WO2011152383A1 - 鉄道車両の駆動装置 - Google Patents

鉄道車両の駆動装置 Download PDF

Info

Publication number
WO2011152383A1
WO2011152383A1 PCT/JP2011/062454 JP2011062454W WO2011152383A1 WO 2011152383 A1 WO2011152383 A1 WO 2011152383A1 JP 2011062454 W JP2011062454 W JP 2011062454W WO 2011152383 A1 WO2011152383 A1 WO 2011152383A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
voltage
power
inverter device
current
Prior art date
Application number
PCT/JP2011/062454
Other languages
English (en)
French (fr)
Inventor
大二郎 荒木
基巳 嶋田
周一 立原
哲 堀江
正浩 長洲
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201180025631.3A priority Critical patent/CN103097172B/zh
Priority to KR1020127031390A priority patent/KR101434772B1/ko
Priority to EP11789786.8A priority patent/EP2578436A1/en
Priority to US13/701,053 priority patent/US8924051B2/en
Publication of WO2011152383A1 publication Critical patent/WO2011152383A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/68Traffic data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a railway vehicle drive device equipped with power storage means.
  • regenerative brake control In the field of railway vehicles, regenerative brake control is widely used in which a main motor is operated as a generator during braking to obtain braking force and at the same time convert kinetic energy of the vehicle into electrical energy and return it to the overhead line. Since the electric power returned to the overhead line by the regenerative brake control can be used as electric power that other vehicles power, the power consumption can be reduced.
  • regenerative brake control has the following two problems.
  • the first problem is that the regenerative performance is limited in the high speed range (above the constant torque end speed) due to the performance of the main motor and the inverter device, and sufficient braking force cannot be obtained.
  • the output of the main motor is determined by the voltage applied to the main motor and the current flowing through the main motor.
  • the voltage is determined by the power supply voltage supplied from the overhead wire, it is necessary to increase the current in order to increase the output of the main motor.
  • the heat generation of the motor and the inverter device increases when the current is increased, it is necessary to increase the size of the main motor or increase the cooler of the inverter device in order to ensure the cooling performance.
  • the number of parallel semiconductor elements of the inverter device must be increased.
  • the method of increasing the regenerative braking force in the high speed region by increasing the current of the main motor is accompanied by an increase in the size of the device, which increases the weight and reduces the effect of reducing the power consumption.
  • the second problem is that when there are few other vehicles in power running, the regenerative braking force must be reduced in order to suppress the rise in overhead voltage and protect the inverter device.
  • the power returned to the overhead line by the regenerative brake is not consumed, so the overhead line voltage rises (hereinafter referred to as a light load regeneration state).
  • a light load regeneration state since the voltage applied to the inverter device may exceed the allowable value and destroy the inverter device, it is necessary to suppress the increase in overhead voltage by reducing the regenerative braking force. As a result, the insufficient braking force is supplemented by the air brake, and a sufficient power consumption reduction effect cannot be obtained.
  • Patent Document 1 discloses a technique for solving these problems.
  • the drive device for a railway vehicle described in Patent Document 1 includes an electric motor, an inverter device that drives the electric motor, and a power storage unit that can be charged and discharged, and the power storage unit is connected in series with the inverter device (hereinafter referred to as a series type). And a switch for switching between them connected in parallel (hereinafter referred to as a parallel type). Also, a chopper circuit for charging and discharging the power storage means is provided. With this configuration, the above-described problems 1 and 2 are solved.
  • the switch is operated so that the inverter device and the power storage means are connected in series, and the input voltage of the inverter device is increased by the voltage of the power storage means. .
  • the voltage applied to the electric motor increases and the electric motor output can be increased, so that the regenerative braking force in the high speed region can be increased without increasing the electric current of the electric motor (high speed electric brake function).
  • the switch When powering operation is performed, the switch is operated so that the inverter device and the power storage unit are connected in parallel, and the chopper circuit is operated to release the power absorbed by the power storage unit and supply it to the inverter device. Can do.
  • the inverter device 4 is controlled based on the DC voltage Vfc across the filter capacitor 3.
  • the DC voltage applied to the inverter device 4 at the time of regeneration is the sum of the voltage Vb of the power storage device 6 and the overhead wire voltage Vs as will be described later.
  • the voltage Vb and the overhead wire voltage Vs of the power storage device 6 cannot be separated, and it cannot be determined whether or not the light load regeneration state is present.
  • the regenerative braking force is reduced to suppress the rise in overhead voltage and protect the inverter device. If it was done, there was a problem that the energy saving effect fell.
  • a voltage sensor that detects the overhead wire voltage Vs is installed between the current collector 1 and the ground point, and electric power is stored based on the detection result of the voltage sensor. Control the device.
  • an energy saving effect in a railway vehicle can be improved by installing a voltage sensor for detecting an overhead wire voltage and controlling the power storage device by the overhead wire voltage.
  • the figure which shows the basic composition of 1st Embodiment in the drive device of the railway vehicle of this invention The figure which shows the basic composition of 2nd Embodiment in the drive device of the railway vehicle of this invention.
  • the 1st figure which shows the basic composition of 5th Embodiment in the drive device of the rail vehicle of this invention.
  • the 2nd figure which shows the basic composition of 5th Embodiment in the drive device of the railway vehicle of this invention The figure which shows the basic composition of 6th Embodiment in the drive device of the railway vehicle of this invention.
  • the 2nd figure which shows the basic composition of 7th Embodiment in the drive device of the railway vehicle of this invention.
  • FIG. 5 is a second diagram showing first to third embodiments of a method for determining an operation mode (high-speed electric brake function, regeneration absorption function, normal regeneration) in the railway vehicle drive device of the present invention.
  • the 3rd figure which shows 1st Embodiment of the method of determining the operation mode (High-speed area electric brake function, regeneration absorption function, normal regeneration) in the drive device of the railway vehicle of this invention.
  • the 1st figure which shows 2nd Embodiment of the method of determining the operation mode (High-speed area electric brake function, regeneration absorption function, normal regeneration) in the drive device of the railway vehicle of this invention.
  • FIG. 1 is a diagram showing a basic configuration of a first embodiment of a railway vehicle drive device according to the present invention.
  • DCPT DCPT
  • the inverter device 4 is controlled based on the DC voltage Vfc across the filter capacitor 3, but in the case of the circuit configuration of the present invention, it is applied to the inverter device 4 during regeneration as described later. Since the direct current voltage is the sum of the voltage Vb of the power storage device 6 and the overhead wire voltage Vs, the voltage Vb of the power storage device 6 and the overhead wire voltage Vs cannot be separated only by detecting the direct current voltage Vfc. It is not possible to determine whether or not it is in a light load regeneration state. When it is determined that the load is in the light load regeneration state, the regenerative braking force is reduced to suppress the rise in overhead voltage and protect the inverter device. If it is done, the energy-saving effect will decrease.
  • a voltage sensor (DCPT) 7a for detecting an overhead wire voltage Vs is installed between 1 and the ground point, and it is determined whether or not a light load regenerative state is established by the overhead wire voltage Vs.
  • the inverter device 4 and the power storage device 6 It is good to control.
  • a voltage sensor for detecting the overhead line voltage Vs.
  • DCPT voltage sensor
  • FIG. 2 is a diagram showing a basic configuration of the second embodiment of the railway vehicle drive device of the present invention.
  • At least two of the voltage sensors (DCPT) 7c that detect the DC part voltage Vfc at both ends of 3 are installed.
  • DCPT voltage sensors
  • the inverter device 4 is controlled based on the DC voltage Vfc across the filter capacitor 3, but in the case of the circuit configuration of the present invention, it is applied to the inverter device 4 during regeneration as described later. Since the direct current voltage is the sum of the voltage Vb of the power storage device 6 and the overhead wire voltage Vs, the voltage Vb of the power storage device 6 and the overhead wire voltage Vs cannot be separated only by detecting the direct current voltage Vfc. It is not possible to determine whether or not it is in a light load regeneration state.
  • a voltage sensor (DCPT) 7a for detecting the overhead wire voltage Vs the power storage device 6 At least two or more of a voltage sensor (DCPT) 7b for detecting the voltage Vb of the filter and a voltage sensor (DCPT) 7c for detecting the DC part voltage Vfc at both ends of the filter capacitor 3 are installed.
  • a voltage corresponding to the overhead line voltage Vs is calculated from at least two voltage values of the part voltage Vfc, the voltage Vb of the power storage device 6 and the overhead line voltage Vs, and it is determined whether or not a light load regenerative state is obtained by the overhead line voltage Vs To control the inverter device 4 and the power storage device 6.
  • FIG. 3 is a diagram showing a basic configuration of the third embodiment of the railway vehicle drive device of the present invention.
  • At least two or more of voltage sensors (DCPT) 7c for detecting the DC part voltage Vfc at both ends of 3 are installed.
  • the switch 8a, 8b is turned off, the switch 8c is turned on, and the power storage device 6 is connected in series with the inverter device 4, or the switch 8c is turned off, the switches 8a, 8b are turned on, and the power storage device 6 is turned on as an inverter device. 4 can be connected in parallel with each other so that a high-speed electric brake function and a regenerative absorption function can be realized simultaneously.
  • the number of main motors driven by the inverter device 4 is not limited as the present invention.
  • the inverter device 4 is controlled based on the DC voltage Vfc across the filter capacitor 3, but in the case of the circuit configuration of the present invention, it is applied to the inverter device 4 during regeneration as described later. Since the direct current voltage is the sum of the voltage Vb of the power storage device 6 and the overhead wire voltage Vs, the voltage Vb of the power storage device 6 and the overhead wire voltage Vs cannot be separated only by detecting the direct current voltage Vfc. It is not possible to determine whether or not it is in a light load regeneration state.
  • the current collector 1 is connected to the grounding point. Is installed with a voltage sensor (DCPT) 7a for detecting the overhead line voltage Vs supplied from the current collector 1, and it is determined whether or not it is in a light load regenerative state by the overhead line voltage Vs.
  • DCPT voltage sensor
  • a voltage sensor (DCPT) 7a for detecting the overhead wire voltage Vs and the power storage device 6 At least two or more of a voltage sensor (DCPT) 7b for detecting the voltage Vb of the filter and a voltage sensor (DCPT) 7c for detecting the DC part voltage Vfc at both ends of the filter capacitor 3 are installed.
  • a voltage corresponding to the overhead line voltage Vs is calculated from at least two voltage values of the part voltage Vfc, the voltage Vb of the power storage device 6 and the overhead line voltage Vs, and it is determined whether or not a light load regenerative state is obtained from the overhead line voltage Vs. To control the inverter device 4 and the power storage device 6.
  • the high-speed electric brake function and the regenerative absorption function are switched between the series main circuit configuration and the parallel main circuit configuration. Any circuit configuration may be used as long as it can simultaneously realize the absorption function.
  • FIG. 4 is a diagram showing a basic configuration of the fourth embodiment of the railway vehicle drive device of the present invention.
  • the DC power fed from the current collector 1 is input to the inverter device 4 after the fluctuation in the high frequency region is removed by the LC circuit (filter circuit) composed of the filter reactor (FL) 2 and the filter capacitor (FC) 3. Is done.
  • the inverter device 4 converts the input DC power into three-phase AC power having a variable voltage variable frequency (VVVF), and drives the main motors 5a and 5b.
  • VVVF variable voltage variable frequency
  • the number of main motors driven by the inverter device 4 is not limited as the present invention.
  • the ground point 10 determines the reference potential of this circuit.
  • Switching elements 11a and 11b are current interrupting means using semiconductor elements.
  • the switching elements 11a and 11b have diode elements 12a and 12b connected in parallel to their input / output terminals in the direction opposite to the conduction direction.
  • the first smoothing reactor (MSL) 13 is arranged in the middle of the power line connecting the connection position of the switching elements 11 a and 11 b and the positive terminal of the power storage means 9.
  • the negative terminal of the power storage unit 9 is connected to the low potential side terminal of the inverter device 4.
  • the switch 14 a is disposed between the ground point 10 and the positive electrode of the power storage unit 9, and the switch 14 b is disposed between the ground point 10 and the negative electrode of the power storage unit 9.
  • the switches 14a and 14b can conduct or cut off a current flowing in both directions, and may be a circuit breaker using a mechanical contact, or may be a combination of a semiconductor current cut-off means and a diode element.
  • the inverter device 4 is controlled based on the DC voltage Vfc across the filter capacitor 3, but in the case of the circuit configuration of the present invention, the inverter device during regeneration as described later. 4 is the sum of the inter-terminal voltage Vb of the power storage means 9 and the overhead line voltage Vs. Therefore, the terminal voltage Vb of the power storage means 9 and the overhead line voltage Vs are simply detected by detecting the DC voltage Vfc. It cannot be separated, and it cannot be determined whether or not it is in a light load regenerative state.
  • the current collector 1 in the circuit configuration in which the DC voltage applied to the inverter device 4 is the sum of the voltage Vb between the terminals of the power storage means 9 and the overhead wire voltage Vs as in the circuit configuration of the present invention, the current collector 1 and the grounding point. It is preferable to install a voltage sensor (DCPT) 7a for detecting the overhead line voltage Vs supplied from the current collector 1 between 10 and determine whether or not it is in a light load regeneration state based on the overhead line voltage Vs.
  • DCPT voltage sensor
  • a voltage sensor (DCPT) 7a for detecting the overhead wire voltage Vs power storage At least two of the voltage sensor (DCPT) 7b for detecting the inter-terminal voltage Vb of the means 9 and the voltage sensor (DCPT) 7c for detecting the DC voltage Vfc across the filter capacitor 3 are installed, and the filter capacitor 3
  • the voltage corresponding to the overhead wire voltage Vs is calculated from at least two voltage values of the DC voltage Vfc at both ends of the power source, the inter-terminal voltage Vb of the power storage means 9 and the overhead wire voltage Vs, and the overhead wire voltage Vs is used in a light load regeneration state. It is good to determine whether or not there is.
  • the inverter device 4 and the switching elements 11a and 11b are controlled to operate the regenerative absorption function. .
  • the switch 14a is turned off and the switch 14b is turned on.
  • the terminal on the grounding point side of the inverter device 4 and the negative electrode side of the power storage means 9 are connected to the grounding point 10.
  • the voltage applied to the inverter device 4 substantially matches the voltage Vs supplied from the current collector 1, and the inverter device 4 and the power storage means 9 are connected in parallel.
  • the first smoothing reactor 13 has a function of suppressing the rate of change of the current flowing through the power storage means 9 within a predetermined value.
  • the switching element 11b When the switching element 11b is turned on for a predetermined time Ton_b, the positive electrode side and the negative electrode side of the power storage means 9 are short-circuited. At this time, the first smoothing reactor 13 suppresses the current increase rate within a certain value. At the same time, the power energy obtained by time-integrating the product of the current passed during the period Ton_b and the voltage between the terminals of the power storage unit 9 is stored. Thereafter, when the switching element 11b is turned off for a predetermined time Toff_b, the power energy stored in the first smoothing reactor 13 is released to the DC power unit between the current collector 1 and the inverter device 4 via the diode element 12a. .
  • the vehicle can be driven by the electric power of the electric power storage means 9 in an emergency in which power supply from the overhead line becomes impossible due to an overhead line failure (punter disconnection or power failure).
  • the amount of power that can be supplemented by the switching loss of the switching element is reduced. The effect is reduced.
  • the switch 14a is turned on and the switch 14b is turned off. Thereby, since the terminal on the grounding point side of the inverter device 4 and the positive electrode side of the power storage means 9 are connected to the grounding point 10, the inverter device 4 and the power storage means 9 are connected in series.
  • the switch 14a is turned on and the switch 14b is turned off.
  • the voltage at the low potential side terminal of the inverter device 4 is lowered by the voltage Vb between the terminals of the power storage means 9 with the ground point 10 as a reference.
  • the potential at the high potential side terminal of the inverter device 4 is equal to the overhead wire voltage Vs when the ground point 10 is considered as a reference potential. That is, the potential difference between the input / output terminals (positive electrode to negative electrode) of the inverter device 4 is the sum of the inter-terminal voltage Vb of the power storage means 9 and the overhead wire voltage Vs, Vb + Vs.
  • the maximum regeneration is achieved without changing the maximum current flowing through the inverter device 4.
  • the power can be increased by (Vb + Vs) / Vs.
  • the switching circuit 11a is periodically turned on / off according to the overhead line voltage obtained by the voltage sensors 7a to 7c while keeping the main circuit configuration as it is (series type).
  • the regenerative power that could not be returned to the overhead line side is charged in the power storage means 9.
  • the first smoothing reactor 13 has a function of suppressing the rate of change of the current flowing through the power storage means 9 within a predetermined value.
  • the aforementioned switching element 11a When the aforementioned switching element 11a is turned on for a predetermined time Ton_a, when the DC voltage Vfc across the current collector 1 and the filter capacitor 3 is higher than the inter-terminal voltage Vb of the power storage means 9, the DC power section A current flows in the direction of the power storage means 9. At this time, the first smoothing reactor 13 suppresses the current increase rate within a certain value, and at the same time, the power energy obtained by time-integrating the product of the current passed during the period Ton_a and the voltage between the terminals of the power storage means 9. Store.
  • the switching element 11a is turned off for a predetermined time Toff_a
  • the power energy stored in the first smoothing reactor 13 is discharged from the high potential side terminal of the power storage means 9 to the low potential side terminal, and the diode element 12b of the switching element 11b.
  • the power storage unit 9 efficiently supplements the power running power amount by using a series circuit configuration during power running, and at high speed without switching the main circuit configuration during regeneration.
  • the electric brake function and the regenerative absorption function can be realized at the same time.
  • the high-speed electric brake function is the basic operation, and when the light load regenerative state is reached, the regenerative absorption function is operated seamlessly. The energy saving effect can be maximized.
  • the high-speed electric brake function and the regenerative absorption function are realized by switching the main circuit configuration with a switch. Therefore, when switching, the input voltage of the inverter device is rapidly increased by the voltage of the power storage means. In addition to the possibility that the input voltage of the inverter device jumps up and the overvoltage protection function operates, the torque of the motor changes suddenly, leading to a decrease in ride comfort.
  • the inverter device and the power storage means are connected in series during regeneration and the high-speed electric brake function is activated, and the light load regeneration state is entered, the inverter device is stopped once and the inverter device and power It was necessary to switch the switch so as to connect the storage means in parallel. For this reason, the continuous regenerative operation cannot be performed, the braking force is temporarily reduced to increase the braking distance, or the energy saving effect is reduced by operating the air brake to compensate for the insufficient braking force. There was a problem.
  • the power stored in the power storage means is supplied to the inverter device by boosting the voltage of the power storage means to the overhead voltage equivalent by the chopper circuit as a parallel circuit configuration. Loss is caused by operating the switching element. For this reason, the conventional method has a problem in that the amount of power that can be supplied to the inverter device is reduced by the loss of the switching element, and the energy saving effect is reduced.
  • the circuit configurations described in the fourth to seventh embodiments have the effect of efficiently supplying power running power by the power storage means during power running, and an inverter device for switching between high-speed electric brake operation and regenerative absorption operation during regeneration. It is possible to achieve at least one of the effects of reducing fluctuations in the input voltage.
  • FIG. 5 is a diagram showing a basic configuration of the fifth embodiment in the railway vehicle drive device of the present invention.
  • the difference from the basic configuration of the fourth embodiment is that (1) the switching elements 15a and 15b are connected between the positive electrode side and the negative electrode side of the power storage means 9, and the conduction direction is connected to the input / output terminals.
  • the diode elements 16a and 16b are connected in parallel in the opposite direction, and (2) the switch 14a is connected to the connection position of the switching element 15a and the switching element 15b via the second smoothing reactor 17. is there.
  • the switching elements 15a and 15b, the diode elements 16a and 16b, and the second smoothing reactor 17 constitute a step-down chopper circuit using the power storage means 9 as a power source.
  • the voltage of the power storage means 9 is added to the voltage of the DC voltage source and input to the inverter device 4 during regeneration, but the voltage of the power storage means 9 is charged.
  • the voltage of the power storage means 9 changes from moment to moment depending on the state of charge / discharge. Usually, it is desirable that the voltage on the DC side of the inverter device 4 is constant.
  • a step-down chopper circuit using the power storage unit 9 as a power source is configured, and the voltage applied from the power storage unit 9 to the inverter device 4 is controlled to a constant value, so that the voltage of the DC voltage source is increased. Can be constant except for fluctuations.
  • the step-down chopper circuit composed of the switching elements 15a and 15b, the diode elements 16a and 16b, and the second smoothing reactor 17 is arranged on the grounding point 10 side with respect to the power accumulating means 9.
  • the step-down chopper circuit may be disposed on the inverter device 4 side with respect to the power storage unit 9.
  • the DC power fed from the current collector 1 is input to the inverter device 4 after the fluctuation in the high frequency region is removed by the LC circuit (filter circuit) composed of the filter reactor (FL) 2 and the filter capacitor (FC) 3. Is done.
  • the inverter device 4 converts the input DC power into three-phase AC power having a variable voltage variable frequency (VVVF), and drives the main motors 5a and 5b.
  • VVVF variable voltage variable frequency
  • the number of main motors driven by the inverter device 4 is not limited as the present invention.
  • the ground point 10 determines the reference potential of this circuit.
  • Switching elements 11a and 11b are current interrupting means using semiconductor elements.
  • the switching elements 11a and 11b have diode elements 12a and 12b connected in parallel to their input / output terminals in the direction opposite to the conduction direction.
  • the first smoothing reactor (MSL) 13 is arranged in the middle of the power line connecting the connection position of the switching elements 11 a and 11 b and the positive terminal of the power storage means 9.
  • the negative terminal of the power storage unit 9 is connected to the low potential side terminal of the inverter device 4.
  • the switching elements 15a and 15b are current interruption means using semiconductor elements.
  • the switching elements 15a and 15b have diode elements 16a and 16b connected in parallel to their input / output terminals in the direction opposite to the conduction direction.
  • the second smoothing reactor (MSL) 17 is disposed in the middle of the power line between the connection position of the switching elements 15a and 15b and the switch 14a.
  • the switching elements 15a and 15b, the diode elements 16a and 16b, and the second smoothing reactor (MSL) 17 constitute a step-down chopper circuit that uses the power storage unit 9 as a power source. Control continuously between values.
  • the switch 14 a is disposed between the ground point 10 and the positive electrode of the power storage unit 9, and the switch 14 b is disposed between the ground point 10 and the negative electrode of the power storage unit 9.
  • the switches 14a and 14b can conduct or cut off a current flowing in both directions, and may be a circuit breaker using a mechanical contact, or may be a combination of a semiconductor current cut-off means and a diode element.
  • the inverter device 4 is controlled based on the DC part voltage Vfc across the filter capacitor 3, but in the case of the circuit configuration of the present invention, the inverter device during regeneration as described later.
  • the DC voltage applied to 4 is the sum of the voltage Vchp of the step-down chopper circuit composed of the switching elements 15a and 15b, the diode elements 16a and 16b, and the second smoothing reactor (MSL) 17 and the overhead line voltage Vs. Therefore, the voltage Vchp of the step-down chopper circuit and the overhead wire voltage Vs cannot be separated only by detecting the DC part voltage Vfc, and it cannot be determined whether or not it is in a light load regenerative state. Further, in order to obtain a desired voltage by operating the step-down chopper, the voltage Vb of the power storage means 9 is necessary.
  • the current collector 1 and the grounding point 10 are connected. It is preferable to install a voltage sensor (DCPT) 7a for detecting an overhead wire voltage Vs supplied from the current collector 1 and to determine whether or not a light load regenerative state is established based on the overhead wire voltage Vs.
  • DCPT voltage sensor
  • the voltage sensor (DCPT) 7a for detecting the overhead line voltage Vs and the power storage means 9
  • At least two of the voltage sensor (DCPT) 7b for detecting the voltage Vb between the terminals and the voltage sensor (DCPT) 7c for detecting the DC voltage Vfc at both ends of the filter capacitor 3 are installed.
  • a voltage corresponding to the overhead line voltage Vs is calculated from at least two voltage values of the DC part voltage Vfc, the inter-terminal voltage Vb of the power storage means 9 and the overhead line voltage Vs, and whether or not a light load regenerative state is obtained by the overhead line voltage Vs. It is good to make a judgment.
  • the inverter device 4 and the switching elements 11a and 11b are controlled to operate the regenerative absorption function. .
  • the discharge of the power storage means 9 during power running can be realized by two methods (parallel type and series type).
  • the switch 14a is turned off and the switch 14b is turned on.
  • the terminal on the grounding point side of the inverter device 4 and the negative electrode side of the power storage means 9 are connected to the grounding point 10.
  • the voltage applied to the inverter device 4 substantially matches the voltage Vs supplied from the current collector 1, and the inverter device 4 and the power storage means 9 are connected in parallel.
  • the first smoothing reactor 13 has a function of suppressing the rate of change of the current flowing through the power storage means 9 within a predetermined value.
  • the switching element 11b When the switching element 11b is turned on for a predetermined time Ton_b, the positive electrode side and the negative electrode side of the power storage means 9 are short-circuited. At this time, the first smoothing reactor 13 suppresses the current increase rate within a certain value. At the same time, the power energy obtained by time-integrating the product of the current passed during the period Ton_b and the voltage between the terminals of the power storage unit 9 is stored. Thereafter, when the switching element 11b is turned off for a predetermined time Toff_b, the power energy stored in the first smoothing reactor 13 is released to the DC power unit between the current collector 1 and the inverter device 4 via the diode element 12a. .
  • the vehicle can be driven by the electric power of the electric power storage means 9 in an emergency in which power supply from the overhead line becomes impossible due to an overhead line failure (punter disconnection or power failure).
  • the energy amount that can be supplemented by the switching loss of the switching element is reduced, so that the energy saving effect is achieved. To reduce.
  • the switch 14a is turned on and the switch 14b is turned off. Thereby, since the terminal on the grounding point side of the inverter device 4 and the positive electrode side of the power storage means 9 are connected to the grounding point 10, the inverter device 4 and the power storage means 9 are connected in series.
  • the potential of the high potential side terminal of the inverter device 4 is equal to the overhead wire voltage Vs when the ground point 10 is considered as the reference potential. That is, the potential difference between the input / output terminals (positive electrode to negative electrode) of the inverter device 4 is the sum Vchp + Vs of the overhead wire voltage Vs and the voltage Vchp of the step-down chopper.
  • the power can be increased by (Vchp + Vs) / Vs.
  • the switching circuit 11a is periodically turned on / off according to the overhead line voltage obtained by the voltage sensors 7a to 7c while keeping the main circuit configuration as it is (series type).
  • the regenerative power that could not be returned to the overhead line side is charged in the power storage means 9.
  • the first smoothing reactor 13 has a function of suppressing the rate of change of the current flowing through the power storage means 9 within a predetermined value.
  • the switching element 11a When the switching element 11a is turned on for a predetermined time Ton_a, when the DC voltage Vfc at both ends of the current collector 1 and the filter capacitor 3 is higher than the voltage Vchp of the step-down chopper, the DC power unit starts to store power 9 Current flows in the direction of. At this time, the first smoothing reactor 13 suppresses the current increase rate within a certain value, and at the same time, the power energy obtained by time-integrating the product of the current passed during the period Ton_a and the voltage between the terminals of the power storage means 9. Store.
  • the switching element 11a is turned off for a predetermined time Toff_a
  • the power energy stored in the first smoothing reactor 13 is discharged from the high potential side terminal of the power storage means 9 to the low potential side terminal, and the diode element 12b of the switching element 11b.
  • the power storage unit 9 efficiently supplements the power running power amount by using a series circuit configuration during power running, and at high speed without switching the main circuit configuration during regeneration.
  • the electric brake function and the regenerative absorption function can be realized at the same time.
  • the high-speed electric brake function is the basic operation, and when the light load regenerative state is reached, the regenerative absorption function is operated seamlessly. The energy saving effect can be maximized.
  • FIG. 7 is a diagram showing a basic configuration of the sixth embodiment of the railway vehicle drive device of the present invention.
  • the difference from the basic configuration of the fourth embodiment (FIG. 4) is that the switch 14a is replaced with a diode element 14c capable of conducting current only in the direction from the ground point 10 to the power storage means 9.
  • the power storage means 9 cannot be connected in series with the inverter device 4 during powering, but the switch 14a not shown in FIG. 4 is turned on. Since a circuit for turning off / off is not required, the drive device can be reduced in size as compared with the basic configuration of the fourth embodiment (FIG. 4).
  • the switch 14b is turned on so that current flows from the negative electrode side of the power storage means 9 to the ground point 10. Furthermore, the power stored in the power storage means 9 can be supplied to the inverter device 4 by periodically turning on / off the switching element 11b.
  • the switch 14b is turned off so that current flows from the ground point 10 to the positive electrode side of the power storage means 9 through the diode element 14c.
  • the DC power fed from the current collector 1 is input to the inverter device 4 after the fluctuation in the high frequency region is removed by the LC circuit (filter circuit) composed of the filter reactor (FL) 2 and the filter capacitor (FC) 3. Is done.
  • the inverter device 4 converts the input DC power into three-phase AC power having a variable voltage variable frequency (VVVF), and drives the main motors 5a and 5b.
  • VVVF variable voltage variable frequency
  • the number of main motors driven by the inverter device 4 is not limited as the present invention.
  • the ground point 10 determines the reference potential of this circuit.
  • the switching elements 11a and 11b are current interruption means using semiconductor elements.
  • the switching elements 11a and 11b have diode elements 12a and 12b connected in parallel to their input / output terminals in the direction opposite to the conduction direction.
  • the first smoothing reactor (MSL) 13 is disposed in the middle of the power line connecting the connection position of the switching elements 11 a and 11 b and the positive terminal of the power storage unit 9.
  • the negative terminal of the power storage unit 9 is connected to the low potential side terminal of the inverter device 4.
  • the diode element 14 c is disposed between the ground point 10 and the positive electrode of the power storage unit 9 and conducts only a current flowing from the ground point 10 to the positive side of the power storage unit 9.
  • the switch 14b is arranged between the ground point 10 and the negative electrode of the power storage means 9.
  • the switch 14b can conduct or cut off a current flowing in both directions, and may be a circuit breaker using a mechanical contact, or may be a combination of a semiconductor current cut-off means and a diode element.
  • the inverter device 4 is controlled based on the DC voltage Vfc across the filter capacitor 3, but in the case of the circuit configuration of the present invention, the inverter device during regeneration as described later. 4 is the sum of the inter-terminal voltage Vb of the power storage means 9 and the overhead line voltage Vs. Therefore, the terminal voltage Vb of the power storage means 9 and the overhead line voltage Vs are simply detected by detecting the DC voltage Vfc. It cannot be separated, and it cannot be determined whether or not it is in a light load regenerative state.
  • the current collector 1 in the circuit configuration in which the DC voltage applied to the inverter device 4 is the sum of the voltage Vb between the terminals of the power storage means 9 and the overhead wire voltage Vs as in the circuit configuration of the present invention, the current collector 1 and the grounding point. It is preferable to install a voltage sensor (DCPT) 7a for detecting the overhead line voltage Vs supplied from the current collector 1 between 10 and determine whether or not it is in a light load regeneration state based on the overhead line voltage Vs.
  • DCPT voltage sensor
  • a voltage sensor (DCPT) 7a for detecting the overhead wire voltage Vs power storage At least two of the voltage sensor (DCPT) 7b for detecting the inter-terminal voltage Vb of the means 9 and the voltage sensor (DCPT) 7c for detecting the DC voltage Vfc across the filter capacitor 3 are installed, and the filter capacitor 3
  • the voltage corresponding to the overhead wire voltage Vs is calculated from at least two voltage values of the DC voltage Vfc at both ends of the power source, the inter-terminal voltage Vb of the power storage means 9 and the overhead wire voltage Vs, and the overhead wire voltage Vs is used in a light load regeneration state. It is good to determine whether or not there is.
  • the inverter device 4 and the switching elements 11a and 11b are controlled to operate the regenerative absorption function. .
  • the first smoothing reactor 13 has a function of suppressing the rate of change of the current flowing through the power storage means 9 within a predetermined value.
  • the switching element 11b When the switching element 11b is turned on for a predetermined time Ton_b, the positive electrode side and the negative electrode side of the power storage means 9 are short-circuited. At this time, the first smoothing reactor 13 suppresses the current increase rate within a certain value. At the same time, the power energy obtained by time-integrating the product of the current passed during the period Ton_b and the voltage between the terminals of the power storage unit 9 is stored. Thereafter, when the switching element 11b is turned off for a predetermined time Toff_b, the power energy stored in the first smoothing reactor 13 is released to the DC power unit between the current collector 1 and the inverter device 4 via the diode element 12a. .
  • the maximum regeneration is achieved without changing the maximum current flowing through the inverter device 4.
  • the power can be increased by (Vb + Vs) / Vs.
  • the switching circuit 11a is periodically turned on / off according to the overhead line voltage obtained by the voltage sensors 7a to 7c while keeping the main circuit configuration as it is (series type).
  • the regenerative power that could not be returned to the overhead line side is charged in the power storage means 9.
  • the first smoothing reactor 13 has a function of suppressing the rate of change of the current flowing through the power storage means 9 within a predetermined value.
  • the switching element 11a When the switching element 11a is turned on for a predetermined time Ton_a, when the DC voltage Vfc across the current collector 1 and the filter capacitor 3 is higher than the inter-terminal voltage Vb of the power storage means 6b, A current flows in the direction of the power storage means 9. At this time, the first smoothing reactor 13 suppresses the current increase rate within a certain value, and at the same time, the power energy obtained by time-integrating the product of the current passed during the period Ton_a and the voltage between the terminals of the power storage means 9. Store.
