resins, rubbers, and elastomers.
- the thermoplastic resin is preferably amorphous and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds).
- styrene resins (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives (cellulose esters, etc.) and the like are preferable.
- the said composition for hard-coat layer formation may contain the thermosetting resin.
- the thermosetting resin is not particularly limited.
- examples thereof include resins, silicon resins, polysiloxane resins, and the like.
- the photopolymerization initiator is not particularly limited and known ones can be used.
- specific examples of the photopolymerization initiator include acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amylo Examples include oxime esters, thioxanthones, propiophenones, benzyls, benzoins, and acylphosphine oxides.
- it is preferable to use a mixture of photosensitizers and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
- the photopolymerization initiator when the ionizing radiation curable resin is a resin system having a radical polymerizable unsaturated group, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc. may be used alone or in combination. It is preferable to use it.
- the photopolymerization initiator may be an aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metallocene compound, benzoin sulfone. It is preferable to use acid esters alone or as a mixture.
- the ionizing radiation curable resin is cured in an N 2 atmosphere in consideration of the hardness of the hard coat layer to be formed (oxygen concentration is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably (250 ppm or less) is preferably performed by ultraviolet irradiation.
- oxygen concentration is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably (250 ppm or less
- ultraviolet irradiation is preferably performed by ultraviolet irradiation.
- the Martens hardness (N1), (N2) and (N3) are related to each other by setting the content of the photopolymerization initiator in a specific range according to the type of the ionizing radiation curable resin and the solvent. It can be controlled to satisfy.
- the content of the photopolymerization initiator in the composition for forming a hard coat layer is 0.75 to 2.5 parts by mass with respect to 100 parts by mass of the ionizing radiation curable resin. preferable. If it is less than 0.75 parts by mass, the Martens hardness (N2) of the hard coat layer in the optical layered body of the present invention may not be within the above-described range.
- the calorific value at the time of hardening of the said coating film becomes large, and it becomes easy to generate
- the minimum with more preferable content of the said photoinitiator is 1 mass part, and a more preferable upper limit is 2 mass parts. The reason is unknown, but the content of the photopolymerization initiator is in this range, so that a hardness distribution can be appropriately generated in the film thickness direction, and the optical laminate of the present invention has high hardness and low curl. It is possible to achieve both.
- the composition for forming a hard coat layer may contain a solvent.
- a solvent it can select and use according to the kind and solubility of the resin component to be used, for example, ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol etc.), ethers ( Dioxane, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons (cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.), Halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (ethanol, isopropanol, butanol,
- the solvent preferably contains a permeable solvent that is permeable to the triacetylcellulose substrate.
- the “permeability” of the osmotic solvent is intended to include all concepts such as osmosis, swelling, and wettability with respect to the triacetylcellulose substrate. When such a permeable solvent swells and wets the triacetyl cellulose base material, a part of the composition for forming a hard coat layer permeates to the triacetyl cellulose base material.
- the osmotic solvent include ketones; acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, diacetone alcohol, esters; methyl formate, methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, nitrogen-containing compounds; nitromethane , Acetonitrile, N-methylpyrrolidone, N, N-dimethylformamide, glycols; methyl glycol, methyl glycol acetate, ethers; tetrahydrofuran, 1,4-dioxane, dioxolane, diisopropyl ether, halogenated hydrocarbons; methylene chloride, chloroform , Tetrachloroethane, glycol ethers; methyl cellosolve, ethyl cellosolve, butyl cellosolve, cellosolve acetate, dimethyl sulfon
- the osmotic solvent is preferably 10 to 100% by mass, particularly 50 to 100% by mass, based on the total amount of the solvent.
- the content (solid content) of the raw material in the hard coat layer forming composition is not particularly limited, but it is usually preferably 5 to 70% by mass, particularly preferably 25 to 60% by mass.
- the hard coat layer forming composition Surfactant, antistatic agent, silane coupling agent, thickener, anti-coloring agent, coloring agent (pigment, dye), antifoaming agent, leveling agent, flame retardant, ultraviolet absorber, adhesion promoter, polymerization inhibitor
- an antioxidant, a surface modifier, a lubricant and the like may be added.
- composition for forming a hard coat layer may be used by mixing with a photosensitizer.
- a photosensitizer include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
- the method for preparing the composition for forming a hard coat layer is not particularly limited as long as each component can be uniformly mixed.
- the composition can be performed using a known apparatus such as a paint shaker, a bead mill, a kneader, or a mixer.
- the hard coat layer forming composition may be a triacetyl cellulose group.
- a method of curing a coating film formed by coating on a material under predetermined conditions can be mentioned.
- the method for applying the hard coat layer-forming composition onto the triacetylcellulose substrate is not particularly limited, and examples thereof include spin coating, dipping, spraying, die coating, bar coating, roll coater, meniscus, and the like.
- Well-known methods such as a coater method, a flexographic printing method, a screen printing method, and a speed coater method, can be mentioned.
- the coating film formed by applying the hard coat layer-forming composition on the triacetyl cellulose substrate is preferably heated and / or dried as necessary and cured by irradiation with active energy rays or the like.
- Examples of the active energy ray irradiation include irradiation with ultraviolet rays or electron beams.
- the ultraviolet light source include light sources such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc lamp, a black light fluorescent lamp, and a metal halide lamp.
- the wavelength of ultraviolet rays a wavelength range of 190 to 380 nm can be used.
- the electron beam source include various electron beam accelerators such as a cockcroft-wald type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type.
