WO2012023297A1 - 空調制御装置、空調制御方法及びプログラム - Google Patents

空調制御装置、空調制御方法及びプログラム Download PDF

Info

Publication number
WO2012023297A1
WO2012023297A1 PCT/JP2011/051653 JP2011051653W WO2012023297A1 WO 2012023297 A1 WO2012023297 A1 WO 2012023297A1 JP 2011051653 W JP2011051653 W JP 2011051653W WO 2012023297 A1 WO2012023297 A1 WO 2012023297A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
air
energy saving
air conditioner
distance
Prior art date
Application number
PCT/JP2011/051653
Other languages
English (en)
French (fr)
Inventor
太一 石阪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012529498A priority Critical patent/JP5535320B2/ja
Priority to US13/811,932 priority patent/US9222688B2/en
Priority to CN201180038726.9A priority patent/CN103069223B/zh
Priority to EP11817946.4A priority patent/EP2607804B1/en
Publication of WO2012023297A1 publication Critical patent/WO2012023297A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode

Definitions

  • the present invention relates to an air-conditioning control apparatus, an air-conditioning control method, and a program for controlling a plurality of air-conditioning devices installed at different positions in a room space of a house such as a building.
  • Japanese Patent No. 4331554 (FIG. 5) Japanese Patent Laying-Open No. 2006-29893 (FIG. 4)
  • the living room space is divided into a plurality of zones, and stop control of the air conditioning equipment for each zone is performed while shifting the time zone. Stop control is performed in the order of zones. When stop control is completed in all zones, return to the first zone and stop control is performed in the order of the zones. In this way, stop control is repeatedly performed in the order of zones.
  • Patent Document 2 In the demand control system of Patent Document 2, intermittent and rotation operations are performed on a plurality of air conditioning equipment systems according to a predetermined priority order.
  • Patent Document 2 does not disclose a method for specifying the priority order. Therefore, even if this system is used, the above-described significant fluctuations in temperature cannot be suppressed.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an air conditioning control device, an air conditioning control method, and a program capable of preventing a reduction in comfort when performing energy saving control.
  • an air conditioning control device of the present invention is an air conditioning control device that controls a plurality of air conditioning devices installed at different positions in a predetermined living room, and includes the following components.
  • the storage unit stores information related to the position of each air conditioner.
  • a distance calculation part calculates the distance between each air-conditioning apparatus based on the information regarding the position memorize
  • the control order determination unit performs energy saving control for controlling each air conditioner for a predetermined time so as to suppress power consumption in a part of the living room space based on the distance between each air conditioner calculated by the distance calculation unit.
  • the control order of each air conditioner for which energy saving control is executed is determined so that there is no bias in the execution time zone.
  • the control execution unit repeatedly executes energy saving control of each air conditioner according to the control order determined by the control order determination unit.
  • energy saving control is executed in a part of the room space so that there is no bias in the time zone in which energy saving control for controlling each air conditioner for a predetermined time so as to suppress power consumption is performed.
  • the control order of each air conditioner is determined. For this reason, the fluctuation
  • FIG. 1 It is a block diagram which shows the structure of the air conditioning system which concerns on Embodiment 1 of this invention. It is a block diagram which shows the structure of the air-conditioning control apparatus of FIG. It is a flowchart of the initial setting process of the air-conditioning control apparatus of FIG. It is a figure which shows an example of the monitoring screen of the air conditioning equipment displayed on a display apparatus. It is a figure which shows an example of area information typically. It is a flowchart of a control order calculation process. It is a figure which shows the flow of energy saving control. It is a figure which shows an example (the 1) of control order of energy saving control. It is a timing chart of the on-off pattern of energy saving control.
  • FIG. 12A is a diagram illustrating an example of grouped air conditioners and their control order.
  • FIG. 12B is a diagram illustrating an example of a correspondence relationship between an air conditioner and a group. It is a figure which shows an example of the control order of the energy saving control per apparatus.
  • FIG. 14A is a timing chart illustrating an example of an on / off pattern of energy saving control in units of groups.
  • FIG. 14B is a timing chart illustrating an example of an on / off pattern of energy saving control in units of devices. It is a timing chart for demonstrating a mode that the control order of energy saving control is switched.
  • Embodiment 1 FIG. First, a first embodiment of the present invention will be described.
  • FIG. 1 shows the configuration of an air conditioning system 1 according to Embodiment 1 of the present invention.
  • an air conditioning system 1 according to this embodiment includes a plurality of air conditioning equipment (indoor units) 2, an electric energy measuring device 3, and an air conditioning control device 4.
  • the air conditioner (indoor unit) 2, the electric energy measuring device 3 and the air conditioning control device 4 are connected to each other via a dedicated communication line 5.
  • the air conditioning control device 4 communicates not only with the air conditioner (indoor unit) 2 but also with a heat source side unit (outdoor unit) having a compressor or the like via the dedicated communication line 5.
  • one remote controller (remote controller) 6 is connected to each air conditioner (indoor unit) 2.
  • a plurality of air conditioners (indoor units) 2 are respectively installed at different positions in a predetermined living room space.
  • Each air conditioner (indoor unit) 2 performs air conditioning of the living room space under the control of the air conditioning control device 4 so that the temperature of the living room approaches the set target temperature. More specifically, each air conditioner (indoor unit) 2 receives various commands such as a stop command, a blow command, and a target temperature change command used for energy saving control from the air conditioning control device 4, and the room is in accordance with the received command. Air conditioning in the space (around the place where it was installed).
  • the plurality of air conditioners (indoor units) 2 are also referred to as air conditioner groups 7 below.
  • the remote controller 6 is an operation terminal for the user to operate the air conditioner (indoor unit) 2.
  • the remote controller 6 it is possible to change the operation mode such as cooling / heating, change the target temperature, change the wind direction, and change the wind speed in addition to the operation and stop of the corresponding air conditioner (indoor unit) 2.
  • the electric energy measuring device 3 is a device for measuring the electric energy of the air conditioning system 1 or the entire building.
  • the electric energy measured by the electric energy measuring device 3 is used for switching the control content of the air conditioner (indoor unit) 2 described later.
  • the air conditioning control device 4 comprehensively controls and manages an air conditioning device group 7 including a plurality of air conditioning devices (indoor units) 2 and an electric energy measuring device 3. As shown in FIG. 2, the air conditioning control device 4 includes a display device 10, an input device 20, a communication management unit 30, a data management unit 40, and a control unit 50.
  • the display device 10 displays the monitoring screen of the operating state of each air conditioner (indoor unit) 2, the amount of power measured by the power amount measuring device 3, and the like under the control of the control unit 50.
  • the input device 20 includes a keyboard, a touch panel, and the like.
  • the touch panel is installed on the display device 10.
  • an administrator or the like operates a keyboard, a touch panel, or the like, a signal corresponding to the operation content (for example, instructions for switching the monitoring screen, operating the air conditioning equipment group 7, various settings, etc.) is output to the control unit 50.
  • the communication management unit 30 is an interface of the dedicated communication line 5. Data is transmitted to and received from the air conditioner (indoor unit) 2 and the electric energy measuring device 3 via the communication management unit 30.
  • the data management unit 40 manages various data necessary for the control unit 50 to control the air conditioning equipment group 7.
  • the data managed by the data management unit 40 is roughly classified into air conditioning equipment data 41, energy saving setting data 42, installation position data 43, and measuring equipment data 44.
  • the air conditioning equipment data 41 includes connection information 61 of each air conditioning equipment (indoor unit) 2 and operating state data 62 of each air conditioning equipment (indoor unit) 2.
  • connection information 61 is data necessary for accessing each air conditioner (indoor unit) 2, such as the address number, operation group number, and model identification information of each air conditioner (indoor unit) 2 managed by the air conditioner control device 4. It is.
  • the operation state data 62 indicates the current operation state of the air conditioner (indoor unit) 2 such as the operation / stop state of each air conditioner (indoor unit) 2, the operation mode such as cooling or heating, the set temperature, the room temperature, and the like. It is data.
  • the operation state data 62 is updated as needed by transmitting and receiving data to and from the air conditioner (indoor unit) 2.
  • the energy saving setting data 42 includes area information 71, control level 72, control time 73, and control content 74.
  • the area information 71 is data in which each of a plurality of air conditioners (indoor units) 2 managed by the air conditioning control device 4 is associated with each of a plurality of areas divided in units of rooms or departments.
  • the control level 72 includes a threshold value for the electric energy at which the control level is switched.
  • the air conditioning control device 4 switches the control level of the air conditioning device (indoor unit) 2.
  • the control time 73 is data defining the execution time of energy saving control per unit time for each air conditioner (indoor unit) 2.
  • the control time 73 can be specified for each area and for each control level 72.
  • the control content 74 is data defining specific details of energy saving control such as stop control and air blow control.
  • the control content 74 can be specified for each area and for each control level 72.
  • the installation position data 43 includes plan view information 81 and installation position information 82.
  • the floor plan information 81 is image data of a floor plan of the living room space.
  • the plan view information 81 for example, information created by a personal computer or the like and read into the air conditioning control device 4 can be used.
  • the plan view information 81 may be created by an operation input of the input device 20 of the user who viewed the plan view displayed on the display device 10.
  • the installation position information 82 includes data on the building number and floor number of the living room space and the installation position coordinates (x coordinate, y direction) of the air conditioner (indoor unit) 2.
  • connection information 91 and measurement state data 92 are managed.
  • the connection information 91 includes address information of the energy measuring device 3 that measures the energy, and various setting data set in the energy measuring device 3 and the like.
