WO2012008476A1 - セラミックフィルタ - Google Patents

セラミックフィルタ Download PDF

Info

Publication number
WO2012008476A1
WO2012008476A1 PCT/JP2011/065933 JP2011065933W WO2012008476A1 WO 2012008476 A1 WO2012008476 A1 WO 2012008476A1 JP 2011065933 W JP2011065933 W JP 2011065933W WO 2012008476 A1 WO2012008476 A1 WO 2012008476A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
glass seal
glass
ceramic filter
porous substrate
Prior art date
Application number
PCT/JP2011/065933
Other languages
English (en)
French (fr)
Inventor
慎 寺西
鈴木 秀之
学 磯村
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2012524572A priority Critical patent/JP5810083B2/ja
Priority to CN201180033604.0A priority patent/CN102985171B/zh
Priority to BR112013000770A priority patent/BR112013000770A2/pt
Priority to EP11806806.3A priority patent/EP2594329B1/en
Priority to CA2805251A priority patent/CA2805251C/en
Publication of WO2012008476A1 publication Critical patent/WO2012008476A1/ja
Priority to US13/735,233 priority patent/US9802143B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/041Gaskets or O-rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a ceramic filter, and more particularly to a ceramic filter that can be used for a long time under high temperature conditions.
  • a ceramic filter using a ceramic porous body has high reliability because it is excellent in mechanical strength and durability as compared with a polymer membrane. Moreover, since the ceramic filter has high corrosion resistance, it is less deteriorated during chemical solution cleaning due to acid, alkali or the like, and furthermore, it is possible to precisely control the average pore diameter that determines the filtration capacity. Since the ceramic filter has such various advantages, it can be used in fluids such as liquids and gases in a wide range of fields including water treatment and exhaust gas treatment as well as in the pharmaceutical and food fields. It is used to filter out and remove suspended solids, bacteria, dust and the like that are present. In addition, it is also used in a pervaporation application for separating and purifying a mixture of two or more components, and a gas separation application for separating and purifying a mixture of two or more components.
  • a ceramic filter for example, a plurality of cells having "through holes extending from one end face to the other end face" are formed, and they are disposed on a columnar porous base material made of ceramic and wall surfaces in the cells.
  • a ceramic filter or the like provided with a separation membrane made of ceramic and a glass seal disposed so as to cover the end face of the porous substrate is used (see, for example, Patent Document 1). Thereby, the fluid permeability inside the element can be improved while maintaining the filtration performance.
  • the ceramic filter described in Patent Document 1 is a filter with high corrosion resistance that can effectively remove suspended matter, bacteria, dust, etc. mixed in a fluid such as liquid or gas, but it is possible to use high temperature conditions. There is a problem that cracks occur when used for a long time. In addition, cracks may occur even when exposed to a high-temperature alkaline aqueous solution at the time of production, such as when a zeolite separation membrane is disposed on a substrate.
  • the present invention has been made in view of the problems of the prior art, and provides a ceramic filter that can be used for a long time under high temperature conditions.
  • a ceramic filter shown below is provided.
  • a separation is made of a porous base material made of ceramic and having a partition wall forming a cell extending from one end face to the other end face, and made of ceramic made of ceramic material
  • a membrane and a glass seal disposed on the one end face and the other end face without closing the opening of the cell, the thermal expansion coefficient being contained in the glass seal during the glass seal;
  • a ceramic filter in which ceramic particles are dispersed at 90 to 110% of the thermal expansion coefficient of glass.
  • FIG. 1 is a plan view schematically showing a ceramic filter of Example 1; It is a graph which shows the relationship between "the area occupancy of a ceramic particle” and “the crack generation time (heat resistance)" about the ceramic filter of an Example and a comparative example.
  • Ceramic filter According to one embodiment of the ceramic filter of the present invention, as shown in FIG. 1, “partitions 1 which define a plurality of cells 2 extending from one end surface 11 to the other end surface 12 and an outer peripheral wall located at the outermost periphery 4 and made of a ceramic material, and a separation membrane 21 provided on the wall of the cell 2 and made of a ceramic material, and one end surface 11 and the other end surface 12 includes a glass seal 31 disposed in a state in which the opening of the cell 2 is not closed ", and a glass whose thermal expansion coefficient is contained in the glass seal 31 (in the glass seal 31 (in the glass seal 31)
  • the wall surface in the cell 2 refers to the “surface of the partition wall 1” exposed in the cell 2.
  • FIG. 1 is a schematic view showing a state in which one embodiment of the ceramic filter of the present invention is attached to a housing 41, and showing a cross section parallel to the extending direction of the cell 2 of the ceramic filter 100. As shown in FIG.
  • the ceramic particles are dispersed in the glass seal 31 disposed on the end face of the porous substrate 3, thermal stress is generated by using it under high temperature conditions. Even so, the presence of the ceramic particles relieves the stress, making it possible to use for a long time under high temperature conditions. Furthermore, since the thermal expansion coefficient of the ceramic particles is 90 to 110% of the thermal expansion coefficient of the glass contained in the glass seal 31, when the ceramic filter 100 is used under high temperature conditions, “The occurrence of cracks in the glass seal 31 due to the difference in thermal expansion between the glass and the ceramic particles can be prevented.
  • the ceramic filter 100 of the present embodiment if it is a complicated shape of honeycomb shape, residual stress is easily generated in the manufacturing process, and particularly in the large honeycomb shape ceramic filter of 5000 cm 3 or more, the residual stress Is considered to be likely to occur. Therefore, in such a large honeycomb shaped ceramic filter, a crack is easily generated in the glass seal. Therefore, the ceramic filter of the present invention exhibits the effect of preventing the occurrence of cracks in the glass seal particularly remarkably when the honeycomb filter has a large honeycomb shape.
  • the ceramic filter 100 of this embodiment is demonstrated for every component.
  • the porous substrate 3 is a partition wall 1 which defines a plurality of cells 2 extending from one end surface 11 to the other end surface 12 And it has the outer peripheral wall 4 located in outermost periphery.
  • the material of the porous base material 3 is a ceramic. “The outer peripheral wall 4 is located at the outermost periphery of the porous substrate 3” means that the outer peripheral wall 4 is located at the outermost periphery “in the cross section orthogonal to the cell extending direction of the porous substrate 3”.
  • FIG. 2 is a perspective view schematically showing a porous substrate 3 constituting one embodiment of the ceramic filter of the present invention.
  • the average pore diameter of the partition walls and outer peripheral wall constituting the porous substrate is determined in consideration of the balance between mechanical strength and filtration resistance. Usually, an average pore diameter of 1 to 100 ⁇ m is preferred.
  • the porosity is preferably 25 to 50%.
  • the average pore size and porosity are values measured by a mercury porosimeter.
  • the partition structure which comprises a porous base material has a preferable laminated structure formed from the partition main body and the surface layer which covers the surface of a partition main body.
  • eliminated the surface layer from the whole partition becomes a partition main body, and in this case, "the wall surface (surface of a partition) in a cell" of a porous substrate becomes the surface of a surface layer.
  • a filtration membrane on the surface of the surface layer.
  • the material of the surface layer is preferably ceramic.
  • the material of the porous substrate is ceramic, preferably alumina (Al 2 O 3 ), titania (TiO 2 ), mullite (Al 2 O 3 ⁇ SiO 2 ), zirconia (ZrO 2 ) Etc.
  • alumina Al 2 O 3
  • titania TiO 2
  • mullite Al 2 O 3 ⁇ SiO 2
  • zirconia ZrO 2
  • Etc zirconia
  • a structure of the partition main body of a porous base material, and the surface layer of a porous base material the structure which the aggregate particle was couple
  • the ceramic filter of such a structure can be manufactured by baking at a lower temperature, and can be manufactured at lower cost.
  • the shape of the porous substrate is a column having one end face 11, the other end face 12 and the outer peripheral surface 5 ("tubular" when it is interpreted as hollow by formation of cells) Is preferred.
  • the shape of the porous substrate is preferably “honeycomb-like” or “monolith-like” because the filtration area per unit volume can be increased and the treatment capacity can be increased.
  • the overall shape and size of the porous substrate are not particularly limited as long as the filtration function is not impaired.
  • the overall shape is, for example, a cylindrical (or cylindrical) shape, a quadrangular prism (or a tubular having a rectangular cross section orthogonal to the central axis), a triangular prism (or a triangular cross section orthogonal to the central axis) Shape, etc., and among them, a cylindrical (or cylindrical) shape is preferable.
  • a cylindrical shape having a diameter of 30 to 180 mm in a cross section orthogonal to the central axis and a length of 150 to 2000 mm in the central axial direction.
  • Examples of the cross-sectional shape of the cell of the porous substrate include a circle, a polygon and the like, and a polygon such as a square, a pentagon, a hexagon and a triangle Can be mentioned.
  • the porous base material has a cylindrical (cylindrical) shape
  • the cell extends in the same direction as the central axis direction.
  • the diameter of the cell is preferably 1 to 5 mm. If it is smaller than 1 mm, the filtration area may be reduced if the cell density is constant. If it is larger than 5 mm, the strength of the ceramic filter may be reduced.
  • the partition thickness is preferably 0.3 to 2 mm. If it is thinner than 0.3 mm, the strength of the ceramic filter may be reduced. If it is thicker than 2 mm, the pressure loss when flowing the fluid may increase.
  • the separation membrane is formed of a ceramic porous body in which a plurality of pores are formed, and it is preferable that the separation membrane be disposed on a wall surface (surface of partition wall) in a cell.
  • the average pore size of the separation membrane can be appropriately determined by the required filtration performance (particle size of the substance to be removed). For example, in the case of a ceramic filter used for microfiltration or ultrafiltration, 0.01 to 1.0 ⁇ m is preferable.
  • the average pore size of the separation membrane is a value measured by the air flow method described in ASTM F316.
  • the type of “separation membrane” is not particularly limited, and known carbon monoxide separation membranes, helium separation membranes, hydrogen separation membranes, carbon A membrane, an MFI-type zeolite membrane, a DDR-type zeolite membrane, a silica membrane, etc.