- the optical layered body of the present invention preferably has a total light transmittance of 85% or more. If it is less than 85%, color reproducibility and visibility may be impaired when the optical laminate of the present invention is mounted on the surface of an image display device.
- the total light transmittance is more preferably 90% or more, and still more preferably 92% or more.
- the haze is preferably less than 1%, and more preferably less than 0.5%.
- the haze is preferably less than 80%.
- the antiglare layer may be composed of haze due to internal diffusion and / or haze due to the uneven shape of the outermost surface, and the haze due to internal diffusion is preferably 0.5% or more and less than 79%, preferably 1% or more and 50% More preferably, it is less.
- the haze on the outermost surface is preferably 0.5% or more and less than 35%, more preferably 1% or more and less than 20%, still more preferably 1% or more and less than 10%.
- the optical layered body of the present invention may also include other layers (antiglare layer, antistatic layer, low refractive index layer, antifouling layer, adhesive layer) as necessary within the range that the effects of the present invention are not impaired.
- Other hard coat layers, etc. can be appropriately formed.
- These layers may be the same as those of a known antireflection laminate.
- the optical layered body of the present invention is produced by forming a hard coat layer on a triacetyl cellulose substrate using a hard coat layer forming composition containing an ionizing radiation curable resin and a photopolymerization initiator.
- a hard coat layer forming composition containing an ionizing radiation curable resin and a photopolymerization initiator.
- the optical layered body of the present invention can be made into a polarizing plate by providing the optical layered body according to the present invention on the surface of the polarizing element opposite to the surface where the hard coat layer is present in the optical layered body.
- a polarizing plate is also one aspect of the present invention.
- the polarizing element is not particularly limited, and for example, a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, which is dyed with iodine or the like and stretched can be used.
- a polyvinyl alcohol film a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, which is dyed with iodine or the like and stretched
- the adhesiveness is improved and an antistatic effect can be obtained.
- the present invention is also an image display device including the optical laminate or the polarizing plate on the outermost surface.
- the image display device may be an image display device such as an LCD, PDP, FED, ELD (organic EL, inorganic EL), CRT, touch panel, electronic paper, or tablet PC.
- An LCD which is a typical example of the image display device, includes a transmissive display body and a light source device that irradiates the transmissive display body from the back.
- the image display device of the present invention is an LCD
- the optical laminate of the present invention or the polarizing plate of the present invention is formed on the surface of this transmissive display.
- the optical laminated body described above is provided on the surface (also referred to as the BL side) of the surface glass substrate (also referred to as a front plate) that is closer to the viewing side than the LCD polarizing plate.
- the light source of the light source device is irradiated from the lower side of the optical laminate.
- a retardation plate may be inserted between the liquid crystal display element and the polarizing plate.
- An adhesive layer may be provided between the layers of the liquid crystal display device as necessary.
- the PDP which is the image display device, has a front glass substrate (electrode is formed on the surface) and a rear glass substrate (disposed with electrodes and minute grooves) disposed with a discharge gas sealed between the front glass substrate and the front glass substrate. Formed on the surface and forming red, green and blue phosphor layers in the grooves).
- the image display device of the present invention is a PDP, the above-mentioned optical laminate is provided on the surface of the surface glass substrate or the front plate (glass substrate or film substrate).
- the above image display device is a zinc sulfide or diamine substance that emits light when a voltage is applied: a light emitting material is deposited on a glass substrate, and an ELD device that performs display by controlling the voltage applied to the substrate, or converts an electrical signal into light Alternatively, it may be an image display device such as a CRT that generates an image visible to human eyes.
- the optical laminated body described above is provided on the outermost surface of each display device as described above or the surface of the front plate.
- the image display apparatus of the present invention can be used for display display of a television, a computer, a word processor, or the like.
- it can be suitably used for the surface of high-definition image displays such as CRT, liquid crystal panel, PDP, ELD, FED, touch panel, electronic paper, and tablet PC.
- the optical laminate of the present invention includes a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), a touch panel, electronic paper, It can be suitably applied to a tablet PC or the like.
- CTR cathode ray tube display
- LCD liquid crystal display
- PDP plasma display
- ELD electroluminescence display
- FED field emission display
- touch panel electronic paper
- a hard coat layer forming composition 1 was prepared by the following composition. ⁇ Hardcoat layer forming composition 1> Resin 1; Pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd .; PET30) 20 parts by mass Resin 2; Polymer acrylate (B-1) 30 parts by mass polymerization initiator; Irg. 184 (manufactured by Ciba Japan; Irgacure 184) 1 part by mass Irg.
- polymer acrylate (B-1) is Arakawa “BS371MLV” manufactured by Kagaku Kogyo Co., Ltd., having about 25 acryloyl groups in one molecule and an average molecular weight (Mw) of 15,000.
- UV1700B indicates a polyfunctional urethane acrylate (manufactured by Nippon Synthetic Chemical Industry; UV1700B, number of polymerizable functional groups 10)
- A-1 refers to reactive atypical silica fine particles having an average secondary particle size of 100 nm, in which four spherical silica fine particles having an average primary particle size of 30 nm are inorganic chemically bonded, and having a solid content of 40% diluted with MIBK.
- Show "BS577” indicates a urethane acrylate resin (polymerizable functional group number 6) manufactured by Arakawa Chemical Industries, Ltd.
- B-2 is “BS371” manufactured by Arakawa Chemical Industries, Ltd., which had about 50 acryloyl groups in one molecule and an average molecular weight (Mw) of 40000.
