WO2012026455A1 - エアバッグ用基布 - Google Patents

エアバッグ用基布 Download PDF

Info

Publication number
WO2012026455A1
WO2012026455A1 PCT/JP2011/068946 JP2011068946W WO2012026455A1 WO 2012026455 A1 WO2012026455 A1 WO 2012026455A1 JP 2011068946 W JP2011068946 W JP 2011068946W WO 2012026455 A1 WO2012026455 A1 WO 2012026455A1
Authority
WO
WIPO (PCT)
Prior art keywords
base fabric
yarn
dtex
fabric according
load
Prior art date
Application number
PCT/JP2011/068946
Other languages
English (en)
French (fr)
Inventor
田中 剛
史章 伊勢
登起男 奥野
政人 榎
Original Assignee
旭化成せんい株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45723449&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012026455(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭化成せんい株式会社 filed Critical 旭化成せんい株式会社
Priority to EP11819918.1A priority Critical patent/EP2610377B9/en
Priority to KR1020137001711A priority patent/KR101447839B1/ko
Priority to JP2011553636A priority patent/JP5100895B2/ja
Priority to CN201180041139.5A priority patent/CN103080393B/zh
Priority to US13/818,268 priority patent/US8962499B2/en
Publication of WO2012026455A1 publication Critical patent/WO2012026455A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • D10B2505/124Air bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2008Fabric composed of a fiber or strand which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2139Coating or impregnation specified as porous or permeable to a specific substance [e.g., water vapor, air, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition

Definitions

  • the present invention relates to a base fabric made of synthetic fibers, and more particularly to a base fabric suitable for use in manufacturing airbags. More specifically, the present invention relates to an airbag base fabric that is difficult to open and has a high deployment speed.
  • Recent air bags are desired to be deployed at higher speeds from the viewpoint of vehicle miniaturization and safety improvement.
  • side curtain airbags which have recently been installed at a higher rate, require a faster deployment speed because the space between the vehicle body and the passenger is narrower than airbags such as driver seats.
  • it is necessary to reduce the weight of the bag and to minimize the leakage of the gas output from the inflator.
  • the crew member comes into contact with the bag and the bag body is crushed, and it is necessary to maintain the air tightness of the bag body even if the internal pressure becomes higher.
  • the passenger may not be able to catch the vehicle, and the passenger may come into contact with the vehicle body and be injured.
  • a bag having a high pressure (deployment ultimate pressure) that is reached during deployment is desired. Furthermore, in order to catch an occupant quickly in a narrow space, that is, to restrain at a limited short distance, rapid restraint that catches and restrains the occupant early is desired.
  • Patent Document 1 discloses that a low-definition and high-strength yarn is used in order to realize a compact and lightweight airbag.
  • the crew member actually comes in contact with the bag, stress concentrates at the boundary between the inflatable part and the non-inflatable part, so if the strength of the raw yarn is simply improved, the fiber becomes more fibrillated and perpendicular to the fiber axis. As a result, the boundary portion between the inflatable portion and the non-inflatable portion is broken, and the bag strength that is practically sufficient cannot be maintained.
  • the single yarn fineness of the woven yarn is made thinner than before, the average dynamic air permeability of the plain-woven base fabric is 500 mm / s or less, and the dynamic air permeability curve index is 1. It is disclosed in Patent Document 2 to make it.
  • the part that determines the deployment speed of the bag body is actually the boundary part between the inflated part and the non-inflated part where the air flow rate is large, that is, the sewing part, and it cannot be said that reducing the air flow rate of the base fabric alone is sufficient. .
  • the air permeability at the boundary between the multiple fabric portion (inflatable portion) and the non-inflatable portion (non-inflatable portion) of the bag weave is 0.25 liter / cm / min or less under a 50 kPa differential pressure.
  • the portion that actually determines the deployment speed of the bag body is a bag-woven joint that is in contact with the bag deployed by the occupant and is more stressed by this, and under more realistic load conditions, depending on the yarn characteristics Openings may occur at the boundary between the expanded portion and the non-expanded portion at the time of deployment, which may increase the air flow rate and slow the deployment speed.
  • Patent Document 4 proposes that the elongation of the base fabric at 300 N / cm load is 15% or more.
  • this base fabric physical property there are cases where a sufficient effect cannot be exhibited for a side curtain airbag that is required to be deployed at a higher speed.
  • the characteristics of the boundary between the inflated part and the non-inflated part, where stress concentration occurs when a load is applied during actual deployment, are important.
  • No technical technique has been proposed yet. In particular, no technology has yet been proposed that is compact and has both burst resistance and high-speed deployability.
  • the object of the present invention is to solve the above-mentioned problems in the prior art by suppressing the air permeability and having a higher degree of airtightness, a high deployment speed, and a high pressure resistance at the boundary between the inflating part and the non-inflating part. And to provide a base fabric suitable for producing a general-purpose airbag having a high level of passenger shock absorption. Furthermore, it is providing the base fabric suitable for preparation of the bag excellent in the rapid restraint property which catches a passenger
  • the present inventors are composed of a multifilament synthetic fiber having a specific fineness, the pulling resistance of the constituent yarn is within a specific range, and the elongation at a specific load is The present inventors have found that a base fabric in a specific range can achieve the above object. That is, the present invention provides the following inventions.
  • Consisting of a woven fabric composed of multifilament synthetic fibers having a total fineness of 200 to 550 dtex and a single yarn fineness of 2.0 to 7.0 dtex, and the elongation at 50 N / cm and 300 N / cm load is the average of the background
  • a base fabric for an air bag characterized in that the values are 5 to 15% and 15 to 30%, respectively, and the pull-out resistance of the constituent yarn is 50 to 200 N / cm / cm in terms of the mean value of the background.
  • the opening at the boundary between the inflated part and the non-inflated part in a stressed state is suppressed, and air that is excellent in airtightness and pressure resistance and has a high deployment speed. It becomes a bag. Further, the gas utilization rate is good, and the airbag does not require a high-power inflator. Furthermore, the airbag has excellent rapid restraint properties.
  • an airbag base fabric suitable for side curtain airbag applications is provided.
  • the present invention is described in detail below.
  • the total fineness of the fibers constituting the base fabric is 200 to 550 dtex. More preferably, it is 235 to 350 dtex. If the fineness is 200 dtex or more, the base fabric strength will not be insufficient. If the fineness is 550 dtex or less, the development speed will not be slow. Moreover, if the total fineness is low, the bending resistance of the base fabric can be kept low. More preferably, it is 350 dtex or less.
  • the single yarn fineness of the fibers constituting the base fabric is 2.0 to 7.0 dtex. More preferably, it is 2.0 to 5.0 dtex.
  • the filament will not be damaged by the sewing needle when it is sewn, and the strength of the seam portion (boundary portion between the inflated portion and the non-inflated portion) will be reduced, or it will be broken during deployment. None happen. If it is 7.0 dtex or less, the amount of air flow will not increase and the development speed will not slow down. Further, if the single yarn fineness is low, the bending resistance of the base fabric can be kept low, more preferably 4.0 dtex or less.
  • the elongation when a load of 50 N / cm is applied is 5 to 15% as an average value in the warp direction and the weft direction. More preferably, it is 7 to 12%. If the 50 N / cm load elongation is 5% or more, the deployed bag will not be too hard to absorb the impact on the passenger. That is, the passenger restraint itself by the air bag does not cause an impact or an obstacle to the passenger. If the 50 N / cm load elongation is 15% or less, the deployment speed will not be slow.
  • the elongation when a load of 300 N / cm is applied is preferably 15 to 30% as an average value in the warp direction and the weft direction. More preferably, it is 20 to 28%.
  • the load elongation at 300 N / cm is 15% or more, it will not be possible to absorb the impact at the time of deployment, or the bag will break due to excessive concentration of stress particularly at the specific part of the boundary between the inflatable part and the non-inflatable part. There is nothing. If the load elongation at 300 N / cm is 30% or less, the opening at the boundary between the expanded portion and the non-expanded portion at the time of expansion does not easily occur, and the expansion speed does not decrease. The low tensile elongation of 300 N / cm increases the tensile rigidity of the base fabric, and the base fabric can be deployed quickly with good response to the gas pressure of the deployment gas.
  • the load elongation at 300 N / cm is low, the base fabric is difficult to stretch against stress due to gas pressure, and the opening of stitches and stitches, and the opening of joints and joints are suppressed. Therefore, the deployment ultimate pressure of the airbag is improved.
  • the elongation at a load of 50 N / cm and 300 N / cm can be lowered by using a raw yarn that has a low constant elongation under constant load as defined in JIS L1017 7.7. Further, after weaving, the elongation at 50 N / cm and 300 N / cm loads can be reduced by increasing the treatment temperature during processing under tension or by cooling under tension.
  • the elongation at constant load of the raw yarn for weaving the woven fabric is preferably 5 to 15%, more preferably 8 to 12%. If the elongation at constant load of the raw yarn is 15% or less, it contributes to the suppression of the specific load elongation of the base fabric. Considering other properties of the raw yarn, the elongation at constant load of the raw yarn is substantially 5% or more.
  • the elongation at constant load of the raw yarn can be adjusted by the drawing conditions when the raw yarn is spun. For example, by increasing the draw ratio or lowering the drawing temperature, a raw yarn can be obtained in which the elongation at constant load specified in JIS L1017 7.7 is kept low.
  • Fibers spun with the drawing conditions appropriately selected as described above are used as raw yarns, and the processing conditions after weaving are appropriately selected as described above, whereby stretching at 50 N / cm and 300 N / cm loads is performed.
  • a base fabric having a degree satisfying the above range can be obtained.
  • the drawing resistance of the fibers constituting the base fabric is 50 to 200 N / cm / cm on average for warps and wefts.
  • the measuring method will be described later. More preferably, it is 60 to 150 N / cm / cm. If it is 50 N / cm / cm or more, the warp and weft of the base fabric will not easily move with respect to the external force, and as a result, the opening will not easily occur and the development speed will not decrease. If it is 200 N / cm / cm or less, local stress concentration on the constituent yarns will not occur, and airbag destruction will not occur.
  • the pull-out resistance of the component yarn is not only high in the yarn-to-yarn friction force of the component yarn, which will be described later, but also has a large bending area of the crimp of the component yarn, a large contact area, and the bent structure is firmly fixed in shape. As a result, it has a large resistance value. That is, the pull-out resistance of the constituent yarn is affected by the amount of oil agent attached to the surface of the single yarn of the fiber constituting the base fabric, the oil agent composition, the constituent yarn physical properties, particularly the shrinkage rate and contraction stress.
  • the weaving tension and temperature during processing is also affected by the weaving tension and temperature during processing. For example, increase the amount of oil agent present on the surface of the single yarn constituting the base fabric, use a high molecular weight oil agent composition, use a yarn with a low shrinkage rate or a yarn with a low shrinkage stress, Insufficient shrinkage treatment, or post-treatment with low tension, which causes form relaxation by treatment, tends to lower the drawing resistance.
  • the preferred conditions for increasing the pulling resistance of the component yarn are sufficient shrinkage due to the synergistic effect of the raw yarn characteristics and processing conditions, such as using high-shrinking raw yarn and high-temperature dry heat processing without going through a hot water process. It is to create a woven structure by developing force. By these adjustments, the pulling resistance of the constituent yarn in the above range can be achieved.
  • the dynamic air permeability at the boundary between the expanded portion and the non-expanded portion of the base fabric is preferably 2300 mm / s or less at a differential pressure of 50 kPa after applying a stress of 100 N / cm from the viewpoint of the deployment speed. More preferably, it is 1800 mm / s or less.
  • the inflated boundary portion between the inflatable portion and the non-inflatable portion of the base fabric is a seam portion for stitching the base fabric panel when configuring the airbag, or a connecting portion in the bag weave.
  • the post-load air permeability at the inflating boundary is a characteristic simulating the air permeability when the air bag is inflated by gas pressure and is loaded.
  • the low air permeability after loading at the inflated boundary means that the air permeability at the time of deployment of the seam and the bag-woven joint is low, which is one factor that causes the airbag to be deployed at high speed without losing the deployment gas. It becomes.
  • the combination of the low air permeability after loading at the inflated boundary, the low 300 N / cm load elongation, and the high tensile rigidity of the base fabric enables a high-speed deployment of the airbag. .
  • by blocking the passage of the hot gas at the boundary portion it becomes a factor for avoiding bag breakage due to rupture due to heat exchange at the boundary portion.
  • the deployment ultimate pressure of the airbag is increased due to the low post-load air permeability at the inflating boundary.
  • the air permeability of the expansion boundary after loading is such that the constituent yarns are mutually pulled so that the opening of the expansion boundary meshes with each other even if the expansion boundary opens.
  • This mutual constraint of the constituent yarns in the base fabric is due to the fact that the specific load elongation is low in the tensile properties of the raw yarn and there is tensile resistance, and the texture is due to high-temperature treatment under tension during processing and cooling under tension. It can be realized by tightening.
  • the base fabric for airbags may or may not be subjected to resin processing on the surface of the base fabric.
  • the characteristics of the base fabric include 4.7 cN / dtex of the constituent yarn described later, including the base fabric not subjected to resin processing.
  • the elongation at the time of loading is low, the pulling resistance of the constituent yarn is high, the base fabric elongation at the time of loading at 50 N / cm and 300 N / cm is low, and those with a high cover factor tend to have a low dynamic air permeability.
  • the dynamic air permeability can be achieved by adjusting these.
  • a resin processing for making the base fabric substantially non-ventilated is performed.
  • the processing resin for example, it is preferable to use a silicone resin (including an elastomer) that has flexibility in a wide temperature range and is excellent in durability.
  • the bending resistance of the airbag fabric according to the present invention as measured according to ASTM D4032 is preferably 3.0 to 7.5N. Since the bending resistance is 7.5 N or less, when the occupant enters the airbag, the curved surface of the occupant's human body is covered flexibly, and the rush impact is started in a relatively large area. Therefore, the time for receiving the rush energy is advanced, and a quick restraint type airbag can be obtained.
  • the bending resistance is the bending rigidity of the base fabric, and it is generally low if the total fineness of the constituent yarn is thin, or it is preferable that the single yarn fineness of the constituent yarn is low.
  • the lower the weight per unit area of the base fabric the smaller the bending resistance.
  • the bending resistance is substantially 3.0 N or more.
  • the rapid restraint performance is a synergistic effect that is a combination of flexural rigidity, which is bending rigidity, and high-speed deployment characteristics.
  • the cover factor (CF) of the base fabric is preferably 2000 to 2500 from the viewpoint of achieving both development performance and productivity. More preferably, it is 2100-2500.
  • the cover factor should be high and a high-density woven fabric is preferable.
  • the elongation of the constituent yarn at a load of 4.7 cN / dtex is preferably 10 to 20% in terms of the average of the circumstances, from the viewpoint of the deployment speed and the occupant restraint performance.
  • the elongation of the constituent yarn at a load of 4.7 cN / dtex is preferably 20% or less and is preferably low.
  • the elongation of the constituent yarn at a load of 4.7 cN / dtex is preferably 10% or more, and there is no possibility that the stress is excessively applied to the boundary portion between the expanded portion and the non-expanded portion at the time of unfolding.
  • the molecular weight of the polymer used as the fiber material and the drawing conditions at the time of spinning are optimally adjusted, and the elongation of the raw yarn at the constant load is adjusted. Is preferably lowered. Also from this viewpoint, the constant load elongation of the raw yarn is preferably 5 to 15%, more preferably 8 to 12%. Furthermore, heat treatment under tension and cooling under tension are preferable in the processing steps after weaving.