  • the separation membrane for example, a carbon monoxide separation membrane described in Japanese Patent No. 4006107, a helium separation membrane described in Japanese Patent No. 3953833, a hydrogen separation membrane described in Japanese Patent No. 3933907, Japanese Patent Laid-Open No. 2003-286018
  • the carbon membrane described in the gazette, the DDR type zeolite membrane composite described in JP-A-2004-66188, the silica membrane described in WO 2008/050812, and the like can be mentioned.
  • Examples of the material of the separation membrane include alumina (Al 2 O 3 ), titania (TiO 2 ), mullite (Al 2 O 3 .SiO 2 ), zirconia (ZrO 2 ) and the like.
  • the glass seal is disposed on one end face and the other end face (both end faces) of the porous substrate without closing the opening of the cell.
  • the glass seal is disposed so as to cover the entire wall surface portion (a portion where a wall is present and a hole (cell) is not open (a portion not open)) of both end surfaces of the porous substrate.
  • the separation membrane disposed on the wall surface in the cell is in contact with the separation membrane (so that there is no space between the glass seal and the separation membrane). “There is no gap between the glass seal and the separation membrane” means that the end of the cylindrical separation membrane disposed on the wall of the cell contacts the glass seal so that the glass seal and the separation membrane are separated.
  • glass seal means the entire glass seal in which ceramic particles are dispersed. Also, in order to clearly distinguish the entire glass seal in which the ceramic particles are dispersed from the portion of "glass” (glass contained in the glass seal) in the glass seal, “ceramic particle dispersed glass seal” is there. Moreover, it is preferable that a glass seal is comprised from glass and ceramic particle
  • the glass seal 31 is disposed so as to also cover a part of the outer peripheral surface 5 of the porous substrate 3 (near the end of the porous substrate 3 in the cell 2 extending direction). It is preferable that it is provided. Then, when the ceramic filter 100 is housed in the housing 41, a seal such as an O-ring or the like is provided between the “glass seal 31 disposed on the outer peripheral surface 5 of the porous substrate 3” and the housing 41. By disposing the material 44, it is preferable to close the gap between the “glass seal 31 disposed on the outer peripheral surface 5 of the porous substrate 3” and the housing 41 with the sealing material 44.
  • the sealing performance can be improved by arranging the sealing material 44 on the glass seal 31. Also, in order to enhance the sealing performance when the sealing material 44 is disposed on the glass seal 31, the surface of the glass seal 31 (in particular, the surface of the portion disposed on the outer peripheral surface 5 of the porous substrate 3) Is preferably high in smoothness.
  • a fluid to be treated (for example, water to be treated) is disposed from the end face (wall surface) of the ceramic filter by arranging the glass seal on both end faces of the porous substrate without closing the cell opening. It is possible to prevent the inside of the porous substrate from infiltrating.
  • the ceramic filter 100 when the ceramic filter 100 is housed in the housing 41 and the fluid to be treated F1 is supplied to one end face side of the ceramic filter 100, the fluid to be treated F1 flows into the cell 2. And permeate the separation membrane 21 and enter the inside of the porous substrate 3.
  • the treated fluid (the to-be-treated fluid F 1 is filtered by the separation membrane 21) which has entered the porous base material 3.
  • the obtained fluid (for example, treated water) F2 is discharged from the outer peripheral surface 5 of the porous substrate 3 to the outside (outside of the porous substrate 3).
  • the thermal expansion coefficient of the ceramic particles dispersed in the glass seal is 90 to 110% of the thermal expansion coefficient of the glass contained in the glass seal (the glass portion in the glass seal).
  • the thermal expansion coefficient of the ceramic particles is 90 to 110% of the thermal expansion coefficient of the glass contained in the glass seal
  • the ceramic filter is used at high temperature conditions, "the thermal expansion difference between the glass seal and the ceramic particles And “the occurrence of cracks in the glass seal” can be prevented more effectively. If it is smaller than 90% and larger than 110%, the difference between the thermal expansion coefficient of the glass contained in the glass seal and the thermal expansion coefficient of the ceramic particles is large, which is not preferable because cracks occur after firing.
  • the "thermal expansion coefficient of glass contained in the glass seal” means the thermal expansion coefficient of the "glass” portion in the glass seal excluding ceramic particles. Moreover, it is preferable that ceramic particles do not melt
  • the ratio of the thermal expansion coefficient of the ceramic particles to the thermal expansion coefficient of the glass seal (glass portion) may be referred to as the "thermal expansion coefficient ratio”.
  • the material of the ceramic particles dispersed in the glass seal is preferably alumina or titania.
  • the thermal expansion coefficient of alumina is 6.0 ⁇ 10 ⁇ 6 to 7.5 ⁇ 10 ⁇ 6 / K
  • the thermal expansion coefficient of titania is 6.0 ⁇ 10 ⁇ 6 to 8.0 ⁇ 10 ⁇ 6 / K. It is K.
  • the material of the ceramic particles is alumina or titania
  • the material of the porous substrate is alumina, whereby the porous particles, the glass contained in the glass seal, and the ceramic particles contained in the glass seal Since the thermal expansion coefficient can be set to a close value, it is possible to more effectively prevent the occurrence of cracks in the glass seal when the ceramic filter is used for a long time under high temperature conditions.
  • the ceramic particles are preferably uniformly dispersed in the glass seal.
  • the area ratio of the ceramic particles to the entire glass seal (ceramic particle dispersed glass seal) (area occupancy ratio) (hereinafter sometimes referred to as "area occupancy ratio of ceramic particles”) is preferably 5 to 50%. 35 to 50% is more preferable, and 35 to 45% is particularly preferable. If it is less than 5%, it may be difficult to use the glass seal for a long time under high temperature conditions. If it is more than 50%, the sealability (impermeable) of the glass seal may be reduced.
  • the “area occupancy rate” of the ceramic particles is obtained by cutting a glass seal (ceramic particle dispersed glass seal) and polishing a cross section, and then observing a backscattered electron image of the cross section using a scanning electron microscope (SEM).
  • the cross-sectional area (120 ⁇ m ⁇ 90 ⁇ m) of the glass seal (ceramic particle dispersed glass seal) and the area of the entire ceramic particles (total area of a plurality of ceramic particles) contained in the glass seal It is a value obtained by reading and calculating the ratio of the area of the whole ceramic particle to the area of the whole glass seal.
  • the average particle size of the ceramic particles is preferably 0.5 to 40 ⁇ m, and more preferably 2 to 14 ⁇ m. If it is smaller than 0.5 ⁇ m and larger than 40 ⁇ m, cracks may occur in the glass seal.
  • the average particle diameter of the ceramic particles was selected by randomly selecting 50 ceramic particles from a backscattered electron image of a cross section of a glass in which the ceramic particles are dispersed using a scanning electron microscope (SEM) and selecting the 50 The measured diameters of the individual ceramic particles are measured, and the obtained measured diameters are averaged (average value for 50 ceramic particles).
  • the fixed diameter is a diameter of each ceramic particle in the one direction, which is determined in the one direction on the “reflected electron image”.
  • the ceramic particles are preferably contained in the glass seal (ceramic particle dispersed glass seal) in an amount of 5 to 70% by mass (the ratio of the mass of the ceramic particles to the total mass of the ceramic particles and the glass), preferably 10 to 50% by mass. More preferably, it is contained. If it is less than 5% by mass, cracks may occur in the glass seal when the ceramic filter is used for a long time under high temperature conditions. If it is more than 70% by mass, the mechanical strength of the glass seal may be reduced.
  • the thickness of the glass seal is preferably 30 to 500 ⁇ m. If it is thinner than 30 ⁇ m, the durability may be reduced. If it is thicker than 500 ⁇ m, the glass seal may easily protrude into the cell, which may prevent the inflow of fluid. Also, if the glass seal is thick, the ceramic filter may be heavy.
  • the glass contained in the glass seal is not particularly limited as long as it is a glass that can be used as a sealing material that does not transmit fluid, but is preferably alkali-free glass.
  • alkali-free glass By forming the glass seal with alkali-free glass, the movement of the alkali component from the glass seal is suppressed to almost the almost complete level, so the glass seal is derived from the interface between the porous substrate or the separation membrane and the glass seal. It is possible to prevent the concentration of the alkali components of the ceramic filter and to dramatically improve the corrosion resistance of the ceramic filter.
  • the ceramic filter of the present embodiment has excellent corrosion resistance, which can effectively prevent the erosion of the porous base material and the separation membrane in the vicinity of the glass seal even after multiple washings. Become.
  • alkali-free glass refers to a glass containing no alkali metal oxide or having a very low content. In the present specification, a glass having a total content of alkali metal oxides of 1 mol% or less is meant.
  • the frit powder composed of the glass is analyzed by inductively coupled plasma atomic emission spectrometry (ICP). Mean the value obtained by quantifying the constituent elements contained in the glass. More specifically, in the case of the above-described alkali-free glass, the ratio of the number of moles calculated by oxide conversion of a specific element to the total number of moles calculated by oxide conversion of all constituent elements of alkali-free glass Means
  • alkali-free glass is very preferable from the viewpoint of suppressing the movement of the alkali component from the glass seal and improving the corrosion resistance of the ceramic filter, the alkali-free glass itself may not have sufficient corrosion resistance.
  • the alkali-free glass contains 55 to 65 mol% of silica, 1 to 10 mol% of zirconia, and is at least selected from the group of calcia, barrier and strontia It is preferable to contain one kind of alkaline earth metal oxide and further to contain substantially no zinc oxide.
  • the alkali-free glass does not contain an alkali metal oxide having a melting point lowering function, the firing temperature at the time of forming the glass seal may be increased as it is, and the processability may be reduced. Therefore, it is preferable to use an alkali-free glass containing a component having a melting point depressing action such as alumina (Al 2 O 3 ) or boron oxide (B 2 O 3 ). When such a component is contained, the melting point of the glass is lowered, so that the firing temperature at the time of forming the glass seal can be lowered, and the processability can be improved. Furthermore, the inclusion of the above-described components enables the glass seal to be manufactured by firing at a lower temperature, which allows lower cost production.
  • a component having a melting point depressing action such as alumina (Al 2 O 3 ) or boron oxide (B 2 O 3 ).
  • the fluid to be treated is allowed to flow into the cell 2 from one end face 11 or the other end face 12.