- Example 1 Manufacture of optical laminate> A triacetyl cellulose base material (thickness 40 ⁇ m, manufactured by Konica Minolta, KC4UA) was prepared, and the composition 1 for forming a hard coat layer was applied to one side of the triacetyl cellulose base material, and was heated in a heat oven at a temperature of 70 ° C. The coating film is cured by drying for 2 seconds, evaporating the solvent in the coating film, and irradiating ultraviolet rays so that the integrated light quantity becomes 100 mJ / cm 2 , thereby forming a hard coat layer of 10 g / cm 2 (during drying). Thus, an optical laminate having a triacetyl cellulose base material and a hard coat layer was produced.
- Examples 2 to 9, Comparative Examples 1 to 6, 8, and 9 As shown in Table 2, the production methods were the same as in Example 1, except that the hard coat layer forming compositions 2 to 17 were used instead of the hard coat layer forming composition 1, respectively. 9. Optical laminates of Comparative Examples 1 to 6, 8, and 9 were produced.
- Comparative Example 7 An optical laminate of Comparative Example 7 was produced in the same manner as in Example 1 except that the cumulative amount of ultraviolet light was 50 mJ / cm 2 .
- Comparative Example 10 An optical laminate of Comparative Example 10 was produced in the same manner as in Example 1 except that the ultraviolet light during the formation of the hard coat layer was irradiated from the substrate side so that the integrated light amount was 100 mJ / cm 2 .
- optical laminates obtained in the examples and comparative examples were evaluated by the following methods, and the results are shown in Table 2.
- the detailed measuring method of Martens hardness is as having demonstrated using FIG.
- the needle tip conditions, the pushing speed, the pushing load, and the temperature and humidity at the time of measurement were as follows. Vickers indenter (square weight), tip-to-face angle 136 ° 0mN ⁇ 10mN 10s 10mN 10s 5s 10mN ⁇ 0mN 10s Temperature 25 °C, Humidity 50%
- the curl degree (curl width) of the optical layered body is such that the sample piece 1 obtained by cutting the optical layered body according to the example and the comparative example into 10 cm ⁇ 10 cm is placed on a horizontal base (plane).
- the average value (mm) of the distance when the distance (W) between the end points of the hard coat layer was measured was expressed as follows. ⁇ : 40 mm or more ⁇ : 20 or more, less than 40 mm x: 0 or more, less than 20 mm
- the optical laminates according to Examples 1 to 9 the occurrence of curling is sufficiently suppressed, which is a good result in a pencil hardness test with a hardness of 3H, excellent scratch resistance, and flexibility and The evaluation of curl was satisfactory.
- the optical laminates according to Comparative Examples 1 to 4, 6 and 8 had good results in the pencil hardness test and / or scratch resistance with a hardness of 3H, but the curl was inferior in the evaluation of flexibility and poor. It was.
- the optical laminates according to Comparative Examples 5, 7 and 9 were satisfactory in evaluation of flexibility and curl, but did not achieve hardness 3H in the pencil hardness test, or were inferior in evaluation of scratch resistance. It was a thing.
