WO2011158812A1 - 土壌の水分状態特定装置及びその方法 - Google Patents

土壌の水分状態特定装置及びその方法 Download PDF

Info

Publication number
WO2011158812A1
WO2011158812A1 PCT/JP2011/063545 JP2011063545W WO2011158812A1 WO 2011158812 A1 WO2011158812 A1 WO 2011158812A1 JP 2011063545 W JP2011063545 W JP 2011063545W WO 2011158812 A1 WO2011158812 A1 WO 2011158812A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical conductivity
electrode pair
specifying
soil
capacitance
Prior art date
Application number
PCT/JP2011/063545
Other languages
English (en)
French (fr)
Inventor
雅登 二川
澤田 和明
Original Assignee
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人豊橋技術科学大学 filed Critical 国立大学法人豊橋技術科学大学
Priority to EP11795717.5A priority Critical patent/EP2584348A4/en
Priority to CN201180029311.5A priority patent/CN102985812B/zh
Priority to US13/702,371 priority patent/US9335287B2/en
Priority to JP2012520446A priority patent/JP5871237B2/ja
Publication of WO2011158812A1 publication Critical patent/WO2011158812A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/048Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Specific anions in water

Definitions

  • the present invention relates to a soil moisture state identification device and method.
  • the moisture state to be specified includes the amount of water WC, the electrical conductivity EC, temperature, pH, ion concentration, and the like.
  • Examples of existing moisture sensors include tensiometers, TDRs, and capacitive sensors (see Patent Documents 1 and 2).
  • the ion concentration in the aqueous solution can be specified from the electrical conductivity ⁇ (that is, the reciprocal of the resistivity ⁇ ).
  • This electrical conductivity is obtained by contacting a pair of electrodes in an aqueous solution and measuring the electrical resistance between them.
  • the measured electrical conductivity of the soil is affected by the amount of soil and air in the soil (ie, the amount of soil per unit volume minus the amount of water). It is not possible to accurately determine the electrical conductivity of moisture contained in soil and, therefore, the ionic concentration of moisture in the soil simply by measuring.
  • the present inventors have intensively studied to specify the ion concentration of water contained in soil.
  • the inventors paid attention to the phase change of the electric signal applied between the pair of electrodes.
  • the phase change has a certain relationship with the concentration of ions contained in moisture regardless of the amount of moisture.
  • not all moisture is continuous in the soil, so simply contacting the electrode with the soil and simply measuring the electrical resistance between them makes the electrical conductivity of the moisture contained in the soil, and thus It is not possible to accurately determine the ion concentration of moisture in the soil.
  • the phase change is measured, the ion concentration contained in the water can be specified regardless of the amount of water in the soil.
  • the lower surfaces of the pair of electrodes shown in FIG. 1 are brought into contact with the object to be measured, an input electric signal having a predetermined frequency is applied to one electrode, and an output electric signal is detected from the other electrode.
  • the phase change ⁇ between the two is expressed by the following equation 1.
  • the characteristics of the aqueous solution are expressed as follows.
  • Z represents the impedance of the aqueous solution
  • R represents the resistance between the electrodes in the aqueous solution
  • C represents the capacitance between the electrodes in the aqueous solution.
  • FIG. 2 shows measurement results of the phase change with respect to the amount of water and the phase change with respect to the ion concentration when the frequency is fixed.
  • a water content of 1.0 indicates the state of an aqueous solution.
  • a water content of 0.4 indicates that 40% by volume of the aqueous solution is impregnated with a unit volume of rock wool.
  • the results in FIG. 2 were measured using a pair of 25 ⁇ m ⁇ 4 mm aluminum arranged at an interval of 875 ⁇ m.
  • the result of FIG. 2 shows that the phase change ⁇ does not depend on the amount of water and is proportional only to the arc tangent of the reciprocal of the ion concentration. Thereby, it turns out that the ion concentration of the water
  • the above findings indicate that the ionicity dissolved in the solvent A in a system in which the other component B is dispersed in the solvent A such as water. It means that the concentration of the solute C can be specified from the phase change.
  • component B and component A have different electrical conductivities, and component B is not dissolved in component A. Since it is irrelevant to the amount of water, the ion concentration of the aqueous solution itself (that is, a solution that does not contain any other insoluble components) can also be obtained from the phase change.
  • the first aspect of the present invention is defined as follows.
  • a method for specifying the concentration of a solute contained in the solvent A pair of electrodes in contact with the dispersion; Applying an alternating input electrical signal to one of the electrodes; Comparing the phase of the output electrical signal from the other of the electrodes and the phase of the input electrical signal; A concentration specifying method for specifying the concentration of a solute contained in the solvent based on the phase comparison result.
  • the solvent is not particularly limited as long as it can dissolve the solute.
  • an oil-based solvent such as alcohol or ether can also be used.
  • the solute is dissolved in a solvent and ionized, and the electric conductivity of the solute is changed according to the amount of dissolution.
  • the insoluble component does not dissolve in the solvent and may be a gas, liquid, or solid as long as it is dispersed in the solvent physically independently of the solvent.
  • the insoluble component has a high electrical resistance or is an insulator. This is because if the insoluble component has conductivity, the electric conductivity of the dispersion system is controlled by the insoluble component, and the desired electric conductivity of the solvent, and hence the concentration of the solute cannot be obtained.
  • the relative dielectric constant of the solvent is sufficiently high with respect to the insoluble component. This is because when the solvent has a relative dielectric constant that is about the same as or smaller than that of the insoluble component, measurement of a concentration that is controlled by the insoluble component and is not controlled by the desired amount of water cannot be obtained.
  • an insoluble component solid inorganic materials and polymer materials, and also air or other gases can be used.
  • water is used as the solvent, the oil component can be made insoluble, and vice versa.
  • the solvent is water
  • the solute is ions such as phosphorus and potassium
  • the insoluble component is a solid component (inorganic material consisting of clay and its secondary particles, etc., organic material consisting of biological carcasses, etc.) and solid Consists of air present in the voids of the components.
  • the solid component is referred to as “soil component” in this specification, and the air present in the gap is referred to as “air component”.
  • the insoluble component may not necessarily be uniformly dispersed in the solvent.
  • the electrode brought into contact with the dispersion system is preferably chemically stable with respect to the dispersion system, and can be formed of, for example, a noble metal such as gold or platinum, an alloy thereof, or carbon.
  • the input electric signal is input to one of the electrodes (first electrode).
  • the input electric signal is an AC signal, and it is preferable to keep the frequency constant when measuring the concentration.
  • An output electrical signal from the other electrode (second electrode) is detected, and the phases of the input electrical signal and the output electrical signal are compared. As one aspect of comparison, the phase difference between the two is detected.
  • EC electrical conductivity
  • the ion concentration can be specified from the measured electrical conductivity. Therefore, the ion concentration can be specified from the phase change ⁇ , and the moisture content of the soil can be specified from the measured electrical conductivity based on the specified ion concentration.
  • the soil is only an example of the dispersion system in specifying the water content.
  • the fourth aspect of the present invention is defined as follows. That is, Measuring the electrical conductivity of the dispersion, A dispersion that specifies the amount of solvent in the dispersion based on the obtained electrical conductivity and the concentration of the ionic solute in the solvent specified by the concentration specifying method according to any one of the first to third aspects. Method for identifying the amount of solvent in the system.
  • a fifth aspect is proposed as a solvent amount specifying device for executing the above-described solvent amount specifying method.
  • a semiconductor substrate; A first electrode pair and a second electrode pair are disposed on the semiconductor substrate via an insulating layer, A phase change specifying unit that is connected to the first electrode pair and specifies a phase change between the first electrode pair; Based on the specific phase change of the semiconductor substrate, a phase change correction unit that corrects the phase change specified by the phase change specification unit; An electrical conductivity specifying unit connected to the second electrode pair for specifying electrical conductivity between the second electrode pair; Based on the specific electrical conductivity of the semiconductor substrate, an electrical conductivity correction unit that corrects the electrical conductivity specified by the electrical conductivity specifying unit;
  • a solvent amount specifying device comprising:
  • the present inventors have also studied other methods for specifying the ion concentration and the amount of water contained in the soil moisture. This will be described below.
  • the amount of water is the portion of soil of unit volume minus the volume of soil and air, but since the water in the soil contains various ions such as potassium ions and phosphate ions, the electrical signal is When the amount of water is specified by processing, the ion concentration of water (hereinafter sometimes simply referred to as “concentration”) cannot be ignored. If the ion concentration of water contained in the soil can be specified, it is considered that the influence of the ion concentration can be corrected when the amount of water is specified.
  • the moisture ion concentration can be determined from the electrical conductivity, but not all moisture is continuous in the soil.
  • the measured electrical conductivity of the soil includes the soil Since the amount of air (ie, the amount of soil per unit volume minus the amount of moisture) affects, simply measuring the electrical conductivity of the soil cannot accurately determine the concentration of moisture in the soil. . As described above, the electrical conductivity is affected when the moisture content is specified, and the moisture content is affected when the electrical conductivity is specified. Therefore, even if each characteristic is measured independently, an error is included in the obtained value. As a result of intensive studies to solve such problems, I have found that these relationships are considered as simultaneous equations of water content and electrical conductivity.
  • the capacitance value Q which has a relatively small influence of electrical conductivity, was used as an index used when measuring the amount of water. In this specification and claims, the capacitance may be simply referred to as “capacitance”.
  • the sixth aspect of the present invention is defined as follows.
  • a first electrode pair and a second electrode pair are disposed on the semiconductor substrate via an insulating layer,
  • An electrical conductivity specifying unit connected to the first electrode pair for specifying electrical conductivity between the first electrode pair;
  • a soil moisture state identification device comprising: a capacitance identification unit that is connected to the second electrode pair and identifies a capacitance between the second electrode pair.
  • the first electrode pair for measuring electrical conductivity EC and the second electrode pair for measuring capacitance are the same. Therefore, the electrical conductivity and capacitance Q can be measured under the same conditions with respect to the soil. Therefore, the true electricity obtained by processing the measured electrical conductivity (apparent electrical conductivity EC1) and electrostatic capacity Q (apparent electrostatic capacity Q1; corresponding to the apparent water content WC1). High reliability can be secured for the estimated value of the conductivity EC0 and the estimated value of the true water content WC0.
  • the seventh aspect of the present invention is defined as follows. That is, in the apparatus defined in the sixth aspect, the second electrode pair is disposed inside the first electrode pair. According to the moisture state specifying device of the seventh aspect defined in this way, the arrangement of the first and second electrode pairs can be made small. Note that the arrangement of the first electrode pair and the second electrode pair is not particularly limited as long as the same space can be measured on the substrate. Although it is preferable to adopt the configuration of the second aspect from the viewpoint of making the device compact, the first electrode pair can be arranged inside the second electrode pair or can be arranged alternately. Furthermore, the direction of the first electrode pair and the direction of the second electrode pair can be made orthogonal.
  • the eighth aspect of the present invention is defined as follows. That is, in the apparatus defined in the sixth or seventh aspect, the first and second electrode pairs are isolated from each other by the insulating layer, and the surface of the insulating layer is subjected to a hydrophilic treatment. By hydrophilizing the surface of the insulating layer in this way, the moisture in the soil is easily adapted to each electrode pair, and the measurement range is expanded.
  • the method for the hydrophilic treatment is not particularly limited, but a hydrophilic layer (such as a silicon oxide film) may be formed on the surface of the insulating layer.
  • FIG. 4 is a plan view of the head portion 20 of the sensor according to the embodiment.
  • FIG. 5 is a cross-sectional view showing the configuration of the head unit 20.
  • the head unit 20 shown in FIG. 5 includes a silicon substrate 21 and a silicon oxide insulating layer 22 having a thickness of about 0.5 ⁇ m formed by oxidizing the surface thereof.
  • a first electrode pair 25 and a second electrode pair 23 are stacked on the insulating layer 22.
  • the first electrode pair 25 has a width of about 1 mm, a length of about 4 mm, and a distance between the electrodes of about 2.5 mm.
  • Each electrode of the first electrode pair 25 is formed of a platinum layer (film thickness: 0.02 ⁇ m) on a first layer (film thickness: 1 ⁇ m) 27 made of aluminum via a bonding layer 28 (film thickness: 0.02 ⁇ m) made of titanium. 0.1 ⁇ m) 29 is laminated.
  • the second electrode pair 23 includes a first layer 31 (film thickness: 1 ⁇ m) made of aluminum, and the first layer 31 can be formed simultaneously with the first layer 27 of the first electrode pair.
  • the first layer 31 of the second electrode pair 25 has a width of 25 ⁇ m and an interval between the electrodes of 875 ⁇ m.
  • the thickness D and the electrode interval W of the upper protective film (silicon nitride film, silicon oxide film, etc.) of each electrode of the second electrode pair 23 are preferably W / D> 100. This is because the width D is related to the capacity of the protective film on the electrode 25 and the interval W is related to the capacity of the space to be measured. As W and D decrease, the respective capacities tend to increase.
  • the combined capacitance when connected in series depends on the capacitance of the smallest value of the individual capacitors (for example, when 100 pF and 1 pF are connected in series, the combined capacitance is about 1 pF), and the ratio This is because the dielectric constant of water is about 100 times that of the protective film, so that the capacity of the space to be measured is always smaller than the capacity of the protective film. It goes without saying that the material of the metal layer constituting these electrodes can be appropriately selected according to the use and purpose.
  • the electrode pairs 23 and 25 are isolated by the second insulating layer 33.
  • a silicon oxide layer 35 film thickness: 0.5 ⁇ m
  • a silicon nitride layer 36 film thickness: 50 nm
  • the silicon nitride layer 36 also covers the surface of the second electrode pair 23. Since the second electrode pair 23 measures capacitance, the surface thereof may be covered with a thin insulating film, and the first layer 31 made of aluminum is protected by covering with the insulating film. it can.
  • the insulating film covering the surface of the second electrode pair 25 is preferably 10 4 ⁇ W [ ⁇ ⁇ m 2 ] or more. This is to eliminate as much as possible the influence of moisture electrical conductivity from the value of the capacitance to be measured.
  • the surface of the head unit 40 is made entirely hydrophilic by laminating a hydrophilic film 38 (thickness 60 nm) made of thin silicon oxide on the surface of the second insulating layer 35. Yes.
  • the hydrophilic film 38 is not provided on the surface of the second electrode pair 23.
  • the combined film thickness of the hydrophilic film 38 and the silicon nitride film 36 is 50 nm or less, for example, The film 38 may be laminated on the second electrode pair 23.
  • Each layer of the head unit 20 shown in FIG. 5 and the head unit 40 shown in FIG. 6 can be formed by an arbitrary method.
  • the electrode layer can be formed by a sputtering method with patterning, and the second insulating layer 35 is formed.
  • the hydrophilic film 38 can be formed by a CVD method.
  • FIG. 7 the result when the electrostatic capacitance of soil is measured with the head part 20 shown in FIG. 5 and the head part 40 shown in FIG. 6 is shown. From the result of FIG. 7, it can be seen that the head unit 40 shown in FIG. 6 can measure the moisture content only up to about 30%. This is because the ratio of the space used by the measurement to the space is about 70%, and the maximum amount that can contain water is 30%. However, according to the study by the present inventors, the head portion 20 shown in FIG. 5 having surface hydrophobicity is effective for artificial soil (such as rock wool). The reason why the measurement range is wider than that of the head unit 40 of the type shown in FIG. 6 is that the rock wool material occupies a small space ratio of about 5% and can contain water up to about 95%.
  • the phase change specifying unit 100 and the electrical conductivity specifying unit 200 are connected to the electrodes 23 and 25 of the head unit of FIG. 5 having a wide detection range with respect to the amount of water.
  • the phase change specifying unit 100 applies an AC electric signal having a predetermined arbitrary frequency to one of the first electrodes 25, and the difference between the phase and the phase of the output electric signal obtained from the other first electrode 23 (phase change). Specify ⁇ 1) and output.
  • the electrical conductivity specifying unit 200 specifies the resistivity ⁇ between the second electrodes 23 and 23, and obtains the electrical conductivity ⁇ 1 therefrom.
  • correction / calculation can be performed in the following manner.
  • the fact that a phase change is observed in the dispersion system (soil) to be measured is that a parallel circuit of a resistor R and a capacitance C in the dispersion system as shown in FIG. Means that exists.
  • the impedance Z of this parallel circuit is expressed as follows.
  • the resistance and capacitance of the substrate itself are affected as shown in FIG.
  • the resistance and capacitance between the substrate and the object to be measured must also be considered.
  • the overall impedance Zt of the circuit shown in FIG. 10B is expressed as follows. here, Zs is the impedance of the substrate, Zw is the impedance of the measurement object, and Zi is the impedance of the interface between the substrate and the measurement object.
  • the impedance of the interface can be calculated as a true value by actual measurement. It can be understood that the impedance of the true measurement object can be calculated each time by calculating the impedance of the interface and the substrate in advance because the interface and the substrate are invariable regardless of the measurement object.
  • the calculation method of the impedance Zw of the space where the amount of moisture is unknown is as follows. here, Than, Will be required. Even for devices where the interface and substrate have an effect, and ⁇ t ⁇ ⁇ w, the true ⁇ w can be obtained by removing the influence of the interface and substrate by using the above formula, and the ion concentration is calculated. It becomes possible to do.
  • electrical conductivity the electrical conductivity of the semiconductor substrate itself and the electrical conductivity at the interface between the semiconductor substrate and the measurement target (hereinafter referred to as “specific electrical conductivity ⁇ s”) can also be determined in advance.
  • the phase change correction unit 110 that corrects the influence of the specific phase change ⁇ s from the measured phase change ⁇ 1 and the electric conductivity correction unit that corrects the influence of the specific electric conductivity ⁇ s from the measured electric conductivity ⁇ 1.
  • 210 was attached (see FIG. 11).
  • 2 and 3 are plots of the output ⁇ 0 of the phase change correction unit 110 and the output ⁇ s of the electrical conductivity correction unit 210 obtained by the apparatus shown in FIG.
  • the frequency of the input electric signal is 500 kHz
  • the voltage (amplitude) is 250 mV
  • a standard ion solution is used
  • the insoluble component is rock wool.
  • the structure of the water content specifying device 1 corresponding to the sixth aspect of the present invention is shown in FIG.
  • the water content identification device 1 includes a head unit 2, a signal processing unit 3, and an estimation unit 4.
  • the head unit 3 includes a first electrode pair 7 and a second electrode pair 8 on the surface of a semiconductor substrate 6 made of silicon or the like. Details of the head unit 3 will be described later with reference to FIGS.
  • the signal processing unit 5 includes a measured electrical conductivity EC1 specifying unit 9 and a measured capacitance Q1 specifying unit.
  • the EC1 specifying unit 9 specifies the electrical conductivity of the soil based on the resistance value between the first electrode pair 7. Since the electrical conductivity obtained here is affected by the amount of moisture (ie, the amount of air in the soil and the amount of soil), it does not accurately reflect the ion concentration of moisture contained in the soil. Apparent electric conductivity EC1 is obtained.
  • the Q1 specifying unit 10 specifies the capacitance of the second electrode pair 8, and an LCR meter is used in this example. Since the water ion concentration has an influence on the capacitance obtained here, it does not accurately reflect the amount of water in the soil, but is an apparent capacitance Q1.
  • the true electrical conductivity EC0 and the true water content WC0 estimating unit 12 are based on the actual measured values EC1 and Q1 specified by the EC1 specifying unit 9 and the Q1 specifying unit 10 and the true electrical conductivity EC0 and the water content WC0. Is estimated. The estimation method will be described later. The head portion shown in FIGS. 5 and 6 is used.
  • FIG. 13 shows the relationship between electrical conductivity and capacitance.
  • the bold line data shows the relationship between the electric conductivity and the capacitance in an aqueous solution (water content: 100%).
  • the capacitance and the amount of water are in a proportional relationship (see FIG. 5).
  • FIG. 14 shows the relationship between moisture content and electrical conductivity.
  • the relationship between the thick lines previously obtained for the aqueous solution (the electrical conductivity and The capacitance C1 corresponding to the electric conductivity A1 in the first relationship with the capacitance (hereinafter referred to as the first calibration curve P) is obtained (step 3), and the measured capacitance B and the capacitance are measured.
  • a ratio R1 with C1 is obtained (step 5).
  • the ratio R1 corresponds to the water content WC.
  • Divide and specify the corrected electrical conductivity A2 (step 7).
  • the corrected electric conductivity A2 is a value when the water content is assumed to be 100%.
  • steps 1 to 13 are repeated via steps 9 and 11. That is, the capacitance C2 of the calibration curve P corresponding to the corrected electric conductivity A2 is specified, and the ratio Rn between the capacitance C2 and the measured capacitance B is obtained. Since A2 is the electrical conductivity when it is assumed that the water content is 100%, the ratio Rn reflects the water content more accurately. Further, the corrected electrical conductivity A2 is divided by the obtained ratio Rn, the corrected electrical conductivity A3 is specified, and the capacitance C3 on the calibration curve P corresponding to the electrical conductivity A3 is specified. Then, a ratio Rn between the capacitance C3 and the actually measured capacitance B is obtained. This ratio Rn more accurately reflects the amount of water.
  • step 13 the difference between the electrical conductivity An and the electrical conductivity An + 1 before and after the correction process is equal to or less than a predetermined threshold value.
  • the electrical conductivity An obtained at that time and the ratio Rn between the capacitance Cn on the calibration curve P corresponding to the electrical conductivity An and the actual measurement value B are both true electrical conductivity of moisture contained in the soil. It becomes close to EC0 and water content WC0 (step 15).
  • the true electrical conductivity and the amount of water are estimated by correcting the electrical conductivity based on the actually measured capacitance.
  • the horizontal axis indicating the change in electrical conductivity is a log mark, and in other words, the amount of change in capacitance with respect to the change in electrical conductivity is small. Because. It is also possible to estimate the true electrical conductivity and water content by correcting the capacitance based on the actually measured electrical conductivity.
  • a method for identifying the moisture state of soil An electrical conductivity measurement step for measuring the electrical conductivity of the soil to be measured; A capacitance measuring step for measuring the capacitance of the soil to be measured; The first electrical conductivity measured in the electrical conductivity measurement step and the first electrostatic capacity measured in the capacitance measurement step are determined in advance for the aqueous solutions having different concentrations.
  • calculating a ratio of the capacitance on the first relationship to the first capacitance in the first electrical conductivity In light of a first relationship with capacitance, calculating a ratio of the capacitance on the first relationship to the first capacitance in the first electrical conductivity;
  • a soil moisture state identifying method comprising: a first electrical conductivity identifying step of correcting the first electrical conductivity based on the calculated ratio to identify a corrected electrical conductivity.
  • FIG. 18 Another estimation method will be described with reference to FIGS.
  • the same steps as those in FIG. 16 are denoted by the same reference numerals, and the description thereof is omitted.
  • the capacitance E when the electrical conductivity is 10 2 S / m is taken as a reference D, and the ratio E between the capacitance and D is obtained for the calibration curve P and stored.
  • This electrostatic capacity B1 is an electrostatic capacity of a standard aqueous solution (electrical conductivity: 10 2 S / m). That is, when it is assumed that the electrical conductivity of water contained in the soil is of the standard D, the capacitance of the soil is defined as a capacitance B1. For aqueous solutions with the same electrical conductivity, the capacitance and the amount of water are proportional to each other.
  • the calibration of the capacitance and the amount of water for a reference aqueous solution (electric conductivity: 10 2 S / m) in advance. If a line is obtained (see FIG. 7), the moisture amount WC1 corresponding to the capacitance B1 can be specified based on the calibration curve (step 25). Since a proportional relationship is also established between the moisture content and the electrical conductivity, the measured electrical conductivity A1 is corrected based on the identified moisture content WC1. Specifically, the actually measured electric power A1 is divided by the water content WC1 (step 27). For the corrected electrical conductivity A2 obtained in this way, the ratio B corresponding to the corrected electrical conductivity A2 is multiplied by the actually measured capacitance B to obtain the capacitance B2.
  • the moisture amount WC2 corresponding to the capacitance B2 is specified in the same manner as described above.
  • the corrected electric conductivity A2 is further corrected from the moisture amount WC2. Specifically, the corrected electrical conductivity A2 is divided by the water content WC2 to obtain a corrected electrical conductivity A3. By repeating the above process, the obtained corrected electrical conductivity An and the water content WCn approach their true values.
  • the above processing method can be expressed as follows. (10) A method for identifying the moisture state of soil, An electrical conductivity measurement step for measuring the electrical conductivity of the soil to be measured; A capacitance measuring step for measuring the capacitance of the soil to be measured; Preliminarily storing a second relationship (FIG. 7) between the amount of water and capacitance for an aqueous solution of a predetermined electrical conductivity; The capacitance E of the aqueous solution having a predetermined electrical conductivity is set as the reference capacitance D, and the ratio E between the capacitance (calibration curve P) when the electrical conductivity is changed and the reference capacitance D is stored.
  • Steps Identifying a water content WC1 in an aqueous solution of the predetermined electrical conductivity based on the measured electrical conductivity A1 and the ratio E; Correcting the measured electric conductivity A1 based on the specified water content WC1 and specifying the corrected electric conductivity A2, and a method for specifying the moisture state of the soil.
  • (11) A step of specifying the amount of water WC2 in the aqueous solution having the predetermined electric conductivity based on the specified corrected electric conductivity A2 and the ratio E; The method for specifying a moisture state according to (10), wherein the corrected electrical conductivity is corrected again based on the specified moisture content.
  • the present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
  • the electrical conductivity and capacitance of the soil are measured simultaneously using the head unit shown in FIG. 4, but the electrical conductivity sensor and the capacitance sensor are measured separately. It does not prevent it.
  • An example of soil can be widely spread in a dispersion system in which an insoluble component is dispersed in a solvent in which an ionic solute is dissolved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 土壌においては、水分量を特定する際には電気伝導度が影響し、電気伝導度を特定する際には水分量が影響する。よって、それぞれの特性を単独で測定しても、得られた値には誤差が含まれてしまう。 土壌に一対の電極を接触させ、電極の一方へ交流の入力電気信号を印加し、電極の他方からの出力電気信号の位相と入力電気信号の位相とを比較し、その変化量から土壌の水分に含まれるイオン濃度を特定する。この位相変化量は土壌の水分量に何ら異存しない。土壌の電気伝導度は水分量とイオン濃度に比例するので、その一方のイオン濃度が特定されれば、土壌の電気伝導度の実測値から土壌の水分量を特定できる。

Description

土壌の水分状態特定装置及びその方法
 本発明は土壌の水分状態特定装置及びその方法に関する。
 農作業の効率化や生産性の向上を図る見地から土壌の水分状態を特定する装置が求められている。特定すべき水分状態として水分量WC、電気伝導度EC、温度、pH、イオン濃度などがある。
 既存の水分量センサとしてテンシオメータ、TDR、静電容量式センサなどが挙げられる(特許文献1、2参照)。
特表2006-527356号公報 特表平09-506165号公報
 土壌中の水分に含まれるイオン濃度を測定することは、農作物育成のための養分状態を知る上で重要な指標となる。
 水溶液中のイオン濃度は電気伝導度σ(即ち、その抵抗率ρの逆数)から特定することができる。この電気伝導度は水溶液中に一対の電極を接触し、その間の電気抵抗を測定することにより得られる。しかしながら、土壌においては、全ての水分が連続しているとは限らない。従って測定された土壌の電気伝導度には土壌中の土や空気の量(即ち、単位体積当たりの土壌から水分量を除いた量)が影響し、土壌に電極を接触させてその間の電気抵抗を単に測定するだけでは土壌に含まれる水分の電気伝導度、ひいては土壌中の水分のイオン濃度を正確に特定できない。
 本発明者らは、土壌に含まれる水分のイオン濃度を特定すべく鋭意検討を重ねてきた。
 本発明者らは一対の電極間に印加する電気信号の位相変化に着目した。
 その結果、当該位相変化は、水分量の如何にかかわらず、水分に含まれるイオン濃度と一定の関係を有することを見出した。
 既述のように、土壌においては全ての水分が連続しているとかぎらないので、土壌に電極を接触させてその間の電気抵抗を単に測定するだけでは土壌に含まれる水分の電気伝導度、ひいては土壌中の水分のイオン濃度を正確に特定することはできない。
 これに対し、位相変化を測定すれば、土壌における水分量の如何にかかわらず、水分に含まれるイオン濃度を特定できる。
 図1に示す一対の電極の下面を測定対象に接触させ、一方の電極へ所定周波数の入力電気信号を印加し、他方の電極から出力電気信号を検出する。そのときの、両者の位相変化θは次の式1で表わされる。
Figure JPOXMLDOC01-appb-M000001
 ここにおいて、水溶液の特性は次のように表わされるものとする。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 但し、Zは水溶液のインピーダンス、Rは水溶液における電極間の抵抗、Cは水溶液における電極間の容量を示す。
 上記式1において、周波数が固定であればω及びεは定数となり、結果として、位相変化θは抵抗率ρのアークタンジェントに比例する。換言すれば、位相変化θは電気伝導度σ(=1/ρ)の逆数のアークタンジェントに比例する。電気伝導度ρは水溶液中のイオン濃度に比例するので、結果として、位相変化θはイオン濃度の逆数のアークタンジェントに比例することとなる。このとき、インピーダンスZは何ら影響しない。
 なお、より厳密にいえば、イオン濃度の変化に伴い水溶液の誘電率εも変化するが、その変化率は水自体の誘電率に比べて極めて小さいので無視することができる。
 図2は、周波数を固定したときの水分量に対する位相変化、イオン濃度に対する位相変化の測定結果である。
 水分量1.0は水溶液の状態を示し、例えば水分量0.4は単位体積のロックウール対してその40容量%の水溶液を含浸させたこを示す。
 図2の結果は、25μm×4mmのアルミニウムの一対を875μmの間隔で配置したもので測定した。
 図2の結果は、位相変化θが水分量に依存せず、イオン濃度の逆数のアークタンジェントにのみ比例することを示している。
 これにより、位相変化θに基づき土壌中の水分のイオン濃度を特定できることがわかる。
 土壌を水分中に土成分と空気とが分散しているものと考えれば、上記の知見は、水等の溶媒Aに他の成分Bを分散させた系において、溶媒Aに溶解したイオン性の溶質Cの濃度が位相変化から特定できることを意味する。ここに、成分Bと成分Aとは電気伝導度とが異なり、成分Bは成分Aに溶解していない。
 水分量に無関係であるので、水溶液自体(即ち、何ら他の不溶成分を含まないもの)についてのイオン濃度を位相変化から求めることもできる。
 この発明の第1の局面は次のように規定される。
 溶媒中に該溶媒に溶解しない不溶成分を分散した分散系において、前記溶媒に含まれる溶質の濃度を特定する方法であって、
 前記分散系に一対の電極を接触させ、
 前記電極の一方へ交流の入力電気信号を印加し、
 前記電極の他方からの出力電気信号の位相と前記入力電気信号の位相とを比較し、
 前記位相の比較結果に基づき、前記溶媒に含まれる溶質の濃度を特定する、濃度特定方法。
 上記において、溶媒は溶質を溶解できるものであれば特に限定されない。水の他、アルコールやエーテル等の油系の溶媒を用いることもできる。
 溶質は溶媒に溶解してイオン化し、溶解量に応じて溶質の電気伝導度を変化させるものとする。
 不溶成分は溶媒に溶解せず、溶媒に対して物理的に独立して溶媒中に分散していれば気体、液体、固体を問わない。ただ、不溶成分は高い電気抵抗を有するものか若しくは絶縁体とする。不溶成分が導電性を備えると、分散系の電気伝導度が当該不溶成分に支配され、求めるところの溶媒の電気伝導度、ひいては溶質の濃度を得られないからである。また、不溶成分に対し溶媒の比誘電率は十分高いものとする。溶媒が不溶成分と同じ程度もしくは小さい比誘電率であった場合、不溶成分に支配され、求めるところの水分量に支配されない濃度の計測が得られないからである。
 かかる不溶成分として、固体状の無機材料及び高分子材料、更には空気その他のガスを用いることができる。水を溶媒としたときは油成分を不溶成分とすることができ、また、その逆も可なりである。
 分散系として土壌を採用したときは、溶媒が水、溶質がリンやカリウム等のイオン、不溶成分は固体成分(粘土やその二次粒子等からなる無機物、生物の屍骸等からなる有機物)や固体成分の空隙に存在する空気からなる。上記固体成分をこの明細書で「土成分」とよび、間隙に存在する空気を「空気成分」とよぶ。
 分散系において不溶成分は溶媒に対して必ずしも均一に分散していなくてもよい。
 分散系に接触させる電極は、分散系に対して化学的に安定とすることが好ましく、例えば、金、白金等の貴金属及びその合金や炭素で形成することができる。
 入力電気信号は電極の一方(第1の電極)へ入力する。入力電気信号は交流信号であり、濃度測定時にはその周波数を一定にすることが好ましい。
 電極の他方(第2の電極)からの出力電気信号を検出し、入力電気信号と出力電気信号との位相を比較する。比較の一態様として両者の位相差を検出する。
 土壌においてその水分量の特定も重要である。
 ここに、汎用的な電気伝導度センサによる測定結果を図3に示す。
 図3の結果より、電気伝導度(EC)センサの出力は水分量及びイオン濃度に比例することがわかる。
 このことは、
Figure JPOXMLDOC01-appb-M000005
 より明らかである。
 1/ρ=σ(電気伝導度)のアークタンジェント∝イオン濃度であり、誘電率εは水分量に比例するからである。
 従って、イオン濃度が特定されれば、測定された電気伝導度より水分量を特定できることがわかる。
 よって、位相変化θよりイオン濃度を特定し、特定されたイオン濃度を基準にして、測定された電気伝導度より土壌の水分量を特定できる。
 水分量の特定においても土壌は分散系の一例に過ぎないことは既述の通りである。
 以上の知見に基づき、この発明の第4の局面は次のように規定される。即ち、
 前記分散系の電気伝導度を測定し、
 得られた前記電気伝導度と第1~3局面の何れかに記載の濃度特定方法で特定された溶媒中のイオン性溶質の濃度とに基づき、前記分散系中の溶媒量を特定する、分散系中の溶媒量特定方法。
 上記、溶媒量特定方法を実行するための溶媒量特定装置として、第5の局面を提案する。
 半導体基板と、
 該半導体基板上に絶縁層を介して第1の電極対と第2の電極対とが配置され、
 前記第1の電極対に接続されて、該第1の電極対間の位相変化を特定する位相変化特定部と、
 前記半導体基板の特定位相変化に基づき、前記位相変化特定部で特定された位相変化を補正する位相変化補正部と、
 前記第2の電極対に接続されて、該第2の電極対間の電気伝導度を特定する電気伝導度特定部と、
 前記半導体基板の特定電気伝導度に基づき、前記電気伝導度特定部で特定された電気伝導度を補正する電気伝導度補正部と、
 を備える溶媒量特定装置。
 本発明者らは土壌の水分に含まれるイオン濃度と水分量とを特定する他の方式も検討してきた。以下に説明する。
 水分量は単位体積の土壌において土と空気の容積を差し引いた部分であるが、土壌中の水分にはカリウムイオン、リン酸イオン等をはじめてとして各種のイオンが含まれているので、電気信号を処理して水分量を特定する際には水分のイオン濃度(以下、単に「濃度」ということがある)を無視することができない。
 土壌に含まれる水分のイオン濃度が特定できれば、水分量を特定する際に当該イオン濃度の影響を補正することができると考えられる。水分のイオン濃度は電気伝導度より特定可能であるが、土壌中において全ての水分が連続しているとは限らないので、換言すれば測定された土壌の電気伝導度には土壌中の土や空気の量(即ち、単位体積当たりの土壌から水分量を除いた量)が影響するので、土壌の電気伝導度を単に測定するだけでは土壌に含まれる水分の濃度を正確に特定することはできない。
 以上説明したように、水分量を特定する際には電気伝導度が影響し、電気伝導度を特定する際には水分量が影響する。よって、それぞれの特性を単独で測定しても、得られた値には誤差が含まれてしまう。
 かかる課題を解決すべく鋭意検討を重ねてきた結果、これらの関係を水分量と電気伝導度の連立方程式と見立てることに気がついた。即ち、同じ土壌から実測した水分量(見掛け上の水分量WC1)と電気伝導度(見掛け上の電気伝導度EC1)を同時に処理することにより、土壌における真の水分量WC0及び真の電気伝導EC0とを推定できると考えた。
 水分量を測定するときに利用する指標として電気伝導度の影響が比較的小さい静電容量値Qを用いることとした。なお、この明細書及び請求の範囲において静電容量を単に「容量」ということがある。
 本発明の第6の局面は次のように規定される。
 半導体基板と、
 該半導体基板上に絶縁層を介して第1の電極対と第2の電極対とが配置され、
 前記第1の電極対に接続されて、該第1の電極対間の電気伝導度を特定する電気伝導度特定部と、
 前記第2の電極対に接続されて、該第2の電極対間の静電容量を特定する静電容量特定部と、を備える土壌の水分状態特定装置。
 このように規定される第6の局面の水分状態特定装置によれば、電気伝導度ECを測定するための第1の電極対と静電容量を測定するための第2の電極対とが同一の半導体基板上に配置されるので、土壌に対して同一の条件でその電気伝導度と静電容量Qを測定できる。よって、実測された電気伝導度(見掛け上の電気伝導度EC1)及び静電容量Q(見掛け上の静電容量Q1;見掛け上の水分量WC1に対応))を処理して得られる真の電気伝導度EC0の推定値及び真の水分量WC0の推定値に高い信頼性を確保できる。
 この発明の第7の局面は次のように規定される。即ち、第6の局面に規定の装置において、前記第1の電極対の内側に前記第2の電極対が配置される。
 このように規定される第7の局面の水分状態特定装置によれば、第1及び第2の電極対の配置を可久的に小さくできる。
 なお、第1の電極対と第2の電極対は基板上において同一の空間を測定できれば、その配置態様は特に限定されるものではない。装置をコンパクトにする見地から第2の局面の構成を採用することが好ましいが、その他、第2の電極対の内側に第1の電極対を配置したり、互い違いに配置することもできる。更には、第1の電極対の向きと第2の電極対の向きとを直交させることもできる。
 この発明の第8の局面は次のように規定される。即ち、第6又は第7の局面に規定の装置において、前記第1及び第2の電極対は相互に絶縁層でアイソレートされ、該絶縁層の表面が親水化処理される。
 このように絶縁層の表面を親水化処理することにより、各電極対に対する土壌中の水分のなじみやすくなり、測定レンジが拡大する。
 親水化処理の方策は特に限定されるものではないが、絶縁層の表面に親水性の層(酸化シリコン膜等)を形成すればよい。
位相変化の演算式1に用いられる電極構造を示す概念図である。 周波数を固定したときの水分量に対する位相変化、イオン濃度に対する位相変化の測定結果である。 周波数を固定したときの水分量に対する電気伝導度変化、イオン濃度に対する電気伝導度変化の測定結果である。 ヘッド部の構成を示す平面図である。 ヘッド部の構成を示す断面図である。 他の態様のヘッド部の構成を示す断面図である。 イオン濃度(電気伝導度)が一定の水溶液における水分量と水分状態特定装置で測定される静電容量との関係をしめすグラフである。 図5のヘッド20を用いた水分状態特定装置の構成を示す概念図である。 図8の測定装置の出力結果を示す。 測定装置を補正する原理を説明する図である。 位相変化補正部と電気伝導度補正部とを備えた実施の形態の水分状態特定装置の構成を示す概念図である。 他の実施の形態の水分状態特定装置の構成を示すブロック図である。 電気伝導度と静電容量との関係を示すグラフである。 水分量と電気伝導度との関係を示すグラフである。 電気伝導度と静電容量の実測値から真の水分量と電気伝導度を推定する方法を説明するグラフである。 同処理の方法を示すフローチャートである。 電気伝導度と静電容量の実測値から真の水分量と電気伝導度を推定する他の方法を説明するグラフである。 同処理方法を示すフローチャートである。
 図4に実施の形態のセンサのヘッド部20の平面図を示す。図5は同じくヘッド部20の構成を示す断面図である。
 図5に示すヘッド部20は、シリコン基板21とその表面を酸化して形成した膜厚約0.5μmの酸化シリコン絶縁層22を備える。
 絶縁層22の上に第1の電極対25と第2の電極対23とが積層される。
 第1の電極対25は、図4に示すとおり、各電極の幅を約1mm、長さを約4mm、電極間の間隔を約2.5mmとしている。
 この第1の電極対25の各電極はアルミニウムからなる第1層(膜厚:1μm)27の上にチタンからなる結合層28(膜厚:0.02μm)を介して白金層(膜厚:0.1μm)29を積層してなる。
 第2の電極対23はアルミニウムからなる第1層31(膜厚:1μ)からなり、この第1層31は、第1の電極対の第1層27と同時に形成できる。第2の電極対25の第1層31は幅25μm、電極間の間隔は875μmである。なお、第2の電極対23の各電極の上部保護膜(窒化シリコン膜や酸化シリコン膜など)の膜厚Dと電極間隔Wは、W/D>100とすることが好ましい。これは、幅Dが電極25上の保護膜の容量と関連し、間隔Wが測定対象物となる空間の容量と関連していることに起因する。WやDが小さくなると、それぞれの容量は大きくなる傾向となる。ここで、直列接続された場合の合成容量は、個々の容量の一番小さな値の容量に依存する(例えば、100pFと1pFを直列接続した場合、合成容量は約1pFとなる)ことと、比誘電率が水は保護膜の約100倍であることを考慮し、必ず測定対象物の空間の容量が保護膜の容量より小さくなるようにするためである。
 これら電極を構成する金属層の材料は、その用途や目的に応じて、適宜選択できることは言うまでもない。
 各電極対23、25は第2の絶縁層33でアイソレートされている。
この例では第2の絶縁層33として酸化シリコン層35(膜厚:0.5μm)と窒化シリコン層36(膜厚:50nm)とを基板側から順に積層した。なお、窒化シリコン層36は第2の電極対23の表面をも被覆する。第2の電極対23は静電容量を測定するものであるのでその表面が薄い絶縁膜で被覆されていてもよく、また、絶縁膜で被覆することのよりアルミニウムからなる第1層31を保護できる。なお、第2の電極対25の表面を被覆する絶縁膜は10×W[Ω・m]以上とすることが好ましい。測定すべき静電容量の値から水分の電気伝導度の影響をでき
る限り排除するためである。
 図6に示すヘッド部40では、第2の絶縁層35の表面へ薄い酸化シリコンからなる親水化膜38(膜厚60nm)を積層することにより、ヘッド部40の表面を全体的に親水性としている。
 この例では、第2の電極対23の表面には親水化膜38を設けていないが、この親水化膜38と窒化シリコン膜36との併せた膜厚が例えば50nm以下となれば、親水化膜38を第2の電極対23の上に積層してもよい。
 なお、図5に示すヘッド部20及び図6に示すヘッド部40の各層は、任意の方法により形成可能であるが、例えば電極層はパターニングを伴うスパッタ法で形成でき、第2の絶縁層35及び親水化膜38はCVD法により形成できる。
 図7には、図5に示すヘッド部20と図6に示すヘッド部40とで土壌の静電容量を測定したときの結果を示す。図7の結果から、図6に示すヘッド部40では、水分量が30%程度までしか測定できないことがわかる。これは、測定に用いた土嬢が空間に占める割合が70%程度あり、水を含むことが出来る最大量が30%であるためである。
 但し、本発明者らの検討によれば、人工的な土壌(ロックウール等)に対しては表面疎水性の図5に示すヘッド部20が有効になる。図6に示すタイプのヘッド部40より測定範囲が広くなる理由は、ロックウールの素材は空間に占める割合が5%程度と少なく、95%程度まで水を含ませることができることによる。
 水分量に対して広い検出レンジを備える図5のヘッド部の各電極23、25に対して、図8に示すように位相変化特定部100と電気伝導度特定部200を接続した。
 位相変化特定部100は第1の電極25の一方へ所定の任意周波数の交流電気信号を印加し、その位相と他方の第1の電極23から得られる出力電気信号の位相との差(位相変化θ1)を特定し、出力する。
 電気伝導度特定部200は第2の電極23、23間の抵抗率ρを特定し、これから電気伝導度σ1を得る。
 図2及び図3の結果を得た測定対象を図8に示した装置で測定したところ、結果(位相変化θ1、電気伝導度σ1)はそれぞれ図9(A)及び図9(B)となった。即ち、ノイズが入って理論通りに作動しなかった。
 かかるノイズの原因は下記にあると考えられる。
 測定対象のインピーダンス(振幅や位相など)を計測する場合、センサとして得られる信号には、界面酸化膜及び基板酸化膜のインピーダンスの影響が入る場合があるからである。
 このようなときには、以下に示すやり方で補正・算出をすることができる。
 その前提として、測定対象である分散系(土壌)において位相変化が見られることは、電気回路的には、図10(A)に示す通り分散系に抵抗Rと静電容量Cとの並列回路が存在することを意味する。
 この並列回路のインピーダンスZは次のように表わされる。
Figure JPOXMLDOC01-appb-M000006
 他方、第1及び第2の電極23、25は半導体基板に配設されているので、図10(B)に示す通り、基板自体の抵抗及び静電容量が影響する。更には、基板と測定対象との間の抵抗及び静電容量も考慮しなければならない。
 図10(B)に示す回路の全体のインピーダンスZtは次のように表わされる。
Figure JPOXMLDOC01-appb-M000007
 ここに、
 Zsは基板のインピーダンス、Zwは測定対象のインピーダンス、Ziは基板と測定対象との界面のインピーダンスである。
 Ztは直接センサとして計測できるものである。仮に、Zwがとても大きな値を持つ状態、すなわち対象物に触れずに空気のみとした場合、以下の式とすることができる。
 
  Zt=Zs
 
 このことより、Zsは実測により求めることができることが分かる。また、Zw<<Ziとなる状態、すなわち測定対象物より十分イオン濃度が濃い溶液に浸水させた場合、以下の式とすることができる。
Figure JPOXMLDOC01-appb-M000008
これは、Zt、Zsが既知であるため、Ziは計算により求めることができる。前述の式を変形すると、
Figure JPOXMLDOC01-appb-M000009
 となる。
 実際の計測では、振幅の実効値からインピーダンスの絶対値|Z|が、位相から位相Θを測定するので、
 
Figure JPOXMLDOC01-appb-M000010
となる。ここで、
Figure JPOXMLDOC01-appb-M000011
であるため、次式が導き出せる。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-I000013
 この式からいえることは、界面のインピーダンスは、実測により真の値を算出できるということである。
 界面及び基板はどのような測定対象物であっても不変であることから、あらかじめ界面及び基板のインピーダンスを算出することにより、真の測定対象物のインピーダンスをその都度算出することができることが分かる。
 水分量が不明な空間のインピーダンスZwの算出方法は以下となる。
Figure JPOXMLDOC01-appb-M000014
ここで、
Figure JPOXMLDOC01-appb-M000015
より、
Figure JPOXMLDOC01-appb-I000016
 が求まることとなる。界面及び基板が影響を及ぼし、θt≠θwとなるデバイスであっても、上述の計算式を用いることにより、界面及び基板の影響を除去して真のθwを求めることができ、イオン濃度を算出することが可能となる。
 同様に、電気伝導度においても、半導体基板自体の電気伝導度及び半導体基板と測定対象との界面における電気伝伝導度(以下、「特定電気伝導度σs」も予め定めることができる。
 以上より、図8の装置に、実測位相変化θ1から特定位相変化θsの影響を補正する位相変化補正部110と実測電気伝導度σ1から特定電気伝導度σsの影響を補正する電気伝導度補正部210を付設した(図11参照)。
 図2及び図3の結果は、図11に示した装置で得た位相変化補正部110の出力σ0と電気伝導度補正部210の出力θsをプロットしたものである。
 なお、入力電気信号の周波数は500kHz、電圧(振幅)は250mVとし、標準イオン溶液を用い、不溶成分はロックウールである。
 この発明の第6の局面に対応する水分量特定装置1の構成を図12に示す。
  この水分量特定装置1はヘッド部2、信号処理部3及び推定部4を備える。
 ヘッド部3はシリコン等からなる半導体基板6の表面に第1の電極対7及び第2の電極対8を備える。ヘッド部3の詳細は図2及び図3に基づき後述する。
 信号処理部5は実測電気伝導度EC1特定部9と実測静電容量Q1特定部とを備える。EC1特定部9は、第1の電極対7間の抵抗値に基づき土壌の電気伝導度を特定する。ここで得られた電気伝導度は水分量(即ち、土壌中の空気量や土の量)が影響しているので、土壌に含まれる水分のイオン濃度を正確に反映しているものではなく、見掛け上の電気伝導度EC1となる。
 同様に、Q1特定部10は、第2の電極対8の静電容量を特定するものであり、この例ではLCRメータを利用する。ここで得られた静電容量には水分のイオン濃度が影響しているので、土壌の水分量を正確に反映しているものではなく、見掛け上の静電容量Q1となる。
 真の電気伝導度EC0及び真の水分量WC0推定部12は、EC1特定部9とQ1特定部10で特定された実測値EC1とQ1とに基づき、真の電気伝導度EC0と水分量WC0とを推定する。推定の手法については後述する。
 ヘッド部には図5及び図6に示したものを用いられる。
 次に、EC1特定部9で特定された実測電気伝導度EC1とQ1特定部10で特定された実測静電容量Q1とに基づき真の伝導度EC0と真の水分量WC0を推定する方法について説明する。
 最初に、本発明者らの検討により、土壌の電気伝導度、静電容量及び水分量には次の関係があることがわかった。
 図13は電気伝導度と静電容量との関係を示す。図12において太線のデータは水溶液(水分量100%)における電気伝導度と静電容量との関係を示す。
 電気伝導度が同じ場合は、静電容量と水分量は比例の関係にある(図5参照)。従って、各種水分量(80%、60%、40%、20%)における電気伝伝導度と静電容量との関係は図13において細線で表現される。
 図14は水分量と電気伝導度との関係を示す。水分量100%のときの電気伝導度に対して、水分量が小さくなると電気伝導度は比例して小さくなる。
 以上の前提条件のもと、図12で測定された電気伝導度EC1(第1の電気伝導度)がA1、静電容量Q1(第1の静電容量)がBの値をとったとする(図16、ステップ1)。
 値A1及びBを、図13のグラフにプロットする(図15参照)。
 同じ電気伝導度(即ち同じイオン濃度)の水分に対して静電容量と水分量とは比例の関係にあるので(図7参照)、水溶液について予め得られている太線の関係(電気伝導度と静電容量との第1の関係、以下第1の検量線Pという)における電気伝導度A1に対応する静電容量C1を求め(ステップ3)、実測された静電容量Bと当該静電容量C1との比R1を求める(ステップ5)。既述のように、この比R1は水分量WCに対応する。例えば図15の例では、B/Cは0.6であるので、土壌の水分量WCを0.6と仮定する。
 次に、電気伝導度が同じものであれば、水分量と電気伝導との間に比例関係が成立するので(図14)、実測された電気伝導度A1を比R1(=水分量WC)で割り算し、補正された電気伝導度A2を特定する(ステップ7)。この補正電気伝導度A2は水分量が100%と仮定したときの値である。
 次に、ステップ9、ステップ11を介してステップ1~ステップ13を繰り返す。
 即ち、補正された電気伝導度A2に対応する検量線Pの静電容量C2を特定し、この静電容量C2と実測された静電容量Bとの比Rnを求める。A2は水分量100%と仮定されたときの電気伝導度であるため、この比Rnは水分量をより正確に反映するものとなる。
 更に、補正電気伝導度A2を得られた比Rnで割り算し、更に補正された電気伝導度A3を特定し、この電気電度度A3に対応する検量線P上の静電容量C3を特定し、この静電容量C3と実測された静電容量Bとの比Rnを求める。この比Rnは水分量を更に正確に反映するものとなる。
 以下、この処理を繰返し、補正処理前後の電気伝導度Anと電気伝導度An+1との差が所定の閾値以下となるまで行なう(ステップ13)。そのとき得られた電気伝導度Anと当該電気伝導度Anに対応する検量線P上の静電容量Cnと実測値Bとの比Rnとは、ともに土壌に含まれる水分の真の電気伝導度EC0と水分量WC0に近いものとなる(ステップ15)。
 上記の例では、実測された静電容量を基準にして、電気伝導度を補正することにより、真の電気伝導度及び水分量を推定している。静電容量を基準にしたのは、図13に示されるとおり、電気伝導度の変化を示す横軸はログ標記であり、換言すれば、電気伝導度の変化に対する静電容量の変化量が小さいからである。
 実測された電気伝導度を基準にして静電容量を補正することにより、真の電気伝導度及び水分量を推定することも可能である。
 以上をまとめると、次のようになる。
(1) 土壌の水分状態を特定する方法であって、
 測定対象土壌の電気伝導度を測定する電気伝導度測定ステップと、
 前記測定対象土壌の静電容量を測定する静電容量測定ステップと、
 前記電気伝導度測定ステップで測定された第1の電気伝導度と前記静電容量測定ステップで測定された第1の静電容量とを、濃度の異なる水溶液について予め定められている電気伝導度と静電容量との第1の関係に照らし、前記第1の電気伝導度における前記第1の関係上の静電容量と前記第1の静電容量との比を演算するステップと、
 前記演算された比に基づき、前記第1の電気伝導度を補正して補正電気伝導度を特定する第1の電気伝導度特定ステップと、を含む土壌の水分状特定方法。
(2) 前記第1の静電容量と前記補正電気伝導度における前記第1の関係上の静電容量との比に基づき水分量を特定する水分量特定ステップを更に含む、(1)に記載の方法。
(3) 前記補正電気伝導度における前記第1の関係上の静電容量と前記第1の静電容量との比を演算し、演算された比に基づき前記補正電気伝導度を更に特定する第2の電気伝導度特定ステップと、
 補正前後の電気伝導度の差が所定値以下になるまで前記第2の電気伝導度特定ステップを繰返す、(1)に記載の方法。
(4) (3)において補正前後の電気伝導度の差が所定値以下になったときの前記第2の電気伝導度特定ステップで特定された補正電気伝導度おける前記第1の関係上の静電容量と前記第1の静電容量との比に基づき水分量を特定するステップを更に備える、(4)に記載の方法。
 他の推定方法につき、図17及び図18に基づき説明をする。なお、図18において図16と同一のステップには同一の符号を付してその説明を省略する。
 この推定方法の前提として、電気伝導度と静電容量との関係は、電気伝導度がある程度大きくなると(例えば10S/mを超えると)、静電容量が変化しなくなることに着目した。
 図17に示すとおり、電気伝導度が10S/mのときの静電容量を基準Dとして、検量線Pについてその静電容量とDとの比Eを求め、保存しておく。
 実測された電気伝導度がA1、静電容量がBのとき(ステップ1)、実測された電気伝導度A1に対応する比Eを静電容量Bへ掛け合わせて静電容量B1を求める(ステップ23)。この静電容量B1は基準となる水溶液(電気伝導度:10S/m)の静電容量である。即ち、土壌に含まれる水の電気伝導度が基準Dのものと仮定したとき、土壌の静電容量を静電容量B1とする。
 電気伝導度が等しい水溶液については静電容量と水分量とは比例の関係にあるので、予め基準となる水溶液(電気伝導度:10S/m)につき、静電容量と水分量との検量線を求めておけば(図7参照)、この検量線に基づき静電容量B1に対応する水分量WC1を特定できる(ステップ25)。
 水分量と電気伝導度にも比例関係が成立するので、特定された水分量WC1に基づき実測された電気伝導度A1を補正する。具体的には実測された電気電度度A1を水分量WC1で割り算する(ステップ27)。
 このようにして得られた補正電気伝導度A2につき、それに対応する比Eを実測された静電容量Bへ掛け合わせて静電容量B2を求める。そして、上記と同様にして静電容量B2に対応する水分量WC2を特定する。この水分量WC2から補正電気伝導度A2を更に補正する。具体的には補正電気伝導度A2を水分量WC2で割り算し、補正電気伝導度A3とする。
 上記処理を繰り返すことにより、得られる補正電気伝導度Anと水分量WCnはそれぞれの真値に近づく。
 以上の処理方法は次のように表現できる。
(10) 土壌の水分状態を特定する方法であって、
 測定対象土壌の電気伝導度を測定する電気伝導度測定ステップと、
 前記測定対象土壌の静電容量を測定する静電容量測定ステップと、
 所定の電気伝導度の水溶液についての水分量と静電容量との第2の関係(図7)を予め保存するステップと、
 所定の電気伝導度の水溶液の静電容量を基準静電容量Dとして、電気伝導度を変化させたときの静電容量(検量線P)と前記基準静電容量Dとの比Eを保存するステップと、
 測定された電気伝導度A1と前記比Eとに基づき、前記所定の電気伝導度の水溶液における水分量WC1を特定するステップと、
 特定された水分量WC1に基づき、前記測定された電気伝導度A1を補正し、補正電気伝導度A2を特定するステップと、を含む土壌の水分状態特定方法。
(11) 特定された補正電気伝導度A2と前記比Eとに基づき、前記所定の電気伝導度の水溶液における水分量WC2を特定するステップ、
 特定された水分量に基づき、前記補正電気伝導度を再度補正する、(10)に記載の水分状態特定方法。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 上記の例は、図4に示すヘッド部を用いて土壌の電気伝導度と静電容量とを同時に測定しているが、電気伝導度センサと静電容量センサとを別体として測定することを妨げるものではない。
 土壌の例は、イオン性の溶質を溶解させた溶媒に不溶成分を分散させてなる分散系にひろく敷衍できる。
1 水分状態特定装置
2、20、40 ヘッド部
3、21 基板
3 信号処理部
4 推定部
7、23 第1の電極対
8、25 第2の電極対
100 位相変化特定部
110 位相変化補正部
200 電気伝導度特定部
210 電気伝導度補正部

Claims (8)

  1.  溶媒中に該溶媒に溶解しない不溶成分を分散した分散系において、前記溶媒に含まれるイオン性の溶質の濃度を特定する方法であって、
     前記分散系に第1の電極対を接触させ、
     前記電極の一方へ交流の入力電気信号を印加し、
     前記電極の他方からの出力電気信号の位相と前記入力電気信号の位相とを比較し、
     前記位相の比較結果に基づき、前記溶媒に含まれるイオン性の溶質の濃度を特定する、濃度特定方法。
  2.  前記溶媒は水であり、前記不溶成分は空気成分及び土成分である、請求項1に記載の濃度特定方法。
  3.  前記入力電気信号と前記出力電気信号との位相差に基づき、前記溶質の濃度を特定する、請求項1又は2に記載の濃度特定方法。
  4.  前記分散系の電気伝導度を測定し、
     得られた前記電気伝導度と請求項1~3の何れかに記載の濃度特定方法で特定されたイオン性溶質の濃度とに基づき、前記分散系中の溶媒量を特定する、分散系中の溶媒量特定方法。
  5.  半導体基板と、
     該半導体基板上に絶縁層を介して第1の電極対と第2の電極対とが配置され、
     前記第1の電極対に接続されて、該第1の電極対間の位相変化を特定する位相変化特定部と、
     前記半導体基板の特定位相変化に基づき、前記位相変化特定部で特定された位相変化を補正する位相変化補正部と、
     前記第2の電極対に接続されて、該第2の電極対間の電気伝導度を特定する電気伝導度特定部と、
     前記半導体基板の特定電気伝導度に基づき、前記電気伝導度特定部で特定された電気伝導度を補正する電気伝導度補正部と、
     を備える溶媒量特定装置。
  6.  半導体基板と、
     該半導体基板上に絶縁層を介して第1の電極対と第2の電極対とが配置され、
     前記第1の電極対に接続されて、該第1の電極対間の電気伝導度を特定する電気伝導度特定部と、
     前記第2の電極対に接続されて、該第2の電極対間の静電容量を特定する静電容量特定部と、を備える土壌の水分状態特定装置。
  7.  前記第1の電極対と前記第2の電極対が同一空間を計測できるように配置される、請求項6に記載の装置。
  8.  前記第1及び第2の電極対は相互に第2の絶縁層で絶縁され、該第2の絶縁層の表面が親水化処理される、請求項6又は7に記載の装置。
PCT/JP2011/063545 2010-06-17 2011-06-14 土壌の水分状態特定装置及びその方法 WO2011158812A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11795717.5A EP2584348A4 (en) 2010-06-17 2011-06-14 Specification device for water status of soil, and method for same
CN201180029311.5A CN102985812B (zh) 2010-06-17 2011-06-14 土壤的水分状态确定装置及其方法
US13/702,371 US9335287B2 (en) 2010-06-17 2011-06-14 Specification device for water status of soil, and method for same
JP2012520446A JP5871237B2 (ja) 2010-06-17 2011-06-14 土壌の水分状態特定装置及びその方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-138443 2010-06-17
JP2010138443 2010-06-17

Publications (1)

Publication Number Publication Date
WO2011158812A1 true WO2011158812A1 (ja) 2011-12-22

Family

ID=45348211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063545 WO2011158812A1 (ja) 2010-06-17 2011-06-14 土壌の水分状態特定装置及びその方法

Country Status (5)

Country Link
US (1) US9335287B2 (ja)
EP (1) EP2584348A4 (ja)
JP (1) JP5871237B2 (ja)
CN (1) CN102985812B (ja)
WO (1) WO2011158812A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778480A (zh) * 2012-07-23 2012-11-14 中国神华能源股份有限公司 干旱条件下矿区采动裂隙带地表含水性的电性识别方法
JP2013083606A (ja) * 2011-10-12 2013-05-09 Fujitsu Ltd 誘電率センサ
JP2013200193A (ja) * 2012-03-23 2013-10-03 Mega Chips Corp 水分検出装置、電気伝導度検出装置、センサネットワークシステム、プログラム、水分検出方法および電気伝導度検出方法
JP2013200194A (ja) * 2012-03-23 2013-10-03 Mega Chips Corp 水分検出装置、電気伝導度検出装置、センサネットワークシステム、プログラム、水分検出方法および電気伝導度検出方法
JP2015017964A (ja) * 2013-03-08 2015-01-29 株式会社サクラクレパス 誘電分散特性による液中帯電粒子の帯電状態の評価方法及び評価装置
JP2017045964A (ja) * 2015-08-28 2017-03-02 ラピスセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
JP2017096712A (ja) * 2015-11-20 2017-06-01 ラピスセミコンダクタ株式会社 センサモジュール、測定システム、及び測定方法
WO2017170510A1 (ja) * 2016-03-30 2017-10-05 株式会社ニコン メッキ処理方法、メッキ処理装置、および、センサー装置
JP2018017558A (ja) * 2016-07-26 2018-02-01 ラピスセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
JP2018054363A (ja) * 2016-09-27 2018-04-05 ラピスセミコンダクタ株式会社 半導体装置および半導体装置の製造方法
US10794854B2 (en) 2017-10-27 2020-10-06 Lapis Semiconductor Co., Ltd. Measurement device
JP2020169859A (ja) * 2019-04-02 2020-10-15 株式会社Ihi 測定装置
JP2021148592A (ja) * 2020-03-19 2021-09-27 日本精密測器株式会社 水分検知センサ
WO2022149320A1 (ja) * 2021-01-06 2022-07-14 株式会社村田製作所 水分検出センサ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616391B (zh) * 2013-10-25 2019-03-29 北京林业大学 水分传感器及表层土壤参数采集装置
CN105116015A (zh) * 2015-08-17 2015-12-02 何长毛 一种蔬果离子浓度的检测方法及装置
CN106198650A (zh) * 2016-07-04 2016-12-07 中国环境科学研究院 一种有机废物物料含水量的测定方法
CN106770516A (zh) * 2016-12-07 2017-05-31 深圳绿食宝科技有限公司 一种生物产品中硝酸盐离子含量的测量方法及其测量系统
KR102143684B1 (ko) 2018-04-12 2020-08-13 (주) 텔로팜 토양 내 수분 함량 측정 장치
KR102143685B1 (ko) * 2018-04-17 2020-08-13 (주) 텔로팜 토양의 전기 전도도 측정 장치
KR102186469B1 (ko) * 2018-04-20 2020-12-04 (주) 텔로팜 전기 전도도 측정용 마이크로 프로브 및 이를 구비한 전기 전도도 측정 장치
KR102186466B1 (ko) * 2018-04-23 2020-12-04 (주) 텔로팜 식물 수액의 전기 전도도 및 유속 측정용 마이크로 프로브와, 이를 구비한 측정 장치
EP3872483B1 (en) * 2018-10-22 2023-10-18 National University Corporation Shizuoka University Soil evaluation sensor, soil evaluation system, electrode for soil evaluation sensor, and device for obtaining impedance characteristic of soil
KR102652662B1 (ko) * 2021-11-09 2024-03-29 한국건설기술연구원 정전용량형 구조를 활용한 토양표면 정전기 측정 장치, 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록매체

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234147A (ja) * 1987-03-23 1988-09-29 Kyoto Denshi Kogyo Kk 交流印加分極反応に於ける位相差検出方法
JPH02103264U (ja) * 1989-02-06 1990-08-16
JPH0658895A (ja) * 1992-08-12 1994-03-04 Tokimec Inc 氷分濃度計測装置
JPH0732562U (ja) * 1993-11-18 1995-06-16 秀夫 大西 水分測定器
JPH09506165A (ja) 1993-08-29 1997-06-17 シローラ テレビジョン アンド エレクトロニクス 土壌水分センサ
JP2004271494A (ja) * 2003-03-11 2004-09-30 Asuzac Inc 土中水分スイッチ
JP2005121428A (ja) * 2003-10-15 2005-05-12 Alps Electric Co Ltd 液体濃度センサ
JP2006527356A (ja) 2003-06-06 2006-11-30 エム.ビー.ティー.エル.リミテッド 環境センサー
JP2008014802A (ja) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd 細胞電気生理センサとその製造方法
JP2009092633A (ja) * 2007-10-12 2009-04-30 Denso Corp インピーダンスセンサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116994A (en) * 1974-07-31 1976-02-10 Japan Radio Co Ltd Koshuhanyoru dojochuno gansuiryosokuteihoshiki
IL68549A (en) * 1983-05-03 1988-05-31 Kit Medidont Ltd Method and instrument for measuring moisture
US4646000A (en) * 1984-11-08 1987-02-24 The Yellow Springs Instrument Company Method and apparatus for measuring soil salinity
US4921880A (en) * 1988-08-15 1990-05-01 Dow Corning Corporation Adhesion promoter for UV curable siloxane compositions and compositions containing same
US5442293A (en) * 1992-12-21 1995-08-15 Lange; James N. Method and apparatus for determining fluid content and conductivity in porous materials
JP5241044B2 (ja) * 2009-02-10 2013-07-17 パナソニック株式会社 微粒子測定装置及び微粒子測定方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234147A (ja) * 1987-03-23 1988-09-29 Kyoto Denshi Kogyo Kk 交流印加分極反応に於ける位相差検出方法
JPH02103264U (ja) * 1989-02-06 1990-08-16
JPH0658895A (ja) * 1992-08-12 1994-03-04 Tokimec Inc 氷分濃度計測装置
JPH09506165A (ja) 1993-08-29 1997-06-17 シローラ テレビジョン アンド エレクトロニクス 土壌水分センサ
JPH0732562U (ja) * 1993-11-18 1995-06-16 秀夫 大西 水分測定器
JP2004271494A (ja) * 2003-03-11 2004-09-30 Asuzac Inc 土中水分スイッチ
JP2006527356A (ja) 2003-06-06 2006-11-30 エム.ビー.ティー.エル.リミテッド 環境センサー
JP2005121428A (ja) * 2003-10-15 2005-05-12 Alps Electric Co Ltd 液体濃度センサ
JP2008014802A (ja) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd 細胞電気生理センサとその製造方法
JP2009092633A (ja) * 2007-10-12 2009-04-30 Denso Corp インピーダンスセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2584348A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083606A (ja) * 2011-10-12 2013-05-09 Fujitsu Ltd 誘電率センサ
JP2013200193A (ja) * 2012-03-23 2013-10-03 Mega Chips Corp 水分検出装置、電気伝導度検出装置、センサネットワークシステム、プログラム、水分検出方法および電気伝導度検出方法
JP2013200194A (ja) * 2012-03-23 2013-10-03 Mega Chips Corp 水分検出装置、電気伝導度検出装置、センサネットワークシステム、プログラム、水分検出方法および電気伝導度検出方法
CN102778480A (zh) * 2012-07-23 2012-11-14 中国神华能源股份有限公司 干旱条件下矿区采动裂隙带地表含水性的电性识别方法
JP2015017964A (ja) * 2013-03-08 2015-01-29 株式会社サクラクレパス 誘電分散特性による液中帯電粒子の帯電状態の評価方法及び評価装置
JP2017045964A (ja) * 2015-08-28 2017-03-02 ラピスセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
JP2017096712A (ja) * 2015-11-20 2017-06-01 ラピスセミコンダクタ株式会社 センサモジュール、測定システム、及び測定方法
KR20180128911A (ko) * 2016-03-30 2018-12-04 가부시키가이샤 니콘 도금 처리 방법, 도금 처리 장치, 및 센서 장치
TWI732840B (zh) * 2016-03-30 2021-07-11 日商尼康股份有限公司 鍍敷處理方法、鍍敷處理裝置、及感測器裝置
KR102373920B1 (ko) 2016-03-30 2022-03-14 가부시키가이샤 니콘 도금 처리 방법, 도금 처리 장치, 및 센서 장치
WO2017170510A1 (ja) * 2016-03-30 2017-10-05 株式会社ニコン メッキ処理方法、メッキ処理装置、および、センサー装置
JPWO2017170510A1 (ja) * 2016-03-30 2019-02-07 株式会社ニコン メッキ処理方法、メッキ処理装置、および、センサー装置
KR102372799B1 (ko) 2016-03-30 2022-03-10 가부시키가이샤 니콘 도금 처리 방법, 도금 처리 장치, 및 센서 장치
KR20210154880A (ko) * 2016-03-30 2021-12-21 가부시키가이샤 니콘 도금 처리 방법, 도금 처리 장치, 및 센서 장치
JP2018017558A (ja) * 2016-07-26 2018-02-01 ラピスセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
JP2018054363A (ja) * 2016-09-27 2018-04-05 ラピスセミコンダクタ株式会社 半導体装置および半導体装置の製造方法
US10794854B2 (en) 2017-10-27 2020-10-06 Lapis Semiconductor Co., Ltd. Measurement device
JP2020169859A (ja) * 2019-04-02 2020-10-15 株式会社Ihi 測定装置
JP7215303B2 (ja) 2019-04-02 2023-01-31 株式会社Ihi 測定装置
JP2021148592A (ja) * 2020-03-19 2021-09-27 日本精密測器株式会社 水分検知センサ
JP7125769B2 (ja) 2020-03-19 2022-08-25 日本精密測器株式会社 水分検知センサ
WO2022149320A1 (ja) * 2021-01-06 2022-07-14 株式会社村田製作所 水分検出センサ

Also Published As

Publication number Publication date
JP5871237B2 (ja) 2016-03-01
US20130134994A1 (en) 2013-05-30
EP2584348A1 (en) 2013-04-24
CN102985812A (zh) 2013-03-20
US9335287B2 (en) 2016-05-10
EP2584348A4 (en) 2017-03-08
JPWO2011158812A1 (ja) 2013-08-19
CN102985812B (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5871237B2 (ja) 土壌の水分状態特定装置及びその方法
JP6141330B2 (ja) 生化学的用途での超低電流測定のためのノイズ遮蔽技術
EP2405263B1 (en) Analysis of a dielectric medium
JP7071723B2 (ja) 複素誘電率測定用回路、複素誘電率測定装置及び複素誘電率の測定方法
Aoki et al. Resistance associated with measurements of capacitance in electric double layers
US20140132288A1 (en) Method for measuring electrical conductivity and electrical conductivity measuring system using the same
JP6321968B2 (ja) ガスセンサ素子
JP2017534064A5 (ja)
US11802863B2 (en) Oil condition determination system, oil condition determination method, and oil condition determination program
Lvovich et al. Optimization and fabrication of planar interdigitated impedance sensors for highly resistive non-aqueous industrial fluids
CN105841739A (zh) 温湿度传感器及其制备方法、温湿度测量系统
KR102143685B1 (ko) 토양의 전기 전도도 측정 장치
JP2001215203A (ja) 電気伝導度測定装置、土壌導電率測定方法及び土壌溶液導電率測定装置
CN104067113B (zh) 低电导率的接触式电导率测试系统
Bäcker et al. Planar and 3D interdigitated electrodes for biosensing applications: The impact of a dielectric barrier on the sensor properties
JP3968297B2 (ja) コンクリート内部の鉄筋腐食計測方法
KR20130056589A (ko) 부식감지센서 및 부식감지방법
Bourjilat et al. Modelization of interdigitated electrode sensor for impedance spectroscopy measurement
US20170315074A1 (en) Micromechanical moisture sensor device and corresponding manufacturing method
Huck et al. Multi‐parameter sensing using high‐k oxide of barium strontium titanate
Manukyan MODELING THE BARIUM-STRONTIUM-TITANATE-BASED ELECTROLYTE CONDUCTIVITY SENSOR IMPEDANCE PARAMETERS FOR A FOUR-ELECTRODE CONFIGURATION
JP2002296209A (ja) 複合溶液の濃度計測システム
JP6424528B2 (ja) ガスセンサ素子
EP3593115B1 (en) A method of detecting the locally generated corrosion of a metal element
JP5332037B2 (ja) 絶縁劣化モニタ装置、電気機器および絶縁劣化モニタ方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029311.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520446

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011795717

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13702371

Country of ref document: US