  • the constituent yarn strength is preferably 7.5 cN / dtex or more in terms of the average value of the background. More preferably, it is 8.0 cN / dtex or more.
  • Constituent yarn breaking elongation is preferably 25% or more on average for the purpose of restraining the occupant and preventing the bottom where the bag cannot be fully restrained and the occupant touches the vehicle body. If the constituent yarn strength is less than 7.5 cN / dtex, the strength of the base fabric is insufficient, and the fabric cannot withstand the stress when the airbag is deployed and may break.
  • a yarn-to-yarn frictional force of 1.5 to 3.0 is particularly preferable from the viewpoint of preventing misalignment at the time of development. It contributes to increase.
  • a boiling water shrinkage of 5 to 13% is preferable because a high-quality base fabric with less wrinkles can be obtained. More preferably, it is 7% or more, More preferably, it is 7.3% or more, More preferably, it is 8% or more. More preferably, it is 12% or less.
  • the boiling water shrinkage ratio of the raw yarn is high, a high shrinkage force is manifested during processing after weaving and the crimp structure is developed, which contributes to increasing the pulling resistance of the constituent yarn.
  • the boiling water shrinkage is 13% or less.
  • the material of the constituent yarn constituting the base fabric is not particularly limited as long as it is a synthetic fiber.
  • polyamides are preferable because they have high strength and have appropriate flexibility. More specifically, a polyamide fiber comprising a polyamide 6, a polyamide 6,6, a polyamide 11, a polyamide 12, a polyamide 6,10, a polyamide 6,12, a polyamide 4,6, a copolymer thereof, and a mixture thereof. Can be mentioned.
  • polyamide 6/6 fibers mainly composed of polyhexamethylene adipamide fibers are preferable.
  • the polyhexamethylene adipamide fiber refers to a polyamide fiber having a melting point of 250 ° C. or higher composed of 100% hexamethylenediamine and adipic acid.
  • Polyamide 6,6 fibers used in the present invention are copolymerized with polyhexamethylene adipamide with polyamide 6, polyamide 6, I, polyamide 6,10, polyamide 6, T, etc. within a range where the melting point is not less than 250 ° C.
  • it may be a fiber made of a blended polymer.
  • additives are added to these fiber component polymers and the fiber surface in order to improve processability, post-processability and heat resistance. For example, antioxidants, heat stabilizers, smoothing agents, antistatic agents and the like.
  • Existing looms such as water jet looms, air jet looms, rapiers, etc. can be applied to the looms used at the time of weaving, and the opening machine can use known devices such as jacquard, and the desired base fabric can be manufactured.
  • the woven structure is not particularly limited, and a plain woven structure is particularly preferable from the viewpoint of strength.
  • a known structure can be used as the woven structure configuration of the boundary portion between the bag portion (expanded portion) and the non-expanded portion when the bag is woven. At the time of weaving, for example, it may be possible to improve convergence such as applying a paste to the warp, but it is more preferable not to use this for cost reasons.
  • the weaving machine after weaving may be scoured to remove glue, excess oil components and dirt. However, it is preferable to finish the fabric without scouring. It is also preferable to finish the woven fabric in which the oil component is almost removed by the water jet loom so that the amount of the oil component adherence is moderate to a fabric for an air bag without scouring. Passing through warm water for effective cleaning in the scouring step causes shrinkage of the fibers and loosens the restraining structure of the weaving yarn, and lowers the drawing resistance of the constituent yarn.
  • the fabric can be dried and heat-fixed to be finished into an airbag fabric.
  • the drying and heat setting of the woven fabric it is preferable to control the shrinkage and the tension with respect to the width of the woven fabric and the feeding in the warp direction.
  • a tenter or a drum dryer is used.
  • the heating temperature is preferably set to 170 ° C. or higher because the restraint structure of the woven yarn is developed when the shrinkage force is sufficiently developed at a high temperature.
  • the tension heating treatment is preferably a method such as a tenter method that allows tension processing by controlling the tension in the direction of the weft.
  • an expansion condition with a certain length or more is preferable for the background.
  • the expansion amount of the background is not a negative value (shrinkage) in the total dimensional ratio, but is preferably an expansion condition of 0% to 5%. Furthermore, it is preferable to cool while applying tension even immediately after the heat treatment.
  • Elongation and strength of base fabric Measured according to JIS L1096 8.14.1a method.
  • Various characteristics of the constituent yarn The woven fabric was disassembled according to JIS L1096 Annex 14, and the crimping rate of the constituent constituent yarn was carried out by the JIS L1096 8.7b method. The elongation and strength were measured at a sample length of 200 mm and a tensile speed of 200 mm / min with reference to JIS L1017 8.5a method.
  • FIG. 2 (a) shows a pull-out resistance measurement sample.
  • the pull-out resistance P (N / cm / cm) of the constituent yarn is determined by cutting the base fabric into 4 cm length x 6 cm width, removing 15 weft yarns of 6 cm length in the horizontal direction, and removing the weaving yarn in the horizontal direction. Further, three longitudinal woven yarns of 2 cm, 3 cm and 4 cm were used as one tensile sample.
  • 11 indicates three woven yarns in the longitudinal direction (selected at positions of 2 cm, 3 cm, and 4 cm from the right end), and 12 indicates a woven portion that leaves 15 woven yarns in the horizontal direction.
  • each of the longitudinal weaving yarn tensile samples is gripped by a chuck (21) which grips each 25 mm long, while the weaving yarn in the transverse direction remains.
  • the spacer (23) is inserted so as to straddle the vertical weaving yarn with a width of 15 mm, and it is gripped by the chuck (22), and is pulled at a speed of 10 mm / min with a tensile tester.
  • the force f (N) was determined. This measurement was carried out in both directions of the fabric background.
  • the resistance value was calculated when the warp yarn was orthogonal to the weft and the equivalent number of 1 cm in the following formula. The same calculation was made for the weft direction.
  • Air permeability at the boundary between the inflatable part and the non-inflatable part (load seam air permeability): Cut out two pieces of 28cm long x 15cm wide as the sample base fabric. Then, from the portion of 1 cm from the end of the long side, sewing is performed with a sewing thread which is a twisted thread of 1350 dtex at 50 times / 10 cm by main sewing, and both ends of the sewing thread are tied. After that, the stitched sample base fabric is opened, and the ends of the base fabric centered on the seam are gripped by using a 6 cm ⁇ 6 cm gripping jig at the center of the seam at a jig interval of 40 cm.
  • the inner tube was a plain weave fabric with a background of 38 ⁇ 38 fibers / 2.54 cm made of 700 dtex / 105 f of polyamide 6.6 fiber, and a silicone-coated fabric of 20 g / m 2 was used.
  • the cloth was bias-sewn in a cylindrical shape with such a diameter that the gas supply port could be inserted. Sewing was carried out by a double ring stitch of two rows of 7 mm width with a number of stitches of 36/10 cm with a sewing thread of 1400 dtex.
  • the tip of the inner tube was an opening, and further, the sewing part was provided on the upper side, and the gas supply notch for the rear expansion part was provided on the lower side.
  • Inflator deployment The side curtain airbag described in (7) above was installed in a holding rack in a curtain shape without folding.
  • the bag was developed using a pyro-type inflator with a gas output of 1 mol, and the state of the bag after deployment related to the destruction was observed. In addition, the gas pressure reached by the inflator was evaluated in order to know the gas leak situation during deployment.
  • Comprehensive evaluation Based on the observation results after deployment speed, ultimate gas pressure, and inflator deployment, the evaluation was based on the following criteria: ⁇ : very good, ⁇ : good, ⁇ : normal, ⁇ : bad.
  • Impactor test performed according to FMVSS201.
  • the side curtain airbag described in the above item (7) was installed in a holding rack in a curtain shape without folding.
  • a 2.0 mol stored gas inflator was attached to the gas supply port with a hose band and developed.
  • the expanded expansion was observed from the side, and the head foam was made to collide with the time when the expanded cross-sectional area reached 99%. That is, the headform for FMVSS201 (weight 4.5 kg) was discharged at 24 km / Hr from the direction perpendicular to the curtain surface toward the center of the cushion in the driver seat protection area of the side curtain airbag.
  • the time course (msec) of acceleration (m / s 2 ) of shock absorption was measured with an accelerometer in the headform.
  • the time from the start of restraint at which deceleration acceleration is detected to the time of 15% of the total area is defined as the restraint rise time. Rapid restraint was evaluated.
  • the case of the comparative example 14 was set to 100 and indicated as a relative value.
  • Examples 1 and 2 and Comparative Examples 1 and 2 As examples 1 and 2, the total fineness was examined. Using a nylon 66 multifilament yarn having various properties shown in Table 1, a woven fabric was produced in plain weave using a water jet loom without applying glue or the like, and dried at 95 ° C. for 30 seconds. Next, apply 20 g / cm 2 of silicone resin on one side, vulcanize at 180 ° C for 2 minutes with a pin tenter with 1% overfeed in the warp direction and 0% stretch in the weft direction, and cool the cylinder at 15 ° C. went.
  • a base fabric was prepared by treating with a pinter at room temperature for 4 minutes with a tension feed of 1% in the warp direction and a stretch of 1% in the weft or width direction.
  • Side curtain airbags were sewn and produced using the obtained base fabric, and deployment speed measurement and inflator deployment were carried out. The obtained results are shown in Table 1 together with the properties of the base fabric and the constituent yarns.
  • Comparative Examples 1 and 2 the cover factors were combined with Examples 1 and 2 in the same manner as in Examples 1 and 2, except that a nylon 66 multifilament yarn having the characteristics shown in Table 2 was used.
  • a base fabric was prepared and evaluated in the same manner as in Examples 1 and 2. The results are shown in Table 2. As can be seen from these results, those having a total fineness within the range of the present invention show good results in both the deployment speed and the inflator deployability, while Comparative Example 1 has a thin total fineness and cannot withstand gas pressure, and breaks the bag. did. In Comparative Example 2, the total fineness was large and the development speed was slow.
  • Examples 3 and 4 and Comparative Examples 3 and 4 As Examples 3 and 4, the same raw yarn as in Examples 1 and 2 was used, and the weave density was 74 / inch in Example 3 and 55 / inch in Example 4, and plain weave as in Examples 1 and 2 The fabric was woven and dried at 95 ° C. for 30 seconds, and then heat-set using a tenter at 180 ° C. for 1 minute with 0% overfeed and 2% widening, followed by 15 ° C. cylinder cooling. . Furthermore, it was treated for 4 minutes with 1% tension feed in the warp direction and 1% stretch in the weft direction, that is, the width direction with a pin tenter at room temperature to obtain a base fabric without applying a silicone resin. The obtained base fabric was evaluated in the same manner as in Examples 1 and 2. The obtained results are also shown in Table 1.
  • Comparative Examples 3 and 4 the same yarns as those of Comparative Examples 1 and 2 were used, respectively, and the weave density was 85 / inch in Comparative Example 3 and 39 / inch in Comparative Example 4, as in Comparative Examples 1 and 2.
  • a plain woven fabric was woven, dried at 95 ° C. for 30 seconds, and heat-set at 180 ° C. for 1 minute with 0% overfeed and 2% widening to obtain a base fabric without applying a silicone resin.
  • the obtained base fabric was evaluated in the same manner as in Examples 1 and 2. The obtained results are also shown in Table 2.
  • Example 5 a base fabric was produced in the same manner as in Example 3 except that a nylon 66 multifilament yarn having a single yarn fineness of 2.2 dtex was used.
  • the obtained base fabric was evaluated in the same manner as in Example 1.
  • the obtained results are also shown in Table 1.
  • Comparative Examples 5 and 6 a base fabric was prepared under the same conditions as in Examples 4 and 5, except that nylon 66 multifilament yarns having a single yarn fineness of 1.7 dtex and 8.1 dtex were used. Evaluation was performed. The results are also shown in Table 2.
  • Examples 6 and 7 and Comparative Examples 7 and 8 A base fabric was prepared in the same manner as in Example 3 except that the nylon 66 multifilament yarn shown in Tables 1 and 2 was used, and the physical properties of the base fabric were 50 N / cm load elongation and 300 N / cm load. The elongation was changed. The obtained base fabric was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2. As can be seen from these results, those having an elongation under load of 50 N / cm and an elongation under load of 300 N / cm within the scope of the present invention show good results, while Comparative Example 7 reflects the physical properties of the yarn.
  • Comparative Examples 9 and 10 In Comparative Example 9, a base fabric was prepared in the same manner as in Example 3 except that the spinning oil on the surface of the woven fabric was removed with an organic solvent after the woven fabric was prepared and before heat setting. In Comparative Example 10, a base fabric was prepared in the same manner as in Example 3 except that thiodipropionic acid dioleate was applied to the woven fabric after the woven fabric was prepared and before heat setting. The obtained base fabric was evaluated in the same manner as in Example 1, and the results are also shown in Table 2. As can be seen from these results, in Comparative Example 9, the pull-out resistance was too large, and stress was concentrated on the specific sewing portion to break the bag. In Comparative Example 10, the pulling resistance was too small and the developed pressure was low.
  • Example 8 A base fabric was prepared in the same manner as in Example 1 except that nylon 46 was used as the raw material polymer. The obtained base fabric was evaluated in the same manner as in Example 1, and the results are also shown in Table 1. As is apparent from Table 1, both the deployment speed and the inflator deployability were good.
  • Example 12 A nylon 66 multifilament yarn shown in Table 2 was used to produce a woven fabric in plain weave using a water jet loom without applying glue or the like, dried at 95 ° C. for 30 seconds, and then at 160 ° C. for 1 minute. Heat was set at 2% overfeed and 2% width, and cooling was received in a receiving box by shaking while blowing air with a fan, and a base fabric was obtained without applying silicone resin. The obtained base fabric was evaluated in the same manner as in Examples 1 and 2. The obtained results are also shown in Table 2. The processing is not tension processing and the pulling resistance is low. The deployment pressure was also low.
  • Example 13 A base fabric was produced in the same manner as in Example 3 except that the nylon 66 multifilament yarn shown in Table 2 was used, and the obtained base fabric was evaluated in the same manner as in Example 3. The obtained results are also shown in Table 2. Low shrinkage yarn is used and pull resistance is low. The deployment pressure was also low.
  • Example 14 The bending resistance was evaluated using the base fabric described in Comparative Example 6. The impactor restraint rise time was evaluated and used as a reference. The results are shown in Table 3. [Example 10] The base fabric described in Example 3 was used to evaluate bending resistance and impactor restraint rise time. The results are also shown in Table 3. The bending resistance indicates softness, and the impactor restraint rise time is fast.
  • Example 11 and 12 Using the nylon 66 multifilament yarn shown in Table 3, a base fabric was produced in the same manner as in Example 3. The obtained base fabric was evaluated in the same manner as in Example 3, and the bending resistance and impactor restraint were evaluated. Rise time was evaluated. The results are also shown in Table 3. The bending resistance indicates softness, and the impactor restraint rise time is fast.
  • the airbag manufactured with the base fabric of the present invention has an opening at the boundary between the inflated part and the non-inflated part in a stressed state, has excellent pressure resistance, and has a high deployment speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Woven Fabrics (AREA)

