WO2012011442A1 - 電磁鋼板及びその製造方法 - Google Patents

電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2012011442A1
WO2012011442A1 PCT/JP2011/066224 JP2011066224W WO2012011442A1 WO 2012011442 A1 WO2012011442 A1 WO 2012011442A1 JP 2011066224 W JP2011066224 W JP 2011066224W WO 2012011442 A1 WO2012011442 A1 WO 2012011442A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
component
resin
average particle
Prior art date
Application number
PCT/JP2011/066224
Other languages
English (en)
French (fr)
Inventor
竹田 和年
健司 小菅
達弥 高瀬
孝司 棟田
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020147017276A priority Critical patent/KR101458753B1/ko
Priority to US13/809,279 priority patent/US11377569B2/en
Priority to BR112013001548-9A priority patent/BR112013001548B1/pt
Priority to EP11809612.2A priority patent/EP2597177B1/en
Priority to KR1020137001210A priority patent/KR101458726B1/ko
Priority to CN201180036048.2A priority patent/CN103025917B/zh
Priority to JP2011554330A priority patent/JP5093411B2/ja
Publication of WO2012011442A1 publication Critical patent/WO2012011442A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2502/00Acrylic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2506/00Halogenated polymers
    • B05D2506/10Fluorinated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2508/00Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/04Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31699Ester, halide or nitrile of addition polymer