  • the fluid to be treated that has flowed into the inside permeates through the separation membrane 21 disposed on the wall surface in the cell 2 to become a treated fluid and infiltrates into the porous substrate 3 (partition wall and outer peripheral wall), and the porous substrate It is preferable to discharge the treated fluid that has infiltrated into 3 from the outer peripheral surface 5 to the outside (outside of the porous substrate 3).
  • suspended substances, bacteria, dust and the like present in the fluid to be treated are separated by filtration (collection) by the filtration membrane 21.
  • the ceramic filter 100 of this embodiment can be used for isolation
  • the ceramic filter 100 is housed in a cylindrical housing 41 having a fluid inlet 42 and a fluid outlet 43.
  • the fluid to be treated F1 introduced from the fluid inlet 42 of the housing 41 is purified by the ceramic filter 100, and the purified fluid to be treated (treated fluid F2) is discharged from the fluid outlet 43.
  • the material of the housing 41 is not particularly limited, and examples thereof include stainless steel and the like.
  • the sealing material 44 is not particularly limited, and examples thereof include an O-ring and the like.
  • fluororubber, silicone rubber, ethylene propylene rubber, etc. can be mentioned. These materials are also suitable for long time use at high temperatures.
  • a well-known method can be used as a manufacturing method of the porous base materials made from a ceramic.
  • a known method can be used as a method for producing a ceramic honeycomb structure used for a filter or the like. Specifically, by mixing additives such as a sintering aid and a surfactant as needed in addition to the aggregate particles and the dispersion medium, a forming raw material is prepared, and the obtained forming raw material is kneaded.
  • a method of producing a honeycomb formed body by forming a clay, forming the obtained clay into a honeycomb shape, and drying and firing the obtained honeycomb formed body to obtain a honeycomb structure can be mentioned.
  • the honeycomb structure is a porous substrate.
  • a surface layer is formed by applying a slurry for forming a surface layer on the wall surface in the cells of the honeycomb structure after producing the honeycomb structure, and drying and firing it. It is preferable to obtain a porous substrate having The slurry for forming a surface layer is preferably prepared, for example, by mixing additives such as a surfactant as needed in addition to the aggregate particles and the dispersion medium.
  • the separation membrane is preferably formed by applying a film-forming slurry on the wall surface in the cell of the porous substrate, drying and firing.
  • the film-forming slurry is preferably prepared, for example, by mixing additives such as a surfactant as needed in addition to the aggregate particles and the dispersion medium.
  • the average particle diameter of aggregate particles contained in the film-forming slurry is preferably 0.1 to 10 ⁇ m.
  • the glass seal (ceramic particle dispersed glass seal) can be formed by applying a slurry for forming a glass seal on both end surfaces of the ceramic filter, drying and firing.
  • the slurry for forming a glass seal is preferably prepared by mixing predetermined ceramic particles (powder) with a predetermined frit (glass frit) and further mixing water and an organic binder.
  • the frit is preferably formed by mixing a predetermined glass material so as to have a predetermined composition, melting and homogenizing it, cooling it, and then grinding it to have an average particle diameter of about 10 to 20 ⁇ m.
  • Example 1 A honeycomb ceramic filter having an end face diameter of 30 mm was produced by the following method.
  • Porous substrate Add 20 parts by mass of a frit (sintering aid) to 100 parts by mass of alumina particles (aggregate particles) having an average particle diameter of 50 ⁇ m, and further add water, a dispersant, and a thickener, and mix and knead
  • the clay was prepared by The obtained clay was formed into a honeycomb shape, dried, and fired to produce a porous substrate (porous substrate A) before forming a surface layer.
  • the firing conditions were 1250 ° C. and 1 hour, and the rate of temperature rise and temperature drop was 100 ° C./hour.
  • the obtained porous base material A was a honeycomb-shaped alumina porous body having a diameter of 2.6 mm in a cross section perpendicular to the “cell extending direction” of the cell.
  • the shape (outer shape) of the alumina porous body was a cylindrical shape having a diameter of 30 mm of the end surface (the outer peripheral shape is circular) and a length of 20 mm in the “cell extending direction”.
  • the number of cells was 55.
  • the average pore diameter of the porous substrate A was 10 ⁇ m.
  • the average pore size is a value measured by mercury porosimetry.
  • the thermal expansion coefficient of the porous substrate A was 7.0 ⁇ 10 ⁇ 6 / K.
  • a surface layer of porous alumina having a thickness of 150 ⁇ m and an average pore diameter of 0.5 ⁇ m was formed on the wall in the cell of the porous substrate A.
  • the average pore size is a value measured by the air flow method described in ASTM F316.
  • a frit sintering aid
  • alumina particles aggregate particles having an average particle diameter of 31 ⁇ m
  • water, a dispersing agent, and a thickener are further added and mixed.
  • the slurry was prepared by Using the slurry, a “surface layer before firing” was formed on the inner peripheral surface of the porous substrate A by the filtration film forming method described in JP-B-63-66566. Then, it baked by an electric furnace in air
  • the firing conditions were 950 ° C. and 1 hour, and the heating and lowering rates were 100 ° C./hour.
  • a separation membrane made of a titania porous body having a thickness of 10 ⁇ m and an average pore diameter of 0.1 ⁇ m was formed on the inner peripheral surface (surface of the surface layer) of the porous substrate.
  • the average pore size is a value measured by the air flow method described in ASTM F316.
  • the method for forming the separation membrane is that the slurry is prepared by adding water, a dispersant and a thickener to titania particles (powder) having an average particle diameter of 0.5 ⁇ m as aggregate particles and then mixing them. It was the same as the method of producing the surface layer.
  • FIG. 3 is a plan view schematically showing the ceramic filter 101 of the first embodiment.
  • a slurry was prepared by adding alumina particles (ceramic particles), water, and an organic binder to a frit (glass frit), which is a raw material for glass sealing, and mixing.
  • the mixing ratio of the alumina particles (ceramic particles) was 40% by mass with respect to the total mass of the frit and the alumina particles.
  • the mixing ratio of water is 65 parts by mass when the total mass of the frit and the alumina particles is 100 parts by mass
  • the mixing ratio of the organic binder is 100 parts by mass of the total mass of the frit and the alumina particles Sometimes it was 7 parts by mass.
  • methylcellulose was used as an organic binder.
  • the thermal expansion coefficient of the alumina particles was 6.8 ⁇ 10 ⁇ 6 / K.
  • the obtained slurry was applied to both end surfaces of the porous substrate, dried, and fired to obtain a ceramic filter.
  • the thickness of the glass seal was 200 ⁇ m.
  • the firing conditions were the same as in the method for producing the surface layer.
  • the average particle diameter of alumina particles (ceramic particles) in the glass seal was 14 ⁇ m.
  • the frit used as a raw material for the glass seal is SiO 2 (63 mol%), ZrO 2 (3 mol%), Al 2 O 3 (5 mol%), CaO (9 mol%), BaO (17 mol%) And B 2 O 3 (3 mol%) were melted and homogenized at 1600 ° C., cooled, and then ground to an average particle diameter of 15 ⁇ m. Thereby, the glass contained in the glass seal became a non-alkali glass.
  • the thermal expansion coefficient of the frit was 6.7 ⁇ 10 ⁇ 6 / K.
  • grains, and the porous base material A is the value measured by the following method.
  • the thermal expansion coefficient of the frit is the thermal expansion coefficient of the glass portion of the glass seal (the portion excluding the ceramic particles).
  • thermal expansion coefficient ratio [ceramic particles / frit]" means the ratio of the thermal expansion coefficient of the ceramic particles to the thermal expansion coefficient of the glass constituting the glass seal.
  • alumina means that it is data about a ceramic filter using alumina as ceramic particles contained in a glass seal
  • titanium is as ceramic particles contained in a glass seal.
  • not added is meant that the data is for ceramic filters using titania, and it is meant that the data is for ceramic filters with glass seals that do not contain ceramic particles.
  • the area occupancy of ceramic particles is determined by cutting the obtained ceramic filter so that the glass seal (ceramic particle dispersed glass seal) is cut and polishing the cross section of the glass seal, and then scanning It is determined by observing a backscattered electron image of the cross section of the glass seal using a scanning electron microscope (SEM). More specifically, the cross-sectional area (120 ⁇ m ⁇ 90 ⁇ m) of the glass seal (ceramic particle dispersed glass seal) and the area of the entire ceramic particles (total area of a plurality of ceramic particles) contained in the glass seal It is determined by reading and calculating the ratio of the area of the whole ceramic particle to the area of the glass seal.
  • SEM scanning electron microscope
  • the ceramic filter is placed in an autoclave and immersed in water at 180 ° C., and the time until the glass seal is cracked is measured.
  • a ceramic filter is produced under the same conditions as the ceramic filters of the respective examples and comparative examples except that the length in the cell extending direction is set to 160 mm.
  • the obtained ceramic filter be a sample for evaluation about the ceramic filter of each corresponding example and a comparative example. Then, the obtained sample is put in a dip container, and the dip container containing the sample is immersed in water (in water contained in a closed container), and the entire immersion container is depressurized in a closed container to remove water. I feel it. Thereafter, under water, compressed air is introduced into the cell, and while the pressure of the compressed air is increased, the pressure when foaming from the glass seal is measured. Compressed air is varied from 0.15 MPa to 0.25 MPa.
  • Examples 2 to 7, Comparative Example 2 A ceramic filter was produced in the same manner as in Example 1, except that the conditions for the frit, the ceramic particles, and the porous substrate were changed as shown in Table 1. The heat resistance and sealability were evaluated by the above method. Also, the ceramic particle area occupancy was measured. The thermal expansion coefficients of the frit, the ceramic particles, and the porous substrate A were also measured by the above method. The results are shown in Table 1.
  • Example 1 A ceramic filter was produced in the same manner as in Example 1 except that ceramic particles were not introduced into the glass seal. The heat resistance and sealability were evaluated by the above method. Moreover, the thermal expansion coefficients of the frit and the porous substrate A were measured by the above method. The results are shown in Table 1.
  • the ceramic filter of the present invention is not only in the fields of water treatment and exhaust gas treatment, but also in suspended particles, bacteria, dust, etc. present in fluids such as liquids and gases in a wide range of fields including medicine and food. Used to filter out and remove.
  • the ceramic filter of the present invention can be suitably used to remove harmful substances such as suspended substances and pathogenic microorganisms in liquid .