- the optical laminated body which concerns on the comparative example 10 was inferior to evaluation of a flexibility, although the result in the pencil hardness test of hardness 3H and the abrasion resistance were favorable.
- the optical laminate of the present invention can be suitably applied to a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), and the like.
- CTR cathode ray tube display
- LCD liquid crystal display
- PDP plasma display
- ELD electroluminescence display
- FED field emission display
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
- Polarising Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
更に、従来、ハードコートフィルムの軽量化を目的とした薄膜化の要請があるが、中間層とハードコート層とを有するハードコートフィルムでは、充分な薄膜化を図ることができなかった。そのため、単一の層構成のハードコート層で硬度の向上を図り、更に、透明基材の膜厚を薄くすることが求められていた。しかしながら、このような単一の層構成のハードコート層と薄膜化された透明基材とを有するハードコートフィルムでは、ハードコート層の高硬度化を図ると、カールや熱しわの発生が問題となっていた。
本発明の光学積層体において、上記マルテンス硬度(N1)とマルテンス硬度(N2)との差(N1-N2)が、0~150N/mm2であり、マルテンス硬度(N2)とマルテンス硬度(N3)との差(N2-N3)が、0~150N/mm2であることが好ましい。
また、上記ハードコート層の表面の鉛筆硬度試験(4.9N荷重)の硬度が、3H以上であることが好ましい。
また、上記ハードコート層は、電離放射線硬化型樹脂と光重合開始剤とを含有するハードコート層形成用組成物を用いて形成されたものであり、上記電離放射線硬化型樹脂は、6以上の重合性官能基を有するウレタン化合物、又は、10以上の重合性官能基を有するポリマーと、2以上の重合性官能基を有する化合物とを含有することが好ましい。
また、上記ハードコート層形成用組成物における光重合開始剤の含有量が電離放射線硬化型樹脂100質量部に対して、1~10質量部であることが好ましい。
本発明は、最表面に上述の光学積層体、又は、上述の偏光板を備えることを特徴とする画像表示装置でもある。
以下に、本発明を詳細に説明する。
上記ハードコート層の表面のマルテンス硬度(N1)の具体的な測定方法としては、例えば、図1に示したように、上記N1は、ハードコート層10の表面(トリアセチルセルロース基材と反対側表面)に対して垂直方向から対面角136°のダイヤモンド正四角錐形状のビッカース圧子12を押し込み、得られた荷重-変位曲線から、マルテンス硬度を算出し、これを5箇所について求めた平均をハードコート層の表面のマルテンス硬度(N1)とする。なお、上記マルテンス硬度は、より具体的には、ビッカース圧子の押し込みによりできたピラミッド形のくぼみ13aの対角線の長さからその表面積A(mm2)を計算し、試験荷重F(N)を割る(F/A)ことで求められる。
また、上記ハードコート層の断面中央のマルテンス硬度(N2)は、図1に示したように、ハードコート層10の断面10aの中央(A-A線)に、該断面10aに対して垂直方向からビッカース圧子12を押し込んで形成したくぼみ13bから、上記N1と同様にしてマルテンス硬度(5箇所について求めた平均)を求める。また、上記トリアセチルセルロース基材の断面中央のマルテンス硬度(N3)は、トリアセチルセルロース基材11の断面11aの中央(B-B線)に、該断面11aに対して垂直方向からビッカース圧子12を押し込んで形成したくぼみ13cから、上記N1と同様にしてマルテンス硬度(5箇所について求めた平均)を求める。
なお、上記ナノインデンテーション法によるマルテンス硬度の測定は、(株)フィッシャー・インスツルメント製、ピコデンターHM-500を用いて測定することができる。
上記マルテンス硬度(N1)の好ましい下限は210N/mm2であり、好ましい上限は400N/mm2であり、より好ましい下限は230N/mm2であり、より好ましい上限は350N/mm2である。
上記マルテンス硬度(N2)の好ましい下限は150N/mm2であり、好ましい上限は250N/mm2であり、より好ましい下限は170N/mm2であり、より好ましい上限は240N/mm2である。
上記マルテンス硬度(N3)の好ましい下限は160N/mm2であり、好ましい上限は240N/mm2であり、より好ましい下限は170N/mm2であり、より好ましい上限は230N/mm2である。
なお、本明細書において、上記ハードコート層の鉛筆硬度試験による硬度は、5回ひっかき試験を行ったうち、1回の引いた長さの3分の1以上の長さに傷が発生した回をNGとし、NGが1回以下であれば合格という基準に基づいて評価した結果を意味する。つまり、5回ひっかき試験を行い、1回傷が発生した場合は「4/5」という記述になり合格となり、また、5回ひっかき試験を行い、4回傷が発生した場合は「1/5」という記述になり不合格となる。
上記トリアセチルセルロース基材は、透明性、平滑性、耐熱性を備え、更に機械的強度に優れたものである。
上記トリアセチルセルロース基材の厚みは、10~65μmであることが好ましく、20~45μmであることがより好ましい。
また、上記トリアセチルセルロース基材は、その上にハードコート層を形成するに際して、接着性向上のために、コロナ放電処理、酸化処理等の物理的又は化学的な処理のほか、アンカー剤又はプライマーと呼ばれる塗料の塗布を予め行ってもよい。なお事前にケン化処理をしておけばカール防止にも効果がある。
また、事前に上記トリアセチルセルロース基材の少なくともハードコート層と接する側の反対の面に後述する溶剤を塗工しておくのもカール防止にも効果がある。
上記バインダー樹脂としては、透明性のものが好ましく、例えば、紫外線又は電子線により硬化する樹脂である電離放射線硬化型樹脂と光重合開始剤とを含有するハードコート層形成用組成物を用いて形成されたものであることが好ましい。
なお、本明細書において、「樹脂」は、モノマー、オリゴマー等の樹脂成分も包含する概念である。
ここで、従来、ハードコート層形成用組成物としては形成するハードコート層の高硬度化等を目的としてシリカを含有するものが知られている。しかしながら、このようなシリカを含有するハードコート層形成用組成物を用いて塗膜を形成し乾燥させると、シリカが透明基材側に存在しやすくなり、製造した光学積層体は、屈曲性が悪くなってクラックが生じやすくなるという問題があった。