Definitions

  • the present invention relates to a magnetic steel sheet suitable for a material for an iron core of an electric device and a manufacturing method thereof.
  • a hoop-shaped electromagnetic steel sheet is punched into a predetermined shape, and a plurality of electromagnetic steel sheets are stacked and fixed to produce a laminated iron core. Thereafter, a copper wire is wound around a laminated iron core tooth or the like. Then, depending on the application, resin molding may be performed for the purpose of improving durability and weather resistance.
  • the mold resin is in close contact with the laminated iron core. This is because objectives such as improvement in durability and weather resistance are not achieved unless the laminated iron core is in close contact.
  • the magnet In a motor using a magnet, the magnet is fixed to the motor using a mold resin. However, when the adhesion is low, the magnet is not fixed sufficiently.
  • An object of the present invention is to provide an electromagnetic steel sheet capable of improving the releasability of a mold resin and a method for producing the same.
  • the inventors of the present application have found that the adhesiveness between the insulating coating provided on the surface of the electromagnetic steel sheet and the mold resin is excessively high as a result of investigating the factors that reduce the peelability of the mold resin. It was.
  • the insulating coating is mainly provided in order to ensure insulation between the laminated electromagnetic steel sheets.
  • the insulating coating may be required to have various characteristics such as corrosion resistance, weldability, adhesion, and heat resistance.
  • a mixture mainly composed of an inorganic acid salt such as chromate and phosphate and an organic resin is applied.
  • Various techniques are known for insulating coatings on electrical steel sheets. In recent years, the development of insulating coatings that do not use a chromic acid aqueous solution containing hexavalent chromium has been promoted due to an increase in awareness of environmental problems.
  • the insulating coating is Metal phosphate: 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m 1st component including: 1 part by mass to 50 parts by mass: 100 parts by mass
  • a second component comprising a dispersion or powder of fluororesin having an average particle size of 0.05 ⁇ m to 0.35 ⁇ m: 0.5 part by weight to 10 parts by weight;
  • a magnetic steel sheet comprising:
  • the insulating coating is Colloidal silica: 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m: 40 100 parts by mass of a first component containing from 100 parts by mass to 400 parts by mass; A second component comprising a dispersion or powder of fluororesin having an average particle size of 0.05 ⁇ m to 0.35 ⁇ m: 0.5 part by weight to 10 parts by weight; A magnetic steel sheet comprising:
  • Metal phosphate 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m
  • the manufacturing method of the electrical steel sheet characterized by using what contains this.
  • a treatment liquid to the surface of the ground iron; A step of baking and drying the treatment liquid;
  • Colloidal silica emulsion of 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m :
  • a second component comprising a dispersion or powder of a fluororesin having an average particle size of 0.05 ⁇ m to 0.35 ⁇ m: 0.5 to 10 parts by mass in terms of resin solids;
  • the manufacturing method of the electrical steel sheet characterized by using what contains this.
  • FIG. 1 is a flowchart showing a method for manufacturing an electrical steel sheet according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the electrical steel sheet according to the embodiment of the present invention.
  • FIG. 1 is a flowchart showing a method for manufacturing an electrical steel sheet according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the structure of the electrical steel sheet according to an embodiment of the present invention.
  • the ground iron 1 is produced (step S1).
  • a slab having a predetermined composition is heated at about 1050 ° C. to 1250 ° C., hot rolled to produce a hot rolled plate, and the hot rolled plate is wound into a coil shape.
  • cold rolling is performed while unrolling the hot rolled sheet to produce a cold rolled sheet having a thickness of about 0.15 mm to 0.5 mm, and the cold rolled sheet is wound into a coil shape.
  • annealing finish annealing
  • annealing may be performed within a range of 800 ° C. to 1050 ° C. as necessary.
  • the composition of the base iron 1 is a composition suitable for a non-oriented electrical steel sheet, for example. That is, the base iron 1 contains, for example, Si: 0.1% by mass or more, Al: 0.05% by mass or more, and the balance is made of Fe and inevitable impurities. In addition to Si and Al, Mn: 0.01% by mass or more and 1.0% by mass or less may be contained. Moreover, Sn: 0.01 mass% or more and 1.0 mass% or less may be contained. Further, the content of typical elements such as S, N and C is preferably less than 100 ppm, and more preferably less than 20 ppm. The greater the Si content, the greater the electrical resistance and the magnetic properties.
  • the Si content exceeds 4.0% by mass, brittleness may become prominent. Therefore, the Si content is preferably 4.0% by mass or less.
  • the magnetic properties improve as the Al content increases. However, when the content of Al exceeds 3.0% by mass, cold rolling at the time of producing the base iron 1 may be difficult. Therefore, the Al content is preferably 3.0% by mass or less.
  • composition of the ground iron 1 may be a composition suitable for the grain-oriented electrical steel sheet.
  • the center line average roughness (Ra) of the rolling direction and the direction (plate width direction) orthogonal to a rolling direction of the base iron 1 is 1.0 micrometer or less, and it is 0.5 micrometer or less. More preferred.
  • the center line average roughness (Ra) exceeds 1.0 ⁇ m, the adhesion between the electromagnetic steel sheets is low, and it is difficult to obtain high thermal conductivity in the stacking direction.
  • the center line average roughness (Ra) is preferably 0.1 ⁇ m or more.
  • an insulating coating 2 is formed on the surface of the ground iron 1 (step S2).
  • a predetermined processing liquid is applied on the surface of the ground iron 1 (step S2a), and then the processing liquid is dried by heating (step S2b).
  • the components in the treatment liquid are baked onto the surface of the ground iron 1.
  • the method for applying the treatment liquid is not particularly limited.
  • the treatment liquid may be applied using a roll coater or a spray, and the base iron 1 may be immersed in the treatment liquid.
  • the method for drying the treatment liquid is not particularly limited.
  • the treatment liquid may be dried using a normal radiation furnace or a hot air furnace, and the treatment is performed by heating using electric energy such as induction heating or high-frequency heating.
  • the liquid may be dried.
  • the temperature of this treatment (baking temperature) is preferably 150 ° C. to 350 ° C., and in particular, a metal phosphate is added to the treatment liquid as described later. If included, the baking temperature is preferably 230 ° C to 300 ° C.
  • the treatment time is preferably 5 to 60 seconds when the treatment solution contains a metal phosphate, and 3 to 60 seconds when colloidal silica is contained. Is preferred.
  • the surface of the ground iron 1 may be pretreated before the treatment liquid is applied.
  • the pretreatment include a degreasing treatment using an alkaline agent or the like, and a pickling treatment using hydrochloric acid, sulfuric acid, phosphoric acid, or the like.
  • the treatment liquid used for forming the insulating coating 2 will be described.
  • the following two types ((a) and (b)) can be roughly used.
  • a second component comprising a dispersion or powder of a fluororesin having an average particle size of 0.05 ⁇ m to 0.35 ⁇ m: 0.5 to 10 parts by mass in terms of resin solids;
  • Colloidal silica emulsion of 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m : A first component containing 40 to 400 parts by mass of resin solids: 100 parts by mass of solids; A second component comprising a dispersion or powder of a fluororesin having an average particle size of 0.05 ⁇ m to 0.35 ⁇ m: 0.5 to 10 parts by mass in terms of resin solids; A processing solution containing.
  • the total amount of the first component and the second component is preferably 90% or more of the entire treatment liquid in terms of solid content. This is to ensure good insulation, thermal conductivity, heat resistance, etc. of the insulating coating.
  • the metal phosphate is a solid content when an aqueous solution containing phosphoric acid and metal ions as main components is dried.
  • the kind of phosphoric acid which comprises a phosphoric acid metal salt is not specifically limited, For example, orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, etc. can be used.
  • the type of metal ions constituting the metal phosphate is not particularly limited, but Li, Al, Mg, Ca, Sr, Ti, Ni, Mn, and Co are preferable, and Al, Ca, Mn, and Ni are particularly preferable. preferable.
  • the metal phosphate solution is preferably prepared, for example, by mixing orthophosphoric acid with metal ion oxide, carbonate and / or hydroxide.
  • the metal phosphate only one type may be used, or two or more types may be mixed and used.
  • the first component may be composed of only a metal phosphate, and the first component may contain an additive such as phosphonic acid and / or boric acid.
  • colloidal silica having an average particle diameter of 5 nm to 40 nm and an Na content of 0.5% by mass or less.
  • the Na content of colloidal silica is more preferably 0.01% by mass to 0.3% by mass.
  • an emulsion of an acrylic resin, an epoxy resin and / or a polyester resin is included in the first component.
  • an emulsion of an acrylic resin, an epoxy resin and / or a polyester resin a commercially available resin emulsion may be used.
  • the melting point of the acrylic resin, epoxy resin and / or polyester resin is not particularly limited, but is preferably 50 ° C. or lower. This is because if these melting points exceed 50 ° C., powdering tends to occur. In view of cost, these melting points are preferably 0 ° C. or higher.
  • Acrylic resins include ordinary monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, n-octyl acrylate, i-octyl acrylate, 2-ethylhexyl acrylate, n-nonyl acrylate, n-decyl. Acrylate, n-dodecyl acrylate and the like are preferable.
  • acrylic resin monomers having functional groups such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, and 2-hydroxylethyl which is a monomer having a hydroxyl group Those obtained by copolymerizing (meth) acrylate, 2-hydroxylpropyl (meth) acrylate, 3-hydroxylbutyl (meth) acrylate, 2-hydroxylethyl (meth) allyl ether, and the like are also preferable.
  • Examples of the epoxy resin include those obtained by reacting an amine-modified epoxy resin with carboxylic anhydride. Specific examples include bisphenol A-diglycidyl ether, caprolactone ring-opening adduct of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether, bisphenol S-diglycidyl ether, novolac glycidyl ether, dimer acid glycidyl ether, and the like. It is done.
  • Examples of amines to be modified include isopropanolamine, monopropanolamine, monobutanolamine, monoethanolamine, diethylenetriamine, ethylenediamine, butalamine, propylamine, isophoronediamine, tetrahydrofurfurylamine, xylenediamine, hexylamine, nonylamine, triethylenetetramine, tetraethylene
  • Examples include methylenepentamine and diaminodiphenyl sulfone.
  • the carboxylic anhydride those obtained by reacting succinic anhydride, itaconic anhydride, maleic anhydride, citraconic anhydride, phthalic anhydride, trimellitic anhydride and the like are preferable.
  • polyester resin for example, those obtained by reacting dicarboxylic acid and glycol are preferable.
  • dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, and citraconic acid. It is done.
  • glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyldiol, 1,6-hexanediol, triethylene glycol, Examples include dipropylene glycol and polyethylene glycol. Moreover, you may use what is obtained by graft-polymerizing acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, or methacrylic anhydride etc. to these polyester resins.
  • acrylic resin, epoxy resin, and polyester resin only one type may be used, or two or more types may be mixed and used.
  • these organic resins those having an average particle diameter of 0.05 ⁇ m to 0.50 ⁇ m are used. If the average particle size is less than 0.05 ⁇ m, the particles tend to aggregate in the treatment liquid, and the uniformity of the insulating coating 2 may be reduced. On the other hand, if the average particle size exceeds 0.50 ⁇ m, the stability of the treatment liquid may be reduced. When the stability of the treatment liquid is reduced, aggregates may be generated in the treatment liquid, and the pipes and / or pumps may be clogged, or the aggregate may enter the insulating film 2 and cause defects in the insulating film 2. There is sex.
  • the average particle size of these organic resins is preferably 0.1 ⁇ m or more, and preferably 0.3 ⁇ m or less.
  • grains whose particle diameter is 1 micrometer or less can be used, for example.
  • the total amount of the acrylic resin, epoxy resin, and polyester resin is 1 to 50 parts by mass with respect to 100 parts by mass of the metal phosphate. .
  • the total amount of the acrylic resin, the epoxy resin, and the polyester resin is less than 1 part by mass, aggregation of the acrylic resin, the epoxy resin, and the polyester resin is likely to occur, and the uniformity of the insulating coating 2 is likely to be lowered.
  • the total amount of the acrylic resin, the epoxy resin, and the polyester resin exceeds 50 parts by mass, the heat resistance decreases.