Abstract

 本発明の目的は、通気度を抑えてより高度な気密性能を有し、早い展開速度と、膨張部と非膨張部の境界部分の高い耐圧性とを達成し、高度な乗員の衝撃吸収を有する汎用的なエアバッグの作製に適した基布を提供することであり、本発明のエアバッグ用基布は、総繊度が200~550dtexおよび単糸繊度が2.0~7.0dtexのマルチフィラメント合成繊維から構成される織物から成り、50N/cmおよび300N/cm荷重時の伸度が経緯の平均値でそれぞれ5~15%および15~30%であり、構成糸の引抜抵抗が経緯の平均値で50~200N/cm/cmであることを特徴とするエアバッグ用基布である。

Description

エアバッグ用基布
 本発明は合成繊維からなる基布に関し、特にエアバッグ製造用途に適した基布に関する。更に詳しくは、目開きし難く、展開速度の速いエアバッグ用基布に関する。
 昨今のエアバッグは、車両の小型化、安全向上の観点から、より高速に展開することが望まれている。特に近年装着率が向上しているサイドカーテンエアバッグにおいては運転席等のエアバッグと比較して車体と搭乗者間のスペースが狭いことから、より早い展開速度が求められている。この要求を満たすためには、袋体を軽量化することとインフレータより出力されたガスの漏れを最小限にとどめることが必要である。また、衝突時には、搭乗員が袋と接触して袋体がつぶされ、内圧がより高くなっても袋体の気密性を維持する必要があり、気密性が維持されないと、展開したバッグが乗員を受け止めることが出来なくなり、搭乗者が車体に接触し、障害を負う場合がある。すなわち、展開時に到達する圧力(展開到達圧力)の高いバッグが望まれている。さらには、狭いスペースで早く乗員を捉えるために、すなわち、限られた短い距離で拘束するように、乗員を早く捉えて拘束する急速拘束性が望まれている。
 エアバッグのコンパクト性および軽量化を実現するために、低繊度かつ高強力な糸を用いることが特許文献1に開示されている。しかし、実際は搭乗員がバッグに接触した場合、膨張部と非膨張部の境界部に応力が集中するため、単に原糸の強力向上を行った場合、繊維のフィブリル化が進み、繊維軸と垂直な方向の強度が低くなり、その結果、膨張部と非膨張部の境界部分の破壊が起こり、実用上十分なバッグ強力を維持できない場合がある。特に、サイドカーテンエアバッグのように、より高速展開が求められる用途では破裂して破袋する問題があった。
 袋体の気密向上の方法として、織糸の単糸繊度を従来よりも細くして、平織りされた基布の平均動的通気度を500mm/s以下にし、かつ動的通気度曲線指数を1.5以下にすることが特許文献2に開示されている。しかしながら実際に袋体の展開速度を左右する部分は通気量の大きい膨張部と非膨張部の境界部分、すなわち、縫製部であり、基布のみの通気量を低下させても十分とはいえない。
 また、袋織りエアバッグ基布において、袋織の多重布部(膨張部)と膨張しない部分(非膨張部)との境界部の通気度を50kPa差圧下において0.25リットル/cm/min以下にすることが特許文献3に開示されている。しかしながら、実際に袋体の展開速度を左右する部分は、乗員が展開したバッグに接触し、これによって応力がよりかかる袋織の接結部であり、より実際的な負荷条件では、糸特性によっては展開時の膨張部と非膨張部の境界部分に目開きが発生し、通気量が高くなり展開速度が遅くなる場合がある。
 さらに、エアバッグ展開速度を速めるために基布の50N/cm荷重時伸度を15%以下に、かつ、基布の300N/cm荷重時伸度を30%以下にするとともに、エアバッグへの乗員の接触時に発生する衝撃力を低減するために、基布の300N/cm荷重時伸度を15%以上にすることが特許文献4で提案されている。しかし、この基布物性においても、より高速展開が要求されるサイドカーテンエアバッグには十分な効果を発揮できない場合がある。つまり、実際の展開時には、負荷がかかった場合に応力の集中が起こる、膨張部と非膨張部の境界部分についての特性が重要であり、この部分の詳細な検討はいまだなされておらず、実用的な技術はいまだ提案されていない。特に、コンパクトでバースト耐性と高速展開性とを両立させた技術はいまだ提案されていない。
特開2009-167551号公報 特開2009-256860号公報 特開2002-327352号公報 特開2003-171842号公報
 本発明の目的は、従来技術での上記問題を解決するために、通気度を抑えてより高度な気密性能を有し、早い展開速度と、膨張部と非膨張部の境界部分の高い耐圧性とを達成し、高度な乗員の衝撃吸収を有する汎用的なエアバッグの作製に適した基布を提供する事である。さらには、乗員を早く捉えて拘束する急速拘束性に優れたバッグの作製に適した基布を提供することである。
 本発明者等は、上記目的を達成するために鋭意検討した結果、特定の繊度を有するマルチフィラメント合成繊維から構成され、構成糸の引抜抵抗が特定範囲にあり、かつ特定荷重時における伸度が特定範囲にある基布が上記目的を達成することを見出し、本発明を完成した。即ち、本発明は下記の発明を提供する。
 (1)総繊度が200~550dtexおよび単糸繊度が2.0~7.0dtexのマルチフィラメント合成繊維から構成される織物から成り、50N/cmおよび300N/cm荷重時の伸度が経緯の平均値でそれぞれ5~15%および15~30%であり、構成糸の引抜抵抗が経緯の平均値で50~200N/cm/cmであることを特徴とするエアバッグ用基布。
 (2)ASTM D4032剛軟度が3.0~7.5Nである上記1項に記載の基布。
 (3)下記の特定縫製で縫合した縫合境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下である上記1項または2項に記載の基布。
 特定縫製:織物を2枚、1350dtexの撚り糸を用いて50回/10cmで本縫いする。
 (4)下式で表されるカバーファクター(CF)が2000~2500である上記1~3項のいずれか一項に記載の基布。
      CF=√[(0.9×d)×(2×W)]
 (但し、dは構成糸の経緯平均の総繊度(dtex)であり、Wは経緯平均の織密度(本/2.54cm)である。)
 (5)構成糸の4.7cN/dtex荷重時の伸度が経緯の平均値で10~20%である上記1~4項のいずれか一項に記載の基布。
 (6)構成糸の強度が経緯の平均値で7.5cN/dtex以上である上記1~5項のいずれか一項に記載の基布。
 (7)本明細書で定義される糸-糸間摩擦力(P)が1.5~3.0である合成繊維を原糸として用いた上記1~6項のいずれか一項に記載の基布。
 (8)沸水収縮率が5~13%である合成繊維を原糸として用いた上記1~7項のいずれか一項に記載の基布。
 (9)JIS L1017 7.7に規定の一定荷重時伸び率が5~15%である合成繊維を原糸として用いた上記1~8項のいずれか一項に記載の基布。
 (10)合成繊維がナイロン66である上記1~9項のいずれか一項に記載の基布。
 (11)樹脂被膜を有しない上記1~10項のいずれか一項に記載の基布。
 (12)少なくとも片面に樹脂被膜を有する上記1~10項のいずれか一項に記載の基布。
 (13)上記11または12項に記載の基布からなるエアバッグ。
 (14)膨張部と非膨張部の境界部に100N/cmの荷重を負荷した後、膨張部と非膨張部の境界部分における動的通気度が差圧50kPaにおいて2300mm/s以下である上記13項に記載のエアバッグ。
 本発明の基布でエアバッグを作製した場合、応力がかかった状態での膨張部と非膨張部の境界部分における目開きが抑えられ、気密性および耐圧性に優れた、展開速度の速いエアバッグとなる。また、ガス利用率が良く、高出力のインフレータを要しないエアバッグとなる。さらには、急速拘束性に優れたエアバッグとなる。とりわけサイドカーテンエアバッグ用途にも適したエアバッグ用基布が提供される。
糸-糸間摩擦力の測定装置を説明する図である。 引抜抵抗の測定方法を説明する図である。 本発明の実施例で用いたサイドカーテンエアバッグの平面図である。 本発明の実施例におけるインパクター評価の説明図である。
 以下に、本発明を詳細に説明する。
 基布を構成する繊維の総繊度は200~550dtexである。より好ましくは235~350dtexである。200dtex以上の繊度であれば、基布強力が不足するようなことがなく、550dtex以下の繊度であれば、展開速度が遅くなるようなことがなくなる。また、総繊度が低ければ、基布の剛軟度を低く抑えることができる。より好ましくは350dtex以下である。基布を構成する繊維の単糸繊度は2.0~7.0dtexである。より好ましくは2.0~5.0dtexである。2.0dtex以上であると、縫製した場合に縫い針によるフィラメントの損傷となるようなことが無く、縫い目部(膨張部と非膨張部の境界部)の強力が低下したり、展開時に破壊が起こることがない。7.0dtex以下であれば通気量が大きくなり展開速度が遅くなるようなことがない。また、単糸繊度が低ければ基布の剛軟度を低く抑えることができ、より好ましくは4.0dtex以下である。
 基布の特性としては50N/cmの荷重をかけたときの伸度が経糸方向および緯糸方向の平均値で5~15%である。より好ましくは7~12%である。50N/cm荷重伸度が5%以上であれば、展開したバッグが硬くなりすぎて、乗員への衝撃を吸収できないということがない。つまり、エアバッグによる乗員拘束自体が乗員への衝撃や障害となることがない。50N/cm荷重伸度が15%以下であれば、展開速度が遅くなるようなことがない。また、300N/cmの荷重をかけたときの伸度は経糸方向および緯糸方向の平均値で15~30%であることが好ましい。より好ましくは20~28%である。300N/cm荷重伸度が15%以上であれば、展開時の衝撃を吸収できなかったり、特に膨張部と非膨張部の境界部分の特定箇所に応力が集中し過ぎることによるバッグ破壊となるようなことがない。300N/cm荷重伸度が30%以下であれば、展開時の膨張部と非膨張部の境界部分の目開きが発生しやすくなることなく、展開速度の低下が起こらない。300N/cm荷重伸度が低いことで、基布の引張り剛性が高まり、基布は展開ガスのガス圧に対して応答良く速く展開できる。また、300N/cm荷重伸度が低いことで、基布はガス圧による応力に対して伸びにくく、縫目開きや縫目通気、また、接結部組織の目開きや接結部通気が抑制されるため、エアバッグの展開到達圧が向上する。50N/cm及び300N/cm荷重での伸度は、JIS L1017 7.7に規定の一定荷重時伸び率を低く抑えた原糸を用いることで低下させることができる。また、製織後、緊張下での加工時の処理温度を高くしたり、緊張下での冷却を行うことにより、50N/cm及び300N/cm荷重での伸度を低下させることができる。
 織物を製織するための原糸の一定荷重時伸び率は5~15%が好ましく、より好ましくは8~12%である。原糸の一定荷重時伸び率が15%以下であれば、基布の上記特定荷重伸度の抑制に寄与する。原糸の他の特性を考慮すると原糸の一定荷重時伸び率は、実質的に5%以上である。原糸の一定荷重時伸び率は、原糸を紡糸する際の延伸条件にて調整できる。例えば、延伸倍率の増加や延伸温度の低下により、JIS L1017 7.7に規定の一定荷重時伸び率を低く抑えた原糸が得られる。
 延伸条件を上記のように適宜選択して紡糸された繊維を原糸として用い、また、製織後の加工条件を上記のように適宜選択することによって、50N/cm及び300N/cm荷重での伸度が上記範囲を満足する基布を得ることができる。
 基布を構成する繊維の引抜抵抗は経糸および緯糸の平均で50~200N/cm/cmである。なお、測定方法については後述する。より好ましくは60~150N/cm/cmである。50N/cm/cm以上であれば、基布の経糸と緯糸が外力に対し移動しやすくなるということがなく、その結果、目開きがし易くなって展開速度低下を起こすということがない。200N/cm/cm以下であれば、構成糸への局所的な応力集中が起こらないようになり、エアバッグ破壊を起こすということがない。基布の構成糸の引抜抵抗が高いほど基布の縫目開きが抑制され、エアバッグの気密性が向上する一因となる。構成糸の引抜抵抗は、後述する構成糸の糸-糸間摩擦力が大きいことに加えて、構成糸のクリンプの屈曲形態が大きくて接触面積が多く、かつ、屈曲構造が堅固に形状固定されることで大きな抵抗値を有するようになる。すなわち、構成糸の引抜抵抗は、基布を構成する繊維の単糸表面の油剤付着量や油剤組成、構成糸物性、特に収縮率や収縮応力に影響される。また加工時の製織張力や温度にも影響される。例えば、基布を構成する単糸表面に存在する油剤付着量を多くする、油剤組成において高分子量のものを用いる、収縮率の小さい原糸や収縮応力の小さい原糸を用いる、加工時の水中処理による形態緩和を行う、不十分な収縮処理あるいは、低い張力での後処理はいずれも、引抜抵抗を低くしてしまう傾向にある。構成糸の引抜抵抗を高めるための好ましい条件は、高収縮原糸を用い、かつ、温水工程を経ずに高温乾熱加工をするという、原糸特性と加工条件の相乗効果により、十分に収縮力を発現させて織物構造を形成することである。これらの調整により、上記範囲の構成糸の引抜抵抗を達成できる。