これに対して、本発明の光学積層体では、上記ハードコート層形成用組成物にシリカを含有させず、電離放射線硬化型樹脂として、上述した6以上の重合性官能基を有するウレタン化合物、又は、10以上の重合性官能基を有するポリマーと、2以上の重合性官能基を有するモノマーとを含有させることで、該ハードコート層形成用組成物をトリアセチルセルロース基材上に塗布し塗膜を形成し乾燥させると、理由は明確ではないが、上記塗膜のトリアセチルセルロース基材と反対側(以下、塗膜の上層ともいう)に6以上の重合性官能基を有するウレタン化合物、又は、10以上の重合性官能基を有するポリマーの存在割合が高くなり、上記塗膜のトリアセチルセルロース基材側(以下、塗膜の下層ともいう)に上記2以上の重合性官能基を有するモノマーの存在割合が高くなる。このような塗膜では、上記塗膜の下層に多く存在する2以上の重合性官能基を有するモノマーは、後述する浸透性溶剤を用いると、トリアセチルセルロース基材へ浸透される。そして、上記塗膜を硬化させることで、上述したマルテンス硬度(N1)、(N2)及び(N3)の関係を満たすハードコート層を形成することができる。また、上記塗膜の全体を充分に硬化させることができるため、光学積層体のカールを制御することができ、更に、上記塗膜は紫外線照射により硬化されるので、充分に高い硬度のハードコート層を得ることができる。
なお、上記塗膜の上層における上記2以上の重合性官能基を有するモノマーの存在割合が高い場合、上記塗膜の硬化が始まると、該2以上の重合性官能基を有するモノマーの反応が早すぎて塗膜の深部にまで硬化が及ばず、ハードコート層の硬化が不充分となることがある。また、上記塗膜の上層が硬化しやすいため硬化収縮が大きく、その結果、得られる光学積層体のカールが大きくなることがある。
また、上記10以上の重合性官能基を有するポリマーは、重量平均分子量が1万~5万であることが好ましい。このような10以上の重合性官能基を有するポリマーとしては、例えば、荒川化学工業株式会社製:BS371、BS371MLV、BSDK1、BSDK2、BSDK3、日立化成工業株式会社製:ヒタロイド7975Dシリーズ(例えば、ヒタロイド7975D5、7975D12、7975D40等)等が挙げられる。
なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算により求めることができる。
また、上記2以上の重合性官能基を有するモノマーとしては、例えば、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールトリアクリレート(PETA)が好適に挙げられる。
上記熱可塑性樹脂としては特に限定されず、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂及びゴム又はエラストマー等を挙げることができる。上記熱可塑性樹脂は、非結晶性で、かつ有機溶媒(特に複数のポリマーや硬化性化合物を溶解可能な共通溶媒)に可溶であることが好ましい。特に、製膜性、透明性や耐候性の観点から、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。
上記熱硬化性樹脂としては特に限定されず、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等を挙げることができる。
具体的には、上記ハードコート層形成用組成物における上記光重合開始剤の含有量は、上記電離放射線硬化型樹脂100質量部に対して、0.75~2.5質量部であることが好ましい。0.75質量部未満であると、本発明の光学積層体におけるハードコート層のマルテンス硬度(N2)を上述した範囲とすることができないことがあり、2.5質量部を超えると、塗設した塗膜の深部まで電離放射線が届かなくなり内部硬化が促進されず、目標であるハードコート層の表面の鉛筆硬度3H以上が得られないおそれがある。また、上記塗膜の硬化時の発熱量が大きくなり、上記電離放射線硬化型樹脂の硬化が進行して得られる光学積層体にカールや熱しわが発生しやすくなる。
上記光重合開始剤の含有量のより好ましい下限は1質量部であり、より好ましい上限は2質量部である。理由は不明であるが、上記光重合開始剤の含有量がこの範囲にあることで、膜厚方向に硬度分布を適度に発生させることができ、本発明の光学積層体の高硬度と低カールを両立することが可能となる。
上記溶剤としては、使用する樹脂成分の種類及び溶解性に応じて選択して使用することができ、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール等)、エーテル類(ジオキサン、テトラヒドロフラン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等)、脂肪族炭化水素類(ヘキサン等)、脂環式炭化水素類(シクロヘキサン等)、芳香族炭化水素類(トルエン、キシレン等)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタン等)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル等)、アルコール類(エタノール、イソプロパノール、ブタノール、シクロヘキサノール等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシド等)、アミド類(ジメチルホルムアミド、ジメチルアセトアミド等)等が例示でき、これらの混合溶媒であってもよい。
このような浸透性溶剤がトリアセチルセルロース基材を膨潤、湿潤することによって、ハードコート層形成用組成物の一部がトリアセチルセルロース基材まで浸透する挙動をとる。
また、ハードコート層形成用組成物中において、上記浸透性溶剤は、溶剤全量中10~100質量%、特に50~100質量%となることが好ましい。
上記ハードコート層形成用組成物及びハードコート層の形成方法については、上述したハードコート層において説明したものと同様の材料、方法が挙げられる。
上記画像表示装置は、LCD、PDP、FED、ELD(有機EL、無機EL)、CRT、タッチパネル、電子ペーパー、タブレットPC等の画像表示装置であってもよい。
<ハードコート層形成用組成物1>
樹脂1;ペンタエリスリトールトリアクリレート(日本化薬社製;PET30) 20質量部
樹脂2;ポリマーアクリレート(B-1) 30質量部
重合開始剤;Irg.184(チバ・ジャパン社製;イルガキュアー184) 1質量部
Irg.907(チバ・ジャパン社製;イルガキュアー907) 1質量部
レベリング剤;メガファックMCF350-5 0.05質量部
溶剤;メチルエチルケトン(MEK) 50質量部
ここで、ポリマーアクリレート(B-1)は、荒川化学工業社製「BS371MLV」であり、1分子におけるアクリロイル基が約25個であって、平均分子量(Mw)が15000であった。
なお、表1中、
「UV1700B」とは、多官能ウレタンアクリレート(日本合成化学工業社製;UV1700B、重合性官能基数10)を示し、
「A-1」とは、平均一次粒径30nmの球状シリカ微粒子4個が無機の化学結合した平均2次粒径100nmであって、MIBKで希釈した固形分40%の反応性異型シリカ微粒子を示し、
「BS577」とは、荒川化学工業社製のウレタンアクリレート樹脂(重合性官能基数6)を示し、
「B-2」とは、荒川化学工業社製「BS371」であり、1分子におけるアクリロイル基が約50個であって、平均分子量(Mw)が40000であった。
<光学積層体の製造>
トリアセチルセルロース基材(厚み40μm、コニカミノルタ製、KC4UA)を準備し、該トリアセチルセルロース基材の片面に、ハードコート層形成用組成物1を塗布し、温度70℃の熱オーブン中で60秒間乾燥し、塗膜中の溶剤を蒸発させ、紫外線を積算光量が100mJ/cm2になるように照射して塗膜を硬化させることにより、10g/cm2(乾燥時)のハードコート層を形成し、これによりトリアセチルセルロース基材及びハードコート層を有する光学積層体を製造した。