  • the total amount of acrylic resin, epoxy resin, and polyester resin is 40 to 400 parts by mass with respect to 100 parts by mass of colloidal silica. If the total amount of the acrylic resin, the epoxy resin, and the polyester resin is less than 40 parts by mass, it is difficult to appropriately form the insulating coating 2, and the insulating coating 2 may be powdered. On the other hand, if the total amount of the epoxy resin and the polyester resin exceeds 400 parts by mass, the heat resistance decreases.
  • examples of the fluororesin include polytetrafluoroethylene, tetrafluoroethylene perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene hexafluoropropylene copolymer, tetrafluoroethylene ethylene copolymer, polychlorotriethylene.
  • Fluoroethylene, polyvinylidene fluoride, tetrafluoroethylene hexafluoropropylene perfluoroalkyl vinyl ether copolymer, chlorotrifluoroethylene ethylene copolymer, polyvinyl fluoride, and the like can be used.
  • Fluorine resin dispersion or powder having an average particle diameter of 0.05 ⁇ m to 0.35 ⁇ m is used. If the average particle size of the dispersion or powder of the fluororesin is less than 0.05 ⁇ m, sufficient dispersibility cannot be obtained, the particles tend to aggregate in the treatment liquid, and the uniformity of the insulating coating 2 tends to decrease. As a result, characteristics such as sufficient insulation may not be obtained. On the other hand, if the average particle size exceeds 0.35 ⁇ m, the stability of the treatment liquid may be reduced.
  • the average particle size of the fluororesin dispersion or powder is preferably 0.15 ⁇ m or more, more preferably 0.25 ⁇ m or less.
  • the dispersion or powder of fluororesin may be used alone or in combination of two or more.
  • a plurality of types of dispersions or powders having different average particle diameters may be mixed and used, or a plurality of types of dispersions or powders having different molecular weights may be mixed and used.
  • a fluororesin dispersion and a fluororesin powder may be mixed and used.
  • the second component relative to 100 parts by mass of the solid content of the first component is related to the blending ratio of the first component and the second component.
  • the amount of the component is 0.5 to 10 parts by mass. If the amount of the second component is less than 0.5 parts by mass, the effect of improving the peelability of the mold resin may not be sufficient.
  • the amount of the second component exceeds 10 parts by mass, the stability of the treatment liquid may be reduced. As described above, when the stability of the treatment liquid is reduced, aggregates are generated in the treatment liquid, the pipes and / or pumps are clogged, or the aggregates enter the insulating film 2 to cause defects in the insulating film 2. May occur.
  • fluororesin has a tendency to aggregate at the interface, and therefore, if the amount of the second component exceeds 10 parts by mass, the adhesion to the ground iron 1 is insufficient. There is a possibility.
  • additives such as surfactant
  • surfactant nonionic surfactants are preferable, and in addition, brighteners, preservatives, antioxidants and the like may be added.
  • inorganic compounds such as carbonates, hydroxides, oxides, titanates and tungstates may be added, and organic low molecular compounds such as polyols, cellosolves, carboxylic acids, ethers and esters are added. May be. Furthermore, you may add both an inorganic compound and an organic low molecular weight compound.
  • the insulating coating 2 is Metal phosphate: 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m 1st component including: 1 part by mass to 50 parts by mass: 100 parts by mass
  • a second component comprising a dispersion or powder of fluororesin having an average particle size of 0.05 ⁇ m to 0.35 ⁇ m: 0.5 part by weight to 10 parts by weight; Will be included.
  • the insulating coating 2 is Colloidal silica: 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m: 40
  • the second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 40 parts by mass; Will be included.
  • the insulating film 2 a film in which a fluororesin is dispersed inside is obtained.
  • the average particle size of the dispersion or powder of the fluororesin is 0.05 ⁇ m to 0.35 ⁇ m, the dispersibility in these treatment liquids is very good, so the dispersibility of the fluororesin in the insulating coating 2 is also good. It becomes extremely good, and the substantial surface tension is moderately lowered throughout the insulating coating 2.
  • the releasability of the mold resin is improved. That is, in the electrical steel sheet 10 provided with such an insulating coating 2, the adhesiveness with the mold resin can be made appropriate while maintaining the adhesiveness of the insulating coating 2 to the ground iron 1 high.
  • the fluororesin may be unevenly dispersed in the insulating coating 2 and the characteristics of the insulating coating 2 may vary.
  • the thickness of the insulating coating 2 is preferably about 0.3 ⁇ m to 3.0 ⁇ m, more preferably 0.5 ⁇ m or more, and more preferably 1.5 ⁇ m or less.
  • the average particle diameter of said colloidal silica, the average particle diameter of an acrylic resin, an epoxy resin, and a polyester resin, and the average particle diameter of a fluororesin are number average particle diameters.
  • the number average particle diameter of colloidal silica for example, one measured by a nitrogen adsorption method (JIS Z8830) is used.
  • the number average particle diameter of the acrylic resin, epoxy resin, and polyester resin, and the number average particle diameter of the fluororesin for example, those measured by a laser diffraction method are used.
  • the first component and the second component occupy 90% or more of the insulating coating 2. This is to ensure good insulation, thermal conductivity, heat resistance, and the like.
  • a base iron having a composition for a non-oriented electrical steel sheet containing, by mass%, Si: 2.5%, Al: 0.5%, and Mn: 0.05% was prepared.
  • the thickness of the ground iron was 0.35 mm, and its center line average roughness (Ra) was 0.46 ⁇ m.
  • liquids for various first components were prepared.
  • the components of this liquid are shown in Table 1.
  • the liquid containing colloidal silica In the production of the liquid containing colloidal silica, a commercially available one containing 30% by mass of colloidal silica whose average particle diameter was 15 nm and whose surface was modified with aluminum was produced.
  • Acrylic resin 1 An acrylic resin obtained by copolymerizing methyl methacrylate: 40% by mass, 2-hydroxyethyl methacrylate: 10% by mass, n-butyl acrylate: 30% by mass, and styrene monomer: 20% by mass.
  • Acrylic resin 2 It is an acrylic resin obtained by copolymerizing methyl acrylate: 40% by mass, styrene monomer: 30% by mass, isobutyl acrylate: 20% by mass, and fumaric acid: 10% by mass.
  • Epoxy resin 1 This is a carboxyl group-modified epoxy resin obtained by modifying bisphenol A with triethanolamine and then reacting with succinic anhydride.
  • Epoxy resin 2 It is an epoxy resin that is self-emulsifying by adding an ethylene propylene block polymer to a phenol novolac type epoxy resin and adding nonylphenyl ether ethylene oxide.
  • Polyyester resin It is a carboxyl group-containing polyester resin obtained by copolymerizing dimethyl terephthalate: 35% by mass and neopentyl glycol: 35% by mass, and then graft-polymerizing fumaric acid: 15% by mass and trimellitic anhydride: 15% by mass.
  • Waterborne polyurethane An aqueous polyurethane synthesized from hexamethylene diisocyanate and polyethylene glycol in a known manner.
  • Each of these organic resins was made into a 30% emulsion solution, and these were mixed with a liquid containing a metal phosphate or colloidal silica. Furthermore, liquids shown in Table 1 were prepared by adding appropriate amounts of a viscosity modifier and a surfactant as necessary.
  • the average particle diameters of the acrylic resins 1 and 2 were 0.25 ⁇ m, 0.64 ⁇ m, and 0.6 ⁇ m, respectively.
  • the average particle diameters of the epoxy resins 1 and 2 were 0.33 ⁇ m and 0.76 ⁇ m, respectively.
  • the average particle diameter of the polyester resin was 0.35 ⁇ m, and the average particle diameter of the aqueous polyurethane was 0.12 ⁇ m.
  • the resin emulsion was diluted with distilled water, and then the number average particle diameter was measured with a commercially available particle size measurement apparatus using a laser diffraction method according to JIS method (JIS Z8826).
  • the resin mass part in Table 1 is the value converted into solid content.
  • Fluorine resin 1 It is a dispersion of a fluororesin of polytetrafluoroethylene (PTFE) type having an average particle size of 0.25 ⁇ m and a concentration of 48% by mass.
  • Fluorine resin 2 This is a fluororesin dispersion of a fluorinated ethylene propylene (FEP) type having an average particle size of 0.34 ⁇ m and a concentration of 50 mass%.
  • FEP fluorinated ethylene propylene
  • Fluorine resin 3 It is a dispersion of fluororesin having an average particle size of 0.12 ⁇ m and a concentration of 60% by mass, which is a water dispersion type by forced emulsification.
  • Fluorine resin 4" This is a fluororesin powder of a fluororubber type with an average particle size of 2.5 ⁇ m.
  • Fluorine resin 5" This is a fluororesin dispersion 5 of a hydroxyl group-added type having an average particle size of 0.06 ⁇ m and a concentration of 48 mass%.
  • Fluorine resin 6 This is a fluororesin powder in which PTFE having an average particle size of 0.33 ⁇ m and vinylidene fluoride having an average particle size of 0.25 ⁇ m are combined.
  • the number average particle diameter of the emulsion of the organic resin after dilution with distilled water, the number average particle diameter was measured with a commercially available particle size measuring apparatus by a laser diffraction method according to JIS method (JIS Z8826).
  • JIS Z8826 a commercially available laser diffraction method particle size measuring device according to JIS method
  • the number average particle size was measured.
  • about surface roughness, centerline average roughness (Ra) was measured using the commercially available surface roughness measuring apparatus according to JIS method (JISB0601).
  • the treatment liquid was applied to the base iron and baked under the conditions shown in Table 2.
  • the treatment liquid was applied using a roll coater. At this time, the roll reduction amount and the like were adjusted so that the thickness of the insulating coating was about 0.8 ⁇ m.
  • Baking drying was performed using a radiation furnace, and the setting of the furnace temperature was adjusted so that the predetermined heating conditions described in Table 2 were obtained. The final plate temperature was adjusted to 160 to 400 ° C., and the baking time was adjusted to 5 to 55 seconds.
  • the mold resin was evaluated for peelability, insulation, adhesion, corrosion resistance, appearance, and heat resistance.
  • the magnetism when the shear tensile strength is over 10 kgf / cm 2 , the magnetism may be deteriorated by the mold resin, and when used for fixing the magnet, the workability when removing the adhered matter may be inferior. is there.
  • interlayer resistance was measured according to JIS method (JIS C2550). Then, ⁇ what interlayer resistance of 5 ⁇ ⁇ cm less than 2 / sheet, 5 ⁇ ⁇ cm 2 / sheet ⁇ 10 ⁇ ⁇ cm 2 / sheet of what the ⁇ , 10 ⁇ ⁇ cm 2 / sheet ⁇ 50 ⁇ ⁇ cm 2 / sheet of things ⁇ , and 50 ⁇ ⁇ cm 2 / sheet or more were marked with ⁇ .
  • an adhesive tape was attached to a sample of an electromagnetic steel sheet, and this was then wound around a metal rod having a diameter of 10 mm, 20 mm, or 30 mm.
  • the pressure-sensitive adhesive tape was peeled off, and the adhesion was evaluated from the peeled trace. What was not peeled off when wound on a metal rod having a diameter of 10 mm was defined as 10 mm ⁇ OK, and what was not peeled off when wound on a metal rod having a diameter of 20 mm was defined as 20 mm ⁇ OK.
  • Corrosion resistance was determined according to a JIS salt spray test (JIS Z2371) and evaluated by a 10-point evaluation using samples after 7 hours.
  • the evaluation criteria are as follows.
  • the glossy, smooth and uniform is 5; hereinafter, the glossy is slightly inferior in uniformity, 4 is slightly glossy, smooth but inferior in uniformity, 3
  • the one with less gloss, slightly inferior in smoothness and inferior in uniformity was designated as 2, and one inferior in gloss, uniformity and smoothness was designated as 1.
  • the heat resistance was evaluated based on the state of peeling of the insulating coating by rubbing 2 mm ⁇ 30 mm gauze with a load of 100 gf (about 0.98 N) on the surface of the electrical steel sheet. What was not peeled was 5, 4 was peeled slightly, 3 was clearly peeled, 2 was severely peeled, and 1 was peeled without rubbing with gauze.
  • this experiment revealed the effect of the present invention. That is, as shown in Table 3, in the sample corresponding to the example of the present invention, the adhesive force of the mold resin is 10 kgf / cm 2 or less, and it can be said that the sample has excellent mold resin peelability. Moreover, it became clear that the sample applicable to the Example of this invention is excellent in insulation, adhesiveness, corrosion resistance, external appearance, and heat resistance in addition to the mold resin peelability. Moreover, in the sample corresponding to the comparative example, there are many cases where the adhesive force of the mold resin has a large value exceeding 10 kgf / cm 2 , and all of the insulating properties, adhesion properties, corrosion resistance, appearance and heat resistance. There was no excellent one.
  • the mold resin has good releasability, the iron loss characteristic of the laminated iron core is improved, and the electrical steel sheet is insulated. Good film properties.
  • the present invention can be used, for example, in the electrical steel sheet manufacturing industry and the electrical steel sheet utilizing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 電磁鋼板(10)には、地鉄(1)と、地鉄(1)の表面上に形成された絶縁被膜(2)と、が設けられている。絶縁皮膜(2)は、リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:1質量部~50質量部と、を含む第1の成分:100質量部と、平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:0.5質量部~10質量部と、を含む。

