JP2020169859A - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
JP2020169859A
JP2020169859A JP2019070643A JP2019070643A JP2020169859A JP 2020169859 A JP2020169859 A JP 2020169859A JP 2019070643 A JP2019070643 A JP 2019070643A JP 2019070643 A JP2019070643 A JP 2019070643A JP 2020169859 A JP2020169859 A JP 2020169859A
Authority
JP
Japan
Prior art keywords
detection
signal
measurement signal
measurement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019070643A
Other languages
English (en)
Other versions
JP7215303B2 (ja
Inventor
誠彦 後藤
Masahiko Goto
誠彦 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2019070643A priority Critical patent/JP7215303B2/ja
Publication of JP2020169859A publication Critical patent/JP2020169859A/ja
Application granted granted Critical
Publication of JP7215303B2 publication Critical patent/JP7215303B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】複数の対象物理量をより精度良く測定することが可能な測定装置を提供する。【解決手段】測定対象物に接触する検出電極と、所定の測定用信号を発振する発振器と、複数の測定対象物理量に対応して設けられ、測定用信号を検出電極に供給する複数の入力回路と、複数の測定対象物理量に対応して設けられ、検出電極から得られる検出信号に所定の検出処理を施す複数の検出処理回路と、検出処理回路から入力される処理済検出信号に基づいて複数の測定対象物理量を演算する演算手段と、複数の入力回路を択一的に選択して測定用信号を検出電極に入力させる制御手段とを備える。【選択図】図1