表2に示したように、ハードコート層形成用組成物1の代わりにハードコート層形成用組成物2~17をそれぞれ使用した以外の作製方法は実施例1と同様にして、実施例2~9、比較例1~6、8、9の光学積層体をそれぞれ製造した。
紫外線の積算光量が50mJ/cm2となるようにした以外は、実施例1と同様にして比較例7の光学積層体を製造した。
ハードコート層形成時の紫外線を基材側から積算光量が100mJ/cm2になるよう照射した以外は、実施例1と同様にして比較例10の光学積層体を製造した。
実施例及び比較例に係る光学積層体のハードコート層の表面、断面中央、及び、トリアセチルセルロース基材の断面中央を(株)フィッシャー・インスツルメント製、ピコデンターHM-500を用いてナノインデンテーション法によりマルテンス硬度を測定した値を、それぞれN1、N2、N3とした。
なお、負荷荷重を10mNとし、ハードコート層の表面を5回測定した平均値をN1(N/mm2)とした。
また、各実施例及び比較例に係る光学積層体を50μmに裁断し、ハードコート層と基材それぞれの断面のほぼ中央となる場所に、負荷荷重を10mNとし、5回測定した値の平均値をそれぞれN2、N3とした。なお、マルテンス硬度の詳細な測定方法は、図1を用いて説明したとおりである。また、ピコデンターの針先条件、押し込み速さ、押し込み荷重、及び、測定時の温度、湿度は、以下の通りとした。
ビッカース圧子(四角錘)、先端部分の対面角136°
0mN~10mN 10秒
10mNのまま 5秒
10mN~0mN 10秒
温度25℃、湿度50%
実施例及び比較例に係る光学積層体を、温度23℃、相対湿度50%の条件で16時間以上調湿した後、JIS-S-6006が規定する試験用鉛筆(硬度3H)を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度評価方法に一部則った測定で、荷重を4.9Nとし、ひっかき速度を1.4mm/secとして鉛筆硬度試験を行い、以下の基準により評価した。
(評価基準)
5回ひっかき試験をしたうち、1回の引いた長さの3分の1以上の長さに傷が発生し充分な明るさの蛍光灯下での目視にて確認できた傷をNGとし、NGが5回中1回以下であれば合格(○)、2回以上傷が発生した場合を不合格(×)とした。
実施例及び比較例に係る光学積層体のハードコート層表面を、#0000番のスチールウールを用いて、摩擦荷重を変化させ、10往復摩擦し、その後の塗膜の傷、剥がれの有無を目視し下記の基準にて評価した。
◎:1000g/cm2荷重で、傷なし、塗膜の剥がれなし
○:700g/cm2で傷なし、塗膜の剥がれなし(1000g/cm2では傷又は塗膜の剥がれあり)
×:700g/cm2で傷又は塗膜の剥がれがあった
JIS-K5600-5-1に記載されているマンドレル試験(2mmから32mmの金属製円柱にサンプルを巻きつける試験)に準じ、円柱にハードコート層を外側にした実施例及び比較例に係る光学積層体の長さ方向で巻き付けたときのクラック(ひび)が発生しなかった棒の最小直径を記載した。つまり、直径15mmの円柱でクラックが発生し、直径16mmで発生しなかった場合は、16mmとした。直径17mm以下を良好な光学積層体と評価する。
光学積層体のカールの度合い(カール幅)は、図2に示したように、実施例及び比較例に係る光学積層体を10cm×10cmにカットしたサンプル片1を水平な台(平面)の上に置き、ハードコート層の端点間の距離(W)を測定したときの当該距離の平均値(mm)を以下のように表した。
○:40mm以上
△:20以上、40mm未満
×:0以上、20mm未満
実施例及び比較例に係る光学積層体を100cm×50cmにカットしたサンプル片を水平な黒い台(平面)の上に置き、サンプルから上部1mに設置した蛍光灯の写りこみを、サンプル面から45度の位置から目視で観察し、下記の基準にて評価した。
○:熱しわが殆ど観察されない
△:熱しわが観察されるが、強く観察されない
×:熱しわが強く観察された
一方、比較例1~4、6及び8に係る光学積層体は、硬度3Hの鉛筆硬度試験及び/又は耐擦傷性における結果は良好であったが、屈曲性の評価に劣り強いカールも発生していた。また、比較例5、7及び9に係る光学積層体は、屈曲性及びカールの評価は満足できたが、鉛筆硬度試験において硬度3Hを達成していなかったり、耐擦傷性の評価に劣ったりするものであった。また、比較例10に係る光学積層体は、硬度3Hの鉛筆硬度試験及び耐擦傷性における結果は良好であったが、屈曲性の評価に劣るものであった。
10 ハードコート層
10a 断面
11 トリアセチルセルロース基材
11a 断面
12 ビッカース圧子
13a、13b、13c くぼみ
Claims (7)
- トリアセチルセルロース基材の一方の面上にハードコート層を有する光学積層体であって、
前記ハードコート層は、単一の層構成を有するものであり、
前記ハードコート層の表面のマルテンス硬度(N1)、前記ハードコート層の断面中央のマルテンス硬度(N2)及び前記トリアセチルセルロース基材の断面の中央のマルテンス硬度(N3)を、それぞれナノインデンテーション法により、負荷荷重10mNで測定したとき、
前記マルテンス硬度(N1)は、200~450N/mm2であり、
前記マルテンス硬度(N2)は、150~300N/mm2であり、
前記マルテンス硬度(N3)は、100~250N/mm2である
ことを特徴とする光学積層体。 - マルテンス硬度(N1)とマルテンス硬度(N2)との差(N1-N2)が、0~150N/mm2であり、マルテンス硬度(N2)とマルテンス硬度(N3)との差(N2-N3)が、0~150N/mm2である請求項1記載の光学積層体。
- ハードコート層の表面の鉛筆硬度試験(4.9N荷重)の硬度が、3H以上である請求項1又は2記載の光学積層体。
- ハードコート層は、電離放射線硬化型樹脂と光重合開始剤とを含有するハードコート層形成用組成物を用いて形成されたものであり、
前記電離放射線硬化型樹脂は、6以上の重合性官能基を有するウレタン化合物、又は、10以上の重合性官能基を有するポリマーと、2以上の重合性官能基を有するモノマーとを含有する請求項1、2又は3記載の光学積層体。 - ハードコート層形成用組成物における光重合開始剤の含有量が電離放射線硬化型樹脂100質量部に対して、0.75~2.5質量部である請求項4記載の光学積層体。
- 偏光素子を備えてなる偏光板であって、
前記偏光板は、偏光素子表面に請求項1、2、3、4又は5記載の光学積層体を備えることを特徴とする偏光板。 - 最表面に請求項1、2、3、4若しくは5記載の光学積層体、又は、請求項6記載の偏光板を備えることを特徴とする画像表示装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180040198.0A CN103069307B (zh) | 2010-08-27 | 2011-08-24 | 光学层叠体、偏振片和图像显示装置 |
KR1020137007572A KR101637384B1 (ko) | 2010-08-27 | 2011-08-24 | 광학 적층체, 편광판 및 화상 표시 장치 |
JP2012530692A JP6157120B2 (ja) | 2010-08-27 | 2011-08-24 | 光学積層体、偏光板及び画像表示装置 |