Description

電磁鋼板及びその製造方法
 本発明は、電気機器の鉄芯の材料等に好適な電磁鋼板及びその製造方法に関する。
 電磁鋼板を用いてモータやトランスを製造する際には、フープ状の電磁鋼板を所定形状に打抜き加工した後、複数の電磁鋼板を積層して固着して積層鉄芯を作製する。その後、積層鉄芯のティース等に銅線を巻き付ける。次いで、用途によっては、耐久性及び耐候性の向上等を目的として、樹脂モールドを行うことがある。
 ここで、モールド樹脂は、積層鉄芯と密着することが重要である。これは、積層鉄芯と密着しなければ、耐久性及び耐候性の向上等の目的が達成されないからである。また、磁石を使用するモータでは、磁石がモールド樹脂を用いてモータに固定されるが、密着性が低い場合には、磁石の固定が不十分となる。
 その一方で、モールド樹脂の積層鉄芯との密着性が高すぎる場合には、モータ等の製造過程において種々の問題が生じることが判明した。例えば、自動車に用いられるモータ等において、モールド樹脂から積層鉄芯に圧縮応力が作用し、鉄損が増加することがある。すなわち、積層鉄芯にコイル等の通電部を取り付けた後に樹脂モールドした場合に、モールド樹脂と積層鉄芯の露出部とが接着していると、モールド樹脂からの圧縮応力が積層鉄芯に作用して、鉄損が劣化してモータの性能が低下することがある。また、モールド樹脂を用いて磁石をモータに固定する場合には、モールド樹脂の積層鉄芯との密着性が高すぎると、不必要な箇所に付着したモールド樹脂の除去が困難である。
特公昭50-15013号公報 特開平03-36284号公報 特公昭49-19078号公報 特開平06-330338号公報 特開平09-323066号公報 特開2002-309379号公報 特開2002-164207号公報
 本発明は、モールド樹脂の剥離性を向上することができる電磁鋼板及びその製造方法を提供することを目的とする。
 本願発明者らは、モールド樹脂の剥離性を低下させる要因について検討を行った結果、電磁鋼板の表面に設けられている絶縁被膜とモールド樹脂との密着性が過度に高くなっていることを見出した。絶縁被膜は、主に、積層された電磁鋼板同士の絶縁性を確保するために設けられている。また、絶縁被膜には、絶縁性の他に、耐蝕性、溶接性、密着性、耐熱性等の種々の特性が要求されることもある。絶縁被膜の形成では、一般的に、クロム酸塩及びリン酸塩等の無機酸塩及び有機樹脂を主成分とする混合物が塗布されている。電磁鋼板の絶縁被膜に関しては種々の技術が知られている。そして、近年では、環境問題に対する意識の高まりから、6価クロムを含有するクロム酸水溶液を用いない絶縁被膜の開発が進められている。
 しかしながら、従来の絶縁被膜では、絶縁性等の特性が十分なものであっても、モールド樹脂の剥離性については着目されておらず、上記のように、モールド樹脂の剥離性が低いことに伴う種々の問題点がある。本発明者らは、このような問題点を解決すべく鋭意検討を行った結果、下記の諸態様に想到した。
 (1) 地鉄と、
 前記地鉄の表面上に形成された絶縁被膜と、
 を有し、
 前記絶縁被膜は、
 リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:1質量部~50質量部と、を含む第1の成分:100質量部と、
 平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:0.5質量部~10質量部と、
 を含むことを特徴とする電磁鋼板。
 (2) 地鉄と、
 前記地鉄の表面上に形成された絶縁被膜と、
 を有し、
 前記絶縁被膜は、
 コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:40質量部~400質量部と、を含む第1の成分:100質量部と、
 平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:0.5質量部~10質量部と、
 を含むことを特徴とする電磁鋼板。
 (3) 前記第1の成分及び前記第2の成分は、前記絶縁被膜の90%以上を占めることを特徴とする(1)又は(2)に記載の電磁鋼板。
 (4) 地鉄の表面に処理液を塗布する工程と、
 前記処理液の焼き付け乾燥を行う工程と、
 を有し、
 前記処理液として、
 リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で1質量部~50質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:樹脂固形分で0.5質量部~10質量部と、
 を含むものを用いることを特徴とする電磁鋼板の製造方法。
 (5) 地鉄の表面に処理液を塗布する工程と、
 前記処理液の焼き付け乾燥を行う工程と、
 を有し、
 前記処理液として、
 コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で40質量部~400質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:樹脂固形分で0.5質量部~10質量部と、
 を含むものを用いることを特徴とする電磁鋼板の製造方法。
 (6) 前記焼き付け乾燥の到達温度を150℃~350℃とし、時間を5秒間~60秒間とすることを特徴とする(4)又は(5)に記載の電磁鋼板の製造方法。
 (7)
 前記第1の成分及び前記第2の成分は、固形分換算で前記処理液の90%以上を占めることを特徴とする(4)又は(5)に記載の電磁鋼板の製造方法。
 本発明によれば、適切な絶縁被膜が設けられているため、絶縁性等を高く維持しながら、高いモールド樹脂の剥離性を得ることができる。
図1は、本発明の実施形態に係る電磁鋼板の製造方法を示すフローチャートである。 図2は、本発明の実施形態に係る電磁鋼板の構造を示す断面図である。
 以下、本発明の実施形態について、添付の図面を参照しながら説明する。図1は、本発明の実施形態に係る電磁鋼板の製造方法を示すフローチャートであり、図2は、本発明の実施形態に係る電磁鋼板の構造を示す断面図である。
 本実施形態では、先ず、地鉄1を作製する(ステップS1)。地鉄1の作製では、例えば、先ず、所定の組成のスラブを1050℃~1250℃程度で加熱し、熱間圧延を行って熱延板を作製し、熱延板をコイル状に巻き取る。次いで、熱延板を巻き解きながら冷間圧延して厚さが0.15mm~0.5mm程度の冷延板を作製し、冷延板をコイル状に巻き取る。その後、750℃~1100℃で焼鈍(仕上げ焼鈍)する。このようにして地鉄1が得られる。なお、冷間圧延の前に、必要に応じて800℃~1050℃の範囲内で焼鈍してもよい。
 地鉄1の組成は、例えば無方向性電磁鋼板に適した組成である。即ち、地鉄1は、例えば、Si:0.1質量%以上、Al:0.05質量%以上を含有し、残部がFe及び不可避的不純物からなる。なお、Si及びAl以外に、Mn:0.01質量%以上1.0質量%以下が含有されていてもよい。また、Sn:0.01質量%以上1.0質量%以下が含有されていてもよい。また、S、N及びC等の典型元素の含有量は、100ppm未満であることが好ましく、20ppm未満であることがより好ましい。Siが多く含有されているほど、電気抵抗が大きくなり磁気特性が向上する。しかし、Siの含有量が4.0質量%を超えると、脆性が顕著になることがある。従って、Si含有量は4.0質量%以下であることが好ましい。また、Alが多く含有されているほど、磁気特性が向上する。しかし、Alの含有量が3.0質量%を超えていると、地鉄1を作製する際の冷間圧延が困難になることがある。従って、Al含有量は3.0質量%以下であることが好ましい。
 なお、地鉄1の組成が方向性電磁鋼板に適した組成であってもよい。
 また、地鉄1の表面粗度が低いほど積層鉄芯における電磁鋼板同士の密着性が高くなる。このため、地鉄1の圧延方向及び圧延方向に直交する方向(板幅方向)の中心線平均粗さ(Ra)は、1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。中心線平均粗さ(Ra)が1.0μmを超えていると、電磁鋼板同士の密着性が低く、積層方向の高い熱伝導性を得にくくなる。なお、中心線平均粗さ(Ra)を0.1μm未満にするためには、冷間圧延の制御を厳密に行う必要があり、コスト高になりやすい。従って、中心線平均粗さ(Ra)は0.1μm以上であることが好ましい。
 次いで、図2に示すように、地鉄1の表面上に絶縁被膜2を形成する(ステップS2)。絶縁被膜2の形成では、所定の処理液を地鉄1の表面上に塗布し(ステップS2a)、その後、加熱により処理液を乾燥させる(ステップS2b)。この結果、処理液中の成分が地鉄1の表面上に焼き付けられる。処理液を塗布する方法は特に限定されず、例えば、ロールコーター又はスプレーを用いて処理液を塗布してもよく、処理液中に地鉄1を浸漬してもよい。また、処理液を乾燥させる方法も特に限定されず、例えば、通常の輻射炉又は熱風炉を用いて処理液を乾燥させてもよく、誘導加熱、高周波加熱等の電気エネルギを用いた加熱により処理液を乾燥させてもよい。また、処理液の乾燥及び焼き付け(ステップS2b)の条件に関し、この処理の温度(焼き付け温度)は150℃~350℃とすることが好ましく、特に、後述のようにリン酸金属塩が処理液に含まれている場合には、焼き付け温度は230℃~300℃とすることが好ましい。また、この処理の時間は、処理液にリン酸金属塩が含まれている場合は5秒間~60秒間とすることが好ましく、コロイダルシリカが含まれている場合は3秒間~60秒間とすることが好ましい。
 なお、処理液の塗布前に、地鉄1の表面に前処理を施してもよい。前処理としては、例えば、アルカリ性薬剤等を用いた脱脂処理、及び塩酸、硫酸又はリン酸等を用いた酸洗処理等が挙げられる。
 ここで、絶縁被膜2の形成に用いる処理液について説明する。この処理液としては、大別して次の2種類((a)、(b))のものを用いることができる。
 (a)
 リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で1質量部~50質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:樹脂固形分で0.5質量部~10質量部と、
 を含む処理液。
 (b)
 コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で40質量部~400質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:樹脂固形分で0.5質量部~10質量部と、
 を含む処理液。
 なお、第1の成分及び第2の成分の総量は、固形分換算で処理液全体の90%以上であることが好ましい。絶縁被膜の良好な絶縁性、熱伝導性、耐熱性等を確保するためである。
 第1の成分に関し、リン酸金属塩は、リン酸及び金属イオンを主成分とする水溶液を乾燥させたときに固形分となるものである。リン酸金属塩を構成するリン酸の種類は特に限定されず、例えば、オルトリン酸、メタリン酸、ポリリン酸等が用いることができる。また、リン酸金属塩を構成する金属イオンの種類も特に限定されないが、Li、Al、Mg、Ca、Sr、Ti、Ni、Mn、及びCo等が好ましく、Al、Ca、Mn及びNiが特に好ましい。また、リン酸金属塩溶液は、例えば、オルトリン酸に金属イオンの酸化物、炭酸塩、及び/又は水酸化物を混合することにより調製することが好ましい。