 基布の膨張部と非膨張部の境界部の動的通気度は、100N/cmの応力をかけた後に、差圧50kPaにおいて2300mm/s以下であることが展開速度の観点より好ましい。より好ましくは1800mm/s以下である。ここで、基布の膨張部と非膨張部の膨張境界部は、エアバッグを構成する際の基布パネルを縫合する縫目部、または、袋織りにおける接結部である。膨張境界部の負荷後通気度は、エアバッグがガス圧で膨張し負荷がかかった際の通気度を模した特性である。つまり、膨張境界部の負荷後通気度が低いことは、縫目や袋織り接結部の展開時の通気度が低いということであり、展開ガスを失うことなくエアバッグが高速展開する一因となる。つまり、膨張境界部の負荷後通気度が低いことと、300N/cm荷重伸度が低く、基布の引張り剛性が高いということの二つが相俟って、エアバッグの高速展開が可能になる。さらには、境界部での熱ガス通過を阻止することで、境界部での熱交換に起因する破裂による破袋を回避する要因となる。したがって、膨張境界部の負荷後通気度が低いことでエアバッグの展開到達圧が高まる。膨張境界部の負荷後通気度は、構成糸が引抜きにくいことに加えて、膨張境界部が目開きをしようとしても相互に目開き部が噛合い覆い合っているような、構成糸が相互に拘束することを促進することで低通気にすることができる。基布における構成糸のこの相互拘束は、原糸の引張り特性において特定荷重伸度が低く引張り抵抗があること、かつ、加工時の緊張下での高温処理と、緊張下での冷却による織目締まりで実現できる。
 エアバッグ用基布は基布表面に樹脂加工を施す場合と施さない場合があるが、基布の特性として、樹脂加工を施さない基布を含めて、後述する構成糸の4.7cN/dtex荷重時の伸度が低く、構成糸の引抜抵抗が高く、50N/cm及び300N/cm荷重時の基布伸度が低く、カバーファクターが高いものは動的通気度が低くなる傾向にあり、これらを調整することにより上記動的通気度を達成できる。また袋織においては、上記に加え、接結組織が2/2斜子のように、構成繊維が応力に対して移動し難い境界部であることも動的通気度を低下せしめる。更に基布に樹脂加工を施すものについては、上記に加えて、樹脂の量が多く、樹脂伸度が高いほど動的通気度は一層低くなる傾向となる。
 エアバッグ基布を樹脂加工する場合は、実質上、基布を非通気にするための樹脂加工(エラストマー加工を含む)を施す。加工樹脂としては、例えば、広い温度範囲で柔軟性を有し、耐久性にも優れるシリコーン樹脂(エラストマーを含む)を用いることが好ましい。
 本発明のエアバッグ用基布をASTM D4032に従って測定した剛軟度は3.0~7.5Nであることが好ましい。剛軟度が7.5N以下であることにより、エアバッグに乗員が突入する場合に、乗員人体の曲面を柔軟に覆い、比較的大面積で突入衝撃を受け止め始めるようになる。そのため、突入エネルギーの受け止め時期は早まり、急速拘束型のエアバッグとすることができる。剛軟度は、基布の曲げ剛性であり、構成する織糸の総繊度が細ければ概ね低くなり、あるいは、構成する織糸の単糸繊度が小さいほうが低くて好ましい。基布の単位面積あたり重量にも関係し、基布の単位面積あたり重量が小さいほど、剛軟度は概ね小さい。本発明において、基布の引張り強力などの特性を最小限満たすため、最小限の単位面積あたり重量も必要なため、剛軟度は実質的に3.0N以上となることが好ましい。また、急速拘束性能は、曲げ剛性である剛軟度と高速展開特性が相俟った相乗効果である。
 基布のカバーファクター(CF)は展開性能と生産性の両立の観点から、2000~2500が好適である。より好ましくは2100~2500である。膨張境界部の負荷後通気度を下げるために構成糸の相互拘束を高めた織構造を達成するには、カバーファクターは高いほうが良く、高密度織物であることが好ましい。なお、カバーファクター(CF)は下式で表される。
     CF=√[(0.9×d)×(2×W)]
 (但し、dは構成糸の経緯平均の総繊度(dtex)であり、Wは経緯平均の織密度(本/2.54cm)である。)
 構成糸の4.7cN/dtex荷重時の伸度は経緯の平均値で10~20%であることが展開速度と乗員拘束性能の観点から好ましい。基布の300N/cm荷重時の伸度を低くするため、構成糸の4.7cN/dtex荷重時の伸度は20%以下で低いほうが好ましい。構成糸の4.7cN/dtex荷重時の伸度は10%以上が好ましく、展開時に膨張部と非膨張部の境界部分に応力が過剰にかかって、破壊するようなことがない。構成糸の4.7cN/dtex荷重時の伸度をこの範囲とするには、繊維の素材となるポリマーの分子量や紡糸時の延伸条件を最適に調整し、原糸の前記一定荷重時伸び率を低くすることが好ましい。この観点からも、原糸の一定荷重伸び率は5~15%が好ましく、より好ましくは8~12%である。さらには、製織以降の加工工程にて緊張下での熱処理と、緊張下での冷却も好ましい。
 構成糸強度は経緯の平均値で7.5cN/dtex以上であることが好ましい。より好ましくは8.0cN/dtex以上である。構成糸破断伸度は経緯平均で25%以上が乗員の拘束性や、バッグが乗員拘束しきれず乗員が車体などに触れてしまう底付きの防止のために好ましい。構成糸強度が7.5cN/dtex未満では基布の強力が不足し、エアバッグ展開時の応力に耐えられず、破壊する場合がある。構成糸破断伸度が25%以上であれば、展開時の衝撃を分散できず、特に膨張部と非膨張部の境界部分に過剰な応力が集中し、バッグ破壊となるようなことがない。紡糸時の延伸条件等により、この範囲に調整することが可能である。
 使用する原糸においては、糸―糸間摩擦力が1.5~3.0であると展開時の目ズレ防止の観点から特に好ましく、糸―糸間摩擦力が高ければ構成糸の引抜抵抗を高めることに寄与する。
 また、沸水収縮率を5~13%とすることでしわの少ない高品質の基布が得られるので好ましい。より好ましくは7%以上であり、さらに好ましくは7.3%以上であり、一層好ましくは8%以上である。また、より好ましくは12%以下である。原糸の沸水収縮率が高ければ、製織以降の加工時に高収縮力が発現し、クリンプの構造が発達するため、構成糸の引抜抵抗を高めることに寄与する。高強度タイプの合成繊維で実質的に入手可能な繊維としては、沸水収縮率は13%以下である。
 基布を構成する構成糸の素材としては、合成繊維であれば特に限定されないが、ポリアミド類が高強力であり、適度な柔軟性を有するので好適である。さらに言えば、ポリアミド繊維で、ポリアミド6、ポリアミド6・6、ポリアミド11、ポリアミド12、ポリアミド6・10、ポリアミド6・12、ポリアミド4・6、それらの共重合体およびそれらの混合物からなる繊維が挙げられる。なかでも、主としてポリヘキサメチレンアジパミド繊維からなるポリアミド6・6繊維が好ましい。ポリヘキサメチレンアジパミド繊維とは100%のヘキサメチレンジアミンとアジピン酸とから構成される融点が250℃以上のポリアミド繊維を指す。本発明で用いられるポリアミド6・6繊維は、融点が250℃未満とならない範囲で、ポリヘキサメチレンアジパミドにポリアミド6、ポリアミド6・I、ポリアミド6・10、ポリアミド6・Tなどを共重合、あるいはブレンドしたポリマーからなる繊維でもよい。これらの繊維成分ポリマー及び繊維表面には工程性改善や後加工性および耐熱性能向上のために添加剤を加える場合もある。たとえば酸化防止剤や熱安定剤、平滑剤、帯電防止剤等である。
 製織時に使用される織機についてはウォータージェットルーム、エアージェットルーム、レピア等々既存に存在する織機が適用出来、開口機はジャガード等の既知の装置が使用でき、目的の基布が製造可能であれば特に限定されない。
 織組織についても特に限定されず、強度の観点から平織り組織が特に好ましい。袋織りする場合の袋部(膨張部)と非膨張部の境界部分の織り組織構成は既知の構成を用いることが出来る。製織時には例えば経糸に糊剤付与等の収束性向上を行ってもよいがこれを使用しないほうがコストの面でより好ましい。
 製織後の生機は、糊剤や過剰な油剤成分や汚れの除去の精練洗浄をすることがある。しかし、精練せずに織物に仕上げることが好ましい。ウォータージェット織機によって油剤成分が概ね脱落し、油剤成分付着量が適度になった織物を精練せずにエアバッグ用織物に仕上げるのも好ましい。精練工程で効果的に洗浄を行うために温水に通すと、繊維の収縮が起こると同時に織糸の拘束構造が緩んでしまい、構成糸の引抜抵抗が低下するため、無精練が好ましい。
 次いで、織物を乾燥し、熱固定を行ってエアバッグ用織物に仕上げることができる。織物の乾燥および熱固定では織物幅と経糸方向の送りについてそれぞれ収縮量や張力を制御することが好ましい。たとえば、テンターやドラム乾燥機などが用いられる。織物の引張試験における50N/cmおよび300N/cm荷重時の特定荷重伸度を低く保つためには、加熱処理しながらも収縮するに任せず張力をかけながら加工することが好ましい。また、加熱温度は高温で十分収縮力発現させたほうが織糸の拘束構造が発達するため、170℃以上とすることが好ましい。また、緊張加熱処理はテンター法など経緯方向に張力制御して緊張加工できる方法が好ましい。特に、経緯とも定長以上の拡張条件が好ましい。緊張加熱処理条件としては、経方向送りは収縮方向となるようなオーバーフィードではなく、また、緯方向は収縮方向となるような幅入れではないほうが好ましい。むしろ、いずれも拡張方向の緊張条件が好ましい。経緯の拡張量は、寸法比の合計において、マイナスの値(収縮)ではなく、0%以上5%程度までの拡張条件が好ましい。さらには、加熱処理直後も張力をかけながら冷却することが好ましい。特に、冷却時には、定長保持では織物がたるむ挙動があり、張力を保持して冷却することで、織糸の拘束構造が強固になり、相互に織目を覆うため、境界部の負荷後通気度を下げることに寄与する。冷却においてもテンター法など経緯方向に張力制御して緊張加工できる方法が好ましく、0%を超え5%程度までの拡張条件が好ましい。
 以下に、本発明を実施例に基づいてさらに説明する。しかし、本発明はこれらの実施例のみに限定されるものではない。実施例に記述される各種評価は以下のごとく行なった。
 なお、JISは1999年度版を用いた。
 (1)原糸の沸水収縮率:原糸を1mの枷巻きにして、沸騰水に30分浸漬した後取り出し、8時間以上風乾後、その縮量を元の長さからの割合で算出した。
 (2)原糸の糸-糸間摩擦力(F):図1に示したように、原糸を3回よりかけして互いに接触させ、給糸側の荷重(T1)を140gとして、よりかけの後の引き取り張力(T2)を測定し、T2/T1を摩擦力Fとした。測定時の引き取り速度は3cm/minとした。
 (3)原糸の一定荷重時伸び率:JIS L1017 7.7に準じて評価した。
 (4)基布の伸度と強力:JIS L1096 8.14.1a法に準じて実施した。
 (5)構成糸の諸特性:JIS L1096 附属書14に準じて、織物を分解し、経緯の構成織糸につき、クリンプ率はJIS L1096 8.7b法にて実施した。伸度および強度はJIS L1017 8.5a法を参考に試料長200mm、引張り速度200mm/minにて実施した。
 (6)構成糸の引抜抵抗(P):図2の(a)に引抜抵抗測定試料を示す。構成糸の引抜抵抗P(N/cm/cm)は、基布を縦4cm×横6cmに切り出し、横方向6cm長の織糸15本分を残して横方向の織糸を除去し、横端より2cm、3cm、4cmの3箇所の縦の織糸をそれぞれ1本ずつの引張り試料とした。なお、図2において、11は縦方向の3本の織糸(右端より2cm、3cm、4cmの位置で選定)を示し、12は横方向の織糸15本を残した織物部を示す。次に、図2の(b)に示したように、縦の織糸引張試料1本ずつを25mm長で把持するチャック(21)で把持し、一方、横方向の織糸が残っている織物部について、引抜く縦の織糸を15mm幅でまたぐようにスペーサー(23)を入れてチャック(22)で把持し、引張試験機にて10mm/minの速度で引張って引抜いた時の最大の力f(N)を求めた。この測定を織物の経緯の両方向とも実施した。下記式にて経糸が1cm幅の相当本数で緯糸と1cm幅の相当本数で直交する場合の抵抗値として算出した。緯糸方向についても同様に算出した。
    P=f×(Dx/2.54)/(15×2.54/Dy)