Description

本発明は、測定装置に関する。
下記特許文献1には、不溶成分を溶媒に分散した分散系中の溶媒量特定方法が開示されている。この溶媒量特定方法は、分散系に接触する一対の電極の一方に入力電気信号(交流信号)を印可し、一対の電極の他方から得られる出力電気信号と上記入力電気信号との位相差に基づいて溶質の濃度や分散系の電気伝導度を測定する。
特許第5871237号公報
ところで、上記背景技術では、溶質の濃度や分散系の電気伝導度を対象物理量として測定するが、各々対象物理量をより精度良く測定するためには、一対の電極に接続される測定系の回路定数を対象物理量毎に最適化する必要がある。
本発明は、上述した事情に鑑みてなされたものであり、複数の対象物理量をより精度良く測定することが可能な測定装置の提供を目的とするものである。
上記目的を達成するために、本発明では、測定装置に係る第1の解決手段として、測定対象物に接触する検出電極と、所定の測定用信号を発振する発振器と、複数の測定対象物理量に対応して設けられ、前記測定用信号を前記検出電極に供給する複数の入力回路と、複数の前記測定対象物理量に対応して設けられ、前記検出電極から得られる検出信号に所定の検出処理を施す複数の検出処理回路と、前記検出処理回路から入力される処理済検出信号に基づいて複数の前記測定対象物理量を演算する演算手段と、複数の前記入力回路を択一的に選択して前記測定用信号を前記検出電極に入力させる制御手段と を備える、という手段を採用する。
本発明では、測定装置に係る第2の解決手段として、上記第1の解決手段において、前記発振器は、前記入力回路毎に異なる周波数の前記測定用信号を発振する、という手段を採用する。
本発明では、測定装置に係る第3の解決手段として、上記第2の解決手段において、前記検出処理回路は、前記測定用信号と前記検出信号との位相差を示す前記処理済検出信号を生成して前記演算手段に出力する、という手段を採用する。
本発明では、測定装置に係る第4の解決手段として、上記第1〜第3のいずれかの解決手段において、前記入力回路は、前記測定用信号を所定の抵抗器を介して前記検出電極に供給し、非選択時に出力インピーダンスが高インピーダンスとなる、という手段を採用する。
本発明では、測定装置に係る第5の解決手段として、上記第1〜第4のいずれかの解決手段において、複数の前記測定対象物理量は、前記測定対象物の水分と電気伝導度である、という手段を採用する。
本発明によれば、複数の対象物理量をより精度良く測定することが可能な測定装置を提供することが可能である。
本発明の一実施形態に係る測定装置の機能構成を示すブロック図である。 本発明の一実施形態に係る測定装置の電極ユニットの構造を示す模式図である。
以下、図面を参照して、本発明の一実施形態について説明する。
本実施形態に係る測定装置は、測定対象物の水分量と電気伝導度とを測定する装置である。この測定装置は、図1に示すように、発振器1、一対のバッファ回路2A,2B、一対の抵抗器3A,3B、一対の検出電極4X,4Y、一対のバッファ回路5A,5B、一対の検出器6A,6B、一対のバッファ回路7A,7B、一対のローパスフィルタ8A,8B、一対のローパスフィルタ9A,9B、一対の差動アンプ10A,10B及びMPU11を備えている。
ここで、上記測定対象物は、例えば土壌である。また、上記水分量及び電気伝導度は、本発明における複数の測定対象物理量に相当する。さらに、上記各構成要素のうち、符号に「A」が含まれる構成要素は、水分量の測定のみに寄与する構成要素であり、また符号に「B」が含まれる構成要素は、電気伝導度の測定のみに寄与する構成要素である。
すなわち、第1のバッファ回路2A、第1の抵抗器3A、第1のバッファ回路5A、第1の検出器6A、第3のバッファ回路7A、第1のローパスフィルタ8A、第3のローパスフィルタ9A及び第1の差動アンプ10Aは、水分量の測定のみに関係する構成要素である。また、第2のバッファ回路2B、第2の抵抗器3B、第2のバッファ回路5B、第2の検出器6B、第4のバッファ回路7B、第2のローパスフィルタ8B、第4のローパスフィルタ9B及び第2の差動アンプ10Bは、電気伝導度の測定のみに関係する構成要素である。
発振器1は、周波数可変型であり、繰返し周波数が異なる2つの方形波を発振する。すなわち、この発振器1は、第1の繰返し周波数f1の方形波を発振すると共に第2の繰返し周波数f2の方形波を発振する。このような発振器1は、第1の繰返し周波数f1の方形波を第1の測定用信号として第1のバッファ回路2Aに出力し、また第2の繰返し周波数f2の方形波を第2の測定用信号として第2のバッファ回路2Aに出力する。
このような発振器1は例えば+3.3Vのプラス電源で作動するものであり、よって第1、第2の測定用信号は、低電位が0V、高電位が+3.3Vの方形波である。このような発振器1は、第1の繰返し周波数f1の方形波を第3のバッファ回路5A及び第5のバッファ回路7Aに出力し、また第2の繰返し周波数f2の方形波を第4のバッファ回路5B及び第6のバッファ回路7Bに出力する。
上記第1の測定用信号は水分量測定用の測定用信号であり、上記第2の測定用信号は電気伝導度測定用の測定用信号である。これら第1、第2の測定用信号は、デューティ比が50%の方形波であり、また第1、第2の繰返し周波数f1,f2が例えば数MHz〜数十MHzのオーダーである。なお、これら第1、第2の測定用信号の属性値は、測定対象物の性状に応じて適宜設定される。
第1、第2のバッファ回路2A,2Bは、上記第1、第2の測定用信号を各々電流増幅する電流増幅回路であり、電流増幅後の第1、第2の測定用信号を一対の抵抗器3A,3Bに各々出力する。すなわち、第1のバッファ回路2Aは、第1の測定用信号を電流増幅し、電流増幅後の第1の測定用信号を第1の抵抗器3Aの一端に出力する。一方、第2のバッファ回路2Bは、第2の測定用信号を電流増幅し、電流増幅後の第2の測定用信号を第2の抵抗器3Bの一端に出力する。
また、このような第1、第2のバッファ回路2A,2Bは、MPU11から入力される切替信号に基づいて択一的に機能する。すなわち、第1、第2のバッファ回路2A,2Bのうち、切替信号によって選択されたものが測定用信号を第1の検出電極4Xに出力する。第1のバッファ回路2Aは、切替信号によって選択されると、第1の測定用信号を第1の検出電極4Xに出力し、第2のバッファ回路2Bは、切替信号によって選択されると第2の測定用信号を第1の検出電極4Xに出力する。
また、このような第1、第2のバッファ回路2A,2Bは、非選択時に出力インピーダンスが高インピーダンス(例えば数百MΩ)となる3ステートバッファである。すなわち、第1、第2のバッファ回路2A,2Bは、選択時に比較的低い出力インピーダンスで測定用信号を第1の検出電極4Xに出力するが、選択時には出力インピーダンスが極めて高い状態となり、測定用信号の出力を停止する。
第1、第2の抵抗器3A,3Bは、各々に所定の抵抗値を有する2端子の電子素子である。第1、第2の抵抗器3A,3Bのうち、第1の抵抗器3Aは、第1の抵抗値を有し、一端が第1のバッファ回路2Aの出力端に接続され、他端が第1の検出電極4Xに接続されている。第2の抵抗器3Bは、第2の抵抗値を有し、一端が第2のバッファ回路2Bの出力端に接続され、他端が第2の検出電極4Yに接続されている。
このような第1、第2の抵抗器3A,3Bは、第1、第2の検出電極4X,4Yと共に第1、第2のバッファ回路2A,2Bの負荷を構成している。すなわち、第1の抵抗器3Aは、第1の検出電極4Xと第2の検出電極4Yと共に第1のバッファ回路2Aの負荷を構成し、第2の抵抗器3Bは、第1の検出電極4Xと第2の検出電極4Yと共に第2のバッファ回路2Bの負荷を構成している。
このような第1の抵抗器3Aは、測定対象物の水分量を検出する際の検出ダイナミックレンジを支配する構成要素であり、第1の抵抗値が水分量の検出ダイナミックレンジを最大化するように適宜設定される。また、第2の抵抗器3Bは、測定対象物の電気伝導度を検出する際の検出ダイナミックレンジを支配する構成要素であり、第2の抵抗値が電気伝導度の検出ダイナミックレンジを最大化するように設定される。
ここで、第1、第2のバッファ回路2A,2B及び第1、第2の抵抗器3A,3Bは、本発明の入力回路を構成している。すなわち、第1のバッファ回路2A及び第1の抵抗器3Aは、複数の測定対象物理量のうち水分量に対応して設けられ、第1の測定用信号を第1の検出電極4Xに供給する第1の入力回路を構成している。一方、第2のバッファ回路2B及び第2の抵抗器3Bは、複数の測定対象物理量のうち電気伝導度に対応して設けられ、第2の測定用信号を第1の検出電極4Xに供給する第2の入力回路を構成している。
第1、第2の検出電極4X,4Yは、測定対象物に接触する導電性部材である。これら第1、第2の検出電極4X,4Yは、所定距離を隔てて対向配置されており、測定対象物に接触することにより当該測定対象物の水分量あるいは電気伝導度に応じた静電容量のコンデンサCを構成する。