Abstract

 「一方の端面11から他方の端面12まで延びる複数のセル2を区画形成する隔壁1を有し、材質がセラミックである」多孔質基材3と、「セル2内の壁面に配設された、材質がセラミックである」分離膜21と、一方の端面11及び他方の端面12に、「セル2の開口部を塞がない状態で」配設されたガラスシール31とを備え、ガラスシール31中に、熱膨張係数がガラスシール31に含有されるガラスの熱膨張係数の90~110%であるセラミック粒子が分散しているセラミックフィルタ。高温条件において長時間使用することが可能なセラミックフィルタを提供する。

Description

セラミックフィルタ
 本発明は、セラミックフィルタに関し、更に詳しくは、高温条件において長時間使用することが可能なセラミックフィルタに関する。
 セラミック多孔体を利用したセラミックフィルタは、高分子膜と比較して機械的強度や耐久性に優れるため信頼性が高い。また、セラミックフィルタは、耐食性が高いため酸やアルカリ等による薬液洗浄の際の劣化が少なく、更には、濾過能力を決定する平均細孔径を精密に制御することが可能である。セラミックフィルタは、このような様々な利点を有しているため、水処理や排ガス処理の分野は勿論のこと、医薬・食品分野をはじめとする広範な分野において、液体、ガス等の流体中に存在する懸濁物質、細菌、粉塵等を濾別し、除去するために用いられている。また、2成分以上の液体の混合物を分離精製する浸透気化用途、2成分以上の気体の混合物を分離精製するガス分離用途にも用いられている。
 セラミックフィルタとしては、例えば、「一方の端面から他方の端面まで延びる貫通孔」であるセルが複数形成された、材質がセラミックである柱状の多孔質基材と、セル内の壁面に配設された、材質がセラミックである分離膜と、多孔質基材の端面を被覆するように配置されたガラスシールとを備えたセラミックフィルタ等が用いられている(例えば、特許文献1を参照)。これにより、濾過性能を維持しつつエレメント内部の流体透過性を向上させることができる。
特開2006-263498号公報
 特許文献1に記載のセラミックフィルタは、液体やガス等の流体中に混在する懸濁物質、細菌、粉塵等を効果的に除去することができる、耐食性の高いフィルタであったが、高温条件で長時間使用するとクラックが発生するという問題があった。また、基材にゼオライト分離膜を配設する場合など、製造時に高温のアルカリ水溶液にさらされる場合においても、クラックが発生することがあった。
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、高温条件において長時間使用することが可能なセラミックフィルタを提供する。
 本発明によれば、以下に示す、セラミックフィルタが提供される。
[1] 一方の端面から他方の端面まで延びるセルを区画形成する隔壁を有し、材質がセラミックである多孔質基材と、前記セル内の壁面に配設された、材質がセラミックである分離膜と、前記一方の端面及び前記他方の端面に、前記セルの開口部を塞がない状態で配設されたガラスシールとを備え、前記ガラスシール中に、熱膨張係数がガラスシールに含有されるガラスの熱膨張係数の90~110%であるセラミック粒子が分散しているセラミックフィルタ。
[2] 前記セラミック粒子の材質が、アルミナ又はチタニアである[1]に記載のセラミックフィルタ。
[3] 前記セラミック粒子の、前記ガラスシール全体に対する面積占有率が、5~50%である[1]又は[2]に記載のセラミックフィルタ。
 本発明のセラミックフィルタによれば、多孔質基材の端面に配設されたガラスシール中に、熱膨張係数が「ガラスシールに含有されるガラス」の熱膨張係数の90~110%であるセラミック粒子が、分散しているため、高温条件において長時間使用することが可能である。
本発明のセラミックフィルタの一実施形態をハウジングに装着した状態を示し、セラミックフィルタの「セルの延びる方向に平行な断面」を示す模式図である。 本発明のセラミックフィルタの一実施形態を構成する多孔質基材を模式的に示す斜視図である。 実施例1のセラミックフィルタを模式的に示す平面図である。 実施例及び比較例のセラミックフィルタについての、「セラミック粒子の面積占有率」と「クラック発生時間(耐熱性)」との関係を示すグラフである。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。
(1)セラミックフィルタ:
 本発明のセラミックフィルタの一の実施形態は、図1に示すように、「一方の端面11から他方の端面12まで延びる複数のセル2を区画形成する隔壁1、及び最外周に位置する外周壁4を有し、材質がセラミックである」多孔質基材3と、「セル2内の壁面に配設された、材質がセラミックである」分離膜21と、「一方の端面11及び他方の端面12に、セル2の開口部を塞がない状態で」配設されたガラスシール31とを備え、ガラスシール31中に、熱膨張係数がガラスシール31に含有されるガラス(ガラスシール31の中のガラス部分)の熱膨張係数の90~110%(熱膨張係数比率)であるセラミック粒子が分散しているものである。ここで、「セル2内の壁面」とは、セル2内に露出する「隔壁1の表面」のことである。また、多孔質基材3は、複数のセル2を有することが好ましいが、1つのセル2を有するものであってもよい。図1は、本発明のセラミックフィルタの一実施形態をハウジング41に装着した状態を示し、セラミックフィルタ100のセル2の延びる方向に平行な断面を示す模式図である。
 このように、本実施形態のセラミックフィルタ100は、多孔質基材3の端面に配設されたガラスシール31中に、セラミック粒子が分散しているため、高温条件で使用することにより熱応力がかかっても、セラミック粒子の存在により当該応力が緩和され、高温条件で長時間使用することが可能である。さらに、当該セラミック粒子の熱膨張係数が、ガラスシール31に含有されるガラスの熱膨張係数の90~110%であるため、セラミックフィルタ100を高温条件で使用した時に、「ガラスシール31に含有されるガラスとセラミック粒子との熱膨張差による、ガラスシール31のクラックの発生」を防止することができる。また、本実施形態のセラミックフィルタ100のように、ハニカム形状という複雑な形状であると、その製造過程において残留応力が生じ易く、特に、5000cm以上の大きなハニカム形状のセラミックフィルタにおいては、残留応力が生じ易いと考えられる。そのため、このような、大きなハニカム形状のセラミックフィルタにおいて、ガラスシールにクラックが発生し易い。従って、本発明のセラミックフィルタは、大きなハニカム形状としたときに、ガラスシールのクラックの発生を防止するという効果を、特に顕著に発揮するものである。
 以下、本実施形態のセラミックフィルタ100について、構成要素毎に説明する。
(1-1)多孔質基材;
 本実施形態のセラミックフィルタ100(図1参照)において、多孔質基材3は、図2に示すように、一方の端面11から他方の端面12まで延びる複数のセル2を区画形成する隔壁1、及び最外周に位置する外周壁4を有するものである。そして、多孔質基材3の材質はセラミックである。「外周壁4が多孔質基材3の最外周に位置する」とは、外周壁4が、「多孔質基材3のセルの延びる方向に直交する断面における」最外周に位置することを意味する。図2は、本発明のセラミックフィルタの一実施形態を構成する多孔質基材3を模式的に示す斜視図である。
 多孔質基材を構成する隔壁及び外周壁の平均細孔径は、機械的強度と濾過抵抗のバランスを考慮して決定される。通常は、平均細孔径1~100μmが好ましい。また、気孔率は、25~50%であることが好ましい。平均細孔径及び気孔率は、水銀ポロシメータにより測定した値である。
 多孔質基材を構成する隔壁は、隔壁本体と隔壁本体の表面を覆う表面層とから形成されている積層構造が好ましい。隔壁全体から表面層を除いた部分が隔壁本体となり、この場合、多孔質基材の「セル内の壁面(隔壁の表面)」は、表面層の表面になる。そして、表面層の表面に濾過膜を配設することが好ましい。また、表面層の材質はセラミックであることが好ましい。
 多孔質基材(隔壁、外周壁)の材質は、セラミックであり、好ましくは、アルミナ(Al)、チタニア(TiO)、ムライト(Al・SiO)、ジルコニア(ZrO)等である。これらの中でも、粒子径が制御された原料(骨材粒子)を入手し易く、安定な坏土を形成でき、かつ、耐食性が高いアルミナが更に好ましい。多孔質基材の隔壁本体および多孔質基材の表面層の構造としては、その少なくとも一部が骨材粒子同士をガラス成分(焼結助剤)によって結合せしめた構造を選択することもできる。このような構造のセラミックフィルタは、より低温での焼成によって製造することができ、より低コストで生産することが可能になる。
 多孔質基材の形状は、一方の端面11、他方の端面12及び外周面5を有する柱状(セルが形成されることによって中空になっていると解釈すれば、「筒状」)であることが好ましい。また、多孔質基材の形状は、単位体積当たりの濾過面積を大きくすることができ、処理能力を高くすることができるため、「ハニカム状」又は「モノリス状」が好ましい。