 (ただし、f:測定値(N)、Dx:測定部分の織密度(本/2.54cm)、Dy:測定部分と垂直方向の織密度(本/2.54cm)、P:引き抜き抵抗値(N/cm/cm))
 但し、Dx 、Dy がほぼ同じ密度であれば平均の密度を代入してもかまわない。
 (7)膨張部と非膨張部の境界部の通気度(負荷縫目通気度):サンプル基布として縦28cm×横15cmを2枚切り出し、平織りコート布であればコート面を互いに向かい合わせで、長辺の端から1cmの部分より1350dtexの撚り糸である縫製糸にて50回/10cmで本縫いにて縫製し、縫い糸両端を結ぶ。その後、縫い合わせたサンプル基布を開いて、縫目を中心にした基布端のそれぞれを6cm×6cmの把持治具を用いて40cmの治具間隔で縫目を中央にして把持し、A&D社製引っ張り試験機を用い、100mm/minの引張速度にて1500Nの荷重をかけた後、一旦取り出し、10時間後に動的通気度を測定した。動的通気度は、TEXTEST社製FX3350を用い、充填圧300kPa、充填容量400ccにて負荷縫目を中心にして測定を実施し、50kPa時の通気度を測定した。袋織布については、縦28cm×横15cmを切り出し、シーム部が端から1cmの部分となるようにして、同様の負荷処理を加えて測定した。
 (8)剛軟度:ASTM D4032-94にしたがって測定した。
 (9)サイドカーテンエアバッグの作製:平織りのエアバッグ用織物では、図3に示す形状で容量24Lのサイドカーテンエアバッグを、縫糸が235dtex/2×3、運針数が5.0針/cmで4mm幅の2列本縫いで縫製した。
 サイドカーテンエアバッグにはインナーチューブを挿入し、展開ガスをリア端のガス供給口からフロント膨張部とリア膨張部へ誘導するようにした。インナーチューブはポリアミド6・6繊維700dtex/105fによる経緯38×38本/2.54cmの平織り布で、20g/m2のシリコーンコーティング布を用いた。この布をガス供給口が挿入できるような口径で筒状にバイアス縫製した。縫製は1400dtexの縫い糸で、36本/10cmの運針数で7mm幅の2列の二重環縫いで行なった。インナーチューブの先端は開口であり、さらに、縫製部を上側として、リア膨張部のガス供給の切り欠き口を下側に向けて設けた。
 (10)展開速度:上記(7)項に記載のサイドカーテンエアバッグをロール状に畳み込み、粘着テープで6箇所にわたって仮止めして水平に保持ラックに設置した。マイクロシス社製CGSシステムを用い、急速ガス導入から展開が完了するまでの時間を、高速カメラによる0.5msコマの撮影で計測した。展開完了の判断は、ロール状の全長に渡ってサイドカーテンエアバッグが広がり、鉛直方向は水平の全長に渡って一旦全展開長まで達し、かつ、ガスによって全膨張部にガスが行き渡った状態を展開完了とした。このときに用いたガス導入条件は、ヘリウムガスを6MPaで720ccタンクに充填したものをエアバッグに供給した。
 (11)インフレータ展開:上記(7)項に記載のサイドカーテンエアバッグを、畳むことなくカーテン状に保持ラックに設置した。ガス出力1モルのパイロ型インフレータを用いて展開し、破壊にかかわる展開後のバッグの様子を観察した。また、展開時のガスリーク状況を知るためインフレータ到達ガス圧を評価した。
 (12)総合評価:展開速度、到達ガス圧、インフレータ展開後の観察結果から、◎:大変良い、○:良い、△:普通、×:悪い、の基準で評価した。
 (13)インパクター試験:FMVSS201に準じて実施した。上記(7)項に記載のサイドカーテンエアバッグを、畳むことなくカーテン状に保持ラックに設置した。2.0molストアードガスインフレーターをガス供給口にホースバンドで取り付け、展開させた。側面から展開膨張を観察し、膨張断面積が99%に達した時点に合わせて、ヘッドフォームを衝突させた。すなわち、サイドカーテンエアバッグの運転席保護エリアのクッション中心部に向けてカーテン面に対して垂線方向から、FMVSS201用ヘッドフォーム(重さ4.5kg)を24km/Hrで放出した。ヘッドフォーム内の加速度計により衝撃吸収の加速度(m/s2)の時間経過(msec)を計測した。図4に示した「加速度-時間」曲線の下部面積の中で、減速加速度が検出され始める拘束開始時点から全面積の15%の時点での時間を拘束立ち上がり時間とし、この時間の短さで急速拘束性を評価した。比較例14のケースを100として相対値にて示した。
 [実施例1、2および比較例1、2]
 実施例1および2として総繊度の検討を実施した。表1に示した諸特性を有するナイロン66マルチフィラメント原糸を用い、糊剤等付与することなくウォータージェットルームを用いて平織にて織布を作製し、95℃で30秒乾燥した。次いで、片面にシリコーン樹脂を20g/cm2塗布して、180℃で2分間の加硫をピンテンターで経方向が1%のオーバーフィード、緯方向が0%ストレッチで行い、15℃のシリンダー冷却を行った。引き続き、常温のピンテンターにて経方向に1%の緊張フィード、緯方向つまり幅方向に1%のストレッチで4分間処理し、基布を作製した。得られた基布を用いサイドカーテンエアバッグを縫製作製し、展開速度計測とインフレータ展開を実施した。得られた結果を基布および構成糸の特性と共に表1に示す。
 比較例1および2として、表2に示した諸特性を有するナイロン66マルチフィラメント原糸を用いたことを除いて実施例1および2と同様の方法で、実施例1および2とカバーファクターを合せた基布を作製し、実施例1および2と同様に評価した。その結果を表2に示す。
 これらの結果から分かるように、総繊度が本発明範囲内のものは展開速度およびインフレータ展開性とも良好な結果を示している一方で、比較例1は総繊度が細くガス圧に耐えず破袋した。比較例2は総繊度が太く展開速度が遅くなった。
 [実施例3、4および比較例3、4]
 実施例3および4として、実施例1および2と同じ原糸をそれぞれ用い、織密度を実施例3では74本/inch、実施例4では55本/inchとして実施例1および2と同様に平織の織布を製織し、95℃で30秒乾燥後、テンターを用いて180℃にて1分間オーバーフィード0%および幅出し2%で熱セットし、この後に、15℃のシリンダー冷却を行った。さらに、常温のピンテンターにて経方向に1%の緊張フィード、緯方向つまり幅方向に1%のストレッチで4分間処理し、シリコーン樹脂を塗布することなく基布を得た。得られた基布について実施例1および2と同様に評価を行なった。得られた結果を表1に併せて示す。
 また比較例3および4として、比較例1および2と同じ原糸をそれぞれ用い、織密度を比較例3では85本/inch、比較例4では39本/inchとして比較例1および2と同様に平織の織布を製織し、95℃で30秒乾燥後、180℃にて1分間オーバーフィード0%および幅出し2%で熱セットし、シリコーン樹脂を塗布することなく基布を得た。得られた基布について実施例1および2と同様に評価を行なった。得られた結果を表2に併せて示す。
 これらの結果より、総繊度が本発明範囲内のものは展開速度およびインフレータ展開性とも良好な結果を示している一方で、比較例3は総繊度が細くガス圧に耐えず破袋した。比較例4は総繊度が太く展開速度が遅くなった。
 [実施例5および比較例5、6]
 実施例5では、単糸繊度2.2dtexで構成されたナイロン66マルチフィラメント原糸を用いたことを除いて、実施例3と同様に基布を作製した。得られた基布について実施例1と同様に評価を行なった。得られた結果を表1に併せて示す。比較例5、6では単糸繊度1.7dtexおよび8.1dtexで構成されたナイロン66マルチフィラメント原糸を用いたことを除いて、実施例4および5とそれぞれ同じ条件で基布を作製し、評価を行なった。その結果を表2に併せて示す。
 実施例4、5および比較例5、6の結果から分かるように、単糸繊度が本発明の範囲のものは、展開速度が速いが、比較例5では単糸繊度が細く、縫製部破壊で破袋した。比較例6では単糸繊度が太く縫目負荷通気が多くて展開速度も遅く到達圧も低かった。
 [実施例6、7および比較例7、8]
 表1および2に示したナイロン66マルチフィラメント原糸を用いたことを除いて、実施例3と同様に基布を作製し、基布物性として50N/cm荷重時伸度および300N/cm荷重時伸度を変化させた。得られた基布について実施例1と同様に評価を行ない、結果を表1および2に併せて示した。
 これらの結果から分かるように、50N/cm荷重時伸度および300N/cm荷重時伸度が本発明の範囲内にあるものは良好な結果を示す一方、比較例7は原糸物性を反映して基布の50N/cmおよび300N/cm荷重時の伸度が大きいため展開速度も遅く到達圧も低かった。比較例8は原糸の沸水収縮率を大きくしたため、基布の50N/cmおよび300N/cm荷重時の伸度が小さすぎ、特定縫製部に応力集中して破袋した。
 [比較例9および10]
 比較例9は、織布作製後熱セット前に有機溶剤にて織布表面の紡糸油剤を除去したことを除いて、実施例3と同様に基布を作製した。また、比較例10は、織布作製後熱セット前に、織布にチオジプロピオン酸ジオレートを塗布したことを除いて実施例3と同様に基布を作製した。得られた基布を実施例1と同様に評価し、その結果を表2に併せて示す。 これらの結果から分かるように、比較例9は引抜抵抗が大きすぎて特定縫製部に応力集中して破袋した。比較例10は引抜抵抗が小さすぎて展開到達圧が低かった。
 [実施例8]
 原糸の原料ポリマーとしてナイロン46を用いたことを除いて、実施例1と同様に基布を作製した。得られた基布を実施例1と同様に評価し、その結果を表1に併せて示す。表1から明らかなように、展開速度およびインフレータ展開性とも良好な結果を示した。
 [比較例11]
 表2に示したナイロン66マルチフィラメント原糸を用い、レピア織機にて平織物を得た。次いで、アルキルベンゼンスルホン酸ソーダ0.5g/lおよびソーダ灰0.5g/lを含んだ80℃温水浴中でたるみ無く布送りして3分間洗浄し、130℃で3分間乾燥し、180℃で30秒間オーバーフィード0%および幅出し1%で熱セットし、積極冷却はせずに振落としで受箱に受け取り、シリコーン樹脂を塗布することなく基布を得た。得られた基布について実施例3と同様に評価を行なった。得られた結果を表2に示す。引抜抵抗が小さすぎて展開到達圧が低かった。
 [比較例12]
 表2に示したナイロン66マルチフィラメント原糸を用い、糊剤等付与することなくウォータージェットルームを用いて平織にて織布を作製し、95℃で30秒乾燥後、160℃にて1分間オーバーフィード2%および幅入れ2%で熱セットし、冷却はファンで風を当てながら振落としで受箱に受け取り、シリコーン樹脂を塗布することなく基布を得た。得られた基布について実施例1および2と同様に評価を行なった。得られた結果を表2に併せて示す。加工が緊張加工ではなく、引抜抵抗が低い。展開到達圧も低かった。
 [比較例13]
 表2に示したナイロン66マルチフィラメント原糸を用いたことを除いて、実施例3と同様に基布を作製し、得られた基布について実施例3と同様に評価を行なった。得られた結果を表2に併せて示す。低収縮の原糸を用いており、引抜抵抗が低い。展開到達圧も低かった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [比較例14]
 比較例6に記載の基布を用いて剛軟度の評価を行った。また、インパクター拘束立ち上がり時間を評価し、基準とした。結果を表3に示す。
 [実施例10]
 実施例3に記載の基布を用いて剛軟度とインパクター拘束立ち上がり時間の評価を行った。結果を表3に併せて示す。剛軟度は柔軟さを示しており、インパクター拘束立ち上がり時間は早いものであった。
 [実施例11および12]
 表3に示したナイロン66マルチフィラメント原糸を用い、実施例3と同様に基布を作製し、得られた基布について実施例3と同様に評価を行なうと共に、剛軟度およびインパクター拘束立ち上がり時間を評価した。結果を表3に併せて示す。剛軟度は柔軟さを示しており、インパクター拘束立ち上がり時間は早いものであった。
Figure JPOXMLDOC01-appb-T000003
 本発明の基布で作製したエアバッグは、応力がかかった状態での膨張部と非膨張部の境界部分における目開きが抑えられ、耐圧性に優れ、展開速度が速い。
 1  糸
 2  錘(T1)
 3  ロードセル(T2)
 4  滑車
 11  縦方向の3本の織糸
 12  横方向の織糸15本を残した織物部
 21  チャック
 22  チャック
 23  スペーサー
 31  開口部
 32  開口部
 41  サイドカーテンエアバッグ
 42  袋境界部
 43  インナーチューブ
 44  インフレータ取付部
 45  保護エリア中心部位
 46  接合部

Claims (14)

  1.  総繊度が200~550dtexおよび単糸繊度が2.0~7.0dtexのマルチフィラメント合成繊維から構成される織物から成り、50N/cmおよび300N/cm荷重時の伸度が経緯の平均値でそれぞれ5~15%および15~30%であり、構成糸の引抜抵抗が経緯の平均値で50~200N/cm/cmであることを特徴とするエアバッグ用基布。
  2.  ASTM D4032剛軟度が3.0~7.5Nである請求項1に記載の基布。
  3.  下記の特定縫製で縫合した縫合境界部における100N/cm負荷後の動的通気度が差圧50kPaにおいて2300mm/s以下である請求項1または2に記載の基布。
     特定縫製:織物を2枚、1350dtexの撚り糸を用いて50回/10cmで本縫いする。
  4.  下式で表されるカバーファクター(CF)が2000~2500である請求項1~3のいずれか一項に記載の基布。
         CF=√[(0.9×d)×(2×W)]
     (但し、dは構成糸の経緯平均の総繊度(dtex)であり、Wは経緯平均の織密度(本/2.54cm)である。)
  5.  構成糸の4.7cN/dtex荷重時の伸度が経緯の平均値で10~20%である請求項1~4のいずれか一項に記載の基布。
  6.  構成糸の強度が経緯の平均値で7.5cN/dtex以上である請求項1~5のいずれか一項に記載の基布。
  7.  本明細書で定義される糸-糸間摩擦力(P)が1.5~3.0である合成繊維を原糸として用いた請求項1~6のいずれか一項に記載の基布。
  8.  沸水収縮率が5~13%である合成繊維を原糸として用いた請求項1~7のいずれか一項に記載の基布。
  9.  JIS L1017 7.7に規定の一定荷重時伸び率が5~15%である合成繊維を原糸として用いた請求項1~8のいずれか一項に記載の基布。
  10.  合成繊維がナイロン66である請求項1~9のいずれか一項に記載の基布。
  11.  樹脂被膜を有しない請求項1~10のいずれか一項に記載の基布。
  12.  少なくとも片面に樹脂被膜を有する請求項1~10のいずれか一項に記載の基布。
  13.  請求項11または12のいずれか一項に記載の基布からなるエアバッグ。
  14.  膨張部と非膨張部の境界部に100N/cmの荷重を負荷した後、膨張部と非膨張部の境界部分における動的通気度が差圧50kPaにおいて2300mm/s以下である請求項13に記載のエアバッグ。
PCT/JP2011/068946 2010-08-23 2011-08-23 エアバッグ用基布 WO2012026455A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11819918.1A EP2610377B9 (en) 2010-08-23 2011-08-23 Base fabric for airbag
KR1020137001711A KR101447839B1 (ko) 2010-08-23 2011-08-23 에어백용 기포
JP2011553636A JP5100895B2 (ja) 2010-08-23 2011-08-23 エアバッグ用基布
CN201180041139.5A CN103080393B (zh) 2010-08-23 2011-08-23 气囊用基布
US13/818,268 US8962499B2 (en) 2010-08-23 2011-08-23 Base woven fabric for airbag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-186323 2010-08-23
JP2010186323 2010-08-23

Publications (1)

Publication Number Publication Date
WO2012026455A1 true WO2012026455A1 (ja) 2012-03-01

Family

ID=45723449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068946 WO2012026455A1 (ja) 2010-08-23 2011-08-23 エアバッグ用基布

Country Status (6)

