WO2011158510A1 - ドリル孔あけ用エントリーシート - Google Patents

ドリル孔あけ用エントリーシート Download PDF

Info

Publication number
WO2011158510A1
WO2011158510A1 PCT/JP2011/003453 JP2011003453W WO2011158510A1 WO 2011158510 A1 WO2011158510 A1 WO 2011158510A1 JP 2011003453 W JP2011003453 W JP 2011003453W WO 2011158510 A1 WO2011158510 A1 WO 2011158510A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soluble resin
resin composition
drill bit
drilling
Prior art date
Application number
PCT/JP2011/003453
Other languages
English (en)
French (fr)
Inventor
洋介 松山
拓哉 羽崎
賢一 清水
励紀 秋田
真也 小松
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to BR112012032418-7A priority Critical patent/BR112012032418A2/pt
Priority to CN201180039885.0A priority patent/CN103079781B/zh
Priority to RU2012155140/02A priority patent/RU2521908C1/ru
Priority to JP2012520298A priority patent/JP5067519B2/ja
Priority to KR1020137001330A priority patent/KR101619749B1/ko
Publication of WO2011158510A1 publication Critical patent/WO2011158510A1/ja
Priority to HK13111073.2A priority patent/HK1183644A1/xx

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/088Means for treating work or cutting member to facilitate cutting by cleaning or lubricating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/16Perforating by tool or tools of the drill type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0214Back-up or entry material, e.g. for mechanical drilling

Definitions

  • the present invention relates to an entry sheet for drilling used for drilling a copper-clad laminate or a multilayer board.
  • a metal support foil alone or a sheet having a resin composition layer formed on the surface of the metal support foil (hereinafter, this sheet is generally referred to as “entry sheet for drilling” in this specification) is used for drilling. The method of doing is generally employed.
  • Patent Document 1 proposes a drilling method using a sheet made of a water-soluble resin such as polyethylene glycol.
  • a drilling lubricant sheet in which a water-soluble resin layer is formed on a metal foil is proposed.
  • Patent Document 3 proposes an entry sheet for punching in which a water-soluble resin layer is formed on an aluminum foil on which a thermosetting resin thin film is formed.
  • the demands for copper-clad laminates and multilayer boards, which are printed wiring board materials, are to increase the density, improve productivity, and reduce costs. Specifically, as described below, drilling with improved hole positioning accuracy Workability is required.
  • the increase in the density of printed wiring boards is manifested in the transition of the minimum hole diameter.
  • the diameter has been reduced to 0.3 mm, 0.25 mm, and 0.2 mm, and those with 0.15 mm and 0.105 mm are drilled.
  • laser drilling is adopted for those having a minimum hole diameter of 0.08 mm, 0.075 mm, 0.06 mm, and 0.05 mm. This is because the ultra-small diameter drill bit made of cemented carbide is brittle and easy to break, so the conventional drill hole entry sheet is likely to break the ultra-small diameter drill bit.
  • the conventional technique has not been able to prevent drill bits from being broken and drilling holes with high positional accuracy in an extremely small diameter region.
  • the drill bit with the resin attached may cause center runout as a result of the center of gravity deviating from its axis during rotation, which may impair the drilling position accuracy.
  • the ultra-small diameter drill bit is easy to run out of core due to a small amount of resin wrapped around it.
  • the resin dropping position is the same as the drilling position, the drill bit hits the dropped resin, impairing the centripetal property and causing the hole position accuracy to deteriorate or the drill bit to be broken. For this reason, it is necessary to dramatically reduce the amount of resin wrapped around the drill bit with an extremely small diameter drill bit.However, with an extremely small diameter drill bit, the spiral groove that discharges the cut material is thin and shallow, so the resin is applied to the drill bit. It is easy to wind up and cannot be solved by the prior art.
  • the said centripetal property refers to the straightness of the cutting direction at the time of cutting.
  • the market demands for productivity improvement and cost reduction have much different strength than before, further improving the hole position accuracy and increasing the number of copper clad laminates and multilayer boards that can be punched at once. It was necessary to increase the cost, and it was required to reduce the cost by increasing the productivity and suppressing the investment amount of the drilling machine.
  • the conventional technique cannot solve both the cost and the number of stacked sheets that are much more strict than those in the past. Note that increasing the number of stacked sheets means that the position of the hole at the top and bottom of the copper-clad laminate or multilayer board is kept good, as long as the drill bit blade length permits, Refers to stacking boards.
  • the object of the present invention is to prevent drill bit breakage, excellent hole position accuracy, and prevent drilling of resin to the drill bit as compared with the conventional drill hole entry sheet. Is to provide an entry sheet.
  • the present inventors have found that the surface state of the resin composition layer on the drill bit entry surface, in particular, the average particle diameter of the crystal grains of the water-soluble resin composition and its It was noted that the standard deviation and the surface roughness Sm (average interval of irregularities) of the entrance surface of the drill bit of the resin composition layer are important. And by specifying the cooling conditions at the time of manufacture, the crystallinity of the water-soluble resin composition can be controlled. As a result, a large number of dense crystals with small crystal grains and small standard deviation can be generated, and the surface roughness It was found that Sm can be reduced.
  • the present invention has been made based on such findings, and the gist thereof is as follows.
  • An entry sheet for drilling in which a layer having a thickness of 0.02 to 0.3 mm made of a crystalline water-soluble resin composition is formed on at least one surface of a metal support foil, the water-soluble resin
  • the crystal grains of the composition have an average particle size in the range of 5 to 70 ⁇ m, a standard deviation of 25 ⁇ m or less, and a surface roughness Sm of the drill bit entry surface of the layer made of the water-soluble resin composition of 8 ⁇ m or less.
  • the layer made of the water-soluble resin composition is a solution containing the water-soluble resin composition after the heat-dissolved material of the water-soluble resin composition is directly applied on the metal supporting foil.
  • the crystal grains of the water-soluble resin composition have an average particle diameter in the range of 5 to 40 ⁇ m and a standard deviation of 17 ⁇ m or less, and the layer made of the water-soluble resin composition has a drill bit entry surface.
  • the water-soluble resin composition contains a water-soluble resin (A), and further includes a hydrophobic substance (B1), a substance (B2) having a higher melting point than the water-soluble resin (A), and the above
  • the drill drilling entry sheet of the present invention can produce a large number of dense crystals with small crystal grains and small standard deviation in the water-soluble resin composition layer, and can reduce the surface roughness Sm. As a result, the hole can be drilled with high positional accuracy and the resin wound around the drill bit can be reduced. As a result, breakage of the drill bit during drilling can be greatly reduced. As a result, it is possible to perform drilling with high quality and excellent productivity.
  • the drill hole entry sheet of the present invention has a drill hole in which a layer made of a water-soluble resin composition having crystallinity (hereinafter referred to as “water-soluble resin composition layer”) is formed on at least one surface of a metal support foil. Entry sheet for opening.
  • water-soluble resin composition layer a layer made of a water-soluble resin composition having crystallinity
  • the entry sheet for drilling for the water-soluble resin composition, crystal grains having a specific range of particle diameters and a specific range of standard deviation are present on the surface of the entry sheet, and the drill bit enters When the surface has a surface roughness Sm in a specific range, it is possible to contribute to improving the hole position accuracy during drilling, reducing the winding of the resin, and preventing breakage of the drill bit.
  • the average particle diameter of the crystal grains of the water-soluble resin composition needs to be in the range of 5 to 70 ⁇ m, and preferably in the range of 5 to 50 ⁇ m, from the viewpoint of improving the hole position accuracy during drilling.
  • the range of 5 to 40 ⁇ m is more preferable, the range of 5 to 30 ⁇ m is more preferable, the range of 5 to 20 ⁇ m is particularly preferable, and the range of 5 to 10 ⁇ m is most preferable.
  • the average grain size of the crystal grains is less than 5 ⁇ m, the surface of the water-soluble resin composition becomes too uniform, the cutting edge at the tip of the drill bit slides, and the biting property with respect to the entry sheet surface decreases, resulting in centripetalization.
  • FIG. 2 is a diagram schematically showing a state when drilling is performed using a conventional drill hole entry sheet
  • FIG. 3 is a drill hole entry sheet according to the present invention. It is the figure which showed typically the state when performing a drilling process using.
  • the water-soluble resin composition layer 2 according to the present invention is used, the crystal grains 2a to 2g constituting the water-soluble resin composition layer 2 corresponding to the size of the drill bit tip 1 are shown in FIG. Since the average particle diameter is optimized, the bite between the drill bit tip 1 and the water-soluble resin composition layer 2 is good, and the hole position accuracy can be improved.
  • the crystal grains 20a to 20c constituting the resin composition layer 20 are larger than the size of the tip 1 of the drill bit as shown in FIG. Therefore, the tip 1 of the drill bit may slip on the surface of each crystal grain 20a to 20c, impair the centripetal property, and deteriorate the hole position accuracy.
  • the particle diameter of the crystal grains of the water-soluble resin composition in the present invention is the water-soluble resin composition layer as observed from the vertical upper part of the entry sheet. It is the maximum diameter among the crystal grains present on the surface.
  • the surface of the resin composition layer of the entry sheet for drilling is measured with a V-LASER microscope (model number VK-9700, KEYENCE CORPORATION). The maximum diameter of 50 arbitrarily selected crystal grains was measured with the same microscope, and the average value (number average) was determined as the average particle diameter of the water-soluble resin composition. To do. In the present invention, the calculation is performed excluding those having a crystal grain size of less than 1 ⁇ m.
  • the crystal grain size of the water-soluble resin composition is optimized, and the standard deviation of the average grain size of the crystal grain is 25 ⁇ m or less. It is necessary that it is 20 ⁇ m or less, more preferably 17 ⁇ m or less, further preferably 15 ⁇ m or less, particularly preferably 10 ⁇ m or less, and most preferably 5 ⁇ m or less.
  • the reason for limiting the standard deviation is that the criticality has been found in experiments, and even if the average grain size of the crystal grains is small, if the standard deviation exceeds 25 ⁇ m, particles having large diameters are scattered. This is because the unevenness is large and there is a concern about the deterioration of the hole position accuracy.
  • the surface of the resin composition layer of the entry sheet for drilling is applied to a V-LASER microscope (model number VK-9700, KEYENCE-CORPORATION).
  • the maximum diameter of 50 arbitrarily selected crystal grains is measured with the same microscope, and the average value is calculated. Furthermore, the standard deviation in each maximum diameter of 50 measured crystal grains can be calculated.
  • the layer made of the water-soluble resin composition has a surface roughness of the drill bit entry surface, more specifically, an average interval of irregularities defined in JIS-B0601-1994: Sm is 8 ⁇ m or less. In short, it is preferably 7 ⁇ m or less, more preferably 6 ⁇ m or less, further preferably 5 ⁇ m or less, and most preferably 4 ⁇ m or less.
  • Sm is 8 ⁇ m or less. In short, it is preferably 7 ⁇ m or less, more preferably 6 ⁇ m or less, further preferably 5 ⁇ m or less, and most preferably 4 ⁇ m or less.
  • the criticality has been found in the experiment, and when the thickness exceeds 8 ⁇ m, the penetration of the drill bit into the entry sheet surface is affected by the unevenness of the surface and impairs the centripetality. .
  • the surface of the resin composition layer is observed with a V-LASER microscope (model number VK-9700, KEYENCE-CORRORATION) in a 200-fold field of view, Noise removal and inclination correction (surface inclination correction and height range automatic correction) are performed, and the surface roughness (JIS-B0601: 1994 line roughness) of an evaluation length of 500 ⁇ m in an arbitrary direction in the observed image is measured.
  • the same measurement can be performed at five points in the same observation image, and the average value can be set as the Sm.
  • the water-soluble resin composition layer used in the entry sheet for drilling according to the present invention is a method in which a hot melt of a water-soluble resin composition is directly applied on the metal supporting foil and cooled, or A solution containing a water-soluble resin composition is applied by a coating method or the like, dried and cooled.
  • the water-soluble resin composition used for the entry sheet for drilling according to the present invention is a composition containing a water-soluble resin (A) and has crystallinity.
  • a mixture of the water-soluble resin (A) and other substances is exemplified.
  • other substances various inorganic compounds, organic compounds, mixtures, composites, complexes, low molecular substances, monomers, oligomers, high molecular substances, polymers, natural resins, fibers, minerals, hydrophobic substances, hydrophilic substances For example.
  • the type of the water-soluble resin (A) is not particularly limited as long as it is a water-soluble resin having crystallinity, but is preferably a water-soluble resin having high crystallinity, for example, polyalkylene oxide, poly It is preferable that it is 1 or more types selected from the group which consists of polyester of sodium acrylate, polyacrylamide, carboxymethylcellulose, polytetramethylene glycol, and polyalkylene glycol.
  • the polyalkylene oxide include polyethylene oxide and polypropylene oxide. Furthermore, polyethylene oxide that does not cause steric hindrance in the molecular structure is more preferable.
  • Polyester of polyalkylene glycol is a condensate obtained by reacting polyalkylene glycol and dibasic acid.
  • polyethylene glycol polyethylene glycol, polypropylene glycol, polytetramethylene glycol and glycols exemplified by these copolymers are preferable.
  • the dibasic acid is preferably selected from phthalic acid, isophthalic acid, terephthalic acid, sebacic acid, partial esters of polyvalent carboxylic acids such as pyromellitic acid, acid anhydrides, and the like.
  • a condensate having polyethylene glycol as the main chain that does not cause steric hindrance in the molecular structure is more preferable.
  • the water-soluble resin composition of the present invention comprises a water-soluble resin (A), a hydrophobic substance (B1), a substance (B2) having a higher melting point than the water-soluble resin (A), and the water-soluble resin. It is preferable that it is a composition which consists of at least 1 type of the substance (B3) which improves compatibility with (A) and a solvent.
  • the hydrophobic substance (B1) When the hydrophobic substance (B1) is blended in the water-soluble resin composition, the hydrophobic substance (B1) is dispersed in the water-soluble resin composition, and the water-soluble resin composition is solidified by cooling. Since the hydrophobic substance (B1) is hydrophobic, it acts as a nucleus for crystal formation, and a large number of crystal grains of the water-soluble resin composition can be precipitated.
  • a substance (B2) having a melting point higher than that of the water-soluble resin (A) By mixing the water-soluble resin composition with a substance (B2) having a melting point higher than that of the water-soluble resin (A), a difference occurs in the solidification rate when the water-soluble resin composition is solidified by cooling. be able to.
  • the action of solidifying the substance (B2) having a high melting point at an early timing functions as a nucleus for crystal formation, and a large number of crystal grains of the water-soluble resin composition can be precipitated.
  • the substances (B2) having a higher melting point than the water-soluble resin (A) there are substances that not only make the crystal grains smaller, but also have a high effect of reducing the surface roughness Sm of the water-soluble resin composition layer. is there.
  • a substance (B3) that enhances the compatibility between the water-soluble resin (A) and the solvent the hydroxy group contained in the molecular structure of (B3) is added to the water-soluble resin.
  • the hydrophobic substance (B1), the substance (B2) having a higher melting point than the water-soluble resin (A), and the substance (B3) that enhances the compatibility between the water-soluble resin (A) and the solvent are all used. Even if it comprises a single substance, it may comprise a mixture of two or more substances. Furthermore, the hydrophobic substance (B1), the substance (B2) having a higher melting point than the water-soluble resin (A), and the substance (B3) that enhances the compatibility between the water-soluble resin (A) and the solvent are used in combination. It is also possible to do.
  • the hydrophobic substance (B1), the substance (B2) having a higher melting point than the water-soluble resin (A), and the substance (B3) that enhances the compatibility between the water-soluble resin (A) and the solvent are the water-soluble substances. It is necessary to add 0.1 to 5 parts by weight in total with respect to 100 parts by weight of the resin (A), preferably 0.1 to 3 parts by weight, preferably 0.2 parts by weight. More preferably, 3 parts by weight is blended, and 0.2-2 parts by weight is particularly preferred. This is because if the amount is less than 0.1 parts by weight, it may be difficult to achieve a dense crystal formation effect, while if it exceeds 5 parts by weight, there is no economic rationality. It is reasonable to select substances (B1, B2, B3) that exert an effect in a small amount.
  • the hydrophobic substance (B1) is not particularly limited as long as it is hydrophobic.
  • hydrophobic polymers long chain alcohols, hydrophobic polysaccharides and inorganic compounds can be used.
  • a thermoplastic polymer urethane-based, silicon-based, acrylic-based polymers and copolymers thereof, polyetherimide, polyimide, polyvinyl chloride-vinyl acetate, polyamides, polypropylene, polyvinyl acetate , Polybutene, polymethacrylamide, powdered cellulose, cellulose derivatives, polyvinyl ether, phenoxy resin, ethylene-vinyl alcohol copolymer resin, polytetrafluoroethylene powder and fine particles, and thermosetting polymers such as epoxy resin, silicon Resin, phenol resin, urea resin, acrylic resin, polyethylene glycol dimethacrylate resin, bismaleimide resin, bismaleimide triazine resin, cyanate resin, benzoguanamine resin, etc
  • Examples of such compounds include lauryl alcohol, cetanol, stearyl alcohol, oleyl alcohol, linoleyl alcohol and the like, and inorganic compounds include talc, molybdenum disulfide, zinc molybdate, graphite, tungsten disulfide, graphite fluoride, boron nitride. These materials may be used, and one or more of these may be used in appropriate mixture. Further, stearyl alcohol, zinc molybdate, graphite, boron nitride and the like are more preferable as the hydrophobic substance (B1) that enhances the effect of the present invention. This is because these are highly dispersible in the water-soluble resin composition solution.
  • the substance (B2) having a higher melting point than the water-soluble resin (A) is not particularly limited as long as the melting point is higher than that of the resin (A).
  • amino acids, organic acids, organic acid salts, organic salts, organic phosphates, polysaccharides, rosins and inorganic compounds can be used.
  • examples of amino acids include sodium glutamate
  • examples of organic acids include malic acid, malonic acid, succinic acid, fumaric acid, maleic acid, cyanuric acid, and the like
  • organic acid salts include malic acid
  • examples include metal salts of organic acids such as malonic acid, succinic acid, fumaric acid, maleic acid, formic acid, acetic acid, propionic acid, stearic acid, and cyanuric acid.
  • examples of organic salts include melamine cyanurate, and organic phosphorus.
  • acid salts include adenosine triphosphate sodium salt
  • polysaccharides include cellulose, chitin, starch, glycogen, agarose, pectin and the like
  • rosins include tall rosin, tall oil fatty acid and the like
  • inorganic Examples of the compound include sodium chloride, sodium sulfate, magnesium sulfate and the like.
  • substance (B2) having a higher melting point than the water-soluble resin (A) that enhances the effect of the present invention sodium glutamate, succinic acid, sodium formate, calcium formate, sodium stearate, calcium stearate, cellulose and the like are more. preferable.
  • Examples of the substance (B3) that enhances the compatibility between the water-soluble resin (A) and the solvent include polyhydric alcohols having a hydroxy group in the molecular structure, sugar alcohols, amino acid derivative alcohols, and the like.
  • polyhydric alcohol polymers such as polyethylene glycol included in the water-soluble resin (A) are excluded, but as the polyhydric alcohol other than the polymer, trimethylolpropane, pentaerythritol, neopentylglycol, trimethylolethane and the like can be mentioned.
  • sugar alcohols include sorbitol, xylitol, and inositol.
  • amino acid derivative alcohols examples include oxyaniline, oxytoluidine, tyrosine, and aminodeoxy sugar.
  • pentaerythritol, sorbitol, xylitol, inositol, etc. are more preferable as the substance (B3) for improving the compatibility between the water-soluble resin (A) and the solvent for enhancing the effect of the present invention.
  • the thickness of the water-soluble resin composition layer varies depending on the diameter of the drill bit used for drilling and the configuration of the copper-clad laminate or multilayer board to be processed, but is usually 0.02 to 0.00. It is in the range of 3 mm, and preferably in the range of 0.02 to 0.2 mm. If the thickness of the water-soluble resin composition layer is less than 0.02 mm, a sufficient lubricating effect cannot be obtained, and the load on the drill bit is increased, and the drill bit may be broken. On the other hand, when the thickness of the water-soluble resin composition layer exceeds 0.3 mm, the winding of the resin around the drill bit may increase.
  • the solution used has a boiling point lower than that of water (more preferably Is preferably a solution containing a solvent (lower by 15 ° C. or more).
  • the type of the solvent having a boiling point lower than that of water is not particularly limited. Examples thereof include ethanol such as alcohols, methanol and isopropyl alcohol, and low-boiling solvents such as methyl ethyl ketone and acetone can also be used.
  • the inclusion of the solvent having a boiling point lower than that of water contributes to the reduction of the crystal grain size and the surface roughness Sm, and has the effect of improving the hole position accuracy.
  • Each solvent has its own characteristics. Ethanol contributes to reducing the grain size of crystal grains, and methyl ethyl ketone contributes to reducing the surface roughness Sm. Ethanol is highly effective in improving the hole position accuracy.
  • As the low boiling point solvent ethanol and acetone are more preferable. In general, increasing the amount of the low-boiling solvent contributes to reducing the grain size of the crystal grains, reducing the surface roughness Sm, and reducing the standard deviation of the crystal grains. However, if the blending amount of the low boiling point solvent is continuously increased, the effect of improving the hole position accuracy is gradually saturated.
  • a low boiling-point solvent is hard to express an effect, when the difference in boiling point with water is less than 15 degreeC.
  • the blending ratio of the water and the solvent having a boiling point lower than that of water needs to be in the range of 90/10 to 50/50, preferably in the range of 80/20 to 50/50, and 70/30 to 50 A range of / 50 is most preferred.
  • the blending ratio of the solvent having a boiling point lower than that of water is less than 10, it may be difficult to achieve a dense crystal formation effect.
  • the blending ratio of the solvent having a boiling point lower than that of water exceeds 50, there is no economic rationality and there is a risk that industrial stable production may be hindered.
  • the method for producing the entry sheet is not particularly limited.
  • a method for kneading the water-soluble resin composition a general kneading means may be used.
  • a biaxial roll a mixer, a double-arm kneader, a plunger extruder, or the like.
  • kneading a water-soluble resin composition it is preferable to knead in a nitrogen atmosphere in order to suppress decomposition of the water-soluble resin composition.
  • the water-soluble resin composition in order to uniformly disperse the water-soluble resin composition, it is preferable to knead the water-soluble resin composition at a temperature of 120 ° C. to 160 ° C. If the kneading temperature is less than 120 ° C, the water-soluble resin composition becomes non-uniform, which may adversely affect properties such as appearance and hole position accuracy. Decomposition may occur and may adversely affect characteristics such as hole location accuracy.
  • the method of coating the water-soluble resin composition directly on the metal supporting foil is not particularly limited.
  • a general coating apparatus may be used. For example, it is preferable to use a knife coater, an extrusion coater, a die coater, a curtain coater, or the like. If the thickness of the water-soluble resin composition layer is non-uniform, it may adversely affect characteristics such as hole position accuracy, so apply the heat-dissolved material of the water-soluble resin composition uniformly using the above coater. It is preferable to do.
  • the coating method of the entry sheet is not particularly limited, A general coating apparatus may be used.
  • a gravure coater, roll coater, knife coater, extrusion coater, die coater, curtain coater, etc. which are general coating means, are used as a coating means for making the thickness of the water-soluble resin composition layer uniform. Is preferred. If the thickness of the water-soluble resin composition layer is non-uniform, it may adversely affect characteristics such as hole position accuracy, so apply the water-soluble resin composition solution uniformly using the above method. Is preferred.
  • the thickness and water content of the water-soluble resin composition layer are as follows. It is desirable to optimize by. Specifically, it is necessary to hold and dry at a temperature of 120 ° C. to 160 ° C. for 10 seconds to 600 seconds, preferably at a temperature of 120 ° C. to 160 ° C. for 10 seconds to 500 seconds. It is more preferable that the temperature is 120 ° C. to 160 ° C. for 15 seconds to 400 seconds to dry, and it is particularly preferable that the temperature is 120 ° C. to 150 ° C. for 20 seconds to 300 seconds.
  • the solvent may remain inside the water-soluble resin composition layer, or the water-soluble resin composition may be Since the amount of heat necessary for melting is insufficient, there is a possibility that a non-uniform water-soluble resin composition layer is formed.
  • the drying temperature is higher than 200 ° C., or when the holding time exceeds 600 seconds, the water-soluble resin composition may be decomposed, which may cause a problem in appearance.
  • the concentration of the solvent remaining in the water-soluble resin composition layer obtained after drying is preferably less than 5%. .
  • ultrasonic vibration or reduced pressure drying may be used in combination for drying.
  • the cooling condition in the present invention is that the cooling is started at a cooling rate of 1.5 ° C./second or more within 60 seconds from the cooling start temperature of 120 ° C. to 160 ° C. to the cooling end temperature of 25 ° C. to 40 ° C. Cost.
  • the cooling end temperature exceeds 40 ° C., it is not possible to achieve a reduction in crystal diameter and uniformity, which is a feature of the present application.
  • the cooling time exceeds 60 seconds, it is not possible to achieve the reduction in size and uniformity of crystal grains, which is a feature of the present application.
  • the cooling end temperature is lower than 15 ° C., the entry sheet is warped and may cause condensation in a subsequent process, which is not preferable.
  • the cooling rate is less than 1.5 ° C./second, the cooling time becomes long and may exceed 60 seconds, which is not preferable.
  • the cooling condition is that the cooling is performed at a temperature of 2 ° C./second or more within 50 seconds from a temperature of 120 ° C. to 160 ° C. It is preferable to cool at a rate of 120 ° C. to 160 ° C., a temperature of 25 ° C. to 40 ° C. within 40 seconds, more preferably at a cooling rate of 2.5 ° C./second or more, and a temperature of 120 ° C. More preferably, the temperature is decreased from ⁇ 160 ° C. to a temperature of 25 ° C. to 40 ° C. within 30 seconds at a cooling rate of 3 ° C./second or more.
  • cooling is more preferable to cool at a cooling rate of 4.5 ° C./second or more within 20 seconds. From a temperature of 120 ° C. to 160 ° C. to a temperature of 25 ° C. to 40 ° C., within 15 seconds, 6 ° C./second or more Most preferably, cooling is performed at a cooling rate.
  • the metal support foil used in the entry sheet for drilling of the present invention is not particularly limited as long as it is a metal material that has high adhesion to the water-soluble resin composition and can withstand the impact of a drill bit.
  • the metal species of the metal supporting foil for example, aluminum can be used, and the thickness of the metal supporting foil is usually 0.05 to 0.5 mm, preferably 0.05 to 0.3 mm. If the thickness of the aluminum foil is less than 0.05 mm, burrs of the laminated plate are likely to occur during drilling, and if it exceeds 0.5 mm, it may be difficult to discharge chips generated during drilling. .
  • As the material of the aluminum foil aluminum having a purity of 95% or more is preferable. 8021 and the like.
  • the resin used for the resin film is not particularly limited as long as it can improve the adhesion with the water-soluble resin composition, and either a thermoplastic resin or a thermosetting resin can be used.
  • the thermoplastic resin include urethane, vinyl acetate, vinyl chloride, polyester, and copolymers thereof.
  • the thermosetting resin include epoxy resins and cyanate resins.
  • the metal support foil a commercially available metal foil previously coated with a resin by a known method can be used.
  • the entry sheet for drilling of the present invention is used when drilling a printed wiring material, for example, a copper-clad laminate or a multilayer board. Specifically, on the uppermost surface of one or more copper-clad laminates or multilayer boards, the metal support foil side is placed in contact with the printed wiring material, and the water-solubility of the drill hole entry sheet Drilling can be performed from the surface of the resin composition layer.
  • polyethylene glycol may be abbreviated as “PEG” and “polyethylene oxide” may be abbreviated as “PEO”.
  • Table 1 shows the specifications of the resin, solvent, additive, and metal support foil used for manufacturing the drilling entry sheets of the examples and comparative examples, and the cooling conditions, and the drill used for drilling. The condition of the drill bit diameter of the bit is shown.
  • Example 1 80 parts by weight of polyethylene oxide having a number average molecular weight of 150,000 (Altop MG-150, manufactured by Meisei Chemical Co., Ltd.) and 20 parts by weight of polyethylene glycol having a number average molecular weight of 20,000 (PEG 20000, manufactured by Sanyo Chemical Industries, Ltd.) It was dissolved in water so that the solid content was 30%. Furthermore, 0.5 part by weight of sodium formate (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added to the solid content of the water-soluble resin mixture and completely dissolved.
  • a bar coater was used for an aluminum foil (aluminum foil used: 1100, (thickness 0.07 mm) manufactured by Mitsubishi Aluminum Co., Ltd.) in which an epoxy resin film having a thickness of 0.01 mm was formed on one side of the water-soluble resin composition solution.
  • the water-soluble resin composition layer after drying is coated to 0.03 mm, dried in a dryer at 120 ° C. for 3 minutes, and further cooled at a cooling rate of 3.1 ° C./sec.
  • An entry sheet for drilling was prepared (see Table 2).
  • Example 2 the water-soluble resin compositions shown in Tables 1 and 2 were prepared according to Example 1, and applied to an aluminum foil, dried, cooled, and drilled. An entry sheet for drilling was prepared and drilled.
  • Example 2 80 parts by weight of polyethylene oxide having a number average molecular weight of 150,000 (Altop MG-150, manufactured by Meisei Chemical Co., Ltd.) and a number average molecular weight of 20,000 polyethylene glycol (PEG 20000, Sanyo Chemical Industries, Ltd.) 20 parts by weight was dissolved in a water / MeOH (methanol) mixed solution so that the resin solid content was 30%.
  • Comparative Example 26 is a commercially available Sang-A Frontec Co. “LX120” manufactured by Ltd. and Comparative Example 27 are commercially available from Yong Li Chuan Industrial Co. “AL-100040” manufactured by Ltd., Ltd., and Comparative Example 29 are commercially available from Uniplus Electronics Co. “LAE-1007” manufactured by Ltd. was used.
  • Table 3 shows the results of the average particle diameter ( ⁇ m) of crystal grains of the water-soluble resin composition, the standard deviation ( ⁇ m) of the crystal grain diameter, and the surface roughness Sm ( ⁇ m) of the entry sheet.
  • FIG. 1 also shows the surface state of the water-soluble resin composition layer for specific samples (Examples 2, 3, 10, 12, and 19 and Comparative Examples 2, 10, 20, 26, and 28). And show.
  • Drilling processing In order to evaluate each obtained sample, drilling was performed under the following conditions. Drilling with a drill bit diameter of 0.15 mm ⁇ was performed by stacking four copper-clad laminates (CCL-HL832, copper foil both sides 12 ⁇ m, manufactured by Mitsubishi Gas Chemical Co., Ltd.) with a thickness of 0.2 mm.
  • a water-soluble resin composition layer is placed on top, and a backing plate (bake plate) is placed on the lower side of the stacked copper-clad laminate, and a drill bit: 0.15 mm ⁇ (NEU L004 0.15 ⁇ 2.5 Union) Tool Co., Ltd.), rotation speed: 200,000 rpm, feed rate: 20 ⁇ m / rev. Under these conditions, 20 drill holes were drilled at 3,000 hits per drill bit.
  • Drilling with a drill bit diameter of 0.105mm ⁇ was performed by stacking six sheets of 0.1mm thick copper clad laminate (CCL-HL832HS, copper foil on both sides 5 ⁇ m, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and water-soluble resin The composition layer is placed on top, and a backing plate (baked plate) is placed on the lower side of the stacked copper-clad laminate.
  • Drill bit 0.105 mm ⁇ (KMC L518A 0.105x1.8 Union Two Co., Ltd.) Manufactured), rotation speed: 330,000 rpm, feed rate: 8 ⁇ m / rev. Under these conditions, 20 drill holes were drilled at 3,000 hits per drill bit.
  • Drilling of drill bit 0.08mm ⁇ is performed by stacking 4 sheets of 0.1mm thick copper clad laminate (CCL-HL832HS, copper foil both sides 5 ⁇ m, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and water-soluble resin composition Place the object layer up, and place a backing plate (bake plate) on the lower side of the stacked copper clad laminate and drill bit: 0.08mm ⁇ (KMV J948 0.08x1.2 made by Union Tool Co., Ltd.) ), Rotation speed: 330,000 rpm, feed rate: 6 ⁇ m / rev. Under these conditions, 20 drill holes were drilled at 3,000 hits per drill bit.
  • CCL-HL832HS copper foil both sides 5 ⁇ m, manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • water-soluble resin composition Place the object layer up, and place a backing plate (bake plate) on the lower side of the stacked copper clad laminate and drill bit: 0.08mm ⁇ (KMV J948 0.08x1.2 made by Union Tool Co., Ltd.) ),
  • A Crystal grain average grain size 40 ⁇ m or less / Standard deviation of grain average grain size 17 ⁇ m or less / Surface roughness Sm 7 ⁇ m or less, hole position accuracy 23 ⁇ m or less, drill bit breakage, no resin winding
  • Crystal Average grain size of 70 ⁇ m or less / standard deviation of average grain size of crystal grain of 25 ⁇ m or less / surface roughness Sm of 8 ⁇ m or less, hole position accuracy of 25 ⁇ m or less, no breakage of drill bit, no wrapping of resin
  • average of crystal grains Grain size / standard deviation of mean grain size of crystal grain / surface roughness Sm does not satisfy claims, hole position accuracy is 25 ⁇ m or less, drill bit is not broken, resin is not wound x: average grain size Diameter / standard deviation of average grain size / surface roughness Sm does not satisfy claims, hole position accuracy exceeds 25 ⁇ m, drill bit is not broken, resin is not wound
  • Table 4 shows an excerpt of Example 20 and Comparative Example 21 in which drilling with a drill bit diameter of 0.08 mm was performed from Tables 2 and 3, and from the results of Table 4, the drill bit When processing with a diameter of 0.08 mm, due to the rapid cooling effect in producing a layer made of the water-soluble resin composition, the average grain size and its standard deviation, surface roughness Sm, hole position accuracy, and It can be seen that the resin wrapping shows excellent results.
  • Table 5 is an extract of Examples 5 and 6 and Comparative Example 22 that were drilled with a drill bit diameter of 0.105 mm from Tables 2 and 3, but from the results of Table 5.
  • the drill bit diameter of 0.105 mm is processed, the average grain size and its standard deviation, the surface roughness Sm, the hole position due to the rapid cooling effect in producing the layer made of the water-soluble resin composition It can be seen that excellent results are shown for accuracy and resin wrapping.
  • an entry sheet for drilling that has excellent hole position accuracy and less resin that wraps around the drill bit and reduces breakage of the drill bit as compared with the conventional drill hole entry sheet. And in the extremely small diameter area that was previously the area of laser drilling, drilling with high positional accuracy, reducing the amount of resin wrapped around the drill bit, and reducing the breakage of the drill bit, reduced costs and production This contributes to the improvement of productivity, and its industrial utility value is extremely high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Laminated Bodies (AREA)
  • Drilling And Boring (AREA)

Abstract

 金属支持箔の少なくとも片面に、結晶性の水溶性樹脂組成物からなる厚さ0.02~0.3mmの層が形成されてなり、孔位置精度に優れ、ドリルビットに樹脂が付着せず、ドリルビットの折損を防いだ、ドリル孔あけ用エントリーシートを提供することを目的とする。 前記水溶性樹脂組成物の結晶粒が、平均粒径が5~70μmの範囲で、その標準偏差が25μm以下であり、前記水溶性樹脂組成物からなる層のドリルビット進入面の表面粗さSmが8μm以下であり、前記層は、前記金属支持箔上に、直接、前記水溶性樹脂組成物の熱溶解物を塗工した後、又は、前記水溶性樹脂組成物を含有する溶液を塗工して乾燥させた後、120℃~160℃の温度から60秒以内に25℃~40℃の温度へと、1.5℃/秒以上の冷却速度で冷却して形成されることを特徴とする。

Description

ドリル孔あけ用エントリーシート
 本発明は、銅張積層板や多層板のドリル孔あけ加工の際に使用されるドリル孔あけ用エントリーシートに関するものである。
 プリント配線板材料に使用される銅張積層板や多層板のドリル孔あけ加工方法としては、銅張積層板又は多層板を、1枚又は複数枚重ね、その最上部に当て板として、アルミ等の金属支持箔単体又は金属支持箔表面に樹脂組成物層を形成したシート(以下、本明細書ではこのシートを、通常「ドリル孔あけ用エントリーシート」という。)を配置して孔あけ加工を行う方法が、一般的に採用されている。
 近年、プリント配線板材料である銅張積層板や多層板に対する要求として、高密度化、生産性向上とコスト低減があり、孔位置精度の向上させた高品質な孔あけ加工が求められている。この要求に対応すべく、例えば特許文献1では、ポリエチレングリコールなどの水溶性樹脂からなるシートを使用した孔あけ加工法が提案されている。また、特許文献2では、金属箔に水溶性樹脂層を形成した孔あけ用滑剤シートが提案されている。さらに、特許文献3では、熱硬化性樹脂薄膜を形成したアルミニウム箔に水溶性樹脂層を形成した孔あけ用エントリーシートが提案されている。
 しかしながら、半導体の高密度化技術の進展に比して、プリント配線板の高密度化技術の進展は遅く、乖離があることから、プリント配線板材料に対する高密度化の要求がより高度化している。この要求に対応するためには、孔位置精度をさらに向上させる必要があり、より孔位置精度に優れたドリル孔あけ用エントリーシートの開発が切望されている。
 加えて、グローバル化による競争の激化と新興国需要を取り込むべく、生産性向上及びコスト低減については、これまでより格段に強く要求されている。そのため、孔位置精度をさらに向上させ、一度に孔あけできる重ね枚数を増やせるように、より孔位置精度に優れたドリル孔あけ用エントリーシートの開発が切望されている。
特開平4-92494号公報 特開平5-169400号公報 特開2003-136485号公報
 プリント配線板材料である銅張積層板や多層板に対する要求は、前述の通り、高密度化、生産性向上とコスト低減であり、詳しくは以下のように、孔位置精度を向上させた孔あけ加工性が求められている。
 第一に、プリント配線板の高密度化は、端的には最小孔直径の推移に表れている。量産では、0.3mm、0.25mm、0.2mmと小径化が進み、0.15mm、0.105mmのものがドリル孔あけされている。しかし、最小孔直径が0.08mm、0.075mm、0.06mm、0.05mmの極小径のものについては、レーザー孔あけが採用される。超硬金属でできた極小径ドリルビットは脆く折れやすいため、従来のドリル孔あけ用エントリーシートでは、極小径ドリルビットの折損が起きやすいことが理由である。極小径の領域で、ドリルビットの折損を防ぎ、位置精度よくドリル孔あけすることは、従来技術では解決できなかった。
 第二に、樹脂の付着したドリルビットは、回転中に重心がその軸線からずれる結果、芯振れを起こして、ドリル孔あけの位置精度を損なうことがある。極小径のドリルビットは、少量の樹脂の巻き付きで、芯振れしやすい。さらに、樹脂の落下位置とドリル孔あけ位置が同一の場合には、ドリルビットは落下した樹脂に当たり、求芯性を損ない、孔位置精度悪化ないしはドリルビットの折損を引き起こす。そのため、極小径ドリルビットでは、ドリルビットに巻き付く樹脂を格段に減らす必要があるが、極小径のドリルビットでは、その切削物を排出するらせん状の溝が細く浅いため、ドリルビットに樹脂が巻き付きやすく、従来技術では解決できなかった。なお、前記求芯性とは、切削時の切削方向の直進性を指す。
 第三に、ドリルビットは、エントリーシートの樹脂組成物層に接した時、滑り動きながら、先端の切刃が樹脂組成物層に食いつく。ここで、滑り動くことは求芯性を損なうことであり、高密度化するための極小径ドリルビットであることから、滑り動き量を低減し孔位置精度を向上することは重要である。しかしながら、極小径のドリルビットは、樹脂組成物層の表面状態のこまかな違いの影響をも受けて滑り動き、この滑り動き量が大きい場合、ドリルビットは折損する場合がある。そして、この滑り動き量を低減しつつ、孔位置精度を向上することについては、従来技術では解決できなかった。
 第四に、ドリルビット径に関わらず、生産性向上とコスト低減の市場要求がある。背景には、グローバル化による競争の激化、新興国需要を取り込む必要性、仕掛在庫を圧縮したいニーズがある。また、高密度化で孔数が急増することで孔あけ加工時間が長時間化していること、及び、レーザー孔あけ技術との競争もまた、生産性向上とコスト低減を促すドライビングフォースになっている。例えば、グローバル化により、コスト構造の違う国で安く作ることは、厳しい競争を引き起こしており、収入水準が桁違いに低い新興国需要を取り込むためには、格段に安いコストが必要になる。つまり、生産性向上とコスト低減の市場要求は、これまでとは格段に違う強さがあり、孔位置精度をさらに向上させて、一度に孔あけできる銅張積層板や多層板の重ね枚数を増やす必要があり、生産性を高めて、ドリル孔あけ機設備投資金額を抑制して、コスト削減することが求められていた。しかしながら、従来に比して格段に厳しいコストと重ね枚数との両立は、従来技術では解決できなかった。なお、重ね枚数を増やすとは、銅張積層板や多層板を重ねたその最上部と最下部の孔位置精度をいずれも良好に保って、ドリルビット刃長の許す限り銅張積層板や多層板を重ねることを指す。
 上記の課題を解決するべく、本発明の目的は、従来のドリル孔あけ用エントリーシートに比べて、ドリルビットの折損を防ぎ、孔位置精度に優れ、ドリルビットに樹脂の付着しにくいドリル孔あけ用エントリーシートを提供することにある。
 本発明者らは、上記の課題を解決するため種々の検討を行った結果、ドリルビット進入面の樹脂組成物層の表面状態、特に、水溶性樹脂組成物の結晶粒の平均粒径及びその標準偏差と、樹脂組成物層のドリルビットの進入面の表面粗さSm(凹凸の平均間隔)とが重要であることに着目した。そして、製造時の冷却条件を特定することで、水溶性樹脂組成物の結晶性を制御できる結果、結晶粒が小さく、且つ標準偏差の小さい緻密な結晶を多数生成させることができ、表面粗さSmをも小さくできることを見出した。その結果、ドリルビットの求芯性を高めることができ、極小径のドリルビットにおいても、高い位置精度で孔あけでき、ドリルビットに巻き付く樹脂を減らし、ドリルビットの折損を減らすことができることに想到した。
 本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
(1)金属支持箔の少なくとも片面に、結晶性の水溶性樹脂組成物からなる厚さ0.02~0.3mmの層が形成されたドリル孔あけ用エントリーシートであって、前記水溶性樹脂組成物の結晶粒は、平均粒径が5~70μmの範囲で、その標準偏差が25μm以下であり、前記水溶性樹脂組成物からなる層のドリルビット進入面の表面粗さSmが8μm以下であり、前記水溶性樹脂組成物からなる層は、前記金属支持箔上に、直接、前記水溶性樹脂組成物の熱溶解物を塗工した後、又は、前記水溶性樹脂組成物を含有する溶液を塗工して乾燥させた後、120℃~160℃の温度から60秒以内に25℃~40℃の温度へと、1.5℃/秒以上の冷却速度で冷却して形成されることを特徴とするドリル孔あけ用エントリーシート。
(2)前記水溶性樹脂組成物の結晶粒は、平均粒径が5~40μmの範囲で、且つその標準偏差が17μm以下であり、前記水溶性樹脂組成物からなる層は、ドリルビット進入面の表面粗さSmが7μm以下であることを特徴とする上記(1)に記載のドリル孔あけ用エントリーシート。
(3)前記水溶性樹脂組成物は、水溶性樹脂(A)を含有し、さらに、疎水性物質(B1)、前記水溶性樹脂(A)よりも融点が高い物質(B2)、及び、前記水溶性樹脂(A)との相溶性を高める物質(B3)から選ばれる少なくとも1種を含有することを特徴とする上記(1)に記載のドリル孔あけ用エントリーシート。
(4)前記水溶性樹脂組成物を含有する溶液は、水、及び、水よりも沸点の低い溶媒をさらに含有することを特徴とする上記(1)に記載のドリル孔あけ用エントリーシート。    
(5)前記金属支持箔は、厚さが0.05~0.5mmの範囲であることを特徴とする上記(1)に記載のドリル孔あけ用エントリーシート。
(6)銅張積層板の加工に用いられることを特徴とする上記(1)に記載のドリル孔あけ用エントリーシート。
 本発明のドリル孔あけ用エントリーシートは、水溶性樹脂組成物層の結晶粒が小さく、且つ標準偏差の小さい緻密な結晶を多数生成させ、表面粗さSmも小さくできるため、ドリルビットの求芯性を高めて位置精度よく孔あけでき、ドリルビットに巻き付く樹脂を減らすことができる結果、孔あけ加工時におけるドリルビットの折損を大幅に低減できる。それによって、高品質で、生産性に優れる孔あけ加工が可能となる。
各実施例及び比較例の水溶性樹脂組成物層の表面状態について、拡大して示した写真である。 従来のドリル孔あけ用エントリーシートを用いて孔あけ加工を行うときの状態を示す模式断面図である。 本発明にかかるドリル孔あけ用エントリーシートを用いて孔あけ加工を行うときの状態を示す模式断面図である。 各実施例及び比較例について、水溶性樹脂組成物層の結晶粒の平均粒径と孔位置精度との関係を示したグラフである。 各実施例及び比較例について、水溶性樹脂組成物層の結晶粒径の標準偏差と孔位置精度との関係を示したグラフである。 各実施例及び比較例について、水溶性樹脂組成物層の表面粗さSmと孔位置精度との関係を示したグラフである。
 本発明のドリル孔あけ用エントリーシートは、金属支持箔の少なくとも片面に、結晶性を有する水溶性樹脂組成物からなる層(以下、「水溶性樹脂組成物層」という。)を形成したドリル孔あけ用エントリーシートである。
 そして、本発明によるドリル孔あけ用エントリーシートでは、水溶性樹脂組成物について、特定範囲の粒径と特定範囲の標準偏差を有する結晶粒が、エントリーシートの表面に存在し、さらに、ドリルビット進入面が特定範囲の表面粗さSmを有することで、ドリル孔あけ加工時の孔位置精度向上、樹脂の巻き付き低減、及び、ドリルビットの折損防止に寄与することができる。
 前記水溶性樹脂組成物の結晶粒の平均粒径は、ドリル孔あけ加工時に孔位置精度を向上させる点から、5~70μmの範囲である必要があり、5~50μmの範囲であることが好ましく、5~40μmの範囲であることがより好ましく、5~30μmの範囲であることがさらに好ましく、5~20μmの範囲であることが特に好ましく、5~10μmの範囲であることが最も好ましい。結晶粒の平均粒径が5μm未満の場合、前記水溶性樹脂組成物表面が均一になりすぎて、前記ドリルビット先端の切刃が滑り動き、エントリーシート表面に対する食い付き性が低下して求芯性を損なう結果、結晶粒を小さくして孔位置精度を向上させる効果を得ることができないことが実験で見出されている。一方、70μmを超えた場合、ドリルビットのエントリーシート表面への進入が結晶粒の凹凸に影響されて求芯性を損なう結果、孔位置精度の悪化が懸念されることが実験で見出されている。    
 ここで、図2は、従来のドリル孔あけ用エントリーシートを用いて孔あけ加工を行うときの状態を模式的に示した図であり、図3は、本発明にかかるドリル孔あけ用エントリーシートを用いて孔あけ加工を行うときの状態を模式的に示した図である。本発明にかかる水溶性樹脂組成物層2を用いた場合、図3に示すように、ドリルビット先端1の大きさに対応して水溶性樹脂組成物層2を構成する結晶粒2a~2gの平均粒径の適正化が図られているため、ドリルビット先端1と前記水溶性樹脂組成物層2との食い付きが良く、孔位置精度の向上が可能となる。一方、従来の樹脂組成物層20を用いた場合、図2に示すように、ドリルビット先端1の大きさに比べて、樹脂組成物層20を構成する各結晶粒20a~20cが大きくなっていることから、前記ドリルビット先端1は各結晶粒20a~20cの表面で滑りなどを起こすおそれがあり、求芯性を損ない、孔位置精度が悪化する。
 ここで、本発明における水溶性樹脂組成物の結晶粒の粒径(以下、「結晶粒径」ということがある。)とは、エントリーシートの垂直上部から観察したときの水溶性樹脂組成物層表面に存在する結晶粒のうち、最大直径のことである。
 また、前記水溶性樹脂組成物の結晶粒径の平均値を測定する方法としては、ドリル孔あけ用エントリーシートの樹脂組成物層の表面を、V-LASER顕微鏡(型番VK-9700、KEYENCE CORPORATION)を用いて200倍の視野で観察し、任意に選択した50個の結晶粒の各最大直径について同顕微鏡により実測し、その平均値(個数平均)を前記水溶性樹脂組成物の平均粒径とする。なお、本発明では、結晶粒径が1μm未満のものは除外して算出している。
 また、ドリル孔あけ加工時に孔位置精度を向上させるためには、前記水溶性樹脂組成物の結晶粒の粒径について適正化を図るとともに、前記結晶粒の平均粒径の標準偏差が25μm以下である必要があり、20μm以下であることが好ましく、17μm以下であることがより好ましく、15μm以下であることがさらに好ましく、10μm以下であることが特に好ましく、5μm以下であることが最も好ましい。前記標準偏差を限定する理由としては、実験で臨界を見出しており、結晶粒の平均粒径の値が小さくても、その標準偏差が25μmを超える場合には、直径の大きな粒子が散在することになり、凹凸が大きくて、孔位置精度の悪化が懸念されるためである。
 前記水溶性樹脂組成物の結晶粒の平均粒径の標準偏差の算出方法については、ドリル孔あけ用エントリーシートの樹脂組成物層の表面を、V-LASER顕微鏡(型番VK-9700、KEYENCE CORPORATION)を用いて200倍の視野で観察し、任意に選択した50個の結晶粒の各最大直径について同顕微鏡により実測し、その平均値を算出する。さらに計測した50個の結晶粒の各最大直径における標準偏差を算出することができる。
 また、前記水溶性樹脂組成物からなる層は、ドリルビット進入面の表面粗さ、より詳細には、JIS-B0601-1994に規定される凹凸の平均間隔:Smが、8μm以下であることを要し、7μm以下であることが好ましく、6μm以下であることがより好ましく、5μm以下であることがさらに好ましく、4μm以下であることが最も好ましい。実験で臨界を見出しており、8μmを超えた場合、ドリルビットのエントリーシート表面への進入が表面の凹凸に影響されて求芯性を損なうため、孔位置精度の悪化が懸念されるからである。
 前記水溶性樹脂組成物層の表面粗さSmの取得方法については、樹脂組成物層の表面を、V-LASER顕微鏡(型番VK-9700、KEYENCE CORPORATION)を用いて200倍の視野で観察し、ノイズ除去、傾き補正(面傾き補正かつ高さレンジ自動補正)を行い、観察画像中の任意方向の500μmの評価長さの表面粗さ(JIS-B0601:1994の線粗さ)を測定する。同様の計測を同観察画像中で5点計測し、その平均値を前記Smとすることができる。
 本発明のドリル孔あけ用エントリーシートに用いられる水溶性樹脂組成物層は、前記金属支持箔上に、直接、水溶性樹脂組成物の熱溶解物を塗工し、冷却させる方法、又は、前記水溶性樹脂組成物を含有する溶液をコーティング法等によって塗工し、乾燥、冷却させる方法によって形成される。
 本発明のドリル孔あけ用エントリーシートに用いられる水溶性樹脂組成物は、水溶性樹脂(A)を含む組成物であり、結晶性を有する。具体的には、水溶性樹脂(A)と他の物質との混合物などが例示される。ここで他の物質としては、各種の無機化合物、有機化合物、混合物、複合物、錯体、低分子物、モノマー、オリゴマー、高分子物、重合物、天然樹脂、繊維、鉱物、疎水性物質、親水性物質等が挙げられる。
 前記水溶性樹脂(A)の種類は、結晶性を有する水溶性樹脂であれば特に限定されるものではないが、結晶性の高い水溶性樹脂であることが好ましく、例えば、ポリアルキレンオキサイド、ポリアクリル酸ソーダ、ポリアクリルアミド、カルボキシメチルセルロース、ポリテトラメチレングリコール及びポリアルキレングリコールのポリエステルからなる群から選択された1種種以上であることが好ましい。
 前記ポリアルキレンオキサイドの例としては、ポリエチレンオキサイド、ポリプロピレンオキサイドなどが好ましい。さらには分子構造中に立体障害を生じないポリエチレンオキサイドが、より好ましい。ポリアルキレングリコールのポリエステルとは、ポリアルキレングリコールと二塩基酸とを反応させて得られる縮合物である。ポリアルキレングリコールの例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールやこれらの共重合物で例示されるグリコール類などが好ましい。また二塩基酸として、フタル酸、イソフタル酸、テレフタル酸、セバシン酸、及び、ピロメリット酸などの多価カルボン酸の部分エステル、酸無水物、等から選択することが好ましい。さらには、分子構造中に立体障害を生じないポリエチレングリコールを主鎖とする縮合物が、より好ましい。
 また、本発明の水溶性樹脂組成物は、水溶性樹脂(A)と、疎水性物質(B1)、該水溶性樹脂(A)よりも融点の高い物質(B2)、及び、該水溶性樹脂(A)と溶媒との相溶性を高める物質(B3)のうちの少なくとも一種からなる組成物であることが好ましい。
 前記水溶性樹脂組成物に、疎水性物質(B1)を配合することで、疎水性物質(B1)が水溶性樹脂組成物中に分散し、該水溶性樹脂組成物を冷却で固化する際に、疎水性物質(B1)が疎水性ゆえに結晶生成の核として働き、前記水溶性樹脂組成物の結晶粒を小さく多数析出させることができる。
 前記水溶性樹脂組成物に、該水溶性樹脂(A)よりも融点の高い物質(B2)を配合することで、前記水溶性樹脂組成物が冷却で固化する際の固化速度に差が生じさせることができる。すなわち、融点の高い物質(B2)が早いタイミングで固化する作用は、結晶生成の核として機能し、前記水溶性樹脂組成物の結晶粒を小さく多数析出させることができる。前記水溶性樹脂(A)よりも融点の高い物質(B2)のなかには、結晶粒を小さくするだけでなく、さらに、前記水溶性樹脂組成物層の表面粗さSmを低減させる効果の高い物質がある。
 前記水溶性樹脂組成物に、該水溶性樹脂(A)と溶媒との相溶性を高める物質(B3)を配合することで、(B3)の分子構造に含まれるヒドロキシ基が、該水溶性樹脂(A)を溶媒中に均一に分散させるため、水溶性樹脂組成物が乾燥、冷却で固化する際に、結晶粒を小さく多数生成させることができる。また、前記水溶性樹脂(A)と溶媒との相溶性を高める物質(B3)の中には、結晶粒を小さくするだけでなく、前記水溶性樹脂組成物層の表面粗さSmを低減させる効果の高い物質がある。
 さらに、疎水性物質(B1)、水溶性樹脂(A)よりも融点の高い物質(B2)、及び、水溶性樹脂(A)と溶媒との相溶性を高める物質(B3)については、いずれも単独の物質から構成されていても、2種以上の物質の混合物として構成されていてもよい。さらに、疎水性物質(B1)、水溶性樹脂(A)よりも融点の高い物質(B2)、及び、水溶性樹脂(A)と溶媒との相溶性を高める物質(B3)のいずれについても併用することも可能である。
 また、疎水性物質(B1)、水溶性樹脂(A)よりも融点の高い物質(B2)、及び、水溶性樹脂(A)と溶媒との相溶性を高める物質(B3)は、前記水溶性樹脂(A)100重量部に対して、合計で0.1重量部~5重量部配合される必要があり、0.1重量部~3重量部配合されることが好ましく、0.2重量部~3重量部配合されることがより好ましく、0.2重量部~2重量部配合されることが特に好ましい。0.1重量部未満の場合、緻密な結晶生成効果を発現しにくい場合があり、一方、5重量部を超えた場合、経済的合理性がないからである。少量で効果を発現する物質(B1、B2、B3)を選択することが、合理的である。
 ここで、前記疎水性物質(B1)については、疎水性のものであれば特に限定されない。例えば、疎水性ポリマー、長鎖アルコール類、疎水性多糖類及び無機化合物等を用いることができる。具体的には、熱可塑性ポリマーとして、ウレタン系、シリコン系、アクリル系等の重合体及びそれらの共重合体、ポリエーテルイミド、ポリイミド、ポリ塩化ビニル‐酢酸ビニル、ポリアミド類、ポリプロピレン、ポリ酢酸ビニル、ポリブテン、ポリメタクリルアミド、粉末セルロース、セルロース誘導体、ポリビニルエーテル、フェノキシ樹脂、エチレン-ビニルアルコール共重合樹脂、ポリテトラフルオロエチレンなどの粉末や微粒子が挙げられ、熱硬化性ポリマーとして、エポキシ樹脂、シリコン樹脂、フェノール樹脂、尿素樹脂、アクリル樹脂、ポリエチレングリコールジメタクリレート樹脂、ビスマレイミド樹脂、ビスマレイミドトリアジン樹脂、シアネート樹脂、ベンゾグアナミン樹脂などの粉末や微粒子が挙げられ、長鎖アルコール類として、ラウリルアルコール、セタノール、ステアリルアルコール、オレイルアコール、リノリルアルコール等が挙げられ、無機化合物として、タルク、二硫化モリブデン、モリブデン酸亜鉛、グラファイト、二硫化タングステン、フッ化黒鉛、窒化ホウ素等の物質が挙げられ、これらの1種又は2種以上を適宜混合して使用することも可能である。また、本発明の効果を高める前記疎水性物質(B1)として、ステアリルアルコール、モリブデン酸亜鉛、グラファイト、窒化ホウ素などが、さらに好ましい。これらは、前記水溶性樹脂組成物溶液に対して分散性が高い特長があるからである。
 前記水溶性樹脂(A)よりも融点の高い物質(B2)についても、前記樹脂(A)よりも融点が高ければ特に限定はされない。例えば、アミノ酸類、有機酸類、有機酸塩類、有機塩類、有機リン酸塩、多糖類、ロジン類及び無機化合物などを用いることができる。具体的には、アミノ酸類として、グルタミン酸ナトリウム等が挙げられ、有機酸類として、リンゴ酸、マロン酸、コハク酸、フマル酸、マレイン酸、シアヌル酸等が挙げられ、有機酸塩類として、リンゴ酸、マロン酸、コハク酸、フマル酸、マレイン酸、蟻酸、酢酸、プロピオン酸、ステアリン酸、シアヌル酸等の有機酸類の金属塩類等が挙げられ、有機塩類として、メラミンシアヌレート等が挙げられ、有機リン酸塩として、アデノシン三リン酸ナトリウム塩等が挙げられ、多糖類として、セルロース、キチン、澱粉、グリコーゲン、アガロース、ペクチンなどが挙げられ、ロジン類として、トールロジン、トール油脂肪酸等が挙げられ、無機化合物として、塩化ナトリウム、硫酸ナトリウム、硫酸マグネシウム等が挙げられる。また、本発明の効果を高める前記水溶性樹脂(A)よりも融点の高い物質(B2)として、グルタミン酸ナトリウム、コハク酸、ギ酸ナトリウム、ギ酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カルシウム、セルロースなどが、より好ましい。
 前記水溶性樹脂(A)と溶媒との相溶性を高める物質(B3)としては、例えば、その分子構造中にヒドロキシ基を有する多価アルコール類、糖アルコール類、アミノ酸誘導体アルコール等が挙げられる。多価アルコールとして、水溶性樹脂(A)に包含されるポリエチレングリコールなどのポリマーは除くが、ポリマー以外の多価アルコールとして、トリメチロールプロパン、ペンタエリスリトール、ネオペンチルグリコール、トリメチロールエタン等が挙げられ、糖アルコールとして、ソルビトール、キシリトール、イノシトール等が挙げられ、アミノ酸誘導体アルコール類として、オキシアニリン、オキシトルイジン、チロシン、アミノデオキシ糖等が挙げられる。また、本発明の効果を高める前記水溶性樹脂(A)と溶媒との相溶性を高める物質(B3)として、ペンタエリスリトール、ソルビトール、キシリトール、イノシトールなどが、さらに好ましい。
 前記水溶性樹脂組成物層の厚さについては、ドリル孔あけ加工する際に使用するドリルビット径や、加工する銅張積層板又は多層板の構成などによって異なるが、通常0.02~0.3mmの範囲であり、0.02~0.2mmの範囲であることが好ましい。水溶性樹脂組成物層の厚みが、0.02mm未満では十分な潤滑効果が得られず、ドリルビットへの負荷が大きくなりドリルビットの折損が生じるおそれがある。一方、水溶性樹脂組成物層の厚みが0.3mmを超えると、ドリルビットに樹脂の巻き付きが増加する場合がある。
 さらに、コーティング法等によって、前記水溶性樹脂組成物を含有する溶液を直接金属支持箔上に、塗工させる方法を採る場合、用いられる溶液は、水と、水よりも沸点が低い(より好ましくは15℃以上低い)溶媒とを含有する溶液であることが好ましい。水よりも沸点が低い溶媒の種類については、特に限定されないが、例えば、アルコール類などのエタノール、メタノールやイソプロピルアルコールが挙げられ、メチルエチルケトンやアセトンなどの低沸点溶剤も用いることができる。
 前記水よりも沸点が低い溶媒を含有することで、結晶粒の粒径低減、表面粗さSmの低減に寄与し、孔位置精度を向上させる効果がある。溶媒ごとに特長があり、エタノールは結晶粒の粒径低減に、メチルエチルケトンは表面粗さSm低減に寄与する。エタノールは、孔位置精度向上効果が高い。低沸点溶媒としては、エタノールとアセトンがより好ましい。一般に、低沸点溶媒の配合量を増やすことは、結晶粒の粒径低減、表面粗さSmの低減、結晶粒の標準偏差の低減に寄与する。しかしながら、低沸点溶媒の配合量を増やし続けると、孔位置精度改善効果は、徐々に飽和する。また、低沸点溶媒は、水との沸点の差が15℃未満の場合、効果を発現しにくい。
 前記水と、水よりも沸点の低い溶媒との配合比については、90/10~50/50の範囲である必要があり、80/20~50/50の範囲が好ましく、70/30~50/50の範囲がもっとも好ましい。水よりも沸点の低い溶媒の配合比が10未満の場合、緻密な結晶生成効果を発現しにくいことがある。水よりも沸点の低い溶媒の配合比が50を超えた場合、経済的合理性がなく、かつ、工業的安定生産に支障が生じるおそれがある。   
 前記水溶性樹脂組成物の熱溶解物を、直接、金属支持箔上に、塗工、冷却させる方法を採る場合、前記前記エントリーシートの製造方法は、特に限定されない。
 前記水溶性樹脂組成物を混練する方法は、一般的な混練手段を用いて構わず、例えば、2軸ロール、ミキサー、双腕式ニーダー、プランジャー押出機等を用いることが好ましい。また、水溶性樹脂組成物を混練する際、水溶性樹脂組成物の分解を抑制するため、窒素雰囲気下で混練することが好ましい。さらに、前記水溶性樹脂組成物を均一に分散させるために、水溶性樹脂組成物を120℃~160℃の温度で混練することが好ましい。混練の温度が120℃未満の場合、水溶性樹脂組成物が不均一になり、外観および孔位置精度等の特性に悪影響を及ぼす可能性があり、160℃を超える場合、水溶性樹脂組成物の分解が起こり、孔位置精度等の特性に悪影響を及ぼす可能性がある。
 また、前記水溶性樹脂組成物を、直接、金属支持箔上に塗工する方法も、特に限定されない。
 一般的なコーティング装置を使用してよく、例えば、ナイフコーター、押出コーター、ダイコーター、カーテンコーター等を用いることが好ましい。水溶性樹脂組成物層の厚みが不均一の場合、孔位置精度等の特性に悪影響を及ぼす可能性があるため、上記コーターを用いて、水溶性樹脂組成物の熱溶解物を均一に塗工することが好ましい。
 前記コーティング法等によって、前記水溶性樹脂組成物を含有する溶液を直接金属支持箔上に、塗工、乾燥、冷却させる方法を採る場合、前記エントリーシートの塗工方法は、特に限定されず、一般的なコーティング装置を使用しても構わない。例えば、水溶性樹脂組成物層の厚みを均一にするための塗工手段として、一般的な塗工手段であるグラビアコーター、ロールコーター、ナイフコーター、押出コーター、ダイコーター、カーテンコーター等を用いることが好ましい。水溶性樹脂組成物層の厚みが不均一の場合、孔位置精度等の特性に悪影響を及ぼす可能性があるため、上記方法を用いて、水溶性樹脂組成物の溶液を均一に塗工することが好ましい。
 また、前記水溶性樹脂組成物の溶液を直接金属支持箔上に、塗工した後、前記水溶性樹脂組成物溶液を乾燥させる条件としては、前記水溶性樹脂組成物層の厚さ及び水分量によって、最適化することが望ましい。
 具体的には、温度120℃~160℃を、10秒~600秒間保持して乾燥させることを要し、温度120℃~160℃を、10秒~500秒間保持して乾燥させることが好ましく、温度120℃~160℃を、15秒~400秒間保持して乾燥させることがより好ましく、温度120℃~150℃を、20秒~300秒間保持して乾燥させることが特に好ましい。乾燥温度が120℃未満の場合、又は、乾燥温度での保持時間が10秒未満の場合、水溶性樹脂組成物層の内部に溶媒が残留する可能性があり、あるいは、水溶性樹脂組成物を溶融させるために必要な熱量が不足するため、不均一な水溶性樹脂組成物層になる可能性がある。一方、乾燥温度が200℃を超えて高い場合、又は、保持時間が600秒を超えた場合には、前記水溶性樹脂組成物の分解を生じ、外観に問題が生じるおそれがある。
 なお、水溶性樹脂組成物の溶液を、金属支持箔の上に塗工し、乾燥する際、乾燥後に得られる水溶性樹脂組成物層に残留する溶媒濃度は、5%未満であることが好ましい。
 ところで、樹脂組成物層に緻密な結晶を生成するために、乾燥では、超音波振動や減圧乾燥を併用してもよい。
 また、前記水溶性樹脂組成物の冷却を行う条件については、従来技術の冷却速度が1.2℃/秒未満であるため、結晶粒の粒径が大きく、その標準偏差、表面粗さSmの大きくなるおそれがあり、孔位置精度、樹脂の巻き付き等に問題があった。そのため、本願発明における冷却条件としては、冷却開始温度120℃~160℃から冷却終了温度25℃~40℃へと、60秒以内に、1.5℃/秒以上の冷却速度で冷却させることを要する。
 前記冷却終了温度が40℃を超える場合、本願の特徴である結晶粒の小径化及び均一化を達成できない。同様に、前記冷却時間が60秒を超えた場合にも、本願の特徴である結晶粒の小径化及び均一化を達成できない。一方、前記冷却終了温度が15℃を超えて低い場合には、前記エントリーシートに反りが生じ、また、後工程で結露の原因になることがあるため好ましくない。前記冷却速度が1.5℃/秒未満の場合、冷却時間が長くなり、60秒を超えるおそれがあるため好ましくない。
 結晶粒の小径化及び均一化のより高い効果を得る点から、前記冷却条件は、温度120℃~160℃から温度25℃~40℃へと、50秒以内に、2℃/秒以上の冷却速度で冷却させることが好ましく、温度120℃~160℃から温度25℃~40℃へと、40秒以内に、2.5℃/秒以上の冷却速度で冷却させることがより好ましく、温度120℃~160℃から温度25℃~40℃へと、30秒以内に、3℃/秒以上の冷却速度で冷却させることがより好ましく、温度120℃~160℃から温度25℃~40℃へと、20秒以内に、4.5℃/秒以上の冷却速度で冷却させることがさらに好ましく、温度120℃~160℃から温度25℃~40℃へと、15秒以内に、6℃/秒以上の冷却速度で冷却させることが最も好ましい。
 本発明のドリル孔あけ用エントリーシートに使用される金属支持箔については、前記水溶性樹脂組成物との密着性が高く、ドリルビットによる衝撃に耐え得る金属材料であれば特に限定はされない。金属支持箔の金属種としては、例えばアルミニウムを用いることができ、金属支持箔の厚みは通常0.05~0.5mmであり、好ましくは0.05~0.3mmである。該アルミニウム箔の厚みが0.05mm未満ではドリル孔あけ加工時に積層板のバリが発生し易く、0.5mmを超えると、ドリル孔あけ加工時に発生する切り粉の排出が困難になるおそれがある。前記アルミニウム箔の材質としては、純度95%以上のアルミニウムが好ましく、具体的にはJIS-H4100、H4160およびH4170に規定される、5052、3004、3003、1N30、1N99、1050、1070、1085、1100、8021などが例示される。金属支持箔に高純度のアルミニウム箔を使うことによって、ドリルビットへの衝撃緩和や、ドリルビット先端部との食い付き性が向上し、前記水溶性樹脂組成物による潤滑効果と相俟って、加工孔の孔位置精度を高めることができる。
 また、水溶性樹脂組成物との密着性の点から、予め、表面に厚さ0.001~0.02mmの樹脂皮膜が形成されたアルミニウム箔を使用することが好ましく、該樹脂皮膜の厚さは0.001~0.15mmであることがより好ましく、0.001~0.1mmであることが特に好ましい。該樹脂皮膜に用いられる樹脂については、前記水溶性樹脂組成物との密着性を向上できるものであれば特に限定はされず、熱可塑性樹脂、熱硬化性樹脂のいずれを用いることもできる。例えば、熱可塑性樹脂としてはウレタン系、酢酸ビニル系、塩化ビニル系、ポリエステル系及びそれらの共重合体が例示される。熱硬化性樹脂としては、エポキシ系、シアネート系などの樹脂が例示される。なお、本発明では、前記金属支持箔については、市販の金属箔に予め樹脂を公知の方法でコーティングしたものを用いることも可能である。
 本発明ドリル孔あけ用エントリーシートは、プリント配線材料、例えば、銅張積層板又は多層板をドリル孔あけ加工する際に用いられる。具体的には、銅張積層板又は多層板を1枚又は複数枚を重ねたものの最上面に、前記金属支持箔側がプリント配線材料に接するように配置し、ドリル孔あけ用エントリーシートの水溶性樹脂組成物層の面から、ドリル孔あけ加工を行うことができる。
 以下に実施例、比較例を示し、本発明を具体的に説明する。なお、下記の実施例は、本願発明の実施形態の一例を示したに過ぎず、これらに限定されるものではない。また、本実施例において、「ポリエチレングリコール」を「PEG」、「ポリエチレンオキサイド」を「PEO」と略記することがある。
 表1に、実施例及び比較例のドリル孔あけ用エントリーシートの製造に用いる、樹脂、溶媒、添加剤及び金属支持箔の仕様、並びに、冷却条件を示し、さらに、孔あけ加工に用いたドリルビットのドリルビット径の条件を示す。
Figure JPOXMLDOC01-appb-T000001

<実施例1>
 数平均分子量 150,000のポリエチレンオキサイド(アルトップMG-150、明成化学工業株式会社製) 80重量部と数平均分子量 20,000ポリエチレングリコール(PEG20000、三洋化成工業株式会社製) 20重量部を樹脂固形分が30%になるように、水に溶解させた。さらに、この水溶性樹脂混合物の固形分に対して0.5重量部のギ酸ナトリウム(三菱ガス化学株式会社製)を添加し完全に溶解させた。この水溶性樹脂組成物の溶液を片面に厚み0.01mmのエポキシ樹脂皮膜を形成したアルミニウム箔(使用アルミニウム箔:1100、(厚さ0.07mm)三菱アルミニウム株式会社製)にバーコーターを用いて乾燥後の水溶性樹脂組成物層が0.03mmになるように塗工し、乾燥機にて120℃、3分間乾燥させ、さらに3.1℃/秒の冷却速度で冷却することで、ドリル孔あけ用エントリーシートを作製した(表2を参照。)。
 得られたドリル孔あけ用エントリーシートを、厚さ 0.1mmの銅張積層板(CCL-HL832HS、銅箔両面5μm、三菱ガス化学株式会社製)を 6枚重ねた上に、水溶性樹脂組成物の層を上にして配置し、重ねた銅張積層板の下側には当て板(ベーク板)を配置してドリルビット:0.105mmφ(KMC L518A 0.105x1.8 ユニオンツール株式会社製)、回転数:330,000rpm、送り速度:8μm/rev.の条件でドリルビット1本につき 3,000hitsで、20本のドリル孔あけ加工を行った(表2を参照。)。
 そして、表3に、水溶性樹脂組成物の結晶粒の平均粒径(μm)、結晶粒径の標準偏差(μm)、エントリーシートの表面粗さSm(μm)の結果を示す。
<実施例2~20、比較例1~36>
 実施例2~20及び比較例1~36については、実施例1に準じて、表1及び表2に示す水溶性樹脂組成物を調製し、アルミニウム箔に塗工、乾燥、冷却して、ドリル孔あけ用エントリーシートを作製し、孔あけ加工を行った。
 例えば、実施例2では、数平均分子量 150,000のポリエチレンオキサイド(アルトップMG-150、明成化学工業株式会社製) 80重量部と数平均分子量 20,000ポリエチレングリコール(PEG20000、三洋化成工業株式会社製)20重量部を樹脂固形分が30%になるように、水/MeOH(メタノール)混合溶液に溶解させた。この時の水とMeOHとの比率を90重量部/10重量部としている。このように、水よりも沸点の低い低沸点溶媒を用いる例もある。
 なお、比較例26は、市販のSang-A Flontec Co.,Ltd製「LX120」、比較例27は、市販のYong Li Chuan Industrial Co.,Ltd製「AL-100040」、比較例29は、市販のUniplus Electronics Co.,Ltd製「LAE-1007」を用いた。
 そして、表3に、水溶性樹脂組成物の結晶粒の平均粒径(μm)、結晶粒径の標準偏差(μm)、エントリーシートの表面粗さSm(μm)の結果を示す。また、図1に、特定のサンプル(実施例2、3、10、12及び19、並びに、比較例2、10、20、26及び28)についての、水溶性樹脂組成物層の表面状態を拡大して示す。
Figure JPOXMLDOC01-appb-T000002
<評価方法>
 実施例及び比較例で作製したドリル孔あけ用エントリーシートの各サンプルについて、以下の評価を行った。
(孔あけ加工)
 得られた各サンプルについて評価を行うべく、以下の条件で孔あけ加工を行った。
 ドリルビット径0.15mmφの孔あけ加工は、厚さ 0.2mmの銅張積層板(CCL-HL832、銅箔両面 12μm、三菱ガス化学株式会社製)を 4枚重ねた上に、各サンプルの水溶性樹脂組成物の層を上にして配置し、重ねた銅張積層板の下側には当て板(ベーク板)を配置してドリルビット:0.15mmφ(NEU L004 0.15x2.5 ユニオンツール株式会社製)、回転数:200,000rpm、送り速度:20μm/rev.の条件でドリルビット1本につき 3,000hitsで、20本のドリル孔あけ加工を行った。
 ドリルビット径0.105mmφの孔あけ加工は、厚さ 0.1mmの銅張積層板(CCL-HL832HS、銅箔両面5μm、三菱ガス化学株式会社製)を 6枚重ねた上に、水溶性樹脂組成物の層を上にして配置し、重ねた銅張積層板の下側には当て板(ベーク板)を配置してドリルビット:0.105mmφ(KMC L518A 0.105x1.8 ユニオンツー株式会社製)、回転数:330,000rpm、送り速度:8μm/rev.の条件でドリルビット1本につき 3,000hitsで、20本のドリル孔あけ加工を行った。
 ドリルビット0.08mmφの孔あけ加工は、厚さ 0.1mmの銅張積層板(CCL-HL832HS、銅箔両面5μm、三菱ガス化学株式会社製)を 4枚重ねた上に、水溶性樹脂組成物の層を上にして配置し、重ねた銅張積層板の下側には当て板(ベーク板)を配置してドリルビット:0.08mmφ(KMV J948 0.08x1.2 ユニオンツール株式会社製)、回転数:330,000rpm、送り速度:6μm/rev.の条件でドリルビット1本につき3,000hitsで、20本のドリル孔あけ加工を行った。
(評価1)孔位置精度
 積み重ねた銅張積層板の最下板の裏面における3,000hitsの孔位置と、指定座標とのズレをホールアナライザー(型番HA-1AM、日立ビアメカニクス株式会社製)を用いて測定し、ドリルビット1本分ごとに平均値及び標準偏差(σ)を計算し、平均値+3σを算出した。そして、ドリル孔あけ加工20回分の“平均値+3σ”の平均値について算出した。
 表3に孔位置精度の評価結果を示す。また、図4、図5、及び、図6に、それぞれ、結晶粒の平均粒径、結晶平均粒径の標準偏差及び表面粗さSmと、孔位置精度との関係についてのグラフを示す。
(評価2)樹脂の巻き付き量
 3,000 hitsの孔あけ加工後のドリルビット 20本のそれぞれについて、倍率25倍のマイクロスコープ(型番VHK-100、株式会社キーエンス製)を用いて、ドリルビット径に対する樹脂の巻き付き量を観察した。観察した結果について以下の基準に基づいて評価を行い、評価結果を表3に示す。
○: 樹脂の巻き付いた最大直径が、ドリルビット直径の1.5倍未満である
△: 樹脂の巻き付いた最大直径が、ドリルビット直径の1.5倍以上である
×: ドリルビットに巻き付いた樹脂が、孔あけ加工中にエントリーシート表面に落下する
(評価3)ドリルビットの折損数
 ドリルビット20本を使用して孔あけ加工を行い、ドリルビットの折損数を数えた。表3にドリルビット折損数の結果を示す。
 上記評価1~3の内容に基づき、以下の基準に従って総合判定を行った。
◎ :結晶粒の平均粒径40μm以下/結晶粒の平均粒径の標準偏差17μm以下/表面粗さSm7μm以下で、孔位置精度が23μm以下、ドリルビットの折損なし、樹脂の巻き付きなし
○ :結晶粒の平均粒径70μm以下/結晶粒の平均粒径の標準偏差25μm以下/表面粗さSm8μm以下で、孔位置精度が25μm以下、ドリルビットの折損なし、樹脂の巻き付きなし
△ :結晶粒の平均粒径/結晶粒の平均粒径の標準偏差/表面粗さSmが、クレーム要件を満足せず、 孔位置精度が25μm以下、ドリルビットの折損なし、樹脂の巻き付きなし
× :結晶粒の平均粒径/結晶粒の平均粒径の標準偏差/表面粗さSmが、クレーム要件を満足せず、孔位置精度が25μm超、ドリルビットの折損なし、樹脂の巻き付きなし
××:結晶粒の平均粒径/結晶粒の平均粒径の標準偏差/表面粗さSmが、クレーム要件を満足せず、ドリルビットの折損あり、ないしは、樹脂の巻き付きあり
Figure JPOXMLDOC01-appb-T000003
 表3からわかるように、市販の従来製品である比較例26、比較例27、比較例29について、結晶粒の平均粒径、結晶粒の平均粒径の標準偏差、表面粗さSmのすべてが小さいものはないことがわかった。
 そして、表3、図4、図5、及び、図6の結果から、実施例1~20のサンプルにおける水溶性脂組成物は、比較例1~36に比べて、結晶粒の平均粒径、結晶の平均粒径の標準偏差、及び、前記水溶性樹脂組成物層の表面粗さSmと、孔位置精度との相関において、明らかな臨界を示すことがわかった。さらに、実施例1~20のサンプルにおける水溶性脂組成物は、比較例1~36に比べて、樹脂の巻き付き、及び、ドリルビットの折損においても、優れた結果が得られることがわかった。
 また、前記水溶性樹脂組成物の結晶粒径の平均粒径及びその標準偏差が小さい場合には、孔位置精度が優れる傾向があり、前記エントリーシートの表面粗さSmが小さい場合には、樹脂の巻き付きが低減される傾向があることがわかった。
 また、表4は、表2及び3からドリルビット径0.08mmの孔あけ加工を行った実施例20及び比較例21を抜粋して示したものであるが、表4の結果から、ドリルビット径0.08mmの加工を行った場合、前記水溶性樹脂組成物からなる層を製造する際の急冷効果によって、結晶粒の平均粒径とその標準偏差、表面粗さSm、孔位置精度、及び、樹脂の巻き付きについて、優れた結果を示すことがわかる。
Figure JPOXMLDOC01-appb-T000004
 また、表5は、表2及び3からドリルビット径0.105mmの孔あけ加工を行った実施例5、6、及び比較例22を抜粋して示したものであるが、表5の結果から、ドリルビット径0.105mmの加工を行った場合、前記水溶性樹脂組成物からなる層を製造する際の急冷効果によって、結晶粒の平均粒径とその標準偏差、表面粗さSm、孔位置精度、及び、樹脂の巻き付きについて、優れた結果を示すことがわかる。
Figure JPOXMLDOC01-appb-T000005
 本発明によれば、従来のドリル孔あけ用エントリーシートに比べて、孔位置精度に優れ、ドリルビットに巻き付く樹脂が少なく、ドリルビットの折損を低減するドリル孔あけ用エントリーシートを提供できる。そして、これまでレーザー孔あけの領域であった極小径の領域において、位置精度よくドリル孔あけでき、ドリルビットに巻き付く樹脂を減らして、ドリルビットの折損を低減したことは、コスト低減と生産性の向上に寄与するため、産業上の利用価値がきわめて大きい。
1    ドリルビットの先端
2、20 樹脂組成物層
3     金属支持箔

Claims (6)

  1.  金属支持箔の少なくとも片面に、結晶性の水溶性樹脂組成物からなる厚さ0.02~0.3mmの層が形成されたドリル孔あけ用エントリーシートであって、
     前記水溶性樹脂組成物の結晶粒は、平均粒径が5~70μmの範囲で、その標準偏差が25μm以下であり、
     前記水溶性樹脂組成物からなる層のドリルビット進入面の表面粗さSmが8μm以下であり、
     前記水溶性樹脂組成物からなる層は、前記金属支持箔上に、直接、前記水溶性樹脂組成物の熱溶解物を塗工した後、又は、前記水溶性樹脂組成物を含有する溶液を塗工して乾燥させた後、120℃~160℃の温度から60秒以内に25℃~40℃の温度へと、1.5℃/秒以上の冷却速度で冷却して形成されることを特徴とするドリル孔あけ用エントリーシート。
  2.  前記水溶性樹脂組成物の結晶粒は、平均粒径が5~40μmの範囲で、且つその標準偏差が17μm以下であり、
     前記水溶性樹脂組成物からなる層は、ドリルビット進入面の表面粗さSmが7μm以下であることを特徴とする請求項1に記載のドリル孔あけ用エントリーシート。
  3.  前記水溶性樹脂組成物は、水溶性樹脂(A)を含有し、さらに、疎水性物質(B1)、前記水溶性樹脂(A)よりも融点が高い物質(B2)、及び、前記水溶性樹脂(A)との相溶性を高める物質(B3)から選ばれる少なくとも1種を含有することを特徴とする請求項1に記載のドリル孔あけ用エントリーシート。
  4.  前記水溶性樹脂組成物を含有する溶液は、水、及び、水よりも沸点の低い溶媒を、さらに含有することを特徴とする請求項1に記載のドリル孔あけ用エントリーシート。
  5.  前記金属支持箔は、厚さが0.05~0.5mmの範囲であることを特徴とする請求項1に記載のドリル孔あけ用エントリーシート。
  6.  銅張積層板の加工に用いられることを特徴とする請求項1に記載のドリル孔あけ用エントリーシート。
     
PCT/JP2011/003453 2010-06-18 2011-06-16 ドリル孔あけ用エントリーシート WO2011158510A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112012032418-7A BR112012032418A2 (pt) 2010-06-18 2011-06-16 chapa de entrada para perfuração
CN201180039885.0A CN103079781B (zh) 2010-06-18 2011-06-16 钻孔用盖板
RU2012155140/02A RU2521908C1 (ru) 2010-06-18 2011-06-16 Трафарет для высверливания отверстий
JP2012520298A JP5067519B2 (ja) 2010-06-18 2011-06-16 ドリル孔あけ用エントリーシート
KR1020137001330A KR101619749B1 (ko) 2010-06-18 2011-06-16 천공 엔트리 시트
HK13111073.2A HK1183644A1 (en) 2010-06-18 2013-09-27 Entry sheet for drilling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-139785 2010-06-18
JP2010139785 2010-06-18

Publications (1)

Publication Number Publication Date
WO2011158510A1 true WO2011158510A1 (ja) 2011-12-22

Family

ID=45347925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003453 WO2011158510A1 (ja) 2010-06-18 2011-06-16 ドリル孔あけ用エントリーシート

Country Status (9)

Country Link
JP (1) JP5067519B2 (ja)
KR (1) KR101619749B1 (ja)
CN (1) CN103079781B (ja)
BR (1) BR112012032418A2 (ja)
HK (1) HK1183644A1 (ja)
MY (1) MY157756A (ja)
RU (1) RU2521908C1 (ja)
TW (1) TWI519365B (ja)
WO (1) WO2011158510A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091179A1 (ja) * 2010-12-28 2012-07-05 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
WO2013132837A1 (ja) * 2012-03-09 2013-09-12 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
WO2013146612A1 (ja) * 2012-03-27 2013-10-03 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
JP2014188653A (ja) * 2013-03-28 2014-10-06 Mitsubishi Gas Chemical Co Inc ドリル孔あけ用エントリーシート
WO2015152162A1 (ja) * 2014-03-31 2015-10-08 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
RU2686348C2 (ru) * 2013-03-27 2019-04-25 Мицубиси Гэс Кемикал Компани, Инк. Прокладочный лист для резания армированного волокном композитного материала и металла и способ резания, предназначенный для резания армированного волокном материала или металла

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707232B2 (ja) * 2016-08-10 2020-06-10 昭北ラミネート工業株式会社 小口径穴あけ加工用エントリーボードおよび小口径穴あけ加工方法
CN208623982U (zh) * 2017-06-30 2019-03-19 苏州思诺林电子有限公司 一种用于线路板钻孔深度控制的高精度钻孔盖板
CN112662314B (zh) * 2020-12-10 2022-08-23 深圳市柳鑫实业股份有限公司 一种环保型pcb钻孔用盖板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025000A (ja) * 1998-07-16 2000-01-25 Showa Alum Corp エントリーシート
JP2001232596A (ja) * 2000-02-23 2001-08-28 Mitsubishi Alum Co Ltd プリント基板の穴あけ加工用敷き板
JP2007222994A (ja) * 2006-01-27 2007-09-06 Mitsubishi Gas Chem Co Inc ドリル孔明け加工用エントリーシートの製造方法
WO2008044711A1 (fr) * 2006-10-12 2008-04-17 Ohtomo Chemical Ins., Corp. Panneau-support pour processus de perforation et procédé de perforation correspondant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU924925A1 (ru) * 1979-09-07 1982-04-30 Предприятие П/Я М-5755 Устройство дл пробивки базовых отверстий в фотошаблонах печатных плат
JP2855824B2 (ja) 1990-08-08 1999-02-10 三菱瓦斯化学株式会社 プリント配線板の孔明け加工法
KR100789206B1 (ko) * 2000-09-14 2007-12-31 오토모 가가쿠 산교 가부시키가이샤 소공 천공에 사용하기 위한 엔트리 기판
JP4106518B2 (ja) * 2001-10-31 2008-06-25 三菱瓦斯化学株式会社 孔明け用エントリーシート及びドリル孔明け加工法
JP5195404B2 (ja) * 2007-12-26 2013-05-08 三菱瓦斯化学株式会社 ドリル孔明け用エントリーシートの製造方法
KR101346269B1 (ko) * 2008-06-10 2013-12-31 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 드릴링용 엔트리 시트

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025000A (ja) * 1998-07-16 2000-01-25 Showa Alum Corp エントリーシート
JP2001232596A (ja) * 2000-02-23 2001-08-28 Mitsubishi Alum Co Ltd プリント基板の穴あけ加工用敷き板
JP2007222994A (ja) * 2006-01-27 2007-09-06 Mitsubishi Gas Chem Co Inc ドリル孔明け加工用エントリーシートの製造方法
WO2008044711A1 (fr) * 2006-10-12 2008-04-17 Ohtomo Chemical Ins., Corp. Panneau-support pour processus de perforation et procédé de perforation correspondant

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091179A1 (ja) * 2010-12-28 2012-07-05 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
WO2013132837A1 (ja) * 2012-03-09 2013-09-12 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
TWI593552B (zh) * 2012-03-09 2017-08-01 Mitsubishi Gas Chemical Co Drilling cover
KR102090149B1 (ko) 2012-03-09 2020-03-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 드릴 엔트리 시트
CN104203512A (zh) * 2012-03-09 2014-12-10 三菱瓦斯化学株式会社 钻孔用盖板
KR20150004336A (ko) * 2012-03-09 2015-01-12 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 드릴 엔트리 시트
RU2598753C2 (ru) * 2012-03-09 2016-09-27 Мицубиси Гэс Кемикал Компани, Инк. Трафарет для высверливания отверстий
JPWO2013132837A1 (ja) * 2012-03-09 2015-07-30 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
JPWO2013146612A1 (ja) * 2012-03-27 2015-12-14 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
US10159153B2 (en) 2012-03-27 2018-12-18 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
CN104321173A (zh) * 2012-03-27 2015-01-28 三菱瓦斯化学株式会社 钻孔用盖板
RU2603401C2 (ru) * 2012-03-27 2016-11-27 Мицубиси Гэс Кемикал Компани, Инк. Прокладочный лист для сверления
WO2013146612A1 (ja) * 2012-03-27 2013-10-03 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
RU2686348C2 (ru) * 2013-03-27 2019-04-25 Мицубиси Гэс Кемикал Компани, Инк. Прокладочный лист для резания армированного волокном композитного материала и металла и способ резания, предназначенный для резания армированного волокном материала или металла
JP2014188653A (ja) * 2013-03-28 2014-10-06 Mitsubishi Gas Chemical Co Inc ドリル孔あけ用エントリーシート
WO2015152162A1 (ja) * 2014-03-31 2015-10-08 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
US20170111997A1 (en) * 2014-03-31 2017-04-20 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
JPWO2015152162A1 (ja) * 2014-03-31 2017-04-13 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
US10674609B2 (en) 2014-03-31 2020-06-02 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling

Also Published As

Publication number Publication date
CN103079781A (zh) 2013-05-01
KR20130136426A (ko) 2013-12-12
CN103079781B (zh) 2014-04-09
BR112012032418A2 (pt) 2020-09-01
TWI519365B (zh) 2016-02-01
JPWO2011158510A1 (ja) 2013-08-19
JP5067519B2 (ja) 2012-11-07
MY157756A (en) 2016-07-15
RU2521908C1 (ru) 2014-07-10
KR101619749B1 (ko) 2016-05-12
HK1183644A1 (en) 2014-01-03
TW201208793A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5067519B2 (ja) ドリル孔あけ用エントリーシート
US9826643B2 (en) Entry sheet for drilling and drilling method
JP5842828B2 (ja) ドリル孔あけ用エントリーシート
JP6931996B2 (ja) ドリル孔あけ用エントリーシート
TWI436703B (zh) 鑽孔用蓋板
JP4798308B2 (ja) ドリル孔明け用エントリーシート
JP5896345B2 (ja) ドリル孔あけ用エントリーシート
JP6007971B2 (ja) ドリル孔あけ用エントリーシートの製造方法
JP4010142B2 (ja) ドリル孔明け用エントリーシート
JP5845901B2 (ja) ドリル孔明け用エントリーシート
Zheng et al. Research on fixture hole drilling quality of printed circuit board
JP7129030B2 (ja) ドリル孔あけ用エントリーシート及びそれを用いたドリル孔あけ加工方法
JP2005169538A (ja) プリント配線基板の穴あけ加工に使用する樹脂被覆金属板
JP5288067B2 (ja) ドリル孔あけ用エントリーシート
JP2003179328A (ja) ドリル孔明け用エントリーシート
KR100879284B1 (ko) 인쇄회로기판 천공용 윤활시트 및 상기 윤활시트 형성용조성물
JP2006310626A (ja) プリント基板の穴あけ加工方法及びプリント基板の穴あけ加工シート
JP2013099848A (ja) 孔明け用金属箔複合シート及びドリル孔明け加工法
JP2003152305A (ja) プリント配線基板穿孔用シート及びかかるシートを用いたプリント配線基板の穿孔方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039885.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795418

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520298

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201006584

Country of ref document: TH

Ref document number: 11055/DELNP/2012

Country of ref document: IN

Ref document number: 12012502494

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20137001330

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012155140

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11795418

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012032418

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012032418

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121218