 多孔質基材の全体的な形状やサイズについては、その濾過機能を阻害しない限りにおいて特に制限はない。全体的な形状としては、例えば、円柱(又は、円筒)状、四角柱状(又は、中心軸に直交する断面が四角形の筒状)、三角柱状(又は、中心軸に直交する断面が三角形の筒状)等の形状が挙げられ、中でも、円柱(又は、円筒)状が好ましい。精密濾過や限外濾過に用いる場合には、中心軸に直交する断面における直径が30~180mm、中心軸方向における長さが150~2000mmの円柱状とすることが好ましい。
 多孔質基材のセルの断面形状(セルの延びる方向に直交する断面における形状)としては、例えば、円形、多角形等を挙げることができ、多角形としては四角形、五角形、六角形、三角形等を挙げることができる。尚、セルの延びる方向は、多孔質基材が円柱(円筒)状の場合には、中心軸方向と同じである。
 多孔質基材のセルの断面形状が円形の場合、セルの直径は、1~5mmであることが好ましい。1mmより小さいと、セル密度が一定であるとすると、濾過面積が小さくなることがある。5mmより大きいと、セラミックフィルタの強度が低下することがある。
 多孔質基材のセルの断面形状が多角形の場合、隔壁厚さは、0.3~2mmであることが好ましい。0.3mmより薄いと、セラミックフィルタの強度が低下することがある。2mmより厚いと、流体を流すときの圧力損失が増大することがある。
(1-2)分離膜;
 本実施形態のセラミックフィルタにおいて、分離膜は、複数の細孔が形成されたセラミック多孔体からなるものであり、セル内の壁面(隔壁の表面)に配置されたものであることが好ましい。
 分離膜の平均細孔径は、要求される濾過性能(除去すべき物質の粒径)により、適宜決定することができる。例えば、精密濾過や限外濾過に用いるセラミックフィルタの場合であれば、0.01~1.0μmが好ましい。分離膜の平均細孔径は、ASTM F316に記載のエアフロー法により測定した値である。また、ガス分離、浸透気化に用いるセラミックフィルタの場合であれば、「分離膜」の種類としては特に限定されるものではなく、公知の一酸化炭素分離膜、ヘリウム分離膜、水素分離膜、炭素膜、MFI型ゼオライト膜、DDR型ゼオライト膜、シリカ膜等、分離する気体の種類に応じて適宣選択すればよい。分離膜として、例えば、特許第4006107号公報に記載の一酸化炭素分離膜、特許第3953833号公報に記載のヘリウム分離膜、特許第3933907号公報に記載の水素分離膜、特開2003-286018号公報に記載の炭素膜、特開2004-66188号公報に記載のDDR型ゼオライト膜複合体、国際公開第2008/050812号パンフレットに記載のシリカ膜等、を挙げることが出来る。
 分離膜の材質としては、アルミナ(Al)、チタニア(TiO)、ムライト(Al・SiO)、ジルコニア(ZrO)等を挙げることができる。
(1-3)ガラスシール;
 本実施形態のセラミックフィルタにおいて、ガラスシールは、多孔質基材の一方の端面及び他方の端面(両端面)に、セルの開口部を塞がない状態で配設されたものである。ガラスシールは、多孔質基材の両端面の、壁面部分(壁が存在する部分であり、孔(セル)が開いていない(開口していない)部分)全体を覆うように配設されるとともに、セル内の壁面に配設された分離膜に、隙間がないように(ガラスシールと分離膜との間に隙間がないように)接触していることが好ましい。「ガラスシールと分離膜との間に隙間がない」とは、セル内の壁面に配設された筒状の分離膜の端部が、ガラスシールに繋がるように接触し、ガラスシールと分離膜との間に、多孔質基材の壁面が露出する部分が形成されない状態を意味する。このとき、ガラスシールの一部が、セル内の壁面に沿ってセル内に浸入した状態となってもよい。ガラスシールの一部が、セル内に浸入しても、セルの開口部が完全に塞がれていなければ、「ガラスシールが、多孔質基材の一方の端面及び他方の端面に、セルの開口部を塞がない状態で配設されている」ことになる。尚、本明細書において、ガラスシールというときは、セラミック粒子が分散したガラスシール全体を意味する。また、セラミック粒子が分散したガラスシール全体のことを、ガラスシール中の「ガラス」(ガラスシールに含有されるガラス)の部分と明確に区別するために、「セラミック粒子分散ガラスシール」ということがある。また、ガラスシールは、ガラスとセラミック粒子とから構成されていることが好ましい。
 また、図1に示されるように、ガラスシール31は、多孔質基材3の外周面5の一部(多孔質基材3の、セル2の延びる方向における端部付近)も覆うように配設されていることが好ましい。そして、セラミックフィルタ100をハウジング41内に収納する際には、「多孔質基材3の外周面5上に配設されたガラスシール31」とハウジング41との間に、O-リング等のシール材44を配置することにより、「多孔質基材3の外周面5上に配設されたガラスシール31」とハウジング41との隙間をシール材44で塞ぐことが好ましい。ガラスシール31の表面は、多孔質基材3の外周面5より平滑であるため、シール材44をガラスシール31上に配置することにより、シール性を向上させることができる。また、シール材44をガラスシール31上に配置したときのシール性をより高めるために、ガラスシール31の表面(特に、多孔質基材3の外周面5上に配設された部分の表面)は、平滑性が高いことが好ましい。
 多孔質基材の両端面に、セルの開口部を塞がない状態でガラスシールが配設されていることにより、被処理流体(例えば、被処理水)が、セラミックフィルタの端面(壁面)から多孔質基材の内部に浸入することを防止することができる。これにより、図1に示すように、セラミックフィルタ100をハウジング41に収納し、セラミックフィルタ100の片方の端面側に被処理流体F1を供給したときに、被処理流体F1が、セル2内に流入し、分離膜21を透過して多孔質基材3の内部に浸入するようになる。そして、多孔質基材3の外周面5は、多孔質基材3が露出しているため、多孔質基材3内に浸入した処理済流体(被処理流体F1が分離膜21により濾過されて得られた流体(例えば、処理済水))F2は、多孔質基材3の外周面5から外部(多孔質基材3の外部)に排出される。
 ガラスシール中に分散しているセラミック粒子の熱膨張係数は、ガラスシールに含有されるガラス(ガラスシール中のガラス部分)の熱膨張係数の90~110%である。セラミック粒子の熱膨張係数が、ガラスシールに含有されるガラスの熱膨張係数の90~110%であると、セラミックフィルタを高温条件で使用した時に、「ガラスシールとセラミック粒子との熱膨張差による、ガラスシールのクラックの発生」を、より効果的に防止することができる。90%より小さい場合、及び110%より大きい場合は、ガラスシールに含有されるガラスの熱膨張係数とセラミック粒子の熱膨張係数との差が大きいため、焼成後にクラックが生じるため好ましくない。ここで、「ガラスシールに含有されるガラスの熱膨張係数」というときは、ガラスシール中の、セラミック粒子を除いた「ガラス」部分の熱膨張係数のことを意味する。また、セラミック粒子は、ガラス中に溶解しないものであることが好ましい。ガラスシール(ガラス部分)の熱膨張係数に対するセラミック粒子の熱膨張係数の比率を「熱膨張係数比率」と称することがある。
 ガラスシール中に分散しているセラミック粒子の材質は、アルミナ又はチタニアが好ましい。アルミナの熱膨張係数は、6.0×10-6~7.5×10-6/Kであり、チタニアの熱膨張係数は、6.0×10-6~8.0×10-6/Kである。また、セラミック粒子の材質をアルミナ又はチタニアにしたときに、多孔質基材の材質をアルミナにすることにより、多孔質基材、ガラスシールに含有されるガラス及びガラスシールに含有されるセラミック粒子の熱膨張係数を近い値にすることができるため、セラミックフィルタを高温条件で長時間使用したときに、ガラスシールにクラックが生じることを、より効果的に防止することができる。セラミック粒子はガラスシール中に均一に分散していることが好ましい。
 セラミック粒子の、ガラスシール(セラミック粒子分散ガラスシール)全体に対する面積比率(面積占有率)(以下、「セラミック粒子の面積占有率」ということもある。)は、5~50%であることが好ましく、35~50%であることが更に好ましく、35~45%であることが特に好ましい。5%より小さいと、ガラスシールを高温条件で長時間使用し難くなることがある。50%より大きいと、ガラスシールのシール性(不透過性)が低下することがある。上記セラミック粒子の「面積占有率」は、ガラスシール(セラミック粒子分散ガラスシール)を切断し、断面を研磨した後、走査型電子顕微鏡(SEM)を用いて当該断面の反射電子像を観察することにより求めた値である。更に具体的には、ガラスシール(セラミック粒子分散ガラスシール)の断面の面積(120μm×90μm)と、当該ガラスシール中に含まれるセラミック粒子全体の面積(複数のセラミック粒子の面積の総和)とを読み取り、ガラスシール全体の面積に対するセラミック粒子全体の面積の比率を算出することにより得た値である。
 セラミック粒子の平均粒子径は、0.5~40μmであることが好ましく、2~14μmであることが更に好ましい。0.5μmより小さい場合、及び40μmより大きい場合は、ガラスシールにクラックが発生することがある。セラミック粒子の平均粒子径は、セラミック粒子が分散したガラスの断面を走査型電子顕微鏡(SEM)を用いて撮影した反射電子像から、無作為に50個のセラミック粒子を選択し、当該選択した50個のセラミック粒子の定方向径を測定し、得られた定方向径を平均した値(50個のセラミック粒子についての平均値)である。定方向径とは、「反射電子像」上において、一の方向を決め、当該一の方向における各セラミック粒子の直径のことである。