  • the measurement state data 92 includes various measurement data acquired from the electric energy measurement device 3 such as electric energy, instantaneous electric power, voltage, and current.
  • Data stored in the data management unit 40 is written and read by the control unit 50 as needed.
  • the control unit 50 includes a CPU and a memory (both not shown).
  • the function of the control unit 50 is realized by the CPU executing a program stored in the memory.
  • the control unit 50 controls the air conditioner group 7 including the air conditioner (indoor unit) 2.
  • the control unit 50 includes a distance calculation unit 51, a control order determination unit 52, and a control execution unit 53.
  • the distance calculation unit 51 calculates the distance between the air conditioner (indoor unit) 2 and another air conditioner (indoor unit) 2 based on the installation position information stored in the data management unit 40.
  • the control order determination unit 52 controls each air conditioner (indoor unit) 2 for a predetermined time in a part of the living room space to suppress power consumption.
  • the control order of each air conditioner (indoor unit) 2 on which the energy saving control is executed is determined so that there is no bias in the time zone in which the energy saving control is executed.
  • the control execution unit 53 repeatedly executes the energy saving control of each air conditioner (indoor unit) 2 according to the determined order.
  • control unit 50 performs overall control of each component of the air conditioning control device 4.
  • control unit 50 follows the operation input of the input device 20 in addition to the connection information 61 of the air conditioner (indoor unit) 2 to be managed, the connection information 91 of the electric energy measuring device 3, Various setting data are registered in the data management unit 40 (step S1).
  • control unit 50 reads the floor plan data of the living room space via, for example, the communication management unit 30, registers the read data as the plan view information 81 of the data management unit 40, and displays the display device. 10 displays a plan view based on the plan view information 81 (step S2).
  • control unit 50 arranges and displays the icons 400 of the respective air conditioners (indoor units) 2 on the displayed plan view according to the operation input of the input device 20 (step S3).
  • the icon 400 is used for monitoring and operation of the air conditioner (indoor unit) 2.
  • the position of the displayed icon 400 can be adjusted according to the operation input of the input device 20.
  • the position of the icon 400 of each air conditioner (indoor unit) 2 may be adjusted by operating the input device 20 (keyboard) and directly inputting the position coordinates, or the input device 20 ( The position of the icon 400 of each air conditioner (indoor unit) 2 may be adjusted by operating the touch panel.
  • FIG. 4 shows an example of a monitoring screen of the air conditioner (indoor unit) 2 displayed on the display device 10.
  • a plan view of the floor of the room space based on the plan view information 81 is displayed.
  • an icon 400 of the air conditioner (indoor unit) 2 is displayed on the plan view.
  • icons 400 of six air conditioners (indoor units) 01 to 06 are displayed.
  • the position coordinates of the air conditioner (indoor unit) 2 are displayed together with the icon 400.
  • the finally determined position coordinates of the icon 400 of the air conditioner (indoor unit) 2 are registered in the data management unit 40 as installation position information 82.
  • the color or mark of the icon 400 represents the operating state of the air conditioner (indoor unit) 2 such as operation, stop, or abnormality.
  • the control unit 50 acquires the operation state of the air conditioner (indoor unit) 2 via the communication management unit 30, registers the operation state as the operation state data 62, and sets the color and mark of the icon 400 to the operation state. Display according to.
  • control unit 50 may control each air conditioner (indoor unit) 2 according to the operation. Is possible.
  • control unit 50 registers, as the area information 71, an area divided by room or department unit by an operation input of the input device 20 (step S ⁇ b> 4).
  • Each area is set to include at least one air conditioner (indoor unit) 2.
  • a plurality of air conditioners (indoor units) 2 may be included in one area.
  • FIG. 5 schematically shows an example of area information 71 in which each of the plurality of air conditioners (indoor units) 2 is associated with an area. Each area is divided into rooms and departments.
  • the air conditioners 01 to 06 are associated with the area 01.
  • air conditioners 07 to 10 are associated with area 02.
  • air conditioners 11 to 14 are associated with area 03.
  • air conditioners 45 to 50 are associated with the area 10.
  • energy saving control is cyclically executed for each area.
  • control unit 50 determines that the time for applying energy saving control per unit time (for example, control for 3 minutes for 30 minutes) for each control level 72 by the operation input of the input device 20 is the control time 73.
  • the control content (stop control, blower control, thermo-off control, etc.) is set as the control content 74 (step S5).
  • Each control level 72 is switched according to the amount of power acquired from the power amount measuring device 3. The user can register a threshold for switching the control level 72.
  • control order determination unit 52 determines the first air conditioner (indoor unit) 2 that executes energy saving control (step S11).
  • the first air conditioner (indoor unit) 2 may be arbitrary.
  • control order determination unit 52 determines the distance between the remaining air conditioner (indoor unit) 2 that has not yet performed energy saving control and the air conditioner (air conditioner 01 in this case) that was the previous control target.
  • the proximity ranking is determined in order of proximity (step S13). This proximity order is assigned in the order of 1, 2, 3,.
  • the control order determination unit 52 determines that the control target is the previous control target.
  • a device having a small distance from the air conditioning device can be placed at the top of the proximity ranking.
  • there is no air conditioning device to be controlled last time when calculating the distance of the second air conditioning device (indoor unit) 2), or the distance to the air conditioning device (indoor unit) 2 to be controlled the last time is the same.
  • the control order determination unit 52 can place the air conditioner (indoor unit) 2 with a lower address in the proximity order.
  • the control order determination unit 52 controls the air conditioner (indoor unit) 2 that becomes the center in the determined proximity order, that is, the air conditioner (indoor unit) 2 in which the proximity order is obtained by the following expression.
  • a target is selected (step S14).
  • Proximity ranking of air conditioners to be controlled next time ((number of remaining air conditioners) / 2) +1 However, if (the number of remaining air conditioners) / 2 is not divisible, the decimal part is rounded down.
  • the air conditioning equipment (indoor unit) 2 that is the center of the proximity ranking is selected.
  • the air conditioner (indoor unit) 2 that is one higher than the center of the proximity ranking is selected. For example, when there are seven remaining air conditioners (indoor units) 2, the fourth air conditioner (indoor unit) 2 in the proximity order is selected, and there are four remaining air conditioners (indoor units) 2.
  • the air conditioner (indoor unit) 2 having the third proximity ranking is selected.
  • control order determination unit 52 determines whether or not all the air conditioners (indoor units) 2 have been selected (step S15). If there is an air conditioner (indoor unit) 2 that has not yet been selected (step S15; No), the control unit 50 returns to step S12.
  • step S15 Thereafter, until all the air conditioners (indoor units) 2 are selected (step S15; Yes), steps S12 ⁇ S13 ⁇ S14 ⁇ S15 are repeated, and the control sequence of the air conditioners (indoor units) 2 that execute energy saving control is repeated. Is determined.
  • an air conditioner (indoor unit) 2 that first executes energy saving control in this area is an air conditioner 01.
  • the second controlled air conditioner (indoor unit) 2 and among the five unselected air conditioners 02, 03, 04, 05, 06 [Air conditioning equipment 04] having the third rank is selected. Further, among the four air conditioners 02, 03, 05, 06 that have not been selected as the third controlled air conditioner, [air conditioner 06] having the third proximity ranking is selected. Similarly, “air conditioner 03” is selected as the fourth controlled air conditioner. Subsequently, “air conditioner 02” is selected as the fifth controlled air conditioner. Subsequently, “air conditioner 05” is selected as the sixth controlled air conditioner. After the last [air conditioner 05], the process returns to the first controlled [air conditioner 01], and thereafter, energy saving control is repeatedly executed in this order.
  • FIG. 8 schematically shows the control sequence of the energy saving control of the indoor units 01 to 06 determined according to the control sequence process obtained above.
  • FIG. 9 shows a timing chart of the on / off pattern of the energy saving control of the indoor units 01 to 06. If the energy saving control is executed in the control sequence shown in FIG. 8, it is possible to prevent a bias in the time zone in which the energy saving control is performed in a part of the room space. Large fluctuations can be suppressed.
  • FIG. 10 shows an example of the control order determined when the number of air conditioners (indoor units) 2 is 11. As shown in FIG. 10, the control order of the energy saving control is determined so that the places where the energy saving control is executed are dispersed.
  • the air conditioner (indoor unit) 2 whose proximity ranking according to the distance from the air conditioner (indoor unit) 2 to be controlled is approximately the center is changed to the air conditioner to be controlled next time.
  • the calculation formula selected as (indoor unit) 2 was used as a calculation formula for calculating the control order.
  • the present invention is not limited to this, and the control order may be calculated using another calculation formula as long as the calculation is performed according to the distance between the air conditioners (indoor units) 2.
  • a calculation formula may be used in which the air conditioner (indoor unit) 2 having the proximity order of about 1/3 of the whole is selected as the next air conditioner to be controlled.
  • calculation formula may be changed by the connection information 61 or the installation position information 82, such as changing the calculation formula depending on the number of the air conditioners (indoor units) 2.
  • the proximity ranking is determined in consideration of up to the air-conditioning equipment (indoor unit) 2 to be controlled the last time, but is not limited to the previous time, and further before that, energy saving control is preceded.
  • the proximity ranking may be determined in consideration of the distance from the air conditioner (indoor unit) 2 that has executed.
  • the position information of each air conditioner (indoor unit) 2 is acquired from the coordinate position on the plan view.
  • the actual position coordinates of each air conditioner (indoor unit) 2 are measured in advance, and the measured position coordinates of each air conditioner (indoor unit) 2 are registered in the air conditioning controller 4 to calculate the control order.
  • the distance between the air conditioners (indoor units) 2 may be calculated based on the registered position coordinates.
  • the air conditioner (indoor unit) 2 itself automatically measures the distance from other air conditioner (indoor unit) 2 using technology such as UWB (Ultra Wide Band), and the measurement result is air-conditioned.
  • the apparatus 4 may be acquired from the air conditioner (indoor unit) 2 and used to calculate the control order of energy saving control.
  • each air conditioner (indoor unit) 2 is controlled for a predetermined time so as to suppress power consumption in a part of the living room space.
  • the control order of each air conditioner (indoor unit) 2 on which the energy saving control is executed is determined so that there is no bias in the time zone in which the energy saving control is executed. For this reason, the fall of the comfort at the time of performing energy saving control can be prevented.
  • the resident will operate the remote controller 6 to reduce the set temperature more than necessary when it gets hot, and the temperature during the time when energy saving control is not performed will decrease. Therefore, it is possible to prevent the disadvantage that the power consumption increases.
  • the control order can be calculated. As a result, it is possible to determine a control order that does not concentrate on an area where energy saving control is performed.
  • the control order of energy saving control is the position coordinate (installation position information 82) of the icon 400 of the air conditioner (indoor unit) 2 on the plan view set when monitoring the normal air conditioner (indoor unit) 2. It is calculated using. For this reason, since it is not necessary to perform a new setting for calculating the control sequence of the energy saving control, the workload of the operator can be reduced.
  • connection information 61, area information 71, and installation position information 82 of the air conditioner (indoor unit) 2 are changed, the control sequence of the energy saving control is automatically recalculated. For this reason, the control order can always be kept appropriate according to the current arrangement state of the air conditioner (indoor unit) 2.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • the unit of energy saving control is the unit of equipment.
  • a plurality of air conditioners (indoor units) 2 are made into one group, and an air conditioning system 1 that can perform energy saving control even in a group unit is provided.
  • a plurality of air conditioners (indoor units) 2 are often connected to one remote controller 6 as one control unit (one group). Energy saving control on a group basis is suitable for such a case.
  • the operation state of the air conditioners (indoor units) 2 displayed on the remote controller 6 is executed when energy-saving control such as stop control and air blow control that can be operated by the remote controller 6 is executed.
  • energy-saving control with the same control content needs to be performed for all the air conditioners (indoor units) 2 in the group so that there is no difference between the actual operation state of the air conditioners (indoor units) 2 . Therefore, the air conditioning control device 4 performs energy saving control such as stop control and air blowing control in units of groups.
  • each air conditioner (indoor unit) 2 is provided with a function of controlling the blowing temperature by autonomously adjusting the flow rate of the refrigerant so that the room temperature approaches the set temperature.
  • This function cannot be operated directly from the remote controller 6.
  • this function is a function that can be individually controlled by each air conditioner (indoor unit) 2 in the same group. Therefore, in this embodiment, the air-conditioning control device 4 transmits a command for forcibly blocking the refrigerant amount, and performs energy saving control for performing so-called thermo-off for each device.
  • the air-conditioning control device 4 groups a plurality of air-conditioning devices (indoor units) 2 that the remote controller 6 has in common, and enables the control unit for performing energy saving control to be switched between the group unit and the device unit. In response to this, energy saving control is performed in the optimal control unit.
  • FIG. 11 shows a schematic configuration of the air conditioning system 1 according to this embodiment.
  • the remote controller 6 connected to the air conditioners 01 and 02 is common.
  • the remote controller 6 connected to the air conditioners 03 and 04 is common.
  • the remote controller 6 connected to the air conditioners 05, 06, 07 is common.
  • the remote controller 6 connected to the air conditioners 08 and 09 is common.
  • the remote controller 6 connected to the air conditioners 10 and 11 is common.
  • FIG. 12A shows air conditioners (indoor units) 2 on a plan view divided into groups.
  • FIG. 12B shows a table showing the correspondence between the group and the air conditioner (indoor unit) 2.
  • air conditioners 01 and 02 are registered in group 1
  • air conditioners 03 and 04 are registered in group 2.
  • air conditioners 05, 06, and 07 are registered in group 3
  • air conditioners 08 and 09 are registered in group 4
  • air conditioners 10 and 11 are registered in group 5.
  • the position coordinate of each group shown to FIG. 12 (A) is an average value of the position coordinate of the air conditioner (outdoor unit) 2 contained in a group.
  • connection information 61 of the air conditioner (indoor unit) 2 registered in step S1 includes, for example, a table relating to a group to which each air conditioner (indoor unit) 2 belongs, as shown in FIG. .
  • This control order calculation process is executed when the air conditioning control device 4 is activated and when the air conditioning equipment connection information 61, the area information 71, and the installation position information 82 are changed.
  • control order calculation process is performed with the control unit as the block unit, and further, the control order calculation process is performed with the control unit as the device unit. That is, here, both the control order in block units and the control order in device units are calculated.
  • control order is calculated by regarding one group as one air conditioner (indoor unit) 2.
  • the position coordinates of each group are the average value of the position coordinates of the air conditioner (outdoor unit) 2 included in the installation position information 82.
  • FIG. 12A the control order of energy saving control calculated by executing the control order calculation process shown in the first embodiment with each group as a control unit is indicated by an arrow.
  • the control order is calculated in units of groups, as shown in FIG. 12A, it is assumed that the energy saving control transitions in units of groups.
  • FIG. 12A in Group 1, Group 2, Group 5, and Group 4 , Energy saving control is executed in the order of group 3.
  • FIG. 13 shows the control sequence of energy saving control calculated by executing the control sequence calculation process shown in the first embodiment with the control unit as the device unit.
  • the control order is calculated in units of equipment, as shown in FIG. 13, the air conditioning equipment 01, the air conditioning equipment 03, the air conditioning equipment 10, the air conditioning equipment 05,
  • the energy saving control is executed in the order of the air conditioner 06, the air conditioner 04, the air conditioner 02, the air conditioner 08, the air conditioner 07, the air conditioner 09, and the air conditioner 11.
  • FIG. 14 (A) shows a timing chart of energy saving control when the control unit is a group unit.
  • FIG. 14B shows a timing chart of an on / off pattern of energy saving control when the control unit is a device unit.
  • the timing of the on / off pattern for performing energy saving control in units of groups and devices is determined based on the control time 73 and the number of air conditioners (indoor units) 2 to be controlled held in the area information 71.
  • control unit 50 performs energy saving control in units of groups.
  • control content is autonomous control by the air conditioner itself such as thermo-off
  • the control unit 50 performs energy saving control on a device basis. In this way, it is possible to prevent a decrease in comfort as much as possible.
  • the control unit 50 considers that there is a margin in the electric energy, changes the control level from 3 to 2, and changes the control content from stop control to thermo-off. Change to control.
  • the control execution unit 53 switches the control unit from the group unit to the device unit according to the change of the control content. For example, as shown in FIG. 15, when the control level is 3, the control execution unit 53 performs the energy saving control in units of groups, but at the time t when the power amount falls below a predetermined threshold, the control execution unit 53 53 switches the control level from 3 to 2, changes the control content from the stop control to the thermo-off control, and switches from the group unit to the energy saving control on a device basis.
  • the on / off pattern for energy saving control in units of groups and devices may be calculated based on the number of controlled units and the control time 73, or may be created using a pre-registered on / off pattern. .
  • control part 50 may calculate and hold
  • energy saving control may be performed each time.
  • control unit 50 displays the icon 400 of the air conditioner (indoor unit) 2 on the display device 10 for each device, but may display a group icon.
  • the installation position information 82 may include group position coordinates.
  • the energy saving control in units of groups and the energy saving control in units of devices are switched according to the control contents. More specifically, the control unit 50 performs energy saving control in units of groups if the control content is an item that can be operated with the remote controller, and performs energy saving control in units of devices if the control content is an item that cannot be operated with the remote control. Thereby, the difference in the display of the remote control 6 and the operation state of the actual air conditioner (indoor unit) 2 does not occur, and energy saving can be realized while preventing a decrease in comfort as much as possible.
  • energy saving control is performed on a device basis with an emphasis on comfort, and when the power usage is tight and you want to reduce the amount of power more than usual by stop control Is switched to energy saving control in group units. If it does in this way, the optimal energy saving control according to the use condition of electric energy can be realized.
  • the program to be executed is a computer-readable recording such as a flexible disk, CD-ROM (Compact Disk Read-Only Memory), DVD (Digital Versatile Disk), MO (Magneto-Optical Disk), etc.
  • a system that executes the above-described processing may be configured by storing and distributing the program in a medium and installing the program.
  • the program may be stored in a disk device or the like of a predetermined server device on a communication network such as the Internet, and may be downloaded, for example, superimposed on a carrier wave.
  • the present invention is suitable for environmental control of a living room where a plurality of air conditioners (indoor units) are installed.
  • Air conditioning system Air conditioning equipment (indoor unit) 3 Electric energy measuring device 4 Air conditioning controller 5 Dedicated communication line 6 Remote controller (remote controller) 7 Air-Conditioning Device Group 10 Display Device 20 Input Device 30 Communication Management Unit 40 Data Management Unit 41 Air-Conditioning Device Data 42 Energy Saving Setting Data 43 Installation Position Data 44 Measuring Device Data 50 Control Unit 51 Distance Calculation Unit 52 Control Order Determination Unit 53 Control Execution Unit 61 Connection information 62 Operation state data 71 Area information 72 Control level 73 Control time 74 Control content 81 Plan view information 82 Installation position information 91 Connection information 92 Measurement state data 400 Icon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 空調制御装置(4)は、所定の居室空間の異なる位置に設置された複数の空調機器(室内機)を制御する。データ管理部(40)は、各空調機器(室内機)の設置位置情報(82)を記憶する。距離算出部(51)は、設置位置情報(82)に基づいて、各空調機器(室内機)間の距離を算出する。制御順序決定部(52)は、距離算出部(51)によって算出された各空調機器(室内機)間の距離に基づいて、居室空間の一部で、消費電力を抑制すべく各空調機器(室内機)を所定の時間、制御する省エネルギー制御が実行される時間帯に偏りが出ないように、省エネルギー制御が実行される各空調機器(室内機)の制御順序を決定する。制御実行部(53)は、制御順序決定部(52)によって決定された制御順序に従って各空調機器(室内機)の省エネルギー制御を繰り返し実行する。

Description

空調制御装置、空調制御方法及びプログラム
 この発明は、例えばビル等の家屋の居室空間の異なる位置に設置された複数の空調機器を制御する空調制御装置、空調制御方法及びプログラムに関する。
 複数の空調機器が設置された居室空間では、全ての空調機器に対して同時に消費電力を抑制する省エネルギー制御(例えば一定期間の停止制御)を行うと、居室空間の温度が急激に上昇して快適性が低下するおそれがある。
 そこで、複数の空調機器各々に対する所定の時間の省エネルギー制御を、時間帯をずらしながら行って、急激な温度上昇(冷房時)、温度下降(暖房時)を抑える方法やシステムが開示されている(例えば、特許文献1、2参照)。これにより、省電力化を図りながら一定の快適性を保つことができる。
特許第4331554号公報(第5図) 特開2006-29693号公報(第4図)
 上記特許文献1の運転制御方法等では、居室空間が複数のゾーンに分割され、各ゾーンに対する空調機器の停止制御が時間帯をずらしながら行われる。停止制御は、ゾーンの並び順に行われる。すべてのゾーンでの停止制御が終わると、最初のゾーンに戻ってまたゾーンの並び順に停止制御が行われる。このようにして、停止制御がゾーンの並び順に繰り返し行われる。
 このような順番で各ゾーンでの停止制御を繰り返すと、各ゾーンで省エネルギー制御が行われる時間帯に偏りが出ることがある。例えば、各ゾーンの周辺で、1周期の前半では集中的に空調機器の停止制御が行われ、後半では空調機器の停止制御が全く行われなくなる場合である。この場合、各ゾーンでは、居室空間の気温の変動が大きくなって、居住者の快適性が損なわれるおそれがある。
 また、特許文献2のデマンド制御システムでは、所定の優先順位に従って複数の空調機器の系統に対する間欠、ローテーション運転が行われる。しかしながら、特許文献2では、この優先順位の指定方法については開示されていない。したがって、このシステムを用いても、上述のような気温の大幅な変動を抑制することができるわけではない。
 この発明は、上記実情に鑑みてなされたもので、省エネルギー制御を行う際の快適性の低下を防止することができる空調制御装置、空調制御方法及びプログラムを提供することを目的とする。
 上記目的を達成するため、この発明の空調制御装置は、所定の居室空間の異なる位置に設置された複数の空調機器を制御する空調制御装置であって、以下の構成要素を備える。記憶部は、各空調機器の位置に関する情報を記憶する。距離算出部は、記憶部に記憶された位置に関する情報に基づいて、各空調機器間の距離を算出する。制御順序決定部は、距離算出部によって算出された各空調機器間の距離に基づいて、居室空間の一部で、消費電力を抑制するように各空調機器を所定の時間、制御する省エネルギー制御が実行される時間帯に偏りが出ないように、省エネルギー制御が実行される各空調機器の制御順序を決定する。制御実行部は、制御順序決定部によって決定された制御順序に従って各空調機器の省エネルギー制御を繰り返し実行する。
 この発明によれば、居室空間の一部で、消費電力を抑制するように各空調機器を所定の時間制御する省エネルギー制御が実行される時間帯に偏りが出ないように、省エネルギー制御が実行される各空調機器の制御順序が決定される。このため、気温の変動を抑えることができる。これにより、省エネルギー制御を行う際の快適性の低下を防止することができる。
この発明の実施の形態1に係る空調システムの構成を示すブロック図である。 図1の空調制御装置の構成を示すブロック図である。 図1の空調制御装置の初期設定処理のフローチャートである。 表示装置に表示される空調機器の監視画面の一例を示す図である。 エリア情報の一例を模式的に示す図である。 制御順序算出処理のフローチャートである。 省エネルギー制御の流れを示す図である。 省エネルギー制御の制御順序の一例(その1)を示す図である。 省エネルギー制御のオンオフパターンのタイミングチャートである。 省エネルギー制御の制御順序の一例(その2)を示す図である。 この発明の実施の形態2に係る空調システムの構成を示すブロック図である。 図12(A)は、グループ分けされた空調機器と、その制御順序の一例を示す図である。図12(B)は、空調機器とグループとの対応関係の一例を示す図である。 機器単位での省エネルギー制御の制御順序の一例を示す図である。 図14(A)は、グループ単位での省エネルギー制御のオンオフパターンの一例を示すタイミングチャートである。図14(B)は、機器単位での省エネルギー制御のオンオフパターンの一例を示すタイミングチャートである。 省エネルギー制御の制御順序が切り替えられる様子を説明するためのタイミングチャートである。
実施の形態1.
 まず、この発明の実施の形態1について説明する。
 図1には、この発明の実施の形態1に係る空調システム1の構成が示されている。図1に示すように、この実施の形態に係る空調システム1は、複数の空調機器(室内機)2、電力量計測機器3及び空調制御装置4を備える。
 空調機器(室内機)2、電力量計測機器3及び空調制御装置4は、専用通信線5で互いに通信可能に接続されている。また、図1では特に図示していないが、空調制御装置4は、空調機器(室内機)2だけでなく、圧縮機等を有する熱源側ユニット(室外機)とも専用通信線5を介して通信可能に接続されている。さらに、空調機器(室内機)2各々には、リモートコントローラ(リモコン)6が1台ずつ接続されている。
 複数の空調機器(室内機)2は、所定の居室空間において異なる位置にそれぞれ設置されている。各空調機器(室内機)2は、空調制御装置4の制御の下で、居室空間の温度が設定された目標温度に近づくように居室空間の空気調和を行う。より具体的には、各空調機器(室内機)2は、省エネルギー制御に用いられる停止指令、送風指令、目標温度の変更指令等の各種指令を空調制御装置4から受信し、受信した指令に従って居室空間(設置された場所の周辺)の空気調和を行う。この複数の空調機器(室内機)2を、以下では、空調機器群7とも呼ぶ。
 リモコン6は、空調機器(室内機)2をユーザが操作するための操作端末である。リモコン6を操作することにより、対応する空調機器(室内機)2の運転、停止の他、冷房・暖房などの運転モードの変更、目標温度の変更、風向、風速の変更などが可能である。
 電力量計測機器3は、空調システム1又はビル全体の電力量を計測するための機器である。電力量計測機器3によって計測された電力量は、後述する空調機器(室内機)2の制御内容を切り替えるために用いられる。
 空調制御装置4は、複数の空調機器(室内機)2を含む空調機器群7及び電力量計測機器3を統括的に制御、管理する。図2に示すように、空調制御装置4は、表示装置10、入力装置20、通信管理部30、データ管理部40及び制御部50を備える。
 表示装置10は、制御部50の制御の下、各空調機器(室内機)2の運転状態の監視画面や、電力量計測機器3により計測された電力量等を表示する。
 入力装置20には、キーボード、タッチパネル等が含まれる。タッチパネルは、表示装置10上に設置されている。管理者等がキーボード、タッチパネル等を操作すると、その操作内容(例えば、監視画面の切り換え、空調機器群7の操作、各種設定等の指示)に応じた信号が制御部50に出力される。
 通信管理部30は、専用通信線5のインターフェイスである。この通信管理部30を介して空調機器(室内機)2及び電力量計測機器3とのデータの送受信が行われる。
 データ管理部40は、制御部50が空調機器群7の制御を行うために必要となる各種データを管理する。データ管理部40に管理されるデータには、大別して、空調機器データ41、省エネ設定データ42、設置位置データ43及び計測機器データ44がある。
 空調機器データ41には、各空調機器(室内機)2の接続情報61、各空調機器(室内機)2の運転状態データ62が含まれる。
 接続情報61は、空調制御装置4によって管理される各空調機器(室内機)2のアドレス番号、操作グループ番号、機種識別情報など、各空調機器(室内機)2にアクセスするために必要なデータである。
 運転状態データ62は、各空調機器(室内機)2の運転・停止状態や、冷房や暖房などの運転モード、設定温度、室内温度などの空調機器(室内機)2の現在の運転状態を示すデータである。運転状態データ62は、空調機器(室内機)2とのデータ送受信により、随時更新されている。
 省エネ設定データ42には、エリア情報71、制御レベル72、制御時間73、制御内容74が含まれている。
 エリア情報71は、空調制御装置4によって管理されている複数の空調機器(室内機)2各々を、部屋や部署単位等で区切られた複数のエリア各々と対応付けたデータである。
 制御レベル72には、制御のレベルが切り替わる電力量の閾値が含まれている。電力量計測機器3から取得された電力量が閾値を超えると、空調制御装置4は、空調機器(室内機)2の制御レベルを切り替える。
 制御時間73は、各空調機器(室内機)2に対する単位時間当たりの省エネルギー制御の実行時間を規定するデータである。制御時間73は、エリア毎、制御レベル72毎に指定することができる。
 制御内容74は、停止制御や送風制御などの省エネルギー制御の具体的な内容を規定するデータである。制御内容74は、エリア毎、制御レベル72毎に指定することができる。
 設置位置データ43には、平面図情報81、設置位置情報82が含まれる。
 平面図情報81は、居室空間のフロアの平面図の画像データである。この実施の形態では、平面図情報81は、例えばパーソナルコンピュータ等で作成され、空調制御装置4に読み込まれたものを用いることができる。なお、平面図情報81は、表示装置10に表示された平面図を見たユーザの入力装置20の操作入力により、作成されたものであってもよい。
 設置位置情報82は、居室空間の建物番号、フロア番号、及び空調機器(室内機)2の設置位置座標(x座標、y方向)に関するデータが含まれている。
 計測機器データ44には、接続情報91、計測状態データ92が管理されている。接続情報91には、電力量を計測する電力量計測機器3のアドレス情報や、電力量計測機器3等に設定される各種設定データが含まれている。計測状態データ92には、電力量計測機器3から取得された、電力量、瞬時電力、電圧、電流などの各種計測データが含まれている。
 データ管理部40に記憶されるデータは、制御部50によって随時書き込まれ、読み出される。
 制御部50は、CPU及びメモリ(いずれも不図示)を備える。CPUがメモリに格納されたプログラムを実行することにより、制御部50の機能が実現される。
 制御部50は、空調機器(室内機)2を含む空調機器群7を制御する。制御部50は、距離算出部51、制御順序決定部52及び制御実行部53を備える。
 距離算出部51は、データ管理部40に記憶された設置位置情報に基づいて、空調機器(室内機)2と他の空調機器(室内機)2との間の距離を算出する。
 制御順序決定部52は、算出された空調機器(室内機)2間の距離に基づいて、居室空間の一部で、消費電力を抑制すべく各空調機器(室内機)2を所定の時間制御する省エネルギー制御が実行される時間帯に偏りが出ないように、省エネルギー制御が実行される各空調機器(室内機)2の制御順序を決定する。
 制御実行部53は、決定された順序に従った各空調機器(室内機)2の省エネルギー制御を繰り返し実行する。
 制御部50は、この他、空調制御装置4の各構成要素を統括制御する。
 次に、空調制御装置4の動作について説明する。まず、図3を参照して、空調制御装置4のデータ管理部40の各種データの初期設定処理について説明する。
 空調システム1の起動後、まず、制御部50は、入力装置20の操作入力に従って、管理対象となる空調機器(室内機)2の接続情報61、電力量計測機器3の接続情報91の他、各種設定データをデータ管理部40に登録する(ステップS1)。
 続いて、制御部50は、居室空間のフロアの平面図のデータを、例えば通信管理部30を介して読み込んで、読み込んだデータをデータ管理部40の平面図情報81として登録するとともに、表示装置10に平面図情報81に基づく平面図を表示させる(ステップS2)。
 続いて、制御部50は、入力装置20の操作入力に従って、表示された平面図上に、各空調機器(室内機)2のアイコン400を配置表示する(ステップS3)。アイコン400は、空調機器(室内機)2の監視、操作に用いられる。
 表示されたアイコン400の位置は、入力装置20の操作入力に従って調整することができる。このとき、入力装置20(キーボード)を操作して、位置座標を直接入力することにより、各空調機器(室内機)2のアイコン400の位置を調整するようにしてもよいし、入力装置20(タッチパネル)を操作することにより、各空調機器(室内機)2のアイコン400の位置を調整するようにしてもよい。
 図4には、表示装置10に表示される空調機器(室内機)2の監視画面の一例が示されている。この監視画面には、平面図情報81に基づく居室空間のフロアの平面図が表示されている。さらに、この監視画面には、平面図の上に空調機器(室内機)2のアイコン400が表示されている。図4では、6つの空調機器(室内機)01~06のアイコン400が表示されている。
 空調機器(室内機)2の位置座標が、アイコン400とともに表示される。最終的に決定された空調機器(室内機)2のアイコン400の位置座標は、設置位置情報82として、データ管理部40に登録される。
 アイコン400の色やマークは、運転、停止、異常などの空調機器(室内機)2の運転状態を表す。制御部50は、空調機器(室内機)2の運転状態を、通信管理部30を介して取得し、その運転状態を運転状態データ62として登録するとともに、アイコン400の色やマークをその運転状態に合わせて表示する。
 なお、入力装置20(タッチパネル)により、各空調機器(室内機)2のアイコン400が操作されると、制御部50は、その操作に応じて各空調機器(室内機)2を制御することも可能である。
 図3に戻り、続いて、制御部50は、入力装置20の操作入力により、部屋や部署単位で区切られたエリアを、エリア情報71として登録する(ステップS4)。各エリアは、空調機器(室内機)2を少なくとも1台含むように設定される。また、1つのエリアに複数の空調機器(室内機)2を含むようにしてもよい。
 図5には、複数の空調機器(室内機)2各々がエリアに対応付けられたエリア情報71の一例が模式的に示されている。各エリアは、部屋単位や部署単位で分割されている。図5に示すエリア情報71では、エリア01に空調機器01~06が対応付けられている。また、エリア02に空調機器07~10が対応付けられている。また、エリア03に空調機器11~14が対応付けられている。また、エリア10に空調機器45~50が対応づけられている。この実施の形態では、エリア毎に、省エネルギー制御が巡回的に実行される。
 図3に戻り、続いて、制御部50は、入力装置20の操作入力により、制御レベル72毎に、単位時間当たりで省エネルギー制御をかける時間(例えば30分間に3分間制御など)が制御時間73として設定され、制御内容(停止制御、送風制御、サーモオフ制御など)が制御内容74として設定される(ステップS5)。なお、各制御レベル72は、電力量計測機器3から取得する電力量によって切り替わるものである。利用者は、制御レベル72を切り替える際の閾値を、登録することが可能である。
 以上で、初期設定処理が終了する。
 次に、図6を参照して、省エネルギー制御の制御順序算出処理について説明する。この処理は、空調制御装置4が起動したとき、及び空調機器(室内機)2の接続情報61、エリア情報71、空調機器(室内機)2の設置位置情報82が変更されたときに実行される。
 まず、制御順序決定部52は、省エネルギー制御を実行する最初の空調機器(室内機)2を決定する(ステップS11)。最初の空調機器(室内機)2は任意でよい。
 続いて、距離算出部51は、前回の制御対象となった空調機器(室内機)2と、残りの各空調機器(室内機)2との間の距離、すなわち決定された空調機器(室内機)2との距離を算出する(ステップS12)。このとき、前回の制御対象となった空調機器(室内機)2との距離は、次式で求められる。
  距離=√((X座標の差分値)2+(Y座標の差分値)2
 なお、この実施の形態では、各空調機器(室内機)2間で算出された距離の相対的な大小関係が分かればよいので、上式のように平方根を用いずに、(X座標の差分値)2+(Y座標の差分値)2をそのまま距離として算出するようにしてもよい。
 続いて、制御順序決定部52は、省エネルギー制御をまだ実行していない残りの空調機器(室内機)2と、前回の制御対象であった空調機器(ここでは、空調機器01)との距離が近い順に近接順位を決定する(ステップS13)。この近接順位は、近い順に、1、2、3、…というように割り当てられる。
 ここで、前回の制御対象となる空調機器(室内機)2との距離が、同一となる空調機器(室内機)2が複数ある場合には、制御順序決定部52は、前々回の制御対象となる空調機器との距離が小さいものを近接順位の上位とすることができる。また、前々回の制御対象となる空調機器が無いか(2番目の空調機器(室内機)2の距離の算出時)、前々回の制御対象となる空調機器(室内機)2との距離も同一である場合には、制御順序決定部52は、空調機器(室内機)2のアドレスの小さいものを近接順位の上位とすることができる。
 続いて、制御順序決定部52は、決定された近接順位の中で中央となる空調機器(室内機)2、すなわち近接順位が次式で求められる空調機器(室内機)2を、次回の制御対象として選択する(ステップS14)。
  次回の制御対象となる空調機器の近接順位=((残りの空調機器の台数)/2)+1
   ただし、(残りの空調機器の台数)/2が割り切れない場合は、小数点以下は切り捨てとする。
 上記式によれば、省エネルギー制御が行われていない残りの空調機器(室内機)2の打数が奇数台である場合には、近接順位の中央となる空調機器(室内機)2が選択され、残りの空調機器(室内機)2の台数が偶数台である場合には、近接順位の中央よりも1つ上の空調機器(室内機)2が、選択される。例えば、残りの空調機器(室内機)2が、7台である場合は近接順位が4番目の空調機器(室内機)2が選択され、残りの空調機器(室内機)2が4台の場合には、近接順位が3番目の空調機器(室内機)2が選択される。
 続いて、制御順序決定部52は、すべての空調機器(室内機)2が選択されたか否かを判定する(ステップS15)。まだ選択されていない空調機器(室内機)2があれば(ステップS15;No)、制御部50は、ステップS12に戻る。
 以降、すべての空調機器(室内機)2が選択されるまで(ステップS15;Yes)、ステップS12→S13→S14→S15が繰り返され、省エネルギー制御を実行する空調機器(室内機)2の制御順序が決定される。
 空調機器01から空調機器06までの6台の空調機器が、図3に示す位置座標に設置されている場合について図7を参照して説明する。図7に示すように、このエリア内で省エネルギー制御を最初に実行する空調機器(室内機)2を、空調機器01とする。
 上述の制御順序算出処理を実行することにより、2番目に制御される空調機器(室内機)2として、また選択されていない空調機器02、03、04、05、06の5台のうち、近接順位が3番目となる[空調機器04]が選択される。さらに、3番目に制御される空調機器として、まだ選択されていない空調機器02、03、05、06の4台のうち、近接順位が3番目である[空調機器06]が選択される。同様にして4番目に制御される空調機器として[空調機器03]が選択される。続いて、5番目に制御される空調機器として[空調機器02]が選択される。続いて、6番目に制御される空調機器として[空調機器05]が選択される。最後の[空調機器05]の次は、最初に制御する[空調機器01]に戻り、以降、この順番で繰り返し省エネルギー制御が実行される。
 図8には、上述で求めた制御順序処理に従って決定された室内機01~06の省エネルギー制御の制御順序が模式的に示されている。また、図9には、室内機01~06の省エネルギー制御のオンオフパターンのタイミングチャートが示されている。図8に示す制御順序で省エネルギー制御を実行すれば、居室空間の一部で、省エネルギー制御が実行される時間帯に偏りが出ないようにすることができるので、省エネルギー制御による局所的な温度の大幅な変動を抑制することができる。
 図10には、空調機器(室内機)2の台数が11台である場合に決定される制御順序の一例が示されている。図10に示すように、省エネルギー制御が実行される場所が分散するように、省エネルギー制御の制御順序が決定されている。
 なお、この実施の形態では、制御対象となっている空調機器(室内機)2との距離に応じた近接順位がほぼ中央の空調機器(室内機)2を、次回の制御対象となる空調機器(室内機)2として選択する算出式を、制御順序を算出するための算出式として用いた。しかしながら、これには限られず、空調機器(室内機)2の間の距離に応じて算出する方法であれば、他の算出式を用いて制御順序を算出するようにしても良い。例えば、全体の1/3程度の近接順位の空調機器(室内機)2が、次の制御対象となる空調機器として選択する算出式を用いてもよい。
 また、空調機器(室内機)2の台数によって算出式を変更するなど、接続情報61や設置位置情報82によって算出式を変更するようにしてもよい。
 また、この実施の形態では、前々回の制御対象となる空調機器(室内機)2までを考慮して近接順位を決定しているが、前々回までに限らず、さらにその前に先行して省エネルギー制御が実行された空調機器(室内機)2との距離を考慮して近接順位を決定するようにしてもよい。
 また、この実施の形態では、各空調機器(室内機)2の位置情報を、平面図上の座標位置から取得した。しかしながら、各空調機器(室内機)2の実際の位置座標を予め計測し、計測された各空調機器(室内機)2の位置座標を、空調制御装置4に登録しておき、制御順序の算出の際に、登録された位置座標に基づいて、各空調機器(室内機)2間の距離を算出するようにしてもよい。
 また、空調機器(室内機)2自身が、UWB(Ultra Wide Band)などの技術を用いて、他の空調機器(室内機)2との距離を自動的に計測し、その計測結果を空調制御装置4が空調機器(室内機)2から取得して、省エネルギー制御の制御順序の算出に用いてもよい。
 以上詳細に説明したように、この実施の形態に係る空調制御装置4によれば、居室空間の一部で、消費電力を抑制するように各空調機器(室内機)2を所定の時間制御する省エネルギー制御が実行される時間帯に偏りが出ないように、省エネルギー制御が実行される各空調機器(室内機)2の制御順序が決定される。このため、省エネルギー制御を行う際の快適性の低下を防止することができる。
 また、この実施の形態によれば、急激な温度変化を抑制して居住者の体感温度を極力一定に保つことが可能となる。また、急激な温度変化によって居住者が体調を崩すのを極力防ぐことができる。また、体感温度が極力一定に保たれると、暑くなったときに居住者がリモコン6を操作して必要以上に設定温度を下げてしまい、省エネルギー制御が実行されていない時間帯の気温が下がりすぎて、消費電力が増大するといった不都合も防ぐことができる。
 また、前回の省エネルギー制御の制御対象であった空調機器(室内機)2との距離だけでなく、前々回やそれ以前の省エネルギー制御の制御対象となる空調機器(室内機)2との距離も考慮して制御順序を算出することができる。これにより、省エネルギー制御がある領域に集中して行われないような制御順序を決定することができる。
 また、省エネルギー制御の制御順序は、通常の空調機器(室内機)2の監視を行う際に設定する平面図上における空調機器(室内機)2のアイコン400の位置座標(設置位置情報82)を用いて算出されている。このため、省エネルギー制御の制御順序を算出するための新たな設定を行う必要が無くなるので、作業者の作業負荷を軽減することができる。
 また、空調機器(室内機)2の接続情報61、エリア情報71、設置位置情報82が変更された場合でも、省エネルギー制御の制御順序が自動的に再算出される。このため、制御順序を、常に現在の空調機器(室内機)2の配置状態に応じた適切なものに保つことができる。
実施の形態2.
 次に、この発明の実施の形態2について説明する。
 上記実施の形態1では、省エネルギー制御の制御単位を機器単位とした。この実施の形態では、複数の空調機器(室内機)2を1グループとし、グループ単位でも、省エネルギー制御を行うことができる空調システム1を提供する。
 実際のビル等では、リモコン6の数を削減するために、複数の空調機器(室内機)2を1制御単位(1グループ)として1台のリモコン6に接続している場合も多い。グループ単位での省エネルギー制御は、このような場合に好適である。
 空調機器(室内機)2をグループ化すると、リモコン6でも操作可能な停止制御や送風制御などの省エネルギー制御を実行する場合には、リモコン6に表示される空調機器(室内機)2の運転状態と実際の空調機器(室内機)2の運転状態とに違いが生じないように、グループ内の全ての空調機器(室内機)2に対して同一の制御内容で省エネルギー制御が行われる必要がある。そこで、空調制御装置4は、停止制御や送風制御などのような省エネルギー制御を、グループ単位で行う。
 一方で、各空調機器(室内機)2には、自律的に冷媒を流す量を調節することにより、吹き出し温度を制御し、室内温度を設定温度に近づける機能が設けられている。この機能は、リモコン6からは直接操作することのできない機能である。逆に言えば、この機能は、同じグループ内の各空調機器(室内機)2で個別に制御できる機能である。そこで、この実施の形態では、空調制御装置4は、冷媒量を強制的に遮断する命令を送信し、いわゆるサーモオフを行うような省エネルギー制御を、機器単位で行う。
 さらに、空調制御装置4は、リモコン6は共通な複数の空調機器(室内機)2をグループ化し、省エネルギー制御を行う制御単位を、グループ単位と機器単位との間で切り替え可能とし、制御内容に応じて最適な制御単位で省エネルギー制御を行う。
 図11には、この実施の形態に係る空調システム1の概略的な構成が示されている。図11に示すように、この空調システム1では、空調機器(室内機)2のうち、空調機器01、02に接続されたリモコン6は共通である。また、空調機器(室内機)2のうち、空調機器03、04に接続されたリモコン6が共通である。また、空調機器(室内機)2のうち、空調機器05、06、07に接続されたリモコン6が共通である。また、空調機器(室内機)2のうち、空調機器08、09に接続されたリモコン6が共通である。また、空調機器(室内機)2のうち、空調機器10、11に接続されたリモコン6が共通となっている。
 図12(A)には、平面図上の空調機器(室内機)2が、グループ単位で区切って示されている。図12(B)には、グループと空調機器(室内機)2との対応関係を示すテーブルが示されている。図12(A)、図12(B)に示すように、グループ1には空調機器01、02が登録され、グループ2には空調機器03、04が登録されている。また、グループ3には空調機器05、06、07が登録され、グループ4には空調機器08、09が登録され、グループ5には空調機器10、11が登録されている。
 なお、図12(A)に示す各グループの位置座標は、グループ内に含まれる空調機器(室外機)2の位置座標の平均値である。
 この実施の形態に係るその他の構成は、上記実施の形態1と同様である。
 次に、この実施の形態に係る空調システム1の動作について説明する。
 まず、初期設定処理について説明する。空調システム1の起動時に実行される初期設定処理の流れは、上記実施の形態1(図3参照)と同じである。ただし、ステップS1で登録される空調機器(室内機)2の接続情報61には、例えば、図12(B)に示すような、各空調機器(室内機)2が属するグループに関するテーブルも含まれる。
 その他の初期設定処理は実施の形態1と同様である。
 続いて、制御順序算出処理について説明する。この制御順序算出処理は、空調制御装置4が起動したとき、空調機器接続情報61、エリア情報71、設置位置情報82が変更されたときに実行される。
 制御順序算出処理の流れは、上記実施の形態1と同じである。ただし、この実施の形態では、制御単位をブロック単位として制御順序算出処理が行われ、さらに、制御単位を機器単位として制御順序算出処理が行われる。すなわち、ここでは、ブロック単位での制御順序と、機器単位での制御順序とが両方算出される。グループ単位の制御順序を求める場合には、1グループを1つの空調機器(室内機)2とみなして制御順序が算出される。各グループの位置座標は、設置位置情報82に含まれる空調機器(室外機)2の位置座標の平均値とする。
 図12(A)には、各グループを制御単位として、上記実施の形態1で示した制御順序算出処理を実行して算出された省エネルギー制御の制御順序が矢印で示されている。グループ単位で制御順序を算出した場合は、図12(A)に示すように、グループ単位で省エネルギー制御が遷移するものとし、図12(A)では、グループ1、グループ2、グループ5、グループ4、グループ3の順に省エネルギー制御が実行される。
 また、図13には、制御単位を機器単位として上記実施の形態1で示した制御順序算出処理を実行して算出された省エネルギー制御の制御順序が示されている。機器単位で制御順序を算出した場合は、図13に示すように、操作グループとは関係なく、上記実施の形態1と同様に、空調機器01、空調機器03、空調機器10、空調機器05、空調機器06、空調機器04、空調機器02、空調機器08、空調機器07、空調機器09、空調機器11という順に省エネルギー制御が実行される。
 図14(A)には、制御単位がグループ単位である場合の省エネルギー制御のタイミングチャートが示されている。また、図14(B)には、制御単位が機器単位である場合の省エネルギー制御のオンオフパターンのタイミングチャートが示されている。グループ単位及び機器単位での省エネルギー制御を行うオンオフパターンのタイミングは、制御時間73、エリア情報71に保持されている制御対象となる空調機器(室内機)2の台数に基づいて決定される。
 制御内容が停止制御、送風制御など、グループ単位で統一しなければならないものである場合には、制御部50は、グループ単位で省エネルギー制御を行う。また、制御内容がサーモオフなど、空調機器自身で自律制御するものである場合は、制御部50は、機器単位で省エネルギー制御を行う。このようにすれば、快適性の低下を極力防止することができる。
 例えば、省エネ設定データ42において、制御レベル3に対応する制御時間として[3分間(30分中)]が設定され、制御内容として[停止]が設定されているものとする。また、制御レベル2に対応する制御時間として[3分間(30分中)]が設定されており、制御内容として[サーモオフ]が設定されているものとする。制御部50は、電力量計測機器3で計測された電力量が閾値を下回ると、電力量に余裕が出たとみなして、制御レベルを3から2に変更し、制御内容を、停止制御からサーモオフ制御へ変更する。
 制御実行部53は、この制御内容の変更に応じて、制御単位をグループ単位から機器単位に切り替える。例えば、図15に示すように、制御レベルが3であるときには、制御実行部53は、グループ単位で省エネルギー制御を行っていたが、電力量が所定の閾値を下回った時点tで、制御実行部53は、制御レベルを3から2に切り替え、制御内容を、停止制御からサーモオフ制御へ変更するとともに、グループ単位から機器単位での省エネルギー制御に切り替える。
 なお、グループ単位、機器単位での省エネルギー制御のオンオフパターンは、制御台数、制御時間73に基づいて算出されるようにしてもよいし、予め登録されているオンオフパターンを用いて作成してもよい。
 また、制御部50は、オンオフパターンを、空調制御装置4の起動時や設定変更時に算出して保持しておいてもよいし、毎分ごとに制御対象の空調機器(室内機)2を決定し、その都度、省エネルギー制御を行ってもよい。
 また、この実施の形態では、制御部50は、空調機器(室内機)2のアイコン400を機器単位で表示装置10に表示しているが、グループのアイコンを表示するようにしてもよい。また、設置位置情報82にグループの位置座標が含まれるようにしてもよい。
 以上詳細に説明したように、この実施の形態に係る空調制御装置4によれば、グループ単位での省エネルギー制御が可能となる。
 また、この実施の形態に係る空調制御装置4によれば、制御内容に応じてグループ単位での省エネルギー制御と、機器単位での省エネルギー制御とを切り替える。より具体的には、制御部50は、制御内容がリモコンで操作可能な項目であればグループ単位で省エネルギー制御を行い、制御内容がリモコンで操作できない項目であれば機器単位で省エネルギー制御を行う。これにより、リモコン6の表示と実際の空調機器(室内機)2の運転状態の相違が発生せず、かつ快適性の低下を極力防ぎつつ、省エネルギー化を実現することができる。
 また、例えば、電力量の使用量に余裕がある場合は、快適性を重視した機器単位での省エネルギー制御が行われ、電力使用量がひっ迫し、停止制御により通常より電力量を削減したい場合には、グループ単位での省エネルギー制御に切り換えられる。このようにすれば、電力量の使用状況に応じた最適な省エネルギー制御を実現することができる。
 なお、上記実施の形態において、実行されるプログラムは、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical Disk)等のコンピュータ読み取り可能な記録媒体に格納して配布し、そのプログラムをインストールすることにより、上述の処理を実行するシステムを構成することとしてもよい。
 また、プログラムをインターネット等の通信ネットワーク上の所定のサーバ装置が有するディスク装置等に格納しておき、例えば、搬送波に重畳させて、ダウンロード等するようにしてもよい。
 また、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを媒体に格納して配布してもよく、また、ダウンロード等してもよい。
 また、この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 本出願は、2010年8月18日に出願された、日本国特許出願2010-182919号に基づく。本明細書中に日本国特許出願2010-182919号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明は、複数の空調機器(室内機)が設置されている居室空間の環境制御に好適である。
 1 空調システム
 2 空調機器(室内機)
 3 電力量計測機器
 4 空調制御装置
 5 専用通信線
 6 リモートコントローラ(リモコン)
 7 空調機器群
 10 表示装置
 20 入力装置
 30 通信管理部
 40 データ管理部
 41 空調機器データ
 42 省エネ設定データ
 43 設置位置データ
 44 計測機器データ
 50 制御部
 51 距離算出部
 52 制御順序決定部
 53 制御実行部
 61 接続情報
 62 運転状態データ
 71 エリア情報
 72 制御レベル
 73 制御時間
 74 制御内容
 81 平面図情報
 82 設置位置情報
 91 接続情報
 92 計測状態データ
 400 アイコン