US13/819,278 US9296177B2 (en) | 2010-08-27 | 2011-08-24 | Optical layered body, polarizer, and image display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-191193 | 2010-08-27 | ||
JP2010191193 | 2010-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012026497A1 true WO2012026497A1 (ja) | 2012-03-01 |
Family
ID=45723490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/069068 WO2012026497A1 (ja) | 2010-08-27 | 2011-08-24 | 光学積層体、偏光板及び画像表示装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9296177B2 (ja) |
JP (2) | JP6157120B2 (ja) |
KR (1) | KR101637384B1 (ja) |
CN (1) | CN103069307B (ja) |
TW (1) | TWI629177B (ja) |
WO (1) | WO2012026497A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013185078A (ja) * | 2012-03-08 | 2013-09-19 | Toyo Ink Sc Holdings Co Ltd | 活性エネルギー線硬化型樹脂組成物 |
JP2014215592A (ja) * | 2013-04-30 | 2014-11-17 | コニカミノルタ株式会社 | 偏光機能付きガラスおよびそれを備えた液晶表示装置 |
JP2017159613A (ja) * | 2016-03-11 | 2017-09-14 | 東レ株式会社 | 積層体 |
WO2017159502A1 (ja) * | 2016-03-15 | 2017-09-21 | シャープ株式会社 | 有機el表示装置 |
JPWO2016208150A1 (ja) * | 2015-06-23 | 2018-04-19 | 日本曹達株式会社 | 有機無機複合体 |
WO2020241731A1 (ja) * | 2019-05-30 | 2020-12-03 | 大日本印刷株式会社 | 光学用のプラスチックフィルム、偏光板及び画像表示装置 |
US11222875B2 (en) | 2017-05-12 | 2022-01-11 | Sony Corporation | Display apparatus |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016200709A (ja) * | 2015-04-10 | 2016-12-01 | コニカミノルタ株式会社 | 偏光板保護フィルム、それが具備された偏光板及び偏光板保護フィルムの製造方法 |
CN107531028B (zh) * | 2015-04-10 | 2020-03-20 | 富士胶片株式会社 | 透明膜、偏振片以及图像显示装置 |
JP6935229B2 (ja) * | 2017-05-16 | 2021-09-15 | 日東電工株式会社 | 円偏光フィルム、粘着剤層付円偏光フィルムおよび画像表示装置 |
JP6363769B1 (ja) * | 2017-06-19 | 2018-07-25 | グンゼ株式会社 | カバーフィルム |
KR20220064654A (ko) | 2020-11-12 | 2022-05-19 | 동우 화인켐 주식회사 | 편광판 및 이를 포함하는 화상표시장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009086660A (ja) * | 2007-09-12 | 2009-04-23 | Dainippon Printing Co Ltd | 光学積層体、その製造方法、偏光板及び画像表示装置 |
JP2009186760A (ja) * | 2008-02-06 | 2009-08-20 | Konica Minolta Opto Inc | ハードコートフィルム、これを用いた偏光板、及び表示装置 |
JP2009262148A (ja) * | 2008-03-31 | 2009-11-12 | Dainippon Printing Co Ltd | 多層塗工膜の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070043817A (ko) * | 2004-08-02 | 2007-04-25 | 후지필름 가부시키가이샤 | 광학 필름, 이의 제조 방법 및 편광판 및 화상 표시 장치 |
JP2006293279A (ja) * | 2004-09-29 | 2006-10-26 | Dainippon Printing Co Ltd | 光学積層体 |
US20060181774A1 (en) * | 2005-02-16 | 2006-08-17 | Konica Minolta Opto, Inc. | Antireflection film, production method of the same, polarizing plate and display |
WO2007119566A1 (ja) * | 2006-03-28 | 2007-10-25 | Dai Nippon Printing Co., Ltd. | 低屈折率層を備えてなる光学積層体 |
TWI416158B (zh) * | 2006-03-31 | 2013-11-21 | Dainippon Printing Co Ltd | Optical laminated body and optical laminate |
JP2008012675A (ja) * | 2006-06-30 | 2008-01-24 | Dainippon Printing Co Ltd | 光学積層体、及びその製造方法 |
JP5277539B2 (ja) | 2006-09-29 | 2013-08-28 | 大日本印刷株式会社 | ハードコートフィルム、及びその製造方法 |
KR101390526B1 (ko) * | 2006-12-22 | 2014-04-30 | 다이니폰 인사츠 가부시키가이샤 | 광학 적층체, 그 제조 방법 및 대전 방지층용 조성물 |
JP5365297B2 (ja) | 2008-09-22 | 2013-12-11 | 大日本印刷株式会社 | ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及び液晶表示装置 |
JP5262610B2 (ja) * | 2008-11-17 | 2013-08-14 | 大日本印刷株式会社 | 光学シートの製造方法 |
JP2010181871A (ja) * | 2009-01-06 | 2010-08-19 | Toppan Printing Co Ltd | 反射防止フィルム |
-
2011