 セラミック粒子は、ガラスシール(セラミック粒子分散ガラスシール)中に5~70質量%(セラミック粒子とガラスの合計質量に対する、セラミック粒子の質量の比率)含有されていることが好ましく、10~50質量%含有されていることが更に好ましい。5質量%より小さいと、セラミックフィルタを高温条件で長時間使用したときに、ガラスシールにクラックが生じることがある。70質量%より大きいと、ガラスシールの機械的強度が低下することがある。
 ガラスシール(セラミック粒子分散ガラスシール)の厚さは、30~500μmが好ましい。30μmより薄いと、耐久性が低下することがある。500μmより厚いと、ガラスシールがセル内に、はみ出し易くなり、流体の流入が妨げられることがある。また、ガラスシールが厚いと、セラミックフィルタが重くなることがある。
 ガラスシールに含有されるガラスは、流体を透過しないシール材として用いることができるガラスであれば特に限定されないが、無アルカリガラスであることが好ましい。ガラスシールを無アルカリガラスによって形成することにより、ガラスシールからのアルカリ成分の移動がほぼ完全に近いレベルに抑制されるため、多孔質基材や分離膜と、ガラスシールとの界面にガラスシール由来のアルカリ成分が濃縮されることが防止され、セラミックフィルタの耐食性を飛躍的に向上させることが可能となる。これにより、本実施形態のセラミックフィルタは、多数回の薬洗をしても、ガラスシール近傍の多孔質基材や分離膜の浸食を有効に防止することができる、優れた耐食性を有するものとなる。
 一般に、「無アルカリガラス」とは、アルカリ金属酸化物が全く含有されていないか、その含有量が極めて低いガラスをいう。本明細書においては、アルカリ金属酸化物の総含有率が1モル%以下のガラスを意味するものとする。なお、本明細書において、ガラス中の金属酸化物の「含有率」というときは、そのガラスによって構成されるフリット粉末を誘導結合高周波プラズマ発光分析法(ICP:Inductively Coupled Plasma Atomic Emission Spectrometer)により分析し、ガラス中に含まれる構成元素を定量して得られる値を意味するものとする。より具体的には、上記無アルカリガラスの場合、無アルカリガラスの全構成元素を酸化物換算して算出される総モル数に対する、特定の元素を酸化物換算して算出されるモル数の比率を意味する。
 無アルカリガラスは、ガラスシールからのアルカリ成分の移動を抑制し、セラミックフィルタの耐食性の向上を図るという観点からは非常に好ましいものであるが、無アルカリガラス自体の耐食性が十分でない場合がある。無アルカリガラス自体の耐食性を向上させるためには、無アルカリガラスが、シリカを55~65モル%含有し、ジルコニアを1~10モル%含有し、カルシア、バリア及びストロンチアの群から選択される少なくとも1種のアルカリ土類金属酸化物を含有し、更には、酸化亜鉛を実質的に含有しないことが好ましい。
 なお、無アルカリガラスには、融点降下作用のあるアルカリ金属酸化物が含まれていないため、そのままではガラスシール形成の際の焼成温度が高くなり、加工性が低下することがある。従って、アルミナ(Al)、酸化ホウ素(B)等の融点降下作用を有する成分を含有する無アルカリガラスを用いることが好ましい。このような成分を含有させると、ガラスの融点が低下するため、ガラスシール形成の際の焼成温度を低下させることができ、加工性を向上させることができる。更に、上記成分を含有させることにより、より低温での焼成によってガラスシールを製造することができるため、より低コストで生産することが可能になる。
(2)浄化方法:
 本実施形態のセラミックフィルタを用いて流体を浄化する方法について説明する。
 本実施形態のセラミックフィルタ100を用いて、流体(例えば、水等)の浄化を行う場合には、一方の端面11又は他方の端面12から、セル2内に被処理流体を流入させ、セル2内に流入した被処理流体が、セル2内の壁面に配設された分離膜21を透過して処理済流体となって多孔質基体3(隔壁及び外周壁)内に浸入し、多孔質基体3内に浸入した処理済流体を外周面5から外部(多孔質基材3の外部)に排出するようにすることが好ましい。このとき、被処理流体中に存在する懸濁物質、細菌、粉塵等が、濾過膜21によって濾別(捕集)される。また、本実施形態のセラミックフィルタ100は、例えば、浸透気化法又は蒸気透過法による混合物の分離に用いることができる。
 図1に示すように、本実施形態のハニカム形状のセラミックフィルタ100を用いて流体を浄化する際には、セラミックフィルタ100を、流体入口42及び流体出口43を有する筒状のハウジング41内に収納し、ハウジング41の流体入口42から流入させた被処理流体F1をセラミックフィルタ100で浄化し、浄化された被処理流体(処理済流体F2)を流体出口43から排出することが好ましい。
 セラミックフィルタ100をハウジング41に収納する際には、図1に示すように、セラミックフィルタ100の両端部において、セラミックフィルタ100とハウジング41との隙間を、シール材44,44で塞ぐことが好ましい。
 ハウジング41の材質としては、特に限定されないが、例えば、ステンレス鋼等が挙げられる。また、シール材44としては、特に限定されないが、例えば、O-リング等が挙げられる。また、シール材44の材質としては、フッ素ゴム、シリコーンゴム、エチレン・プロピレンゴム等を挙げることができる。これらの材質は、高温で長時間使用することにも適している。
(3)セラミックフィルタの製造方法:
 本実施形態のセラミックフィルタを製造する方法は以下の通りである。
(3-1)多孔質基材;
 多孔質基材の製造方法としては、特に限定されず、セラミック製の多孔質基材の製造方法として公知の方法を用いることができる。例えば、フィルタ等に用いられるセラミックハニカム構造体の製造方法として公知の方法を用いることができる。具体的には、骨材粒子、分散媒の他、必要に応じて焼結助剤、界面活性剤等の添加剤を混合して成形原料を作製し、得られた成形原料を混練することにより坏土を作製し、得られた坏土をハニカム形状に成形してハニカム成形体を作製し、得られたハニカム成形体を乾燥、焼成してハニカム構造体を得る方法等を挙げることができる。多孔質基材が表面層を有さない場合には、上記ハニカム構造体が多孔質基材となる。
 表面層を有する多孔質基材を作製する場合には、ハニカム構造体を作製した後に、当該ハニカム構造体のセル内の壁面に表面層形成用スラリーを塗布し、乾燥、焼成することにより表面層を有する多孔質基材を得ることが好ましい。表面層形成用スラリーは、例えば、骨材粒子、分散媒の他、必要に応じて界面活性剤等の添加剤を混合することにより調製することが好ましい。
(3-2)分離膜;
 分離膜は、多孔質基材のセル内の壁面に成膜用スラリーを塗布し、乾燥、焼成することにより形成することが好ましい。成膜用スラリーは、例えば、骨材粒子、分散媒の他、必要に応じて界面活性剤等の添加剤を混合することにより調製することが好ましい。成膜用スラリーに含有される骨材粒子の平均粒子径は0.1~10μmとすることが好ましい。成膜用スラリーを多孔質基材に塗布する方法としては、特に限定されるものではないが、例えば、ディッピング等の方法を挙げることができる。
(3-3)ガラスシール;
 ガラスシール(セラミック粒子分散ガラスシール)は、ガラスシール形成用スラリーをセラミックフィルタの両端面に塗布し、乾燥した後、焼成することにより形成することができる。ガラスシール形成用スラリーは、所定のフリット(ガラスフリット)に所定のセラミック粒子(粉体)を混合し、水及び有機バインダを更に混合して調製することが好ましい。フリットは、所定のガラス原料を所定の組成になるように混合し、溶融して均一化し、これを冷却した後に平均粒径10~20μm程度となるように粉砕して形成することが好ましい。
 以下、本発明のセラミックフィルタを実施例により更に具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
(実施例1)
 以下の方法により、端面の直径が30mmの、ハニカム状のセラミックフィルタを作製した。
(多孔質基材)
 平均粒径50μmのアルミナ粒子(骨材粒子)100質量部に対してフリット(焼結助剤)20質量部を添加し、更に水、分散剤、及び増粘剤を加えて混合し混練することにより坏土を調製した。得られた坏土をハニカム形状に成形し、乾燥し、焼成することにより、表面層形成前の多孔質基材(多孔質基材A)を作製した。焼成条件は1250℃、1時間とし、昇温及び降温の速度はいずれも100℃/時間とした。
 フリットとしては、SiO(80モル%)、Al(10モル%)、アルカリ土類金属(8モル%)を含有するガラス原料を、1600℃で溶融して均一化し、これを冷却した後に平均粒径1μmとなるように粉砕したものを用いた。
