WO2011161912A1 - 基板ホルダ、成膜装置および成膜方法 - Google Patents

基板ホルダ、成膜装置および成膜方法 Download PDF

Info

Publication number
WO2011161912A1
WO2011161912A1 PCT/JP2011/003441 JP2011003441W WO2011161912A1 WO 2011161912 A1 WO2011161912 A1 WO 2011161912A1 JP 2011003441 W JP2011003441 W JP 2011003441W WO 2011161912 A1 WO2011161912 A1 WO 2011161912A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
support surface
film
substrate holder
film forming
Prior art date
Application number
PCT/JP2011/003441
Other languages
English (en)
French (fr)
Inventor
栄一 飯島
佳樹 磯
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2012521303A priority Critical patent/JP5651693B2/ja
Publication of WO2011161912A1 publication Critical patent/WO2011161912A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target

Definitions

  • the present invention relates to a substrate holder for supporting a film-like substrate to be deposited, a deposition apparatus provided with the substrate holder, and a deposition method.
  • the sputtering apparatus includes a plurality of targets fixed in the sputtering chamber, and a moving mechanism that moves the substrate in the sputtering chamber while arranging the surface of the target and the surface of the substrate substantially in parallel.
  • the above-described method is generally not easy to ensure adhesion between the substrate and the cooling surface. For this reason, the temperature of the substrate rises due to heat input to the substrate during film formation, causing damage to the substrate. In particular, the adhesiveness with the cooling surface is lowered due to thermal deformation of the substrate, and the damage at the portion where the adhesiveness is lowered becomes more remarkable. On the other hand, if the amount of film formation per sputter cathode is limited in order to reduce the amount of heat input to the substrate, a large number of cathodes are required to form a thick film.
  • an object of the present invention is to provide a substrate holder, a film forming apparatus, and a film forming method capable of preventing a film-like substrate from being damaged by heat and realizing an appropriate film forming process. .
  • a substrate holder is a substrate holder that is disposed to face a film forming source and supports a film-shaped substrate, and includes a holder body, a contact mechanism, It comprises.
  • the holder body has a support surface formed by a partial peripheral surface of a cylindrical body having an axial direction parallel to the axial center and a circumferential direction around the axial center.
  • the holder body is disposed to face the film forming source in a state where the substrate is supported on the support surface.
  • the contact mechanism is installed in the holder body and maintains the contact state of the substrate to the support surface.
  • a film formation apparatus includes a film formation chamber, a film formation source, and a substrate holder.
  • the film formation source is disposed in the film formation chamber.
  • the substrate holder includes a holder main body and a contact mechanism.
  • the holder body has a support surface formed by a partial peripheral surface of a cylindrical body having an axial direction parallel to the axis and a circumferential direction around the axis, and supports the film-like substrate on the support surface In this state, the film is disposed to face the film forming source.
  • the contact mechanism is installed in the holder body and maintains the contact state of the substrate to the support surface.
  • a film forming method includes a film-like substrate on a support surface formed by a partial circumferential surface of a cylindrical body having an axial direction parallel to an axial center and a circumferential direction around the axial center. Including a step of arranging. By generating a tension along the circumferential direction on the substrate, the substrate is brought into close contact with the support surface. A film is formed on the substrate by a film formation source facing the support surface.
  • the substrate holder which concerns on one Embodiment of this invention is a substrate holder arrange
  • adherence mechanism are comprised.
  • the holder body has a support surface formed by a partial peripheral surface of a cylindrical body having an axial direction parallel to the axial center and a circumferential direction around the axial center.
  • the holder body is disposed to face the film forming source in a state where the substrate is supported on the support surface.
  • the contact mechanism is installed in the holder body and maintains the contact state of the substrate to the support surface.
  • the holder body is formed of a material having excellent thermal conductivity such as metal, and a part of the peripheral surface functions as a support surface for supporting the substrate.
  • the contact mechanism has a function of bringing the substrate into close contact with the support surface.
  • the support surface is formed by a partial peripheral surface of a cylindrical body having an axial direction parallel to the axial center and a circumferential direction around the axial center, the film-like substrate generates wrinkles. And securely adheres to the support surface.
  • the support surface forms a cooling surface for cooling the substrate.
  • thermal damage to the substrate due to heat input during film formation can be prevented, and appropriate film formation processing can be performed.
  • the substrate is not required to have heat resistance, the degree of freedom of the substrate material can be increased.
  • the method for bringing the base material into close contact with the support surface is not particularly limited, and for example, a base material holding structure using a clamp, a permanent magnet, or the like, adhesion using an adhesive tape, or the like is applicable.
  • the close-contact mechanism may include a tension generator that can generate a tension along the circumferential direction on the substrate.
  • the tension generator may include first and second fixtures and an elastic member.
  • the first and second fixtures can each fix each end of the substrate in the circumferential direction.
  • the elastic member applies the tension to the substrate.
  • tensile_strength can be provided with respect to a base material with the elastic force of an elastic member, and a base material can be stuck to a support surface.
  • the tension generation unit may include first and second roller members and a support shaft.
  • the first and second roller members may be wound around each end of the substrate in the circumferential direction.
  • the support shaft rotatably supports the first and second roller members. Thereby, desired tension
  • tensile_strength can be provided with respect to a base material by rotating the said support shaft, and a base material can be stuck to a support surface.
  • the support surface may have a vent path for degassing. Thereby, retention of the emitted gas from a base material can be suppressed between a base material and a support surface, and favorable adhesion
  • the air passage is constituted by, for example, a hole or a groove formed on the support surface.
  • a support surface may be formed with a porous material.
  • the tension generator may be a bimetal capable of bending the support surface by heat input. As a result, it is possible to absorb the decrease in adhesion due to the bending of the substrate due to heat input during film formation by the deformation of the support surface.
  • a film forming apparatus includes a film forming chamber, a film forming source, and a substrate holder.
  • the film formation source is disposed in the film formation chamber.
  • the substrate holder includes a holder main body and a contact mechanism.
  • the holder body has a support surface formed by a partial peripheral surface of a cylindrical body having an axial direction parallel to the axis and a circumferential direction around the axis, and supports the film-like substrate on the support surface In this state, the film is disposed to face the film forming source.
  • the contact mechanism is installed in the holder body and maintains the contact state of the substrate to the support surface.
  • a film-like substrate is formed on a support surface formed by a partial peripheral surface of a cylindrical body having an axial direction parallel to the axial center and a circumferential direction around the axial center. Including the step of arranging. By generating a tension along the circumferential direction on the substrate, the substrate is brought into close contact with the support surface. A film is formed on the substrate by a film formation source facing the support surface.
  • FIG. 1 is a schematic plan view showing a film forming apparatus according to an embodiment of the present invention. Hereinafter, a schematic configuration of the film forming apparatus 100 of the present embodiment will be described.
  • the film forming apparatus 100 includes a preparation chamber 11, a film formation chamber 12, and a gate valve 13 installed between the preparation chamber 11 and the film formation chamber 12.
  • the film forming apparatus 100 further includes a vacuum pump 151 that exhausts the preparation chamber 11 and a vacuum pump 152 that exhausts the film forming chamber 12.
  • the film formation apparatus 100 forms a thin film on the surface of the substrate S transferred from the preparation chamber 11 to the film formation chamber 12, and carries the substrate S out through the preparation chamber 11 after film formation.
  • the preparation chamber 11 is connected to the first vacuum pump 151 via the first vacuum valve 141.
  • the preparation chamber 11 is evacuated to a predetermined pressure by the vacuum pump 151 after the substrate is loaded into the preparation chamber 11.
  • the film formation chamber 12 is configured as a sputtering chamber in this embodiment. That is, the film forming chamber 12 includes a cathode unit 120 and a gas introduction line (not shown) for introducing a process gas into the film forming chamber 12.