 リン酸金属塩としては、1種類のみを用いてもよく、2種類以上を混合して用いてもよい。第1の成分がリン酸金属塩のみから構成されていてもよく、第1の成分中に、ホスホン酸及び/又はホウ酸等の添加剤が含まれていてもよい。
 同じく、第1の成分に関し、コロイダルシリカとしては、例えば、平均粒径が5nm~40nmであり、かつ、Na含有量が0.5質量%以下のものを用いることが好ましい。また、コロイダルシリカのNa含有量は0.01質量%~0.3質量%であることがより好ましい。
 本実施形態では、第1の成分に、アクリル樹脂、エポキシ樹脂及び/又はポリエステル樹脂のエマルションが含まれている。アクリル樹脂、エポキシ樹脂及び/又はポリエステル樹脂のエマルションとしては、市販されている樹脂エマルションを用いてもよい。アクリル樹脂、エポキシ樹脂及び/又はポリエステル樹脂の融点は特に限定されないが、50℃以下であることが好ましい。これらの融点が50℃を超えていると、発粉しやすくなるからである。また、コストを考慮すると、これらの融点は0℃以上であることが好ましい。
 アクリル樹脂としては、通常のモノマーである、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、n-オクチルアクリレート、i-オクチルアクリレート、2-エチルヘキシルアクリレート、n-ノニルアクリレート、n-デシルアクリレート、及びn-ドデシルアクリレート等が好ましい。また、アクリル樹脂として、官能基を持つモノマーである、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、及びイタコン酸、並びに、水酸基を持つモノマーである、2-ヒドロキシルエチル(メタ)アクリレート、2-ヒドロキシルプロピル(メタ)アクリレート、3-ヒロドキシルブチル(メタ)アクリレート、及び2-ヒドロキシルエチル(メタ)アリルエーテル等を共重合させたものも好ましい。
 エポキシ樹脂としては、例えば、アミン変性エポキシ樹脂に無水カルボン酸を反応させたものが挙げられる。具体的には、ビスフェノールA-ジグリシジルエーテル、ビスフェノールA-ジグリシジルエーテルのカプロラクトン開環付加物、ビスフェノールF-ジグリシジルエーテル、ビスフェノールS-ジグリシジルエーテル、ノボラックグリシジルエーテル、ダイマー酸グリシジルエーテル等が挙げられる。変性するアミンとしては、イソプロパノールアミン、モノプロパノールアミン、モノブタノールアミン、モノエタノールアミン、ジエチレントリアミン、エチレンジアミン、ブタルアミン、プロピルアミン、イソホロンジアミン、テトラヒドロフルフリルアミン、キシレンジアミン、ヘキシルアミン、ノニルアミン、トリエチレンテトラミン、テトラメチレンペンタミン、ジアミノジフェニルスルホン等が挙げられる。無水カルボン酸としては、無水コハク酸、無水イタコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸、無水トリメリット酸等を反応させたものが好ましい。
 ポリエステル樹脂としては、例えば、ジカルボン酸とグリコールとを反応させて得られるものが好ましい。ジカルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、コハク酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、及びシトラコン酸等が挙げられる。グリコールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルジオール、1,6-ヘキサンジオール、トリエチレングリコール、ジプロピレングリコール、及びポリエチレングリコール等が挙げられる。また、これらのポリエステル樹脂に、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、又はメタクリル酸無水物等をグラフト重合させて得られるものを用いてもよい。
 また、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂として、1種類のみを用いてもよく、2種類以上を混合して用いてもよい。なお、これら有機樹脂としては、平均粒径が0.05μm~0.50μmのものを用いる。平均粒径が0.05μm未満であると、処理液中で凝集しやすく、絶縁被膜2の均一性が低下する可能性がある。一方、平均粒径が0.50μmを超えていると、処理液の安定性が低下する可能性がある。処理液の安定性が低下すると、処理液中に凝集物が発生して、配管及び/又はポンプが詰まったり、凝集物が絶縁被膜2中に入り込んで絶縁被膜2に欠陥が発生したりする可能性がある。また、これら有機樹脂の平均粒径は、0.1μm以上であることが好ましく、0.3μm以下であることが好ましい。なお、平均粒径としては、例えば粒径が1μm以下の粒子についての個数平均粒径を用いることができる。
 リン酸金属塩と、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂との混合比率に関し、リン酸金属塩100質量部に対するアクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量は1質量部~50質量部である。アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量が1質量部未満であると、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の凝集が発生しやすく、絶縁被膜2の均一性が低下しやすい。一方、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量が50質量部を超えていると、耐熱性が低下する。
 また、コロイダルシリカと、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂との混合比率に関し、コロイダルシリカ100質量部に対するアクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量は40質量部~400質量部である。アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量が40質量部未満であると、絶縁被膜2を適切に形成することが困難となり、絶縁被膜2が発粉する可能性がある。一方、エポキシ樹脂、及びポリエステル樹脂の総量が400質量部を超えていると、耐熱性が低下する。
 第2の成分に関し、フッ素樹脂としては、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレンヘキサフルオロプロピレン共重合体、テトラフルオロエチレンエチレン共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレンヘキサフルオロプロピレンパーフルオロアルキルビニルエーテル共重合体、クロロトリフルオロエチレンエチレン共重合体、及びポリビニルフルオライド等を用いることができる。
 なお、水酸基の付与又はエポキシ変性等をしたフッ素樹脂を用いると、モールド樹脂の剥離性が低下する傾向がある。このため、水酸基の付与又はエポキシ変性等をしたフッ素樹脂以外のフッ素樹脂を用いることが好ましい。
 フッ素樹脂のディスパージョン又はパウダーとしては、平均粒径が0.05μm~0.35μmのものを使用する。フッ素樹脂のディスパージョン又はパウダーの平均粒径が0.05μm未満であると、十分な分散性が得られず、処理液中で凝集しやすく、絶縁被膜2の均一性が低下しやすい。この結果、十分な絶縁性等の特性が得られないことがある。また、平均粒径が0.35μmを超えていると、処理液の安定性が低下する可能性がある。また、フッ素樹脂のディスパージョン又はパウダーの平均粒径は、0.15μm以上であることが好ましく、0.25μm以下であることが好ましい。
 なお、フッ素樹脂のディスパージョン又はパウダーは、単独で用いてもよく、2種以上を混合して用いてもよい。例えば、平均粒径が異なる複数種のディスパージョン又はパウダーを混合して用いてもよく、分子量が異なる複数種のディスパージョン又はパウダーを混合して用いてもよい。また、フッ素樹脂のディスパージョンとフッ素樹脂のパウダーとを混合して用いてもよい。
 第1の成分の主成分がリン酸金属塩、コロイダルシリカのいずれであっても、第1の成分及び第2の成分の配合比率に関し、第1の成分の固形分100質量部に対する第2の成分の量は0.5質量部~10質量部とする。第2の成分の量が0.5質量部未満であると、モールド樹脂の剥離性を向上する効果が十分とならない可能性がある。一方、第2の成分の量が10質量部を超えていると、処理液の安定性が低下する可能性がある。上記のように、処理液の安定性が低下すると、処理液中に凝集物が発生して、配管及び/又はポンプが詰まったり、凝集物が絶縁被膜2中に入り込んで絶縁被膜2に欠陥が発生したりする可能性がある。また、フッ素樹脂は他の有機樹脂とは異なり、特に界面に凝集する傾向を有するため、第2の成分の量が10質量部を超えていると、地鉄1との密着性が不十分となる可能性がある。
 なお、上述の処理液に、界面活性剤等の添加剤を加えてもよい。界面活性剤としては、非イオン系界面活性剤が好ましく、その他に、光沢剤、防腐剤、酸化防止剤等を添加してもよい。
 また、上述の処理液に、他の成分を添加してもよい。例えば、炭酸塩、水酸化物、酸化物、チタン酸塩及びタングステン酸塩等の無機化合物を添加してもよく、ポリオール、セロソルブ、カルボン酸類、エーテル類及びエステル類等の有機低分子化合物を添加してもよい。更に、無機化合物及び有機低分子化合物の双方を添加してもよい。
 このような方法により製造された電磁鋼板10では、処理液(a)が用いられた場合、絶縁被膜2は、
 リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:1質量部~50質量部と、を含む第1の成分:100質量部と、
 平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:0.5質量部~10質量部と、
 を含むこととなる。
 また、処理液(b)が用いられた場合、絶縁被膜2は、
 コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:40質量部~400質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~40質量部と、
 を含むこととなる。
 また、絶縁被膜2としては、内部にフッ素樹脂が分散したものが得られる。フッ素樹脂のディスパージョン又はパウダーの平均粒径が0.05μm~0.35μmである場合に、これらの処理液中での分散性が極めて良好であるため、絶縁被膜2におけるフッ素樹脂の分散性も極めて良好なものとなり、絶縁被膜2の全体にわたって実質的な表面張力が適度に低下する。この結果、モールド樹脂の剥離性が向上する。つまり、このような絶縁被膜2を備えた電磁鋼板10では、絶縁被膜2の地鉄1に対する密着性を高く維持しながら、モールド樹脂との密着性を適切なものとすることができる。例えば磁石の固定に必要とされる密着性等を確保しながら、圧縮応力の緩和及び余分なモールド樹脂を剥離する際の作業性の向上等を実現することができる。なお、フッ素樹脂の平均粒径が適正でない場合には、絶縁被膜2中にフッ素樹脂が不均一に分散して絶縁被膜2の特性にばらつきが生じる可能性がある。
 なお、処理液に界面活性剤、無機化合物、有機低分子化合物等が添加されている場合には、これらはそのまま絶縁被膜2に含有される。
 また、絶縁被膜2の厚さは、0.3μm~3.0μm程度とすることが好ましく、0.5μm以上とすること、1.5μm以下とすることがより好ましい。
 なお、上記のコロイダルシリカの平均粒径、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂の平均粒径、並びに、フッ素樹脂の平均粒径は個数平均粒径である。コロイダルシリカの個数平均粒径としては、例えば、窒素吸着法(JIS Z8830)により測定したものを用いる。また、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂の個数平均粒径、並びに、フッ素樹脂の個数平均粒径としては、例えば、レーザー回折法により測定したものを用いる。
 また、処理液としては、環境への配慮からCrを含有しないものを用いることが好ましい。
 また、第1の成分及び第2の成分は、絶縁被膜2の90%以上を占めることが好ましい。良好な絶縁性、熱伝導性、耐熱性等を確保するためである。
 次に、本発明者らが行った実験について説明する。これらの実験における条件等は、本発明の実施可能性及び効果を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。
 質量%で、Si:2.5%、Al:0.5%、Mn:0.05%を含有する無方向性電磁鋼板用の組成を有する地鉄を作製した。地鉄の厚さは0.35mmとし、その中心線平均粗さ(Ra)は0.46μmとした。
 また、種々の第1の成分用の液を作製した。この液の成分を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 リン酸金属塩を含む液の作製では、オルトリン酸とMg(OH)、Al(OH)等の各金属水酸化物、酸化物、炭酸塩とを混合撹拌して、40質量%の水溶液を調製した。
 コロイダルシリカを含む液の作製では、市販されている平均粒径が15nmで表面をアルミニウムで改質したコロイダルシリカを30質量%含むものを作製した。
 表1中の6種類の有機樹脂の詳細は下記のとおりである。
 「アクリル樹脂1」
 メチルメタクリレート:40質量%、2-ヒドロキシエチルメタクリレート:10質量%、n-ブチルアクリレート:30質量%、及びスチレンモノマー:20質量%を共重合させて得たアクリル樹脂である。
 「アクリル樹脂2」
 メチルアクリレート:40質量%、スチレンモノマー:30質量%、イソブチルアクリレート:20質量%、及びフマル酸:10質量%を共重合させて得たアクリル樹脂である。
 「エポキシ樹脂1」
 ビスフェノールAをトリエタノールアミンで変性した後、無水コハク酸を反応させて得たカルボキシル基変性エポキシ樹脂である。
 「エポキシ樹脂2」
 フェノールノボラック型エポキシ樹脂にエチレンプロピレンブロックポリマーを配合してノニルフェニルエーテルエチレンオキサイドを付加し、自己乳化型としたエポキシ樹脂である。
 「ポリエステル樹脂」
 ジメチルテレフタレート:35質量%及びネオペンチルグリコール:35質量%を共重合させた後、フマル酸:15質量%及び無水トリメリット酸:15質量%をグラフト重合させて得たカルボキシル基含有ポリエステル樹脂である。
 「水性ポリウレタン」
 既知の方法でヘキサメチレンジイソシアネート及びポリエチレングリコールから合成された水性ポリウレタンである。
 これらの有機樹脂をそれぞれ30%エマルション溶液とし、これらをリン酸金属塩又はコロイダルシリカを含有する液に混合した。更に、必要に応じて粘度調整剤、界面活性剤を適量加えて表1に示す液を調製した。
 なお、アクリル樹脂1、2の平均粒径は、それぞれ0.25μm、0.64μm、0.6μmであった。また、エポキシ樹脂1、2の平均粒径は、それぞれ0.33μm、0.76μmであった。また、ポリエステル樹脂の平均粒径は0.35μmであり、水性ポリウレタンの平均粒径は0.12μmであった。これらの平均粒径の測定では、樹脂エマルションを蒸留水で希釈した後、JIS法(JIS Z8826)に準じた市販のレーザー回折法による粒径測定装置にて個数平均粒径を測定した。なお、表1中の樹脂質量部は、固形分に換算した値である。
 次いで、表1に示す液に、表2に示すフッ素樹脂のディスパージョン又はパウダーを、所定量添加して27種の処理液を作製した。
Figure JPOXMLDOC01-appb-T000002
 表2中の6種類のフッ素樹脂の詳細は下記のとおりである。
 「フッ素樹脂1」
 ポリテトラフルオロエチレン(PTFE)タイプで、平均粒径が0.25μm、濃度が48質量%のフッ素樹脂のディスパージョンである。
 「フッ素樹脂2」
 フッ素化エチレンプロピレン(FEP)タイプで、平均粒径が0.34μm、濃度が50質量%のフッ素樹脂のディスパージョンである。
 「フッ素樹脂3」
 強制乳化により水分散タイプとした、平均粒径が0.12μm、濃度が60質量%のフッ素樹脂のディスパージョンである。
 「フッ素樹脂4」
 フッ素ゴムタイプで、平均粒径が2.5μmのフッ素樹脂のパウダーである。
 「フッ素樹脂5」
 水酸基付与タイプで、平均粒径が0.06μm、濃度が48質量%のフッ素樹脂のディスパージョン5である。
 「フッ素樹脂6」
 平均粒径が0.33μmのPTFE及び平均粒径が0.25μmのフッ化ビニリデンを複合したフッ素樹脂のパウダーである。
 なお、有機樹脂のエマルションの平均粒径の測定では、蒸留水で希釈した後、JIS法(JIS Z8826)に準じた市販のレーザー回折法による粒径測定装置にて個数平均粒径を測定した。また、フッ素樹脂のパウダーの平均粒径の測定では、蒸留水中に約1分間超音波洗浄機で分散させた後、JIS法(JIS Z8826)に準じた市販のレーザー回折法による粒径測定装置にて個数平均粒径を測定した。また、表面粗さについては、JIS法(JIS B0601)に準じた市販の表面粗度測定装置を用いて中心線平均粗さ(Ra)を測定した。
 そして、処理液を地鉄に塗布し、表2に示す条件で焼き付けた。処理液はロールコーターを用いて塗布した。この際に、絶縁被膜の厚さが約0.8μmになるようロール圧下量等を調整した。焼き付け(乾燥)は、輻射炉を用いて行い、表2中に記した所定の加熱条件が得られるように炉温の設定を調整した。到達板温が160℃~400℃、焼き付け時間が5秒間~55秒間になるよう調整した。
 そして、焼き付け終了後に得られた電磁鋼板について種々の特性を評価した。即ち、モールド樹脂の剥離性、絶縁性、密着性、耐蝕性、外観、及び耐熱性の評価を行った。
 モールド樹脂の剥離性の評価では、0.05gのモールド樹脂の粉末を挟み込んだ2枚の電磁鋼板のサンプルを150℃に加熱し、10kgf/cmの加圧力で1分間保持し、空冷し、剪断引張り強度を測定した。剪断引張り強度の測定はJIS法(JIS K6850)に準拠して行い、剪断引張り強度をモールド樹脂接着力とした。なお、1kgf/cmは、約9.8N/cmである。剪断引張り強度が10kgf/cm以下であれば、モールド樹脂の剥離性が良好であるといえる。一方、剪断引張り強度が10kgf/cm超の場合、モールド樹脂により磁性が劣化する可能性があり、また、磁石の固定に用いると、付着物の除去の際等の作業性が劣る可能性がある。
 絶縁性の評価では、JIS法(JIS C2550)に準じて層間抵抗を測定した。そして、層間抵抗が5Ω・cm/枚未満のものを×、5Ω・cm/枚~10Ω・cm/枚のものを△、10Ω・cm/枚~50Ω・cm/枚のものを○、50Ω・cm/枚以上のものを◎とした。
 密着性の評価では、電磁鋼板のサンプルに粘着テープを貼り付けた後、これを10mm、20mm、30mmの直径の金属棒に巻き付けた。次いで、粘着テープを引き剥がし、剥れた痕跡から密着性を評価した。直径が10mmの金属棒に巻き付けても剥れなかったものを10mmφOKとし、直径が20mmの金属棒に巻き付けても剥れなかったものを20mmφOKとした。また、直径が30mmの金属棒に巻き付けても剥れなかったものを30mmφOKとし、直径が30mmの金属棒に巻き付けたときに剥がれたものを30mmφOUTとした。
 耐蝕性は、JIS法の塩水噴霧試験(JIS Z2371)に準じて行い、7時間経時後のサンプルを用いて10点評価で行った。評価基準は、以下の通りである。
  10:錆発生が無かった
   9:錆発生が極少量(面積率0.1%以下)
   8:錆の発生した面積率=0.1%超過0.25%以下
   7:錆の発生した面積率=0.25%超過0.50%以下
   6:錆の発生した面積率=0.50%超過1%以下
   5:錆の発生した面積率=1%超過2.5%以下
   4:錆の発生した面積率=2.5%超過5%以下
   3:錆の発生した面積率=5%超過10%以下
   2:錆の発生した面積率=10%超過25%以下
   1:錆の発生した面積率=25%超過50%以下
 外観の評価では、光沢があり、平滑で均一であるものを5とし、以下、光沢はあるが均一性に若干劣るものを4、やや光沢があり平滑ではあるが均一性に劣るものを3、光沢が少なく、平滑性にやや劣り均一性に劣るものを2、光沢、均一性、平滑性の劣るものを1とした。
 耐熱性は、電磁鋼板の表面に100gf(約0.98N)の荷重で2mm×30mmのガーゼを擦り付けて、絶縁被膜の剥離状況に基づいて評価した。剥離しなかったものを5、少し剥離したものを4、はっきり剥離したものを3、剥離状況が酷いものを2、ガーゼで擦らなくても剥離したものを1とした。
 これらの評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、この実験により本発明の効果が明らかとなった。即ち、表3に示すように、本発明の実施例に該当するサンプルではモールド樹脂の接着力が10kgf/cm以下となっており、優れたモールド樹脂の剥離性を有しているといえる。また、本発明の実施例に該当するサンプルは、モールド樹脂の剥離性に加えて、絶縁性、密着性、耐蝕性、外観及び耐熱性に優れることも明らかになった。また、比較例に該当するサンプルでは、モールド樹脂の接着力が10kgf/cm超の大きな値となっているものが多く、また、絶縁性、密着性、耐蝕性、外観及び耐熱性の全てに優れたものは存在しなかった。
 以上説明したように、本発明の実施形態に係る電磁鋼板では、例えば積層鉄芯もモールド等において、モールド樹脂の剥離性が良好で積層鉄芯の鉄損特性が向上し、かつ電磁鋼板の絶縁被膜特性が良好である。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明は、例えば、電磁鋼板製造産業及び電磁鋼板利用産業において利用することができる。