Claims (11)

  1.  所定の居室空間の異なる位置に設置された複数の空調機器を制御する空調制御装置であって、
     前記各空調機器の位置に関する情報を記憶する記憶部と、
     前記記憶部に記憶された前記位置に関する情報に基づいて、前記各空調機器間の距離を算出する距離算出部と、
     前記距離算出部によって算出された前記各空調機器間の距離に基づいて、前記居室空間の一部で、消費電力を抑制するように前記各空調機器を所定の時間、制御する省エネルギー制御が実行される時間帯に偏りが出ないように、前記省エネルギー制御が実行される前記各空調機器の制御順序を決定する制御順序決定部と、
     前記制御順序決定部によって決定された制御順序に従って前記各空調機器の省エネルギー制御を繰り返し実行する制御実行部と、
     を備える空調制御装置。
  2.  前記距離算出部は、
     前記複数の空調機器のうち、制御順序が決定された決定済み空調機器と、制御順序が決定されていない残りの空調機器との距離を算出し、
     前記制御順序決定部は、
     算出された距離に基づいて、前記決定済み空調機器に近い順に前記残りの空調機器の近接順位を求め、前記残りの空調機器全体で前記近接順位が前記残りの空調機器の台数の半分に相当する空調機器を次回の制御対象として選択する処理を、全ての空調機器が制御対象として選択されるまで繰り返す、
     請求項1に記載の空調制御装置。
  3.  前記制御順序決定部は、
     前記決定済み空調機器のうち、前回の制御対象となった空調機器との距離に基づいて、前記近接順位を算出する、
     請求項2に記載の空調制御装置。
  4.  前記制御順序決定部は、
     前回の制御対象となった空調機器との距離が同一である空調機器について、前回よりも先行して制御対象となった空調機器との距離が近い順に前記近接順位を算出する、
     請求項3に記載の空調制御装置。
  5.  前記複数の空調機器は、操作入力手段が共通である幾つかのグループにまとめられ、
     前記距離算出部は、
     前記省エネルギー制御の制御内容が前記操作入力手段により操作可能なものである場合には、前記各グループの位置情報に基づいて、前記各グループ間の距離を算出し、
     前記制御順序決定部は、
     前記各グループ間の距離に基づいて、前記居室空間の一部で、消費電力を抑制するように前記各空調機器を所定の時間、制御する省エネルギー制御が実行される時間帯に偏りが出ないように前記各グループに対して省エネルギー制御を行う制御順序を決定し、
     前記制御実行部は、
     決定された制御順序に従って前記各グループの省エネルギー制御を繰り返し実行する、
     請求項1乃至4のいずれか一項に記載の空調制御装置。
  6.  前記制御実行部は、
     前記省エネルギー制御の制御内容が前記操作入力手段により操作可能なものである場合には、グループ単位で省エネルギー制御を実行し、
     前記省エネルギー制御の制御内容が前記操作入力手段により操作できないものである場合には、機器単位で省エネルギー制御を実行する、
     請求項5に記載の空調制御装置。
  7.  前記複数の空調機器の電力量が所定の閾値を超えると、前記省エネルギー制御の制御内容が前記操作入力手段により操作可能なものに設定され、
     前記複数の空調機器の電力量が所定の閾値を下回ると、前記省エネルギー制御の制御内容が前記操作入力手段により操作できないものに設定される、
     請求項6に記載の空調制御装置。
  8.  前記居室空間のフロアの平面図を表示するとともに、前記居室空間に前記各空調機器が設置された位置に相当する前記平面図内の位置に前記各空調機器の運転状態を示すアイコンを表示する表示部と、
     前記表示部に表示されたアイコンの位置を操作入力により調整可能な入力部と、
     をさらに備え、
     前記記憶部は、
     前記各空調機器のアイコンの位置情報を記憶し、
     前記距離算出部は、
     前記各空調機器のアイコンの位置情報に基づいて、前記各空調機器間の距離を算出する、
     請求項1乃至7のいずれか一項に記載の空調制御装置。
  9.  前記記憶部に記憶される情報が変更される度に、
     前記距離算出部が、前記記憶部に記憶された前記位置に関する情報に基づいて、前記各空調機器間の距離を算出し、
     前記制御順序決定部が、前記距離算出部によって算出された前記各空調機器間の距離に基づいて、前記居室空間の一部で、消費電力を抑制するように前記各空調機器を所定の時間制御する省エネルギー制御が実行される時間帯に偏りが出ないように、前記省エネルギー制御が実行される前記各空調機器の制御順序を決定する、
     請求項1乃至8のいずれか一項に記載の空調制御装置。
  10.  所定の居室空間の異なる位置に設置された複数の空調機器を制御する空調制御方法であって、
     記憶部に記憶された前記各空調機器の位置に関する情報に基づいて、前記各空調機器間の距離を算出する距離算出工程と、
     前記距離算出工程において算出された前記各空調機器間の距離に基づいて、前記居室空間の一部で、消費電力を抑制するように前記各空調機器を所定の時間制御する省エネルギー制御が特定の時間帯に特定の領域で集中して行われないように、前記省エネルギー制御が実行される前記各空調機器の制御順序を決定する制御順序決定工程と、
     前記制御順序決定工程において決定された制御順序に従って前記各空調機器の省エネルギー制御を繰り返し実行する制御実行工程と、
     を備える空調制御方法。
  11.  所定の居室空間の異なる位置に設置された複数の空調機器を制御するコンピュータを、
     記憶部に記憶された前記各空調機器の位置に関する情報に基づいて、前記各空調機器間の距離を算出する距離算出手段、
     前記距離算出手段によって算出された前記各空調機器間の距離に基づいて、前記居室空間の一部で、消費電力を抑制するように前記各空調機器を所定の時間制御する省エネルギー制御が特定の時間帯に特定の領域で集中して行われないように、前記省エネルギー制御が実行される前記各空調機器の制御順序を決定する制御順序決定手段、
     前記制御順序決定手段によって決定された制御順序に従って前記各空調機器の省エネルギー制御を繰り返し実行する制御実行手段、
     として機能させるプログラム。
PCT/JP2011/051653 2010-08-18 2011-01-27 空調制御装置、空調制御方法及びプログラム WO2012023297A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012529498A JP5535320B2 (ja) 2010-08-18 2011-01-27 空調制御装置、空調制御方法及びプログラム
US13/811,932 US9222688B2 (en) 2010-08-18 2011-01-27 Air conditioning control device, air conditioning control method and program
CN201180038726.9A CN103069223B (zh) 2010-08-18 2011-01-27 空调控制装置、空调控制方法以及程序
EP11817946.4A EP2607804B1 (en) 2010-08-18 2011-01-27 Air conditioning control device, air conditioning control method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-182919 2010-08-18
JP2010182919 2010-08-18

Publications (1)

Publication Number Publication Date
WO2012023297A1 true WO2012023297A1 (ja) 2012-02-23

Family

ID=45604965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051653 WO2012023297A1 (ja) 2010-08-18 2011-01-27 空調制御装置、空調制御方法及びプログラム

Country Status (5)

Country Link
US (1) US9222688B2 (ja)
EP (1) EP2607804B1 (ja)
JP (1) JP5535320B2 (ja)
CN (1) CN103069223B (ja)
WO (1) WO2012023297A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134299A (ja) * 2013-01-08 2014-07-24 Mitsubishi Electric Corp システムコントローラ、省エネ制御方法及びプログラム
JP2016011779A (ja) * 2014-06-27 2016-01-21 三菱電機株式会社 空調管理サーバ、空調管理システム、空調管理方法、及び、プログラム
JPWO2014038040A1 (ja) * 2012-09-06 2016-08-08 三菱電機株式会社 空調制御装置、空調制御方法及びプログラム
JP2019163872A (ja) * 2018-03-19 2019-09-26 株式会社東芝 空調管理装置、空調管理設定方法及びプログラム
JP2020087867A (ja) * 2018-11-30 2020-06-04 株式会社リコー 制御装置、制御システムおよび制御方法
US11019152B2 (en) * 2017-03-31 2021-05-25 Daikin Industries, Ltd. Equipment installation support system
WO2021171484A1 (ja) * 2020-02-27 2021-09-02 東芝キヤリア株式会社 設備管理装置および設備管理画面生成方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128784A1 (ja) * 2013-02-20 2014-08-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 携帯情報端末の制御方法及びプログラム
WO2014128786A1 (ja) * 2013-02-20 2014-08-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 携帯情報端末の制御方法及びプログラム
JP6175871B2 (ja) * 2013-04-05 2017-08-09 富士通株式会社 計画策定装置、計画策定システム、計画策定方法および計画策定プログラム
JP5843816B2 (ja) * 2013-07-11 2016-01-13 三菱電機株式会社 空調制御装置、プログラム及び空調管理システム
WO2015145653A1 (ja) * 2014-03-27 2015-10-01 三菱電機株式会社 空気調和システム
WO2015181899A1 (ja) * 2014-05-27 2015-12-03 三菱電機株式会社 空気調和システム
CN104266313B (zh) * 2014-10-16 2017-02-01 珠海格力电器股份有限公司 一种控制调整方法、装置和空调控制器
US10473348B2 (en) * 2014-11-10 2019-11-12 Internal Air Flow Dynamics, Llc Method and system for eliminating air stratification via ductless devices
JP6405228B2 (ja) * 2014-12-24 2018-10-17 アズビル株式会社 空調制御システムおよび方法
TWI580913B (zh) * 2015-09-02 2017-05-01 Environmental sensing energy - saving control method
US20170284720A1 (en) * 2016-03-31 2017-10-05 Palo Alto Research Center Incorporated System and method for remotely determining local operating environment of a refrigerant condenser unit
CN107388479B (zh) * 2017-06-22 2019-10-18 珠海格力电器股份有限公司 一种空调控制方法、装置及空调
US11092352B2 (en) * 2017-07-27 2021-08-17 Johnson Controls Tyco IP Holdings LLP Central plant control system with computation reduction based on stranded node analysis
US11867419B2 (en) 2017-07-27 2024-01-09 Johnson Controls Technology Company Systems and methods to automatically link availability of series devices in a plant
CN108302742B (zh) * 2018-04-13 2020-05-29 珠海格力电器股份有限公司 空调机组的控制器和空调器
CN109899939B (zh) * 2019-03-18 2022-04-19 珠海格力电器股份有限公司 一种控制机组稳定运行的方法及系统
CN112762550B (zh) * 2019-10-18 2022-05-17 宁波方太厨具有限公司 一种家庭空气净化方法及净化系统
CN114963470B (zh) * 2022-05-24 2023-09-15 北京玛斯特系统工程有限公司 一种智慧楼宇空调控制方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287496A (ja) * 1998-03-31 1999-10-19 Caliber Denko:Kk 空調機の使用電力制御方法
JP2002010532A (ja) * 2000-06-19 2002-01-11 Daikin Ind Ltd 電気機器のデマンド制御システム、デマンド制御方法、デマンド制御管理装置及びデマンド制御管理方法
JP2006038334A (ja) * 2004-07-27 2006-02-09 Shimizu Corp マルチエアコンの省エネ制御システム
JP4331554B2 (ja) 2003-09-24 2009-09-16 株式会社山武 空調機の運転制御方法および装置
JP2010020651A (ja) * 2008-07-14 2010-01-28 Daikin Ind Ltd 設備機器管理装置
JP2010182919A (ja) 2009-02-06 2010-08-19 Tokyo Electron Ltd 基板処理システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972996B1 (en) * 1997-12-25 2004-03-03 Mitsubishi Denki Kabushiki Kaisha Air-conditioning control information display method and air-conditioning controller
CN1119577C (zh) * 1997-12-25 2003-08-27 三菱电机株式会社 空调管理信息显示方法和空调管理装置
KR20040048186A (ko) * 2002-12-02 2004-06-07 엘지전자 주식회사 멀티 에어컨의 중앙 제어 시스템 및 그 동작방법
KR100649599B1 (ko) * 2004-03-22 2006-11-27 엘지전자 주식회사 다중지역 통합용 에어컨 시스템
US7809472B1 (en) * 2004-07-06 2010-10-05 Custom Manufacturing & Engineering, Inc. Control system for multiple heating, ventilation and air conditioning units
JP4552119B2 (ja) 2004-07-16 2010-09-29 清水建設株式会社 マルチエアコンのデマンド制御システム
US7378980B2 (en) * 2004-09-29 2008-05-27 Siemens Building Technologies, Inc. Triangulation of position for automated building control components
JP2008533796A (ja) * 2005-03-11 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 設置計画に従ったワイヤレスネットワーク装置のコミッショニング
US7854389B2 (en) * 2005-08-30 2010-12-21 Siemens Industry Inc. Application of microsystems for comfort control
CN101583831B (zh) * 2007-01-17 2011-12-21 大金工业株式会社 空调控制系统
KR100844324B1 (ko) * 2007-01-26 2008-07-07 엘지전자 주식회사 멀티에어컨의 디맨드 제어시스템 및 디맨드 제어방법
US7702421B2 (en) * 2007-08-27 2010-04-20 Honeywell International Inc. Remote HVAC control with building floor plan tool
US7963454B2 (en) * 2007-08-27 2011-06-21 Honeywell International Inc. Remote HVAC control with remote sensor wiring diagram generation
WO2009111489A2 (en) * 2008-03-03 2009-09-11 Federspiel Corporation Methods and systems for coordinating the control of hvac units
US20090307255A1 (en) * 2008-06-06 2009-12-10 Johnson Controls Technology Company Graphical management of building devices
US8295981B2 (en) * 2008-10-27 2012-10-23 Lennox Industries Inc. Device commissioning in a heating, ventilation and air conditioning network
FR2939554B1 (fr) * 2008-12-10 2015-08-21 Somfy Sas Procede de fonctionnement d'un systeme domotique
US8483850B2 (en) * 2009-05-21 2013-07-09 Lennox Industries Inc. HVAC system, a method for determining a location of an HVAC unit with respect to a site and an HVAC controller
US8239068B1 (en) * 2009-06-26 2012-08-07 Comverge, Inc. Method and system for cooperative powering of unitary air conditioners
US8290628B2 (en) * 2010-07-23 2012-10-16 Lg Electronics Inc. Air conditioner and method for controlling the same
US8838763B2 (en) * 2010-12-16 2014-09-16 Lennox Industries Inc. Communications system, a HVAC system employing the same and a method of manufacturing a component for the HVAC system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287496A (ja) * 1998-03-31 1999-10-19 Caliber Denko:Kk 空調機の使用電力制御方法
JP2002010532A (ja) * 2000-06-19 2002-01-11 Daikin Ind Ltd 電気機器のデマンド制御システム、デマンド制御方法、デマンド制御管理装置及びデマンド制御管理方法
JP4331554B2 (ja) 2003-09-24 2009-09-16 株式会社山武 空調機の運転制御方法および装置
JP2006038334A (ja) * 2004-07-27 2006-02-09 Shimizu Corp マルチエアコンの省エネ制御システム
JP2010020651A (ja) * 2008-07-14 2010-01-28 Daikin Ind Ltd 設備機器管理装置
JP2010182919A (ja) 2009-02-06 2010-08-19 Tokyo Electron Ltd 基板処理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2607804A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014038040A1 (ja) * 2012-09-06 2016-08-08 三菱電機株式会社 空調制御装置、空調制御方法及びプログラム
JP2014134299A (ja) * 2013-01-08 2014-07-24 Mitsubishi Electric Corp システムコントローラ、省エネ制御方法及びプログラム
JP2016011779A (ja) * 2014-06-27 2016-01-21 三菱電機株式会社 空調管理サーバ、空調管理システム、空調管理方法、及び、プログラム
US11019152B2 (en) * 2017-03-31 2021-05-25 Daikin Industries, Ltd. Equipment installation support system
JP7030580B2 (ja) 2018-03-19 2022-03-07 株式会社東芝 空調管理装置、空調管理設定方法及びプログラム
JP2019163872A (ja) * 2018-03-19 2019-09-26 株式会社東芝 空調管理装置、空調管理設定方法及びプログラム
JP7188032B2 (ja) 2018-11-30 2022-12-13 株式会社リコー 制御装置、制御システムおよび制御方法
JP2020087867A (ja) * 2018-11-30 2020-06-04 株式会社リコー 制御装置、制御システムおよび制御方法
JPWO2021171484A1 (ja) * 2020-02-27 2021-09-02
WO2021171484A1 (ja) * 2020-02-27 2021-09-02 東芝キヤリア株式会社 設備管理装置および設備管理画面生成方法
JP7310005B2 (ja) 2020-02-27 2023-07-18 東芝キヤリア株式会社 設備管理装置および設備管理画面生成方法
AU2020431710B2 (en) * 2020-02-27 2023-07-20 Toshiba Carrier Corporation Equipment management apparatus and equipment management screen generating method
US11740762B2 (en) 2020-02-27 2023-08-29 Toshiba Carrier Corporation Equipment management apparatus and equipment management screen generating method

Also Published As

Publication number Publication date
EP2607804A1 (en) 2013-06-26
JPWO2012023297A1 (ja) 2013-10-28
EP2607804A4 (en) 2014-03-19
US20130123992A1 (en) 2013-05-16
JP5535320B2 (ja) 2014-07-02
US9222688B2 (en) 2015-12-29
CN103069223B (zh) 2016-03-16
EP2607804B1 (en) 2019-08-28
CN103069223A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5535320B2 (ja) 空調制御装置、空調制御方法及びプログラム
JP5436692B2 (ja) 空調制御装置、空調制御方法及びプログラム
CN103328899B (zh) 控制装置、控制方法以及空调系统
US20140207291A1 (en) User interface screens for zoned hvac systems, a controller employing the screens and a method of operating a zoned hvac system
JP5595507B2 (ja) 空調制御装置、空調制御方法、及び、プログラム
JP6058036B2 (ja) 制御装置、制御システム、制御方法及びプログラム
US20140031990A1 (en) Hvac controller and a hvac system employing designated comfort sensors with program schedule events
JP5972073B2 (ja) 電力管理装置
JPWO2016001975A1 (ja) 空調システム
JP2011106698A (ja) 設備機器制御装置
JP6362677B2 (ja) コントローラ、ホームシステム、環境制御方法、及び、プログラム
JP2017143650A (ja) 設備管理装置、設備管理システム及びプログラム
KR102287293B1 (ko) 공간 내의 복수의 에어컨을 제어하는 시스템, 방법, 및 컴퓨터-판독가능 매체
JPWO2014038040A1 (ja) 空調制御装置、空調制御方法及びプログラム
JP7179530B2 (ja) 空調制御履歴表示装置、空調制御履歴表示方法及びプログラム
EP2757435A2 (en) A controller configured to receive blower volumes for different operating modes per zones, a HVAC system including the controller and a method of operating the controller
JP7030580B2 (ja) 空調管理装置、空調管理設定方法及びプログラム
JP4899978B2 (ja) 空調制御システムおよびサーバ
JP6906284B2 (ja) 室内環境管理装置、室内環境管理方法及びコンピュータプログラム
CN116481140A (zh) 控制界面的显示方法、显示装置、终端设备及存储介质
JP2021092997A (ja) 空気処理機の設定方法、及び、設定プログラム
CA2839567A1 (en) A controller configured to receive blower volumes for different operating modes per zones, an hvac system including the controller and a method of operating the controller
JP2015014384A (ja) 予想光熱費表示システム及び予想光熱費表示プログラム、並びに快適度表示システム及び快適度表示プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038726.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529498

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13811932

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011817946

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE