JP2005121428A - 液体濃度センサ - Google Patents

液体濃度センサ Download PDF

Info

Publication number
JP2005121428A
JP2005121428A JP2003355197A JP2003355197A JP2005121428A JP 2005121428 A JP2005121428 A JP 2005121428A JP 2003355197 A JP2003355197 A JP 2003355197A JP 2003355197 A JP2003355197 A JP 2003355197A JP 2005121428 A JP2005121428 A JP 2005121428A
Authority
JP
Japan
Prior art keywords
liquid
concentration
liquid concentration
methanol
concentration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003355197A
Other languages
English (en)
Inventor
Shin Kiuchi
慎 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003355197A priority Critical patent/JP2005121428A/ja
Publication of JP2005121428A publication Critical patent/JP2005121428A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】 濃度を高精度に測定することができる液体濃度センサを提供すること。
【解決手段】 誘電率の異なる液体を混合してなる混合液体中に含まれる液体濃度を検出する液体濃度センサであって、液体濃度を検出するパラメータとして、混合液体の誘電率に基づく交流信号の位相差を利用する。
【選択図】図1

Description

本発明は、たとえば液体燃料を用いて作動する燃料電池の液体燃料濃度を検出するもので、混合液体の液体濃度(混合割合)を検出する液体濃度センサに関するものである。
近年、たとえばPDA(電子手帳)、コンピュータ、携帯電話など、小型で持ち運べる情報機器の利用形態を総称して「モバイル」と呼び、さらには、このような利用形態の機器類を総称して「モバイル機器」という用語が広く用いられている。このようなモバイル機器においては、その機能が年々増加して電源(電池)に対する要求も厳しいものとなっている。しかしながら、現在の主流であるリチウムイオン電池等の電池類は、モバイル機器側の進化に追いついていないのが現状であり、小型で寿命の長い電源の開発が求められている。
このような背景から、モバイル機器の機能強化に対応し、しかも、長時間駆動を可能にする将来的に有望な電源として燃料電池が注目され、その実用化に向けた研究開発が鋭意進められている。
現在、燃料電池にはいくつかの種類があり、上述したモバイル機器用の燃料電池としては、メタノールを直接燃料として使用する直接メタノール型燃料電池(DMFC:Direct Methanol Fuel Cell)が有望視されている。このような直接メタノール型燃料電池のシステムは、たとえば特表2003−507859号公報及び特表2003−510777号公報に開示されている。そして、このような直接メタノール型燃料電池においては、その制御パラメータとして水で希釈したメタノール濃度が重要になるため、上記公報には、水及びメタノールを混合した混合液体の誘電率を利用してメタノール濃度を検出する方法も開示されている。
また、混合物(燃料)の誘電率から濃度(含有率)を測定する測定装置の回路構成については、ガソリンにアルコールを混合した混合物のアルコール含有率を測定するものが開示されている。この場合の回路構成は、燃料通路の途中に設けた導電性の電極と、この導電性電極と所定の間隔をおいて配置される単層巻きコイルとを備え、単層巻きコイルの共振周波数の変化を検出することによって燃料の濃度を検出するものである。なお、単層巻きコイルの共振周波数は、燃料の誘電率により変化している(たとえば、特許文献1及び特許文献2参照)。
特開平5−34310号公報 特開平5−72165号公報
上述したように、直接メタノール型燃料電池においては、メタノール濃度を正確に測定することが重要になる。しかし、共振周波数の変化を検出する特許文献1及び特許文献2に開示された従来技術の測定方法では、外乱ノイズの影響により検出精度が大きくばらついてしまい、正しい濃度検出ができなくなるという問題を有している。
また、混合液体の誘電率に応じて変化するコンデンサ容量(絶対値)を測定して液体濃度を検出しようとすれば、混合液体が水溶液であると、直流伝導度の高い水を含むためやはり精度に問題があった。
本発明は、上記の事情に鑑みてなされたものであり、濃度を高精度に測定することができる液体濃度センサの提供を目的としている。
本発明は、上記の課題を解決するため、以下の手段を採用した。
本発明の液体濃度センサは、誘電率の異なる液体を混合してなる混合液体中に含まれる液体濃度を検出する液体濃度センサであって、前記液体濃度を検出するパラメータが、前記混合液体の誘電率変化に基づく交流信号の位相差であることを特徴とする。
このような液体濃度センサによれば、混合液体の誘電率に基づく交流信号の位相差をパラメータとして液体濃度を検出するので、信号の振幅に影響されることがなく、しかも、位相はノイズの影響を受けないため、誤差の少ない正確な検出が可能となる。
また、上述した本発明の液体濃度センサにおいて、前記液体濃度は、基準となる第1のコンデンサと、前記混合液体の誘電率に応じて出力値が変化する第2のコンデンサとの位相差から検出されることが好ましく、これにより、変動要因を差し引いた正確な濃度検出が可能となる。
また、上述した本発明の液体濃度センサにおいて、前記液体濃度が、容量値の異なる二つのコンデンサを前記混合液体中に配設し、該混合液体の誘電率に応じて変化する両コンデンサの静電容量変化率から検出するようにすれば、同一温度特性のコンデンサによる正確な検出が可能となる。
また、上述した本発明の液体濃度センサにおいて、前記液体濃度が、少なくとも水とメタノールとを混合した混合液体中に含まれるメタノール濃度であるから、直接メタノール型燃料電池の制御パラメータとして重要なメタノール濃度を正確に検出できるようになり、このメタノール濃度を用いて適切な運転制御を行うことが可能になる。
本発明の液体濃度センサは、混合液体の誘電率に基づく交流信号の位相差をパラメータにして液体濃度を検出することで、信号の振幅に影響されることがなく、かつ、ノイズの影響を受けることもないので、混合液体中の液体濃度を高精度に測定することができる。
また、二つのコンデンサの差動をとるようにしたので、電圧位相と電流位相との差の絶対値を測定する場合に問題となる抵抗の誤差、温度及び湿度のような変動要因を除去し、正確な測定が可能になる。
以下、本発明に係る液体濃度センサの一実施形態を図面に基づいて説明する。なお、ここでは直接メタノール型燃料電池の運転制御に必要なメタノール濃度を検出する液体濃度センサとして説明する。
図2に示すように、液体濃度センサ10は、各種制御回路を備えた回路基板11と、混合液体流路中の適所に設置されてコンデンサ間の静電容量を検出する検出電極部12との間が接続線13を介して電気的に接続された構成とされる。検出電極部12は、メタノール水溶液(混合液体)を流す流路1の適所に設けた濃度検出容器2の内部に設置されており、同検出電極部12の周囲をメタノール水溶液が循環して流れている。
図1のブロック図に示すように、液体濃度センサ10の検出電極部12は、メタノール水溶液中に対向設置された2枚の電極によりコンデンサを形成したものである。この検出電極部12は、電源に接続された回路基板11を介して交流電圧20の印加を受け、両電極間に存在するメタノール水溶液のメタノール濃度に応じて変化する静電容量を検出して回路基板11に入力する。
回路基板11には、上述した検出電極部12と直列に接続された第1抵抗21が設けられている。さらに、回路基板11は、第1抵抗21及び検出電極部12と並列に接続された第2抵抗22及び基準電極部23を備えている。この場合の基準電極部23は、検出電極部12と同様に一対の電極よりなるコンデンサである。
検出電極部12及び基準電極部23は、それぞれが電流/電圧変換回路24A,24B及び位相比較回路25A,25Bと直列に接続され、さらに、位相比較回路25A,25Bは差動増幅回路26と接続されている。また、位相比較回路25A,25Bには、同期検波を行うため、交流電圧20の波形を基準とする+90度移相回路(以下では、「移相回路」と呼ぶ)27が接続されている。
上述した第1抵抗21及び第2抵抗22は抵抗値が一定の固定抵抗とされ、さらに、基準電極部23についても静電容量値が一定のコンデンサを用いる。
第1抵抗21及び検出電極部12に交流電圧20が印加されると、検出電極部12から電流/電圧変換回路24Aに流れ出す交流電流の位相は、周知の通り印加電圧の位相より90度進んだものとなる。さらに、検出電極部12がメタノール水溶液中にあるため、交流電流の位相は、メタノール濃度に応じて周知の90度からさらにαだけ変化したものとなる。こうして位相が変化した交流電流は、電流/電圧変換回路24Aで電圧値に変換されて位相比較回路25Aに送られる。
この電圧値は、印加した交流電圧20より「90度+α」変化したものであるから、位相比較回路25Aには、移相回路27を介して位相を合わせた交流電圧20の波形を導入して比較対象とする。この結果、位相比較回路25Aでは、検出電極部12がメタノール濃度に応じて変化した位相差を得ることができ、この位相差が測定値として差動増幅回路26に送られる。以下、この位相差を「測定位相差」と呼ぶことにする。
同様にして、基準電極部23側においても、印加した交流電圧20より90度位相の変化した交流電流が電流/電圧変換回路24Bで電圧値に変換された後、位相比較回路25Bに送られる。この位相比較回路25Bでは、移相回路27を介して位相を合わせた交流電圧20の波形と比較し、基準の位相差として差動増幅回路26に送られる。以下、この位相差を「基準位相差」と呼ぶことにする。
差動増幅回路26では、測定位相差と基準位相差とを比較し、その差分から位相差を算出する。この位相差は電圧値として算出され、増幅した電圧出力の測定値として出力される。この電圧出力(測定値)は、メタノール濃度と相関関係にある変化量αに相当するので、この変化量αからメタノール水溶液の濃度を算出することができる。
ここで、水及びメタノールの誘電率は分かっているので、メタノール濃度と誘電率との関係は事前に知ることができる。また、検出電極部12の静電容量と誘電率との関係も事前にデータとして入手できる。従って、上述した変化量αを検出できれば、メタノール濃度に応じて変化した検出電極部12の静電容量が得られ、この静電容量から誘電率を逆算し、さらに、この誘電率からメタノール濃度を逆算することができる。すなわち、測定位相差と基準位相差との比較により得られた位相差(変化量α)から検出電極部12の静電容量が得られるので、メタノール濃度の測定が可能になる。
次に、静電容量変化を位相変化に変換する原理、すなわち、静電容量変化と位相変化との関係に関する周知の原理について簡単に説明する。
回路に下記の数式で表される交流電圧e(t)を加えると、コンデンサの電極には周期的に電荷が誘起される。
Figure 2005121428
電荷量の時間変化が電流の大きさを示すものであるから、回路には周期的な電流が流れていることになる。この時、交流周波数が高いほど、静電誘導の時間変化が激しく、大きな電流が流れる。
ここで、コンデンサの静電容量をCとして、時刻tにコンデンサに蓄えられている電荷量を(q)とする。
時刻tに回路に流れている電流(すなわち、電荷量の時間的変化)は、電流i(t)とすれば、下記のように表される。
Figure 2005121428
これを用いると、回路の方程式は、下記のように表される。
Figure 2005121428
これをq(t)について解くと、下記のようになる。
Figure 2005121428
従って、電流i(t)は、下記のように表される。
Figure 2005121428
上記の数式〔数5〕と加えた交流電圧の数式〔数1〕とを比較すると、コンデンサに流れる電流は加えた交流電圧と比較してφだけ位相が動いている。なお、この位相差φは、コンデンサにかかる電圧より電流の位相が90度進むという一般則にプラスαの変化が加わることを示している。
従って、上述したように、第1抵抗21及び検出電極部13と第2抵抗22及び基準電極部23とにより構成される二組のRC直列回路を用意し、第1抵抗21、第2抵抗22及び基準電極23の静電容量を固定した装置構成とすれば、一定周期の交流電圧を印加して流れ出す電流の位相を比較することにより、その位相差から検出電極部12の静電容量を得ることができるのである。
上述したように、静電容量の絶対値ではなく位相差検出して液体濃度を測定するようにしたので、検出信号の振幅に影響されて誤差が生じるようなことはない。すなわち、位相差から液体濃度を測定する場合には交流の周期だけが問題となるので、単純な伝導度検出のように水溶液中の不純物イオンが変動要因となって検出精度に大きな影響を及ぼすようなことはなく、絶対濃度の測定のように大きな誤差が生じることはない。
また、パルス性のノイズは信号の電圧振幅に影響を与えるが、信号の位相(周期)に影響を与えることはなく、しかも、検出電極部12の検出信号は電流入力となるので、電力の低い空間伝播ノイズが入力信号になることはなく、従って、測定誤差の要因となるノイズに対して強いものとなる。
また、位相差についても絶対値をとるのではなく、基準位相差と測定位相差との差動を検出するようにしたので、電極と直列に接続された第1抵抗21及び第2抵抗22の誤差、温度及び湿度等の誤差要因を差し引いて排除することができる。
従って、上述した液体濃度センサ10は、水溶液中の不純物イオン、外来ノイズ及び他の誤差要因から影響を受けることなしに、メタノール水溶液(混合液体)中のメタノール(液体)濃度を高精度に測定することが可能になる。
続いて、上述した検出電極部12及び基準電極部23の構成に関する他の実施形態を図3及び図4に基づいて説明する。なお、上述した実施形態と同様の構成要素には同じ符号を付し、その詳細な説明は省略する。
さて、この実施形態では、一対の対向電極が2組のコンデンサを形成するように一体化し、共にメタノール水溶液中に配設可能な構成とされる。すなわち、図3に示すように、所定の間隔で対向配置した一対の電極板30,40には、それぞれ面積の異なる第1電極部31,41及び第2電極部32,42を形成してある。なお、第1電極部31,41間及び第2電極32,42間は分離帯33,43により完全に分割されているので、互いに独立した4つの電極部31,32,41,42が存在することとなる。
このうち、面積を大きく設定した第1電極部31,41が検出電極部12Aとして機能し、面積を小さく設定した第2電極部32,42が基準電極部23Aとして機能するように接続線により接続される。この場合、第1電極部31,41の面積と第2電極部32,42との面積比は、第2電極部32,42側に必要最小限の面積を確保できるように、換言すれば、製造可能な最小の面積を確保できるように設定すればよい。これは、基準電極部23Aと検出電極部12Aとの面積比をできるだけ大きく設定することにより、メタノール水溶液の濃度変化に対する感度が増してより正確な濃度検出が可能になるためである。
上述した構成の一対の電極板30,40は、濃度検出容器2内に配設されて電極間をメタノール水溶液が循環して流れる。従って、検出電極部12A及び基準電極部23Aは、共にメタノール水溶液内という同じ温度環境下にあるため、同一の温度特性を有するコンデンサとなって誤差要因の一つを取り除くことができる。
また、検出電極部12Aと基準電極部23Aとは、電極面積の違いによりコンデンサの静電容量が異なるので、誘電率変化による静電容量変化は異なる変化率を有している。そして、検出電極部12A及び基準電極部23A間には、コンデンサ(C)・抵抗(R)の時定数の違いから異なる位相変化量を示し、位相差を生じる。
この位相差は、メタノール濃度に応じた変化量αを含んだものである。しかし、検出電極部12A及び基準電極部23Aは共にメタノール水溶液内にあって変化量αを伴うが、この変化量αの傾きは電極面積(静電容量)に応じて異なったものとなる。すなわち、静電容量が異なるコンデンサ間における誘電率変化の差を利用して、メタノール濃度を測定することができる。
これを図4のグラフに基づいて具体的に説明する。なお、傾斜の大きな直線Aが電極面積の大きい検出電極部12A側を示し、傾斜の小さな直線Bが電極面積の小さい基準電極23A側を示している。なお、メタノール濃度の単位をmol%、静電容量の単位をpFとする。
図4において、水溶液中のメタノール濃度がaから2倍の2aまで増加したとすれば、静電容量の大きい検出電極部12A側のコンデンサでは、その静電容量がxから半分の1/2xまで減少する。一方、静電容量の小さい基準電極23A側のコンデンサでは、その静電容量がyから半分の1/2yまで減少する。このように、両コンデンサの変化割合は共に1/2となって全く同じであるが、静電容量の絶対値の変化(直線A及びBの傾き)には差がある。従って、同じ値の固定抵抗(第1抵抗21及び第2抵抗22)を介して二つのコンデンサ(検出電極部12A及び基準電極部23A)に通電すると、両コンデンサから流れ出す交流電流の位相差は誘電率に一意の値となるので、この誘電率からメタノール濃度の逆算が可能となる。
なお、上述した検出電極部12A及び基準電極部23Aの形状は、図4に示した矩形状に限定されることはなく、互いに分離されて大きな面積比を確保していれば、矩形と円形との組み合わせなど、どのような形状としてもよい。
なお、本発明は、上述した実施形態に限定されることはなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
本発明の液体濃度センサは、特に、直接メタノール型燃料電池におけるメタノール水溶液中のメタノール濃度検出手段として好適であるが、この他にも、混合割合に応じて誘電率が変化する混合液体の濃度、すなわち誘電率の異なる複数の液体の混合割合を検出するセンサとしても広く使用することができる。
また、本発明の液体濃度センサは、たとえばビタミンのような固体または粉体を水に溶かして得られる水溶液の濃度を検出するセンサとしても使用することができる。
本発明の液体濃度センサに係る一実施形態として回路構成例を示すブロック図である。 本発明の液体濃度センサに係る構成例を示す斜視図である。 他の実施形態として検出電極部の構成例を示す斜視図である。 メタノール濃度(mol%)と静電容量(pF)との関係を示す説明図である。
符号の説明
1 流路
2 濃度検出容器
10 液体濃度センサ
11 回路基板
12,12A 検出電極部
13 接続線
20 交流電圧
21 第1抵抗
22 第2抵抗
23,23A 基準電極部
24A,24B 電流/電圧変換回路
25A,25B 位相比較回路
26 差動増幅回路
27 +90度移相回路(移相回路)
30,40 電極板
31,41 第1電極部
32,42 第2電極部
33,43 分離帯

Claims (4)

  1. 誘電率の異なる液体を混合してなる混合液体中に含まれる液体濃度を検出する液体濃度センサであって、
    前記液体濃度を検出するパラメータが、前記混合液体の誘電率に基づく交流信号の位相差であることを特徴とする液体濃度センサ。
  2. 前記液体濃度は、基準となる第1のコンデンサと、前記混合液体の誘電率に応じて出力値が変化する第2のコンデンサとの位相差から検出されることを特徴とする請求項1記載の液体濃度センサ。
  3. 前記液体濃度は、容量値の異なる二つのコンデンサを前記混合液体中に配設し、該混合液体の誘電率に応じて変化する両コンデンサの静電容量変化率から検出されることを特徴とする請求項1記載の液体濃度センサ。
  4. 前記液体濃度が、少なくとも水とメタノールとを混合した混合液体中に含まれるメタノール濃度であることを特徴とする請求項1から3のいずれかに記載の液体濃度センサ。
JP2003355197A 2003-10-15 2003-10-15 液体濃度センサ Withdrawn JP2005121428A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355197A JP2005121428A (ja) 2003-10-15 2003-10-15 液体濃度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355197A JP2005121428A (ja) 2003-10-15 2003-10-15 液体濃度センサ

Publications (1)

Publication Number Publication Date
JP2005121428A true JP2005121428A (ja) 2005-05-12

Family

ID=34612875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355197A Withdrawn JP2005121428A (ja) 2003-10-15 2003-10-15 液体濃度センサ

Country Status (1)

Country Link
JP (1) JP2005121428A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158812A1 (ja) * 2010-06-17 2011-12-22 国立大学法人豊橋技術科学大学 土壌の水分状態特定装置及びその方法
JP2017116333A (ja) * 2015-12-22 2017-06-29 パナソニックIpマネジメント株式会社 センサ
CN107676389A (zh) * 2016-08-02 2018-02-09 斯凯孚公司 具有污染物传感器的轴承组件
JP2018091798A (ja) * 2016-12-07 2018-06-14 株式会社Ihi 水分量検出器
JP2018100932A (ja) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 濃度センサ
JP2018531386A (ja) * 2015-10-06 2018-10-25 シーメンス アクチエンゲゼルシャフト エスターライヒSiemens Aktiengesellschaft Oesterreich 誘電インピーダンス分光法に適した測定システムに用いられるセンサ
JP2019028012A (ja) * 2017-08-03 2019-02-21 東北電子産業株式会社 複素誘電率測定用回路、複素誘電率測定装置及び複素誘電率の測定方法
RU2690952C1 (ru) * 2018-09-17 2019-06-07 ООО "Генезис-Таврида" Способ определения процентного содержания воды в смеси диэлектрик-вода при использовании различных диэлектриков
JP2019105512A (ja) * 2017-12-12 2019-06-27 株式会社Ihi 電気伝導度推定装置
WO2022054319A1 (ja) * 2020-09-11 2022-03-17 パナソニックIpマネジメント株式会社 混合燃料に含まれるアルコールの濃度の検出方法及び検出装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985812A (zh) * 2010-06-17 2013-03-20 国立大学法人丰桥技术科学大学 土壤的水分状态确定装置及其方法
JPWO2011158812A1 (ja) * 2010-06-17 2013-08-19 国立大学法人豊橋技術科学大学 土壌の水分状態特定装置及びその方法
JP5871237B2 (ja) * 2010-06-17 2016-03-01 国立大学法人豊橋技術科学大学 土壌の水分状態特定装置及びその方法
WO2011158812A1 (ja) * 2010-06-17 2011-12-22 国立大学法人豊橋技術科学大学 土壌の水分状態特定装置及びその方法
JP2018531386A (ja) * 2015-10-06 2018-10-25 シーメンス アクチエンゲゼルシャフト エスターライヒSiemens Aktiengesellschaft Oesterreich 誘電インピーダンス分光法に適した測定システムに用いられるセンサ
JP2017116333A (ja) * 2015-12-22 2017-06-29 パナソニックIpマネジメント株式会社 センサ
CN107676389A (zh) * 2016-08-02 2018-02-09 斯凯孚公司 具有污染物传感器的轴承组件
JP2018091798A (ja) * 2016-12-07 2018-06-14 株式会社Ihi 水分量検出器
JP2018100932A (ja) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 濃度センサ
JP2019028012A (ja) * 2017-08-03 2019-02-21 東北電子産業株式会社 複素誘電率測定用回路、複素誘電率測定装置及び複素誘電率の測定方法
JP7071723B2 (ja) 2017-08-03 2022-05-19 哲男 吉田 複素誘電率測定用回路、複素誘電率測定装置及び複素誘電率の測定方法
JP2019105512A (ja) * 2017-12-12 2019-06-27 株式会社Ihi 電気伝導度推定装置
JP7020094B2 (ja) 2017-12-12 2022-02-16 株式会社Ihi 電気伝導度推定装置
RU2690952C1 (ru) * 2018-09-17 2019-06-07 ООО "Генезис-Таврида" Способ определения процентного содержания воды в смеси диэлектрик-вода при использовании различных диэлектриков
WO2022054319A1 (ja) * 2020-09-11 2022-03-17 パナソニックIpマネジメント株式会社 混合燃料に含まれるアルコールの濃度の検出方法及び検出装置

Similar Documents

Publication Publication Date Title
US9354193B2 (en) Apparatus for measuring the electrical conductivity of a liquid medium
EP0336615B1 (en) Electromagnetic flowmeter capable of simultaneous measurement of flow rate and conductivity of fluid
CN105353223B (zh) 一种使用电容耦合式非接触电导测量装置的测量方法
US9244104B2 (en) Detecting a dielectric article
Prajapati et al. A literature review of state of-charge estimation techniques applicable to lithium poly-carbon monoflouride (LI/CFx) battery
US8451007B2 (en) Input circuit for inductive measurements of the conductivity of a fluid medium
JP2008107168A (ja) 電池特性の検出方法及び電池特性の検出装置
US7772854B2 (en) High-conductivity contacting-type conductivity measurement
JP2005121428A (ja) 液体濃度センサ
US20220190614A1 (en) System and methods for rechargeable battery diagnostics
CN103675460A (zh) 基于相敏解调的电容耦合式非接触电导的测量装置及方法
US10451764B2 (en) Capacitivity and frequency effect index detection device and method, and explorative substance identification method
JPS5983045A (ja) 液中イオン濃度検出器
US9329226B2 (en) Method for ascertaining at least one malfunction of a conductive conductivity sensor
CN111351534A (zh) 一种流量无磁计量装置
JP4424511B2 (ja) 電磁流量計及び電磁流量計のシステム
CN105548721A (zh) 一种四电极电导率仪的测量电路
US20140353176A1 (en) Hand-held test meter with time-multiplexed phase detection
CN104067113A (zh) 低电导率的接触式电导率测试系统
CN102405415A (zh) 在高精度长期频率/定时测量中的噪声抑制技术
Tejaswini et al. An auto-balancing signal conditioning scheme for non-contact measurement of conductivity of water
JP2005195565A (ja) チルト・センサの信号サンプリング回路
TW200424517A (en) Solution concentration detection device of fuel cell and solution concentration detection method thereof
RU2620194C1 (ru) Измерительное устройство электромагнитного расходомера
RU2316113C2 (ru) Способ измерения параметров подстилающей среды и устройство для его осуществления

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060302

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070806