  • the cathode unit 120 (film formation source) includes a first target unit 121, a second target unit 122, and a magnet assembly for magnetron discharge disposed on the target units 121 and 122, respectively.
  • the cathode unit 120 is installed facing one side wall of the film forming chamber 12.
  • the target units 121 and 122 may be driven simultaneously or independently of each other.
  • the discharge method of the target units 121 and 122 is not particularly limited, and an appropriate method such as DC discharge, AC discharge, or RF discharge can be employed.
  • the target units 121 and 122 have target materials installed according to the types of film forming materials.
  • the material to be formed on the substrate S include organic materials as well as inorganic materials such as metals and metal compounds, and the formed thin film may be a single layer film, a laminated film, a composite film, or the like.
  • the target parts 121 and 122 are formed of the same material, and in the case of forming a laminated film and a composite film, the target parts 121 and 122 are formed of different materials.
  • the target part 121 has a molybdenum (Mo) target
  • the target part 122 has an aluminum (Al) target.
  • the film forming apparatus 100 further includes a substrate holder 20 that supports the substrate S and a transport mechanism (not shown) that transports the substrate S in the film forming chamber 12.
  • the transport mechanism transports the substrate holder 20 from the preparation chamber 11 side toward the end portion 12a of the film formation chamber 12 along the arrow A at a constant speed.
  • the transport mechanism transports the substrate holder 20 linearly at a constant speed along the arrow B from the end 12a side of the film forming chamber 12 toward the preparation chamber 11 side.
  • the substrate S passes through the front of the target parts 121 and 122 in the outward path along the arrow A and the return path along the arrow B, respectively.
  • a film forming process is performed.
  • the transport mechanism includes, for example, a guide rail that guides the travel of the substrate holder 20 and a drive source that moves the substrate holder 20 along the guide rail.
  • a form of transporting while supporting the substrate holder 20 in a suspended state may be employed.
  • the substrate S is not limited to the above example, and the substrate S may be subjected to a film forming process in either the forward path or the return path. Alternatively, a method of forming a film in a state where the substrate S is stopped in front of the target units 121 and 122 may be employed. Further, the present invention is not limited to the example in which the substrate S is reciprocated within the film forming chamber 12. For example, the transfer direction of the substrate S can be limited to the A direction by installing an extraction chamber at the end 12a of the film formation chamber 12 via a gate valve. Furthermore, the number of target portions 121 and 122 can be increased or decreased depending on the thickness of the film formation.
  • a flexible film-like substrate is used as the substrate S.
  • a plastic film such as PET (polyethylene terephthalate) or PC (polycarbonate) is used as the substrate S. It does not matter whether the substrate S has heat resistance.
  • the shape of the substrate S is not particularly limited and is typically rectangular.
  • the substrate S is not limited to a plastic single layer film, and other layers such as a metal layer may be formed on the surface thereof.
  • FIG. 2 is an overall perspective view of the substrate holder 20
  • FIG. 3 is a plan view of the substrate holder 20
  • FIG. 4 is a side view of the substrate holder 20
  • FIG. 1 is an overall perspective view of the substrate holder 20
  • FIG. 3 is a plan view of the substrate holder 20
  • FIG. 4 is a side view of the substrate holder 20
  • FIG. 1 is an overall perspective view of the substrate holder 20
  • FIG. 3 is a plan view of the substrate holder 20
  • FIG. 4 is a side view of the substrate holder 20
  • the substrate holder 20 includes a holder main body 21 and an adhesion mechanism 22.
  • the holder body 21 is made of a metal material having excellent thermal conductivity such as copper, aluminum, or steel material.
  • the holder main body 21 is formed of a substantially rectangular plate, and has a support surface 21a for supporting the substrate S on one surface.
  • the support surface 21 a is a cylindrical body (cylindrical body) having a radius R and having an axial direction C parallel to the axial center La extending along the Z-axis direction and a circumferential direction D around the axial center La. ) Part outer peripheral surface.
  • the holder main body 21 is installed inside the film forming chamber 12 with the axial direction C facing the vertical direction so that the support surface 21a faces the surfaces of the target portions 121 and 122.
  • the support surface 21a functions as a cooling surface that supports the substrate S and cools the substrate S when the substrate S is formed.
  • the support surface 21a has a partial cylindrical shape that is convex on the surface side of the target portions 121 and 122, and the radius of curvature R is not particularly limited, and is, for example, 500 mm to 10000 mm.
  • the radius R is less than 500 mm, it is difficult to ensure a good film thickness distribution on the substrate S.
  • the radius R exceeds 10,000 mm, it becomes difficult to ensure good adhesion of the substrate S to the support surface 21a.
  • the holder body 21 has a plurality of through holes 23 penetrating between the support surface 21a and the back surface 21b opposite to the support surface 21a.
  • the through hole 23 forms a ventilation path that guides the gas released from the substrate S on the support surface 21 a to the outside of the holder body 21.
  • the through holes 23 are not limited to the example regularly formed in a grid shape on the support surface 21a as shown in FIG.
  • the number of through holes 23 formed is not particularly limited, and can be set as appropriate according to the size of the substrate S, the diameter of the through holes 23, and the like.
  • the hole diameter of the through-hole 23 is not specifically limited, For example, it is 1 mm.
  • the shape of the through hole 23 is not limited to a cylindrical shape, and may be a conical shape, or may be a shape combining a cylinder and a cone.
  • the air passage is formed for the purpose of eliminating poor adhesion between the substrate S and the support surface 21a due to the gas released from the substrate S. Therefore, the ventilation path is not limited to the example formed by the above-described through-hole 23, and may be formed by, for example, a plurality of grooves formed in a stripe shape or a mesh shape on the support surface 21a. Furthermore, it is possible to eliminate the influence of the emitted gas by configuring the support surface 21a (or the holder main body 21) with a porous material. In this case, as the porous material, a sintered body of metal fine powder, a green compact, or the like can be applied.
  • the contact mechanism 22 is for maintaining the contact state of the substrate S to the support surface 21a, and is installed on the back surface 21b of the holder body 21.
  • the close contact mechanism 22 of the present embodiment has a function of generating a tension along the circumferential direction D with respect to the base material S on the support surface 21a.
  • the contact mechanism 22 includes a pair of fixtures 221 (first and second fixtures) and a plurality of fixtures 221 that are attached to the fixtures 221 and apply the tension to the substrate S.
  • Spring member 223 (elastic member).
  • Each fixing tool 221 has a clamp structure that can clamp the end portion of the substrate S.
  • the clamp structure may be a mechanical clamping structure or a clamping structure using the magnetic force of a permanent magnet.
  • Each fixing tool 221 has a length that can be held over the entire width of the end portion of the base material S.
  • each spring member 223 is installed between a base plate 222 and each fixture 221 fixed to the back surface 21 b of the holder body 21.
  • the fixture 221, the spring member 223, etc. constitute a tension generator that generates a tension along the circumferential direction D on the substrate S on the support surface 21 a.
  • the magnitude of the tension can be adjusted as appropriate depending on the spring constant, the number of attached spring members 223, and the like.
  • each base plate 222 moves each base plate 222 relative to the back surface 21b of the holder body 21 in the X-axis direction.
  • the spring force of the spring member 223 can be adjusted, and a desired tension can be applied to the substrate S.
  • the adjustment unit includes a guide rail 226 that guides the movement of each base plate 222, an adjustment screw 224 that moves each base plate 222 on the guide rail 226, and each base plate 222 on the guide rail 226 at an arbitrary position. And a fixing portion 229 for fixing to the holder main body 21.
  • the adjustment screw 224 is supported by a bracket 225 fixed to the back surface 21 b of the holder body 21, and the tip end portion of the adjustment screw 224 is screwed into the base plate 222. Therefore, the base plate 222 can be moved on the guide rail 226 by rotating the adjusting screw 224 about the axis.
  • the fixing portion 229 is formed in the base plate 222 and has a plurality of long holes 227 having a long axis in the moving direction (X-axis direction) of the base plate 222, and passes through the long holes 227 and is screwed to the back surface 21b of the holder body 21. And a possible screw member 228.
  • the substrate S is disposed on the support surface 21a of the substrate holder 20 with the surface to be deposited facing outward.
  • the substrate S is held by the holder main body 21 by fixing both ends of the support surface 21 a in the circumferential direction D to the fixture 221 of the contact mechanism 22.
  • the support surface 21a is formed of a partially cylindrical peripheral surface having an axial direction C parallel to the axial center La and a circumferential direction D around the axial center La, the substrate S does not generate wrinkles. It is securely adhered to the support surface 21a. As a result, thermal damage to the substrate due to heat input during film formation can be prevented, and appropriate film formation processing can be performed.
  • the substrate S receives the elastic force of the spring member 223 and is applied with a tension along the circumferential direction D, so that it deforms in accordance with the shape of the support surface 21a and is in close contact with the support surface 21a.
  • each fixture 221 has a length that can be sandwiched over the entire width of the end portion of the substrate S, a desired tension can be applied to the substrate S without generating wrinkles.
  • the adhesion of the substrate S to the support surface 21a can be enhanced. Further, even when the substrate S is stretched due to heat input during film formation, the substrate S can be kept in a stable contact state with the support surface 21a by the tension.
  • the installation of the substrate S with respect to the substrate holder 20 may be performed by an operator, or may be automatically performed using a robot or the like.
  • the substrate S placed on the substrate holder 20 as described above is carried into the preparation chamber 11 together with the substrate holder 20.
  • the preparation chamber 11 is evacuated to a predetermined pressure and then transferred via the gate valve 13 to the film formation chamber 12 maintained at a predetermined film formation pressure.
  • the substrate holder 20 is linearly conveyed in the direction of arrow A through a conveyance mechanism (not shown) in the film forming chamber 12. At this time, the substrate holder 20 is transported in a direction orthogonal to the axial direction C (X-axis direction) with the axial direction C of the support surface 21a oriented in the vertical direction. Accordingly, the substrate S is transported in the film forming chamber 12 by the substrate holder 20 so as to cross the position facing the cathode unit 120.
  • the cathode unit 120 sputter-deposits the constituent materials of the target portions 121 and 122 on the surface of the substrate S supported by the substrate holder 20. That is, the substrate S passes through the front surface of the target unit 121 and the target unit 122 in order during conveyance of the forward path (arrow A in FIG. 1), whereby a stacked film of the Mo film and the Al film is formed on the substrate S. At this time, heat input to the substrate S is absorbed by the holder main body 21 via the support surface 21 a that is in close contact with the substrate S. That is, the support surface 21a functions as a cooling surface of the substrate S, and suppresses thermal damage of the substrate S during film formation to ensure an appropriate film formation process.
  • emitted gas may be generated from the substrate S.
  • the plurality of through holes 23 are formed in the support surface 21a, these through holes are guided to the outside of the support surface 21a with the air passages. Thereby, since the retention of the released gas between the substrate S and the support surface 21a can be prevented, a decrease in adhesion between the substrate S and the support surface 21a can be suppressed.
  • the substrate holder 20 When the substrate holder 20 reaches the end 12a of the film forming chamber 12, it is transported toward the preparation chamber 11 side.
  • the substrate S sequentially passes through the front surface of the target portion 122 and the target portion 121 during the return path (arrow B in FIG. 1), whereby an Al film and a Mo film are further formed on the substrate S.
  • the substrate holder 20 After film formation, the substrate holder 20 is returned to the preparation chamber 11 via the gate valve 13. Then, after the gate valve 13 is closed and the preparation chamber 11 is opened to the atmosphere, the substrate holder 20 that supports the deposited substrate S is taken out from the preparation chamber 11 to the outside.
  • a good adhesion state of the substrate S to the support surface 21a is ensured, so that thermal damage of the substrate S due to heat input during film formation is prevented, and proper film formation is achieved. Processing can be performed.
  • a relatively thick metal film can be formed on the substrate S without requiring many sputter cathodes. Furthermore, since heat resistance is not required for the substrate, the degree of freedom of the substrate material can be increased.
  • the inventors formed a Mo—Al laminated film on a substrate using the film forming apparatus 100 shown in FIG. 1, and measured the surface resistance and uniformity of the prepared thin film sample.
  • a PET film having a thickness of 50 ⁇ m was used as the substrate.
  • the shape of the substrate was a 300 mm ⁇ 300 mm square.
  • the curvature radius of the cylindrical surface forming the support surface 21a of the substrate holder 20 was 2285 mm.
  • the pressure in the film forming chamber 12 (film forming pressure) was 0.4 Pa, and the conveyance speed of the substrate holder was 0.67 m / min.
  • the target material of the first target portion 121 constituting the cathode unit 120 was a MoNb alloy
  • the target material of the second target portion 122 was an AlNd alloy.
  • the power density of the first target portion 121 was 1.5 W / cm 2
  • the power density of the second target portion 122 was 8.8 W / cm 2 .
  • a film was formed using both target parts 121 and 122 in the forward path and the return path.
  • the thickness of each layer of the thin film sample was MoNb (330 ⁇ ) / AlNd (3400 ⁇ ) / MoNb (340 ⁇ ).
  • the results of the experiment are shown in Table 1.
  • Table 1 the results when using a substrate holder having a flat support surface are also shown.
  • a thin film sample having a surface resistance of 0.22 ⁇ / ⁇ was obtained.
  • the in-plane distribution of surface resistance was 7.9%. Thereby, it can be confirmed that the metal film can be properly formed on the substrate.
  • the substrate was damaged (burned out) due to the poor adhesion of the substrate to the support surface, and film formation was impossible.
  • FIG. 6 is a schematic side view of a substrate holder according to another embodiment of the present invention.
  • portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the substrate holder 30 includes a holder main body 21 and a close contact mechanism 32.
  • the contact mechanism 32 of the present embodiment includes a pair of roller members 321 and a support shaft 322 that supports each roller member 321 so as to be rotatable about its axis.
  • the roller member 321 is wound around each end portion in the circumferential direction of the substrate S disposed on the support surface 21a of the holder body 21.
  • the support shaft 322 is attached to a pedestal 323 fixed to the back surface of the holder main body 21.
  • a stopper that prohibits the rotation of the roller member 321 is attached to the support shaft 322.
  • the heat shielding members 33 are respectively installed on the pedestal 323 so that the base material S located around the roller member 321 is protected from thermal damage.
  • a predetermined tension along the circumferential direction is applied to the base material S by rotating at least one of the roller members 321.
  • the spring member 223 and the adjustment unit for the elastic force are installed at both ends of the substrate S as the close contact mechanism.
  • the present invention is not limited to this, and only the at least one end of the substrate S is provided.
  • the spring member 223 and the adjustment unit may be installed. The same applies to the second embodiment described above.
  • the support surface 21a of the holder main body 21 is formed as a partial cylindrical surface.
  • the present invention is not limited to this, and other curved shapes such as an aspherical surface and a hyperboloid surface may be used.
  • a bimetal can be used as a method of applying a predetermined tension to the substrate disposed on the support surface of the holder body.
  • Bimetal is a functional material formed by laminating two metal plates having different thermal expansion coefficients, and has a property that the way of bending (curvature) changes with changes in temperature.
  • FIG. 7 schematically shows a substrate holder 40 that attaches the permanent magnets 41 and 42 around the holder main body 21 to bring the substrate S into close contact with the support surface 21a.
  • the permanent magnets 41 and 42 can be fixed in a state where tension is applied to the substrate S in advance.
  • the sputtering apparatus has been described as an example of the film forming apparatus.
  • the present invention is not limited to this, and the present invention is applicable to other film forming apparatuses such as a vacuum evaporation apparatus, a CVD apparatus, and an ion plating apparatus.
  • the deposition source corresponds to an evaporation source, a shower plate (plasma generating electrode), or the like.
  • the film forming apparatus having the preparation chamber and the film forming chamber as shown in FIG. 1 has been described.
  • the present invention can also be applied to a batch type apparatus including only the film forming chamber.
  • the substrate holder can be applied to a degassing step and a degassing apparatus that perform heat degassing from a film or the like in a reduced pressure in addition to the film forming apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】フィルム状の基板の熱による破損を防止して適正な成膜処理を実現できる基板ホルダを提供する。 【解決手段】基板ホルダ20は、金属製のホルダ本体21と、ホルダ本体21の支持面21aへの基板Sの密着状態を維持する密着機構22とを有する。支持面21aは、軸心に平行な軸方向と上記軸心のまわりの周方向とを有する筒体の部分周面で形成される。これにより、支持面21aと基板Sとの密着性を高めることができる。密着機構22は、基板Sの両端を固定する固定具221と、基板Sに上記周方向に沿った張力を印加するバネ部材223とを有する。支持面21a上の基板Sに所定の張力を付与することで、基板Sと支持面21aとの密着性がさらに高まり、成膜時の入熱による基板Sの熱ダメージを防止することができる。

Description

基板ホルダ、成膜装置および成膜方法
 本発明は、成膜対象であるフィルム状の基板を支持するための基板ホルダおよびこれを備えた成膜装置ならびに成膜方法に関する。
 近年、スパッタ室内で、ターゲットに対して基板を相対移動させつつ基板上に薄膜を形成するスパッタ装置が知られている(例えば下記特許文献1参照)。このスパッタ装置は、スパッタ室に固定された複数のターゲットと、ターゲットの表面と基板の表面とを略平行に配置しつつ基板をスパッタ室内で移動させる移動機構とを備えている。
特開2009-138230号公報
 上記特許文献1に記載の構成では、基板がプラスチックフィルム等で形成されている場合、成膜時に基板が熱によって破損(焼損)し、適正な成膜が不可能になる。そこで、基板を冷却面上に設置し、基板への入熱を当該冷却面で吸収しながら成膜する方法が考えられる。
 しかしながら、上述の方法は一般的に、基板と冷却面との密着性を確保することが容易ではない。このため、成膜中の基板への入熱により基板の温度が上がり、基板にダメージが発生する。特に、基板の熱変形により冷却面との密着性が低下し、当該密着性が低下した部分のダメージがより顕著となる。一方、基板の入熱量を低減するためにスパッタカソード1台あたりの成膜量を制限すると、厚膜を形成しようとする場合、多くのカソードが必要となる。
 以上のような事情に鑑み、本発明の目的は、フィルム状の基板の熱による破損を防止して適正な成膜処理を実現できる基板ホルダ、成膜装置および成膜方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る基板ホルダは、成膜源に対向して配置され、フィルム状の基板を支持するための基板ホルダであって、ホルダ本体と、密着機構とを具備する。
 上記ホルダ本体は、軸心に平行な軸方向と上記軸心のまわりの周方向とを有する筒体の部分周面で形成された支持面を有する。上記ホルダ本体は、上記支持面に上記基板を支持した状態で上記成膜源に対向配置される。
 上記密着機構は、上記ホルダ本体に設置され、上記支持面への上記基板の密着状態を維持する。
 また、本発明の一形態に係る成膜装置は、成膜室と、成膜源と、基板ホルダとを具備する。
 上記成膜源は、上記成膜室に配置される。
 上記基板ホルダは、ホルダ本体と、密着機構とを有する。上記ホルダ本体は、軸心に平行な軸方向と上記軸心のまわりの周方向とを有する筒体の部分周面で形成された支持面を有し、上記支持面にフィルム状の基板を支持した状態で上記成膜源に対向配置される。上記密着機構は、上記ホルダ本体に設置され上記支持面への上記基板の密着状態を維持する。
 さらに、本発明の一形態に係る成膜方法は、軸心に平行な軸方向と上記軸心のまわりの周方向とを有する筒体の部分周面で形成された支持面にフィルム状の基板を配置する工程を含む。
 上記基板に前記周方向に沿った張力を発生させることで、前記基板は前記支持面に密着させられる。
 上記支持面に対向する成膜源によって、上記基板に成膜がなされる。
本発明の一実施形態に係る成膜装置の概略平面図である。 本発明の一実施形態に係る基板ホルダの全体斜視図である。 上記基板ホルダの平面図である。 上記基板ホルダの側面図である。 上記基板ホルダの裏面図である。 本発明の他の実施形態に係る基板ホルダの概略側面図である。 本発明の一実施形態に係る基板ホルダの変形例を示す概略側面図である。
 本発明の一実施形態に係る基板ホルダは、成膜源に対向して配置され、フィルム状の基板を支持するための基板ホルダであって、ホルダ本体と、密着機構とを具備する。
 上記ホルダ本体は、軸心に平行な軸方向と上記軸心のまわりの周方向とを有する筒体の部分周面で形成された支持面を有する。上記ホルダ本体は、上記支持面に上記基板を支持した状態で上記成膜源に対向配置される。
 上記密着機構は、上記ホルダ本体に設置され、上記支持面への上記基板の密着状態を維持する。
 上記基板ホルダにおいて、ホルダ本体は、例えば金属等の熱伝導性に優れた材料で形成され、その周面の一部が基板を支持する支持面として機能する。密着機構は、基板を上記支持面へ密着させる機能を有する。ここで、上記支持面は、軸心に平行な軸方向と上記軸心のまわりの周方向とを有する筒体の部分周面で形成されているため、フィルム状の基板は、皺を発生させることなく上記支持面に確実に密着される。
 上記支持面は、基板を冷却するための冷却面を形成する。これにより、成膜時の入熱による基板の熱ダメージを防止でき、適正な成膜処理が可能となる。また、基板に耐熱性を要求されないため、基板材料の自由度を高めることができる。
 支持面に基材を密着させる方法は特に限定されず、例えばクランプや永久磁石等を用いた基材の挟持構造のほか、粘着テープを用いた接着等が適用可能である。
 上記密着機構は、上記基板に上記周方向に沿った張力を発生させることが可能な張力発生部を含んでもよい。
 これにより、基板ホルダの支持面に対する基板の密着性を高めることができる。
 上記張力発生部は、第1および第2の固定具と、弾性部材とを有してもよい。
 上記第1および第2の固定具は、上記周方向に関する上記基板の各端部を各々固定可能である。上記弾性部材は、上記基板に上記張力を印加する。
 これにより、弾性部材の弾性力によって基材に対して所望の張力を付与し、支持面に基材を密着させることができる。
 上記張力発生部は、第1および第2のローラ部材と、支持軸とを有してもよい。上記第1および第2のローラ部材は、上記周方向に関する上記基板の各端部に巻き付けられることができる。上記支持軸は、上記第1および第2のローラ部材を回転可能に支持する。
 これにより、上記支持軸を回転させることで基材に対して所望の張力を付与し、支持面に基材を密着させることができる。
 上記支持面は、脱ガス用の通気路を有してもよい。
 これにより、基材と支持面との間において基材からの放出ガスの滞留を抑制し、基材と支持面との良好な密着を維持することができる。上記通気路は、例えば、支持面に形成された孔、溝などで構成される。また、上記通気路を確保するために、支持面は多孔質材料で形成されてもよい。
 上記張力発生部は、入熱により上記支持面を湾曲させることが可能なバイメタルであってもよい。
 これにより、成膜時の入熱による基板の撓みによる密着性の低下を支持面の変形によって吸収することができる。
 本発明の一実施形態に係る成膜装置は、成膜室と、成膜源と、基板ホルダとを具備する。
 上記成膜源は、上記成膜室に配置される。
 上記基板ホルダは、ホルダ本体と、密着機構とを有する。上記ホルダ本体は、軸心に平行な軸方向と上記軸心のまわりの周方向とを有する筒体の部分周面で形成された支持面を有し、上記支持面にフィルム状の基板を支持した状態で上記成膜源に対向配置される。上記密着機構は、上記ホルダ本体に設置され上記支持面への上記基板の密着状態を維持する。
 本発明の一実施形態に係る成膜方法は、軸心に平行な軸方向と上記軸心のまわりの周方向とを有する筒体の部分周面で形成された支持面にフィルム状の基板を配置する工程を含む。
 上記基板に前記周方向に沿った張力を発生させることで、前記基板は前記支持面に密着させられる。
 上記支持面に対向する成膜源によって、上記基板に成膜がなされる。
 以下、図面を参照しながら、本発明の実施形態を説明する。
<第1の実施形態>
 図1は、本発明の一実施形態に係る成膜装置を示す概略平面図である。以下、本実施形態の成膜装置100の概略構成について説明する。
[成膜装置]
 成膜装置100は、仕込み室11と、成膜室12と、仕込み室11と成膜室12との間に設置されたゲートバルブ13とを有する。成膜装置100はさらに、仕込み室11を排気する真空ポンプ151と、成膜室12を排気する真空ポンプ152とを有する。成膜装置100は、仕込み室11から成膜室12へ搬送された基板Sの表面に薄膜を形成し、成膜後は、仕込み室11を介して基板Sを外部へ搬出する。
 仕込み室11は、第1の真空バルブ141を介して第1の真空ポンプ151と接続されている。仕込み室11は、仕込み室11に基板が搬入された後、真空ポンプ151によって所定の圧力に排気される。
 成膜室12は、本実施形態ではスパッタ室として構成される。すなわち成膜室12は、カソードユニット120のほか、プロセスガスを成膜室12へ導入するための図示しないガス導入ライン等を有する。カソードユニット120(成膜源)は、第1のターゲット部121と第2のターゲット部122と、ターゲット部121,122にそれぞれ配置されたマグネトロン放電のためのマグネットアセンブリ等を有する。カソードユニット120は、成膜室12の一側壁に面して設置されている。ターゲット部121,122は同時に駆動されてもよいし、相互に独立して駆動されてもよい。ターゲット部121,122の放電方式は特に限定されず、DC放電、AC放電、RF放電など適宜の方式が採用可能である。
 ターゲット部121,122は、成膜材料の種類に応じて設置されたターゲット材料を有する。基板Sに成膜される材料としては、金属および金属化合物等の無機材料のほか、有機材料が挙げられ、形成される薄膜は、単層膜、積層膜、複合膜等であってもよい。単層膜を形成する場合、ターゲット部121,122は同一材料で形成され、積層膜および複合膜を形成する場合、ターゲット部121,122は異種材料で形成される。本実施形態では、ターゲット部121はモリブデン(Mo)ターゲットを有し、ターゲット部122はアルミニウム(Al)ターゲットを有する。
 成膜装置100は、基板Sを支持する基板ホルダ20と、成膜室12において基板Sを搬送する図示しない搬送機構とをさらに有する。上記搬送機構は、基板ホルダ20を仕込み室11側から成膜室12の端部12aに向かって矢印Aに沿って直線的に等速度で搬送する。また、上記搬送機構は、基板ホルダ20を成膜室12の端部12a側から仕込み室11側に向かって矢印Bに沿って直線的に等速度で搬送する。本実施形態では、基板Sは、矢印Aに沿った往路と、矢印Bに沿った復路とにおいてそれぞれターゲット部121,122の正面を横切るように通過し、これらの通過過程で基板S上への成膜処理が施される。
 上記搬送機構は、例えば、基板ホルダ20の走行をガイドするガイドレールと、上記ガイドレールに沿って基板ホルダ20を移動させる駆動源等を含む。あるいは、上記搬送機構として、基板ホルダ20を懸吊状態で支持しつつ搬送する形態が採用されてもよい。
 なお、上記の例に限られず、基板Sは往路および復路のいずれか一方において成膜処理が施されてもよい。あるいは、各ターゲット部121,122の正面で基板Sを停止させた状態で成膜する方式が採用されてもよい。また、成膜室12の内部で基板Sを往復移動させる例に限られない。例えば、成膜室12の端部12aにゲートバルブを介して取出し室を設置することで、基板Sの搬送方向をA方向に限定することができる。さらに、ターゲット部121,122は、成膜の厚みに応じてその数を増減することができる。
 基板Sには、フレキシブル性を有するフィルム状の基板が用いられる。本実施形態では、基板Sとして、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)等のプラスチックフィルムが用いられる。基板Sに耐熱性の有無は問われない。基板Sの形状は特に限定されず、典型的には矩形状である。基板Sはプラスチック単層フィルムに限られず、その表面に金属層等の他の層が形成されていてもよい。
[基板ホルダ]
 次に、基板ホルダ20の詳細について説明する。図2は基板ホルダ20の全体斜視図、図3は基板ホルダ20の平面図、図4は基板ホルダ20の側面図、図5は基板ホルダ20の裏面図である。
 基板ホルダ20は、ホルダ本体21と、密着機構22とを有する。
 ホルダ本体21は、銅、アルミニウム、鉄鋼材料等の熱伝導性に優れた金属材料で構成される。ホルダ本体21は、略矩形の板で形成されており、一方側の表面に基板Sを支持するための支持面21aを有する。支持面21aは、図2に示すように、Z軸方向に沿って延びる軸心Laに平行な軸方向Cと、軸心Laのまわりの周方向Dとを有する、半径Rの筒体(円筒)の部分外周面で形成されている。
 ホルダ本体21は、支持面21aがターゲット部121,122の表面と対向するように、軸方向Cを鉛直方向に向けて成膜室12の内部に設置される。支持面21aは、基板Sの成膜時に基板Sを支持し、基板Sを冷却する冷却面として機能する。
 支持面21aは、ターゲット部121,122の表面側に凸となる部分円筒形状を有しており、その曲率半径Rは特に限定されず、例えば500mm~10000mmである。半径Rが500mm未満の場合、基板S上において良好な膜厚分布を確保することが困難となる。また、半径Rが10000mmを超えると、支持面21aに対する基板Sの良好な密着性を確保することが困難となる。
 ホルダ本体21は、支持面21aと、支持面21aとは反対側の裏面21bとの間を貫通する複数の貫通孔23を有する。貫通孔23は、支持面21a上の基板Sからの放出ガスをホルダ本体21の外部へ導く通気路を形成する。貫通孔23は、図3に示すように支持面21a上にグリッド状に規則的に形成される例に限られない。また、貫通孔23の形成数も特に限定されず、基板Sの大きさ、貫通孔23の孔径等に応じて適宜設定可能である。貫通孔23の孔径は特に限定されず、例えば1mmである。さらに、貫通孔23の形状は円筒状に限らず、円錐状であってもよいし、円筒と円錐とを組み合わせた形状であってもよい。
 上記通気路は、基板Sからの放出ガスに起因する基板Sと支持面21aとの間の密着不良を解消する目的で形成される。したがって、上記通気路は、上述した貫通孔23で形成される例に限られず、例えば、支持面21a上にストライプ状あるいはメッシュ状に形成された複数の溝で形成されてもよい。さらに、支持面21a(あるいはホルダ本体21)を多孔性材料によって構成することで、上記放出ガスによる影響を排除することも可能である。この場合、多孔性材料としては、金属微粉末の焼結体や圧粉体等が適用可能である。
 密着機構22は、支持面21aへの基板Sの密着状態を維持するためのもので、ホルダ本体21の裏面21bに設置される。本実施形態の密着機構22は、支持面21a上の基材Sに対して周方向Dに沿った張力を発生させる機能を有する。
 図4および図5に示すように、密着機構22は、一対の固定具221(第1および第2の固定具)と、各々の固定具221に取り付けられ基板Sに上記張力を印加する複数本のバネ部材223(弾性部材)とを有する。各固定具221は、基板Sの端部を挟持可能なクランプ構造を有する。上記クランプ構造は、機械的な挟持構造であってもよいし、永久磁石の磁力を用いた挟持構造であってもよい。各固定具221は、基材Sの端部の全幅にわたって挟持できる長さを有する。一方、各々のバネ部材223は、ホルダ本体21の裏面21bに各々固定されたベース板222と各固定具221との間にそれぞれ設置されている。
 固定具221、バネ部材223等は、支持面21a上の基板Sに周方向Dに沿った張力を発生させる張力発生部を構成する。当該張力の大きさは、バネ部材223のバネ定数、取付個数等によって適宜調整可能である。
 また本実施形態では、各ベース板222をホルダ本体21の裏面21bに対してX軸方向に相対移動させる調整ユニットを有する。これにより、バネ部材223のバネ力が調整可能となり、基板Sに所望の張力を付与することができる。
 当該調整ユニットは、各ベース板222の移動をガイドするガイドレール226と、ガイドレール226上で各ベース板222を移動させる調整ネジ224と、ガイドレール226上の各ベース板222を任意の位置でホルダ本体21へ固定する固定部229とを有する。調整ネジ224は、ホルダ本体21の裏面21bに固定されたブラケット225に支持され、調整ネジ224の先端部はベース板222に螺合している。従って、調整ネジ224を軸回りに回転させることで、ベース板222はガイドレール226上を移動させられる。固定部229は、ベース板222に形成されベース板222の移動方向(X軸方向)に長軸を有する複数の長孔227と、各長孔227を貫通しホルダ本体21の裏面21bに螺合可能なネジ部材228とにより構成される。
[成膜装置の動作例]
 次に、以上のように構成される本実施形態の基板ホルダ20および成膜装置100の作用の一例について説明する。
 基板Sは、成膜されるべき面を外側に向けて基板ホルダ20の支持面21a上に配置される。基板Sは、支持面21aの周方向Dに関する両端部が密着機構22の固定具221にそれぞれ固定されることで、ホルダ本体21に保持される。
 支持面21aは、軸心Laに平行な軸方向Cと軸心Laのまわりの周方向Dとを有する部分円筒状の周面で形成されているため、基板Sは、皺を発生させることなく支持面21aに確実に密着される。これにより、成膜時の入熱による基板の熱ダメージを防止でき、適正な成膜処理が可能となる。
 基板Sは、バネ部材223の弾性力を受けて周方向Dに沿った張力が付与されることで、支持面21aの形状にならって変形し、支持面21aに密着される。また、各固定具221は、基板Sの端部の全幅にわたって挟持できる長さを有するので、基板Sに皺を発生させることなく所望の張力を付与することができる。
 このように、基板Sに周方向Dに沿った張力を付与することで、支持面21aへの基板Sの密着性を高めることができる。また、成膜時の入熱により基板Sに伸びが生じたとしても、上記張力によって支持面21aに対する基板Sの安定した密着状態を維持することができる。
 なお、基板ホルダ20に対する基板Sの設置は、作業者によって行われてもよいし、ロボット等を用いて自動的に行われてもよい。
 上述のように基板ホルダ20に設置された基板Sは、基板ホルダ20とともに仕込み室11へ搬入される。仕込み室11は所定の圧力に排気された後、ゲートバルブ13を介して、所定の成膜圧力に維持された成膜室12へ搬送される。
 基板ホルダ20は、成膜室12において図示しない搬送機構を介して矢印A方向へ直線的に搬送される。このとき、基板ホルダ20は、支持面21aの軸方向Cを鉛直方向に向けた状態で、軸方向Cと直交する方向(X軸方向)へ搬送される。したがって、基板Sは、基板ホルダ20によって、カソードユニット120と対向する位置を横切るように成膜室12において搬送される。
 カソードユニット120は、基板ホルダ20に支持された基板Sの表面に、ターゲット部121,122の構成材料をスパッタ成膜する。すなわち、基板Sは往路(図1の矢印A)の搬送中にターゲット部121およびターゲット部122の正面を順に通過することで、基板SにMo膜とAl膜の積層膜が形成される。このとき、基板Sへの入熱は、基板Sと密着する支持面21aを介してホルダ本体21によって吸収される。すなわち、支持面21aは基板Sの冷却面として機能し、成膜時における基板Sの熱ダメージを抑制して適正な成膜処理を確保する。
 また、成膜時の基板Sへの入熱により、基板Sから放出ガスが発生する場合がある。本実施形態では、支持面21aに複数の貫通孔23が形成されているため、これらの貫通孔を通気路として支持面21aの外部へ導かれる。これにより、基板Sと支持面21aとの間における放出ガスの滞留を防止できるため、基板Sと支持面21aとの間の密着性の低下が抑えられる。
 基板ホルダ20が成膜室12の端部12aに到達すると、仕込み室11側に向かって搬送される。基板Sは復路(図1の矢印B)の搬送中にターゲット部122およびターゲット部121の正面を順に通過することで、基板SにAl膜とMo膜とがさらに形成される。成膜後、基板ホルダ20は、ゲートバルブ13を介して仕込み室11へ戻される。そして、ゲートバルブ13が閉止され、仕込み室11が大気に開放された後、成膜済みの基板Sを支持した基板ホルダ20が仕込み室11から外部へ取り出される。
 以上のように本実施形態によれば、支持面21aへの基板Sの良好な密着状態が確保されるため、成膜時の入熱による基板Sの熱ダメージを防止して、適正な成膜処理を行うことができる。また、多くのスパッタカソードを必要とすることなく、基板S上に比較的厚い金属膜を形成することができる。さらに、基板に耐熱性を要求されないため、基板材料の自由度を高めることができる。
[実験例]
 本発明者らは、図1に示した成膜装置100を用いて基板上にMo-Al積層膜を形成し、作成した薄膜サンプルの表面抵抗とその均一性を測定した。基板には、厚み50μmのPETフィルムを用いた。基板の形状は、300mm×300mmの正方形とした。基板ホルダ20の支持面21aを形成する円筒面の曲率半径は2285mmとした。成膜室12の圧力(成膜圧力)は0.4Pa、基板ホルダの搬送速度は0.67m/min.とした。
 また、カソードユニット120を構成する第1のターゲット部121のターゲット材料はMoNb合金とし、第2のターゲット部122のターゲット材料はAlNd合金とした。第1のターゲット部121のパワー密度は1.5W/cm2とし、第2のターゲット部122のパワー密度は8.8W/cm2とした。実験では、往路および復路において両ターゲット部121,122を用いて成膜した。薄膜サンプルの各層の厚みは、MoNb(330Å)/AlNd(3400Å)/MoNb(340Å)であった。
 実験の結果を表1に示す。比較例として、支持面が平坦な基板ホルダを用いたときの結果を併せて示す。本実験例によれば、0.22Ω/□の表面抵抗を有する薄膜サンプルが得られた。表面抵抗の面内分布は7.9%であった。これにより、基板に金属膜を適正に成膜できたことが確認できる。これに対して比較例では、支持面への基板の密着不良が原因で基板の破損(焼損)が生じ、成膜が不可能であった。
Figure JPOXMLDOC01-appb-T000001
<第2の実施形態>
 図6は、本発明の他の実施形態に係る基板ホルダの概略側面図である。なお、図において上述の第1の実施形態と対応する部分については同一の符号を付し、その詳細な説明は省略する。
 本実施形態の基板ホルダ30は、ホルダ本体21と、密着機構32とを有する。本実施形態の密着機構32は、一対のローラ部材321と、各ローラ部材321をその軸まわりに回転可能に支持する支持軸322とを有する。ローラ部材321は、ホルダ本体21の支持面21a上に配置された基板Sの周方向に関する各端部にそれぞれ巻き付けられる。支持軸322は、ホルダ本体21の裏面に固定された台座323に取り付けられる。なお図示せずとも、支持軸322にはローラ部材321の回転を禁止するストッパが取り付けられている。
 また、ローラ部材321周辺の基材Sは、支持面21aとの密着性が低下あるいは全く密着していないため、成膜時の入熱により熱ダメージを受けるおそれがある。そこで、本実施形態では台座323に遮熱部材33をそれぞれ設置し、ローラ部材321周辺に位置する基材Sを熱ダメージから保護するようにしている。
 本実施形態においては、各ローラ部材321のうち少なくとも一方を回転させることによって、基材Sに対して周方向に沿った所定の張力が付与される。これにより、上述の第1の実施形態と同様の作用効果を得ることができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、本発明の技術的思想に基づいて種々の変形が可能である。
 例えば以上の第1の実施形態では、密着機構として基板Sの両端部にバネ部材223およびその弾性力の調整ユニットを設置したが、これに限られず、基板Sの少なくとも一方の端部側にのみバネ部材223および調整ユニットを設置してもよい。上述の第2の実施形態においても同様である。
 また、以上の各実施形態では、ホルダ本体21の支持面21aを部分円筒面で形成したが、これに限られず、非球面、双曲面等の他の曲面形状であってもよい。
 一方、ホルダ本体の支持面上に配置した基板に所定の張力を付与する方法として、バイメタルを用いることができる。バイメタルは、熱膨張率の異なる2枚の金属板を貼り合わせて構成された機能材料であり、温度の変化によって曲がり方(曲率)が変化するという性質を有する。このような材料をホルダ本体の支持面に適用することで、成膜時の入熱によって基板Sに適度な応力を付与することができる。これにより、基板と支持面との間の良好な密着性を維持することができる。
 さらに、基板ホルダの支持面に基板を固定する方法は上記の例に限られず、例えばクランプや永久磁石等を用いた基材の挟持構造のほか、粘着テープを用いた接着等が適用可能である。図7に、ホルダ本体21の周囲に永久磁石41,42を貼り付けて基板Sを支持面21aに密着させる基板ホルダ40を概略的に示す。この場合、基板Sにあらかじめ張力を印加した状態で永久磁石41,42によって固定することができる。
 そして以上の実施形態では、成膜装置としてスパッタ装置を例に挙げて説明したが、これに限られず、真空蒸着装置、CVD装置、イオンプレーティング装置等の他の成膜装置にも本発明は適用可能である。この場合、成膜源には、蒸発源やシャワープレート(プラズマ発生電極)等が該当する。また、本実施形態では、図1に示すように仕込み室と成膜室を有する成膜装置を説明したが、成膜室のみで構成されるバッチ式装置にも適用可能である。さらに、本基板ホルダは、成膜装置の他、減圧中でフィルム等から加熱脱ガスを行う、脱ガス工程及び脱ガス装置にも適用可能である。
 12…成膜室
 20、30、40…基板ホルダ
 21…ホルダ本体
 21a…支持面(冷却面)
 22、32…密着機構
 100…成膜装置
 120…カソードユニット
 121、122…ターゲット部
 S…基板