 得られた多孔質基材Aは、セルの「セルの延びる方向に直交する」断面の直径が2.6mmのハニカム形状のアルミナ多孔体であった。当該アルミナ多孔体の形状(外形)は、端面(外周形状が円形)の直径30mm、「セルの延びる方向」における長さ20mmの、円筒形状であった。セルの数は55本であった。また、多孔質基材Aの平均細孔径は、10μmであった。平均細孔径は、水銀圧入法により測定された値である。多孔質基材Aの熱膨張係数は、7.0×10-6/Kであった。
 次に、多孔質基材Aのセル内の壁面に、厚さ150μm、平均細孔径0.5μmの、アルミナ多孔体からなる表面層を形成した。平均細孔径は、ASTM F316に記載のエアフロー法により測定された値である。
 まず、平均粒径31μmのアルミナ粒子(骨材粒子)100質量部に対してフリット(焼結助剤)14質量部を添加し、更に水、分散剤、及び増粘剤を加えて混合することによりスラリーを調製した。そのスラリーを用い、特公昭63-66566号公報に記載の濾過成膜法により、多孔質基材Aの内周面に「焼成前の表面層」を形成した。その後、大気雰囲気下、電気炉にて焼成を行い、表面層を形成し、多孔質基材を得た。焼成条件は950℃、1時間とし、昇温及び降温の速度はいずれも100℃/時間とした。なお、フリットとしては、SiO(77モル%)、ZrO(10モル%)、LiO(3.5モル%)、NaO(4モル%)、KO(4モル%)、CaO(0.7モル%)及びMgO(0.8モル%)を含有するガラス原料を、1600℃で溶融して均一化し、これを冷却した後に平均粒径1μmとなるように粉砕したものを用いた。
(分離膜の形成)
 次に、多孔質基材の内周面(表面層の表面)に、厚さ10μm、平均細孔径0.1μmの、チタニア多孔体からなる分離膜を形成した。平均細孔径は、ASTM F316に記載のエアフロー法により測定された値である。
 分離膜の形成方法は、骨材粒子としての平均粒径0.5μmのチタニア粒子(粉末)に、水、分散剤、及び増粘剤を加えて混合することによりスラリーを調製したこと以外は、上記表面層の作製方法と同様とした。
(ガラスシールの形成)
 次に、多孔質基材の両端面に、セルの開口部を塞がない状態でガラスシールを配設し、図3に示すような、ハニカム状の円筒形状のセラミックフィルタ(ハニカムセラミックフィルタ テストピース)を得た。図3は、実施例1のセラミックフィルタ101を模式的に示す平面図である。
 まず、ガラスシールの原料であるフリット(ガラスフリット)に、アルミナ粒子(セラミック粒子)、水、及び有機バインダを加えて混合することによりスラリーを調製した。アルミナ粒子(セラミック粒子)の混合割合は、フリットとアルミナ粒子の合計質量に対して、40質量%とした。また、水の混合割合は、フリットとアルミナ粒子の合計質量を100質量部としたときに、65質量部であり、有機バインダの混合割合は、フリットとアルミナ粒子の合計質量を100質量部としたときに、7質量部であった。また、有機バインダとしては、メチルセルロースを用いた。また、アルミナ粒子の熱膨張係数は、6.8×10-6/Kであった。得られたスラリーを、多孔質基材の両端面に塗布し、乾燥した後、焼成することにより、セラミックフィルタを得た。ガラスシールの厚さは、200μmであった。焼成条件は、上記表面層の作製方法と同様とした。また、ガラスシール中のアルミナ粒子(セラミック粒子)の平均粒子径は、14μmであった。
 また、ガラスシールの原料として用いたフリットは、SiO(63モル%)、ZrO(3モル%)、Al(5モル%)、CaO(9モル%)、BaO(17モル%)及びB(3モル%)を含有するガラス原料を、1600℃で溶融して均一化し、これを冷却した後に平均粒径15μmとなるように粉砕したものであった。これにより、ガラスシールに含有されるガラスは、無アルカリガラスとなった。フリットの熱膨張係数は、6.7×10-6/Kであった。
 上記のようにして得られた、セラミックフィルタについて、以下に示す方法で、耐熱性及びシール性の評価を行った。また、セラミック粒子の面積占有率を測定した。結果を表1に示す。また、セラミック粒子の面積占有率とクラック発生時間(耐熱性)との関係を図4に示す。また、ガラスシールの原料として用いたフリット、セラミック粒子、及び多孔質基材Aの熱膨張係数は、以下の方法で測定した値である。尚、フリットの熱膨張係数は、ガラスシールのガラス部分(セラミック粒子を除いた部分)の熱膨張係数となる。表1において、「熱膨張係数比率[セラミック粒子/フリット]」は、ガラスシールを構成するガラスの熱膨張係数に対する、セラミック粒子の熱膨張係数の比率を意味する。また、図4において、「アルミナ」は、ガラスシールに含有されるセラミック粒子としてアルミナを用いたセラミックフィルタについてのデータであることを意味し、「チタニア」は、ガラスシールに含有されるセラミック粒子としてチタニアを用いたセラミックフィルタについてのデータであることを意味し、「無添加」は、セラミック粒子が含有されないガラスシールを有するセラミックフィルタについてのデータであることを意味する。
(熱膨張係数)
 測定対象によって、4mm×3mm×20mmの角柱状のサンプルを作製し、50℃から500℃まで昇温したときの熱膨張係数を測定する。具体的には、50℃から500℃まで昇温したときのサンプルの「膨張長さ」(長手方向において、膨張した長さ)を測定し、当該「膨張長さ」を温度変化分(500℃-50℃=450℃)で除算し、更にサンプルの上記長手方向における長さ(50℃における長さ)で除算して得られた値を熱膨張係数とする。
(セラミック粒子の面積占有率)
 セラミック粒子の面積占有率(セラミック粒子面積占有率)は、得られたセラミックフィルタを、ガラスシール(セラミック粒子分散ガラスシール)が切断されるように切断し、ガラスシールの断面を研磨した後、走査型電子顕微鏡(SEM)を用いて当該ガラスシールの断面の反射電子像を観察することにより求める。更に具体的には、ガラスシール(セラミック粒子分散ガラスシール)の断面の面積(120μm×90μm)と、当該ガラスシール中に含まれるセラミック粒子全体の面積(複数のセラミック粒子の面積の総和)とを読み取り、ガラスシールの面積に対するセラミック粒子全体の面積の比率を算出することにより求める。
(耐熱性)
 セラミックフィルタをオートクレーブに入れて、180℃の水中に浸漬し、ガラスシールにクラックが発生するまでの時間を測定する。
(シール性)
 セルの延びる方向における長さを160mmとした以外は、各実施例、比較例のセラミックフィルタと同じ条件でセラミックフィルタを作製する。得られたセラミックフィルタを、対応する各実施例、比較例のセラミックフィルタについての評価用サンプルとする。そして、得られたサンプルを浸漬容器にいれ、当該サンプルが入れられた浸漬容器を水中(密閉容器に入れられた水の中)に浸漬し、浸漬容器ごと密閉容器中で減圧することにより水中脱気する。その後、水中で、セル内に圧縮空気を導入し、圧縮空気の圧力を上昇させながら、ガラスシールから発泡するときの圧力を測定する。圧縮空気は、0.15MPaから0.25MPaまで変化させる。
Figure JPOXMLDOC01-appb-T000001
(実施例2~7、比較例2)
 フリット、セラミック粒子、及び多孔質基材についての各条件を表1に示すように変化させた以外は、実施例1と同様にしてセラミックフィルタを作製した。上記方法により、耐熱性及びシール性の評価を行った。また、セラミック粒子面積占有率を測定した。また、上記方法により、フリット、セラミック粒子、及び多孔質基材Aの熱膨張係数を測定した。結果を表1に示す。
(比較例1)
 ガラスシール中にセラミック粒子を入れなかった以外は、実施例1と同様にしてセラミックフィルタを作製した。上記方法により、耐熱性及びシール性の評価を行った。また、上記方法により、フリット、及び多孔質基材Aの熱膨張係数を測定した。結果を表1に示す。
 表1より、熱膨張係数比率[セラミック粒子/フリット]を90~110%とすることにより、ガラスシールのクラックの発生を抑制できることがわかる。また、セラミック粒子の平均粒子径が2~14μmであると、ガラスシールのクラックが、より発生し難くなることがわかる。
 また、表1及び図4より、セラミック粒子の面積占有率が35%より低くなると、クラック発生時間が短くなる(耐熱性が低下する)ことがわかる。また、表1より、セラミック粒子の面積占有率が50%より高くなると、シール性が低下することがわかる。これはガラスがセラミック粒子の粒間を埋め尽くすことができず、細孔が形成されてしまうことが原因と考えられる。これらにより、セラミック粒子の面積占有率が35~50%であることが、より好ましいことがわかる。
 本発明のセラミックフィルタは、水処理や排ガス処理の分野は勿論のこと、医薬・食品分野をはじめとする広範な分野において、液体やガス等の流体中に存在する懸濁物質、細菌、粉塵等を濾別し除去するために用いられる。特に、飲料水・工業用水の製造、又は下水、産業排水の浄化等の水処理分野において、液体中の懸濁物質や病原性微生物等の有害物質を除去するために好適に利用することができる。
1:隔壁、2:セル、3:多孔質基材、4:外周壁、5:外周面、11:一方の端面、12:他方の端面、21:分離膜、31:ガラスシール、41:ハウジング、42:流体入口、43:流体出口、44:シール材、100,101:セラミックフィルタ、F1:被処理流体、F2:処理済流体。

Claims (3)

  1.  一方の端面から他方の端面まで延びるセルを区画形成する隔壁を有し、材質がセラミックである多孔質基材と、
     前記セル内の壁面に配設された、材質がセラミックである分離膜と、
     前記一方の端面及び前記他方の端面に、前記セルの開口部を塞がない状態で配設されたガラスシールとを備え、
     前記ガラスシール中に、熱膨張係数がガラスシールに含有されるガラスの熱膨張係数の90~110%であるセラミック粒子が分散しているセラミックフィルタ。
  2.  前記セラミック粒子の材質が、アルミナ又はチタニアである請求項1に記載のセラミックフィルタ。
  3.  前記セラミック粒子の、前記ガラスシール全体に対する面積占有率が、5~50%である請求項1又は2に記載のセラミックフィルタ。
PCT/JP2011/065933 2010-07-14 2011-07-13 セラミックフィルタ WO2012008476A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012524572A JP5810083B2 (ja) 2010-07-14 2011-07-13 セラミックフィルタ
CN201180033604.0A CN102985171B (zh) 2010-07-14 2011-07-13 陶瓷过滤器
BR112013000770A BR112013000770A2 (pt) 2010-07-14 2011-07-13 filtro de cerâmica
EP11806806.3A EP2594329B1 (en) 2010-07-14 2011-07-13 Ceramic filter
CA2805251A CA2805251C (en) 2010-07-14 2011-07-13 Ceramic filter with glass seals having ceramic particles dispersed therein
US13/735,233 US9802143B2 (en) 2010-07-14 2013-01-07 Ceramic filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-159902 2010-07-14
JP2010159902 2010-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/735,233 Continuation US9802143B2 (en) 2010-07-14 2013-01-07 Ceramic filter

Publications (1)

Publication Number Publication Date
WO2012008476A1 true WO2012008476A1 (ja) 2012-01-19

Family

ID=45469473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065933 WO2012008476A1 (ja) 2010-07-14 2011-07-13 セラミックフィルタ

Country Status (7)

Country Link
US (1) US9802143B2 (ja)
EP (1) EP2594329B1 (ja)
JP (1) JP5810083B2 (ja)
CN (1) CN102985171B (ja)
BR (1) BR112013000770A2 (ja)
CA (1) CA2805251C (ja)
WO (1) WO2012008476A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166656A1 (ja) * 2014-04-30 2015-11-05 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール
JPWO2013147271A1 (ja) * 2012-03-30 2015-12-14 日本碍子株式会社 ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体
US20170007967A1 (en) * 2014-03-31 2017-01-12 Ngk Insulators, Ltd. Monolithic separation membrane structure
JP2017056427A (ja) * 2015-09-18 2017-03-23 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023068B2 (ja) 2011-10-11 2016-11-09 日本碍子株式会社 セラミックフィルタ
CN103721577B (zh) * 2013-12-17 2016-05-04 杭州杰膜环境科技有限公司 一种多通道对称结构纯质碳化硅膜的制备方法
JP6490665B2 (ja) 2014-03-28 2019-03-27 日本碍子株式会社 モノリス型分離膜構造体、モノリス型分離膜構造体の製造方法及び脱水方法
EP3978104A1 (en) 2015-11-20 2022-04-06 1934612 Ontario Inc. Apparatus, systems, and methods for purifying a fluid with a silicon carbide membrane
CN106669427B (zh) * 2016-11-18 2019-12-10 江苏坤奕环境工程有限公司 一体式耐磨、耐晶体、耐腐蚀错流微滤膜元件
CN110038332A (zh) * 2019-05-19 2019-07-23 贾新奎 一种污水处理设备
CN110124376B (zh) * 2019-05-19 2021-12-31 内江瑞丰环保科技有限公司 一种污水过滤设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180060A (ja) * 1996-12-25 1998-07-07 Noritake Co Ltd 無機分離膜シール用組成物
JP2006263498A (ja) * 2005-03-22 2006-10-05 Ngk Insulators Ltd セラミックフィルタ
JP2009195864A (ja) * 2008-02-25 2009-09-03 Noritake Co Ltd 酸素分離膜エレメントならびに該エレメントのシール方法及びシール材
JP2009195866A (ja) * 2008-02-25 2009-09-03 Noritake Co Ltd 酸素分離膜エレメントならびに該エレメントの接合方法および接合材
WO2010038281A1 (ja) * 2008-10-01 2010-04-08 日立造船株式会社 ゼオライト分離膜、その製造方法および接合剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019116A (en) * 1957-10-11 1962-01-30 Gen Electric Ceramic body and method of making the same
JPH06188332A (ja) * 1992-12-17 1994-07-08 Toyota Motor Corp 集積回路装置
EP1170978B1 (en) 1999-11-12 2012-03-07 Panasonic Corporation Acoustic matching material, method of manufacture thereof, and ultrasonic transmitter using acoustic matching material
JP2002112394A (ja) * 2000-10-03 2002-04-12 Matsushita Electric Ind Co Ltd 熱膨張率の異なる物体の結合体とそれを用いた超音波送受信器及びその製造方法
JP4367678B2 (ja) * 2000-04-27 2009-11-18 日本碍子株式会社 セラミックフィルタ
JP3822549B2 (ja) * 2002-09-26 2006-09-20 富士通株式会社 配線基板
JP4192067B2 (ja) * 2003-09-30 2008-12-03 日本特殊陶業株式会社 ガスセンサ
JP2009110851A (ja) * 2007-10-31 2009-05-21 Electric Power Dev Co Ltd 色素増感型太陽電池の正極電極およびその製造方法
KR101579308B1 (ko) 2008-02-25 2015-12-21 가부시키가이샤 노리타케 캄파니 리미티드 세라믹 제품 및 세라믹 부재의 접합 방법
US7989373B2 (en) 2009-06-30 2011-08-02 Corning Incorporated Hermetic sealing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180060A (ja) * 1996-12-25 1998-07-07 Noritake Co Ltd 無機分離膜シール用組成物
JP2006263498A (ja) * 2005-03-22 2006-10-05 Ngk Insulators Ltd セラミックフィルタ
JP2009195864A (ja) * 2008-02-25 2009-09-03 Noritake Co Ltd 酸素分離膜エレメントならびに該エレメントのシール方法及びシール材
JP2009195866A (ja) * 2008-02-25 2009-09-03 Noritake Co Ltd 酸素分離膜エレメントならびに該エレメントの接合方法および接合材
WO2010038281A1 (ja) * 2008-10-01 2010-04-08 日立造船株式会社 ゼオライト分離膜、その製造方法および接合剤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013147271A1 (ja) * 2012-03-30 2015-12-14 日本碍子株式会社 ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体
US11278848B2 (en) 2012-03-30 2022-03-22 Ngk Insulators, Ltd. Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
US20170007967A1 (en) * 2014-03-31 2017-01-12 Ngk Insulators, Ltd. Monolithic separation membrane structure
WO2015166656A1 (ja) * 2014-04-30 2015-11-05 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール
JPWO2015166656A1 (ja) * 2014-04-30 2017-04-20 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール
JP2017056427A (ja) * 2015-09-18 2017-03-23 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール

Also Published As

Publication number Publication date
CN102985171A (zh) 2013-03-20
EP2594329A4 (en) 2016-04-06
US20130126420A1 (en) 2013-05-23
JP5810083B2 (ja) 2015-11-11
BR112013000770A2 (pt) 2017-10-31
US9802143B2 (en) 2017-10-31
JPWO2012008476A1 (ja) 2013-09-09
CN102985171B (zh) 2016-03-02
EP2594329B1 (en) 2024-05-01
EP2594329A1 (en) 2013-05-22
CA2805251A1 (en) 2012-01-19
CA2805251C (en) 2016-09-20

Similar Documents

Publication Publication Date Title
WO2012008476A1 (ja) セラミックフィルタ
JP6023068B2 (ja) セラミックフィルタ
JP4607634B2 (ja) セラミックフィルタ
EP2832426B1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
EP2832429B1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
EP2832430B1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP4912702B2 (ja) セラミックフィルタのシール方法
US20210107838A1 (en) Inorganic membrane filtration articles and methods thereof
JP2006006998A (ja) セラミックフィルタ
JP2004306020A (ja) セラミックフィルタ
JP2012232240A (ja) ハニカム構造体およびこれを備えるガス処理装置
JP2007229564A (ja) セラミックフィルタの製造方法
WO2013161506A1 (ja) ハニカム構造体及びハニカムフィルタ
JP6417355B2 (ja) モノリス型分離膜構造体
JP2004033980A (ja) 流体分離フィルタ及び流体分離モジュール
JP2016147206A (ja) ハニカム構造体及びハニカムフィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033604.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2805251

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012524572

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011806806

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000770

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000770

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130111