すなわち、第1、第2の検出電極4X,4Yは、図2に示すように、所定の支持部材Sによって対向状態に設定された電極モジュールMとして構成されており、測定対象物中に埋設されている。このような第1、第2nの検出電極4X,4Yは、測定対象物の水分量あるいは電気伝導度に応じて変化する静電容量を有するコンデンサCを構成しており、所定の信号線を介して第1、第2の抵抗器3A,3Bの他端に各々接続されている。
このようなコンデンサCは、第1、第2の抵抗器3A,3Bと共に電子回路におけるCR回路つまり積分回路を各々構成している。すなわち、コンデンサCは、第1の抵抗器3Aと共に第1の積分回路を構成し、また第2の抵抗器3Bと共に第2の積分回路を構成する。第1の積分回路は、コンデンサCの静電容量と第1の抵抗器3Aにおける第1の抵抗値とに基づく第1の時定数τ1を有し、第2の積分回路は、コンデンサCの静電容量と第2の抵抗器3Bにおける第2の抵抗値とに基づく第2の時定数τ2を有する。
したがって、第1、第2の抵抗器3A,3Bの他端における電圧波形は、方形波である第1の測定用信号あるいは第2の測定用信号が第1の時定数τ1あるいは第2の時定数τ2に基づいて積分処理された波形となる。このような第1、第2の検出電極4X,4Yは第1、第2の検出器6A,6Bの入力端に各々接続されているので、第1、第2の検出電極4X,4Yは、第1の測定用信号あるいは第2の測定用信号が積分処理された信号を第1、第2の検出器6A,6Bに出力する。
第3、第4のバッファ回路5A,5Bは、上記第1、第2の測定用信号を各々電流増幅する電流増幅回路であり、電流増幅後の第1、第2の測定用信号を第1、第2の検出器6A,6Bに各々出力する。すなわち、第3のバッファ回路5Aは、第1の測定用信号を電流増幅し、電流増幅後の第1の測定用信号を第1の検出器6Aに出力する。一方、第4のバッファ回路5Bは、第2の測定用信号を電流増幅し、電流増幅後の第2の測定用信号を第2の検出器6Bに出力する。
このような第3、第4のバッファ回路5A,5Bは、第1、第2の測定用信号を所定時間(遅延時間ΔT)だけ遅延させるために設けられている。すなわち、第3のバッファ回路5Aは、第1の測定用信号を遅延時間ΔTだけ遅らせて第1の検出器6Aに出力する。一方、第4のバッファ回路5Bは、第2の測定用信号を遅延時間ΔTだけ遅らせて第1の測定用信号を第1の検出器6Aに出力する。
第1、第2の検出器6A,6Bは、2つの入力信号の位相差を検出する位相検出器である。すなわち、第1の検出器6Aは、第1の検出電極4Xから入力される第1の検出信号と第3のバッファ回路5Aから入力される第1の測定用信号との位相差を第1の位相差として検出し、当該第1の位相差を第1のローパスフィルタ8Aに出力する。一方、第2の検出器6Bは、第1の検出電極4Xから入力される第2の検出信号と第4のバッファ回路5Bから入力される第2の測定用信号との位相差を第2の位相差として検出し、当該第2の位相差を第2のローパスフィルタ8Bに出力する。
第5、第6のバッファ回路7A,7Bは、上述した第3、第4のバッファ回路5A,5Bと同様に第1、第2の測定用信号を各々電流増幅する電流増幅回路である。これら第5、第6のバッファ回路7A,7Bは、電流増幅後の第1、第2の測定用信号を第3、第4のローパスフィルタ9A、9Bに各々出力する。すなわち、第5のバッファ回路7Aは、第1の測定用信号を電流増幅し、電流増幅後の第1の測定用信号を第3のローパスフィルタ9Aに出力する。一方、第6のバッファ回路7Bは、第2の測定用信号を電流増幅し、電流増幅後の第2の測定用信号を第4のローパスフィルタ9Bに出力する。
第1、第2のローパスフィルタ8A,8Bは、所定の遮断周波数を有する積分回路であり、一対の検出器6A,6Bから各々入力される位相差信号から直流成分を抽出する。すなわち、第1のローパスフィルタ8Aは、第1の検出器6Aから入力される第1の位相差信号から直流成分を抽出し、当該直流成分を第1の位相差電圧として第1の差動アンプ10Aに出力する。一方、第2のローパスフィルタ8Bは、第2の検出器6Bから入力される第2の位相差信号から直流成分を抽出し、当該直流成分を第2の位相差電圧として第2の差動アンプ10Bに出力する。
第3、第4のローパスフィルタ9A,9Bは、所定の遮断周波数を有する積分回路であり、第5、第6のバッファ回路7A,7Bから各々入力される第1、第2の測定用信号を積分処理することによって平均直流電圧成分を抽出する。すなわち、第3のローパスフィルタ9Aは、第1の測定用信号の平均直流電圧成分を抽出し、当該平均直流電圧成分を第1の参照電圧として第1の差動アンプ10Aに出力する。
一方、第4のローパスフィルタ9Bは、第2の測定用信号の平均直流電圧成分を抽出し、当該平均直流電圧成分を第2の参照電圧として第2の差動アンプ10Bに出力する。なお、上述したように第1、第2の測定用信号は、波高値が+3.3V、かつデューティ比が50%の方形波である。したがって、上記第1、第2の参照電圧は、1.65Vとなる。
第1、第2の差動アンプ10A,10Bは、所定の増幅度を有し、第1、第2の位相差電圧と第1、第2の参照電圧とを差動増幅することにより差電圧を各々生成する。すなわち、第1の差動アンプ10Aは、第1の位相差電圧と第1の参照電圧とに基づいて第1の差電圧を生成し、当該第1の差電圧をMPU11に出力する。一方、第2の差動アンプ10Bは、第2の位相差電圧と第2の参照電圧とに基づいて第2の差電圧を生成し、当該第2の差電圧をMPU11に出力する。
ここで、第3、第4のバッファ回路5A,5B、第1、第2の検出器6A,6B、第5、第6のバッファ回路7A,7B、第1、第2のローパスフィルタ8A,8B、第3、第4のローパスフィルタ9A,9B及び第1、第2の差動アンプ10A,10Bは、複数の測定対象物理量(水分量と電気伝導度)に応じて設けられ、第1、第2の検出電極4X,4Yから得られる第1、第2の検出信号に所定の検出処理を施す複数の検出処理回路を構成している。
また、このような第3、第4のバッファ回路5A,5B、第1、第2の検出器6A,6B、第5、第6のバッファ回路7A,7B、第1、第2のローパスフィルタ8A,8B、第3、第4のローパスフィルタ9A,9B及び第1、第2の差動アンプ10A,10Bのうち、第3のバッファ回路5A、第1の検出器6A、第5のバッファ回路7A、第1のローパスフィルタ8A、第3のローパスフィルタ9A及び第1の差動アンプ10Aは、第1の検出処理回路を構成している。一方、第4のバッファ回路5B、第2の検出器6B、第6のバッファ回路7B、第2のローパスフィルタ8B、第4のローパスフィルタ9B及び第2の差動アンプ10Bは、第2の検出処理回路を構成している。
MPU11は、予め記憶された測定プログラムに基づいて第1、第2の差電圧に所定の情報処理を施すことにより測定対象物の水分量及び電気伝導度を推定するマイクロプロセッサである。このMPU11は、上記測定プログラムに加えて、例えば水分量推定用の変換テーブル(水分量変換テーブル)と電気伝導度推定用の変換テーブル(電気伝導度変換テーブル)を予め記憶している。
水分量変換テーブルは、上記第1の差電圧と測定対象物の水分量との関係を示すデータテーブルであり、また電気伝導度変換テーブルは、上記第2の差電圧と測定対象物の電気伝導度との関係を示すデータテーブルである。MPU11は、このような水分量変換テーブルを第1の差電圧で検索することにより当該第1の差電圧に対応する水分量を抽出する。また、MPU11は、電気伝導度変換テーブルを第2の差電圧で検索することにより当該第2の差電圧に対応する電気伝導度を抽出する。
また、このMPU11は、切替信号を第1、第2のバッファ回路2A,2Bに出力することにより、第1、第2のバッファ回路2A,2Bのいずれか一方を択一的に選択する。すなわち、MPU11は、第1、第2のバッファ回路2A,2Bのうち、切替信号で選択した方に測定用信号を第1の検出電極4Xに入力させる。MPU11は、第1のバッファ回路2Aを選択することにより第1の測定用信号を第1の検出電極4Xに入力させ、第2のバッファ回路2Bを選択することにより第2の測定用信号を第1の検出電極4Xに入力させる制御手段でもある。
ここで、第1、第2の差電圧は、本発明の処理済検出信号に相当する。すなわち、第1の差電圧は第1の検出処理回路の出力信号であり、第2の差電圧は第2の検出処理回路の出力信号である。また、MPU11は、このような第1、第2の差電圧(処理済検出信号)に基づいて水分量及び電気伝導度(複数の前記測定対象物理量)を演算する演算手段に相当する。
また、上記各構成要素のうち、一部の能動回路である発振器1、第1、第2のバッファ回路2A,2B、第3、第4のバッファ回路5A,5B、第1、第2の検出器6A,6B、第5、第6のバッファ回路7A,7Bは、出力電圧が+3.3Vのプラス電源によって駆動される。また、残りの能動回路である第1、第2の差動アンプ10A,10B及びMPU11は、出力電圧が+5.0Vのプラス電源によって駆動される。
次に、本実施形態に係る測定装置の動作について詳しく説明する。
この測定装置を用いて測定対象物の水分量を測定する場合、MPU11は、第1のバッファ回路2Aを選択する切替信号を第1、第2のバッファ回路2A,2Bに出力する。また、この切替信号は発振器1にも入力されるので、発振器1は第1の測定用信号を第1のバッファ回路2Aに出力する。この結果、第1のバッファ回路2Aは、第1の測定用信号を電流増幅して第1の抵抗器3Aを介して第1の検出電極4Xに供給する。
この状態において、非選択の第2のバッファ回路2Bは、出力インピーダンスが高インピーダンス状態に設定されるので、第2のバッファ回路2Bの出力インピーダンスの影響は、第1の検出信号に現れない。すなわち、第2のバッファ回路2Bは、第1の検出電極4Xに接続されていないに等しい状態にあるので、第1の検出信号の検出ダイナミックレンジに影響を与えない。
一方、この測定装置を用いて測定対象物の電気伝導度を測定する場合、MPU11は、第2のバッファ回路2Bを選択する切替信号を第1、第2のバッファ回路2A,2Bに出力する。また、この切替信号は発振器1にも入力され、発振器1は第2の測定用信号を第2のバッファ回路2Aに出力する。この結果、第2のバッファ回路2Aは、第2の測定用信号を電流増幅して第2の抵抗器3Bを介して第1の検出電極4Xに供給する。
この状態において、非選択の第1のバッファ回路2Aは、出力インピーダンスが高インピーダンス状態に設定されるので、第1のバッファ回路2Aの出力インピーダンスの影響は、第2の検出信号に現れない。すなわち、第1のバッファ回路2Aは、第1の検出電極4Xに接続されていないに等しい状態にあるので、第2の検出信号の検出ダイナミックレンジに影響を与えない。
このように、本実施形態に係る測定装置では、測定対象物の水分量を測定する場合は、当該測定における検出ダイナミックレンジが最大化するように最適設定された第1の抵抗値(第1の抵抗器3Aの抵抗値)を介して第1の測定用信号が第1の検出電極4Xに供給されると共に第1の抵抗値を用いて第1の検出信号が第1の検出電極4Xから取り出される。
また、測定対象物の電気伝導度を測定する場合には、当該測定における検出ダイナミックレンジが最大化するように最適設定された第2の抵抗値(第2の抵抗器3Bの抵抗値)を介して第2の測定用信号が第1の検出電極4Xに供給されると共に第2の抵抗値を用いて第2の検出信号が第1の検出電極4Xから取り出される。
ここで、第1、第2のバッファ回路2A,2Bのうち、非選択の出力インピーダンスが高インピーダンスではなく低インピーダンスのままであった場合、第1の抵抗値と第2の抵抗値との合成抵抗値を介して第1、第2の測定用信号が第1の検出電極4Xに供給され、また合成抵抗値を用いて第1、第2の検出信号が第1の検出電極4Xから取り出されることになる。
そして、第1の検出信号が第1の検出処理回路で処理されることにより第1の差電圧がMPU11に入力され、また第2の検出信号が第2の検出処理回路で処理されることにより第2の差電圧がMPU11に入力される。そして、MPU11は、第1の差電圧に基づいて測定対象物の水分量を取得し、また第2の差電圧に基づいて測定対象物の電気伝導度を取得する。そして、MPU11は、水分量及び電気伝導度を測定値として外部に出力する。
このような本実施形態によれば、検出ダイナミックレンジが対象物理量毎つまり水分量及び電気伝導度毎に独立して設定されるので、測定対象物における複数の対象物理量を従来よりも精度良く測定することが可能である。
なお、本発明は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、測定対象物の水分量及び電気伝導度を複数の対象物理量として測定する場合について説明したが、本発明はこれに限定されない。すなわち、本発明は水分量及び電気伝導度以外の対象物理量の測定にも適用することが可能である。
(2)上記実施形態では、2つの対象物理量つまり水分量及び電気伝導度の側的について説明したが、本発明はこれに限定されない。すなわち、本発明は、対象物理量の個数に応じた数の入力回路及び検出処理回路を設けることにより、3つ以上の対象物理量の側的にも適用可能である。
(3)上記実施形態では、方形波を発振する発振器1を採用したが、本発明はこれに限定されない。方形波に変えて他の波形、例えば台形波信号を発生させても良い。
1 発振器
2A,2B 第1、第2のバッファ回路(入力回路)
3A,3B 第1、第2の抵抗器(入力回路)
4X,4Y 第1、第2の検出電極
5A,5B 第3、第4のバッファ回路(検出処理回路)
6A,6B 第1、第2の検出器(検出処理回路)
7A,7B 第5、第6のバッファ回路(検出処理回路)
8A,8B 第1、第2のローパスフィルタ(検出処理回路)
9A,9B 第3、第4のローパスフィルタ(検出処理回路)
10A,10B 第1、第2の差動アンプ(検出処理回路)
11 MPU
M 電極モジュール
S 支持部材

Claims (5)

  1. 測定対象物に接触する検出電極と、
    所定の測定用信号を発振する発振器と、
    複数の測定対象物理量に対応して設けられ、前記測定用信号を前記検出電極に供給する複数の入力回路と、
    複数の前記測定対象物理量に対応して設けられ、前記検出電極から得られる検出信号に所定の検出処理を施す複数の検出処理回路と、
    前記検出処理回路から入力される処理済検出信号に基づいて複数の前記測定対象物理量を演算する演算手段と、
    複数の前記入力回路を択一的に選択して前記測定用信号を前記検出電極に入力させる制御手段と
    を備えることを特徴とする測定装置。
  2. 前記発振器は、前記入力回路毎に異なる周波数の前記測定用信号を発振することを特徴とする請求項1に記載の測定装置。
  3. 前記検出処理回路は、前記測定用信号と前記検出信号との位相差を示す前記処理済検出信号を生成して前記演算手段に出力することを特徴とする請求項2に記載の測定装置。
  4. 前記入力回路は、前記測定用信号を所定の抵抗器を介して前記検出電極に供給し、非選択時に出力インピーダンスが高インピーダンスとなることを特徴とする請求項1〜3のいずれか一項に記載の測定装置。
  5. 複数の前記測定対象物理量は、前記測定対象物の水分と電気伝導度であることを特徴とする請求項1〜4のいずれか一項に記載の測定装置。
JP2019070643A 2019-04-02 2019-04-02 測定装置 Active JP7215303B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019070643A JP7215303B2 (ja) 2019-04-02 2019-04-02 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019070643A JP7215303B2 (ja) 2019-04-02 2019-04-02 測定装置

Publications (2)

Publication Number Publication Date
JP2020169859A true JP2020169859A (ja) 2020-10-15
JP7215303B2 JP7215303B2 (ja) 2023-01-31

Family

ID=72746337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019070643A Active JP7215303B2 (ja) 2019-04-02 2019-04-02 測定装置

Country Status (1)

Country Link
JP (1) JP7215303B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05204417A (ja) * 1992-01-27 1993-08-13 Sharp Corp プログラマブルコントローラの入出力回路
WO2003089916A1 (en) * 2002-04-19 2003-10-30 Agrilink Holdings Pty Ltd A sensor
US20080199359A1 (en) * 2005-07-04 2008-08-21 Senviro Pty Ltd Soil Moisture Sensor
WO2011158812A1 (ja) * 2010-06-17 2011-12-22 国立大学法人豊橋技術科学大学 土壌の水分状態特定装置及びその方法
JP2013200194A (ja) * 2012-03-23 2013-10-03 Mega Chips Corp 水分検出装置、電気伝導度検出装置、センサネットワークシステム、プログラム、水分検出方法および電気伝導度検出方法
JP2013200193A (ja) * 2012-03-23 2013-10-03 Mega Chips Corp 水分検出装置、電気伝導度検出装置、センサネットワークシステム、プログラム、水分検出方法および電気伝導度検出方法
JP2018091798A (ja) * 2016-12-07 2018-06-14 株式会社Ihi 水分量検出器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05204417A (ja) * 1992-01-27 1993-08-13 Sharp Corp プログラマブルコントローラの入出力回路
WO2003089916A1 (en) * 2002-04-19 2003-10-30 Agrilink Holdings Pty Ltd A sensor
US20080199359A1 (en) * 2005-07-04 2008-08-21 Senviro Pty Ltd Soil Moisture Sensor
WO2011158812A1 (ja) * 2010-06-17 2011-12-22 国立大学法人豊橋技術科学大学 土壌の水分状態特定装置及びその方法
JP2013200194A (ja) * 2012-03-23 2013-10-03 Mega Chips Corp 水分検出装置、電気伝導度検出装置、センサネットワークシステム、プログラム、水分検出方法および電気伝導度検出方法
JP2013200193A (ja) * 2012-03-23 2013-10-03 Mega Chips Corp 水分検出装置、電気伝導度検出装置、センサネットワークシステム、プログラム、水分検出方法および電気伝導度検出方法
JP2018091798A (ja) * 2016-12-07 2018-06-14 株式会社Ihi 水分量検出器

Also Published As

Publication number Publication date
JP7215303B2 (ja) 2023-01-31

Similar Documents

Publication Publication Date Title
KR101274821B1 (ko) 전자 장치, 개방 회로 검출 시스템, 및 개방 회로의 검출 방법
JP5474707B2 (ja) 電圧検出装置用の検出回路および電圧検出装置
US9551738B2 (en) Robust capacitive measurement system
JP6744695B2 (ja) アクティブ・シャント電流計
US20110267078A1 (en) Current Sensor Capacity Measuring System
JP2003028900A (ja) 非接触電圧測定方法およびその装置
US20150234017A1 (en) Magnetic field detecting device
JP2012013588A (ja) 四端子型インピーダンス測定装置
JP2011085462A (ja) 四端子抵抗測定装置
CN109196344B (zh) 电导率检测器
JP2002022786A (ja) インピーダンス検出回路及びインピーダンス検出方法
JP2020169859A (ja) 測定装置
JP2010261722A (ja) 電圧検出装置および線間電圧検出装置
JP2021505909A (ja) 負荷インピーダンステスターおよび測定方法
JP2006343108A (ja) インピーダンス測定装置
JP2007089277A (ja) 電気自動車のリーク検出装置
JP2002022785A (ja) インピーダンス検出回路及びインピーダンス検出方法
CN110337596B (zh) 具有用于借助声波执行环境检测的传感器的传感器设备
JP2011043491A (ja) 電圧検出装置および線間電圧検出装置
JPH06222032A (ja) 静電容量式アルコール濃度測定装置
JP2862761B2 (ja) 静電容量式アルコール濃度測定装置
US20200209202A1 (en) Electric conductivity detector and method for determining phase adjustment value
JP2016099207A (ja) 電圧測定装置
JP2008306679A (ja) 静電容量変化検出回路
JP4859353B2 (ja) 増幅回路、及び試験装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R151 Written notification of patent or utility model registration

Ref document number: 7215303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151