Country Link
US (1) US8962499B2 (ja)
EP (1) EP2610377B9 (ja)
JP (1) JP5100895B2 (ja)
KR (1) KR101447839B1 (ja)
CN (1) CN103080393B (ja)
WO (1) WO2012026455A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848476A1 (en) 2012-05-11 2015-03-18 Toyobo Co., Ltd. Airbag base fabric that is unlikely to bottom at impact
EP2868789A4 (en) * 2012-06-29 2016-05-25 Kolon Inc FABRIC FOR INFLATABLE CUSHION AND METHOD OF MANUFACTURING THE SAME
KR20170132153A (ko) 2015-03-30 2017-12-01 도레이 카부시키가이샤 에어백용 폴리에스테르제 기포, 폴리에스테르제 에어백 및 에어백용 폴리에스테르제 기포의 제조 방법
KR20180030058A (ko) 2015-07-13 2018-03-21 도레이 카부시키가이샤 에어백용 기포, 에어백 및 에어백용 기포의 제조 방법
US10385482B2 (en) 2013-08-13 2019-08-20 Asahi Kasei Kabushiki Kaisha Woven fabric
US10773681B2 (en) 2014-05-28 2020-09-15 Asahi Kasei Kabushiki Kaisha Base fabric for airbag and airbag
US11214895B2 (en) 2015-11-06 2022-01-04 Inv Performance Materials, Llc Low permeability and high strength fabric and methods of making the same
US20230099686A1 (en) * 2020-03-26 2023-03-30 Asahi Kasei Kabushiki Kaisha Base Cloth for Material and Manufacturing Method Therefor
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023784A (ja) * 2011-07-21 2013-02-04 Asahi Kasei Fibers Corp エアバッグ用基布
JP5486741B2 (ja) * 2012-03-09 2014-05-07 旭化成せんい株式会社 エアバッグ用基布
MX2015002395A (es) * 2012-08-28 2015-06-03 Toray Industries Tela recubierta y metodo para produccion de la misma.
JP2015110857A (ja) * 2013-11-11 2015-06-18 旭化成せんい株式会社 エアバッグ基布
CN110997995B (zh) * 2017-08-21 2022-05-31 东洋纺株式会社 安全气囊用织物、安全气囊用涂层织物和使用其的安全气囊
WO2019146286A1 (ja) * 2018-01-26 2019-08-01 東レ株式会社 基布、ジェットルームおよび基布の製造方法
WO2021157725A1 (ja) * 2020-02-07 2021-08-12 旭化成株式会社 エアバッグ用基布及びそれを含むエアバッグ

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742043A (ja) * 1993-07-26 1995-02-10 Seiren Co Ltd エアバッグ用布帛
JPH10168700A (ja) * 1996-12-06 1998-06-23 Toray Ind Inc エアバッグ用基布およびエアバッグとその製造方法
JPH11293541A (ja) * 1998-04-10 1999-10-26 Toray Ind Inc エアバッグ用基布およびその製造方法
JP2001233153A (ja) * 2000-02-22 2001-08-28 Toyoda Spinning & Weaving Co Ltd 袋織エアバッグ
JP2002327352A (ja) 2001-04-25 2002-11-15 Toyobo Co Ltd 袋織りエアバッグ基布
JP2003171842A (ja) 2001-12-10 2003-06-20 Toray Ind Inc エアバッグ基布およびエアバッグ
JP2004137622A (ja) * 2002-10-16 2004-05-13 Toyobo Co Ltd 高密度織物
JP2004217203A (ja) * 2002-12-26 2004-08-05 Toyobo Co Ltd インフレーターガス導入分配ホース
JP2004308076A (ja) * 2003-04-10 2004-11-04 Toray Ind Inc カーテンエアバッグ用基布およびカーテンエアバッグおよびその製造方法
JP2006256474A (ja) * 2005-03-17 2006-09-28 Toray Ind Inc エアバッグ用基布およびその製造方法
JP2009167551A (ja) 2008-01-15 2009-07-30 Seiren Co Ltd エアバッグ用織物
JP2009256860A (ja) 2008-03-21 2009-11-05 Toray Ind Inc エアバッグ用織物およびエアバッグ用織物の製造方法
JP2010047872A (ja) * 2008-08-22 2010-03-04 Toray Ind Inc エアバッグ用基布およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508073A (en) 1991-02-26 1996-04-16 Akzo Nv Uncoated fabric for manufacturing air bags
JP3248581B2 (ja) 1998-07-27 2002-01-21 東洋紡績株式会社 ノンコートエアバッグ用織物及びその製造方法、並びにノンコートエアバッグ用織物の製造装置
EP1225262B1 (en) * 1999-08-02 2010-01-20 Asahi Kasei Kabushiki Kaisha Base cloth for air bag
JP4258946B2 (ja) * 2000-03-31 2009-04-30 東洋紡績株式会社 袋織エアバッグ
JP2002067850A (ja) 2000-09-04 2002-03-08 Toray Ind Inc エアバッグ
JP2002266195A (ja) 2001-03-01 2002-09-18 Toyobo Co Ltd 袋織りエアバッグ基布及びエアバッグ
JP4096299B2 (ja) * 2002-09-06 2008-06-04 東洋紡績株式会社 袋織エアバッグ基布及びそれを用いた袋織エアバッグ
EP1433672B8 (en) 2002-12-26 2007-06-06 Toyo Boseki Kabushiki Kaisha Hose for introduction and distribution of inflator gas
JP2005324646A (ja) * 2004-05-13 2005-11-24 Toyobo Co Ltd インフレーターガス導入分配ホース
JP2006183205A (ja) 2004-12-28 2006-07-13 Toray Ind Inc エアバッグ用基布
US7994076B2 (en) * 2007-12-07 2011-08-09 Toyo Boseki Kabushiki Kaisha Fabric for airbag
CN101624739A (zh) 2008-07-11 2010-01-13 东丽纤维研究所(中国)有限公司 气囊用织物及其生产方法
CN101634074B (zh) 2008-07-23 2012-01-25 东丽纤维研究所(中国)有限公司 安全气囊用织物及其生产方法
CN102471954B (zh) * 2009-11-09 2013-07-31 旭化成纤维株式会社 气囊用织物及气囊
JP6013710B2 (ja) 2010-08-02 2016-10-25 旭化成株式会社 エアバッグ用織物およびエアバッグ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742043A (ja) * 1993-07-26 1995-02-10 Seiren Co Ltd エアバッグ用布帛
JPH10168700A (ja) * 1996-12-06 1998-06-23 Toray Ind Inc エアバッグ用基布およびエアバッグとその製造方法
JPH11293541A (ja) * 1998-04-10 1999-10-26 Toray Ind Inc エアバッグ用基布およびその製造方法
JP2001233153A (ja) * 2000-02-22 2001-08-28 Toyoda Spinning & Weaving Co Ltd 袋織エアバッグ
JP2002327352A (ja) 2001-04-25 2002-11-15 Toyobo Co Ltd 袋織りエアバッグ基布
JP2003171842A (ja) 2001-12-10 2003-06-20 Toray Ind Inc エアバッグ基布およびエアバッグ
JP2004137622A (ja) * 2002-10-16 2004-05-13 Toyobo Co Ltd 高密度織物
JP2004217203A (ja) * 2002-12-26 2004-08-05 Toyobo Co Ltd インフレーターガス導入分配ホース
JP2004308076A (ja) * 2003-04-10 2004-11-04 Toray Ind Inc カーテンエアバッグ用基布およびカーテンエアバッグおよびその製造方法
JP2006256474A (ja) * 2005-03-17 2006-09-28 Toray Ind Inc エアバッグ用基布およびその製造方法
JP2009167551A (ja) 2008-01-15 2009-07-30 Seiren Co Ltd エアバッグ用織物
JP2009256860A (ja) 2008-03-21 2009-11-05 Toray Ind Inc エアバッグ用織物およびエアバッグ用織物の製造方法
JP2010047872A (ja) * 2008-08-22 2010-03-04 Toray Ind Inc エアバッグ用基布およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2610377A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848476A1 (en) 2012-05-11 2015-03-18 Toyobo Co., Ltd. Airbag base fabric that is unlikely to bottom at impact
EP2868789A4 (en) * 2012-06-29 2016-05-25 Kolon Inc FABRIC FOR INFLATABLE CUSHION AND METHOD OF MANUFACTURING THE SAME
US10385482B2 (en) 2013-08-13 2019-08-20 Asahi Kasei Kabushiki Kaisha Woven fabric
US10773681B2 (en) 2014-05-28 2020-09-15 Asahi Kasei Kabushiki Kaisha Base fabric for airbag and airbag
KR20170132153A (ko) 2015-03-30 2017-12-01 도레이 카부시키가이샤 에어백용 폴리에스테르제 기포, 폴리에스테르제 에어백 및 에어백용 폴리에스테르제 기포의 제조 방법
US10239481B2 (en) 2015-03-30 2019-03-26 Toray Industries, Inc. Polyester base fabric for airbag, polyester airbag, and method of manufacturing polyester base fabric for airbag
KR20180030058A (ko) 2015-07-13 2018-03-21 도레이 카부시키가이샤 에어백용 기포, 에어백 및 에어백용 기포의 제조 방법
US10286870B2 (en) 2015-07-13 2019-05-14 Toray Industries, Inc. Airbag base fabric, airbag and method of manufacturing airbag base fabric
US11214895B2 (en) 2015-11-06 2022-01-04 Inv Performance Materials, Llc Low permeability and high strength fabric and methods of making the same
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags
US20230099686A1 (en) * 2020-03-26 2023-03-30 Asahi Kasei Kabushiki Kaisha Base Cloth for Material and Manufacturing Method Therefor
US11987910B2 (en) * 2020-03-26 2024-05-21 Asahi Kasei Kabushiki Kaisha Base cloth for material and manufacturing method therefor

Also Published As

Publication number Publication date
US20130147170A1 (en) 2013-06-13
KR101447839B1 (ko) 2014-10-13
EP2610377A4 (en) 2014-03-12
EP2610377A1 (en) 2013-07-03
JPWO2012026455A1 (ja) 2013-10-28
CN103080393B (zh) 2014-11-19
EP2610377B1 (en) 2016-02-10
US8962499B2 (en) 2015-02-24
JP5100895B2 (ja) 2012-12-19
EP2610377B9 (en) 2017-08-02
CN103080393A (zh) 2013-05-01
KR20130021457A (ko) 2013-03-05

Similar Documents

Publication Publication Date Title
JP5100895B2 (ja) エアバッグ用基布
JP6013710B2 (ja) エアバッグ用織物およびエアバッグ
JP4378349B2 (ja) 高密度袋織基布
US9834167B2 (en) Airbag fabric and airbag
JP6760067B2 (ja) エアバッグ用基布、エアバッグおよびエアバッグ用基布の製造方法
US20150151710A1 (en) Bag body
CN106489000B (zh) 制备用于气囊的聚酯织物的方法
US10549711B2 (en) Airbag-use woven fabric and airbag
JP7188393B2 (ja) エアバッグ基布およびそれを含むエアバッグ
WO2024048153A1 (ja) エアバッグ用織物
JP4538967B2 (ja) エアバッグ用布帛
US11987910B2 (en) Base cloth for material and manufacturing method therefor
JP2013023784A (ja) エアバッグ用基布
JP4769013B2 (ja) エアバッグ用袋織基布の製織方法
JP6694490B2 (ja) エアバッグ用織物基布
JP7101179B2 (ja) エアバッグ
JP2015143407A (ja) 広幅高密度織物ロール
JP2015160586A (ja) エアバッグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041139.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011553636

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137001711

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12013500227

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2011819918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13818268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE