WO2011158402A1 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
WO2011158402A1
WO2011158402A1 PCT/JP2011/001253 JP2011001253W WO2011158402A1 WO 2011158402 A1 WO2011158402 A1 WO 2011158402A1 JP 2011001253 W JP2011001253 W JP 2011001253W WO 2011158402 A1 WO2011158402 A1 WO 2011158402A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal transfer
state imaging
imaging device
solid
units
Prior art date
Application number
PCT/JP2011/001253
Other languages
English (en)
French (fr)
Inventor
拓也 浅野
朗 塚本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011158402A1 publication Critical patent/WO2011158402A1/ja
Priority to US13/656,107 priority Critical patent/US8872090B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/672Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction between adjacent sensors or output registers for reading a single image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/713Transfer or readout registers; Split readout registers or multiple readout registers

Definitions

  • the present invention relates to a solid-state imaging device that converts incident light into an electrical signal and outputs it as a video signal.
  • a solid-state imaging device that converts incident light into an electrical signal and outputs it as a video signal
  • a digital still camera Digital Still Camera; that displays an image based on the video signal obtained from this solid-state imaging device; DSC
  • a camera using a solid-state imaging device is required to increase the number of pixels and increase the charge transfer speed in order to further improve image quality and functions.
  • FIG. 8 is a plan view showing an example of a configuration of a solid-state imaging device 400 using a conventional charge coupled device (CCD). An example in which the horizontal transfer unit is configured in two rows is shown.
  • the solid-state imaging device 400 includes a plurality of photoelectric conversion units PD arranged in a matrix in a vertical direction (downward in the figure) and a horizontal direction (leftward in the figure).
  • a vertical transfer unit 430 that transfers charges read from the photoelectric conversion unit PD in the vertical direction is provided on the side of the photoelectric conversion unit PD.
  • a line memory LM that functions as a charge storage unit capable of temporarily storing signal charges is connected to the end of the vertical transfer unit 430, and a first horizontal transfer unit 440a is connected to the line memory LM. .
  • a second horizontal transfer unit 440b is connected to the first horizontal transfer unit 440a via an inter-horizontal transfer unit 450.
  • An output amplifier AMP1 that outputs a signal charge is provided at the horizontal end of the first horizontal transfer unit 440a, and an output that outputs a signal charge is provided at the horizontal end of the second horizontal transfer unit 440b.
  • An amplifier AMP2 is provided.
  • the solid-state imaging device 400 is provided with a drive unit (not shown), and this drive unit is a vertical transfer unit 430, a first horizontal transfer unit 440a, a second horizontal transfer unit 440b, and an inter-horizontal transfer.
  • the transfer drive pulse is supplied to each unit 450.
  • the conventional technique has a problem in that other characteristics of the solid-state imaging device are deteriorated in order to smoothly transfer the signal charge between the horizontal transfer units.
  • the present invention has been made in view of the above-described problem, and is a solid-state imaging device capable of suppressing deterioration of other characteristics even when smooth horizontal transfer is performed.
  • the purpose is to provide.
  • a solid-state imaging device includes a plurality of photoelectric conversion units that are arranged in a matrix in a pixel region of a semiconductor substrate and that convert incident light into signal charges, and the plurality of photoelectric conversion units.
  • a plurality of vertical transfer units provided corresponding to the columns of the conversion units and transferring a plurality of signal charges read from the corresponding plurality of photoelectric conversion units in a column direction, and signals transferred by the plurality of vertical transfer units N (n is an integer of 2 or more) horizontal transfer units arranged in parallel and transferring the charge in the row direction, and n formed in each of the regions adjacent to the output ends of the n horizontal transfer units.
  • An output unit that outputs the signal charges transferred by the n horizontal transfer units as an electrical signal, and the n floating diffusion units are adjacent to the horizontal diffusion units. It is arranged at wider than the spacing between feed unit interval.
  • the solid-state imaging device is further formed between adjacent horizontal transfer units among the n horizontal transfer units, and selectively transfers signal charges between the n horizontal transfer units.
  • (N-1) inter-horizontal transfer units may be provided.
  • At least one of the n horizontal transfer units may be bent in a termination region including the output end.
  • the horizontal transfer portion it is possible to secure the interval between the plurality of output portions, and to keep the interval between the floating diffusion portions wider. Therefore, the occurrence of crosstalk between output units can be further suppressed. Also, the end region is bent, and in the region adjacent to the pixel region, the distance between the horizontal transfer units can be reduced, so that signal charges can be transferred smoothly between the horizontal transfer units. Can do.
  • At least one of the n horizontal transfer units may include a termination region including the output end, and a width in a column direction may extend toward the output end in the termination region.
  • the width of the horizontal transfer unit in the column direction it is possible to secure the interval between the plurality of output units, and to keep the interval between the floating diffusion units wider. Therefore, the occurrence of crosstalk between output units can be further suppressed. Further, the width of the terminal area is widened, and in the area adjacent to the pixel area, the distance between the horizontal transfer sections can be reduced, so that signal charges can be transferred smoothly between the horizontal transfer sections. be able to.
  • the n is 2, and the two horizontal transfer units are vertically symmetrical with respect to each other, bent at the termination region including the output end, or the width in the column direction widens toward the output end. It may be.
  • the transfer electrode of the vertical transfer unit is supplied with power from a shunt wiring arranged along the column direction, and the solid-state imaging device is further formed in a region adjacent to the pixel region and covered with a light shielding film.
  • the distance between the horizontal transfer unit and the dummy pixel closest to the n horizontal transfer units is a pixel included in the optical black area and is closest to the n horizontal transfer units More than the distance between the pixel and the horizontal transfer unit, at least one of the n horizontal transfer units is bent toward the pixel region in the termination region including the output end. Or, it may extend the width of the column.
  • the uniformity of the effective pixels arranged in the pixel region can be improved by arranging the dummy pixels. Further, by disposing the dummy pixel closest to the horizontal transfer unit away from the pixel closest to the horizontal transfer unit in the pixel area, it is possible to secure a space where the horizontal transfer unit is bent or widened. . Therefore, since the floating diffusions of the output unit can be arranged at wider intervals, the occurrence of crosstalk can be further suppressed.
  • the n horizontal transfer units may be m (m is an integer of 3 or more) phase drive.
  • n horizontal transfer units may read and transfer the signal charges by an interlace method.
  • the gate width that can further secure the saturation signal charge amount can be shortened.
  • the power consumption due to the reduction in terminal capacitance can be reduced, and the transfer distance in the vertical direction can be reduced. Obtainable.
  • the solid-state imaging device may further include a well contact group formed between each of the n floating diffusion portions.
  • noise generated in each output amplifier can be absorbed by the well contact group, and crosstalk between channels can be more easily suppressed.
  • some or all of the wells of the output amplifier each including the n floating diffusion portions may be separated.
  • the present invention can suppress the deterioration of other characteristics even when the horizontal transfer is performed smoothly.
  • FIG. 1 is a configuration diagram illustrating an example of a solid-state imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram illustrating an example of a solid-state imaging device according to a modification of the first embodiment of the present invention.
  • FIG. 3 is a configuration diagram illustrating an example of a solid-state imaging device according to Embodiment 2 of the present invention.
  • FIG. 4 is a configuration diagram showing an example of a solid-state imaging device according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram illustrating an example of an electrode structure during two-phase driving in the solid-state imaging device according to the comparative example of the embodiment of the present invention.
  • FIG. 6A is a diagram illustrating an example of a potential during a transient phase of two-phase driving in the solid-state imaging device according to the comparative example of the embodiment of the present invention.
  • FIG. 6B is a diagram illustrating an example of a potential in a transient state of four-phase driving in the solid-state imaging device according to the comparative example of the embodiment of the present invention.
  • FIG. 7A is a diagram illustrating an example of potential at the time of accumulation in two-phase driving in the solid-state imaging device according to the comparative example of the embodiment of the present invention.
  • FIG. 7B is a diagram illustrating an example of potential during accumulation in four-phase driving in the solid-state imaging device according to the comparative example of the embodiment of the present invention.
  • FIG. 8 is a configuration diagram showing a schematic configuration of a conventional solid-state imaging device.
  • Embodiment 1 The solid-state imaging device according to Embodiment 1 of the present invention is provided corresponding to a plurality of photoelectric conversion units and columns of the plurality of photoelectric conversion units, and receives a plurality of signal charges read from the corresponding plurality of photoelectric conversion units.
  • the solid-state imaging device further includes n floating diffusion units formed in each of the regions adjacent to the output ends of the n horizontal transfer units, and the n horizontal transfer units And an output unit that outputs the transferred signal charge as an electrical signal, and the n floating diffusion units are arranged at a wider interval than the interval between the adjacent horizontal transfer units.
  • FIG. 1 is a configuration diagram illustrating an example of a solid-state imaging device 100 according to Embodiment 1 of the present invention.
  • the solid-state imaging device 100 includes a pixel unit 110, a plurality of photoelectric conversion units 120, a plurality of vertical transfer units 130, a first horizontal transfer unit 140a, and a second horizontal transfer. Unit 140b, horizontal transfer unit 150, first output unit 160a, and second output unit 160b.
  • the solid-state imaging device 100 is a CCD type having vertical transfer electrodes V1 to V8 (not shown) formed of a single layer and horizontal transfer electrodes H1 to H4 (not shown) of a single layer.
  • the solid-state imaging device is driven by driving pulses ⁇ V1 to ⁇ V8 and ⁇ H1 to ⁇ H4. Since the solid-state imaging device 100 shown in FIG. 1 includes two output units, it can output a two-channel image signal.
  • These vertical transfer electrodes and horizontal transfer electrodes are made of a conductive film such as a single-layer polysilicon film, for example.
  • the horizontal shunt wiring 170 is extended in the horizontal direction so as to avoid the photodiode.
  • tungsten is used for the horizontal shunt wiring 170.
  • the pixel unit 110 includes a plurality of photoelectric conversion units 120 and a plurality of vertical transfer units 130.
  • the plurality of photoelectric conversion units 120 are arranged in a matrix (that is, two-dimensionally) in the pixel region, and converts incident light into signal charges.
  • the pixel region is a region where the pixel portion 110 is formed.
  • the vertical transfer unit 130 is provided corresponding to the column of the plurality of photoelectric conversion units 120 and transfers the signal charges generated by the photoelectric conversion unit 120 in the column direction, that is, in the vertical direction (downward in the drawing).
  • the vertical transfer unit 130 has vertical transfer electrodes V1 to V8 and is driven by drive pulses ⁇ V1 to ⁇ V8 to transfer the signal charge generated by the photoelectric conversion unit 120 to the first horizontal transfer unit 140a.
  • a plurality of signal charges transferred from the pixel unit 110 are held in the middle, or A distribution transfer unit having a role of transferring may be provided. Then, the transfer of the signal charge may be controlled by the transfer unit.
  • the photoelectric conversion unit 120 is, for example, a photodiode that generates signal charges according to incident light.
  • three color filters of red (R), green (G), and blue (B) are arranged.
  • RGB color filters are arranged periodically every other pixel in the vertical and horizontal directions. In other words, RGB pixels are arranged in a checkered pattern.
  • the vertical transfer unit 130 is provided for each column of the photoelectric conversion units 120 and transfers a plurality of signal charges read from the corresponding photoelectric conversion units 120 in the vertical direction.
  • the vertical transfer unit 130 is, for example, 8-phase drive, and transfers a plurality of signal charges generated by the photoelectric conversion unit 120 in the vertical direction according to the drive pulses ⁇ V1 to ⁇ V8.
  • the first horizontal transfer unit 140a and the second horizontal transfer unit 140b transfer the signal charges transferred by the plurality of vertical transfer units 130 in the row direction, that is, in the horizontal direction (left direction in the figure). As shown in FIG. 1, the first horizontal transfer unit 140a and the second horizontal transfer unit 140b are arranged in parallel to each other.
  • Embodiment 1 of the present invention in order to smoothly transfer charges from the vertical transfer unit 130 to the first horizontal transfer unit 140a, the inter-horizontal transfer unit 150, and the second horizontal transfer unit 140b without transfer defects,
  • the one horizontal transfer unit 140a and the second horizontal transfer unit 140b are four-phase driven.
  • each of the first horizontal transfer unit 140a and the second horizontal transfer unit 140b has horizontal transfer electrodes H1 to H4, and receives a plurality of signal charges transferred from the vertical transfer unit 130 as drive pulses. Transfer in the horizontal direction according to ⁇ H1 to ⁇ H4.
  • the inter-horizontal transfer unit 150 is disposed between the first horizontal transfer unit 140a and the second horizontal transfer unit 140b, and a signal charge is transferred between the first horizontal transfer unit 140a and the second horizontal transfer unit 140b. Is selectively transferred.
  • the first output unit 160a and the second output unit 160b include floating diffusion units formed in regions in contact with the respective output ends of the first horizontal transfer unit 140a and the second horizontal transfer unit 140b.
  • the first output unit 160a and the second output unit 160b respectively output the signal charges transferred from the first horizontal transfer unit 140a and the second horizontal transfer unit 140b as electric signals.
  • the first output unit 160a and the second output unit 160b convert the signal charges transferred from the first horizontal transfer unit 140a and the second horizontal transfer unit 140b into voltages and output the voltages.
  • the first output unit 160a is provided with a first output amplifier 161a including a first floating diffusion unit.
  • the second output unit 160b is provided with a second output amplifier 161b including a second floating diffusion unit.
  • the first floating diffusion unit and the second floating diffusion unit are arranged at a wider interval than the interval between the first horizontal transfer unit 140a and the second horizontal transfer unit 140b.
  • the interval between the first horizontal transfer unit 140a and the second horizontal transfer unit 140b corresponds to, for example, the width (vertical length) of the inter-horizontal transfer unit 150.
  • the first floating diffusion part and the second floating diffusion part are formed with an interval larger than the width of the inter-horizontal transfer part 150.
  • the solid-state imaging device 100 can keep the distance between the output amplifiers including the floating diffusion section at a certain level or more, so that the signal jumps between channels (crosstalk). Is less likely to occur.
  • the output signal of each channel is a signal in which an unnecessary signal does not jump in and a correct gradation according to the amount of incident light is obtained.
  • At least one of the first horizontal transfer unit 140a and the second horizontal transfer unit 140b may be bent in a termination region including the output end.
  • the first horizontal transfer unit 140a exceeds the pixel region in which the effective pixel (that is, the pixel unit 110) is formed and the optical black (OB) region that outputs a light-shielded black level signal.
  • the region is bent so that the width in the column direction gradually increases.
  • the second horizontal transfer unit 140b is bent along the bend of the first horizontal transfer unit 140a.
  • the degree of bending may be different between the first horizontal transfer unit 140a and the second horizontal transfer unit 140b.
  • the second horizontal transfer unit 140b may be bent larger than the first horizontal transfer unit 140a.
  • the distance between the output end of the first horizontal transfer unit 140a and the output end of the second horizontal transfer unit 140b can be increased, so that the distance between the output amplifiers including the floating diffusion unit is maintained at a certain level or more. Can do.
  • first horizontal transfer unit 140a and the second horizontal transfer unit 140b are not only bent but also widened.
  • the signal charges sent through the vertical transfer unit 130, the first horizontal transfer unit 140a, and the second horizontal transfer unit 140b are transferred to the floating diffusion unit provided in the first output unit 160a and the second output unit 160b. Transferred.
  • potential fluctuations in the respective floating diffusion units are detected by a MOS (Metal Oxide Semiconductor) transistor, converted into an electrical signal, and amplified to output terminals. It is output as an electrical signal from Vo1 and Vo2.
  • MOS Metal Oxide Semiconductor
  • the electrode width (length in the vertical direction) for securing the same saturation signal charge amount as compared with the two-phase driving. Is less. However, since each width is narrow, the distance between the channels, that is, the distance between the horizontal transfer units is reduced, and in the conventional configuration, the output amplifiers including the floating diffusion unit come closer to each other. This means that signal crosstalk is likely to occur between channels.
  • the first horizontal transfer unit 140a and the second horizontal transfer unit 140b are bent and widened to increase the distance between the output amplifiers. For this reason, generation
  • the solid-state imaging device 100 may include a wiring region 180 surrounded by a dotted line.
  • the wiring region 180 may be provided with dummy pixels that are used to improve the uniformity of the effective pixels without providing photodiodes.
  • the dummy pixel is covered with a light shielding film.
  • the driving pulses of ⁇ V1 to ⁇ V8 are applied to the transfer electrodes of the vertical transfer unit 130 of the pixel unit 110 from the horizontal shunt wiring 170 extending in the horizontal direction.
  • One side (upper side in the figure) of the horizontal transfer section 140a cannot be bent due to the effect of the horizontal shunt wiring 170 being formed.
  • the first horizontal transfer section 140a cannot be bent to one side (the upper side in the figure).
  • the dummy pixel is not only in the wiring region 180 surrounded by a dotted line, but also in the upper part (upper part in the figure) of the pixel part 110 and the right part (right part in the figure) of the pixel part 110. You may arrange. By arranging this dummy pixel, the uniformity within the effective pixel portion can be further enhanced.
  • first horizontal transfer unit 140a and the second horizontal transfer unit 140b may have an interlace readout structure. As a result, it is possible to shorten the gate width that can further secure the saturation signal charge amount.For example, it is possible to reduce the power consumption by reducing the terminal capacitance, and the vertical transfer distance is reduced. Transfer characteristics can be obtained.
  • the distance between the first output amplifier 161a and the second output amplifier 161b is sufficient, for example, the first output amplifier 161a and the second output amplifier as in the solid-state imaging device 100a shown in FIG. It is preferable to arrange the well contact group 190 between 161b. As a result, noise generated in each output amplifier can be absorbed by the well contact group 190, and it becomes easier to further prevent crosstalk between channels.
  • some or all of the wells of the first output amplifier 161a and the second output amplifier 161b may be formed separately. By separating the wells, it is possible to prevent noise components generated in each output amplifier from riding on signals of different channels via the wells, which is effective as a countermeasure against crosstalk.
  • the horizontal transfer unit is a four-phase drive, but if it is a multi-phase drive of m (m is an integer of 3 or more) phase or more, compared to the conventional two-phase drive, Since the electrode width can be narrowed, it is effective for preventing a horizontal transfer failure.
  • the solid-state imaging device is arranged in a matrix in the pixel region of the semiconductor substrate, and includes a plurality of photoelectric conversion units that convert incident light into signal charges, and a row of the plurality of photoelectric conversion units. And a plurality of vertical transfer units that transfer a plurality of signal charges read from the corresponding plurality of photoelectric conversion units in the vertical direction, and a signal charge transferred from the plurality of vertical transfer units is transferred in the horizontal direction.
  • an output unit that outputs the signal charge as an electric signal.
  • the intervals between the output amplifiers including n floating diffusion portions are arranged wider than the interval between adjacent horizontal transfer portions.
  • At least one horizontal transfer unit of the plurality of horizontal transfer units is bent in the termination region including the output end. More preferably, in the terminal region including the output end in at least one horizontal transfer unit of the plurality of horizontal transfer units, the width in the column direction extends toward each output unit.
  • the distance between the output amplifiers including the floating diffusion (FD) section of each channel can be maintained at a certain level or more, so that signal jump (crosstalk) between channels is less likely to occur. .
  • the output signal of each channel has no unnecessary signal jumping, and a correct gradation according to the amount of incident light can be obtained.
  • the solid-state imaging device according to the second embodiment of the present invention is different from the solid-state imaging device according to the first embodiment in the shunt wiring structure of the pixel portion.
  • the distance between the first output unit and the second output unit is maintained, the influence of crosstalk from each other signal is reduced, and the incident light amount The correct gradation according to the is obtained.
  • FIG. 3 is a configuration diagram showing an example of the solid-state imaging device 200 according to Embodiment 2 of the present invention.
  • the solid-state imaging device 200 is different from the solid-state imaging device 100 of FIG. 1 according to the first embodiment in place of the first horizontal transfer unit 140a and the second horizontal transfer unit 140b.
  • One horizontal transfer unit 240 a and a second horizontal transfer unit 240 b are provided, and a vertical shunt wiring 270 is provided instead of the horizontal shunt wiring 170.
  • the solid-state imaging device 200 shown in FIG. 3 is substantially the same as the solid-state imaging device 100 of the first embodiment, but for applying a drive pulse to the transfer electrode of the vertical transfer unit 130 of the pixel unit 110.
  • the vertical shunt wiring 270 does not extend in the horizontal direction but extends in the vertical direction.
  • each of the first horizontal transfer unit 240a and the second horizontal transfer unit 240b bends toward the pixel unit 110 toward the end close to the first output unit 160a and the second output unit 160b, and ,It has spread. Thereby, the distance between the output amplifiers including the floating diffusion portion of each channel is increased to prevent crosstalk.
  • the description will focus on points different from the first embodiment, and description of the same points will be omitted.
  • the vertical transfer unit 130 is a four-phase drive, and transfers signal charges in the vertical direction according to the drive pulses ⁇ V1 to ⁇ V4.
  • the vertical shunt wiring 270 extending in the vertical direction is wired in such a way as to avoid the photodiode, for example, using a space such as the vertical transfer unit 130 or the inter-pixel separation unit.
  • aluminum is used for the shunt wiring.
  • the horizontal shunt wiring structure since the horizontal shunt wiring structure is used, it is necessary to arrange the shunt wiring and the bus line wiring in the wiring region 180 surrounded by the dotted line.
  • the bus line wiring only needs to be arranged on the upper part (not shown) of the pixel portion 110. unnecessary.
  • the vertical shunt wiring 270 to be applied to the transfer electrode extends in the vertical direction. If the transfer electrode is formed so as to extend in the horizontal direction so as to avoid the photodiode, it is not always necessary to arrange the shunt wiring in the entire vertical region in all the columns. For example, it is possible to delete dummy pixels for several bits closest to the first horizontal transfer unit 240a.
  • FIG. 4 is a diagram illustrating an example of the configuration of the solid-state imaging device 200a when a dummy pixel is cut by, for example, 1 bit.
  • a plurality of dummy pixels 281 are arranged in a matrix in the wiring region 280.
  • the dummy pixels dummy pixels for one row
  • the dummy pixels are removed. .
  • FIG. 4 is a schematic diagram, and since the actual pixel size is significantly smaller than that of the schematic diagram, cutting a few bits is effective in securing the arrangement space of the output unit.
  • the first horizontal transfer unit 240a can be easily bent or widened toward the pixel unit 110, and the first output unit 160a can also be arranged in a region near the pixel unit 110. become able to.
  • the number of the plurality of horizontal transfer units is two, the first horizontal transfer unit 240a close to the pixel unit 110, and the second horizontal transfer unit 240b far from the pixel unit 110. May be bent symmetrically with respect to each other in the terminal region close to the first output unit 160a and the second output unit 160b, or the width in the column direction may be widened.
  • the transfer distance is almost equal because the charge moves along the vertically symmetrical path. For example, the difference between the channels due to transfer failure during charge transfer. Can be suppressed.
  • a well contact group may be arranged between the output amplifiers. Thereby, the crosstalk can be further reduced as in the first embodiment.
  • some or all of the wells of the first output amplifier 161a and the second output amplifier 161b may be formed separately. As a result, it is possible to prevent the noise component from riding on the signal of another channel via the well, which is effective as a countermeasure against crosstalk.
  • the horizontal transfer unit has four-phase driving.
  • the electrodes are compared with two-phase driving. Since the width can be narrowed, it is effective to prevent a horizontal transfer failure.
  • FIG. 5 is a diagram showing the structure of the horizontal transfer unit of the solid-state imaging device according to this comparative example. Specifically, the first horizontal transfer unit 340a and the second horizontal transfer unit 340b are two-phase driven. The electrode structure in the case is shown.
  • the signal charges transferred from the vertical transfer unit 330 are transferred in the vertical direction such that the signal charges are transferred to the second horizontal transfer unit 340b through the first horizontal transfer unit 340a and the inter-horizontal transfer unit 350.
  • the charge transfer (X path in the figure) can transfer signal charges without a transfer defect over a long distance Gx with one electrode, compared to the horizontal charge transfer (Y path in the figure) of the first horizontal transfer unit 340a. I need to send it. For this reason, if the electrode width Gx is increased, transfer between horizontal transfer units that sends a signal from the first horizontal transfer unit 340a to the second horizontal transfer unit 340b becomes very disadvantageous.
  • the electrode width Gx in the vertical direction is tens of times longer than the electrode length Gy in the horizontal direction.
  • FIG. 6A to FIG. 7B are solid-state imaging devices according to this comparative example, and show the difference between two-phase driving and four-phase driving.
  • FIG. 6A is a diagram illustrating an example of a potential at the time of transition of two-phase driving in the solid-state imaging device according to the comparative example of the embodiment of the present invention.
  • FIG. 6B is a diagram illustrating an example of a potential in a transient state of four-phase driving in the solid-state imaging device according to the comparative example of the embodiment of the present invention.
  • FIG. 7A is a diagram illustrating an example of potential at the time of accumulation in two-phase driving in the solid-state imaging device according to the comparative example of the embodiment of the present invention.
  • FIG. 7B is a diagram illustrating an example of potential during accumulation in four-phase driving in the solid-state imaging device according to the comparative example of the embodiment of the present invention.
  • the first horizontal transfer unit 340a and the second horizontal transfer unit 340b have a plurality of charge transfers that operate as charge storage regions or barrier regions according to the potential level of the applied drive voltage.
  • the stages are arranged in parallel in the horizontal direction.
  • the horizontal transfer unit transfers the charge accumulated in the charge transfer stage to the output end side by switching the positions of the charge accumulation region and the barrier region by controlling the applied voltage.
  • the saturation signal charge amount is as shown in FIG.
  • the height of the potential barrier (barrier) can only be accumulated for one electrode which can be defined by P1.
  • This potential step can be formed by ion implantation of boron (B), for example.
  • B boron
  • the saturation signal charge amount at this time is the smallest as in the two-phase drive, but as shown in FIG. 6B, the saturation signal charge amount is larger than that in the two-phase drive, and is equivalent to one electrode of the two-phase drive. Many times as much signal can be accumulated.
  • the potential barrier at this time can be defined by Q1.
  • the potential barrier can be defined by P2, as shown in FIG. 7A, and P2 is a higher barrier than P1 shown in FIG. 6A.
  • the amount of signal charge that can be accumulated is determined at the time of transition, the amount of signal charge that can be accumulated is only one electrode as shown in FIG. 7A.
  • the potential barrier can be defined by Q2 as shown in FIG. 7B, and this height is not different from Q1 shown in FIG. 6B.
  • the electrode width may be significantly shortened. Therefore, by driving the first horizontal transfer unit 340a by four-phase driving, the electrode width of the first horizontal transfer unit 340a can be shortened, and the horizontal transfer can be easily realized.
  • the electrode width of the first horizontal transfer unit 340a is shortened, the distance between the first horizontal transfer unit 340a and the second horizontal transfer unit 340b is shortened. Then, for example, output amplifiers approach each other, and conversely, signal crosstalk occurs between channels.
  • the solid-state imaging device according to the present invention shown in the above embodiment can secure a saturation signal charge amount without degrading other characteristics (signal crosstalk characteristics). This is because, according to the solid-state imaging device according to the above-described embodiment, the interval between the floating diffusion units included in the output unit is wider than the interval between the horizontal transfer units.
  • the horizontal transfer unit is bent or spread out in a straight line shape, but may be a curved line or a zigzag shape.
  • n horizontal transfer units (n is 3 or more), an output unit including n floating diffusion units, and , (N ⁇ 1) inter-horizontal transfer units.
  • the present invention can be used for solid-state imaging devices used in video cameras, digital cameras, camera-equipped mobile phones, and the like.
  • Solid-state imaging device 110 Pixel unit 120 Photoelectric converters 130, 330, 430 Vertical transfer units 140a, 240a, 340a, 440a First horizontal transfer units 140b, 240b, 340b, 440b Second Horizontal transfer units 150, 350, 450 Horizontal transfer unit 160 a First output unit 160 b Second output unit 161 a First output amplifier 161 b Second output amplifier 170 Horizontal shunt wiring 180, 280 Wiring region 190 Well contact group 270 Vertical shunt wiring 281 Dummy pixel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 固体撮像装置(100)は、画素部(110)に行列状に配置された複数の光電変換部(120)と、複数の光電変換部(120)の列に対応して設けられ、対応する複数の光電変換部(120)から読み出した複数の信号電荷を列方向に転送する複数の垂直転送部(130)と、複数の垂直転送部(130)によって転送された信号電荷を行方向に転送する、並列に配置された第1の水平転送部(140a)及び第2の水平転送部(140b)と、第1の水平転送部(140a)及び第2の水平転送部(140b)の出力端に隣接する領域のそれぞれに形成された複数のフローティングディフュージョン部を含み、転送された信号電荷を電気信号として出力する第1の出力部(160a)及び第2の出力部(160b)とを備え、複数のフローティングディフュージョン部は、隣接する水平転送部間の間隔より広い間隔で配置されている。

Description

固体撮像装置
 本発明は、入射した光を電気信号に変換し、映像信号として出力する固体撮像装置に関する。
 従来、入射した光を電気信号に変換し、映像信号として出力する固体撮像装置が知られており、この固体撮像装置から得た映像信号に基づいて画像を表示するデジタルスチルカメラ(Digital Still Camera;DSC)が知られている。近年では、固体撮像装置を用いたカメラは、画質及び機能のさらなる向上のために、高画素化とともに、電荷転送の高速化が求められている。
 このような固体撮像装置において、映像信号の出力スピードを向上させるために、信号電荷を読み出す画素の間引きが提案されている。また、複数の信号電荷の混合により、出力映像信号の画素数を減らす方法や、水平転送部を複数列(2列以上)設けることにより、映像信号の出力スピード(フレームレート)を向上させる方法が提案されている(例えば、特許文献1参照)。
 図8は、従来の電荷結合素子(Charge Coupled Device;CCD)を用いた固体撮像装置400の構成の一例を示す平面図である。水平転送部が2列構成の例を示している。この固体撮像装置400は、垂直方向(図中、下方向)と水平方向(図中、左方向)とに行列状に配列された複数の光電変換部PDを備える。また、光電変換部PDの側部に、光電変換部PDから読み出した電荷を垂直方向に転送する垂直転送部430が設けられている。
 垂直転送部430の終端には、信号電荷を一時的に蓄積可能な電荷蓄積部として機能するラインメモリLMが接続され、このラインメモリLMには、第1の水平転送部440aが接続されている。また、第1の水平転送部440aには、水平間転送部450を介して第2の水平転送部440bが接続されている。第1の水平転送部440aの水平方向の端部には、信号電荷を出力する出力アンプAMP1が設けられ、第2の水平転送部440bの水平方向の端部には、信号電荷を出力する出力アンプAMP2が設けられている。
 また、この固体撮像装置400には駆動部(図示せず)が設けられ、この駆動部が、垂直転送部430、第1の水平転送部440a、第2の水平転送部440b、及び水平間転送部450にそれぞれ転送駆動パルスを供給している。
特開2009-290722号公報
 しかしながら、上記従来技術では、水平転送部間での信号電荷の転送をスムーズに行うためには、固体撮像装置の他の特性が劣化してしまうという課題がある。
 そこで、本発明は、上記課題を鑑みてなされたものであって、水平間転送をスムーズに行った場合であっても、他の特性が劣化してしまうのを抑制することができる固体撮像装置を提供することを目的とする。
 上記課題を解決するため、本発明の一態様に係る固体撮像装置は、半導体基板の画素領域に行列状に配置され、入射光を信号電荷に変換する複数の光電変換部と、前記複数の光電変換部の列に対応して設けられ、対応する前記複数の光電変換部から読み出した複数の信号電荷を列方向に転送する複数の垂直転送部と、前記複数の垂直転送部によって転送された信号電荷を行方向に転送する、並列に配置されたn(nは2以上の整数)個の水平転送部と、前記n個の水平転送部の出力端に隣接する領域のそれぞれに形成されたn個のフローティングディフュージョン部を含み、前記n個の水平転送部によって転送された信号電荷を電気信号として出力する出力部とを備え、前記n個のフローティングディフュージョン部は、隣接する前記水平転送部間の間隔より広い間隔で配置されている。
 これにより、出力部のフローティングディフュージョン部の間の間隔を広く保つので、出力部におけるクロストークの発生を抑制することができる。したがって、水平転送部間の転送性能を確保するため、水平転送部の電極の幅(垂直方向の長さ)を小さくした場合であっても、出力部間でのクロストークの発生を抑制することができ、入射光量に応じた正しい階調の信号を出力することができる。
 また、前記固体撮像装置は、さらに、前記n個の水平転送部のうち隣接する前記水平転送部間のそれぞれに形成され、前記n個の水平転送部の間で信号電荷を選択的に転送する(n-1)個の水平間転送部を備えてもよい。
 これにより、複数の水平転送部間での信号電荷の転送をスムーズに行うことができる。
 また、前記n個の水平転送部の少なくとも1つは、前記出力端を含む終端領域で屈曲していてもよい。
 これにより、水平転送部を屈曲させることで、複数の出力部の間の間隔を確保することができ、フローティングディフュージョン部の間の間隔をより広く保つことができる。したがって、出力部間でのクロストークの発生をより抑制することができる。また、屈曲しているのは終端領域であり、画素領域に隣接する領域では、水平転送部間の距離を狭めておくことができるので、水平転送部間の信号電荷の転送をスムーズに行うことができる。
 また、前記n個の水平転送部の少なくとも1つは、前記出力端を含む終端領域を含み、前記終端領域では、列方向の幅が前記出力端に向けて広がっていてもよい。
 これにより、水平転送部の列方向の幅を広げることで、複数の出力部の間の間隔を確保することができ、フローティングディフュージョン部の間の間隔をより広く保つことができる。したがって、出力部間でのクロストークの発生をより抑制することができる。また、幅が広がっているのは終端領域であり、画素領域に隣接する領域では、水平転送部間の距離を狭めておくことができるので、水平転送部間の信号電荷の転送をスムーズに行うことができる。
 また、前記nは、2であり、2個の前記水平転送部は、互いに上下対称に、前記出力端を含む終端領域で屈曲して、又は、列方向の幅が前記出力端に向けて広がっていてもよい。
 これにより、複数の水平転送部間で信号電荷が転送される経路の長さを等しくすることができるので、電荷転送中の転送不良に起因するようなチャンネル間の差を抑制することができる。
 また、前記垂直転送部の転送電極は、列方向に沿って配置されたシャント配線から給電され、前記固体撮像装置は、さらに、前記画素領域に隣接する領域に形成され、かつ、遮光膜に覆われた、黒レベルの信号を出力するオプティカルブラック領域と、前記オプティカルブラック領域に隣接する領域に形成され、かつ、遮光膜に覆われた、ダミー画素を含む配線領域とを含み、前記配線領域に含まれるダミー画素であり、前記n個の水平転送部に最も近いダミー画素と前記水平転送部との距離は、前記オプティカルブラック領域に含まれる画素であり、前記n個の水平転送部に最も近い画素と前記水平転送部との距離より大きく、前記n個の水平転送部の少なくとも1つは、前記出力端を含む終端領域において、前記画素領域側に屈曲して、又は、列方向の幅が広がっていてもよい。
 これにより、ダミー画素を配置することで、画素領域に配置された有効画素の均一性を向上させることができる。さらに、水平転送部に最も近いダミー画素を、画素領域における水平転送部に最も近い画素より離れて配置することで、水平転送部が屈曲する、あるいは、その幅を広げるスペースを確保することができる。したがって、出力部のフローティングディフュージョンをより広い間隔で配置することができるので、クロストークの発生をさらに抑制することができる。
 また、前記n個の水平転送部は、m(mは3以上の整数)相駆動であってもよい。
 これにより、2相駆動の場合と比べて、飽和信号電荷量を確保することができる。水平間転送をスムーズに行うためには、電極幅(垂直方向の幅)を小さくすることが好ましい。しかしながら、電極幅が短くなると、1つの電極によって蓄積することが可能な最大の電荷量である飽和信号電荷量が、さらに小さくなる。これに対して、3相駆動以上で水平転送部を駆動することで、ポテンシャルバリアの高さの調整の自由度が高まるので、飽和信号電荷量を確保することができる。
 また、前記n個の水平転送部は、インターレース方式で前記信号電荷を読み出して転送してもよい。
 これにより、さらに飽和信号電荷量を確保できるゲート幅を短く済ませることができ、例えば、端子容量の削減による消費電力を低減でき、垂直方向の転送距離が減ることから、優れたチャンネル間転送特性を得ることができる。
 また、前記固体撮像装置は、さらに、前記n個のフローティングディフュージョン部のそれぞれの間に形成された、ウェルのコンタクト群を備えてもよい。
 これにより、各出力アンプで発生するノイズを、ウェルコンタクト群により吸収することが可能で、よりいっそうチャンネル間のクロストークの抑制が容易となる。
 また、前記n個のフローティングディフュージョン部をそれぞれ含む出力アンプのウェルの一部又は全てが分離していてもよい。
 これにより、ウェルを分離することで、各出力アンプで発生するノイズ成分がウェルを介して、別チャンネルの信号に乗ることを防ぐことができるため、クロストークを抑制することができる。
 本発明は、水平間転送をスムーズに行った場合であっても、他の特性が劣化してしまうのを抑制することができる。
図1は、本発明の実施の形態1に係る固体撮像装置の一例を示す構成図である。 図2は、本発明の実施の形態1の変形例に係る固体撮像装置の一例を示す構成図である。 図3は、本発明の実施の形態2に係る固体撮像装置の一例を示す構成図である。 図4は、本発明の実施の形態2に係る固体撮像装置の一例を示す構成図である。 図5は、本発明の実施の形態の比較例に係る固体撮像装置において、2相駆動時の電極構造の一例を示す図である。 図6Aは、本発明の実施の形態の比較例に係る固体撮像装置において、2相駆動の過渡時のポテンシャルの一例を示す図である。 図6Bは、本発明の実施の形態の比較例に係る固体撮像装置において、4相駆動の過渡時のポテンシャルの一例を示す図である。 図7Aは、本発明の実施の形態の比較例に係る固体撮像装置において、2相駆動の蓄積時のポテンシャルの一例を示す図である。 図7Bは、本発明の実施の形態の比較例に係る固体撮像装置において、4相駆動の蓄積時のポテンシャルの一例を示す図である。 図8は、従来の固体撮像装置の概略構成を示す構成図である。
 以下、本発明の実施の形態について、図面を参照して説明する。
 (実施の形態1)
 本発明の実施の形態1に係る固体撮像装置は、複数の光電変換部と、複数の光電変換部の列に対応して設けられ、対応する複数の光電変換部から読み出した複数の信号電荷を列方向に転送する複数の垂直転送部と、複数の垂直転送部によって転送された信号電荷を行方向に転送する、並列に配置されたn(nは2以上の整数)個の水平転送部とを備える。そして、実施の形態1に係る固体撮像装置は、さらに、n個の水平転送部の出力端に隣接する領域のそれぞれに形成されたn個のフローティングディフュージョン部を含み、n個の水平転送部によって転送された信号電荷を電気信号として出力する出力部とを備え、n個のフローティングディフュージョン部は、隣接する前記水平転送部間の間隔より広い間隔で配置されていることを特徴とする。
 図1は、本発明の実施の形態1に係る固体撮像装置100の一例を示す構成図である。
 本発明の実施の形態1に係る固体撮像装置100は、画素部110と、複数の光電変換部120と、複数の垂直転送部130と、第1の水平転送部140aと、第2の水平転送部140bと、水平間転送部150と、第1の出力部160aと、第2の出力部160bとを備える。具体的には、固体撮像装置100は、単層で形成された垂直転送電極V1~V8(図示せず)と、同じく単層の水平転送電極H1~H4(図示せず)とを有するCCD型の固体撮像装置であり、駆動パルスφV1~φV8及びφH1~φH4により駆動される。なお、図1に示す固体撮像装置100は、2つの出力部を備えるので、2チャンネルの画像信号を出力することができる。これらの垂直転送電極及び水平転送電極は、例えば、単層のポリシリコン膜等の導電膜からなる。
 また、図1に示すように、垂直転送部130へ駆動パルスφV1~φV8を印加するために、フォトダイオード上を避けるように、水平方向に水平シャント配線170が延伸されている。水平シャント配線170は、例えば、タングステンが用いられている。
 画素部110は、複数の光電変換部120と、複数の垂直転送部130とを備える。
 複数の光電変換部120は、画素領域に、行列状に(すなわち、2次元的に)配列され、入射光を信号電荷に変換する。画素領域は、画素部110が形成されている領域である。
 垂直転送部130は、複数の光電変換部120の列に対応して設けられ、光電変換部120で生成された信号電荷を列方向、すなわち、垂直方向(図中、下方向)に転送する。垂直転送部130は、垂直転送電極V1~V8を有し、駆動パルスφV1~φV8によって駆動されることによって、光電変換部120で生成された信号電荷を第1の水平転送部140aへ転送する。
 なお、ここでは図示していないが、画素部110から第1の水平転送部140aへ信号電荷を転送する際、途中に、例えば、画素部110から転送された複数の信号電荷をホールドする、又は、転送する役割をもつ振り分け転送部を設けてもよい。そして、当該転送部によって、信号電荷の進行を制御してもよい。
 光電変換部120は、入射された光に応じた信号電荷を生成する、例えば、フォトダイオードである。光電変換部120の各々には、赤(R)、緑(G)及び青(B)の3色のカラーフィルタが配列されている。本発明の実施の形態1では、垂直及び水平方向のそれぞれに1画素おきにRGBのそれぞれのカラーフィルタが周期的に配置されている。言い換えると、RGBの各画素が市松状に配置されている。
 垂直転送部130は、光電変換部120の列毎に対応して設けられ、対応する光電変換部120から読み出した複数の信号電荷を垂直方向に転送する。垂直転送部130は、例えば、8相駆動であり、駆動パルスφV1~φV8に応じて、光電変換部120で生成された複数の信号電荷を垂直方向に転送する。
 第1の水平転送部140a及び第2の水平転送部140bは、複数の垂直転送部130によって転送された信号電荷を行方向、すなわち、水平方向(図中、左方向)に転送する。図1に示すように、第1の水平転送部140a及び第2の水平転送部140bは、互いに並列に配置されている。
 本発明の実施の形態1では、垂直転送部130から第1の水平転送部140a、水平間転送部150、第2の水平転送部140bへの電荷転送を転送不良なくスムーズに行うために、第1の水平転送部140a及び第2の水平転送部140bは、4相駆動である。具体的には、第1の水平転送部140a及び第2の水平転送部140bは、それぞれ、水平転送電極H1~H4を有し、垂直転送部130から転送された複数の信号電荷を、駆動パルスφH1~φH4に応じて水平方向に転送する。
 水平間転送部150は、第1の水平転送部140aと第2の水平転送部140bとの間に配置され、第1の水平転送部140aと第2の水平転送部140bとの間で信号電荷を選択的に転送する。
 第1の出力部160a及び第2の出力部160bは、第1の水平転送部140a及び第2の水平転送部140bのそれぞれの出力端に接する領域に形成されたフローティングディフュージョン部を含んでいる。第1の出力部160a及び第2の出力部160bはそれぞれ、第1の水平転送部140a及び第2の水平転送部140bのそれぞれから転送された信号電荷を電気信号として出力する。
 具体的には、第1の出力部160a及び第2の出力部160bは、第1の水平転送部140a及び第2の水平転送部140bから転送された信号電荷を電圧に変換して出力する。第1の出力部160aには、第1のフローティングディフュージョン部を含む第1の出力アンプ161aが設けられている。第2の出力部160bには、第2のフローティングディフュージョン部を含む第2の出力アンプ161bが設けられている。また、ここでは詳しい動作は記載しないが、これら出力部には、その動作に必要なパルスφRG及び電圧RDも印加している。
 第1のフローティングディフュージョン部及び第2のフローティングディフュージョン部は、第1の水平転送部140a及び第2の水平転送部140bの間の間隔より広い間隔で配置されている。なお、第1の水平転送部140a及び第2の水平転送部140bの間の間隔は、例えば、水平間転送部150の幅(垂直方向の長さ)に相当する。つまり、第1のフローティングディフュージョン部及び第2のフローティングディフュージョン部は、水平間転送部150の幅より大きな間隔を隔てて形成されている。
 以上の構成により、本発明の実施の形態1に係る固体撮像装置100は、フローティングディフュージョン部を含む出力アンプ間の距離を一定以上に保つことができるので、チャンネル間の信号の飛び込み(クロストーク)が起きにくくなる。その結果、各チャンネルの出力信号は、不要な信号の飛び込みがなく、入射光量に応じた正しい階調が得られた信号となる。
 なお、図1に示すように、第1の水平転送部140a及び第2の水平転送部140bの少なくとも1つは、出力端を含む終端領域で屈曲していてもよい。
 具体的には、第1の水平転送部140aは、有効画素(すなわち、画素部110)が形成された画素領域と、遮光された黒レベルの信号を出力するオプティカルブラック(OB)領域とを越えた領域から、徐々に列方向の幅が広がるように、屈曲している。
 また、第2の水平転送部140bは、第1の水平転送部140aの屈曲に沿って、屈曲されている。このとき、第1の水平転送部140aと第2の水平転送部140bとでは、屈曲の程度(角度、又は、傾き)が異なっていてもよい。例えば、図1に示すように、第2の水平転送部140bは、第1の水平転送部140aより大きく屈曲していてもよい。これにより、第1の水平転送部140aの出力端と第2の水平転送部140bの出力端との間隔を広げることができるので、フローティングディフュージョン部を含む出力アンプ間の距離を一定以上に保つことができる。
 ここで、第1の水平転送部140a及び第2の水平転送部140bは、それぞれ屈曲するだけでなく、その幅を広げるとなおよい。
 垂直転送部130、第1の水平転送部140a及び第2の水平転送部140bを介して送られた信号電荷は、第1の出力部160a及び第2の出力部160bに設けたフローティングディフュージョン部に転送される。第1の出力部160a及び第2の出力部160bでは、それぞれのフローティングディフュージョン部の電位変動を、MOS(Metal Oxide Semiconductor)トランジスタによって検出し、これを電気信号に変換、及び増幅することにより出力端子Vo1及びVo2から電気信号として出力している。
 第1の水平転送部140a及び第2の水平転送部140bは、4相駆動であるため、2相駆動と比べて、同じ飽和信号電荷量を確保するための電極幅(垂直方向の長さ)が少なくて済む。ところが、それぞれの幅が狭いことから、チャンネル間の距離、すなわち、水平転送部間の距離が縮まり、従来の構成であれば、フローティングディフュージョン部を含む出力アンプ同士が近づくことになる。これは、チャンネル間で信号のクロストークが発生しやすいということである。
 そこで、本発明の実施の形態1では、第1の水平転送部140a及び第2の水平転送部140bをそれぞれ屈曲させ、かつ、その幅も広げることで、出力アンプ同士の距離を遠ざけている。このため、クロストークの発生を抑制することができる。
 なお、本発明の実施の形態1に係る固体撮像装置100は、点線で囲われた配線領域180を備えていてもよい。そして、配線領域180には、フォトダイオードを設けずに、有効画素の出来映えの均一性を高めるために使われるダミー画素を設けてもよい。ダミー画素は、遮光膜に覆われている。
 配線領域180にダミー画素を設けた場合、画素部110の垂直転送部130の転送電極へは、水平方向に延伸した水平シャント配線170からφV1~φV8の駆動パルスを印加しているため、第1の水平転送部140aの片側(図中、上側)は、水平シャント配線170が形成されている影響で屈曲できない。また、ダミー画素を設けない場合でも、例えば、水平シャント配線170へ給電するための、φV1~φV8のバスライン配線(図示せず)を設置する必要があるため、その配線スペースを作るためにも、第1の水平転送部140aは片側(図中、上側)へは屈曲できない。
 なお、図示していないが、ダミー画素は、点線で囲われた配線領域180だけでなく、画素部110の上部(図中、上部)や画素部110の右部(図中、右部)に配置してもよい。このダミー画素を配置することで、有効画素部内の均一性をより高めることができる。
 なお、第1の水平転送部140a及び第2の水平転送部140bは、インターレース読み出し構造としてもよい。これにより、さらに飽和信号電荷量を確保できるゲート幅を短く済ませることが可能で、例えば、端子容量の削減による消費電力を低減でき、かつ、垂直方向の転送距離が減ることから、優れたチャンネル間転送特性を得ることができる。
 また、第1の出力アンプ161a及び第2の出力アンプ161b間の距離が十分にあれば、例えば、図2に示す固体撮像装置100aのように、第1の出力アンプ161aと第2の出力アンプ161bとの間に、ウェルコンタクト群190を配置することが好ましい。これにより、各出力アンプで発生するノイズを、ウェルコンタクト群190により吸収することが可能で、よりいっそうチャンネル間のクロストークを防ぐことが容易となる。
 あるいは、第1の出力アンプ161a及び第2の出力アンプ161bのウェルの一部又は全てを分離して形成してもよい。ウェルを分離することで、各出力アンプで発生するノイズ成分がウェルを介して、別チャンネルの信号に乗ることを防ぐことができるため、クロストーク対策には有効である。
 なお、本発明の実施の形態1において、水平転送部は4相駆動としたが、m(mは3以上の整数)相以上の多相駆動とすれば、従来の2相駆動と比べて、電極幅を狭めることができるため、水平間転送の不良を防ぐためには、有効である。
 以上、本発明の実施の形態1に係る固体撮像装置は、半導体基板の画素領域に行列状に配置され、入射光を信号電荷に変換する複数の光電変換部と、複数の光電変換部の列に対応して設けられ、対応する複数の光電変換部から読み出した複数の信号電荷を垂直方向に転送する複数の垂直転送部と、複数の垂直転送部から転送した信号電荷を水平方向に転送する、並列に配置されたn個の水平転送部と、n個の水平転送部の出力端に隣接する領域のそれぞれに形成されたn個のフローティングディフュージョン部を含み、n個の水平転送部によって転送された信号電荷を電気信号として出力する出力部とを備える。そして、n個のフローティングディフュージョン部を含む出力アンプの間隔は、隣接する水平転送部間の間隔より広い間隔で配置されている。
 具体的には、本発明の実施の形態1に係る固体撮像装置は、複数の水平転送部の少なくとも1つの水平転送部は、出力端を含む終端領域において屈曲している。さらに好ましくは、複数の水平転送部の少なくとも1つの水平転送部における、出力端を含む終端領域では、列方向の幅が各々の出力部に向けて広がっている。
 これにより、出力部において、各チャンネルのフローティングディフュージョン(FD)部を含む出力アンプ間の距離を一定以上に保つことが可能であることから、チャンネル間の信号の飛び込み(クロストーク)が起きにくくなる。その結果、各チャンネルの出力信号は、不要な信号の飛び込みが無く、入射光量に応じた正しい階調が得られる。
 すなわち、消費電力の増大や水平間転送の不良を防ぎつつ、チャンネル間のクロストークによる影響を低減し、正しい階調が得られる固体撮像装置を提供することができる。
 (実施の形態2)
 以下、本発明の実施の形態2に係る固体撮像装置について説明するが、実施の形態1と異なる点を中心に説明する。
 本発明の実施の形態2に係る固体撮像装置は、実施の形態1に係る固体撮像装置と比較して、画素部のシャント配線構造が異なっている。これに対して、実施の形態1に係る固体撮像装置と同様に、第1の出力部と第2の出力部との距離を保ち、互いの信号からのクロストークの影響を低減し、入射光量に応じた正しい階調が得られる。
 図3は、本発明の実施の形態2に係る固体撮像装置200の一例を示す構成図である。図3に示すように、固体撮像装置200は、実施の形態1に係る図1の固体撮像装置100と比較して、第1の水平転送部140a及び第2の水平転送部140bの代わりに第1の水平転送部240a及び第2の水平転送部240bを備え、水平シャント配線170の代わりに垂直シャント配線270を備える点が異なっている。
 具体的には、図3に示す固体撮像装置200は、実施の形態1の固体撮像装置100とほぼ同じであるが、画素部110の垂直転送部130の転送電極へ駆動パルスを印加するための垂直シャント配線270が水平方向に延伸するのではなく、垂直方向に延伸している。また、第1の水平転送部240a及び第2の水平転送部240bのそれぞれが、第1の出力部160a及び第2の出力部160bのそれぞれに近づく終端にかけて、画素部110側に屈曲し、及び、広がっている。これにより、各チャンネルのフローティングディフュージョン部を含む出力アンプ間の距離を離して、クロストークを防いでいる。以下、実施の形態1と異なる点を中心に説明し、同じ点は説明を省略する。
 垂直転送部130は、4相駆動であり、駆動パルスφV1~φV4に応じて、信号電荷を垂直方向に転送する。垂直方向に延伸した垂直シャント配線270は、フォトダイオードを避けるような形で、例えば、垂直転送部130上や画素間分離部などのスペースを使って配線している。シャント配線には、例えば、アルミニウムが用いられている。以下では、実施の形態1と異なり、垂直シャント配線を用いた利点について、説明する。
 実施の形態1では、水平シャント配線構造を用いていたため、点線で囲われた配線領域180には、シャント配線及びバスライン配線を配置する必要があった。これに対して、本発明の実施の形態2のように、垂直シャント配線構造の場合、バスライン配線は、画素部110の上部(図示せず)に配置すればよいので、配線領域180には必要ない。
 また、有効画素部の均一性を高めるために、配線領域180にダミー画素を配置した場合でも、転送電極に印加するための垂直シャント配線270は垂直方向に延伸していることから、例えば、垂直転送電極が、フォトダイオードを避けるような形で水平方向に延伸するように形成されていれば、全ての列において必ずしも垂直方向全領域にシャント配線を配置する必要は無い。例えば、第1の水平転送部240aに最も近い数ビット分のダミー画素を削除するといったことも可能である。
 図4は、ダミー画素を例えば1ビット削った場合の固体撮像装置200aの構成の一例を示す図である。図4に示すように、固体撮像装置200aでは、配線領域280には、複数のダミー画素281が行列状に配置されている。そして、図4に示すように、配線領域280に配置された複数のダミー画素281のうち、第1の水平転送部240aに近い領域のダミー画素(1行分のダミー画素)が除去されている。
 なお、図4は模式図であり、実際の画素サイズは、本模式図と比較して大幅に小さいため、数ビット削ることが、出力部の配置スペースを確保することに有効である。ダミー画素を削ることで、第1の水平転送部240aを画素部110側に屈曲する、あるいは、広げることが容易となり、第1の出力部160aも、画素部110寄りの領域に配置することができるようになる。
 また、本発明の実施の形態2のように複数の水平転送部の数が2本で、画素部110に近い第1の水平転送部240aと、画素部110から遠い第2の水平転送部240bとが、それぞれの第1の出力部160a及び第2の出力部160bに近い終端の領域で互いに上下対称に、屈曲していればよく、あるいは、その列方向の幅が広がっていてもよい。これにより、各水平転送部の転送経路を考えた場合、上下対称の経路を電荷が移動することから転送距離もほぼ等しくなり、例えば、電荷転送中の転送不良に起因するようなチャンネル間の差を抑えることが可能である。
 なお、実施の形態1と同様に、第1の出力アンプ161a及び第2の出力アンプ161b間の距離が十分にあれば、出力アンプの間に、ウェルのコンタクト群を配置してもよい。これにより、実施の形態1と同様に、クロストークをより低減することができる。
 あるいは、第1の出力アンプ161a及び第2の出力アンプ161bのウェルの一部又は全てを分離して形成してもよい。これにより、ノイズ成分がウェルを介して、別チャンネルの信号に乗ることを防ぐことができるため、クロストーク対策には有効である。
 また、本発明の実施の形態2においても、水平転送部は4相駆動としたが、m(mは3以上の整数)相以上の多相駆動とすれば、2相駆動と比べて、電極幅を狭めることができるため、水平間転送の不良を防ぐためには、有効である。
 ここで、上記に示した各実施の形態に係る固体撮像装置の効果について、図面を用いて説明する。まず、図面を参照しながら、本発明の実施の形態の比較例に係る固体撮像装置について説明する。
 図5は、本比較例に係る固体撮像装置の水平転送部の構造を示す図であり、具体的には、第1の水平転送部340a及び第2の水平転送部340bが、2相駆動の場合の電極構造を示している。
 図5に示すように、垂直転送部330から転送された信号電荷を、第1の水平転送部340a及び水平間転送部350を通じて、第2の水平転送部340bへ転送するような、垂直方向の電荷転送(図中、Xの経路)は、第1の水平転送部340aの水平方向の電荷転送(図中、Yの経路)と比べて、1電極で長い距離Gxを転送不良なく信号電荷を送る必要がある。このため、電極幅Gxを長くすると、第1の水平転送部340aから第2の水平転送部340bへ信号を送るような水平転送部間の転送が非常に不利になる。通常、垂直方向の電極幅Gxは、水平方向の電極長Gyの何十倍も長い。
 つまり、第1の水平転送部340aの飽和信号電荷量を確保すること(電極幅Gxを大きくすること)と、垂直方向の水平間転送を難なく実現すること(電極幅Gxを小さくすること)とは、相反するものである。したがって、これらを両立するために、例えば、第1の水平転送部340a及び第2の水平転送部340bを4相駆動など、多相にする案が考えられる。
 次に、図6A~図7Bは、本比較例に係る固体撮像装置であり、2相駆動と4相駆動との違いを表している。具体的には、図6Aは、本発明の実施の形態の比較例に係る固体撮像装置において、2相駆動の過渡時のポテンシャルの一例を示す図である。図6Bは、本発明の実施の形態の比較例に係る固体撮像装置において、4相駆動の過渡時のポテンシャルの一例を示す図である。
 また、図7Aは、本発明の実施の形態の比較例に係る固体撮像装置において、2相駆動の蓄積時のポテンシャルの一例を示す図である。図7Bは、本発明の実施の形態の比較例に係る固体撮像装置において、4相駆動の蓄積時のポテンシャルの一例を示す図である。
 図6A~図7Bに示すように、第1の水平転送部340a及び第2の水平転送部340bは、印加する駆動電圧の電位レベルに応じて電荷蓄積領域又はバリア領域として動作する複数の電荷転送段を水平方向に並列した構成である。水平転送部は、印加電圧を駆動制御して電荷蓄積領域及びバリア領域の位置を切り替えることで電荷転送段に蓄積される電荷を出力端側へ転送している。
 まず、0Vと3Vの電圧を電極H1及びH2に印加する2相駆動の場合、印加電圧が変遷する過渡時(それぞれ1.5V)のとき、飽和信号電荷量は、図6Aに示すように、ポテンシャルバリア(障壁)の高さはP1で定義できる1電極分の蓄積しかできない。このポテンシャル段差は、例えば、ボロン(B)などのイオン注入によって形成できる。一方、0Vと3Vの電圧を電極H1~H4に印加する4相駆動の場合、同じ過渡時でも、例えば、駆動によっては、図6Bに示すように、H2が0V、H4が3Vを維持したまま、H1とH3とのみ過渡電圧(1.5V)となるような構成が可能となる。このときの飽和信号電荷量が、2相駆動と同じく最も少なくなるが、図6Bに示すように、飽和信号電荷量は、2相駆動に比べて、大きくなり、2相駆動の1電極分の何倍もの大きな信号を蓄積することが可能である。なお、このときのポテンシャルバリアは、Q1で定義できる。
 一方、蓄積時のポテンシャルを考えた場合、2相駆動であれば、ポテンシャルバリアは、図7Aに示すように、P2で定義でき、P2は、図6Aに示すP1よりも高い障壁となる。しかし、蓄積できる信号電荷量は過渡時で決まるため、蓄積できる信号電荷量は、図7Aに示すように、1電極分しかない。これに対し、4相駆動であれば、ポテンシャルバリアは、図7Bに示すように、Q2で定義でき、この高さは、図6Bに示すQ1と変わらない。
 以上のことから、同じ電極長かつ同じ電極幅で2相駆動と4相駆動とを比較した場合、電荷転送中の蓄積可能な信号電荷量は、4相駆動の方が大きい。このことから、逆に、4相駆動で2相駆動の飽和信号電荷量と同じ量の飽和信号電荷量を蓄えるためには、電極幅は大幅に短くてよい。したがって、4相駆動で第1の水平転送部340aを駆動することで、第1の水平転送部340aの電極幅を短くすることができ、水平間転送の実現が容易になる。
 しかしながら、第1の水平転送部340aの電極幅を短くすると、第1の水平転送部340aと第2の水平転送部340bとの間の距離が短くなる。すると、例えば、出力アンプ同士が接近することになり、それが逆に、チャンネル間で信号のクロストークが発生する。
 これに対して、上記の実施の形態で示した本発明に係る固体撮像装置は、他の特性(信号のクロストーク特性)を劣化させることなく、飽和信号電荷量を確保することができる。なぜなら、上記の実施の形態に係る固体撮像装置によれば、出力部に含まれるフローティングディフュージョン部の間隔が、水平転送部間の間隔より広がっているためである。
 以上、本発明の実施の形態に基づいて説明したが、本発明は、これら実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 例えば、上記の各実施の形態では、水平転送部の曲げ方あるいは広げ方は直線形状であったが、曲線でもよいし、ジグザグ形状でもよい。
 また、上記の各実施の形態では、2個の水平転送部を備える構成について説明したが、n個の(nは3以上)の水平転送部と、n個のフローティングディフュージョン部を含む出力部と、(n-1)個の水平間転送部とを備えていてもよい。
 また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。また、上記で示した各構成要素の材料は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された材料に制限されない。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。
 本発明は、ビデオカメラ、デジタルカメラ及びカメラ付き携帯電話などに用いられる固体撮像装置に利用することができる。
100、100a、200、200a、400 固体撮像装置
110 画素部
120 光電変換部
130、330、430 垂直転送部
140a、240a、340a、440a 第1の水平転送部
140b、240b、340b、440b 第2の水平転送部
150、350、450 水平間転送部
160a 第1の出力部
160b 第2の出力部
161a 第1の出力アンプ
161b 第2の出力アンプ
170 水平シャント配線
180、280 配線領域
190 ウェルコンタクト群
270 垂直シャント配線
281 ダミー画素

Claims (10)

  1.  半導体基板の画素領域に行列状に配置され、入射光を信号電荷に変換する複数の光電変換部と、
     前記複数の光電変換部の列に対応して設けられ、対応する前記複数の光電変換部から読み出した複数の信号電荷を列方向に転送する複数の垂直転送部と、
     前記複数の垂直転送部によって転送された信号電荷を行方向に転送する、並列に配置されたn(nは2以上の整数)個の水平転送部と、
     前記n個の水平転送部の出力端に隣接する領域のそれぞれに形成されたn個のフローティングディフュージョン部を含み、前記n個の水平転送部によって転送された信号電荷を電気信号として出力する出力部とを備え、
     前記n個のフローティングディフュージョン部は、
     隣接する前記水平転送部間の間隔より広い間隔で配置されている
     固体撮像装置。
  2.  前記固体撮像装置は、さらに、
     前記n個の水平転送部のうち隣接する前記水平転送部間のそれぞれに形成され、前記n個の水平転送部の間で信号電荷を選択的に転送する(n-1)個の水平間転送部を備える
     請求項1記載の固体撮像装置。
  3.  前記n個の水平転送部の少なくとも1つは、前記出力端を含む終端領域で屈曲している
     請求項1記載の固体撮像装置。
  4.  前記n個の水平転送部の少なくとも1つは、前記出力端を含む終端領域を含み、
     前記終端領域では、列方向の幅が前記出力端に向けて広がっている
     請求項1記載の固体撮像装置。
  5.  前記nは、2であり、
     2個の前記水平転送部は、互いに上下対称に、前記出力端を含む終端領域で屈曲して、又は、列方向の幅が前記出力端に向けて広がっている
     請求項1記載の固体撮像装置。
  6.  前記垂直転送部の転送電極は、列方向に沿って配置されたシャント配線から給電され、
     前記固体撮像装置は、さらに、
     前記画素領域に隣接する領域に形成され、かつ、遮光膜に覆われた、黒レベルの信号を出力するオプティカルブラック領域と、
     前記オプティカルブラック領域に隣接する領域に形成され、かつ、遮光膜に覆われた、ダミー画素を含む配線領域とを含み、
     前記配線領域に含まれるダミー画素であり、前記n個の水平転送部に最も近いダミー画素と前記水平転送部との距離は、
     前記オプティカルブラック領域に含まれる画素であり、前記n個の水平転送部に最も近い画素と前記水平転送部との距離より大きく、
     前記n個の水平転送部の少なくとも1つは、
     前記出力端を含む終端領域において、前記画素領域側に屈曲して、又は、列方向の幅が広がっている
     請求項1記載の固体撮像装置。
  7.  前記n個の水平転送部は、m(mは3以上の整数)相駆動である
     請求項1記載の固体撮像装置。
  8.  前記n個の水平転送部は、インターレース方式で前記信号電荷を読み出して転送する
     請求項1記載の固体撮像装置。
  9.  前記固体撮像装置は、さらに、
     前記n個のフローティングディフュージョン部のそれぞれの間に形成された、ウェルのコンタクト群を備える
     請求項1記載の固体撮像装置。
  10.  前記n個のフローティングディフュージョン部をそれぞれ含む出力アンプのウェルの一部又は全てが分離している
     請求項1記載の固体撮像装置。
PCT/JP2011/001253 2010-06-15 2011-03-03 固体撮像装置 WO2011158402A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/656,107 US8872090B2 (en) 2010-06-15 2012-10-19 Solid-state imaging device having floating diffusion units disposed at greater intervals than adjacent ones of horizontal transfer units

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-136653 2010-06-15
JP2010136653A JP5624380B2 (ja) 2010-06-15 2010-06-15 固体撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/656,107 Continuation US8872090B2 (en) 2010-06-15 2012-10-19 Solid-state imaging device having floating diffusion units disposed at greater intervals than adjacent ones of horizontal transfer units

Publications (1)

Publication Number Publication Date
WO2011158402A1 true WO2011158402A1 (ja) 2011-12-22

Family

ID=45347820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001253 WO2011158402A1 (ja) 2010-06-15 2011-03-03 固体撮像装置

Country Status (3)

Country Link
US (1) US8872090B2 (ja)
JP (1) JP5624380B2 (ja)
WO (1) WO2011158402A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842769A (zh) * 2017-11-28 2019-06-04 比亚迪股份有限公司 固定模式噪声消除方法、装置、图像传感器及电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174902B2 (ja) * 2012-09-14 2017-08-02 キヤノン株式会社 固体撮像装置及びカメラ
KR102056496B1 (ko) 2013-05-20 2019-12-17 인텔렉추얼디스커버리 주식회사 래디오그라피 센서 및 이를 포함하는 장치
JP6925206B2 (ja) * 2017-09-04 2021-08-25 浜松ホトニクス株式会社 固体撮像装置
US20230353896A1 (en) * 2022-04-27 2023-11-02 Semiconductor Components Industries, Llc Expanded image sensor pixel array

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766381A (ja) * 1993-06-30 1995-03-10 Sony Corp 固体撮像素子及びその駆動方法
JPH0897397A (ja) * 1994-09-27 1996-04-12 Sony Corp 固体撮像装置
JPH08335689A (ja) * 1995-06-07 1996-12-17 Sony Corp 固体撮像装置
JPH09246519A (ja) * 1996-03-14 1997-09-19 Sony Corp 固体撮像装置およびその駆動方法
JP2006196729A (ja) * 2005-01-14 2006-07-27 Sony Corp 固体撮像装置およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565888B2 (ja) 1987-03-06 1996-12-18 株式会社東芝 電荷転送素子を用いた半導体装置
US4807037A (en) 1987-03-06 1989-02-21 Kabushiki Kaisha Toshiba Low noise CCD image sensor having a plurality of horizontal CCD registers
JPH0786543A (ja) * 1993-09-17 1995-03-31 Hamamatsu Photonics Kk 集積化pinフォトダイオードセンサ
US5598022A (en) 1990-08-31 1997-01-28 Hamamatsu Photonics K.K. Optical semiconductor device
JP4131191B2 (ja) * 2003-04-11 2008-08-13 日本ビクター株式会社 アバランシェ・フォトダイオード
JP2007295230A (ja) * 2006-04-25 2007-11-08 Matsushita Electric Ind Co Ltd 固体撮像装置およびその駆動方法、カメラ
JP2009290722A (ja) 2008-05-30 2009-12-10 Fujifilm Corp 固体撮像素子、固体撮像装置及び固体撮像素子の駆動方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766381A (ja) * 1993-06-30 1995-03-10 Sony Corp 固体撮像素子及びその駆動方法
JPH0897397A (ja) * 1994-09-27 1996-04-12 Sony Corp 固体撮像装置
JPH08335689A (ja) * 1995-06-07 1996-12-17 Sony Corp 固体撮像装置
JPH09246519A (ja) * 1996-03-14 1997-09-19 Sony Corp 固体撮像装置およびその駆動方法
JP2006196729A (ja) * 2005-01-14 2006-07-27 Sony Corp 固体撮像装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842769A (zh) * 2017-11-28 2019-06-04 比亚迪股份有限公司 固定模式噪声消除方法、装置、图像传感器及电子设备
CN109842769B (zh) * 2017-11-28 2021-07-16 比亚迪半导体股份有限公司 固定模式噪声消除方法、装置、图像传感器及电子设备

Also Published As

Publication number Publication date
JP2012004755A (ja) 2012-01-05
US20130043373A1 (en) 2013-02-21
JP5624380B2 (ja) 2014-11-12
US8872090B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
KR101750567B1 (ko) 고체 촬상 장치 및 전자 기기
US7630007B2 (en) Driving method for solid-state imaging device and solid-state imaging device
JP5624380B2 (ja) 固体撮像装置
JP4833680B2 (ja) 固体撮像装置
JPWO2010092644A1 (ja) 固体撮像装置及びカメラ
US20100002121A1 (en) Solid-state imaging device and electronic apparatus
US20090295972A1 (en) Solid-state imaging device, driving method thereof, and camera
KR20210044793A (ko) 고체 촬상 소자
JP2008053304A (ja) 固体撮像装置
WO2011007562A1 (ja) 画像読取装置
WO2010103814A1 (ja) 固体撮像装置
US8174088B2 (en) Solid state imaging device
US20100165166A1 (en) Solid-state imaging device
US20220415939A1 (en) Solid-state imaging apparatus, method for manufacturing the same, and electronic device
JP5515372B2 (ja) 固体撮像素子
JP4171519B2 (ja) 固体撮像装置
JP5595380B2 (ja) 固体撮像装置
JP2013125799A (ja) 固体撮像装置および電子情報機器
JP4759450B2 (ja) Ccd型固体撮像素子の駆動方法及びccd型固体撮像装置
JP5211072B2 (ja) 固体撮像装置の駆動方法
JP4986172B2 (ja) 固体撮像装置
JP2010225769A (ja) 固体撮像素子及び撮像装置
JP2009071025A (ja) Ccd型固体撮像素子
JP2012146692A (ja) 固体撮像素子および固体撮像装置
JP2012186751A (ja) 固体撮像素子および固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795310

Country of ref document: EP

Kind code of ref document: A1