WO2011158853A1 - ハイブリッド駆動装置 - Google Patents

ハイブリッド駆動装置 Download PDF

Info

Publication number
WO2011158853A1
WO2011158853A1 PCT/JP2011/063651 JP2011063651W WO2011158853A1 WO 2011158853 A1 WO2011158853 A1 WO 2011158853A1 JP 2011063651 W JP2011063651 W JP 2011063651W WO 2011158853 A1 WO2011158853 A1 WO 2011158853A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
torque correction
internal combustion
combustion engine
electrical machine
Prior art date
Application number
PCT/JP2011/063651
Other languages
English (en)
French (fr)
Inventor
貝吹雅一
松原亨
Original Assignee
アイシン・エィ・ダブリュ株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社, トヨタ自動車株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201180019094.1A priority Critical patent/CN102844219B/zh
Priority to US13/583,165 priority patent/US8744657B2/en
Priority to DE112011100791.4T priority patent/DE112011100791B4/de
Publication of WO2011158853A1 publication Critical patent/WO2011158853A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention has a rotating electrical machine, an input member that is drivingly connected to the internal combustion engine and the rotating electrical machine, an output member that is drivingly connected to the wheels, and a plurality of shift speeds that can be switched.
  • the present invention relates to a hybrid drive device that includes a transmission that changes speed at a gear ratio and transmits it to an output member, and a controller that controls at least the operation of the rotating electrical machine.
  • the vehicle can be driven by at least switching between a motor operation mode in which the vehicle is driven by the torque of the rotating electrical machine and a torque conversion operation mode in which the vehicle is driven while using the torque of the internal combustion engine.
  • a motor operation mode in which the vehicle is driven by the torque of the rotating electrical machine
  • a torque conversion operation mode in which the vehicle is driven while using the torque of the internal combustion engine.
  • the internal combustion engine since the internal combustion engine is ignited in an excessive air state in comparison with the steady state at the first explosion, it outputs a large torque and tries to blow up rapidly. That is, the internal combustion engine generates a large initial explosion torque when it is started. Due to the influence of this initial explosion torque, torque fluctuations are transmitted to the output member via the input member and thus the transmission, and there is a possibility of shocking the driver of the vehicle. Therefore, in the hybrid drive device described in Patent Document 1 below, the output torque of the rotating electrical machine is corrected by the control device so as to cancel the torque fluctuation of the output member accompanying the initial explosion of the internal combustion engine. This reduces the shock associated with the first explosion of the internal combustion engine.
  • the magnitude of the initial explosion torque of the internal combustion engine is not constant, and has a certain range of variation at each starting time. Such variations in initial explosion torque are rarely a problem during normal operation, but when the initial explosion of the internal combustion engine and the speed change operation of the transmission overlap, the following problems occur. Arise. That is, when the magnitude of the initial explosion torque is large or small compared to the expected magnitude, the speed change operation proceeds rapidly in relation to the direction of the rotational speed change of the input member during the speed change operation. There is a possibility that a shift shock may occur during the shift operation.
  • Patent Document 2 discloses that when an internal combustion engine start request and a shift request are made substantially simultaneously, the internal combustion engine start control and the shift control are not executed simultaneously, but are performed in a predetermined manner. It is described that control is performed so as to execute in order. That is, in such a case, the control device basically executes the shift control preferentially, and then executes the internal combustion engine start control. However, when the required driving force of the vehicle changes, the control device preferentially executes the internal combustion engine start control and completes the start of the internal combustion engine earlier than normal in the internal combustion engine start control. Shift control is executed. By performing such control, it is possible to appropriately respond to the required driving force change while suppressing the occurrence of shift shock.
  • the hybrid drive device described in Patent Document 2 sequentially executes the internal combustion engine start control and the shift control in a predetermined order. Therefore, the responsiveness until both the internal combustion engine start control and the shift control are completed is not necessarily good.
  • a rotating electrical machine, an internal combustion engine, an input member that is drivingly connected to the rotating electrical machine, an output member that is drivingly connected to a wheel, and a plurality of shift stages are switchable, and the input member is rotated.
  • a characteristic configuration of a hybrid drive device including a transmission that changes the speed at a gear ratio of each gear and transmits the transmission to the output member, and a control device that controls at least the operation of the rotating electrical machine.
  • a first torque correction unit that corrects an output torque of the rotating electrical machine so as to cancel a torque fluctuation of the input member due to the first explosion of the internal combustion engine, and an initial explosion of the internal combustion engine during a shift operation of the transmission.
  • a second torque that, when generated, changes the torque correction amount in a direction that suppresses a change in rotational speed of the input member that causes the shift operation to proceed with respect to the torque correction amount by the first torque correction unit.
  • it comprises a Tadashibu, the.
  • “during a speed change operation” refers to a period during which the rotational speed of the input member changes as the speed change operation in the transmission proceeds. More specifically, a period in which the actual rotation speed of the input member is greater than the estimated rotation speed before the shift of the input member derived based on the rotation speed of the output member and less than the estimated rotation speed after the shift.
  • the “speed ratio” refers to a ratio at which the rotation speed of the input member is converted when rotation is transmitted from the input member to the output member via the transmission. Therefore, the “speed ratio” matches a value obtained by dividing the rotational speed of the input member at the gear stage by the rotational speed of the output member.
  • Drive coupling refers to a state in which two rotating elements are coupled so as to be able to transmit a driving force, and the two rotating elements are coupled so as to rotate integrally, or the two rotating elements. Is used as a concept including a state in which a driving force can be transmitted through one or more transmission members. Examples of such a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like. Further, the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary.
  • the torque fluctuation of the input member due to the first explosion of the internal combustion engine, and consequently the torque fluctuation of the output member via the transmission is suppressed by correcting the output torque of the rotating electrical machine by the first torque correction unit. be able to. Therefore, the shock accompanying the first explosion of the internal combustion engine can be reduced.
  • the second torque correction unit when correcting the output torque of the rotating electrical machine at the time of the first explosion of the internal combustion engine, if the first explosion of the internal combustion engine occurs during the shifting operation, the second torque correction unit performs the first torque correction.
  • the torque correction amount is changed based on the torque correction amount by the unit.
  • the change in the torque correction amount by the second torque correction unit acts to suppress a change in the rotational speed of the input member that causes the shift operation to proceed.
  • the second torque correction unit is configured to change the torque correction amount in a direction corresponding to a shift speed switching direction in the transmission.
  • the direction of the rotational speed change of the input member that causes the speed change operation to proceed during the speed change operation differs depending on the shift speed switching direction of the transmission. According to this configuration, it is possible to appropriately change the torque correction amount in a direction that suppresses a change in the rotational speed of the input member that causes the shift operation to proceed according to the shift direction of the shift stage in the transmission.
  • the second torque correction unit is configured to change the output torque of the rotating electrical machine to the first torque correction unit when the gear stage in the transmission is switched to a gear stage having a larger gear ratio before and after switching.
  • the torque correction amount is changed so as to change in a negative direction with respect to the corrected output torque, and when the gear position in the transmission is switched to a gear ratio with a smaller gear ratio before and after switching, the rotation It is preferable that the torque correction amount be changed so that the output torque of the electric machine is changed in the positive direction with respect to the output torque corrected by the first torque correction unit.
  • the second torque correction unit a differential rotation speed between the estimated rotation speed after the shift of the input member derived based on the rotation speed of the output member and the actual rotation speed of the input member,
  • the torque correction when the initial explosion of the internal combustion engine occurs at the end of the shift when the predicted remaining shift time derived based on the actual rotational speed change rate of the input member is equal to or less than a predetermined synchronization determination threshold value It is preferable that the amount is changed.
  • the second torque correction unit has a predetermined rotational speed between an estimated rotational speed after shifting of the input member derived based on a rotational speed of the output member and an actual rotational speed of the input member. It is preferable that the torque correction amount is changed when the first explosion of the internal combustion engine occurs at the end of the shift that is equal to or less than the synchronization determination threshold value.
  • the end of the shift is determined based on a predetermined differential rotational speed, and the torque correction amount is changed when the end of the shift overlaps with the occurrence of the first explosion of the internal combustion engine. Even if it exists, generation
  • each configuration described so far includes a first rotating electrical machine, a second rotating electrical machine as the rotating electrical machine, a drive input member that is drivingly connected to the internal combustion engine, a differential gear device,
  • the differential gear device has three rotating elements that become a first rotating element, a second rotating element, and a third rotating element in order of rotational speed, and the first rotating element of the differential gear device includes
  • a hybrid drive device wherein the first rotating electrical machine is drivingly connected, the driving input member is drivingly connected to a second rotating element, and the input member and the second rotating electrical machine are drivingly connected to a third rotating element. Can be applied.
  • a so-called two-motor split type hybrid drive device can be appropriately realized.
  • the two-motor split type hybrid drive device it is possible to achieve both suppression of shock generation and good responsiveness until both the internal combustion engine start control and the shift control are completed.
  • a hybrid drive apparatus comprising a drive input member that is drive-coupled to the internal combustion engine, wherein the drive input member and the input member are selectively drive-coupled integrally or via a friction engagement device. It can also be applied to.
  • a so-called single-motor parallel type hybrid drive device can be appropriately realized.
  • the 1-motor parallel type hybrid drive device it is possible to achieve both suppression of shock generation and good responsiveness until both the internal combustion engine start control and the shift control are completed.
  • FIG. 1 is a schematic diagram illustrating a system configuration of a hybrid drive device according to a first embodiment. It is a figure which shows an example of the control map with which the hybrid drive device which concerns on 1st embodiment is equipped. It is a timing chart which shows an example of the operation state of each part by the first explosion torque correction control concerning a first embodiment. It is a timing chart which shows another example of the operation state of each part by the first explosion torque correction control concerning a first embodiment. It is a flowchart which shows the process sequence of initial explosion torque correction control which concerns on 1st embodiment. It is a skeleton figure of the hybrid drive device concerning a second embodiment.
  • Timing chart which shows an example of the operation state of each part by the first explosion torque correction control concerning a 2nd embodiment. It is a timing chart which shows another example of the operation state of each part by the first explosion torque correction control concerning a 2nd embodiment. It is a timing chart which shows the conventional initial explosion torque correction control.
  • FIG. 1 is a skeleton diagram showing the configuration of the hybrid drive apparatus H according to the present embodiment.
  • the hybrid drive device H is a drive device for a hybrid vehicle that uses one or both of the internal combustion engine E and the rotating electrical machines MG1 and MG2 as a drive force source of the vehicle.
  • the hybrid drive device H is configured as a so-called two-motor split type hybrid drive device.
  • the hybrid drive device H includes a second rotary electric machine MG2, a transmission input shaft M that is drivingly connected to the internal combustion engine E and the second rotary electric machine MG2, and wheels W.
  • An output shaft O that is drive-coupled to the transmission shaft, a transmission device TM that is capable of switching a plurality of shift speeds, and that changes the rotational speed of the shift input shaft M at a gear ratio of each shift speed and transmits it to the output shaft O
  • a control system for controlling the operation of at least the second rotating electrical machine MG2.
  • the hybrid drive device H corrects the output torque of the second rotating electrical machine MG2 so as to cancel the torque fluctuation of the transmission input shaft M accompanying the initial explosion of the internal combustion engine E.
  • the shift operation is performed with respect to the torque correction amount T ⁇ (see FIG. 4 and the like) by the first torque correction unit 33.
  • a second torque correction unit 34 that changes the torque correction amount in a direction that suppresses the rotational speed change of the speed change input shaft M to be advanced.
  • the hybrid drive device H includes an input shaft I drivingly connected to the internal combustion engine E, an output shaft O drivingly connected to the wheels W, a first rotating electrical machine MG1, a second rotating electrical machine MG2, and a differential gear device DG. And the transmission TM.
  • Each of these components is housed in a drive device case (not shown) fixed to the vehicle body.
  • the input shaft I is drivingly connected to the internal combustion engine E.
  • the internal combustion engine E is a device that extracts power by being driven by combustion of fuel inside the engine.
  • various known engines such as a gasoline engine and a diesel engine can be used.
  • the input shaft I is drivingly connected so as to rotate integrally with an output rotation shaft such as a crankshaft of the internal combustion engine E.
  • the input shaft I is also preferably configured to be connected to the output rotation shaft of the internal combustion engine E via another member such as a damper or a clutch.
  • the input shaft I corresponds to the “drive input member” in the present invention.
  • the first rotating electrical machine MG1 includes a first stator St1 fixed to the drive device case, and a first rotor Ro1 that is rotatably supported on the radially inner side of the first stator St1.
  • the first rotor Ro1 of the first rotating electrical machine MG1 is drivingly connected so as to rotate integrally with the sun gear S of the differential gear device DG.
  • the second rotating electrical machine MG2 includes a second stator St2 fixed to the drive device case, and a second rotor Ro2 that is rotatably supported on the radially inner side of the second stator St2.
  • the second rotor Ro2 of the second rotating electrical machine MG2 is drivingly connected so as to rotate integrally with the ring gear R and the transmission input shaft M of the differential gear device DG.
  • the first rotating electrical machine MG1 and the second rotating electrical machine MG2 are electrically connected to a battery 11 as a power storage device via a first inverter 12 and a second inverter 13, respectively.
  • the battery 11 is an example of a power storage device, and other power storage devices such as capacitors may be used, or a plurality of types of power storage devices may be used in combination.
  • Each of the first rotating electrical machine MG1 and the second rotating electrical machine MG2 functions as a motor (electric motor) that generates power by receiving power supply, and a generator (generator) that generates power by receiving power supply. It is possible to fulfill the function.
  • the first rotating electrical machine MG1 and the second rotating electrical machine MG2 function as generators
  • the first rotating electrical machine MG1 and the second rotating electrical machine MG2 generate power by the torque of the internal combustion engine E and the inertial force of the vehicle, and charge the battery 11 or function as a motor. Electric power for driving the other rotating electrical machines MG1, MG2 is supplied.
  • the battery 11 is charged or supplied with electric power generated by the other rotating electrical machines MG1 and MG2 functioning as generators.
  • the operation control of the first rotating electrical machine MG1 is performed via the first rotating electrical machine control unit 22 and the first inverter 12 in accordance with a control command from the main control unit 30, and the second rotating electrical machine MG2 is controlled.
  • the operation control is performed via the second rotating electrical machine control unit 23 and the second inverter 13 in accordance with a control command from the main control unit 30.
  • the differential gear device DG is constituted by a single pinion type planetary gear mechanism arranged coaxially with the input shaft I. That is, the differential gear device DG includes, as rotating elements, a carrier CA that supports a plurality of pinion gears, and a sun gear S and a ring gear R that mesh with the pinion gears.
  • the sun gear S is drivingly coupled so as to rotate integrally with the first rotor Ro1 of the first rotating electrical machine MG1.
  • the carrier CA is drivingly connected so as to rotate integrally with the input shaft I.
  • the ring gear R is an output rotation element of the differential gear device DG, and is drivingly connected so as to rotate integrally with the transmission input shaft M and the second rotor Ro2 of the second rotating electrical machine MG2.
  • a transmission input shaft M that rotates integrally with the ring gear R is an input shaft of the transmission apparatus TM.
  • the transmission input shaft M is disposed coaxially with the input shaft I.
  • the differential gear device DG functions as a power distribution device that distributes the torque of the internal combustion engine E input via the input shaft I to the first rotary electric machine MG1 and the transmission input shaft M. Further, the rotation of the input shaft I is controlled by controlling the rotational speed and torque of the first rotating electrical machine MG1 in a state where the torque of the input shaft I (internal combustion engine E) is inputted to the carrier CA of the differential gear device DG. The speed can be changed steplessly and transmitted to the ring gear R and the shift input shaft M. Therefore, the input step I, the differential gear device DG, and the first rotating electrical machine MG1 cooperate to constitute an electric continuously variable transmission mechanism.
  • the transmission input shaft M corresponds to the “input member” in the present invention.
  • the transmission input shaft M is drivingly connected to the transmission TM.
  • the transmission TM is a device that changes the rotational speed of the transmission input shaft M at a predetermined transmission ratio and transmits it to the output shaft O on the wheel W side.
  • the transmission TM according to the present embodiment is a stepped automatic transmission having a plurality of shift stages that can be switched.
  • the transmission apparatus TM includes four shift speeds (first speed, second speed, third speed, and fourth speed) with different speed ratios (see FIG. 3).
  • the “transmission ratio” is a ratio at which the rotational speed of the transmission input shaft M is converted when the rotation is transmitted from the transmission input shaft M to the output shaft O via the transmission TM.
  • the “transmission ratio” represents the “reduction ratio” when the rotational speed of the transmission input shaft M is higher than the rotational speed of the output shaft O, and the rotational speed of the transmission input shaft M is greater than the rotational speed of the output shaft O. If it is smaller, “speed increase ratio” is indicated.
  • the output shaft O corresponds to the “output member” in the present invention.
  • the transmission apparatus TM includes a gear mechanism such as a planetary gear mechanism and a plurality of friction engagement elements such as clutches and brakes.
  • the transmission apparatus TM changes the rotational speed of the transmission input shaft M at the gear ratio of the gear stage formed at that time, and transmits it to the output shaft O.
  • the rotation transmitted from the transmission device TM to the output shaft O is transmitted to the wheels W via the output differential gear device DF.
  • the output shaft O is arranged coaxially with the input shaft I and the transmission input shaft M.
  • FIG. 2 is a schematic diagram showing a system configuration of the hybrid drive apparatus H according to the present embodiment.
  • a double solid line indicates a transmission path of driving force (where “driving force” is used synonymously with “torque”)
  • a broken line indicates a transmission path of electric power
  • a white arrow Indicates the flow of hydraulic oil.
  • solid arrows indicate various information transmission paths.
  • the hybrid drive apparatus H includes a main control unit 30 for controlling each part of the apparatus.
  • the main control unit 30 is connected to the internal combustion engine control unit 21, the first rotating electrical machine control unit 22, the second rotating electrical machine control unit 23, and the hydraulic control device 26 in a state where information can be transmitted between them. Yes.
  • the “control device” in the present invention is configured by the cooperation of the main control unit 30, the internal combustion engine control unit 21, the first rotating electrical machine control unit 22, and the second rotating electrical machine control unit 23. .
  • the internal combustion engine control unit 21 controls each part of the internal combustion engine E so that the internal combustion engine E outputs a desired rotational speed and torque.
  • the first rotating electrical machine control unit 22 controls the first inverter 12 so that the first rotating electrical machine MG1 outputs a desired rotation speed and torque.
  • the second rotating electrical machine control unit 23 controls the second inverter 13 so that the second rotating electrical machine MG2 outputs a desired rotation speed and torque.
  • the internal combustion engine control unit 21, the first rotating electrical machine control unit 22, and the second rotating electrical machine control unit 23 cooperate with each other so as to output torque corresponding to the required driving force of the vehicle, respectively, The operations of the electric machine MG1 and the second rotary electric machine MG2 are controlled.
  • the hydraulic control device 26 adjusts the hydraulic pressure supplied from an oil pump (not shown), and distributes and supplies the hydraulic pressure to a plurality of friction engagement elements provided in the transmission apparatus TM, whereby the state of each friction engagement element (complete engagement). State, released state, or partially engaged state between them). Such state control of each friction engagement element is performed based on a control command from the main control unit 30.
  • the main control unit 30 is configured to be able to acquire information from sensors or the like provided in each part of the vehicle in order to acquire information of each part of the vehicle on which the hybrid drive device H is mounted.
  • the main control unit 30 is configured to be able to acquire information from the shift input shaft rotation speed sensor Se1, the vehicle speed sensor Se2, and the accelerator opening degree detection sensor Se3.
  • the transmission input shaft rotational speed sensor Se1 is a sensor for detecting the rotational speed of the transmission input shaft M.
  • the vehicle speed sensor Se2 is a sensor for detecting the rotational speed of the output shaft O in order to detect the vehicle speed.
  • the accelerator opening detection sensor Se3 is a sensor for detecting the accelerator opening by detecting the operation amount of the accelerator pedal 16. Information indicating the detection results obtained by these sensors Se1 to Se3 is output to the main control unit 30.
  • the main control unit 30 that functions as a core member that controls the operation of each part of the hybrid drive device H includes an arithmetic processing unit such as a CPU as a core member, and can read and write data from the arithmetic processing unit. It is configured to include a configured RAM, a storage device such as a ROM configured to be able to read data from the arithmetic processing unit, and the like.
  • the functional units 31 to 36 of the main control unit 30 are configured by software (program) stored in the ROM or the like, hardware such as a separately provided arithmetic circuit, or both. Each of these functional units 31 to 36 is configured to be able to exchange information with each other.
  • the functional units 31 to 36 of the main control unit 30 will be described in detail.
  • the shift control unit 31 is a functional unit that controls a shift operation in the transmission apparatus TM.
  • the shift control unit 31 functions as a shift control unit.
  • the shift control unit 31 determines a target shift stage in the transmission apparatus TM based on the required driving force and the vehicle speed of the vehicle, and controls the operation of each friction engagement element such as a clutch and a brake according to the determined target shift stage. By doing so, control which switches the gear stage of transmission TM is performed.
  • the required driving force of the vehicle is determined based on the accelerator opening and the vehicle speed.
  • the accelerator opening is detected by an accelerator opening detection sensor Se3, and the vehicle speed is detected by a vehicle speed sensor Se2.
  • FIG. 3 shows an example of the control map 39 that defines the relationship between the required driving force, the vehicle speed, and the target shift speed.
  • a plurality of upshift lines defining an upshift schedule and a plurality of downshift lines defining a downshift schedule are set.
  • the upshift means that the gear ratio is switched to a smaller gear ratio before and after the gear shift, and the downshift is switched to a gear ratio with a larger gear ratio before and after the gear shift. Means that.
  • the operating point determined based on the required driving force and the vehicle speed of the vehicle crosses the upshift line or the downshift line, a shift request is made.
  • the shift control unit 31 executes shift control in response to a shift request. At the time of switching the gear position, the shift control unit 31 releases one of the friction engagement elements engaged before the shift, and one of the friction engagement elements released before the shift. A so-called crossover shift is performed. In such a reshuffling shift, the shifting operation proceeds through the torque phase Pt and the inertia phase Pi.
  • torque phase Pt refers to a period from the time when the friction engagement element to be engaged starts to have a transmission torque capacity to the time when the rotational speed of the transmission input shaft M starts to fluctuate.
  • the actual rotational speed Nm of the transmission input shaft M is changed to the rotational speed of the output shaft O from the time when the supply hydraulic pressure to the frictional engagement element to be engaged becomes equal to or higher than the stroke end pressure of the frictional engagement element.
  • I a period up to the point of time when the speed is greater than the pre-shift estimated rotational speed Na of the shift input shaft M (see FIG. 4 and the like).
  • the “inertia phase Pi” refers to a period during which the rotational speed of the speed change input shaft M changes as the speed change operation proceeds.
  • the actual rotational speed Nm of the speed change input shaft M moves from the pre-shift estimated rotational speed Na of the speed change input shaft M derived based on the rotational speed of the output shaft O toward the post-shift estimated rotational speed Mb. It is a period that changes.
  • the internal combustion engine start control unit 32 is a functional unit that performs start control of the internal combustion engine E in a stopped state.
  • the internal combustion engine start control unit 32 functions as internal combustion engine start control means.
  • the control map 39 shown in FIG. 3 includes an electric travel region in which the vehicle travels with the torque of the second rotating electrical machine MG2, and a split travel region in which the vehicle travels while the first rotating electrical machine MG1 generates power with the torque of the internal combustion engine E.
  • a mode switching line that defines a transition schedule between and is set.
  • On the control map 39 when the operating point determined based on the required driving force and the vehicle speed of the vehicle shifts from the electric travel region to the split travel region across the mode switching line, an internal combustion engine start request is made.
  • the internal combustion engine start control unit 32 Upon receiving this internal combustion engine start request, the internal combustion engine start control unit 32 controls the rotation speed and torque of the first rotary electric machine MG1 via the first rotary electric machine control unit 22 and also via the second rotary electric machine control unit 23. Then, the torque of the second rotary electric machine MG2 is controlled to start the internal combustion engine E.
  • the internal combustion engine start control unit 32 increases the torque of the second rotating electrical machine MG2 that is drivingly connected to the ring gear R of the differential gear device DG, and the first rotating electrical machine MG1 that is drivingly connected to the sun gear S.
  • the rotational speed of the internal combustion engine E is increased through the input shaft I drivingly connected to the carrier CA.
  • the internal combustion engine start control unit 32 starts fuel injection into the combustion chamber of the internal combustion engine E and The internal combustion engine E is started by igniting the fuel injected into the combustion chamber.
  • the internal combustion engine start control unit 32 also has a function of performing stop control of the internal combustion engine E.
  • the internal combustion engine start control unit 32 stops the internal combustion engine E by stopping the fuel supply to the internal combustion engine E.
  • the internal combustion engine E when the internal combustion engine E is stopped, the pressure in the intake pipe becomes atmospheric pressure, and a large amount of air is present in the intake pipe as compared with that during normal driving of the internal combustion engine E. Therefore, the internal combustion engine E, which is ignited in an excess air state, outputs a large torque at the start and tries to blow up rapidly.
  • the torque generated when the internal combustion engine E is started is referred to as “initial explosion torque”.
  • the initial explosion torque is generated, torque variation occurs in the transmission input shaft M, and the torque variation of the transmission input shaft M can be transmitted to the output shaft O via the transmission device TM.
  • the main control unit 30 is provided with a first torque correction unit 33.
  • the first torque correction unit 33 is a functional unit that corrects the output torque of the second rotating electrical machine MG2 so as to cancel the torque fluctuation of the transmission input shaft M accompanying the first explosion of the internal combustion engine E.
  • the first torque correction unit 33 functions as first torque correction means. As described above, since the torque fluctuation occurs in the transmission input shaft M due to the initial explosion torque generated by the first explosion of the internal combustion engine E, the first torque correction unit 33 determines the torque fluctuation of the transmission input shaft M due to this initial explosion torque. The output torque of the second rotating electrical machine MG2 is corrected so as to cancel out.
  • the second torque correction unit 34 is applied to the torque correction amount T ⁇ (see FIG. 4 and the like) by the first torque correction unit 33.
  • This is a functional unit that changes the torque correction amount in a direction that suppresses the change in the rotational speed of the speed change input shaft M that causes the speed change operation to proceed. That is, the second torque correction unit 34 sets the torque correction amount in a direction that causes a change in the rotational speed of the transmission input shaft M that slows down the speed change operation on the basis of the torque correction amount T ⁇ by the first torque correction unit 33. change.
  • the second torque correction unit 34 functions as second torque correction means.
  • the correction of the output torque of the second rotating electrical machine MG2 by the first torque correction unit 33 and the second torque correction unit 34 is collectively referred to as “initial explosion torque correction”.
  • the first torque correction unit 33 corrects the output torque of the second rotating electrical machine MG2 so as to cancel the torque fluctuation of the transmission input shaft M accompanying the first explosion of the internal combustion engine E. That is, the first torque correction unit 33 performs the second rotation so as to subtract (subtract) the torque corresponding to the torque fluctuation amount of the transmission input shaft M due to the initial explosion torque and transmit it to the transmission input shaft M.
  • the output torque of the electric machine MG2 is corrected.
  • such a torque correction amount T ⁇ is defined as a function of time. That is, the torque correction amount T ⁇ in the present embodiment is defined as an amount that changes with time.
  • the initial explosion torque correction starts at a predetermined rate for a predetermined time from the start point (T04 in FIG. 4 and T14 in FIG. 5).
  • the torque correction amount T ⁇ is defined as a value that decreases at a predetermined rate and eventually becomes zero (T05 to T06, T15 to T16).
  • Such a torque correction amount T ⁇ is acquired as an empirical value obtained experimentally in advance, and is basically determined uniformly.
  • the relationship between the elapsed time and the torque correction amount T ⁇ is stored in the memory 38 as a map or a mathematical expression.
  • a configuration in which the torque correction amount T ⁇ is set based on various parameters relating to the operation of the internal combustion engine E such as the cooling water temperature is also suitable.
  • the relationship between the torque correction amount T ⁇ and each operation parameter in various states is experimentally obtained and mapped and stored in the memory 38, and the torque correction amount T ⁇ is determined based on the detected operation parameter and map. It can be set as the structure to derive.
  • the first torque correction unit 33 determines a time point (T04, T14) after a predetermined time has elapsed after the fuel injection and ignition to the internal combustion engine E by the internal combustion engine start control unit 32 are started.
  • the initial explosion torque is corrected as the starting point.
  • the magnitude of the initial explosion torque can also vary in a certain range. Therefore, even if the first torque correction unit 33 corrects the output torque of the second rotating electrical machine MG2 so as to cancel the torque fluctuation of the speed change input shaft M due to the initial explosion torque as described above, the torque correction amount T ⁇ is uniform.
  • the initial explosion torque that can vary within a certain range cannot be completely canceled out. For example, when the initial explosion torque is larger than expected, the remainder of the initial explosion torque that could not be absorbed by the predetermined torque correction amount T ⁇ acts to increase the rotational speed of the transmission input shaft M. To do.
  • the surplus of the torque correction amount T ⁇ after the initial explosion torque is canceled by the predetermined torque correction amount T ⁇ is the rotational speed of the transmission input shaft M. Acts to reduce.
  • Such a change in the rotational speed of the speed change input shaft M based on the variation in the magnitude of the initial explosion torque is a case where the internal combustion engine start request is made in a state where no speed change request is made and the internal combustion engine start control is executed alone. Since the remainder of the initial explosion torque that was not completely canceled is only transmitted to the wheels W, there is almost no problem. However, when the internal combustion engine start request and the shift request are made almost simultaneously and the generation of the initial explosion torque and the shift operation in the transmission apparatus TM overlap, there is a possibility that a shift shock will occur during the shift operation.
  • FIG. 10 shows a time chart in the case where a larger initial explosion torque than expected during downshifting occurs.
  • the rotational speed of the speed change input shaft M during the speed change operation increases rapidly, and the torque of the speed change input shaft M and the torque of the output shaft O greatly vary.
  • the broken line indicates the operating state of each part when the initial explosion torque as expected is generated.
  • the second torque correction unit 34 provided in the main control unit 30 according to the present embodiment has a function for solving inconveniences when the generation of the initial explosion torque and the speed change operation in the transmission apparatus TM overlap. is doing.
  • the second torque correcting unit 34 advances the shifting operation with respect to the torque correction amount T ⁇ by the first torque correcting unit 33.
  • the torque correction amount is changed in a direction to suppress a change in the rotational speed of the transmission input shaft M.
  • the former is simply the basic torque correction amount T ⁇ , and the latter is simply the torque correction. This will be described as the quantity ⁇ .
  • the second torque correction unit 34 determines whether or not the gear shift operation is being performed based on whether or not the time point is in the inertia phase Pi during the shift stage switching.
  • the inertia phase Pi indicates that the actual rotation speed Nm of the transmission input shaft M is derived from the estimated rotation speed Na before the shift of the transmission input shaft M, which is derived based on the rotation speed of the output shaft O. This is a period that changes toward Mb.
  • the determination of whether or not the inertia phase Pi is in progress is made based on information acquired by the differential rotation speed acquisition unit 35.
  • the differential rotation speed acquisition unit 35 is a functional unit that acquires a differential rotation speed that is a difference in rotation speed between the actual rotation speed Nm of the transmission input shaft M and a predetermined reference rotation speed.
  • the differential rotational speed acquisition unit 35 performs the first differential rotational speed ⁇ Na between the actual rotational speed Nm of the speed change input shaft M and the estimated rotational speed Na before speed change, and the actual speed of the speed change input shaft M.
  • a second differential rotational speed ⁇ Nb between the speed Nm and the post-shift estimated rotational speed Nb is acquired.
  • the actual rotational speed Nm of the transmission input shaft M is detected and acquired by the transmission input shaft rotational speed sensor Se1, and the estimated rotational speed Na before the shift is the rotation of the output shaft O detected and acquired by the vehicle speed sensor Se2. Acquired as a multiplication value of the speed and the gear ratio of the target gear stage before the shift.
  • the post-shift estimated rotational speed Nb is acquired as a multiplication value of the rotational speed of the output shaft O detected and acquired by the vehicle speed sensor Se2 and the speed ratio of the target gear stage after the shift.
  • the second torque correction unit 34 determines the time point (T02, T12) when the first differential rotation speed ⁇ Na is greater than or equal to a predetermined value as the start point of the inertia phase Pi. In addition, the second torque correction unit 34 determines the time point (T05, T15) when the second differential rotation speed ⁇ Nb is equal to or less than a predetermined value as the end point of the inertia phase Pi. In this example, the predetermined value in these cases is set to zero (“0”). However, the present invention is not limited to this, and it is also possible to set a value such as 0 to 100 [rpm].
  • the second torque correction unit 34 determines whether or not the point of time is a predetermined “shift end stage Pe” in the inertia phase Pi.
  • the second torque correction unit 34 determines whether or not the gear shift end Pe is based on the second differential rotation speed ⁇ Nb acquired by the differential rotation speed acquisition unit 35. That is, the second torque correction unit 34 is the gear shift end Pe when the second differential rotational speed ⁇ Nb at that time is equal to or lower than a predetermined synchronization determination differential rotational speed ⁇ Ns (see FIG. 4 and the like). Is determined.
  • a value such as 300 to 1000 [rpm] can be set. 500 to 600 [rpm] is also suitable.
  • the synchronization determination differential rotation speed ⁇ Ns corresponds to the “synchronization determination threshold” in the present invention.
  • the second torque correction unit 34 uses the time point (T03, T13) when the rotational speed of the internal combustion engine E rises and reaches the ignition start rotational speed Nf as a reference, after a predetermined time, It is determined that the first explosion of E will occur.
  • the predetermined time for example, a value such as 50 to 200 [msec] can be set.
  • the second torque correction unit 34 when the time (T04, T14) after the elapse of a predetermined time with the time (T03, T13) reaching the ignition start rotational speed Nf as a reference, is the shift end Pe during the inertia phase Pi, That is, the basic torque correction amount T ⁇ is changed when the second differential rotation speed ⁇ Nb is greater than zero and equal to or less than the synchronization determination differential rotation speed ⁇ Ns.
  • the second torque correction unit 34 has a basic torque correction amount T ⁇ in a direction that suppresses a change in the rotational speed of the transmission input shaft M that causes the shift operation to proceed in accordance with the shift direction of the shift stage in the transmission apparatus TM.
  • T ⁇ a basic torque correction amount in a direction that suppresses a change in the rotational speed of the transmission input shaft M that causes the shift operation to proceed in accordance with the shift direction of the shift stage in the transmission apparatus TM.
  • the basic torque correction amount T ⁇ is changed so that the output torque of the two-rotary electric machine MG2 is changed in the negative direction.
  • the second torque correction unit 34 adds the special torque correction amount T ⁇ (T ⁇ > 0) set to a positive value to the basic torque correction amount T ⁇ , so that the basic torque correction amount T ⁇ is increased.
  • the output torque T2c ′ (indicated by a solid line in FIG. 4) of the second rotating electrical machine MG2 after correction by the second torque correcting unit 34 is the same as that of the second rotating electrical machine MG2 after correction by the first torque correcting unit 33. It becomes smaller than the output torque T2c (indicated by a broken line in FIG. 4).
  • Such a special torque correction amount T ⁇ increases at a predetermined rate with respect to the start time of the initial explosion torque correction, and then decreases at a predetermined rate and eventually becomes zero. It is specified as a value.
  • This special torque correction amount T ⁇ is also obtained as an experimental value obtained experimentally in advance, and is basically determined uniformly (hereinafter the same).
  • the rotation speed of the transmission input shaft M increases under the assumption that the vehicle speed and the rotation speed of the output shaft O are substantially constant.
  • the initial explosion torque is larger than expected, the remainder of the initial explosion torque that could not be absorbed by the basic torque correction amount T ⁇ would increase the rotational speed of the transmission input shaft M.
  • the output torque of the second rotating electrical machine MG2 is increased with the torque correction amount T ⁇ increased with respect to the basic torque correction amount T ⁇ . It is corrected.
  • the surplus of the torque correction amount T ⁇ after the initial explosion torque is canceled by the basic torque correction amount T ⁇ is the rotation of the transmission input shaft M. Acts to reduce the speed.
  • the output torque of the second rotating electrical machine MG2 is corrected with the torque correction amount T ⁇ increased with respect to the basic torque correction amount T ⁇ . .
  • the rotation speed of the speed change input shaft M is suppressed from rising as compared with the case where the correction by the second torque correction unit 34 is not performed, and the speed change operation itself at the speed end stage Pe is somewhat slowed down.
  • the second torque correction unit 34 when the gear position in the transmission apparatus TM is switched (upshifted) to a gear ratio with a smaller gear ratio before and after switching by the shift control.
  • the basic torque correction amount T ⁇ is changed so that the output torque of the second rotating electrical machine MG2 is changed in the positive direction.
  • the second torque correction unit 34 adds the special torque correction amount T ⁇ (T ⁇ ⁇ 0) set to a negative value to the basic torque correction amount T ⁇ , so that the basic torque correction amount T ⁇ is increased.
  • the output torque T2c ′ (indicated by a solid line in FIG.
  • the rotation speed of the transmission input shaft M decreases.
  • the surplus of the torque correction amount T ⁇ after the initial explosion torque is canceled by the basic torque correction amount T ⁇ is the rotational speed of the transmission input shaft M.
  • the output torque of the second rotating electrical machine MG2 is the torque correction amount T ⁇ reduced with respect to the basic torque correction amount T ⁇ . It is corrected.
  • the rotational speed of the transmission input shaft M is suppressed from being reduced as compared with the case where the second torque correction unit 34 does not perform the correction (when the first torque correction unit 33 performs only the correction). Therefore, rapid progress of the shift operation at the shift end stage Pe can be appropriately suppressed, and the occurrence of shift shock can be effectively suppressed. As in the case of the downshift, the responsiveness until both the internal combustion engine start control and the shift control are completed is very good.
  • FIG. 6 is a flowchart showing a processing procedure of initial explosion torque correction control according to the present embodiment.
  • the procedure of the initial explosion torque correction control process described below is executed by each functional unit of the main control unit 30, the internal combustion engine control unit 21, the first rotating electrical machine control unit 22, and the second rotating electrical machine control unit 23.
  • the arithmetic processing device included in each control unit operates as a computer that executes a program configuring each functional unit.
  • step # 01 it is first determined whether internal combustion engine start control is being performed (step # 01). This determination can be made based on, for example, an internal combustion engine start request. If it is determined that the internal combustion engine start control is being performed (step # 01: Yes), the first torque correction unit 33 sets a basic torque correction amount T ⁇ (step # 02). When the rotational speed of the internal combustion engine E increases by the internal combustion engine start control and eventually reaches the ignition start rotational speed Nf (step # 03: Yes), fuel injection into the combustion chamber of the internal combustion engine E is started and ignited. The internal combustion engine E is started (step # 04). In addition, time measurement is started from the time when the rotational speed of the internal combustion engine E reaches the ignition start rotational speed Nf (step # 05).
  • step # 06 when a predetermined time has elapsed since the start of time measurement (step # 06: Yes), it is determined whether or not the time point is during a speed change operation (in this example, the gear shift end Pe in the inertia phase Pi). (Step # 07).
  • step # 08 If it is determined that the shift operation is in progress (shift end period Pe) (step # 07: Yes), it is determined whether the shift is a downshift (step # 08). If it is determined that the shift is a downshift (step # 08: Yes), the second torque correction unit 34 sets a positive special torque correction amount T ⁇ (T ⁇ > 0) (step # 09). On the other hand, when it is determined that the shift is not a downshift, that is, an upshift (step # 08: No), the second torque correction unit 34 sets a negative special torque correction amount T ⁇ (T ⁇ ⁇ 0). Set (step # 10). And the 2nd torque correction part 34 correct
  • step # 07 If it is determined in step # 07 that the shift operation is not being performed (shift end period Pe), that is, if shift control is not being performed in the first place, or if the shift control is in progress but before the shift end period Pe. (Step # 07: No), the first torque correction unit 33 corrects the output torque of the second rotating electrical machine MG2 and corrects the initial explosion torque (Step # 11). At this time, the first torque correction unit 33 corrects the output torque of the second rotating electrical machine MG2 based only on the basic torque correction amount T ⁇ . This completes the initial explosion torque correction control.
  • FIG. 7 is a skeleton diagram showing the configuration of the hybrid drive apparatus H according to the present embodiment.
  • the hybrid drive device H is configured as a so-called 1-motor parallel type hybrid drive device.
  • the specific configuration of the drive transmission system is different from that of the first embodiment, and the control system configuration of the hybrid drive device is also partially different.
  • the specific contents of the initial explosion torque correction control are also partially different from those of the first embodiment.
  • the hybrid drive device H according to the present embodiment will be described focusing on differences from the first embodiment. Note that points not particularly specified are the same as those in the first embodiment.
  • the hybrid drive device H includes an input shaft I that is drive-coupled to the internal combustion engine E, an output shaft O that is drive-coupled to the wheels W, a rotating electrical machine MG, and a transmission TM. .
  • Each of these components is housed in a drive device case (not shown) fixed to the vehicle body.
  • the input shaft I is drivingly connected to the internal combustion engine E.
  • the input shaft I is drivably coupled to the transmission input shaft M via the input clutch CT.
  • the input clutch CT is provided between the internal combustion engine E and the rotating electrical machine MG so as to be able to switch between transmission and interruption of the driving force between the internal combustion engine E and the rotating electrical machine MG.
  • the input clutch CT selectively drives and connects the input shaft I and the transmission input shaft M.
  • an input clutch CT for example, a wet multi-plate clutch or a dry single-plate clutch is preferably used.
  • the input clutch CT corresponds to the “friction engagement device” according to the present invention.
  • the input shaft I corresponds to the “drive input member” in the present invention
  • the transmission input shaft M corresponds to the “input member” in the present invention.
  • the rotating electrical machine MG includes a stator St fixed to the drive device case, and a rotor Ro that is rotatably supported on the radially inner side of the stator St.
  • the rotor Ro of the rotating electrical machine MG is drivingly connected so as to rotate integrally with the transmission input shaft M.
  • the rotating electrical machine MG can perform a function as a motor (electric motor) that generates power by receiving power supply and a function (generator) that generates power by receiving power supply. Yes.
  • motor electric motor
  • generator generator
  • Electric power is generated by the torque of internal combustion engine E or the inertial force of the vehicle to charge battery 11.
  • the rotating electrical machine MG functions as a motor, it receives power supplied from the battery 11 and performs powering. Operation control of the rotating electrical machine MG is performed via a rotating electrical machine control unit (not shown) and an inverter in accordance with a control command from the main control unit 30.
  • the internal combustion engine start control unit 32 provided in the main control unit 30 according to the present embodiment controls the operation of the input clutch CT via the hydraulic control device 26 when a request for starting the internal combustion engine is made, and the rotating electrical machine control unit.
  • the internal combustion engine E is started by controlling the rotational speed and torque of the rotating electrical machine MG via More specifically, the internal combustion engine start control unit 32 engages the input clutch CT that has been released in the electric travel mode, and increases the rotational speed and torque of the rotating electrical machine MG, thereby increasing the engagement.
  • the rotational speed of the internal combustion engine E is increased via the input clutch CT in the combined state.
  • the internal combustion engine start control unit 32 starts fuel injection into the combustion chamber of the internal combustion engine E and the fuel injected into the combustion chamber. Is ignited to start the internal combustion engine E.
  • the first torque correction unit 33 is a functional unit that corrects the output torque of the rotating electrical machine MG so as to cancel the torque fluctuation of the transmission input shaft M accompanying the first explosion of the internal combustion engine E.
  • the first torque correction unit 33 corrects the output torque of the rotating electrical machine MG so as to cancel the torque fluctuation of the transmission input shaft M due to the initial explosion torque generated with the initial explosion of the internal combustion engine E. Since the determination method of the torque correction amount T ⁇ by the first torque correction unit 33 is the same as that in the first embodiment, detailed description thereof is omitted here.
  • the second torque correcting unit 34 advances the shifting operation with respect to the torque correction amount T ⁇ by the first torque correcting unit 33.
  • This is a functional unit that changes the torque correction amount in a direction that suppresses the rotational speed change of the transmission input shaft M.
  • the second torque correction unit 34 changes the torque correction amount in a direction that causes a change in the rotational speed of the transmission input shaft M that slows down the speed change operation with reference to the torque correction amount T ⁇ by the first torque correction unit 33. .
  • the second torque correction unit 34 determines whether or not the shift end period Pe based on a predetermined predicted remaining shift time ⁇ T.
  • the estimated remaining shift time ⁇ T includes the second differential rotational speed ⁇ Nb acquired by the differential rotational speed acquisition unit 35 and the actual rotational acceleration (rotational speed change) of the transmission input shaft M acquired by the rotational acceleration acquisition unit 36. Rate) Am.
  • the predicted remaining shift time ⁇ T at each time point is derived as a divided value obtained by dividing the second differential rotation speed ⁇ Nb at that time point by the rotational acceleration Am at that time point.
  • the second torque correction unit 34 determines that the predicted remaining shift time ⁇ T at that time is equal to or shorter than a predetermined synchronization determination remaining shift time ⁇ Ts (see FIG. 8 and the like). It is determined that the shift end stage Pe.
  • a synchronization determination remaining shift time ⁇ Ts a value such as 100 to 300 [msec] can be set. 150 to 200 [msec] is also suitable.
  • the synchronization determination remaining shift time ⁇ Ts corresponds to the “synchronization determination threshold” in the present invention.
  • the second torque correction unit 34 determines that the time point after the elapse of a predetermined time with respect to the time point when the ignition start rotational speed Nf is reached is the gear shift end Pe in the inertia phase Pi, that is, The basic torque correction amount T ⁇ is changed when the two-difference rotational speed ⁇ Nb is greater than zero and the predicted remaining shift time ⁇ T is equal to or shorter than the synchronization determination remaining shift time ⁇ Ts.
  • the second torque correction unit 34 changes the basic torque correction amount T ⁇ in a direction to suppress a change in the rotational speed of the transmission input shaft M that causes the shift operation to proceed in accordance with the shift speed switching direction in the transmission apparatus TM.
  • the points are the same as in the first embodiment.
  • the second torque correction unit 34 when the second torque correction unit 34 is downshifted by the shift control, the output torque of the rotating electrical machine MG is in a negative direction with respect to the output torque of the rotating electrical machine MG corrected by the first torque correcting unit 33.
  • the basic torque correction amount T ⁇ is changed so as to change to
  • the second torque correction unit 34 when the second torque correction unit 34 is upshifted by the shift control, the output torque of the rotating electrical machine MG is in the positive direction with respect to the output torque of the rotating electrical machine MG corrected by the first torque correcting unit 33.
  • the basic torque correction amount T ⁇ is changed so as to change to
  • the hybrid drive apparatus H according to the present embodiment capable of executing such initial explosion torque correction control also has an internal combustion engine start request and a shift request almost simultaneously, as in the hybrid drive apparatus H according to the first embodiment. Even if it is made, it is possible to suppress the occurrence of shock, and the responsiveness until both the internal combustion engine start control and the shift control are completed is good.
  • the hybrid drive device H is selectively used only when the generation of the initial explosion torque and the speed change operation in the speed change device TM overlap, separately from the map of the basic torque correction amount T ⁇ for normal use.
  • a map of the corrected torque correction amount T ⁇ is stored in the memory 38 and provided.
  • the corrected torque correction amount T ⁇ is a torque correction that has been changed in advance in a direction that suppresses a change in the rotational speed of the transmission input shaft M that causes the shift operation to proceed with respect to the basic torque correction amount T ⁇ by the first torque correction unit 33. Set as a quantity.
  • a corrected torque correction amount T ⁇ increases at a predetermined rate for a predetermined time from the start of initial explosion torque correction, and then decreases at a predetermined rate and eventually becomes zero.
  • This corrected torque correction amount T ⁇ is also acquired as an experimental value that is experimentally obtained in advance, as with the basic torque correction amount T ⁇ and the special torque correction amount T ⁇ , and is basically determined uniformly.
  • the calculation processing for the initial explosion torque correction control can be simplified by adopting a configuration in which the correction torque correction amount T ⁇ is also provided as a map. There is an advantage.
  • the second torque correction unit 34 determines the corrected torque correction amount T ⁇ that has been changed in advance with respect to the basic torque correction amount T ⁇ , based on the map of the corrected torque correction amount T ⁇ .
  • the case has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, if the second torque correction unit 34 changes the torque correction amount in a direction that suppresses the change in the rotational speed of the transmission input shaft M so as to advance the speed change operation, the change mode can be arbitrary.
  • the second torque correction unit 34 may be configured to change the basic torque correction amount T ⁇ by multiplying the basic torque correction amount T ⁇ by a predetermined coefficient, which is one of the preferred embodiments of the present invention. It is.
  • the basic torque correction amount T ⁇ and the special torque correction amount T ⁇ increase at a predetermined rate for a predetermined time from the start of initial explosion torque correction, and thereafter decrease at a predetermined rate.
  • it is defined as a value that eventually becomes zero has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, for example, one or both of them may be configured as a fixed value that is unrelated to the passage of time, which is one preferred embodiment of the present invention.
  • the case where the second torque correction unit 34 is configured to function when the first explosion of the internal combustion engine E occurs at the shift end stage Pe in the inertia phase Pi. Described as an example.
  • the embodiment of the present invention is not limited to this. That is, it is also possible to adopt a configuration in which the second torque correction unit 34 functions even when the time point at which the first explosion of the internal combustion engine E occurs is at least the inertia phase Pi other than the shift end period Pe. one of.
  • the second torque correction unit 34 determines whether or not the gear shift end Pe is based on the second differential rotation speed ⁇ Nb has been described as an example. Further, in the second embodiment, the case where the second torque correction unit 34 determines whether or not the shift final stage Pe is based on the predicted remaining shift time ⁇ T has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, for example, it is also a preferred embodiment of the present invention to determine whether or not the shift end stage Pe is based on both the second differential rotation speed ⁇ Nb and the predicted remaining shift time ⁇ T.
  • the two determination conditions are that the second differential rotation speed ⁇ Nb is equal to or less than the synchronization determination differential rotation speed ⁇ Ns and the predicted remaining shift time ⁇ T is equal to or less than the synchronization determination remaining shift time ⁇ Ts.
  • a configuration can be adopted in which it is determined that the shift end stage Pe is reached when both are established.
  • the second torque correction unit 34 determines that “the first explosion of the internal combustion engine E has occurred at a time after a predetermined time from when the rotational speed of the internal combustion engine E has reached the ignition start rotational speed Nf.
  • the case of determining “occurs” has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the second torque correction unit 34 sets the generation time of such initial explosion torque of the internal combustion engine E, for example, the time of fuel ignition in the internal combustion engine E, or the rotation speed of the internal combustion engine E becomes the ignition start rotation speed Nf. It is also one of the preferred embodiments of the present invention to have a configuration in which the determination is made based on the point of arrival.
  • the case where the second torque correction unit 34 changes the basic torque correction amount T ⁇ in both cases of downshifting and upshifting by shift control has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, only when the second torque correction unit 34 is downshifted by, for example, shift control, the output torque of the second rotary electric machine MG2 is corrected by the second rotary electric machine MG2 (rotary electric machine) after being corrected by the first torque correction unit 33. It is also a preferred embodiment of the present invention that the basic torque correction amount T ⁇ is changed so as to change in the negative direction with respect to the output torque of (MG).
  • the output torque of the second rotating electrical machine MG2 is converted to the second rotating electrical machine MG2 (rotating electrical machine MG) after being corrected by the first torque correcting unit 33. It is also a preferred embodiment of the present invention that the basic torque correction amount T ⁇ is changed so as to be changed in the positive direction with respect to the output torque.
  • each part of the hybrid drive device H is configured by the cooperation of the main control unit 30, the internal combustion engine control unit 21, the first rotating electrical machine control unit 22, and the second rotating electrical machine control unit 23.
  • the case where the operation is controlled has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, for example, a single control unit that controls each part including the internal combustion engine E, the rotating electrical machine MG (the first rotating electrical machine MG1, the second rotating electrical machine MG2), and the transmission TM is provided.
  • a configuration in which the operation of each unit of the hybrid drive device H is controlled is also one of the preferred embodiments of the present invention. In this case, the single control unit constitutes the “control device” in the present invention.
  • any combination of the configuration of the drive transmission system of the hybrid drive device H described in the above embodiments and the contents of the initial explosion torque correction control can be adopted as long as no contradiction occurs. It is. That is, the configuration of the drive transmission system and the initial explosion torque correction control of the hybrid drive device H described in the first embodiment, and the configuration of the drive transmission system of the hybrid drive device H described in the second embodiment. Further, the hybrid drive apparatus according to the present invention can be configured by appropriately combining the contents of the initial explosion torque correction control.
  • the two-motor split type hybrid drive device H of the first embodiment adopts a configuration in which the initial explosion torque correction control based on the map of the corrected torque correction amount T ⁇ is executed as in the second embodiment. Is possible.
  • the one-motor parallel type hybrid drive device H of the second embodiment a configuration in which the initial explosion torque correction control based on the special torque correction amount T ⁇ and a predetermined formula is executed as in the first embodiment. It is also possible to adopt. The same applies to the combination of the structure of the drive transmission system of the hybrid drive apparatus H and the method for determining the shift final stage Pe in the initial explosion torque correction control.
  • the present invention has a rotating electrical machine, an input member that is drivingly connected to the internal combustion engine and the rotating electrical machine, an output member that is drivingly connected to the wheels, and a plurality of shift speeds that can be switched.
  • the present invention can be suitably used in a hybrid drive device that includes a transmission that changes speed at a gear ratio and transmits it to an output member and a control device that controls at least the operation of the rotating electrical machine.
  • H hybrid drive device E internal combustion engine MG rotating electrical machine MG1 first rotating electrical machine MG2 second rotating electrical machine TM transmission DG differential gear device S sun gear (first rotating element) CA carrier (second rotating element) R ring gear (third rotating element) W Wheel I Input shaft (drive input member) M Shifting input shaft (input member) O Output shaft (output member) CT input clutch (friction engagement device) ⁇ Ns Synchronization determination differential rotation speed (synchronization determination threshold) ⁇ Ts Synchronization determination remaining shift time (synchronization determination threshold) Pi inertia phase Pe Shift end stage 22 First rotating electrical machine control unit (control device) 23 Second rotating electrical machine control unit (control device) 30 Main control unit (control device) 33 First torque correction unit 34 Second torque correction unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 ショックの発生を抑制することが可能であり、かつ、内燃機関始動制御及び変速制御の双方が完了するまでの応答性が良好なハイブリッド駆動装置の実現。回転電機と、内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の変速段を切替可能に有し、入力部材の回転速度を各変速段の変速比で変速して出力部材に伝達する変速装置と、少なくとも回転電機の動作制御を行う制御装置と、を備えたハイブリッド駆動装置。制御装置は、内燃機関の初爆に伴う入力部材のトルク変動を打ち消すように回転電機の出力トルクを補正する第一トルク補正部と、変速装置の変速動作中に内燃機関の初爆が発生する場合に、第一トルク補正部によるトルク補正量に対して、変速動作を進行させるような入力部材の回転速度変化を抑制する方向にトルク補正量を変更する第二トルク補正部と、を備える。

Description

ハイブリッド駆動装置
 本発明は、回転電機と、内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の変速段を切替可能に有し、入力部材の回転速度を各変速段の変速比で変速して出力部材に伝達する変速装置と、少なくとも回転電機の動作制御を行う制御装置と、を備えたハイブリッド駆動装置に関する。
 上記のようなハイブリッド駆動装置として、例えば下記の特許文献1に記載された装置が既に知られている。このハイブリッド駆動装置では、回転電機のトルクにより車両を走行させるモータ運転モードと、内燃機関のトルクを利用しながら車両を走行させるトルク変換運転モードと、を少なくとも切り替えて車両を走行させることができる。モータ運転モードからトルク変換運転モードへの切り替えに際しては、内燃機関始動制御により停止状態にある内燃機関が始動される。
 ところで、内燃機関は、初爆時には定常時との比較において空気過剰状態で着火されるため、大きなトルクを出力して急激に吹き上がろうとする。つまり、内燃機関は、その始動時に大きな初爆トルクを発生させる。この初爆トルクの影響により、入力部材ひいては変速装置を介して出力部材にトルク変動が伝達され、車両の運転者に対してショックを与える可能性がある。そこで、下記の特許文献1に記載されたハイブリッド駆動装置では、制御装置により、内燃機関の初爆に伴う出力部材のトルク変動を打ち消すように回転電機の出力トルクが補正される。これにより、内燃機関の初爆に伴うショックの軽減が図られている。
 しかし、内燃機関の初爆トルクの大きさは一定ではなく、始動時毎にある程度の幅のばらつきを有する。このような初爆トルクのばらつきは、通常時であれば問題となることはほとんどないが、内燃機関の初爆の発生と変速装置の変速動作とが重なる場合には、以下のような問題が生じる。すなわち、初爆トルクの大きさが予期された大きさと比較して大きい場合又は小さい場合に、変速動作中における入力部材の回転速度変化の方向との関係で変速動作が急速に進行して、当該変速動作中に変速ショックが発生する可能性がある。
 上記のような問題点に対して、特許文献2には、内燃機関始動要求と変速要求とがほぼ同時になされた場合には、内燃機関始動制御と変速制御とを同時に実行するのではなく所定の順序に従って実行するように制御することが記載されている。すなわち、そのような場合には、制御装置は、基本的には変速制御を優先的に実行し、その後内燃機関始動制御を実行する。但し、車両の要求駆動力が変化する場合には、制御装置は、内燃機関始動制御を優先的に実行すると共に当該内燃機関始動制御において通常時よりも早期に内燃機関の始動を完了させ、その後変速制御を実行する。このような制御を行うことで、変速ショックの発生を抑制しつつ、要求駆動力変化に適切に対応することを可能としている。
 しかし、特許文献2に記載のハイブリッド駆動装置では、いずれの場合も、あくまで内燃機関始動制御と変速制御とを所定の順序に従って順次実行する。そのため、内燃機関始動制御及び変速制御の双方が完了するまでの応答性は、必ずしも良好であるとは言えなかった。
特開2005-030281号公報 特開2009-047107号公報
 そこで、内燃機関始動要求と変速要求とがほぼ同時になされた場合にも、ショックの発生を抑制することが可能であり、かつ、内燃機関始動制御及び変速制御の双方が完了するまでの応答性が良好なハイブリッド駆動装置の実現が望まれる。
 本発明に係る、回転電機と、内燃機関及び前記回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の変速段を切替可能に有し、前記入力部材の回転速度を各変速段の変速比で変速して前記出力部材に伝達する変速装置と、少なくとも前記回転電機の動作制御を行う制御装置と、を備えたハイブリッド駆動装置の特徴構成は、前記制御装置は、前記内燃機関の初爆に伴う前記入力部材のトルク変動を打ち消すように前記回転電機の出力トルクを補正する第一トルク補正部と、前記変速装置の変速動作中に前記内燃機関の初爆が発生する場合に、前記第一トルク補正部によるトルク補正量に対して、前記変速動作を進行させるような前記入力部材の回転速度変化を抑制する方向にトルク補正量を変更する第二トルク補正部と、を備える点にある。
 なお、「変速動作中」は、変速装置における変速動作の進行に伴って入力部材の回転速度が変化する期間をいう。より具体的には、入力部材の実際の回転速度が、出力部材の回転速度に基づいて導出される入力部材の変速前の推定回転速度よりも大きく、かつ、変速後の推定回転速度未満の期間をいう。
 また、「変速比」は、変速装置を介して入力部材から出力部材に回転が伝達される際に、入力部材の回転速度が速度変換される比率をいう。従って、この「変速比」は、当該変速段における入力部材の回転速度を出力部材の回転速度で除算して得られる値に一致する。
 また、「駆動連結」は、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。
 また、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 上記の特徴構成によれば、第一トルク補正部による回転電機の出力トルクの補正により、内燃機関の初爆に伴う入力部材のトルク変動、ひいては変速装置を介した出力部材のトルク変動を抑制することができる。よって、内燃機関の初爆に伴うショックを軽減することができる。
 また、このような内燃機関の初爆時における回転電機の出力トルクの補正を行うに際して、変速動作中に内燃機関の初爆が発生する場合には、第二トルク補正部により、第一トルク補正部によるトルク補正量を基準として、トルク補正量が変更される。この第二トルク補正部によるトルク補正量の変更は、変速動作を進行させるような入力部材の回転速度変化を抑制するように作用する。そのため、初爆トルクのばらつきに起因して、仮にその大きさが予期された大きさよりも変速動作を進行させるような大きさであった場合でも、変速動作が急速に進行して当該変速動作中に変速ショックが発生するのを抑制することができる。よって、上記の特徴構成によれば、内燃機関始動制御と変速制御とを同時に並行して実行する場合であっても、内燃機関の初爆に伴うショック及び変速動作中における変速ショックの双方を有効に抑制することができる。また、このように内燃機関始動制御と変速制御とを同時に並行して実行することが可能であるので、内燃機関始動制御及び変速制御の双方が完了するまでの応答性は非常に良好である。
 なお、初爆トルクの大きさが予期された大きさよりも変速動作を緩慢化させるような大きさであった場合にも、当然にショックの発生を抑制することができる。また、この場合には、変速動作自体は多少緩慢化するが、内燃機関始動制御と変速制御とを順次実行する場合と比較して、少なくとも内燃機関始動制御及び変速制御の双方が完了するまでの応答性を向上させることができる。
 従って、上記の特徴構成によれば、内燃機関始動要求と変速要求とがほぼ同時になされた場合にも、ショックの発生を抑制することが可能であり、かつ、内燃機関始動制御及び変速制御の双方が完了するまでの応答性が良好なハイブリッド駆動装置を提供することができる。
 ここで、前記第二トルク補正部は、前記変速装置における変速段の切替方向に応じた方向に前記トルク補正量を変更する構成とすると好適である。
 変速動作中における、当該変速動作を進行させるような入力部材の回転速度変化の方向は、変速装置における変速段の切替方向に応じて異なる。
 この構成によれば、変速装置における変速段の切替方向に応じて、変速動作を進行させるような入力部材の回転速度変化を抑制する方向に、それぞれ適切にトルク補正量を変更することができる。
 また、前記第二トルク補正部は、前記変速装置における変速段が切替の前後でより大きな変速比の変速段に切り替えられる場合には、前記回転電機の出力トルクを、前記第一トルク補正部による補正後の出力トルクに対して負方向に変化させるように前記トルク補正量を変更し、前記変速装置における変速段が切替の前後でより小さな変速比の変速段に切り替えられる場合には、前記回転電機の出力トルクを、前記第一トルク補正部による補正後の出力トルクに対して正方向に変化させるように前記トルク補正量を変更する構成とすると好適である。
 変速装置における変速段が切替の前後でより大きな変速比の変速段に切り替えられる場合には、出力部材の回転速度がほぼ一定の条件の下では入力部材の回転速度は正方向に変化する。この場合、第一トルク補正部による通常のトルク補正を行ったにもかかわらず内燃機関の始動時に予期されたよりも大きな初爆トルクが発生してしまった場合には、入力部材の正方向への回転速度変化が促進されて変速動作が急速に進行する。
 上記の構成によれば、そのような場合には、第二トルク補正部により回転電機の出力トルクを、第一トルク補正部による補正後の出力トルクに対して負方向に変化させるようにトルク補正量が変更されるので、入力部材の正方向への回転速度変化を抑制して、変速動作の急速な進行を適切に抑制することができる。よって、変速ショックの発生を有効に抑制することができる。
 一方、変速装置における変速段が切替の前後でより小さな変速比の変速段に切り替えられる場合には、出力部材の回転速度がほぼ一定の条件の下では入力部材の回転速度は負方向に変化する。この場合、第一トルク補正部による通常のトルク補正を行ったにもかかわらず内燃機関の始動時に予期されたよりも小さな初爆トルクしか発生しなかった場合には、入力部材の負方向への回転速度変化が促進されて同様に変速動作が急速に進行する。
 上記の構成によれば、そのような場合には、第二トルク補正部により回転電機の出力トルクを、第一トルク補正部による補正後の出力トルクに対して正方向に変化させるようにトルク補正量が変更されるので、入力部材の負方向への回転速度変化を抑制して、変速動作の急速な進行を適切に抑制することができる。よって、変速ショックの発生を有効に抑制することができる。
 また、前記第二トルク補正部は、前記出力部材の回転速度に基づいて導出される前記入力部材の変速後の推定回転速度と前記入力部材の実際の回転速度との間の差回転速度と、前記入力部材の実際の回転速度変化率と、に基づいて導出される予測残り変速時間が、所定の同期判定閾値以下となる変速終期に前記内燃機関の初爆が発生する場合に、前記トルク補正量を変更する構成とすると好適である。
 変速動作中でも特に変速動作の終了時点付近で内燃機関の初爆が発生する場合には、初爆トルクのばらつきに起因する変速動作の急激な進行による変速ショックが発生する可能性が高い。
 この構成によれば、予測残り変速時間に基づいて変速終期を判定し、当該変速終期と内燃機関の初爆の発生とが重なる場合にトルク補正量を変更することで、そのような場合であってもショックの発生を有効に抑制することができる。
 また、前記第二トルク補正部は、前記出力部材の回転速度に基づいて導出される前記入力部材の変速後の推定回転速度と前記入力部材の実際の回転速度との間の差回転速度が所定の同期判定閾値以下となる変速終期に前記内燃機関の初爆が発生する場合に、前記トルク補正量を変更する構成とすると好適である。
 変速動作中でも特に変速動作の終了時点付近で内燃機関の初爆が発生する場合には、初爆トルクのばらつきに起因する変速動作の急速な進行による変速ショックが発生する可能性が高い。
 この構成によれば、所定の差回転速度に基づいて変速終期を判定し、当該変速終期と内燃機関の初爆の発生とが重なる場合にトルク補正量を変更することで、そのような場合であってもショックの発生を有効に抑制することができる。
 これまで説明してきた各構成は、具体的には、第一回転電機と、前記回転電機としての第二回転電機と、前記内燃機関に駆動連結される駆動入力部材と、差動歯車装置と、を備え、前記差動歯車装置は、回転速度の順に第一回転要素、第二回転要素、及び第三回転要素となる3つの回転要素を有し、前記差動歯車装置の第一回転要素に前記第一回転電機が駆動連結され、第二回転要素に前記駆動入力部材が駆動連結され、第三回転要素に前記入力部材及び前記第二回転電機が駆動連結されている構成のハイブリッド駆動装置に適用することができる。
 この構成によれば、いわゆる2モータスプリットタイプのハイブリッド駆動装置を適切に実現できる。そして、2モータスプリットタイプのハイブリッド駆動装置において、ショック発生の抑制と、内燃機関始動制御及び変速制御の双方が完了するまでの良好な応答性とを両立させることができる。
 或いは、前記内燃機関に駆動連結される駆動入力部材を備え、前記駆動入力部材と前記入力部材とが一体的に又は摩擦係合装置を介して選択的に駆動連結されている構成のハイブリッド駆動装置に適用することもできる。
 この構成によれば、いわゆる1モータパラレルタイプのハイブリッド駆動装置を適切に実現できる。そして、1モータパラレルタイプのハイブリッド駆動装置において、ショック発生の抑制と、内燃機関始動制御及び変速制御の双方が完了するまでの良好な応答性とを両立させることができる。
第一の実施形態に係るハイブリッド駆動装置のスケルトン図である。 第一の実施形態に係るハイブリッド駆動装置のシステム構成を示す模式図である。 第一の実施形態に係るハイブリッド駆動装置に備えられる制御マップの一例を示す図である。 第一の実施形態に係る初爆トルク補正制御による各部の動作状態の一例を示すタイミングチャートである。 第一の実施形態に係る初爆トルク補正制御による各部の動作状態の他の一例を示すタイミングチャートである。 第一の実施形態に係る初爆トルク補正制御の処理手順を示すフローチャートである。 第二の実施形態に係るハイブリッド駆動装置のスケルトン図である。 第二の実施形態に係る初爆トルク補正制御による各部の動作状態の一例を示すタイミングチャートである。 第二の実施形態に係る初爆トルク補正制御による各部の動作状態の他の一例を示すタイミングチャートである。 従来の初爆トルク補正制御を示すタイミングチャートである。
1.第一の実施形態
 本発明に係るハイブリッド駆動装置Hの第一の実施形態について、図面を参照して説明する。図1は、本実施形態に係るハイブリッド駆動装置Hの構成を示すスケルトン図である。ハイブリッド駆動装置Hは、車両の駆動力源として内燃機関E及び回転電機MG1,MG2の一方又は双方を用いるハイブリッド車両用の駆動装置である。このハイブリッド駆動装置Hは、いわゆる2モータスプリットタイプのハイブリッド駆動装置として構成されている。
 本実施形態に係るハイブリッド駆動装置Hは、図1及び図2に示すように、第二回転電機MG2と、内燃機関E及び第二回転電機MG2に駆動連結される変速入力軸Mと、車輪Wに駆動連結される出力軸Oと、複数の変速段を切替可能に有し、変速入力軸Mの回転速度を各変速段の変速比で変速して出力軸Oに伝達する変速装置TMと、少なくとも第二回転電機MG2の動作制御を行う制御システムと、を備えている。このような構成において、本実施形態に係るハイブリッド駆動装置Hは、内燃機関Eの初爆に伴う変速入力軸Mのトルク変動を打ち消すように第二回転電機MG2の出力トルクを補正する第一トルク補正部33と、変速装置TMの変速動作中に内燃機関Eの初爆が発生する場合に、第一トルク補正部33によるトルク補正量Tα(図4等を参照)に対して、変速動作を進行させるような変速入力軸Mの回転速度変化を抑制する方向にトルク補正量を変更する第二トルク補正部34と、を備える点に特徴を有する。これにより、内燃機関始動要求と変速要求とがほぼ同時になされた場合にも、ショックの発生を抑制することが可能であり、かつ、内燃機関始動制御及び変速制御の双方が完了するまでの応答性が良好なハイブリッド駆動装置Hが実現されている。以下、本実施形態に係るハイブリッド駆動装置Hについて、詳細に説明する。
1-1.ハイブリッド駆動装置の駆動伝達系の構成
 まず、ハイブリッド駆動装置Hの駆動伝達系の構成について説明する。ハイブリッド駆動装置Hは、内燃機関Eに駆動連結される入力軸Iと、車輪Wに駆動連結される出力軸Oと、第一回転電機MG1と、第二回転電機MG2と、差動歯車装置DGと、変速装置TMと、を備えている。これらの各構成は、車体に固定される不図示の駆動装置ケース内に収容されている。
 入力軸Iは、内燃機関Eに駆動連結される。ここで、内燃機関Eは、機関内部における燃料の燃焼により駆動されて動力を取り出す装置であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種エンジンを用いることができる。本例では、入力軸Iは、内燃機関Eのクランクシャフト等の出力回転軸と一体回転するように駆動連結されている。なお、入力軸Iが、内燃機関Eの出力回転軸に対して、ダンパやクラッチ等の他の部材を介して駆動連結された構成としても好適である。本実施形態においては、入力軸Iが本発明における「駆動入力部材」に相当する。
 第一回転電機MG1は、駆動装置ケースに固定された第一ステータSt1と、この第一ステータSt1の径方向内側に回転自在に支持された第一ロータRo1と、を有している。この第一回転電機MG1の第一ロータRo1は、差動歯車装置DGのサンギヤSと一体回転するように駆動連結されている。また、第二回転電機MG2は、駆動装置ケースに固定された第二ステータSt2と、この第二ステータSt2の径方向内側に回転自在に支持された第二ロータRo2と、を有している。この第二回転電機MG2の第二ロータRo2は、差動歯車装置DGのリングギヤR及び変速入力軸Mと一体回転するように駆動連結されている。第一回転電機MG1及び第二回転電機MG2は、図2に示すように、それぞれ第一インバータ12及び第二インバータ13を介して蓄電装置としてのバッテリ11に電気的に接続されている。なお、バッテリ11は蓄電装置の一例であり、キャパシタ等の他の蓄電装置を用い、或いは複数種類の蓄電装置を併用することも可能である。
 第一回転電機MG1及び第二回転電機MG2は、それぞれ電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能を果たすことが可能とされている。ここで、第一回転電機MG1及び第二回転電機MG2は、ジェネレータとして機能する場合には、内燃機関Eのトルクや車両の慣性力により発電を行い、バッテリ11を充電し、或いはモータとして機能する他方の回転電機MG1,MG2を駆動するための電力を供給する。一方、第一回転電機MG1及び第二回転電機MG2は、モータとして機能する場合には、バッテリ11に充電され、或いはジェネレータとして機能する他方の回転電機MG1,MG2により発電された電力の供給を受けて力行する。図2に示すように、第一回転電機MG1の動作制御は、主制御ユニット30からの制御指令に従って第一回転電機制御ユニット22及び第一インバータ12を介して行われ、第二回転電機MG2の動作制御は、主制御ユニット30からの制御指令に従って第二回転電機制御ユニット23及び第二インバータ13を介して行われる。
 図1に示すように、差動歯車装置DGは、入力軸Iと同軸状に配置されたシングルピニオン型の遊星歯車機構により構成されている。すなわち、差動歯車装置DGは、複数のピニオンギヤを支持するキャリヤCAと、前記ピニオンギヤにそれぞれ噛み合うサンギヤS及びリングギヤRとを回転要素として有している。サンギヤSは、第一回転電機MG1の第一ロータRo1と一体回転するように駆動連結されている。キャリヤCAは、入力軸Iと一体回転するように駆動連結されている。リングギヤRは、差動歯車装置DGの出力回転要素とされており、変速入力軸M及び第二回転電機MG2の第二ロータRo2と一体回転するように駆動連結されている。これら3つの回転要素は、回転速度の順にサンギヤS、キャリヤCA、及びリングギヤRとなっている。従って、本実施形態においては、サンギヤS、キャリヤCA、リングギヤRがそれぞれ本発明における「第一回転要素」、「第二回転要素」、「第三回転要素」に相当する。リングギヤRと一体回転する変速入力軸Mは、変速装置TMの入力軸となっている。なお、本例では、変速入力軸Mは入力軸Iと同軸上に配置されている。
 この差動歯車装置DGは、入力軸Iを介して入力される内燃機関Eのトルクを第一回転電機MG1と変速入力軸Mとに分配する動力分配装置としての機能を果たす。また、この差動歯車装置DGのキャリヤCAに入力軸I(内燃機関E)のトルクが入力された状態で、第一回転電機MG1の回転速度及びトルクを制御することにより、入力軸Iの回転速度を無段階に変速してリングギヤR及び変速入力軸Mに伝達することができる。よって、これらの入力軸I、差動歯車装置DG、及び第一回転電機MG1が協働することにより、電気的無段変速機構を構成している。本実施形態においては、変速入力軸Mが本発明における「入力部材」に相当する。
 変速入力軸Mは、変速装置TMに駆動連結されている。変速装置TMは、変速入力軸Mの回転速度を所定の変速比で変速して車輪W側の出力軸Oへ伝達する装置である。ここで、本実施形態に係る変速装置TMは、複数の変速段を切替可能に有する有段の自動変速装置となっている。本例では、変速装置TMは変速比の異なる4つの変速段(第1速段、第2速段、第3速段、及び第4速段)を備えている(図3を参照)。ここで、「変速比」とは、変速装置TMを介して変速入力軸Mから出力軸Oに回転が伝達される際に変速入力軸Mの回転速度が速度変換される比率であり、変速入力軸Mの回転速度を出力軸Oの回転速度で除算して得られる値に一致する。よって、「変速比」は、変速入力軸Mの回転速度が出力軸Oの回転速度よりも大きい場合には「減速比」を表し、変速入力軸Mの回転速度が出力軸Oの回転速度よりも小さい場合には「増速比」を表す。本実施形態においては、出力軸Oが本発明における「出力部材」に相当する。
 これらの変速段を切替可能に有するため、変速装置TMは、遊星歯車機構等の歯車機構とクラッチやブレーキ等の複数の摩擦係合要素とを備えて構成されている。変速制御において、これら複数の摩擦係合要素の係合及び解放が制御されることにより、複数の変速段が適宜切り替えられる。そして、変速装置TMは、その時点において形成されている変速段の変速比で変速入力軸Mの回転速度を変速して出力軸Oに伝達する。変速装置TMから出力軸Oへ伝達された回転は、出力用差動歯車装置DFを介して車輪Wに伝達される。なお、本例では、出力軸Oは入力軸I及び変速入力軸Mと同軸上に配置されている。
1-2.ハイブリッド駆動装置の制御系の構成
 次に、ハイブリッド駆動装置Hの制御系の構成について説明する。図2は、本実施形態に係るハイブリッド駆動装置Hのシステム構成を示す模式図である。なお、図2において、二重の実線は駆動力(なお、「駆動力」は「トルク」と同義で用いている)の伝達経路を示し、破線は電力の伝達経路を示し、白抜きの矢印は作動油の流れを示している。また、実線の矢印は各種情報の伝達経路を示している。この図に示すように、ハイブリッド駆動装置Hは、装置の各部を制御するための主制御ユニット30を備えている。主制御ユニット30は、内燃機関制御ユニット21、第一回転電機制御ユニット22、第二回転電機制御ユニット23、及び油圧制御装置26との間で、相互に情報伝達が可能な状態で接続されている。本実施形態においては、主制御ユニット30、内燃機関制御ユニット21、第一回転電機制御ユニット22、及び第二回転電機制御ユニット23の協働により、本発明における「制御装置」が構成されている。
 内燃機関制御ユニット21は、内燃機関Eの各部を制御することにより、内燃機関Eが所望の回転速度やトルクを出力するように制御する。第一回転電機制御ユニット22は、第一インバータ12を制御することにより、第一回転電機MG1が所望の回転速度やトルクを出力するように制御する。第二回転電機制御ユニット23は、第二インバータ13を制御することにより、第二回転電機MG2が所望の回転速度やトルクを出力するように制御する。内燃機関制御ユニット21、第一回転電機制御ユニット22、及び第二回転電機制御ユニット23は互いに協調して、車両の要求駆動力に見合ったトルクを出力するようにそれぞれ内燃機関E、第一回転電機MG1、及び第二回転電機MG2の動作を制御する。油圧制御装置26は、不図示のオイルポンプから供給される油圧を調整し、変速装置TMに備えられる複数の摩擦係合要素に分配供給することにより、各摩擦係合要素の状態(完全係合状態、解放状態、又はこれらの間の部分係合状態)を制御する。このような各摩擦係合要素の状態制御は、主制御ユニット30からの制御指令に基づいて行われる。
 また、主制御ユニット30は、ハイブリッド駆動装置Hを搭載する車両の各部の情報を取得するために、車両の各部に設けられたセンサ等からの情報を取得可能に構成されている。図1及び図2に示す例では、主制御ユニット30は、変速入力軸回転速度センサSe1、車速センサSe2、及びアクセル開度検出センサSe3からの情報を取得可能に構成されている。変速入力軸回転速度センサSe1は、変速入力軸Mの回転速度を検出するためのセンサである。車速センサSe2は、車速を検出するために出力軸Oの回転速度を検出するためのセンサである。アクセル開度検出センサSe3は、アクセルペダル16の操作量を検出することによりアクセル開度を検出するためのセンサである。これらの各センサSe1~Se3による検出結果を示す情報は、主制御ユニット30へ出力される。
 ハイブリッド駆動装置Hの各部の動作制御を行う中核部材としての機能を果たす主制御ユニット30は、CPU等の演算処理装置を中核部材として備えると共に、当該演算処理装置からデータを読み出し及び書き込みが可能に構成されたRAMや、演算処理装置からデータを読み出し可能に構成されたROM等の記憶装置等を有して構成されている。そして、ROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、主制御ユニット30の各機能部31~36が構成されている。これらの各機能部31~36は、互いに情報の受け渡しを行うことができるように構成されている。以下では、主制御ユニット30の各機能部31~36について詳細に説明する。
 変速制御部31は、変速装置TMにおける変速動作を制御する機能部である。変速制御部31は、変速制御手段として機能する。変速制御部31は、車両の要求駆動力及び車速に基づいて変速装置TMにおける目標変速段を決定し、決定された目標変速段に応じてクラッチやブレーキ等の各摩擦係合要素の動作を制御することにより、変速装置TMの変速段を切り替える制御を行う。ここで、車両の要求駆動力は、アクセル開度及び車速に基づいて決定される。アクセル開度はアクセル開度検出センサSe3により検出され、車速は車速センサSe2により検出される。図3には、要求駆動力及び車速と目標変速段との関係を規定した制御マップ39の一例を示している。この制御マップ39には、アップシフトスケジュールを規定した複数のアップシフト線とダウンシフトスケジュールを規定した複数のダウンシフト線とが設定されている。ここで、アップシフトとは変速段の切替の前後でより小さな変速比の変速段に切り替えられることを意味し、ダウンシフトとは変速段の切替の前後でより大きな変速比の変速段に切り替えられることを意味する。制御マップ39上において、車両の要求駆動力及び車速に基づいて定まる動作点がアップシフト線又はダウンシフト線を跨ぐと、変速要求がなされる。
 変速制御部31は、変速要求を受けて変速制御を実行する。変速段の切り替えに際して、変速制御部31は、変速前において係合している摩擦係合要素のうちの一つを解放させると共に、変速前において解放されている摩擦係合要素のうちの一つを係合させる、いわゆる架け替え変速を行う。このような架け替え変速においては、トルク相Pt及びイナーシャ相Piを経て変速動作が進行する。ここで、「トルク相Pt」とは、係合される摩擦係合要素が伝達トルク容量を持ち始める時点から、変速入力軸Mの回転速度が変動し始める時点までの期間をいう。より具体的には、係合される摩擦係合要素に対する供給油圧が当該摩擦係合要素のストロークエンド圧以上となる時点から、変速入力軸Mの実際の回転速度Nmが出力軸Oの回転速度に基づいて導出される変速入力軸Mの変速前推定回転速度Naよりも大きくなる時点までの期間をいう(図4等を参照)。また、「イナーシャ相Pi」とは、変速動作の進行に伴って変速入力軸Mの回転速度が変化する期間をいう。より具体的には、変速入力軸Mの実際の回転速度Nmが、出力軸Oの回転速度に基づいて導出される変速入力軸Mの変速前推定回転速度Naから変速後推定回転速度Mbに向かって変化する期間をいう。
 内燃機関始動制御部32は、停止状態にある内燃機関Eの始動制御を行う機能部である。内燃機関始動制御部32は、内燃機関始動制御手段として機能する。図3に示す制御マップ39には、第二回転電機MG2のトルクにより車両を走行させる電動走行領域と、内燃機関Eのトルクにより第一回転電機MG1に発電させながら車両を走行させるスプリット走行領域と、の間の移行スケジュールを規定したモード切替線が設定されている。制御マップ39上において、車両の要求駆動力及び車速に基づいて定まる動作点がモード切替線を跨いで電動走行領域からスプリット走行領域へと移行すると、内燃機関始動要求がなされる。この内燃機関始動要求を受けて、内燃機関始動制御部32は、第一回転電機制御ユニット22を介して第一回転電機MG1の回転速度及びトルクを制御すると共に第二回転電機制御ユニット23を介して第二回転電機MG2のトルクを制御して、内燃機関Eを始動させる。
 より具体的には、内燃機関始動制御部32は、差動歯車装置DGのリングギヤRに駆動連結された第二回転電機MG2のトルクを上昇させると共にサンギヤSに駆動連結された第一回転電機MG1の回転速度及びトルクを上昇させることにより、キャリヤCAに駆動連結された入力軸Iを介して内燃機関Eの回転速度を上昇させる。内燃機関Eの回転速度が上昇してやがて点火開始回転速度Nf(図4等を参照)に達すると、内燃機関始動制御部32は、内燃機関Eの燃焼室への燃料噴射を開始すると共にその燃焼室内に噴射された燃料に対して点火して、内燃機関Eを始動させる。なお、本実施形態においては、内燃機関始動制御部32は、内燃機関Eの停止制御を行う機能も有するものとする。内燃機関始動制御部32は、内燃機関Eへの燃料供給を停止することにより内燃機関Eを停止させる。
 ところで、内燃機関Eの停止時には吸気管内が大気圧となって、当該吸気管内には内燃機関Eの通常の駆動時と比較して多量の空気が存在している。そのため、空気過剰状態で着火されることになる内燃機関Eは、始動時に大きなトルクを出力して急激に吹き上がろうとする。ここでは、この内燃機関Eの始動時に発生するトルクを、「初爆トルク」と称する。初爆トルクが発生すると変速入力軸Mにトルク変動が生じ、この変速入力軸Mのトルク変動は変速装置TMを介して出力軸Oにまで伝達され得る。出力軸Oに伝達されるトルク変動は、車両の運転者に対してショックを与える可能性があるので、そのようなトルク変動が極力出力軸Oに伝達されないようにしておくことが望ましい。そこで、本実施形態に係る主制御ユニット30には、第一トルク補正部33が備えられている。
 第一トルク補正部33は、内燃機関Eの初爆に伴う変速入力軸Mのトルク変動を打ち消すように第二回転電機MG2の出力トルクを補正する機能部である。第一トルク補正部33は、第一トルク補正手段として機能する。上記のとおり、内燃機関Eの初爆に伴って生じる初爆トルクにより変速入力軸Mにトルク変動が生じるため、第一トルク補正部33は、この初爆トルクによる変速入力軸Mのトルク変動を打ち消すように第二回転電機MG2の出力トルクを補正する。
 第二トルク補正部34は、変速装置TMの変速動作中に内燃機関Eの初爆が発生する場合に、第一トルク補正部33によるトルク補正量Tα(図4等を参照)に対して、変速動作を進行させるような変速入力軸Mの回転速度変化を抑制する方向にトルク補正量を変更する機能部である。すなわち、第二トルク補正部34は、第一トルク補正部33によるトルク補正量Tαを基準として、変速動作を緩慢化させるような変速入力軸Mの回転速度変化を生じさせる方向にトルク補正量を変更する。第二トルク補正部34は、第二トルク補正手段として機能する。
 本実施形態では、この第一トルク補正部33及び第二トルク補正部34による第二回転電機MG2の出力トルクの補正を、包括的に「初爆トルク補正」と称する。
1-3.初爆トルク補正制御の内容
 次に、本実施形態に係る初爆トルク補正制御の内容について、詳細に説明する。上記のとおり、第一トルク補正部33は、内燃機関Eの初爆に伴う変速入力軸Mのトルク変動を打ち消すように第二回転電機MG2の出力トルクを補正する。すなわち、第一トルク補正部33は、初爆トルクによる変速入力軸Mのトルク変動量に相当する大きさのトルクを減算して(差し引いて)変速入力軸Mに伝達するように、第二回転電機MG2の出力トルクを補正する。ここでは、要求駆動力に基づいて決定される第二回転電機MG2の出力トルクをT2、所定のトルク補正量をTαとすると、第一トルク補正部33による補正後の第二回転電機MG2の出力トルクT2cは、
  T2c=T2-Tα
となる。
 本実施形態では、このようなトルク補正量Tαは、時間の関数として規定されている。すなわち、本実施形態におけるトルク補正量Tαは、時間の経過と共に変化する量として規定されている。本例では、具体的には図4及び図5のタイムチャートに示すように、初爆トルク補正の開始時点(図4におけるT04、図5におけるT14)から、所定時間だけ所定の割合で増加し(T04~T05、T14~T15)、その後所定の割合で減少してやがてゼロとなる(T05~T06、T15~T16)値として、トルク補正量Tαが規定されている。このようなトルク補正量Tαは、予め実験的に求められる経験値として取得され、基本的には一律に定められている。なお、経過時間とトルク補正量Tαとの関係は、マップ化又は数式化されてメモリ38に記憶されている。なお、冷却水温等、内燃機関Eの動作に関する各種のパラメタに基づいてトルク補正量Tαが設定される構成としても好適である。この場合、例えば種々の状態におけるトルク補正量Tαと各動作パラメタとの関係を実験的に求めてマップ化してメモリ38に記憶し、検出された動作パラメタとマップとに基づいてトルク補正量Tαを導出する構成とすることができる。また、本実施形態では、第一トルク補正部33は、内燃機関始動制御部32による内燃機関Eへの燃料噴射及び点火が開始された後、所定時間の経過後の時点(T04、T14)を開始時点として初爆トルク補正を行う。
 ところで、内燃機関Eの始動時における余剰の空気量は、一律ではなくある程度の幅で変動する量であるため、初爆トルクの大きさもある程度の幅で変動し得る。そのため、上記のように第一トルク補正部33が初爆トルクによる変速入力軸Mのトルク変動を打ち消すように第二回転電機MG2の出力トルクを補正したとしても、そのトルク補正量Tαが一律に定められる場合には、ある程度の幅で変動し得る初爆トルクを完全には打ち消すことができない。例えば初爆トルクが予期された大きさよりも大きかった場合には、所定のトルク補正量Tαでは吸収しきれなかった初爆トルクの残余分は、変速入力軸Mの回転速度を上昇させるように作用する。一方、初爆トルクが予期された大きさよりも小さかった場合には、所定のトルク補正量Tαによって初爆トルクを打ち消した後のトルク補正量Tαの余剰分は、変速入力軸Mの回転速度を低下させるように作用する。
 このような初爆トルクの大きさのばらつきに基づく変速入力軸Mの回転速度の変化は、変速要求がなされていない状態で内燃機関始動要求がなされ、内燃機関始動制御が単独で実行される場合には、完全には打ち消されなかった初爆トルクの残余分が車輪Wに伝達されるだけなので、問題となることはほとんどない。しかし、内燃機関始動要求と変速要求とがほぼ同時になされて、初爆トルクの発生と変速装置TMにおける変速動作とが重なる場合には、当該変速動作中に変速ショックが発生する可能性がある。すなわち、内燃機関Eの始動時に実際に発生する初爆トルクの大きさが、予期された大きさと比較して大きい場合又は小さい場合には、変速動作中における変速入力軸Mの回転速度変化の方向との関係で変速動作が急速に進行して、当該変速動作中に変速ショックが発生する可能性がある。図10にはその一例として、ダウンシフト時に予期されたよりも大きな初爆トルクが発生した場合のタイムチャートを示している。このような場合には、変速動作中における変速入力軸Mの回転速度が急上昇して、変速入力軸Mのトルク及び出力軸Oのトルクが大きく変動していることが分かる。このような出力軸Oのトルクの変動は、変速ショックの発生につながる。なお、比較のために破線で示されているのは、予期されたとおりの初爆トルクが発生した場合における各部の動作状態である。
 なお、このような変速ショックは、変速動作の終了時点付近で初爆トルクが発生する場合に、特に生じ易い。本実施形態に係る主制御ユニット30に備えられる第二トルク補正部34は、そのような初爆トルクの発生と変速装置TMにおける変速動作とが重なる場合における不都合の解消を図るための機能を有している。
 第二トルク補正部34は、変速装置TMの変速動作中に内燃機関Eの初爆が発生する場合に、第一トルク補正部33によるトルク補正量Tαに対して、変速動作を進行させるような変速入力軸Mの回転速度変化を抑制する方向にトルク補正量を変更する。なお、以下では、第一トルク補正部33によるトルク補正量Tαと、第二トルク補正部34による変更後のトルク補正量とを区別するため、前者を基本トルク補正量Tα、後者を単にトルク補正量γとして説明する。
 本実施形態においては、第二トルク補正部34は、その時点が変速段の切替中におけるイナーシャ相Pi中であるか否かに基づいて、「変速動作中」であるか否かを判定する。上記のとおり、イナーシャ相Piは、変速入力軸Mの実際の回転速度Nmが、出力軸Oの回転速度に基づいて導出される変速入力軸Mの変速前推定回転速度Naから変速後推定回転速度Mbに向かって変化する期間である。そして、イナーシャ相Pi中であるか否かの判断は、差回転速度取得部35により取得される情報に基づいてなされる。
 ここで、差回転速度取得部35は、変速入力軸Mの実際の回転速度Nmと所定の基準回転速度との間の回転速度の差である差回転速度を取得する機能部である。本実施形態では、差回転速度取得部35は、変速入力軸Mの実際の回転速度Nmと変速前推定回転速度Naとの間の第一差回転速度ΔNa、及び変速入力軸Mの実際の回転速度Nmと変速後推定回転速度Nbとの間の第二差回転速度ΔNbを取得する。なお、変速入力軸Mの実際の回転速度Nmは変速入力軸回転速度センサSe1により検出されて取得され、変速前推定回転速度Naは、車速センサSe2により検出されて取得される出力軸Oの回転速度と変速前における目標変速段の変速比との乗算値として取得される。また、変速後推定回転速度Nbは、車速センサSe2により検出されて取得される出力軸Oの回転速度と変速後における目標変速段の変速比との乗算値として取得される。
 第二トルク補正部34は、第一差回転速度ΔNaが所定値以上の大きさとなった時点(T02、T12)を、イナーシャ相Piの開始時点として判定する。また、第二トルク補正部34は、第二差回転速度ΔNbが所定値以下の大きさとなった時点(T05、T15)を、イナーシャ相Piの終了時点として判定する。本例では、これらの場合における所定値をゼロ(「0」)としている。但し、これに限定されるわけではなく、例えば0~100〔rpm〕等の値を設定することも可能である。
 更に本実施形態においては、第二トルク補正部34は、その時点がイナーシャ相Piの中でも特に所定の「変速終期Pe」であるか否かを判定する。ここで、本実施形態では、第二トルク補正部34は、差回転速度取得部35により取得される第二差回転速度ΔNbに基づいて変速終期Peであるか否かを判定する。すなわち、第二トルク補正部34は、その時点における第二差回転速度ΔNbが予め定められた所定の同期判定差回転速度ΔNs(図4等を参照)以下となる場合に、変速終期Peであると判定する。このような同期判定差回転速度ΔNsとしては、例えば300~1000〔rpm〕等の値を設定することができる。500~600〔rpm〕等としても好適である。本実施形態においては、同期判定差回転速度ΔNsが本発明における「同期判定閾値」に相当する。
 また、本実施形態においては、第二トルク補正部34は、内燃機関Eの回転速度が上昇して点火開始回転速度Nfに達した時点(T03、T13)を規準として、所定時間後に「内燃機関Eの初爆が発生する」と判定する。この場合における所定時間としては、例えば50~200〔msec〕等の値を設定することができる。
 第二トルク補正部34は、点火開始回転速度Nfに達した時点(T03、T13)を規準とする所定時間経過後の時点(T04、T14)がイナーシャ相Pi中の変速終期Peである場合、すなわち第二差回転速度ΔNbがゼロよりも大きく、かつ、同期判定差回転速度ΔNs以下である場合に、基本トルク補正量Tαを変更する。本実施形態では、第二トルク補正部34は、基本トルク補正量Tαに特別トルク補正量Tβを加算することにより、基本トルク補正量Tαを変更してトルク補正量Tγとする(Tγ=Tα+Tβ)。この場合、第二トルク補正部34による補正後の第二回転電機MG2の出力トルクT2c’は、
  T2c’=T2-Tγ=T2c-Tβ
となる。
 ここで、第二トルク補正部34は、変速装置TMにおける変速段の切替方向に応じて、変速動作を進行させるような変速入力軸Mの回転速度変化を抑制する方向に、基本トルク補正量Tαを変更する。第二トルク補正部34は、変速制御によって変速装置TMにおける変速段が切替の前後でより大きな変速比の変速段に切り替えられる(ダウンシフトされる)場合には、図4に示すように、第二回転電機MG2の出力トルクを負方向に変化させるように基本トルク補正量Tαを変更する。本実施形態では、第二トルク補正部34は、基本トルク補正量Tαに、正の値に設定された特別トルク補正量Tβ(Tβ>0)を加算することにより、基本トルク補正量Tαに対して増大されたトルク補正量Tγ(Tγ=Tα+Tβ)を決定する。これにより、第二トルク補正部34による補正後の第二回転電機MG2の出力トルクT2c’(図4において、実線で表示)は、第一トルク補正部33による補正後の第二回転電機MG2の出力トルクT2c(図4において、破線で表示)よりも小さくなる。なお、このような特別トルク補正量Tβは、基本トルク補正量Tαと同様、初爆トルク補正の開始時点を基準として、所定の割合で大きくなり、その後所定の割合で小さくなってやがてゼロとなる値として規定されている。この特別トルク補正量Tβも、予め実験的に求められる経験値として取得され、基本的には一律に定められている(以下、同様)。
 ダウンシフト時には、車速及び出力軸Oの回転速度がほぼ一定であるとの仮定の下では、変速入力軸Mの回転速度は上昇する。この場合において、初爆トルクが予期された大きさよりも大きかった場合には、基本トルク補正量Tαでは吸収しきれなかった初爆トルクの残余分は、変速入力軸Mの回転速度を上昇させるように作用する。この点、本実施形態では、変速終期Peに内燃機関Eの初爆が発生する場合には、基本トルク補正量Tαに対して増大されたトルク補正量Tγで第二回転電機MG2の出力トルクが補正される。これにより、変速入力軸Mの回転速度は、第二トルク補正部34による補正がなされない場合(第一トルク補正部33による補正のみがなされた場合)と比較して上昇が抑制される。従って、変速終期Peにおける変速動作の急速な進行を適切に抑制することができ、変速ショックの発生を有効に抑制することができる。図4のタイムチャートと先に説明した従来技術の問題点を示す図10のタイムチャートとを比較すると、出力軸Oのトルク変動が抑制されて変速ショックの発生が有効に抑制されることが良く理解できる。なお、上記の説明から明らかなように、本実施形態では内燃機関始動制御と変速制御とが同時に並行して実行されている。従って、内燃機関始動制御及び変速制御の双方が完了するまでの応答性も非常に良好である。
 上記の場合において、初爆トルクが予期された大きさよりも小さかった場合には、基本トルク補正量Tαによって初爆トルクを打ち消した後のトルク補正量Tαの余剰分は、変速入力軸Mの回転速度を低下させるように作用する。この場合においても、変速終期Peに内燃機関Eの初爆が発生する場合には、基本トルク補正量Tαに対して増大されたトルク補正量Tγで第二回転電機MG2の出力トルクが補正される。これにより、変速入力軸Mの回転速度は、第二トルク補正部34による補正がなされない場合と比較して上昇が抑制され、変速終期Peにおける変速動作自体は多少緩慢化する。それでも、内燃機関始動制御と変速制御とが同時に並行して実行されているので、これらが順次実行される場合と比較して、内燃機関始動制御及び変速制御の双方が完了するまでの応答性は良好である。なお、変速終期Peにおいて変速動作が急速に進行することもないので、変速ショックの発生が問題となることもほとんどない。
 一方、第二トルク補正部34は、変速制御によって変速装置TMにおける変速段が切替の前後でより小さな変速比の変速段に切り替えられる(アップシフトされる)場合には、図5に示すように、第二回転電機MG2の出力トルクを正方向に変化させるように基本トルク補正量Tαを変更する。本実施形態では、第二トルク補正部34は、基本トルク補正量Tαに、負の値に設定された特別トルク補正量Tβ(Tβ<0)を加算することにより、基本トルク補正量Tαに対して減少されたトルク補正量Tγ(Tγ=Tα+Tβ)を決定する。これにより、第二トルク補正部34による補正後の第二回転電機MG2の出力トルクT2c’(図5において、実線で表示)は、第一トルク補正部33による補正後の第二回転電機MG2の出力トルクT2c(図5において、破線で表示)よりも大きくなる。
 アップシフト時には、車速及び出力軸Oの回転速度がほぼ一定であるとの仮定の下では、変速入力軸Mの回転速度は低下する。この場合において、初爆トルクが予期された大きさよりも小さかった場合には、基本トルク補正量Tαによって初爆トルクを打ち消した後のトルク補正量Tαの余剰分は、変速入力軸Mの回転速度を低下させるように作用する。この点、本実施形態では、変速終期Peに内燃機関Eの初爆が発生する場合には、基本トルク補正量Tαに対して減少されたトルク補正量Tγで第二回転電機MG2の出力トルクが補正される。これにより、変速入力軸Mの回転速度は、第二トルク補正部34による補正がなされない場合(第一トルク補正部33による補正のみがなされた場合)と比較して低下が抑制される。従って、変速終期Peにおける変速動作の急速な進行を適切に抑制することができ、変速ショックの発生を有効に抑制することができる。なお、ダウンシフトの場合と同様に、内燃機関始動制御及び変速制御の双方が完了するまでの応答性も非常に良好である。
 上記の場合において、初爆トルクが予期された大きさよりも大きかった場合には、基本トルク補正量Tαでは吸収しきれなかった初爆トルクの残余分は、変速入力軸Mの回転速度を上昇させるように作用する。この場合においても、変速終期Peに内燃機関Eの初爆が発生する場合には、基本トルク補正量Tαに対して減少されたトルク補正量Tγで第二回転電機MG2の出力トルクが補正される。これにより、変速入力軸Mの回転速度は、第二トルク補正部34による補正がなされない場合と比較して低下が抑制され、変速終期Peにおける変速動作自体は多少緩慢化する。それでも、ダウンシフトの場合と同様に、内燃機関始動制御及び変速制御の双方が完了するまでの応答性は良好であるし、また変速ショックの発生が問題となることもほとんどない。
1-4.初爆トルク補正制御の処理手順
 次に、本実施形態に係るハイブリッド駆動装置Hの初爆トルク補正制御の処理手順について説明する。図6は、本実施形態に係る初爆トルク補正制御の処理手順を示すフローチャートである。以下に説明する初爆トルク補正制御処理の手順は、主制御ユニット30、内燃機関制御ユニット21、第一回転電機制御ユニット22、及び第二回転電機制御ユニット23の各機能部により実行される。これらの各機能部がプログラムにより構成される場合には、各制御ユニットが備える演算処理装置は、各機能部を構成するプログラムを実行するコンピュータとして動作する。
 図6に示すように、まず内燃機関始動制御中であるか否かが判定される(ステップ#01)。この判定は、例えば内燃機関始動要求に基づいて行うことができる。内燃機関始動制御中であると判定されると(ステップ#01:Yes)、第一トルク補正部33は、基本トルク補正量Tαを設定する(ステップ#02)。内燃機関始動制御により内燃機関Eの回転速度が上昇してやがて点火開始回転速度Nfに達すると(ステップ#03:Yes)、内燃機関Eの燃焼室への燃料噴射が開始されると共に点火されて、内燃機関Eが始動される(ステップ#04)。また、内燃機関Eの回転速度が点火開始回転速度Nfに達した時点からの計時を開始する(ステップ#05)。そして、計時を開始してから所定時間が経過した時点で(ステップ#06:Yes)、その時点が変速動作中(本例では、イナーシャ相Piにおける変速終期Pe)であるか否かが判定される(ステップ#07)。
 変速動作中(変速終期Pe)であると判定された場合には(ステップ#07:Yes)、その変速がダウンシフトであるか否かが判定される(ステップ#08)。ダウンシフトであると判定された場合には(ステップ#08:Yes)、第二トルク補正部34は、正の値の特別トルク補正量Tβ(Tβ>0)を設定する(ステップ#09)。一方、ダウンシフトではない、すなわちアップシフトであると判定された場合には(ステップ#08:No)、第二トルク補正部34は、負の値の特別トルク補正量Tβ(Tβ<0)を設定する(ステップ#10)。そして、第二トルク補正部34が、第二回転電機MG2の出力トルクを補正して初爆トルク補正を行う(ステップ#11)。この際、第二トルク補正部34は、基本トルク補正量Tαに特別トルク補正量Tβを加算して得られるトルク補正量Tγ(Tγ=Tα+Tβ)に基づいて、第二回転電機MG2の出力トルクを補正する。
 なお、ステップ#07において変速動作中(変速終期Pe)でないと判定された場合、すなわち、そもそも変速制御中でない場合又は、変速制御中であっても変速終期Peよりも前の時点である場合には(ステップ#07:No)、第一トルク補正部33が、第二回転電機MG2の出力トルクを補正して初爆トルク補正を行う(ステップ#11)。この際、第一トルク補正部33は、基本トルク補正量Tαのみに基づいて第二回転電機MG2の出力トルクを補正する。以上で、初爆トルク補正制御を終了する。
2.第二の実施形態
 本発明に係るハイブリッド駆動装置の第二の実施形態について、図面に基づいて説明する。図7は、本実施形態に係るハイブリッド駆動装置Hの構成を示すスケルトン図である。このハイブリッド駆動装置Hは、いわゆる1モータパラレルタイプのハイブリッド駆動装置として構成されている。本実施形態に係るハイブリッド駆動装置Hでは、駆動伝達系の具体的構成が上記第一の実施形態とは異なっていることに伴って、ハイブリッド駆動装置の制御系の構成も一部相違している。また、初爆トルク補正制御の具体的内容も、上記第一の実施形態とは一部相違している。以下では、本実施形態に係るハイブリッド駆動装置Hについて、上記第一の実施形態との相違点を中心として説明する。なお、特に明記しない点については、上記第一の実施形態と同様とする。
 本実施形態に係るハイブリッド駆動装置Hは、内燃機関Eに駆動連結される入力軸Iと、車輪Wに駆動連結される出力軸Oと、回転電機MGと、変速装置TMと、を備えている。これらの各構成は、車体に固定される不図示の駆動装置ケース内に収容されている。
 入力軸Iは、内燃機関Eに駆動連結される。また、本実施形態では、入力軸Iは入力クラッチCTを介して変速入力軸Mに駆動連結されている。ここで、入力クラッチCTは、内燃機関Eと回転電機MGとの間の駆動力の伝達及び遮断を切替可能に、内燃機関Eと回転電機MGとの間に設けられている。入力クラッチCTは、入力軸Iと変速入力軸Mとを選択的に駆動連結する。このような入力クラッチCTとしては、例えば湿式多板クラッチや乾式単板クラッチ等が好適に用いられる。本実施形態においては、入力クラッチCTが本発明における「摩擦係合装置」に相当する。また、入力軸Iが本発明における「駆動入力部材」に相当し、変速入力軸Mが本発明における「入力部材」に相当する。
 回転電機MGは、駆動装置ケースに固定されたステータStと、このステータStの径方向内側に回転自在に支持されたロータRoと、を有している。この回転電機MGのロータRoは、変速入力軸Mと一体回転するように駆動連結されている。回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能を果たすことが可能とされている。回転電機MGは、ジェネレータとして機能する場合には、内燃機関Eのトルクや車両の慣性力により発電を行ってバッテリ11を充電する。一方、回転電機MGは、モータとして機能する場合には、バッテリ11に充電された電力の供給を受けて力行する。回転電機MGの動作制御は、主制御ユニット30からの制御指令に従って不図示の回転電機制御ユニット及びインバータを介して行われる。
 本実施形態に係る主制御ユニット30に備えられる内燃機関始動制御部32は、内燃機関始動要求がなされると、油圧制御装置26を介して入力クラッチCTの動作を制御すると共に、回転電機制御ユニットを介して回転電機MGの回転速度及びトルクを制御して、内燃機関Eを始動させる。より具体的には、内燃機関始動制御部32は、電動走行モード時に解放状態とされていた入力クラッチCTを係合状態とすると共に、回転電機MGの回転速度及びトルクを上昇させることにより、係合状態とされた入力クラッチCTを介して内燃機関Eの回転速度を上昇させる。内燃機関Eの回転速度が上昇してやがて点火開始回転速度Nfに達すると、内燃機関始動制御部32は、内燃機関Eの燃焼室への燃料噴射を開始すると共にその燃焼室内に噴射された燃料に対して点火して、内燃機関Eを始動させる。
 第一トルク補正部33は、内燃機関Eの初爆に伴う変速入力軸Mのトルク変動を打ち消すように回転電機MGの出力トルクを補正する機能部である。第一トルク補正部33は、内燃機関Eの初爆に伴って生じる初爆トルクによる変速入力軸Mのトルク変動を打ち消すように回転電機MGの出力トルクを補正する。この第一トルク補正部33によるトルク補正量Tαの決定方法は、上記第一の実施形態と同様であるので、ここでは詳細な説明は省略する。
 第二トルク補正部34は、変速装置TMの変速動作中に内燃機関Eの初爆が発生する場合に、第一トルク補正部33によるトルク補正量Tαに対して、変速動作を進行させるような変速入力軸Mの回転速度変化を抑制する方向にトルク補正量を変更する機能部である。第二トルク補正部34は、第一トルク補正部33によるトルク補正量Tαを基準として、変速動作を緩慢化させるような変速入力軸Mの回転速度変化を生じさせる方向にトルク補正量を変更する。
 本実施形態においては、第二トルク補正部34は、所定の予測残り変速時間ΔTに基づいて変速終期Peであるか否かを判定する。ここで、予測残り変速時間ΔTは、差回転速度取得部35により取得される第二差回転速度ΔNbと、回転加速度取得部36により取得される変速入力軸Mの実際の回転加速度(回転速度変化率)Amと、に基づいて導出される。具体的には、各時点における予測残り変速時間ΔTは、その時点における第二差回転速度ΔNbをその時点における回転加速度Amで除算した除算値として、予測残り変速時間ΔTが導出される。そして、本実施形態においては、第二トルク補正部34は、その時点における予測残り変速時間ΔTが予め定められた所定の同期判定残り変速時間ΔTs(図8等を参照)以下となる場合に、変速終期Peであると判定する。このような同期判定残り変速時間ΔTsとしては、例えば100~300〔msec〕等の値を設定することができる。150~200〔msec〕等としても好適である。本実施形態においては、同期判定残り変速時間ΔTsが本発明における「同期判定閾値」に相当する。
 そして、本実施形態においては、第二トルク補正部34は、点火開始回転速度Nfに達した時点を規準とする所定時間経過後の時点がイナーシャ相Pi中の変速終期Peである場合、すなわち第二差回転速度ΔNbがゼロよりも大きく、かつ、予測残り変速時間ΔTが同期判定残り変速時間ΔTs以下である場合に、基本トルク補正量Tαを変更する。第二トルク補正部34が、変速装置TMにおける変速段の切替方向に応じて、変速動作を進行させるような変速入力軸Mの回転速度変化を抑制する方向に、基本トルク補正量Tαを変更する点に関しては、上記第一の実施形態と同様である。すなわち、第二トルク補正部34は、変速制御によってダウンシフトされる場合には、回転電機MGの出力トルクを、第一トルク補正部33による補正後の回転電機MGの出力トルクに対して負方向に変化させるように基本トルク補正量Tαを変更する。一方、第二トルク補正部34は、変速制御によってアップシフトされる場合には、回転電機MGの出力トルクを、第一トルク補正部33による補正後の回転電機MGの出力トルクに対して正方向に変化させるように基本トルク補正量Tαを変更する。
 このような初爆トルク補正制御を実行可能な本実施形態に係るハイブリッド駆動装置Hも、上記第一の実施形態に係るハイブリッド駆動装置Hと同様に、内燃機関始動要求と変速要求とがほぼ同時になされた場合にも、ショックの発生を抑制することが可能であり、かつ、内燃機関始動制御及び変速制御の双方が完了するまでの応答性が良好である。
 本実施形態においては、ハイブリッド駆動装置Hは、通常用いるための基本トルク補正量Tαのマップとは別に、初爆トルクの発生と変速装置TMにおける変速動作とが重なる場合にのみ選択的に用いるための修正トルク補正量Tδのマップを、メモリ38に記憶して備えている。この修正トルク補正量Tδは、第一トルク補正部33による基本トルク補正量Tαに対して、変速動作を進行させるような変速入力軸Mの回転速度変化を抑制する方向に予め変更されたトルク補正量として設定されている。この修正トルク補正量Tδは、上記第一の実施形態における、基本トルク補正量Tαに特別トルク補正量Tβを加算して得られる変更後のトルク補正量Tγ(Tγ=Tα+Tβ)に相当する。このような修正トルク補正量Tδは、基本トルク補正量Tαと同様、初爆トルク補正の開始時点から、所定時間だけ所定の割合で大きくなり、その後所定の割合で小さくなってやがてゼロとなる値として規定されている。この修正トルク補正量Tδも、基本トルク補正量Tαや特別トルク補正量Tβと同様に、予め実験的に求められる経験値として取得され、基本的には一律に定められている。このように、本実施形態に係るハイブリッド駆動装置Hでは、修正トルク補正量Tδに関してもマップ化して備える構成を採用することで、初爆トルク補正制御のための演算処理を簡略化することができるという利点がある。
3.その他の実施形態
 最後に、本発明に係るハイブリッド駆動装置の、その他の実施形態について説明する。
なお、以下のそれぞれの実施形態で開示される特徴構成は、その実施形態でのみ適用されるものではなく、矛盾が生じない限り、他の実施形態で開示される特徴構成と組み合わせて適用することも可能である。
(1)上記第一の実施形態においては、第二トルク補正部34が、基本トルク補正量Tαに特別トルク補正量Tβを加算することにより、基本トルク補正量Tαを変更する場合を例として説明した。また、上記第二の実施形態においては、第二トルク補正部34が、修正トルク補正量Tδのマップに基づいて、基本トルク補正量Tαに対して予め変更された修正トルク補正量Tδを決定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第二トルク補正部34が、変速動作を進行させるような変速入力軸Mの回転速度変化を抑制する方向にトルク補正量を変更するのであれば、その変更態様は任意とすることができる。例えば第二トルク補正部34が、基本トルク補正量Tαに対して所定の係数を乗算することにより、基本トルク補正量Tαを変更する構成とすることも、本発明の好適な実施形態の一つである。
(2)上記第一の実施形態においては、基本トルク補正量Tα及び特別トルク補正量Tβが、初爆トルク補正の開始時点から、所定時間だけ所定の割合で大きくなり、その後所定の割合で小さくなってやがてゼロとなる値として規定されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えばこれらのうちの一方又は双方が、時間の経過とは無関係な固定値として規定された構成とすることも、本発明の好適な実施形態の一つである。
(3)上記の各実施形態においては、イナーシャ相Piの中の変速終期Peに内燃機関Eの初爆が発生する場合に、第二トルク補正部34が機能するように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、内燃機関Eの初爆が発生する時点が変速終期Pe以外の少なくともイナーシャ相Pi中である場合にも第二トルク補正部34が機能する構成とすることも、本発明の好適な実施形態の一つである。
(4)上記第一の実施形態においては、第二トルク補正部34が、第二差回転速度ΔNbに基づいて変速終期Peであるか否かを判定する場合を例として説明した。また、上記第二の実施形態においては、第二トルク補正部34が、予測残り変速時間ΔTに基づいて変速終期Peであるか否かを判定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば第二差回転速度ΔNb及び予測残り変速時間ΔTの双方に基づいて変速終期Peであるか否かを判定する構成とすることも、本発明の好適な実施形態の一つである。この場合、第二差回転速度ΔNbが同期判定差回転速度ΔNs以下となったこと、及び、予測残り変速時間ΔTが同期判定残り変速時間ΔTs以下となったことの2つを判定条件とし、これら双方が成立した場合に変速終期Peであると判定する構成を採用することができる。或いは、これら2つの条件のうちのいずれか一方が成立した場合に変速終期Peであると判定する構成を採用することもできる。
(5)上記の各実施形態においては、第二トルク補正部34が、内燃機関Eの回転速度が点火開始回転速度Nfに達した時点の所定時間後の時点に「内燃機関Eの初爆が発生する」と判定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第二トルク補正部34が、そのような内燃機関Eの初爆トルクの発生時点を、例えば内燃機関Eにおける燃料点火の時点、或いは、内燃機関Eの回転速度が点火開始回転速度Nfに達した時点等により判定する構成とすることも、本発明の好適な実施形態の一つである。
(6)上記の各実施形態においては、第二トルク補正部34が、変速制御によってダウンシフトされる場合及びアップシフトされる場合の双方で基本トルク補正量Tαを変更する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第二トルク補正部34が、例えば変速制御によってダウンシフトされる場合にのみ、第二回転電機MG2の出力トルクを、第一トルク補正部33による補正後の第二回転電機MG2(回転電機MG)の出力トルクに対して負方向に変化させるように基本トルク補正量Tαを変更する構成とすることも、本発明の好適な実施形態の一つである。或いは、第二トルク補正部34が、変速制御によってアップシフトされる場合にのみ、第二回転電機MG2の出力トルクを、第一トルク補正部33による補正後の第二回転電機MG2(回転電機MG)の出力トルクに対して正方向に変化させるように基本トルク補正量Tαを変更する構成とすることも、本発明の好適な実施形態の一つである。
(7)上記の各実施形態においては、同期判定差回転速度ΔNs、同期判定残り変速時間ΔTs、及びその他の各種判定基準値に関して、それぞれ具体的な数値を例示して説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、これらの具体的数値はあくまで例示であって、ハイブリッド駆動装置Hや当該ハイブリッド駆動装置Hが搭載される車両等の特性に応じて、それぞれ適宜変更することが可能である。
(8)上記第二の実施形態においては、1モータパラレルタイプのハイブリッド駆動装置Hにおいて、入力軸Iと変速入力軸Mとが入力クラッチCTを介して選択的に駆動連結されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、そのような入力クラッチCTを有することなく、入力軸Iと変速入力軸Mとが一体的に駆動連結された構成とすることも、本発明の好適な実施形態の一つである。
(9)上記の各実施形態においては、主制御ユニット30、内燃機関制御ユニット21、第一回転電機制御ユニット22、及び第二回転電機制御ユニット23の協働により、ハイブリッド駆動装置Hの各部が動作制御される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば内燃機関E、回転電機MG(第一回転電機MG1,第二回転電機MG2)、及び変速装置TMを含む各部の制御を行う単一の制御ユニットを備え、当該単一の制御ユニットによりハイブリッド駆動装置Hの各部が動作制御される構成とすることも、本発明の好適な実施形態の一つである。この場合、当該単一の制御ユニットが、本発明における「制御装置」を構成する。
(10)上記の各実施形態において説明したハイブリッド駆動装置Hの駆動伝達系の構成と初爆トルク補正制御の内容との組み合わせに関しては、矛盾が生じない限り、任意の組み合わせを採用することが可能である。すなわち、上記第一の実施形態において説明したハイブリッド駆動装置Hの駆動伝達系の構成及び初爆トルク補正制御の内容と、上記第二の実施形態において説明したハイブリッド駆動装置Hの駆動伝達系の構成及び初爆トルク補正制御の内容と、を適宜組み合わせて本発明に係るハイブリッド駆動装置を構成することができる。例えば、上記第一の実施形態の2モータスプリットタイプのハイブリッド駆動装置Hにおいて、上記第二の実施形態のように修正トルク補正量Tδのマップに基づく初爆トルク補正制御が実行される構成を採用することが可能である。また、上記第二の実施形態の1モータパラレルタイプのハイブリッド駆動装置Hにおいて、上記第一の実施形態のように特別トルク補正量Tβ及び所定の式に基づく初爆トルク補正制御が実行される構成を採用することも可能である。また、ハイブリッド駆動装置Hの駆動伝達系の構成と、初爆トルク補正制御における変速終期Peの判定手法等との組み合わせに関しても、同様である。
(11)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載された構成及びこれと均等な構成を備えている限り、特許請求の範囲に記載されていない構成の一部を適宜改変した構成も、当然に本発明の技術的範囲に属する。
 本発明は、回転電機と、内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の変速段を切替可能に有し、入力部材の回転速度を各変速段の変速比で変速して出力部材に伝達する変速装置と、少なくとも回転電機の動作制御を行う制御装置と、を備えたハイブリッド駆動装置に好適に利用することができる。
H    ハイブリッド駆動装置
E    内燃機関
MG   回転電機
MG1  第一回転電機
MG2  第二回転電機
TM   変速装置
DG   差動歯車装置
S    サンギヤ(第一回転要素)
CA   キャリヤ(第二回転要素)
R    リングギヤ(第三回転要素)
W    車輪
I    入力軸(駆動入力部材)
M    変速入力軸(入力部材)
O    出力軸(出力部材)
CT   入力クラッチ(摩擦係合装置)
ΔNs  同期判定差回転速度(同期判定閾値)
ΔTs  同期判定残り変速時間(同期判定閾値)
Pi   イナーシャ相
Pe   変速終期
22   第一回転電機制御ユニット(制御装置)
23   第二回転電機制御ユニット(制御装置)
30   主制御ユニット(制御装置)
33   第一トルク補正部
34   第二トルク補正部

Claims (7)

  1.  回転電機と、内燃機関及び前記回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の変速段を切替可能に有し、前記入力部材の回転速度を各変速段の変速比で変速して前記出力部材に伝達する変速装置と、少なくとも前記回転電機の動作制御を行う制御装置と、を備えたハイブリッド駆動装置であって、
     前記制御装置は、
     前記内燃機関の初爆に伴う前記入力部材のトルク変動を打ち消すように前記回転電機の出力トルクを補正する第一トルク補正部と、
     前記変速装置の変速動作中に前記内燃機関の初爆が発生する場合に、前記第一トルク補正部によるトルク補正量に対して、前記変速動作を進行させるような前記入力部材の回転速度変化を抑制する方向にトルク補正量を変更する第二トルク補正部と、
    を備えるハイブリッド駆動装置。
  2.  前記第二トルク補正部は、前記変速装置における変速段の切替方向に応じた方向に前記トルク補正量を変更する請求項1に記載のハイブリッド駆動装置。
  3.  前記第二トルク補正部は、
     前記変速装置における変速段が切替の前後でより大きな変速比の変速段に切り替えられる場合には、前記回転電機の出力トルクを、前記第一トルク補正部による補正後の出力トルクに対して負方向に変化させるように前記トルク補正量を変更し、
     前記変速装置における変速段が切替の前後でより小さな変速比の変速段に切り替えられる場合には、前記回転電機の出力トルクを、前記第一トルク補正部による補正後の出力トルクに対して正方向に変化させるように前記トルク補正量を変更する請求項2に記載のハイブリッド駆動装置。
  4.  前記第二トルク補正部は、前記出力部材の回転速度に基づいて導出される前記入力部材の変速後の推定回転速度と前記入力部材の実際の回転速度との間の差回転速度と、前記入力部材の実際の回転速度変化率と、に基づいて導出される予測残り変速時間が、所定の同期判定閾値以下となる変速終期に前記内燃機関の初爆が発生する場合に、前記トルク補正量を変更する請求項1から3のいずれか一項に記載のハイブリッド駆動装置。
  5.  前記第二トルク補正部は、前記出力部材の回転速度に基づいて導出される前記入力部材の変速後の推定回転速度と前記入力部材の実際の回転速度との間の差回転速度が所定の同期判定閾値以下となる変速終期に前記内燃機関の初爆が発生する場合に、前記トルク補正量を変更する請求項1から4のいずれか一項に記載のハイブリッド駆動装置。
  6.  第一回転電機と、前記回転電機としての第二回転電機と、前記内燃機関に駆動連結される駆動入力部材と、差動歯車装置と、を備え、
     前記差動歯車装置は、回転速度の順に第一回転要素、第二回転要素、及び第三回転要素となる3つの回転要素を有し、
     前記差動歯車装置の第一回転要素に前記第一回転電機が駆動連結され、第二回転要素に前記駆動入力部材が駆動連結され、第三回転要素に前記入力部材及び前記第二回転電機が駆動連結されている請求項1から5のいずれか一項に記載のハイブリッド駆動装置。
  7.  前記内燃機関に駆動連結される駆動入力部材を備え、
     前記駆動入力部材と前記入力部材とが一体的に又は摩擦係合装置を介して選択的に駆動連結されている請求項1から5のいずれか一項に記載のハイブリッド駆動装置。
     
PCT/JP2011/063651 2010-06-15 2011-06-15 ハイブリッド駆動装置 WO2011158853A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180019094.1A CN102844219B (zh) 2010-06-15 2011-06-15 混合动力驱动装置
US13/583,165 US8744657B2 (en) 2010-06-15 2011-06-15 Hybrid drive system
DE112011100791.4T DE112011100791B4 (de) 2010-06-15 2011-06-15 Hybridantriebssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010136395A JP5213914B2 (ja) 2010-06-15 2010-06-15 ハイブリッド駆動装置
JP2010-136395 2010-06-15

Publications (1)

Publication Number Publication Date
WO2011158853A1 true WO2011158853A1 (ja) 2011-12-22

Family

ID=45348250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063651 WO2011158853A1 (ja) 2010-06-15 2011-06-15 ハイブリッド駆動装置

Country Status (5)

Country Link
US (1) US8744657B2 (ja)
JP (1) JP5213914B2 (ja)
CN (1) CN102844219B (ja)
DE (1) DE112011100791B4 (ja)
WO (1) WO2011158853A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107244318A (zh) * 2016-03-29 2017-10-13 株式会社斯巴鲁 驱动控制机构及驱动控制装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915245B2 (ja) * 2012-02-22 2016-05-11 日産自動車株式会社 ハイブリッド車両の制御装置
US8589002B1 (en) * 2012-07-30 2013-11-19 General Electric Company Methods and systems for estimating engine fuel consumption
JP5994794B2 (ja) * 2013-01-08 2016-09-21 トヨタ自動車株式会社 ハイブリッド車両の制御装置
DE102013202381B4 (de) * 2013-02-14 2016-06-23 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Fahrzeug sowie Fahrzeug mit der Antriebsvorrichtung
DE112015001558B4 (de) * 2014-03-31 2024-03-28 Schaeffler Technologies AG & Co. KG Antriebssystem synchronisierter Zusatzeinheiten mit optimiertem Wechseln zwischen Antriebsquellen des Antriebssystems
JP6272178B2 (ja) * 2014-08-06 2018-01-31 株式会社デンソー 回転電機の制御装置
US10232840B2 (en) 2016-08-08 2019-03-19 Ford Global Technologies, Llc Deceleration control for a hybrid vehicle during towing
CN107867165A (zh) * 2016-09-28 2018-04-03 比亚迪股份有限公司 用于车辆的动力驱动系统以及车辆
JP6756630B2 (ja) * 2017-01-17 2020-09-16 トヨタ自動車株式会社 自動車

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131153A (ja) * 2005-11-10 2007-05-31 Toyota Motor Corp 動力出力装置およびこれを搭載する車両並びに駆動装置,動力出力装置の制御方法
JP2008137619A (ja) * 2006-12-05 2008-06-19 Toyota Motor Corp 車両用駆動装置の制御装置
JP2009073268A (ja) * 2007-09-19 2009-04-09 Toyota Motor Corp 車両および駆動装置並びにこれらの制御方法
JP2010070008A (ja) * 2008-09-17 2010-04-02 Toyota Motor Corp 車両用駆動装置の制御装置
JP2010120517A (ja) * 2008-11-19 2010-06-03 Toyota Motor Corp 動力伝達装置の制御装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532128A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag Antriebssystem, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben desselben
JP3489475B2 (ja) * 1998-03-20 2004-01-19 日産自動車株式会社 駆動力制御装置
JP3892236B2 (ja) * 2001-02-20 2007-03-14 本田技研工業株式会社 ハイブリッド車両の制御装置
DE10241018A1 (de) * 2002-09-05 2004-03-25 Robert Bosch Gmbh Kraftfahrzeug mit einem Hybridantrieb sowie Verfahren zur Leerlaufregelung eines Hybridantriebs eines Kraftfahrzeugs
JP3928595B2 (ja) 2003-07-10 2007-06-13 トヨタ自動車株式会社 動力出力装置およびその制御方法並びに自動車
JP4069901B2 (ja) * 2004-05-20 2008-04-02 トヨタ自動車株式会社 ハイブリッド車のドライブトレーン
DE102004032173B4 (de) * 2004-07-02 2015-07-30 Volkswagen Ag Verfahren zum Betreiben eines Hybrid-Kraftfahrzeuges
JP4222297B2 (ja) * 2004-11-24 2009-02-12 トヨタ自動車株式会社 車両の制御装置
JP4424245B2 (ja) 2005-04-19 2010-03-03 日産自動車株式会社 ハイブリッド車のエンジン始動制御装置およびエンジン始動制御方法
US8255132B2 (en) * 2005-05-19 2012-08-28 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive apparatus
DE112006001264B4 (de) * 2005-05-19 2018-12-20 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für eine Fahrzeugantriebsvorrichtung
JP2007112291A (ja) * 2005-10-20 2007-05-10 Toyota Motor Corp 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
US8010263B2 (en) * 2006-03-22 2011-08-30 GM Global Technology Operations LLC Method and apparatus for multivariate active driveline damping
FR2906332B1 (fr) * 2006-09-26 2009-05-08 Jean Christrian Robert Dispositif de transformation d'un mouvement lineaire en un mouvement de rotation de facon reglable
JP4229165B2 (ja) * 2006-10-13 2009-02-25 トヨタ自動車株式会社 車両およびその制御方法
JP5018026B2 (ja) * 2006-11-09 2012-09-05 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4962000B2 (ja) * 2006-12-25 2012-06-27 トヨタ自動車株式会社 車両用駆動装置の制御装置
DE102007008086A1 (de) * 2007-02-17 2008-09-04 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstranges eines Fahrzeuges während eines Schubbetriebes
JP2009047107A (ja) * 2007-08-21 2009-03-05 Toyota Motor Corp 車両用エンジン回転制御装置
JP2009234292A (ja) 2008-03-25 2009-10-15 Toyota Motor Corp 車両用駆動装置の制御装置
JP4631962B2 (ja) * 2008-11-11 2011-02-16 トヨタ自動車株式会社 エンジン始動制御装置
JP5249976B2 (ja) * 2010-03-05 2013-07-31 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5348352B2 (ja) * 2010-06-30 2013-11-20 マツダ株式会社 圧縮自己着火式エンジンの始動装置および始動方法
WO2012039066A1 (ja) * 2010-09-24 2012-03-29 トヨタ自動車株式会社 車両のエンジン始動制御装置
WO2012053577A1 (ja) * 2010-10-21 2012-04-26 日産自動車株式会社 車両の駆動力制御装置
CN103180603B (zh) * 2010-11-04 2015-11-25 丰田自动车株式会社 车载内燃机控制装置
JP5532339B2 (ja) * 2011-03-09 2014-06-25 アイシン・エィ・ダブリュ株式会社 制御装置
DE112012000320T5 (de) * 2011-03-25 2013-09-26 Aisin Aw Co., Ltd. Steuerungsvorrichtung
JP5293895B1 (ja) * 2011-09-12 2013-09-18 トヨタ自動車株式会社 車両の制御装置
JP5936469B2 (ja) * 2012-07-17 2016-06-22 愛三工業株式会社 エンジンの制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131153A (ja) * 2005-11-10 2007-05-31 Toyota Motor Corp 動力出力装置およびこれを搭載する車両並びに駆動装置,動力出力装置の制御方法
JP2008137619A (ja) * 2006-12-05 2008-06-19 Toyota Motor Corp 車両用駆動装置の制御装置
JP2009073268A (ja) * 2007-09-19 2009-04-09 Toyota Motor Corp 車両および駆動装置並びにこれらの制御方法
JP2010070008A (ja) * 2008-09-17 2010-04-02 Toyota Motor Corp 車両用駆動装置の制御装置
JP2010120517A (ja) * 2008-11-19 2010-06-03 Toyota Motor Corp 動力伝達装置の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107244318A (zh) * 2016-03-29 2017-10-13 株式会社斯巴鲁 驱动控制机构及驱动控制装置
CN107244318B (zh) * 2016-03-29 2019-06-28 株式会社斯巴鲁 驱动控制机构及驱动控制装置
US10486685B2 (en) 2016-03-29 2019-11-26 Subaru Corporation Driving control mechanism and driving control device

Also Published As

Publication number Publication date
DE112011100791T5 (de) 2012-12-20
JP2012001058A (ja) 2012-01-05
CN102844219B (zh) 2015-01-28
US8744657B2 (en) 2014-06-03
CN102844219A (zh) 2012-12-26
US20130079961A1 (en) 2013-03-28
JP5213914B2 (ja) 2013-06-19
DE112011100791B4 (de) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5213914B2 (ja) ハイブリッド駆動装置
JP5768873B2 (ja) 車両用駆動装置の制御装置
US7922618B2 (en) Vehicular engine control apparatus
US7695401B2 (en) Holding a hybrid electric vehicle on an inclined surface
US8137236B2 (en) Ouput torque modulation control of a transmission in a hybrid electric vehicle
US8430791B2 (en) Control device for vehicular power transmitting apparatus
US20140371029A1 (en) Control device
JP5545018B2 (ja) 車両用駆動制御装置
JP5447534B2 (ja) 車両用動力伝達装置の制御装置
US20130054064A1 (en) Control device of vehicle power transmission device
JP2008094300A (ja) 車両およびその制御方法
JP2011235818A5 (ja)
JP6583295B2 (ja) 車両の制御装置
JP2010125936A (ja) 車両用動力伝達装置の制御装置
JP6009970B2 (ja) 車両の制御装置
JP2009190442A (ja) 車両の制御装置
JP5545017B2 (ja) 車両用駆動制御装置
JP2004203218A (ja) ハイブリッド駆動装置の制御装置
JP2011235817A5 (ja)
JP2009012618A (ja) ハイブリッド車両用動力伝達装置の制御装置
JP2014124975A (ja) 車両
JP2012091776A (ja) 制御装置
JP2010120519A (ja) 車両用動力伝達装置の制御装置
EP4299361A1 (en) Drive device for vehicle
JP2010012902A (ja) ハイブリッド車および動力出力装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019094.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13583165

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011100791

Country of ref document: DE

Ref document number: 1120111007914

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795757

Country of ref document: EP

Kind code of ref document: A1