Claims (10)

  1.  地鉄と、
     前記地鉄の表面上に形成された絶縁被膜と、
     を有し、
     前記絶縁被膜は、
     リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:1質量部~50質量部と、を含む第1の成分:100質量部と、
     平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:0.5質量部~10質量部と、
     を含むことを特徴とする電磁鋼板。
  2.  地鉄と、
     前記地鉄の表面上に形成された絶縁被膜と、
     を有し、
     前記絶縁被膜は、
     コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:40質量部~400質量部と、を含む第1の成分:100質量部と、
     平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:0.5質量部~10質量部と、
     を含むことを特徴とする電磁鋼板。
  3.  前記第1の成分及び前記第2の成分は、前記絶縁被膜の90%以上を占めることを特徴とする請求項1に記載の電磁鋼板。
  4.  前記第1の成分及び前記第2の成分は、前記絶縁被膜の90%以上を占めることを特徴とする請求項2に記載の電磁鋼板。
  5.  地鉄の表面に処理液を塗布する工程と、
     前記処理液の焼き付け乾燥を行う工程と、
     を有し、
     前記処理液として、
     リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で1質量部~50質量部と、を含む第1の成分:固形分で100質量部と、
     平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:樹脂固形分で0.5質量部~10質量部と、
     を含むものを用いることを特徴とする電磁鋼板の製造方法。
  6.  地鉄の表面に処理液を塗布する工程と、
     前記処理液の焼き付け乾燥を行う工程と、
     を有し、
     前記処理液として、
     コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で40質量部~400質量部と、を含む第1の成分:固形分で100質量部と、
     平均粒径が0.05μm~0.35μmのフッ素樹脂のディスパージョン又はパウダーからなる第2の成分:樹脂固形分で0.5質量部~10質量部と、
     を含むものを用いることを特徴とする電磁鋼板の製造方法。
  7.  前記焼き付け乾燥の到達温度を150℃~350℃とし、時間を5秒間~60秒間とすることを特徴とする請求項5に記載の電磁鋼板の製造方法。
  8.  前記焼き付け乾燥の到達温度を150℃~350℃とし、時間を3秒間~60秒間とすることを特徴とする請求項6に記載の電磁鋼板の製造方法。
  9.  前記第1の成分及び前記第2の成分は、固形分換算で前記処理液の90%以上を占めることを特徴とする請求項5に記載の電磁鋼板の製造方法。
  10.  前記第1の成分及び前記第2の成分は、固形分換算で前記処理液の90%以上を占めることを特徴とする請求項6に記載の電磁鋼板の製造方法。
PCT/JP2011/066224 2010-07-23 2011-07-15 電磁鋼板及びその製造方法 WO2012011442A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147017276A KR101458753B1 (ko) 2010-07-23 2011-07-15 수지 몰드되는 적층 철심에 사용되는 전자기 강판 및 그 제조 방법
US13/809,279 US11377569B2 (en) 2010-07-23 2011-07-15 Electrical steel sheet and method for manufacturing the same
BR112013001548-9A BR112013001548B1 (pt) 2010-07-23 2011-07-15 Chapa de aço elétrico e método para produção da mesma
EP11809612.2A EP2597177B1 (en) 2010-07-23 2011-07-15 Electromagnetic steel sheet and process for production thereof
KR1020137001210A KR101458726B1 (ko) 2010-07-23 2011-07-15 수지 몰드되는 적층 철심에 사용되는 전자기 강판 및 그 제조 방법
CN201180036048.2A CN103025917B (zh) 2010-07-23 2011-07-15 电磁钢板及其制造方法
JP2011554330A JP5093411B2 (ja) 2010-07-23 2011-07-15 樹脂モールドされる積層鉄芯に使用される電磁鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010166119 2010-07-23
JP2010-166119 2010-07-23

Publications (1)

Publication Number Publication Date
WO2012011442A1 true WO2012011442A1 (ja) 2012-01-26

Family

ID=45496865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066224 WO2012011442A1 (ja) 2010-07-23 2011-07-15 電磁鋼板及びその製造方法

Country Status (8)

Country Link
US (1) US11377569B2 (ja)
EP (1) EP2597177B1 (ja)
JP (1) JP5093411B2 (ja)
KR (2) KR101458753B1 (ja)
CN (1) CN103025917B (ja)
BR (1) BR112013001548B1 (ja)
TW (1) TWI451453B (ja)
WO (1) WO2012011442A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634288A1 (en) * 2010-10-29 2013-09-04 Nippon Steel & Sumitomo Metal Corporation Electromagnetic steel sheet and process for production thereof
WO2016125783A1 (ja) * 2015-02-05 2016-08-11 新日鐵住金株式会社 電磁鋼板
JP2020161633A (ja) * 2019-03-26 2020-10-01 株式会社デンソー 点火コイル
JP2020161632A (ja) * 2019-03-26 2020-10-01 株式会社デンソー 点火コイル

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3075877B1 (en) 2013-11-28 2021-03-03 JFE Steel Corporation Electromagnetic steel sheet having insulating coating film attached thereto
CN110114431B (zh) 2016-12-23 2021-06-15 Posco公司 电工钢板粘合涂覆组分物、电工钢板产品及其制造方法
CN112534083B (zh) * 2018-07-31 2022-05-17 杰富意钢铁株式会社 绝缘被膜处理液、带有绝缘被膜的取向性电磁钢板及其制造方法
CN112639165A (zh) * 2018-09-03 2021-04-09 杰富意钢铁株式会社 带有绝缘被膜的电磁钢板及其制造方法
JP7151792B2 (ja) * 2019-01-16 2022-10-12 日本製鉄株式会社 方向性電磁鋼板の製造方法
CA3125898A1 (en) * 2019-02-14 2020-08-20 Jfe Steel Corporation Electrical steel sheet having insulating coating

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919078B1 (ja) 1970-12-07 1974-05-15
JPS5015013B1 (ja) 1970-08-28 1975-06-02
JPS5443823A (en) * 1977-09-14 1979-04-06 Nippon Steel Corp Film forming method on electromagnetic steel sheet to prevent seizure at the time of strain relief annealing
JPS6038068A (ja) * 1983-08-10 1985-02-27 Sumitomo Metal Ind Ltd 電磁鋼板に絶縁皮膜を形成する方法
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH09323066A (ja) 1996-06-07 1997-12-16 Kawasaki Steel Corp 歪取り焼鈍が可能で耐蝕性、耐溶剤性に優れる絶縁被膜付き電磁鋼板ならびにその絶縁被膜の形成方法
JP2002164207A (ja) 2000-11-22 2002-06-07 Nippon Steel Corp モールドコアに適し磁気特性に優れた電磁鋼板
JP2002309379A (ja) 2001-04-12 2002-10-23 Kawasaki Steel Corp 加工性に優れる絶縁被膜付き電磁鋼板

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA964533A (en) 1970-09-17 1975-03-18 Motoharu Nakamura Electrical steel sheets and strips having excellent punching and welding characteristics for the use of a laminated iron core
US4038234A (en) * 1970-12-11 1977-07-26 Imperial Chemical Industries Limited Aqueous dispersion of fluorocarbon polymer and halogen-containing complex phosphate of aluminum
US4043966A (en) * 1971-07-27 1977-08-23 Imperial Chemical Industries Limited Fluorocarbon polymer compositions with aluminum phosphate-inorganic acid mixture binder
JPS563012B2 (ja) 1973-04-14 1981-01-22
US3840983A (en) 1973-04-30 1974-10-15 Ford Motor Co Method of manufacture of a dynamoelectric machine laminated armature structure
US4352899A (en) * 1980-04-05 1982-10-05 Sakai Chemical Industry Co., Ltd. Coating composition for metal-substrate
JPS58198573A (ja) * 1982-05-13 1983-11-18 Otsuka Chem Co Ltd 耐摩耗性コ−テイング材
JPS61183480A (ja) * 1985-02-09 1986-08-16 Sumitomo Metal Ind Ltd 電磁鋼板に絶縁皮膜を形成する方法
KR890003583B1 (ko) * 1986-11-21 1989-09-25 포항종합제철주식회사 무방향성 전기강판의 절연피막 형상방법
JP3117846B2 (ja) * 1993-07-26 2000-12-18 新日本製鐵株式会社 皮膜特性の優れる無方向性電磁鋼板及びその鋼板用表面処理剤
KR0129687B1 (ko) 1993-05-21 1998-04-16 다나까 미노루 피막특성이 극히 우수한 절연 피막 처리제 및 이 처리제를 이용한 무방향성 전기강판의 제조방법
JPH07278834A (ja) * 1994-04-14 1995-10-24 Kawasaki Steel Corp 溶接性およびオイルレス打抜き性に優れた電気絶縁被膜を有する電磁鋼板
US6139650A (en) * 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
US20030194433A1 (en) * 2002-03-12 2003-10-16 Ecolab Antimicrobial compositions, methods and articles employing singlet oxygen- generating agent
EP0923088B1 (en) * 1997-12-12 2003-05-14 Kawasaki Steel Corporation Electrical steel sheet coating
US5955201A (en) * 1997-12-19 1999-09-21 Armco Inc. Inorganic/organic insulating coating for nonoriented electrical steel
JP3435080B2 (ja) 1998-10-23 2003-08-11 新日本製鐵株式会社 被膜特性に優れた無方向性電磁鋼板
EP1050603B1 (en) * 1998-11-08 2007-01-10 JFE Steel Corporation Surface treated steel sheet having excellent corrosion resistance
US6159534A (en) * 1998-11-23 2000-12-12 Nippon Steel Corporation Method for producing non-oriented electromagnetic steel sheet having insulating film excellent in film properties
US6383650B1 (en) * 1998-11-23 2002-05-07 Nippon Steel Corporation Non-oriented electromagnetic steel sheet having insulating film excellent in film properties
US6509099B1 (en) * 1999-08-02 2003-01-21 Nkk Corporation Phosphate-treated steel plate
JP3935664B2 (ja) * 2000-08-01 2007-06-27 住友金属工業株式会社 電磁鋼板の絶縁皮膜形成用処理液と処理方法
JP2002080979A (ja) * 2000-09-08 2002-03-22 Nkk Corp 環境調和性と加工部密着性及び加工部耐食性に優れたユズ肌プレコート鋼板及びその製造方法
JP3542789B2 (ja) * 2000-09-08 2004-07-14 朝日化学工業株式会社 耐食性に優れた亜鉛系めっき鋼板の表面処理剤、処理鋼板およびその処理方法
US6537678B1 (en) * 2000-09-20 2003-03-25 United Technologies Corporation Non-carcinogenic corrosion inhibiting additive
DE10124434A1 (de) * 2001-05-18 2002-11-28 Bosch Gmbh Robert Funktionsbeschichtung und Verfahren zu deren Erzeugung, insbesondere zum Verschleißschutz, Korrosionsschutz oder zur Temperaturisolation
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP4345480B2 (ja) * 2001-08-17 2009-10-14 Jfeスチール株式会社 積層鉄心の製造装置および製造方法
AU2002335206B2 (en) * 2001-10-05 2008-04-03 Nippon Steel Corporation Iron core exhibiting excellent insulating property at end face, and method for coating end face of iron core
JP4258164B2 (ja) * 2002-04-02 2009-04-30 Jfeスチール株式会社 歪取焼鈍後の磁気特性および耐食性に優れた無方向性電磁鋼板
CA2483183C (en) * 2002-04-30 2009-12-08 Rotomac Electricals Pvt. Ltd. Self-priming chromate free corrosion resistant coating composition and method
US6758887B2 (en) * 2002-11-29 2004-07-06 United Technologies Corporation Chromate free waterborne epoxy corrosion resistant primer
JP2005019643A (ja) * 2003-06-25 2005-01-20 Jfe Steel Kk 寸法精度に優れた積層コア及びその製造方法
US7341677B2 (en) * 2003-06-30 2008-03-11 United Technologies Corporation Non-carcinogenic corrosion inhibiting additive
CN100506929C (zh) * 2004-04-28 2009-07-01 宝山钢铁股份有限公司 电工钢用水性自粘接涂料
JP4543374B2 (ja) 2004-07-05 2010-09-15 日立金属株式会社 積層基板およびその製造方法
JP4456955B2 (ja) * 2004-07-16 2010-04-28 富士ゼロックス株式会社 電子写真感光体、電子写真用カートリッジおよび電子写真装置
DE602005017174D1 (de) 2004-10-27 2009-11-26 Du Pont Selbstbondierende beschichtungszusammensetzung
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same
CN101223300B (zh) * 2005-07-14 2010-12-08 新日本制铁株式会社 具有不含铬的绝缘皮膜的取向电磁钢板及其绝缘皮膜剂
US20070087201A1 (en) * 2005-10-13 2007-04-19 Michael Wimmer Self-bonding coating composition
JP5087915B2 (ja) * 2005-12-28 2012-12-05 Jfeスチール株式会社 絶縁被膜を有する電磁鋼板およびその製造方法
WO2007136115A1 (ja) * 2006-05-19 2007-11-29 Nippon Steel Corporation 高張力絶縁被膜を有する方向性電磁鋼板及びその絶縁被膜処理方法
US20080226863A1 (en) * 2007-03-16 2008-09-18 Robert Prunchak Glass Enamel Screen Printing Composition
KR20100020007A (ko) * 2007-06-12 2010-02-19 이 아이 듀폰 디 네모아 앤드 캄파니 전기강을 위한 절연 코팅 조성물
KR101025008B1 (ko) * 2007-12-26 2011-03-25 주식회사 포스코 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
US8101242B2 (en) * 2008-03-07 2012-01-24 Sri International Method of imparting corrosion resistance to a substrate surface, and coated substrates prepared thereby
WO2010038749A1 (ja) * 2008-09-30 2010-04-08 東海ゴム工業株式会社 スタビライザブッシュ
EP2366810B1 (en) * 2008-11-27 2019-08-21 Nippon Steel Corporation Electrical steel sheet and manufacturing method thereof
CN102575352B (zh) * 2009-09-15 2016-01-20 新日铁住金株式会社 电磁钢板及其制造方法
CN103189544B (zh) * 2010-10-29 2015-08-12 新日铁住金株式会社 电磁钢板及其制造方法
PL3255177T3 (pl) * 2015-02-05 2020-12-14 Nippon Steel Corporation Elektrotechniczna blacha stalowa
KR20190097246A (ko) * 2017-03-23 2019-08-20 닛폰세이테츠 가부시키가이샤 전자 강판

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015013B1 (ja) 1970-08-28 1975-06-02
JPS4919078B1 (ja) 1970-12-07 1974-05-15
JPS5443823A (en) * 1977-09-14 1979-04-06 Nippon Steel Corp Film forming method on electromagnetic steel sheet to prevent seizure at the time of strain relief annealing
JPS6038068A (ja) * 1983-08-10 1985-02-27 Sumitomo Metal Ind Ltd 電磁鋼板に絶縁皮膜を形成する方法
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH09323066A (ja) 1996-06-07 1997-12-16 Kawasaki Steel Corp 歪取り焼鈍が可能で耐蝕性、耐溶剤性に優れる絶縁被膜付き電磁鋼板ならびにその絶縁被膜の形成方法
JP2002164207A (ja) 2000-11-22 2002-06-07 Nippon Steel Corp モールドコアに適し磁気特性に優れた電磁鋼板
JP2002309379A (ja) 2001-04-12 2002-10-23 Kawasaki Steel Corp 加工性に優れる絶縁被膜付き電磁鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2597177A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634288A1 (en) * 2010-10-29 2013-09-04 Nippon Steel & Sumitomo Metal Corporation Electromagnetic steel sheet and process for production thereof
EP2634288A4 (en) * 2010-10-29 2015-01-21 Nippon Steel & Sumitomo Metal Corp ELECTROMAGNETIC STEEL PLATE AND METHOD OF MANUFACTURING THEREOF
US10669432B2 (en) 2010-10-29 2020-06-02 Nippon Steel Corporation Electrical steel sheet and method of manufacturing the same
WO2016125783A1 (ja) * 2015-02-05 2016-08-11 新日鐵住金株式会社 電磁鋼板
KR20170107568A (ko) 2015-02-05 2017-09-25 신닛테츠스미킨 카부시키카이샤 전자 강판
JPWO2016125783A1 (ja) * 2015-02-05 2017-11-09 新日鐵住金株式会社 電磁鋼板
JP2020161633A (ja) * 2019-03-26 2020-10-01 株式会社デンソー 点火コイル
JP2020161632A (ja) * 2019-03-26 2020-10-01 株式会社デンソー 点火コイル
JP7226009B2 (ja) 2019-03-26 2023-02-21 株式会社デンソー 点火コイル
JP7259471B2 (ja) 2019-03-26 2023-04-18 株式会社デンソー 点火コイル

Also Published As

Publication number Publication date
JP5093411B2 (ja) 2012-12-12
EP2597177A1 (en) 2013-05-29
JPWO2012011442A1 (ja) 2013-09-09
CN103025917A (zh) 2013-04-03
BR112013001548A2 (pt) 2016-05-24
CN103025917B (zh) 2014-12-31
TWI451453B (zh) 2014-09-01
EP2597177A4 (en) 2015-02-18
TW201214473A (en) 2012-04-01
US11377569B2 (en) 2022-07-05
BR112013001548B1 (pt) 2020-09-29
KR101458726B1 (ko) 2014-11-05
US20130115443A1 (en) 2013-05-09
EP2597177B1 (en) 2016-12-14
KR20130026475A (ko) 2013-03-13
KR20140088915A (ko) 2014-07-11
KR101458753B1 (ko) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5093411B2 (ja) 樹脂モールドされる積層鉄芯に使用される電磁鋼板及びその製造方法
JP5005844B2 (ja) 電磁鋼板及びその製造方法
CN107250431B9 (zh) 电磁钢板及电磁钢板的制造方法
JP5423465B2 (ja) 電磁鋼板および電磁鋼板の製造方法
JP4729136B2 (ja) 電磁鋼板及びその製造方法
CN107208271B (zh) 电磁钢板
JP5471849B2 (ja) 電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036048.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011554330

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13809279

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137001210

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011809612

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011809612

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013001548

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013001548

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130121