Claims (14)

  1.  成膜源に対向して配置され、フィルム状の基板を支持するための基板ホルダであって、
     軸心に平行な軸方向と前記軸心のまわりの周方向とを有する筒体の部分周面で形成された支持面を有し、前記支持面に前記基板を支持した状態で前記成膜源に対向配置されるホルダ本体と、
     前記ホルダ本体に設置され、前記支持面への前記基板の密着状態を維持する密着機構と
     を具備する基板ホルダ。
  2.  請求項1に記載の基板ホルダであって、
     前記支持面は、前記基板を冷却するための冷却面を形成する基板ホルダ。
  3.  請求項2に記載の基板ホルダであって、
     前記密着機構は、前記基板に前記周方向に沿った張力を発生させることが可能な張力発生部を含む基板ホルダ。
  4.  請求項3に記載の基板ホルダであって、
     前記張力発生部は、
     前記周方向に関する前記基板の各端部を各々固定可能な第1および第2の固定具と、
     前記第1および第2の固定具の少なくとも一方に取り付けられ、前記基板に前記張力を印加する弾性部材とを有する基板ホルダ。
  5.  請求項3に記載の基板ホルダであって、
     前記張力発生部は、
     前記周方向に関する前記基板の各端部に巻き付けられることが可能な第1および第2のローラ部材と、
     前記第1および第2のローラ部材を回転可能に支持する支持軸とを有する基板ホルダ。
  6.  請求項1に記載の基板ホルダであって、
     前記支持面は、脱ガス用の通気路を有する基板ホルダ。
  7.  請求項6に記載の基板ホルダであって、
     前記ホルダ本体は、多孔質材料で形成される基板ホルダ。
  8.  請求項3に記載の基板ホルダであって、
     前記張力発生部は、入熱により前記支持面を湾曲させることが可能なバイメタルである基板ホルダ。
  9.  成膜室と、
     前記成膜室に配置された成膜源と、
     軸心に平行な軸方向と前記軸心のまわりの周方向とを有する筒体の部分周面で形成された支持面を有し、前記支持面にフィルム状の基板を支持した状態で前記成膜源に対向配置されるホルダ本体と、前記ホルダ本体に設置され前記支持面への前記基板の密着状態を維持する密着機構とを有する基板ホルダと
     を具備する成膜装置。
  10.  請求項9に記載の成膜装置であって、
     前記成膜源と対向する位置を横切るように前記基板ホルダを前記成膜室において搬送する搬送機構をさらに具備する成膜装置。
  11.  請求項10に記載の成膜装置であって、
     前記搬送機構は、前記基板ホルダを前記軸方向と直交する方向へ直線的に搬送する成膜装置。
  12.  請求項10に記載の成膜装置であって、
     前記成膜源は、前記基板ホルダの搬送方向に沿って複数配置されている成膜装置。
  13.  請求項9に記載の成膜装置であって、
     前記成膜源は、スパッタリングカソードである成膜装置。
  14.  軸心に平行な軸方向と前記軸心のまわりの周方向とを有する筒体の部分周面で形成された支持面にフィルム状の基板を配置し、
     前記基板に前記周方向に沿った張力を発生させることで、前記基板を前記支持面に密着させ、
     前記支持面に対向する成膜源によって前記基板に成膜する
     成膜方法。
PCT/JP2011/003441 2010-06-23 2011-06-16 基板ホルダ、成膜装置および成膜方法 WO2011161912A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521303A JP5651693B2 (ja) 2010-06-23 2011-06-16 基板ホルダ及び成膜装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010142328 2010-06-23
JP2010-142328 2010-06-23

Publications (1)

Publication Number Publication Date
WO2011161912A1 true WO2011161912A1 (ja) 2011-12-29

Family

ID=45371119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003441 WO2011161912A1 (ja) 2010-06-23 2011-06-16 基板ホルダ、成膜装置および成膜方法

Country Status (3)

Country Link
JP (1) JP5651693B2 (ja)
TW (1) TW201218311A (ja)
WO (1) WO2011161912A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218388A (ja) * 2014-05-21 2015-12-07 株式会社システム技研 成膜用マスクホルダユニット
KR20150137634A (ko) * 2014-05-30 2015-12-09 주식회사 선익시스템 기판 지그
JP2015229796A (ja) * 2014-06-06 2015-12-21 キヤノントッキ株式会社 成膜装置
JP2020537827A (ja) * 2017-10-19 2020-12-24 エヴァテック・アーゲー 基板を処理するための方法及び装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728401B1 (ko) * 2015-08-19 2017-04-19 (주)에스엔텍 공정 온도 조절이 가능한 증착 방법
WO2017030315A1 (ko) * 2015-08-19 2017-02-23 (주) 에스엔텍 증착 장치용 샘플 거치대 및 그 샘플 거치대를 갖는 증착 장치
KR101822128B1 (ko) * 2015-08-19 2018-01-25 (주)에스엔텍 증착 장치용 샘플 거치대 및 그 샘플 거치대를 갖는 증착 장치
KR101778592B1 (ko) * 2016-02-04 2017-09-26 (주)에스엔텍 무게추를 갖는 이너 쉴드가 구비된 증착 챔버 장치
KR101822125B1 (ko) * 2016-05-18 2018-01-25 (주)에스엔텍 증착 챔버 외부로 배출될 수 있는 무게추를 갖는 증착 챔버 장치
KR101800197B1 (ko) * 2016-05-18 2017-11-22 (주)에스엔텍 증착 챔버 외부로 배출될 수 있는 이너 쉴드와 무게추를 갖는 증착 챔버 장치
KR101822122B1 (ko) * 2017-01-18 2018-01-25 (주)에스엔텍 공정 온도 조절이 가능한 증착 방법
KR101822124B1 (ko) * 2017-01-18 2018-01-25 (주)에스엔텍 공정 온도 조절이 가능한 증착 방법
KR102007910B1 (ko) * 2017-01-18 2019-08-06 (주)에스엔텍 샘플 거치대 상에 필름을 밀착시킬 수 있는 증착 챔버 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192431A (ja) * 1984-10-11 1986-05-10 Teijin Ltd 磁気記録媒体の製造法
JPH03121038U (ja) * 1990-03-23 1991-12-11

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342037Y2 (ja) * 1985-02-04 1991-09-03
JPS61211832A (ja) * 1985-03-18 1986-09-19 Hitachi Ltd 磁気記録媒体の製造装置
JP3121038U (ja) * 2006-01-23 2006-04-27 大亜真空株式会社 フィルムホルダ
JP2009138230A (ja) * 2007-12-06 2009-06-25 Ulvac Japan Ltd スパッタ装置及び成膜方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192431A (ja) * 1984-10-11 1986-05-10 Teijin Ltd 磁気記録媒体の製造法
JPH03121038U (ja) * 1990-03-23 1991-12-11

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218388A (ja) * 2014-05-21 2015-12-07 株式会社システム技研 成膜用マスクホルダユニット
KR20150137634A (ko) * 2014-05-30 2015-12-09 주식회사 선익시스템 기판 지그
KR102219348B1 (ko) * 2014-05-30 2021-02-24 주식회사 선익시스템 기판 지그
JP2015229796A (ja) * 2014-06-06 2015-12-21 キヤノントッキ株式会社 成膜装置
JP2020537827A (ja) * 2017-10-19 2020-12-24 エヴァテック・アーゲー 基板を処理するための方法及び装置
JP7050912B2 (ja) 2017-10-19 2022-04-08 エヴァテック・アーゲー 基板を処理するための方法及び装置

Also Published As

Publication number Publication date
TW201218311A (en) 2012-05-01
JPWO2011161912A1 (ja) 2013-08-19
JP5651693B2 (ja) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5651693B2 (ja) 基板ホルダ及び成膜装置
JP5230185B2 (ja) 反応性スパッタリング装置および反応性スパッタリングの方法
TWI630679B (zh) 用以於一真空腔室中之一基板載體之傳送的設備、用以一基板之真空處理之系統、及用以於一真空腔室中之一基板載體之傳送的方法
TWI676694B (zh) 用以沈積一或多層之處理系統及用於其之方法
JP5192492B2 (ja) 真空処理装置、当該真空処理装置を用いた画像表示装置の製造方法及び当該真空処理装置により製造される電子装置
TWI688141B (zh) 用於一基板載體及一遮罩載體之定位配置、用於一基板載體及一遮罩載體之傳送系統、應用其之真空處理系統、及用於其之方法
JP2020123726A (ja) 基板を真空処理するための装置、基板を真空処理するためのシステム、及び、真空チャンバ内で基板キャリアとマスクキャリアを搬送するための方法
JP2020523480A (ja) フレキシブル基板をコーティングするための堆積装置、及びフレキシブル基板をコーティングする方法
JP5930791B2 (ja) 真空成膜方法、及び該方法によって得られる積層体
TWI728283B (zh) 沉積設備、塗佈軟質基材的方法、及具有塗層的軟質基材
JP6416261B2 (ja) 基板処理装置及び基板処理方法
WO2019101319A1 (en) Substrate carrier for supporting a substrate, mask chucking apparatus, vacuum processing system, and method of operating a substrate carrier
KR102006174B1 (ko) 성막 장치
EP2607516A2 (en) Apparatus for forming gas blocking layer and method thereof
JP2014118607A (ja) 長尺樹脂フィルムの冷却装置と冷却方法および長尺樹脂フィルムの表面処理装置
JP4601387B2 (ja) 圧力勾配型イオンプレーティング式成膜装置
TW202003885A (zh) 用於一基板之真空處理的方法、製造一裝置之方法、用於一基板之真空處理的設備、及在一真空處理設備中處理一基板中的一脈衝雷射沉積源之使用
JP6447459B2 (ja) 成膜方法及びその装置並びに成膜体製造装置
JP2009263773A (ja) 両面蒸着フィルムの製造方法および両面蒸着フィルム
CN108018535B (zh) 一种对置靶座磁控溅射装置
JP2010132992A (ja) シートプラズマ成膜装置
WO2020057738A1 (en) Mask handling module for an in-line substrate processing system and method for mask transfer
JP2017101277A (ja) ウェブ状成膜対象物の回転保持体及びこれを用いた成膜体製造方法並びにその装置
TWI713937B (zh) 用以塗佈撓性基板的沉積設備、塗佈撓性基板之方法及具有塗佈之撓性基板
JP2017115215A (ja) 有機el表示装置の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521303

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797801

Country of ref document: EP

Kind code of ref document: A1