- 2011-08-24 US US13/819,278 patent/US9296177B2/en active Active
- 2011-08-24 JP JP2012530692A patent/JP6157120B2/ja active Active
- 2011-08-24 CN CN201180040198.0A patent/CN103069307B/zh active Active
- 2011-08-24 WO PCT/JP2011/069068 patent/WO2012026497A1/ja active Application Filing
- 2011-08-24 KR KR1020137007572A patent/KR101637384B1/ko active IP Right Grant
- 2011-08-26 TW TW100130604A patent/TWI629177B/zh active
-
2016
- 2016-01-05 JP JP2016000460A patent/JP6237796B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009086660A (ja) * | 2007-09-12 | 2009-04-23 | Dainippon Printing Co Ltd | 光学積層体、その製造方法、偏光板及び画像表示装置 |
JP2009186760A (ja) * | 2008-02-06 | 2009-08-20 | Konica Minolta Opto Inc | ハードコートフィルム、これを用いた偏光板、及び表示装置 |
JP2009262148A (ja) * | 2008-03-31 | 2009-11-12 | Dainippon Printing Co Ltd | 多層塗工膜の製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013185078A (ja) * | 2012-03-08 | 2013-09-19 | Toyo Ink Sc Holdings Co Ltd | 活性エネルギー線硬化型樹脂組成物 |
JP2014215592A (ja) * | 2013-04-30 | 2014-11-17 | コニカミノルタ株式会社 | 偏光機能付きガラスおよびそれを備えた液晶表示装置 |
JPWO2016208150A1 (ja) * | 2015-06-23 | 2018-04-19 | 日本曹達株式会社 | 有機無機複合体 |
JP2017159613A (ja) * | 2016-03-11 | 2017-09-14 | 東レ株式会社 | 積層体 |
WO2017159502A1 (ja) * | 2016-03-15 | 2017-09-21 | シャープ株式会社 | 有機el表示装置 |
US11222875B2 (en) | 2017-05-12 | 2022-01-11 | Sony Corporation | Display apparatus |
WO2020241731A1 (ja) * | 2019-05-30 | 2020-12-03 | 大日本印刷株式会社 | 光学用のプラスチックフィルム、偏光板及び画像表示装置 |
JPWO2020241731A1 (ja) * | 2019-05-30 | 2020-12-03 | ||
JP7544042B2 (ja) | 2019-05-30 | 2024-09-03 | 大日本印刷株式会社 | 光学用のプラスチックフィルム、偏光板及び画像表示装置 |
Also Published As
Publication number | Publication date |
---|---|
US9296177B2 (en) | 2016-03-29 |
JP6157120B2 (ja) | 2017-07-05 |
US20130222907A1 (en) | 2013-08-29 |
KR20130137161A (ko) | 2013-12-16 |
JP6237796B2 (ja) | 2017-11-29 |
JPWO2012026497A1 (ja) | 2013-10-28 |
TW201213137A (en) | 2012-04-01 |
CN103069307B (zh) | 2016-03-30 |
KR101637384B1 (ko) | 2016-07-08 |
CN103069307A (zh) | 2013-04-24 |
TWI629177B (zh) | 2018-07-11 |
JP2016130846A (ja) | 2016-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6237796B2 (ja) | 光学積層体、偏光板及び画像表示装置 | |
JP6935463B2 (ja) | 偏光板用保護フィルム及びそれを用いた偏光板 | |
JP6361700B2 (ja) | 光学積層体、偏光板及び画像表示装置 | |
TWI488747B (zh) | Optical laminates and optical laminates | |
JP5008734B2 (ja) | 防眩性フィルム、防眩性フィルムの製造方法、偏光板及び画像表示装置 | |
TWI531810B (zh) | An antistatic hard coat film, a method for manufacturing the same, a polarizing plate, and an image display device | |
WO2011129354A1 (ja) | ハードコートフィルム、偏光板、画像表示装置、及びハードコートフィルムの製造方法 | |
JP5262032B2 (ja) | 光学積層体の製造方法、光学積層体、偏光板及び画像表示装置 | |
JP5304111B2 (ja) | 光学積層体、その製造方法、偏光板及び画像表示装置 | |
JP6443069B2 (ja) | 光学積層体 | |
JP6551117B2 (ja) | 光学積層体及びその製造方法 | |
JP6589425B2 (ja) | 光学積層体 | |
JP2012103712A (ja) | 防眩性フィルム、防眩性フィルムの製造方法、偏光板及び画像表示装置 | |
JP5413494B2 (ja) | 光学積層体の製造方法 | |
JP2009086329A (ja) | 光学積層体、その製造方法、偏光板及び画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180040198.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11819960 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012530692 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137007572 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13819278 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11819960 Country of ref document: EP Kind code of ref document: A1 |