WO2011155652A1 - 박막 증착 장치 및 박막 증착 시스템 - Google Patents

박막 증착 장치 및 박막 증착 시스템 Download PDF

Info

Publication number
WO2011155652A1
WO2011155652A1 PCT/KR2010/003810 KR2010003810W WO2011155652A1 WO 2011155652 A1 WO2011155652 A1 WO 2011155652A1 KR 2010003810 W KR2010003810 W KR 2010003810W WO 2011155652 A1 WO2011155652 A1 WO 2011155652A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate holder
substrate
thin film
film deposition
deposition
Prior art date
Application number
PCT/KR2010/003810
Other languages
English (en)
French (fr)
Inventor
강창호
권현구
현재근
Original Assignee
에스엔유 프리시젼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스엔유 프리시젼 주식회사 filed Critical 에스엔유 프리시젼 주식회사
Priority to CN2010800673497A priority Critical patent/CN103097568A/zh
Priority to JP2013514088A priority patent/JP5686185B2/ja
Publication of WO2011155652A1 publication Critical patent/WO2011155652A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations

Definitions

  • the present invention relates to a thin film deposition apparatus, and more particularly, to a thin film deposition apparatus for forming a thin film on a substrate, and a thin film deposition system including the same.
  • OLEDs unlike liquid crystal displays, are capable of self-emission and thus require no backlight and thus consume less power.
  • the display device using the same may implement an excellent image without problems of the viewing angle and afterimage.
  • Such an organic light emitting device is manufactured by laminating a multilayer thin film such as an organic film and a metal film on a glass substrate. Therefore, in the related art, a cluster method in which a plurality of unit chambers in which a series of unit processes are performed around a circular transfer chamber is mainly used, and a substrate transfer and device process in a state in which a glass substrate is horizontally disposed between respective chambers This was configured to be done.
  • This cluster method has the advantage of being able to proceed rapidly in a series of processes, there is an advantage that the exchange of the deposition mask (Mask) which is essential when manufacturing the organic light emitting device.
  • the inline (in) in which the process chambers performing the respective unit processes are connected in series -line) method is suitable. Therefore, there is a need to convert the conventional cluster method to the inline method, the inline method has a lot of overlapping equipment compared to the cluster method, the production cost of the production line is high, the process speed is low, there is a problem of low productivity.
  • the substrate is horizontally disposed to perform a thin film process (organic film deposition process), which causes severe deflection of the substrate, which causes considerable difficulty in fabricating the device.
  • a thin film process organic film deposition process
  • the deposition mask for a large-area substrate has a load of several hundred Kg or more, the deflection phenomenon of the substrate is more severe, causing serious problems such as breaking of the substrate.
  • the present invention has been proposed to solve the above problems, the thin film deposition apparatus to achieve a high productivity by minimizing the process waiting time, such as processing a plurality of substrates in parallel, the placement / alignment time of the substrate and the deposition mask And a thin film deposition system.
  • the present invention provides a thin film deposition apparatus and a thin film deposition system to maximize the common use of the overlapping equipment, thereby reducing the construction cost of the production line.
  • the present invention provides a thin film deposition apparatus and a thin film deposition system that can overcome the deflection phenomenon of the substrate by placing the substrate in a vertical state to perform a thin film process.
  • a thin film deposition apparatus including: a chamber in which a reaction space is formed, a first substrate holder and a second substrate holder formed to accommodate a substrate and spaced apart from each other in the chamber; A deposition source disposed between the first substrate holder and the second substrate holder to supply deposition material to the first substrate holder and the second substrate holder, and in a state where the substrate is accommodated in the first substrate holder and the second substrate holder, And a fixing unit that allows the first substrate holder and the second substrate holder to be positioned at a specific position within the chamber for a predetermined time.
  • the thin film deposition system includes a plurality of devices connected in a row, and first and second process lines formed in the plurality of devices, wherein at least one of the plurality of devices includes the first process.
  • the present invention can perform a sequential thin film process for a plurality of process lines provided in each process chamber through one deposition source provided in each process chamber, cost reduction and productivity improvement can be simultaneously achieved.
  • the first substrate holder and the second substrate holder are transported in the chamber and are disposed at a specific position inside the chamber by the fixing unit. Accordingly, alignment reliability of the substrate and the mask can be improved.
  • the present invention can reduce the waiting time by performing substrate transfer and substrate / mask alignment on the substrate of the other process line while the thin film process is performed on the substrate of one process line, thereby further improving productivity. .
  • the substrate is disposed in a horizontal state during substrate transfer, the substrate is less likely to break during substrate transfer, and the substrate is disposed in a vertical state during the thin film process, so that the substrate is less likely to sag and thus device manufacturing is easy.
  • FIG. 1 is a plan view showing a thin film deposition system according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a thin film deposition apparatus included in the thin film deposition system of FIG.
  • FIG. 3 is a view illustrating a process in which a first substrate holder or a second substrate holder is moved in one direction in any one of the thin film deposition apparatuses included in the thin film deposition system illustrated in FIG. 1.
  • FIG. 4 is a view showing a state in which the first substrate holder or the second substrate holder is fixed by the fixing unit in the thin film deposition apparatus shown in FIG.
  • FIG. 5 is a view showing a state in which the movement of the first substrate holder or the second substrate holder is guided by the movement limiting unit in the thin film deposition apparatus shown in FIG.
  • FIG. 6 is a view showing an operation process of the movement limiting unit in the thin film deposition apparatus shown in FIG.
  • FIG. 7 to 12 are plan views illustrating a unit process of a thin film deposition system according to an embodiment of the present invention.
  • the thin film deposition apparatus includes a chamber in which a reaction space is formed, a first substrate holder and a second substrate holder formed to accommodate a substrate and spaced apart from each other in the chamber, and the first substrate holder and the second substrate holder.
  • a deposition source disposed between the substrate holders to supply deposition material to the first substrate holder and the second substrate holder, and the first substrate holder and the first substrate holder in a state where the substrate is accommodated in the first substrate holder and the second substrate holder.
  • the second substrate holder includes a fixed unit to be positioned at a specific position within the chamber for a predetermined time.
  • the thin film deposition system includes a plurality of devices connected in a row, and first and second process lines formed in the plurality of devices, wherein at least one of the plurality of devices includes the first process.
  • a plurality of unit devices 200 and 600 are in-line connected between a front end loading device 110 and a rear end unloading device 120. It is configured in an in-line manner.
  • each of the unit devices 200 and 600 is provided with two rows of process lines PL1 and PL2, and the preparation of the second process line PL2 is performed in advance while the unit process for the first process line PL1 is performed.
  • the unit process for the second process line PL2 row may be continuously performed.
  • the loading device 110 receives the substrate G, which has completed a predetermined preliminary process, at a atmospheric pressure, and injects the same into the vacuum processing device 210.
  • the unloading device 120 performs a series of unit processes.
  • the substrate G receives the finished substrate G from the processing apparatus 263 and serves to take it out to atmospheric pressure for the subsequent process. Therefore, the loading device 110 and the unloading device 120 are configured to switch between the atmospheric pressure state and the vacuum state.
  • the loading device 110 and the unloading device 120 may be connected with a substrate conveying means such as a robot arm and a substrate loading means such as a substrate cassette.
  • the plurality of unit apparatuses 200 and 600 include a plurality of process apparatuses 200 (210, 220, 230, 240, 250 and 260) performing a unit process and a plurality of buffer devices 600 (610 and 620) connected therebetween.
  • the buffer device 600 provides a temporary space in which the substrate G temporarily stays for process waiting.
  • each of the processing apparatuses 200 is connected to one side of the first mask receiving apparatus 310, which supplies the first deposition mask M1 to the first processing line PL1.
  • a second mask receiving device 320 that supplies a second deposition mask M2 to the second process line PL2 is connected to the other side of the process apparatus 200.
  • the first and second mask receiving devices 310 and 320 store deposition masks M1 and M2 to be used or replaced in the thin film process.
  • the first and second mask receiving devices 310 and 320 may be used in common, only one common mask receiving device may be connected to each of the processing apparatuses 200.
  • some of the unit devices may be connected to a feeder 410 for supplying a raw material to the deposition source 540.
  • the plurality of process devices 200 are configured to perform a series of device processes on the substrate G.
  • a hole injection layer (HIL), a hole transport layer (HTL), an emitting material layer (EML), and an electron are formed on a substrate G on which an anode is formed from the outside. It is configured to form an organic light emitting device in which a transport layer (ETL), an electron injection layer (EIL), and a cathode are sequentially stacked.
  • the hole injection layer forming apparatus 210, the hole transport layer forming apparatus 220, the light emitting layer forming apparatus 230, the electron transport layer forming apparatus 240, the electron injection layer forming apparatus 250, and the cathode forming apparatus 260 are connected in line.
  • the light emitting layer forming apparatus 230 may further include blue (B), green (G), and red (R) light emitting layer forming apparatuses 231, 232, and 233 to realize a natural color
  • the cathode forming apparatus 260 may include a cathode.
  • a plurality of cathode forming devices 261, 262, and 263 may be further included to form a multilayer structure.
  • At least one of the plurality of devices included in the thin film deposition system may be a thin film deposition apparatus 200, and a detailed structure of the thin film deposition apparatus 200 will be described below.
  • the thin film deposition apparatus 200 includes a chamber 100, first second substrate holders 520 and 530, a deposition source 540, and a fixed unit 10.
  • One example of the shape of the chamber 100 may be a hexahedron.
  • a reaction space in which the substrate G is processed is formed in the chamber 100.
  • a first substrate inlet 511a, a first substrate holder 520, and a first substrate outlet 512a are formed along the first process line.
  • a second substrate inlet 511b, a second substrate holder 530, and a second substrate outlet 512b are formed along the second process line.
  • the first and second substrate inlets 511a and 511b are formed to be spaced apart from each other on one sidewall of the chamber 100, and the first and second substrate outlets 512a and 512b are spaced apart from each other on the opposite sidewall of the chamber 100. It is formed.
  • the substrate inlets 511a and 511b and the substrate outlets 512a and 512b may be configured as slit valves.
  • Each of the first and second substrate holders 520 and 530 has a support 521 for supporting the rear surfaces of the substrates G1 and G2, and a clamp provided at the support 521 to fix the substrates G1 and G2. 522 and a driving unit (not shown) for standing the support 521 in a vertical state or lying in a horizontal state.
  • the driving unit may be omitted when the substrates G1 and G2 are carried in the processing apparatuses 210, 220, 230, 240, 250, and 260 in a vertical state.
  • Temperature control means 523 may be provided inside or under the support 521 to maintain the substrates G1 and G2 mounted on the support 521 at a temperature suitable for performing a process.
  • the temperature control means 523 may be composed of a combination of at least one of cooling means for cooling the substrates G1 and G2 and heating means for heating the substrates G1 and G2.
  • the reactivity with the deposition material deposited on the upper surfaces of the substrates G1 and G2 is improved by maintaining the temperature of the substrates G1 and G2 at the process temperature by using the cooling means.
  • the clamp 522 holds the edges of the substrates G1 and G2 so as to convert the substrates G1 and G2 in the horizontal state mounted on the support 521 to the vertical state, or vice versa.
  • the substrates G1 and G2 are prevented from moving.
  • the deposition masks M1 and M2 having a predetermined deposition pattern are disposed on the substrates G1 and G2 to regulate the thin film patterns formed on the substrates G1 and G2.
  • the clamp 522 is preferably configured to fix the substrates G1 and G2 and the deposition masks M1 and M2 on the support 521.
  • the first and second substrate holders 520 and 530 are formed to accommodate the substrates G1 and G2, respectively.
  • the first and second substrate holders 520 and 530 are spaced apart from each other by a predetermined distance on the same horizontal plane, and the opposite substrate holders 530 and 520 may be rotated even when one of the substrate holders 520 and 530 is rotated vertically or horizontally. Spaced apart beyond a distance that does not interfere with either.
  • the deposition source 540 is provided between the first and second substrate holders 520 and 530 spaced apart by a predetermined distance.
  • the deposition source 540 is disposed to face any one of the substrates G1 and G2 that are converted to the vertical state for the deposition process, and the raw material in the vaporized state in the opposite surface of the substrate G, that is, the deposition surface direction. It serves to supply materials.
  • the deposition source 540 has a crucible in which the raw material is stored, a heating part for vaporizing the raw material, and an injection part for spraying the vaporized raw material, and has a point-type according to process conditions. Any suitable type, line-type, and plane-type deposition source 540 may be used.
  • the present embodiment uses a linear deposition source 540 in which a plurality of point deposition sources 541 and 542 are arranged in a linear manner.
  • the linear deposition source 540 reciprocates left and right by a reciprocating driving member, and the substrates G1 and G2.
  • the raw material is uniformly supplied (injected) to the entire area of the As such, the process of spraying the raw materials onto the substrates G1 and G2 is performed while the substrates G1 and G2 are vertical.
  • the first substrate holder 520 and the second substrate holder 530 support the substrate in a state perpendicular to the ground.
  • the deposition source 540 of the present embodiment sprays the raw material toward the second substrate holder 530 by rotating the spraying direction by 180 ° with respect to the first substrate holder 520 or vice versa 180 °. And rotated at an angle to spray the raw material toward the first substrate holder 520. Accordingly, even if two rows of process lines are formed in a single device, both processes may be performed using one deposition source 540.
  • a thin film deposition process using the thin film deposition system configured as described above will be briefly described with reference to FIG. 1.
  • the substrate G on which the anode is formed through the preceding process is introduced into the loading apparatus 110 at atmospheric pressure, and the inside of the loading apparatus 110 is converted into a vacuum state.
  • the substrate G is sequentially input to process apparatuses 210, 220, 230, 240, 250, and 260 which perform a series of unit processes along alternately selected first and second process lines. That is, the substrate G is sequentially introduced into the hole injection layer forming apparatus 210, the hole transport layer forming apparatus 220, and the light emitting layer forming apparatuses 23, 232, 233 in a vacuum state. Accordingly, the hole injection layer, the hole transport layer, and the light emitting layer are sequentially formed on the anode of the substrate G.
  • the electron transport layer forming apparatus 240, the electron injection layer forming apparatus 250, and the cathode forming apparatus 261, 262, and 263 are sequentially input.
  • an electron transporting layer, an electron injection layer, and a multilayer cathode are formed on the light emitting layer of the substrate G, thereby producing an organic light emitting device.
  • the substrate G is drawn into the unloading device 120 and drawn out to the outside at atmospheric pressure.
  • the thin film deposition apparatus having the above-described structure preferably includes a fixing unit 10.
  • the first substrate holder 520 and the second substrate holder 530 are transferred in the chamber, and then the fixing unit 10 ) To be positioned at a specific time within the chamber.
  • the specific position is a predetermined position so that the substrates accommodated in the first substrate holder 520 and the second substrate holder 530 are exactly aligned with the mask. This is to ensure that the thin film pattern is accurately formed on the substrate according to the manufacturer's design.
  • the precise alignment of the substrate and the mask is performed optically by an imaging device such as a charged coupled device (CCD) and a complementary metal-oxide-semiconductor (CMOS).
  • an imaging device such as a charged coupled device (CCD) and a complementary metal-oxide-semiconductor (CMOS).
  • the substrate is fixed by the fixing unit 10 to the first substrate. Since the holder 520 and the second substrate holder 530 are stably fixed to a specific position, the alignment operation may be stably performed.
  • the fixing unit 10 may include a fixing portion 11 and the lifting unit 12.
  • the fixing part 11 is formed to be pulled upward from the bottom surfaces of the first substrate holder 520 and the second substrate holder 530.
  • the lifting unit 12 is formed such that at least a portion of the lifting unit 12 is accessible to the fixing unit 11 while the first substrate holder 520 and the second substrate holder 530 are disposed at a specific position.
  • the lifting unit 12 may include a hydraulic cylinder.
  • the lifting unit 12 may include a linear motor.
  • the shape of the above-described fixing portion 11 may be formed to be introduced into a conical shape, the end of the lifting portion 12 can be accommodated in the fixing portion 11, the fixing portion 11 It may be made in the same conical shape as the size of.
  • the shape of the fixing portion 11 may be formed to be introduced into a cylindrical shape, the end portion of the elevating portion 12 may be formed in a hemispherical shape so that it can easily enter and exit the fixing portion (11).
  • the thin film deposition apparatus may further include a movement limiting unit 20.
  • the movement limiting unit 20 restricts the movement of the first substrate holder 520 and the second substrate holder 530 in one direction.
  • the movement limiting unit 20 may include a guide portion 21 and the power unit 22.
  • the guide part 21 is disposed adjacent to one surface of each of the first substrate holder 520 and the second substrate holder 530 to guide the movement of the first substrate holder 520 and the second substrate holder 530.
  • the power unit 22 may move in a direction in which the guide unit 21 approaches the first substrate holder 520 and the second substrate holder 530, or moves away from the first substrate holder 520 and the second substrate holder 530. Let it move An example of the power unit 22 may be a linear motor. Another example of the power unit 22 may be a hydraulic cylinder.
  • guide portion 21 may be a plurality of rollers.
  • the rollers are disposed on both side surfaces of each of the first substrate holder 520 and the second substrate holder 530.
  • a plurality of rollers are moved by the power unit 22 to move the first substrate holder 520 and the second substrate holder 530 into the chamber to deposit the deposition material on the substrate.
  • a second substrate holder 530 a second substrate holder 530.
  • the maximum spaced distance of the plurality of rollers is preferably such that the first substrate holder 520 and the second substrate holder 530 to be conveyed are not excessively inclined to be separated.
  • the minimum distance between the plurality of rollers may be slightly smaller than the thicknesses of the first substrate holder 520 and the second substrate holder 530.
  • first substrate holder 520 and the second substrate holder 530 are moved by the plurality of rollers, stable movement may be achieved.
  • a plurality of rollers may stably grip the first substrate holder 520 and the second substrate holder 530 and may have resistance by vibration of an adjacent member. Therefore, in depositing a deposition material on a substrate, deposition reliability can be improved.
  • the upper side of the first substrate holder 520 and the second substrate holder 530 is gripped by the movement limiting unit 20, thereby stably aligning the substrate and the mask. Can be.
  • the transfer roller 30 may be disposed on the bottom surfaces of the first substrate holder 520 and the second substrate holder 530.
  • the transfer roller 30 is disposed to be rotatable inside the chamber, not shown.
  • the first substrate holder 520 and the second substrate holder 530 may be transferred in one direction by the transfer roller 30.
  • the transfer roller 30 is not limited to the bottom surface of the first substrate holder 520 and the second substrate holder 530, and the conveyor belt may be disposed.
  • the substrate G has been described as being transferred in a state perpendicular to the ground. However, the substrate G may be transported in a state parallel to the ground. However, when the substrate transfer is in a horizontal state, a process of converting the substrate G in the horizontal state to the vertical state is required in each of the process apparatuses 210, 220, 230, 240, 250, and 260.
  • a process of performing a unit process by converting the substrate G in a horizontal state to a vertical state will be described in more detail with reference to FIGS. 7 to 12.
  • 7 to 12 are plan views illustrating a unit process of a thin film deposition system according to an exemplary embodiment of the present invention.
  • the first substrate G1 horizontally conveyed along the first process line is introduced into the processing apparatus 200 through the first substrate inlet 511a, and the first substrate G1 that is inserted is horizontal. It is mounted on the support of the first substrate holder 520 disposed in a state.
  • a first deposition mask M1 is provided from a first mask receiving device 310 connected to the process apparatus 200, and the provided first deposition mask (see M1 in FIG. 8) is formed on the first substrate G1. Placed and aligned.
  • the clamp 522 of the first substrate holder 520 fixes the first substrate G1 and the first deposition mask M1 on the upper surface thereof, the first substrate holder 520 is 90 degrees.
  • the outer surface of the first substrate G1 and the spraying direction of the deposition source 540 face each other, and the raw material in the vaporized state is sprayed onto the outer surface of the first substrate G1 through the deposition source 540.
  • the first thin film process for the first substrate G1 is performed.
  • the second substrate G2 horizontally conveyed along the second process line is processed through the second substrate inlet 511b simultaneously with or after the first substrate G1.
  • the retracted second substrate G2 is mounted on the support of the second substrate holder 530 disposed in a horizontal state, and is supplied from the second mask receiving device 320 connected to the processing apparatus on the second substrate G2.
  • the second deposition mask (see M2 in FIG. 10) is disposed and aligned.
  • the second substrate holder 530 may be 90 degrees. It is also rotated to switch to the vertical state. In this case, it is preferable to perform the arrangement / alignment process of the second substrate G2 and the arrangement / alignment process of the second deposition mask M2 during the first thin film process. Therefore, the process waiting time can be shortened and productivity can be improved.
  • the spraying direction of the deposition source 540 is rotated 180 degrees based on the first substrate holder 520. Accordingly, when the outer surface of the second substrate G2 and the spray direction of the deposition source 540 face each other, the raw material in the vaporized state is sprayed onto the outer surface of the second substrate G2 through the deposition source 540.
  • the second thin film process for the second substrate G2 is performed. Meanwhile, as shown in FIG. 12, while the second thin film process is performed, the first substrate holder 520 is returned to its original horizontal state, and the first deposition mask M1 is separated from the first substrate G1.
  • the first substrate G1 is drawn out through the first substrate outlet 512a and then put into the subsequent unit device.
  • the first and second deposition masks M1 and M2 separated from the first and second substrates G1 and G2 are used in the next thin film process while staying in the apparatus.
  • replacement factors such as contamination or damage due to prolonged use occur, they are transferred to the first and second mask receiving devices 310 and 320 and taken out into the atmosphere.
  • the first and second deposition masks M1 and M2 are reused through operations such as cleaning and repair.
  • the first and second mask receiving apparatuses 310 and 320 may be provided with a plurality of extra deposition masks to be used when replacing the used deposition masks.
  • the thin film processing system includes a plurality of process lines PL1 and PL2 provided in the respective process apparatuses 210, 220, 230, 240, 250, and 260 through one deposition source 540 provided in each of the process apparatuses 210, 220, 230, 240, 250, and 260. Since a continuous thin film process can be carried out on the s), cost reduction and productivity improvement can be simultaneously achieved. In addition, while the thin film process is performed on the substrate G1 of one process line PL1, the substrate transfer and substrate / mask alignment of the substrate G2 of the other process line PL2 may be performed to reduce the waiting time. Therefore, productivity can be further improved.
  • the thin film deposition apparatus and thin film deposition system of the present invention can be used to manufacture organic light emitting devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

기판 및 증착 마스크의 배치/정렬 시간 등의 공정 대기 시간을 최소화한 박막증착 장치가 개시된다. 이를 위한, 박막 증착 장치는 반응 공간이 형성된 챔버와, 기판이 수용되도록 형성되어 상기 챔버 내부에 서로 이격되도록 배치된 제1기판홀더 및 제2기판홀더와, 상기 제1기판홀더 및 제2기판홀더 사이에 배치되어 상기 제1기판홀더 및 제2기판홀더에 증착 원료를 공급하는 증착원과, 상기 제1기판홀더 및 제2기판홀더에 기판이 수용된 상태에서, 상기 제1기판홀더 및 제2기판홀더가 상기 챔버 내부의 특정 위치에 일정 시간 위치되게 하는 고정유닛을 포함한다. 이에 따라, 기판과 마스크의 정렬 작업이 안정적으로 이루어질 수 있다.

Description

박막 증착 장치 및 박막 증착 시스템
본 발명은 박막 증착 장치에 관한 것으로서, 더욱 상세하게는 기판 상에 박막을 형성하는 박막 증착 장치와, 이를 포함하는 박막 증착 시스템에 관한 것이다.
유기 발광 소자(OLED: Organic Light Emitting Diodes)는 액정 표시 장치와는 다르게 자체 발광이 가능하기 때문에 백라이트가 필요 없어 소비 전력이 작다. 또한, 시야각이 넓고 응답 속도가 빠르기 때문에 이를 이용한 표시 장치는 시야각 및 잔상의 문제가 없는 우수한 화상을 구현할 수 있다.
이러한 유기 발광 소자는 유리 기판 상에 유기막 및 금속막 등 다층의 박막을 적층시켜서 제조한다. 따라서, 종래에는 원형의 반송 챔버 주위에 일련의 단위 공정이 수행되는 다수의 단위 챔버가 연결된 클러스터 방식이 주로 사용되었으며, 각각의 참버들 사이에서 유리 기판이 수평으로 배치된 상태에서 기판 이송 및 소자 공정이 수행되도록 구성되었다. 이러한 클러스터 방식은 일련의 공정을 연속하여 신속하게 진행할 수 있는 장점이 있으며, 유기 발광 소자의 제조시 필수적인 증착 마스크(Mask)의 교환이 유리한 장점이 있다.
한편, 최근에는 고정세 금속 마스크(FMM:Fin Metal Mask)을 이용하여 대면적 기판 상에 청색(B), 녹색(G) 및 적색(R) 발광층을 순차적으로 형성하는 이른바 삼원색 독립 화소 방식의 유기 발광 소자가 주목받고 있다. 이러한 삼원색 독립 화소 방식은 색 순도 및 광 효율이 좋고, 가격 경쟁력 확보에 유리한 것으로 알려져 있다.
그러나, 삼원색 독립 화소 방식은 각각 독립된 공정 챔버에서 청색(B), 녹색(G) 및 적색(R) 발광층을 순차적으로 형성하여야 하므로, 각각의 단위 공정을 수행하는 공정 챔버들이 일렬로 연결된 인라인(in-line) 방식이 적합하다. 따라서, 종래의 클러스터 방식을 인라인 방식으로 전환할 필요성이 있는데, 인라인 방식은 클러스터 방식에 비해 중첩 장비가 많아 생산 라인의 구축 비용이 많이 들고, 공정 속도가 느려 생산성이 낮은 문제점이 있었다.
그리고, 종래의 클러스터 방식은 기판을 수평으로 배치하여 박막 공정(유기막 성막 공정)을 수행하는데, 이로 인해 기판의 처짐 현상이 심각하여 소자 제작시 상당한 곤란함이 있었다. 또한, 대면적 기판용 증착 마스크는 하중이 수백 Kg 이상이기 때문에 기판의 처짐 현상이 더욱 심하여 기판 파단 등의 심각한 문제를 야기한다.
본 발명은 상기의 문제점을 해결하고자 제안된 것으로서, 다수의 기판을 병행처리하고, 기판 및 증착 마스크의 배치/정렬 시간 등의 공정 대기 시간을 최소화함으로써, 높은 생산성을 달성할 수 있도록 한 박막 증착 장치와 박막 증착 시스템을 제공하는 것을 목적으로 한다.
또한, 본 발명은 중첩 장비의 공용 사용을 극대화함으로써, 생산 라인의 구축 비용을 절감할 수 있도록 한 박막 증착 장치와 박막 증착 시스템을 제공한다.
또한, 본 발명은 기판을 수직 상태로 배치시켜 박막 공정을 수행함으로써, 기판의 처짐 현상을 극복할 수 있도록 한 박막 증착 장치와 박막 증착 시스템을 제공한다.
상기의 과제를 달성하기 위한 본 발명에 따른 박막 증착 장치는, 반응 공간이 형성된 챔버와, 기판이 수용되도록 형성되어 상기 챔버 내부에 서로 이격되도록 배치된 제1기판홀더 및 제2기판홀더와, 상기 제1기판홀더 및 제2기판홀더 사이에 배치되어 상기 제1기판홀더 및 제2기판홀더에 증착 원료를 공급하는 증착원과, 상기 제1기판홀더 및 제2기판홀더에 기판이 수용된 상태에서, 상기 제1기판홀더 및 제2기판홀더가 상기 챔버 내부의 특정 위치에 일정 시간 위치되게 하는 고정유닛을 포함한다.
그리고, 본 발명에 따른 박막 증착 시스템은 일렬로 연결된 다수의 장치와, 상기 다수의 장치에 형성된 제1,제2공정 라인을 포함하고, 상기 다수의 장치 중 적어도 하나의 내부에는, 상기 제1공정 라인을 이루는 제1기판 홀더와, 상기 제2공정 라인을 이루며 제1기판 홀더와 이격된 제2기판 홀더와, 상기 제1,제2기판 홀더 사이에 설치되며 증착 원료를 공급하는 증착원을 포함한다.
본 발명은 각각의 공정 챔버 내에 마련된 하나의 증착원을 통해 각각의 공정 챔버 내에 마련된 다수의 공정 라인에 대해서 순차적인 박막 공정을 수행할 수 있기 때문에, 비용 절감 및 생산성 향상을 동시에 달성할 수 있다.
또한, 본 발명은 제1기판홀더 및 제2기판홀더가 챔버 내에서 이송되다가 고정유닛에 의해 챔버 내부의 특정 위치에 배치된다. 이에 따라, 기판과 마스크의 정렬 신뢰성이 향상될 수 있다.
또한, 본 발명은 일측 공정 라인의 기판에 대한 박막 공정이 실시되는 동안에 타측 공정 라인의 기판에 대한 기판 반송 및 기판/마스크 정렬을 실시하여 대기 시간을 단축할 수 있으므로, 생산성을 더욱 향상시킬 수 있다.
또한, 본 발명은 기판 이송시에는 기판이 수평 상태로 배치되므로 기판 이송 중에 기판이 파단될 우려가 적고, 박막 공정시에는 기판이 수직 상태로 배치되므로 기판 처짐 현상이 적어 소자 제작이 용이하다.
도 1은 본 발명의 실시예에 따른 박막 증착 시스템을 나타낸 평면도.
도 2는, 도 1의 박막 증착 시스템에 포함된 박막 증착 장치를 나타낸 평면도.
도 3은, 도 1에 도시된 박막 증착 시스템에 포함된 어느 하나의 박막 증착 장치에서 제 1기판 홀더 또는 제 2 기판 홀더가 일방향으로 이동되는 과정을 도시한 도면.
도 4는, 도 3에 도시된 박막 증착 장치에서 제 1기판 홀더 또는 제 2 기판 홀더가 고정유닛에 의해 고정된 상태를 도시한 도면.
도 5는, 도 3에 도시된 박막 증착 장치에서 이동제한유닛에 의해 제 1기판 홀더 또는 제 2 기판 홀더의 이동이 가이드되는 상태를 도시한 도면,
도 6은, 도 3에 도시된 박막 증착 장치에서 이동제한유닛을 동작과정을 도시한 도면,
도 7 내지 도 12은 본 발명의 실시예에 따른 박막 증착 시스템의 단위 공정을 설명하기 위한 평면도.
본 발명에 따른 박막 증착 장치는, 반응 공간이 형성된 챔버와, 기판이 수용되도록 형성되어 상기 챔버 내부에 서로 이격되도록 배치된 제1기판홀더 및 제2기판홀더와, 상기 제1기판홀더 및 제2기판홀더 사이에 배치되어 상기 제1기판홀더 및 제2기판홀더에 증착 원료를 공급하는 증착원과, 상기 제1기판홀더 및 제2기판홀더에 기판이 수용된 상태에서, 상기 제1기판홀더 및 제2기판홀더가 상기 챔버 내부의 특정 위치에 일정 시간 위치되게 하는 고정유닛을 포함한다.
그리고, 본 발명에 따른 박막 증착 시스템은 일렬로 연결된 다수의 장치와, 상기 다수의 장치에 형성된 제1,제2공정 라인을 포함하고, 상기 다수의 장치 중 적어도 하나의 내부에는, 상기 제1공정 라인을 이루는 제1기판 홀더와, 상기 제2공정 라인을 이루며 제1기판 홀더와 이격된 제2기판 홀더와, 상기 제1,제2기판 홀더 사이에 설치되며 증착 원료를 공급하는 증착원을 포함한다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
도 1 및 도 2를 참조하면, 박막 증착 시스템은 선단의 로딩(loading) 장치(110)와 후단의 언로딩(unloading) 장치(120) 사이에 다수의 단위 장치 들(200,600)이 일렬로 연결된 인라인(in-line) 방식으로 구성된다. 이때, 각각의 단위 장치들(200,600)에는 2열의 공정 라인(PL1,PL2)이 마련되어, 제 1 공정 라인(PL1)에 대한 단위 공정이 실시되는 동안에 제 2 공정 라인(PL2)에 대한 사전 준비를 실시하여, 제 2 공정 라인(PL2)열에 대한 단위 공정을 연속적으로 실시할 수 있다.
로딩 장치(110)는 소정의 선행 공정을 마친 기판(G)을 대기압 상태에서 전달받아 이를 진공 상태의 공정 장치(210)로 투입시키는 역할을 하고, 언로딩 장치(120)는 일련의 단위 공정을 마친 기판(G)을 공정 장치(263)로부터 전달받아 이를 후행 공정을 위해 대기압 상태로 인출시키는 역할을 한다. 따라서, 로딩 장치(110) 및 언로딩 장치(120)는 대기압 상태와 진공 상태를 상호 전환할 수 있도록 구성된다. 또한, 도시되지는 않았지만, 로딩 장치(110) 및 언로딩 장치(120)는 로봇 암과 같은 기판 반송 수단 및 기판 카셋트와 같은 기판 적재 수단과 연결될 수 있다.
다수의 단위 장치(200,600)들은 단위 공정을 수행하는 다수의 공정 장치(200: 210,220,230,240,250,260)들 및 이들의 사이에 연결된 다수의 완충 장치(600: 610,620)를 포함한다. 이때, 완충 장치(600)는 공정 대기를 위해 기판(G)이 잠시 머무르는 임시 공간을 제공한다. 또한, 공정 장치(200)들 각각에는 제 1 공정 라인(PL1)으로 제 1 증착 마스크(M1)를 공급하는 제 1 마스크 수용장치(310)가 일측에 연결된다. 그리고, 공정 장치(200)들의 타측에는 제 2 공정 라인(PL2)으로 제 2 증착 마스크(M2)를 공급하는 제 2 마스크 수용장치(320)가 연결된다. 상기 제 1, 제 2 마스크 수용장치(310,320)에는 박막 공정시 사용하거나, 또는 교체 사용할 증착 마스크(M1,M2)가 저장된다. 물론, 제 1, 제 2 마스크 수용장치(310,320)는 공용 사용될 수 있으므로, 공정 장치(200)들 각각에는 하나의 공용 마스크 수용장치만 연결될 수도 있다. 또한, 각각의 단위 장치들 중 일부에는 증착원(540)에 원료 물질을 공급하기 위한 원료 공급 장치(feeder)(410)가 연결될 수 있다.
다수의 공정 장치(200)들은 기판(G) 상에 일련의 소자 공정을 수행하도록 구성된다. 예를 들어, 본 실시예는 외부에서 양극이 형성된 기판(G) 상에 정공 주입층(Hole Injection Layer;HIL), 정공 수송층(Hole Transport Layer;HTL), 발광층(Emitting material Layer;EML), 전자 수송층(Electron Transport Layer;ETL), 전자 주입층(Electron Injection Layer;EIL) 및 음극이 순차적으로 적층된 유기 발광 소자를 형성할 수 있도록 구성된다. 이를 위해, 정공 주입층 형성 장치(210), 정공 수송층 형성 장치(220), 발광층 형성 장치(230), 전자 수송층 형성 장치(240), 전자 주입층 형성 장치(250) 및 음극 형성 장치(260)가 일렬로 연결된다. 이때, 상기 발광층 형성 장치(230)는 천연색 구현을 위해 청색(B), 녹색(G) 및 적색(R) 발광층 형성 장치(231,232,233)들을 더 포함할 수 있고, 음극 형성 장치(260)는 음극을 다층 구조로 형성하기 위해 다수의 음극 형성 장치(261,262,263)들을 더 포함할 수 있다.
상기와 같은 박막 증착 시스템에 포함된 다수의 장치들 중 적어도 하나는 박막 증착 장치(200)일 수 있으며, 이하에서는 이러한 박막 증착 장치(200)의 상세한 구조를 설명한다.
박막 증착 장치(200)는 챔버(100)와, 제 1 제 2 기판홀더(520,530)와, 증착원(540)과, 고정유닛(10)을 포함한다.
챔버(100)의 형상의 일예로 육면체일 수 있다. 챔버(100) 내부에는 기판(G)이 처리되는 반응 공간이 형성된다. 또한, 챔버(100)에는 제 1 공정 라인을 따라 제 1 기판 인입구(511a), 제 1 기판 홀더(520), 제 1 기판 인출구(512a)가 형성된다. 그리고, 챔버(100)에는 제 2 공정 라인을 따라 제 2 기판 인입구(511b), 제 2 기판 홀더(530), 제 2 기판 인출구(512b)가 형성된다. 이때, 챔버(100)의 일측 측벽에 제 1, 제 2 기판 인입구(511a,511b)가 상호 이격되어 형성되고, 이에 대향하는 타측 측벽에 제 1, 제 2 기판 인출구(512a,512b)가 상호 이격되어 형성된다. 여기서, 기판 인입구(511a,511b) 및 기판 인출구(512a,512b)는 슬릿 밸브(slit valve)로 구성될 수 있다.
제 1, 제 2 기판 홀더(520,530) 각각은 기판(G1,G2)의 배면을 지지하는 지지대(521)와, 상기 지지대(521)에 설치되어 기판(G1,G2)을 고정하는 클램프(clamp)(522)와, 상기 지지대(521)를 수직 상태로 세우거나 수평 상태로 눕혀주는 구동부(미도시)를 포함한다. 만일, 본 실시예와 달리, 기판(G1,G2)이 수직 상태로 각각의 공정 장치(210,220,230,240,250,260)로 반입되는 경우라면 상기 구동부는 생략될 수 있다.
상기 지지대(521)의 내부 또는 하부에는 지지대(521) 상에 안착된 기판(G1,G2)이 공정 수행에 적합한 온도로 유지될 수 있도록 온도 제어 수단(523)이 마련될 수 있다. 여기서, 온도 제어 수단(523)은 기판(G1,G2)을 냉각시켜주는 냉각 수단 및 기판(G1,G2)을 가열시켜주는 가열 수단 중 적어도 어느 하나의 조합으로 구성될 수 있다. 본 실시예에서는 냉각 수단을 이용하여 기판(G1,G2)의 온도를 공정 온도로 유지시켜 줌으로써 기판(G1,G2)의 상면에 증착되는 증착 물질과의 반응성을 향상시켜준다.
상기 클램프(522)는 기판(G1,G2)의 가장자리를 잡아줌으로써 지지대(521) 상에 안착된 수평 상태의 기판(G1,G2)을 수직 상태로 전환하거나, 또는 반대로 수평 상태의 기판(G1,G2)을 수직 상태로 전환할 시 기판(G1,G2)이 움직이는 것을 방지한다. 본 실시예의 경우는 기판(G1,G2) 상에 형성되는 박막 패턴을 규제하기 위하여 기판(G1,G2) 상에 소정의 증착 패턴을 갖는 증착 마스크(M1,M2)를 배치한다. 따라서, 클램프(522)는 기판(G1,G2)과 증착 마스크(M1,M2)를 모두 지지대(521) 상에 고정시킬 수 있도록 구성되는 것이 바람직하다.
이러한 제 1, 제 2 기판 홀더(520,530)는 기판(G1,G2)이 각각 수용되도록 형성된다. 그리고, 제1, 제 2 기판 홀더(520,530)는 동일 수평면상에서 상호 일정거리 이격되며, 어느 하나의 기판 홀더(520, 530 중 하나)가 수직 상태 또는 수평 상태로 회전되더라도 반대편 기판 홀더(530, 520 중 하나)에 간섭을 주지 않는 거리 이상으로 이격된다.
증착원(540)은 소정 거리로 이격된 제 1, 제 2 기판 홀더(520,530)의 사이에 마련된다. 이러한 증착원(540)은 증착 공정을 위해 수직 상태로 전환된 어느 한쪽의 기판(G1, G2 중 하나)에 대향하도록 배치되며, 기판(G)의 대향면 즉, 증착면 방향으로 기화 상태의 원료 물질을 공급하는 역할을 한다. 이때, 도시되지는 않았지만, 상기 증착원(540)은 원료 물질이 저장되는 도가니와, 상기 원료 물질을 기화시키는 가열부 및 기화된 원료 물질을 분사하는 분사부를 가지며, 공정 상황에 따라 점형(point-type), 선형(line-type) 및 면형(plane-type) 증착원(540) 중 적합한 어느 하나가 사용될 수 있다. 본 실시예는 다수의 점형 증착원(541,542)이 선형으로 배열된 선형 증착원(540)을 사용하며, 이러한 선형 증착원(540)은 왕복 구동 부재에 의해 좌/우로 왕복하면서 기판(G1,G2)의 전체 면적에 원료 물질을 균일하게 공급(분사)한다. 이와 같이 기판(G1,G2)상에 원료 물질을 분사하는 과정은 기판(G1,G2)이 수직인 상태에서 이루어진다. 이를 위해 제1기판홀더(520) 및 제2기판홀더(530)는 기판을 지면에 대해 수직인 상태로 지지한다.
특히, 본 실시예의 증착원(540)은 제 1 기판 홀더(520)를 기준으로 하여 분사 방향을 180°각도로 회전시켜 제 2 기판 홀더(530) 방향으로 원료 물질을 분사하거나, 또는 반대로 180°각도로 회전되어 제 1 기판 홀더(520) 방향으로 원료 물질을 분사하도록 구성된다. 이에 따라, 단일 장치 내에 2열의 공정 라인이 형성되더라도 하나의 증착원(540)을 이용하여 양쪽 모두에 대한 공정 처리가 가능하다.
이와 같은 구성된 박막 증착 시스템을 이용한 박막 증착 공정을 도 1을 참조하여 간략히 설명하면 다음과 같다.
먼저, 선행 공정을 통해 양극이 형성된 기판(G)은 대기압 상태에서 로딩 장치(110)로 인입되고, 로딩 장치(110) 내부는 진공 상태로 전환된다. 이어, 기판(G)은 교대로 선택되는 제 1, 제 2 공정 라인을 따라 일련의 단위 공정을 수행하는 공정 장치(210,220,230,240,250,260)들에 순차적으로 투입된다. 즉, 기판(G)은 진공 상태에서 정공 주입층 형성 장치(210), 정공 수송층 형성 장치(220) 및 발광층 형성 장치(23,232,233)에 순차적으로 투입된다. 이에 따라, 기판(G)의 양극 상에는 정공 주입층, 정공 수송층 및 발광층이 순차적으로 형성된다. 이후, 전자 수송층 형성 장치(240), 전자 주입층 형성 장치 (250), 음극 형성 장치 (261,262,263)에 순차적으로 투입된다. 이에 따라, 기판(G)의 발광층 상에는 전자 수송층, 전자 주입층 및 다층의 음극이 형성되어 유기 발광 소자가 제작된다. 이후, 기판(G)은 언로딩 장치(120)로 인입되어 대기압 상태에서 외부로 인출된다.
한편, 도 3 및 도 4를 참조하면, 전술한 구조로 이루어진 박막 증착 장치는 고정유닛(10)을 포함하는 것이 바람직하다. 제1기판홀더(520) 및 제2기판홀더(530)에 기판(G)이 수용된 상태에서, 제1기판홀더(520) 및 제2기판홀더(530)가 챔버 내에서 이송되다가 고정유닛(10)에 의해 챔버 내부의 특정 위치에 일정 시간 위치되게 한다. 여기서, 특정 위치란 제1기판홀더(520) 및 제2기판홀더(530)에 수용된 기판이 마스크와 정확하게 정렬되도록 기설정된 위치이다. 이는, 제조사의 설계에 따라 기판 상에 박막 패턴이 정확하게 형성되게 하기 위함이다.
기판과 마스크의 정밀한 정렬작업은 CCD(Charged Coupled Device), CMOS(Complementary metal-oxide-semiconductor) 등의 촬상소자에 의해 광학적으로 이루어지는데, 상기와 같이 기판이 고정유닛(10)에 의해 제1기판홀더(520) 및 제2기판홀더(530)가 특정 위치에 안정적으로 고정됨으로써, 정렬작업이 안정적으로 이루어질 수 있다.
한편, 전술한 고정유닛(10)의 상세한 구조의 일예로, 고정부(11)와, 승강부(12)를 포함할 수 있다. 고정부(11)는 제1기판홀더(520) 및 제2기판홀더(530)의 바닥면으로부터 상방으로 인입되게 형성된다. 승강부(12)는 상기 제1기판홀더(520) 및 제2기판홀더(530)가 특정 위치에 배치된 상태에서, 적어도 일부가 상기 고정부(11)에 출입가능하도록 형성된다. 이러한 승강부(12)는 유압실린더를 포함할 수 있다. 이와 다르게 승강부(12)는 선형 모터를 포함하는 것도 가능하다.
한편, 전술한 고정부(11)의 형상의 일예로, 원뿔 형상으로 인입되게 형성된 것일 수 있고, 승강부(12)의 끝부분은 고정부(11)에 수용될 수 있도록, 고정부(11)의 크기와 동일한 원뿔 형상으로 이루어질 수 있다. 이와 다르게, 고정부(11)의 형상은 원통형상으로 인입되게 형성된 것일 수 있고, 승강부(12)의 끝부분은 고정부(11)에 용이하게 출입될 수 있도록 반구형상으로 이루어질 수 있다.
한편, 도 5 및 도 6을 참조하면, 박막 증착 장치는 이동제한유닛(20)을 더 포함할 수 있다. 이동제한유닛(20)은 제1기판홀더(520) 및 제2기판홀더(530)가 일방향으로 이동되는 것을 제한한다.
한편, 이동제한유닛(20)의 상세한 구조의 일예로, 가이드부(21)와, 동력부(22)를 포함할 수 있다. 가이드부(21)는 제1기판홀더(520) 및 제2기판홀더(530) 각각의 일면에 인접하게 배치되어 제1기판홀더(520) 및 제2기판홀더(530)의 이동을 가이드한다. 동력부(22)는 가이드부(21)가 제1기판홀더(520) 및 제2기판홀더(530)와 가까워지거나, 제1기판홀더(520) 및 제2기판홀더(530)로부터 멀어지는 방향으로 이동되게 한다. 동력부(22)의 일예로 선형 모터일 수 있다. 동력부(22)의 다른 예로 유압실린더일 수 있다.
한편, 전술한 가이드부(21)의 일예로 다수의 롤러들일 수 있다. 롤러들은 제1기판홀더(520) 및 제2기판홀더(530) 각각의 양측면에 배치된다. 기판에 증착물질을 증착시키기 위하여 제1기판홀더(520) 및 제2기판홀더(530)가 챔버 내로 유입되어 이동되는 과정에서 다수의 롤러들이 동력부(22)에 의해 제1기판홀더(520) 및 제2기판홀더(530)에 밀착된다. 여기서, 다수의 롤러들의 최대로 이격된 간격은 이송되는 제1기판홀더(520) 및 제2기판홀더(530)가 과도하게 기울어져서 이탈되지 않을 정도인 것이 바람직하다. 그리고, 다수의 롤러들 사이의 최소한의 간격은 제1기판홀더(520) 및 제2기판홀더(530)의 두께 보다 약간 작게 이루어질 수 있다.
이러한 다수의 롤러에 의해 제1기판홀더(520) 및 제2기판홀더(530)가 이동되는 경우에는 안정적인 이동이 이루어질 수 있다. 뿐만 아니라, 기판 상에 증착물질을 증착시키려고 하는 경우, 다수의 롤러가 제1기판홀더(520) 및 제2기판홀더(530)를 안정적으로 파지하여 인접한 부재의 진동에 의해 저항력을 가질 수 있다. 그러므로, 기판 상에 증착물질을 증착시키는데 있어서, 증착 신뢰성이 향상될 수 있다.
또한, 기판과 마스크를 정렬하는 과정에서, 이동제한유닛(20)에 의해 제1기판홀더(520) 및 제2기판홀더(530)의 상측이 파지됨으로써, 기판과 마스크의 정렬작업이 안정적으로 이루어질 수 있다.
한편, 제1기판홀더(520) 및 제2기판홀더(530)의 바닥면에 이송용 롤러(30)가 배치될 수 있다. 이송용 롤러(30)는 미도시된 챔버 내부에 회전가능하도록 배치된 것이다. 이러한 이송용 롤러(30)에 의해 제1기판홀더(520) 및 제2기판홀더(530)가 일방향으로 이송될 수 있다. 단, 제1기판홀더(520) 및 제2기판홀더(530) 의 바닥면에 이송용 롤러(30)가 배치되는 것으로 한정하지는 않으며, 컨베이어 벨트가 배치되는 것도 가능하다.
한편, 전술한 박막 증착 공정에서 기판(G)은 지면에 대해 수직인 상태로 이송되는 것으로 설명하였다. 그러나, 기판(G)은 지면에 대해 수평인 상태로 이송될 수 있다. 다만, 기판 이송이 수평 상태로 이루어지는 경우에는 각각의 공정 장치(210,220,230,240,250,260) 내에서 수평 상태의 기판(G)을 수직 상태로 전환시키는 과정이 필요하다. 하기에서는 수평 상태의 기판(G)을 수직 상태로 전환시켜 단위 공정을 수행하는 과정에 대해 도 7 내지 도 12을 참조하여 보다 상세히 설명한다. 여기서, 도 7 내지 도 12은 본 발명의 실시예에 따른 박막 증착 시스템의 단위 공정을 설명하기 위한 평면도이다.
도 7과 같이, 제 1 공정 라인을 따라 수평 반송된 제 1 기판(G1)은 제 1 기판 인입구(511a)를 통해 공정 장치(200) 내부로 인입되고, 인입된 제 1 기판(G1)은 수평 상태로 배치된 제 1 기판 홀더(520)의 지지대 상에 안착된다. 이어, 공정 장치(200)에 연결된 제 1 마스크 수용장치(310)로부터 제 1 증착 마스크(M1)가 제공되고, 제공된 제 1 증착 마스크(도 8의 M1 참조)는 제 1 기판(G1) 상에 배치되어 정렬된다. 이어, 도 8와 같이, 제 1 기판 홀더(520)의 클램프(522)가 제 1 기판(G1)과 그 상면의 제 1 증착 마스크(M1)를 고정하면, 제 1 기판 홀더(520)는 90도 회전되어 수직 상태로 전환된다. 이에 따라, 제 1 기판(G1)의 외측 일면과 증착원(540)의 분사 방향이 상호 대향되고, 증착원(540)을 통해 제 1 기판(G1)의 외측 일면에 기화 상태의 원료 물질을 분사시켜 제 1 기판(G1)에 대한 제 1 박막 공정을 수행한다.
도 9와 같이, 제 2 공정 라인을 따라 수평 반송된 제 2 기판(G2)은 상기 제 1 기판(G1)의 인입과 동시에, 또는 그 이후에 제 2 기판 인입구(511b)를 통해 공정 장치(200) 내부로 인입된다. 인입된 제 2 기판(G2)은 수평 상태로 배치된 제 2 기판 홀더(530)의 지지대 상에 안착되고, 제 2 기판(G2) 상에는 공정 장치와 연결된 제 2 마스크 수용장치(320)로부터 공급된 제 2 증착 마스크(도 10의 M2 참조)가 배치되어 정렬된다. 이어, 도 10과 같이, 제 2 기판 홀더(530)의 클램프(512)가 제 2 기판(G2)과 그 상면의 제 2 증착 마스크(M2)를 고정하면, 제 2 기판 홀더(530)는 90도 회전되어 수직 상태로 전환된다. 이때, 제 2 기판(G2)의 배치/정렬 과정 및 제 2 증착 마스크(M2)의 배치/정렬 과정은 제 1 박막 공정의 수행 중에 실시하는 것이 바람직하다. 따라서, 공정 대기 시간을 단축하여 생산성을 향상시킬 수 있다.
이어, 도 11과 같이, 제 1 박막 공정이 종료되면, 제 1 기판 홀더(520)를 기준으로 증착원(540)의 분사 방향을 180도 회전시킨다. 이에 따라, 제 2 기판(G2)의 외측 일면과 증착원(540)의 분사 방향이 상호 대향되면, 증착원(540)을 통해 제 2 기판(G2)의 외측 일면에 기화 상태의 원료 물질을 분사시켜 제 2 기판(G2)에 대한 제 2 박막 공정을 수행한다. 한편, 도 12과 같이, 제 2 박막 공정이 수행되는 동안, 제 1 기판 홀더(520)는 원래의 수평 상태로 복귀되고, 제 1 기판(G1)에서 제 1 증착 마스크(M1)가 분리된다. 이후, 제 1 기판(G1)은 제 1 기판 인출구(512a)를 통해 인출된 후 후속 단위 장치에 투입된다. 한편, 제 1, 제 2 박막 공정이 끝난 후 제 1, 제 2 기판(G1,G2)에서 분리된 제 1, 제 2 증착 마스크(M1,M2)는 해당 장치에 머무르면서 다음의 박막 공정에 사용되고, 장시간 사용에 따른 오염 또는 파손 등 교체 요인이 발생할 경우에 제 1, 제 2 마스크 수용장치(310,320)로 이송되어 대기 중으로 꺼내진다. 이후, 제 1, 제 2 증착 마스크(M1,M2)는 세정, 수리 등의 작업을 통해 재사용된다. 물론, 제 1, 제 2 마스크 수용장치(310,320)에는 사용된 증착 마스크의 교체 작업시 사용할 여분의 증착 마스크가 다수로 마련될 수도 있다.
이처럼, 본 발명의 실시예에 따른 박막 처리 시스템은 각각의 공정 장치(210,220,230,240,250,260)들 내에 마련된 하나의 증착원(540)을 통해 각각의 공정 장치(210,220,230,240,250,260)들 내에 마련된 다수의 공정 라인(PL1,PL2)에 대해서 연속적인 박막 공정을 수행할 수 있기 때문에, 비용 절감 및 생산성 향상을 동시에 달성할 수 있다. 또한, 일측 공정 라인(PL1)의 기판(G1)에 대한 박막 공정이 실시되는 동안에 타측 공정 라인(PL2)의 기판(G2)에 대한 기판 반송 및 기판/마스크 정렬을 실시하여 대기 시간을 단축할 수 있으므로, 생산성을 더욱 향상시킬 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명의 박막 증착 장치 및 박막 증착 시스템은 유기 발광 소자를 제조하는데 사용될 수 있다.

Claims (16)

  1. 반응 공간이 형성된 챔버;
    기판이 수용되도록 형성되어 상기 챔버 내부에 서로 이격되도록 배치된 제1기판홀더 및 제2기판홀더;
    상기 제1기판홀더 및 제2기판홀더 사이에 배치되어 상기 제1기판홀더 및 제2기판홀더에 증착 원료를 공급하는 증착원; 및
    상기 제1기판홀더 및 제2기판홀더에 기판이 수용된 상태에서, 상기 제1기판홀더 및 제2기판홀더가 상기 챔버 내부의 특정 위치에 일정 시간 위치되게 하는 고정유닛;
    을 포함하는 박막 증착 장치.
  2. 제1항에 있어서,
    상기 제1기판홀더 및 제2기판홀더는 기판을 지면에 대해 수직인 상태로 지지하는 것을 특징으로 하는 박막 증착 장치.
  3. 제2항에 있어서,
    상기 고정유닛은:
    상기 제1기판홀더 및 제2기판홀더의 바닥면으로부터 상방으로 인입되게 형성된 고정부; 및
    상기 제1기판홀더 및 제2기판홀더가 특정 위치에 배치된 상태에서, 적어도 일부가 상기 고정부에 출입가능하도록 형성된 승강부;
    를 포함하는 박막 증착 장치.
  4. 제3항에 있어서,
    상기 제1기판홀더 및 제2기판홀더가 일방향으로 이동되는 것을 제한하는 이동제한유닛을 더 포함하는 것을 특징으로 하는 박막 증착 장치.
  5. 제4항에 있어서,
    상기 이동제한유닛은:
    상기 제1기판홀더 및 제2기판홀더 각각의 일면에 인접하게 배치되어 상기 제1기판홀더 및 제2기판홀더의 이동을 가이드하는 가이드부; 및
    상기 가이드부가 상기 제1기판홀더 및 제2기판홀더와 가까워지거나, 상기 제1기판홀더 및 제2기판홀더로부터 멀어지는 방향으로 이동되게 하는 동력부;
    를 포함하는 것을 특징으로 하는 박막 증착 장치.
  6. 제5항에 있어서,
    상기 가이드부는,
    상기 제1기판홀더 및 제2기판홀더 각각의 양측면에 배치된 다수의 롤러들인 것을 특징으로 하는 박막 증착 장치.
  7. 제2항에 있어서,
    상기 제1기판홀더 및 제2기판홀더는:
    기판을 지지하는 지지대; 및
    상기 지지대 상에 안착된 기판을 고정하는 클램프;
    를 포함하는 박막 증착 장치.
  8. 제2항에 있어서,
    상기 제1기판홀더 및 제2기판홀더는,
    상기 지지대를 수직 상태로 세우거나 수평 상태로 눕혀주는 구동부를 더 포함하는 것을 특징으로 하는 박막 증착 장치.
  9. 제1항에 있어서,
    상기 증착원은 상기 제1기판홀더 및 제2기판홀더 사이에 회전 가능하도록 형성된 것을 특징으로 하는 박막 증착 장치.
  10. 제1항에 있어서,
    상기 증착원은 점형, 선형 및 면형 증착원 중 선택된 어느 하나인 것을 특징으로 하는 박막 증착 장치.
  11. 제1항에 있어서,
    상기 챔버에는,
    상기 제1기판홀더 및 제2기판홀더 각각에 증착 마스크를 제공하거나, 또는 증착 마스크를 교체하기 위한 마스크 챔버가 연결되는 박막 증착 장치.
  12. 일렬로 연결된 다수의 장치들; 및
    상기 다수의 장치들에 형성된 제1,제2공정 라인;을 포함하고,
    상기 다수의 장치들 중 적어도 하나의 내부에는,
    상기 제1공정 라인을 이루는 제1기판 홀더;
    상기 제2공정 라인을 이루며 제1기판 홀더와 이격된 제2기판 홀더; 및
    상기 제1,제2기판 홀더 사이에 설치되며 증착 원료를 공급하는 증착원;이 마련되는 박막 증착 시스템.
  13. 제12항에 있어서,
    상기 증착원은 제1기판 홀더와 제2기판 홀더 사이에서 회전 가능한 박막 증착 시스템.
  14. 제12항에 있어서,
    상기 증착원은 점형, 선형 및 면형 증착원 중 적어도 어느 하나인 박막 증착 시스템.
  15. 제12항에 있어서,
    상기 다수의 장치들은,
    단위 공정을 수행하는 다수의 공정 장치들; 및
    상기 다수의 공정 장치들 사이에 연결된 다수의 완충 장치들;을 포함하는 박막 증착 시스템.
  16. 제15항에 있어서,
    상기 다수의 공정 장치에는,
    증착 마스크를 제공하거나, 또는 증착 마스크를 교체하기 위한 마스크 수용장치가 연결되는 박막 증착 시스템.
PCT/KR2010/003810 2010-06-10 2010-06-14 박막 증착 장치 및 박막 증착 시스템 WO2011155652A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800673497A CN103097568A (zh) 2010-06-10 2010-06-14 薄膜沉积设备和薄膜沉积系统
JP2013514088A JP5686185B2 (ja) 2010-06-10 2010-06-14 薄膜蒸着装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0055020 2010-06-10
KR1020100055020A KR101036123B1 (ko) 2010-06-10 2010-06-10 박막 증착 장치

Publications (1)

Publication Number Publication Date
WO2011155652A1 true WO2011155652A1 (ko) 2011-12-15

Family

ID=44366381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003810 WO2011155652A1 (ko) 2010-06-10 2010-06-14 박막 증착 장치 및 박막 증착 시스템

Country Status (5)

Country Link
JP (1) JP5686185B2 (ko)
KR (1) KR101036123B1 (ko)
CN (1) CN103097568A (ko)
TW (1) TWI440241B (ko)
WO (1) WO2011155652A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114144872A (zh) * 2019-07-25 2022-03-04 应用材料公司 用于在竖直取向上蒸镀oled层堆叠物的系统和方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167001A (ja) * 2012-02-16 2013-08-29 Hitachi High-Technologies Corp 真空蒸着システム及び真空蒸着方法
KR101394367B1 (ko) * 2012-09-27 2014-05-27 주식회사 선익시스템 기판처리장치 및 기판처리방법
KR101394368B1 (ko) * 2012-09-27 2014-05-27 주식회사 선익시스템 기판처리장치 및 기판처리방법
KR101405102B1 (ko) * 2012-10-04 2014-06-10 주식회사 선익시스템 기판처리장치 및 기판처리방법
KR20140061808A (ko) * 2012-11-14 2014-05-22 삼성디스플레이 주식회사 유기물 증착 장치
KR101499798B1 (ko) * 2012-12-31 2015-03-09 엘아이지에이디피 주식회사 롤형 마스크를 이용한 인라인 타입 증착장비
KR101499794B1 (ko) * 2012-12-31 2015-03-09 엘아이지에이디피 주식회사 롤형 마스크를 이용한 클러스터 타입 증착장비
KR102106414B1 (ko) * 2013-04-26 2020-05-06 삼성디스플레이 주식회사 증착 챔버, 이를 포함하는 증착 시스템 및 유기 발광 표시장치 제조방법
KR102162797B1 (ko) * 2013-12-23 2020-10-08 삼성디스플레이 주식회사 유기 발광 디스플레이 장치의 제조 방법
KR102426712B1 (ko) * 2015-02-16 2022-07-29 삼성디스플레이 주식회사 표시 장치 제조 장치 및 표시 장치 제조 방법
KR20160118151A (ko) * 2015-04-01 2016-10-11 (주)브이앤아이솔루션 얼라이너 구조 및 얼라인 방법
CN105132860A (zh) * 2015-09-23 2015-12-09 京东方科技集团股份有限公司 一种金属掩膜冷却装置及金属掩膜蒸镀装置
JP2020502778A (ja) * 2016-12-14 2020-01-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 堆積システム
KR102120265B1 (ko) * 2018-06-12 2020-06-08 셀로코아이엔티 주식회사 표시장치용 증착장비 및 이를 포함하는 제조시스템
JP7292110B2 (ja) * 2019-05-29 2023-06-16 キヤノン株式会社 成膜装置および成膜方法
KR102355814B1 (ko) * 2020-03-20 2022-01-26 주식회사 선익시스템 증착 장치 및 이를 이용한 유기물 증착 방법
KR102430349B1 (ko) * 2020-04-14 2022-08-08 주식회사 선익시스템 클러스터 증착 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040088238A (ko) * 2003-04-09 2004-10-16 (주)네스디스플레이 진공증착 시스템과 방법
KR20060080471A (ko) * 2005-01-05 2006-07-10 삼성에스디아이 주식회사 트레이 가이드 장치
JP2007077493A (ja) * 2005-09-15 2007-03-29 Applied Materials Gmbh & Co Kg コーティング機及びコーティング機の動作方法
JP2007239071A (ja) * 2006-03-10 2007-09-20 Fujifilm Corp 真空蒸着装置
JP2009105081A (ja) * 2007-10-19 2009-05-14 Ebatekku:Kk 基板処理装置
KR20100028479A (ko) * 2008-09-04 2010-03-12 가부시키가이샤 히다치 하이테크놀로지즈 유기 el 디바이스 제조 장치 및 유기 el 디바이스 제조 방법 및 성막 장치 및 성막 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299959U (ko) * 1989-01-24 1990-08-09
JP3232646B2 (ja) * 1992-05-07 2001-11-26 日本板硝子株式会社 液晶表示素子用透明電導ガラスの製造方法
JPH0941142A (ja) * 1995-07-26 1997-02-10 Balzers & Leybold Deutsche Holding Ag 真空中で被覆したい基板を交互に位置決めする装置
JP3909888B2 (ja) * 1996-04-17 2007-04-25 キヤノンアネルバ株式会社 トレイ搬送式インライン成膜装置
JP4034860B2 (ja) * 1997-10-31 2008-01-16 キヤノンアネルバ株式会社 トレイ搬送式成膜装置及び補助チャンバー
JP4843873B2 (ja) * 2001-07-05 2011-12-21 ソニー株式会社 斜め蒸着装置および斜め蒸着方法
JP2004146369A (ja) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd 製造装置および発光装置の作製方法
JP2006191039A (ja) * 2005-01-05 2006-07-20 Samsung Sdi Co Ltd トレイ移送装置
JP2008019477A (ja) * 2006-07-13 2008-01-31 Canon Inc 真空蒸着装置
JP5145126B2 (ja) * 2008-06-11 2013-02-13 株式会社アルバック 接着装置及び接着方法
CN101667630A (zh) * 2008-09-04 2010-03-10 株式会社日立高新技术 有机el设备制造装置和其制造方法以及成膜装置和成膜方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040088238A (ko) * 2003-04-09 2004-10-16 (주)네스디스플레이 진공증착 시스템과 방법
KR20060080471A (ko) * 2005-01-05 2006-07-10 삼성에스디아이 주식회사 트레이 가이드 장치
JP2007077493A (ja) * 2005-09-15 2007-03-29 Applied Materials Gmbh & Co Kg コーティング機及びコーティング機の動作方法
JP2007239071A (ja) * 2006-03-10 2007-09-20 Fujifilm Corp 真空蒸着装置
JP2009105081A (ja) * 2007-10-19 2009-05-14 Ebatekku:Kk 基板処理装置
KR20100028479A (ko) * 2008-09-04 2010-03-12 가부시키가이샤 히다치 하이테크놀로지즈 유기 el 디바이스 제조 장치 및 유기 el 디바이스 제조 방법 및 성막 장치 및 성막 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114144872A (zh) * 2019-07-25 2022-03-04 应用材料公司 用于在竖直取向上蒸镀oled层堆叠物的系统和方法

Also Published As

Publication number Publication date
TW201145639A (en) 2011-12-16
CN103097568A (zh) 2013-05-08
JP2013533922A (ja) 2013-08-29
JP5686185B2 (ja) 2015-03-18
KR101036123B1 (ko) 2011-05-23
TWI440241B (zh) 2014-06-01

Similar Documents

Publication Publication Date Title
WO2011155652A1 (ko) 박막 증착 장치 및 박막 증착 시스템
WO2010114274A2 (en) Apparatus for depositing film and method for depositing film and system for depositing film
WO2010128811A2 (ko) 박막 증착 장치 및 이를 구비하는 박막 증착 시스템
JP5611718B2 (ja) 薄膜蒸着装置及びこれを利用した有機発光表示装置の製造方法
JP5676175B2 (ja) 薄膜蒸着装置及びこれを利用した有機発光表示装置の製造方法
JP6741594B2 (ja) キャリアによって支持された基板上に一又は複数の層を堆積させるためのシステム、及び当該システムを使用する方法
US9461277B2 (en) Organic light emitting display apparatus
CN102286727A (zh) 薄膜沉积设备、制造有机发光显示装置的方法及显示装置
KR101174883B1 (ko) 박막 증착 장치 및 이를 이용한 유기 발광 표시장치의 제조 방법
CN102332539A (zh) 薄膜沉积设备及制造有机发光显示装置的方法
KR20130004831A (ko) 유기층 증착 장치
CN103474447A (zh) 薄膜沉积设备、制造有机发光显示装置的方法及显示装置
KR20100132517A (ko) 회전 모듈을 갖는 코팅 장치
KR101632298B1 (ko) 평판 표시장치 및 그 제조방법
KR20140145383A (ko) 인라인형 대면적 oled 하향식 증착기
KR20190072373A (ko) 증착 시스템
KR20140146448A (ko) 유기층 증착 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법
TW201939789A (zh) 真空處理系統及操作一真空處理系統之方法
US20140329349A1 (en) Organic layer deposition apparatus, and method of manufacturing organic light-emitting display apparatus by using the same
KR20110022513A (ko) 박막 증착 장치 및 이를 이용한 유기 발광 표시장치의 제조 방법
KR101802392B1 (ko) 기판처리시스템
JP2017214654A (ja) 有機材料用の蒸発源、有機材料用の蒸発源を有する装置、有機材料用の蒸発源を含む蒸発堆積装置を有するシステム、及び有機材料用の蒸発源を操作するための方法
KR20120054778A (ko) 기판처리시스템
WO2016117815A1 (ko) 왕복형 oled 진공 증착기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067349.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852938

Country of ref document: EP

Kind code of ref document: A1