  • the switching element 11a is turned off for a predetermined time Toff_a
  • the power energy stored in the first smoothing reactor 13 is discharged from the high potential side terminal of the power storage means 9 to the low potential side terminal, and the diode element 12b of the switching element 11b.
  • the embodiment of the present invention it is possible to simultaneously realize the high-speed electric brake function and the regenerative absorption function without switching the main circuit configuration.
  • the high-speed electric brake function is a basic operation, and the light load regenerative function is performed. Once in a state, the energy-saving effect can be maximized by seamlessly operating the regenerative absorption function.
  • FIG. 8 is a diagram showing a basic configuration of the seventh embodiment of the railway vehicle drive device of the present invention.
  • switching elements 15a and 15b are connected between the positive electrode side and the negative electrode side of the power storage means 9, and the conduction direction is connected to the input / output terminals.
  • the diode elements 16a and 16b are connected in parallel in the opposite direction, and (2) the diode element 14c is connected to the connection position of the switching element 15a and the switching element 15b via the second smoothing reactor 17. It is.
  • the switching elements 15a and 15b, the diode elements 16a and 16b, and the second smoothing reactor 17 constitute a step-down chopper circuit using the power storage means 9 as a power source.
  • the voltage of the power storage means 9 is added to the voltage of the DC voltage source and input to the inverter device 4 during regeneration, but the voltage of the power storage means 9 is charged.
  • the voltage of the power storage means 9 changes from moment to moment depending on the state of charge / discharge. Usually, it is desirable that the voltage on the DC side of the inverter device 4 is constant.
  • a step-down chopper circuit using the power storage unit 9 as a power source is configured, and the voltage applied from the power storage unit 9 to the inverter device 4 is controlled to a constant value, so that the voltage of the DC voltage source is increased. Can be constant except for fluctuations.
  • the step-down chopper circuit composed of the switching elements 15a and 15b, the diode elements 16a and 16b, and the second smoothing reactor 17 is arranged on the grounding point 10 side with respect to the power accumulating means 9.
  • the step-down chopper circuit may be arranged on the inverter device 4 side with respect to the power storage unit 9.
  • the switch 14b is turned on so that current flows from the negative electrode side of the power storage means 9 to the ground point 10. Furthermore, the power stored in the power storage means 9 can be supplied to the inverter device 4 by periodically turning on / off the switching element 11b.
  • the switch 14b is turned off so that the current flows from the ground point 10 to the second smoothing reactor 17 through the diode element 14c.
  • the DC power fed from the current collector 1 is input to the inverter device 4 after the fluctuation in the high frequency region is removed by the LC circuit (filter circuit) composed of the filter reactor (FL) 2 and the filter capacitor (FC) 3. Is done.
  • the inverter device 4 converts the input DC power into three-phase AC power having a variable voltage variable frequency (VVVF), and drives the main motors 5a and 5b.
  • VVVF variable voltage variable frequency
  • the number of main motors driven by the inverter device 4 is not limited as the present invention.
  • the ground point 10 determines the reference potential of this circuit.
  • Switching elements 11a and 11b are current interrupting means using semiconductor elements.
  • the switching elements 11a and 11b have diode elements 12a and 12b connected in parallel to their input / output terminals in the direction opposite to the conduction direction.
  • the first smoothing reactor (MSL) 13 is arranged in the middle of the power line connecting the connection position of the switching elements 11 a and 11 b and the positive terminal of the power storage means 9.
  • the negative terminal of the power storage unit 9 is connected to the low potential side terminal of the inverter device 4.
  • the switching elements 15a and 15b are current interruption means using semiconductor elements.
  • the switching elements 15a and 15b have diode elements 16a and 16b connected in parallel to their input / output terminals in the direction opposite to the conduction direction.
  • the second smoothing reactor (MSL) 17 arranges the connection position of the switching elements 15a and 15b and the diode element 14c in the middle of the power line.
  • the switching elements 15a and 15b, the diode elements 16a and 16b, and the second smoothing reactor (MSL) 17 constitute a step-down chopper circuit that uses the power storage unit 9 as a power source. Control continuously between values.
  • the diode element 14c is disposed between the ground point 10 and the second smoothing reactor 17, and conducts only a current flowing from the ground point 10 to the second smoothing reactor 17 side.
  • the switch 14b is arranged between the ground point 10 and the negative electrode of the power storage means 9.
  • the switch 14b can conduct or cut off a current flowing in both directions, and may be a circuit breaker using a mechanical contact, or may be a combination of a semiconductor current cut-off means and a diode element.
  • the inverter device 4 is controlled based on the DC part voltage Vfc across the filter capacitor 3, but in the case of the circuit configuration of the present invention, the inverter device during regeneration as described later.
  • the DC voltage applied to 4 is the sum of the voltage Vchp of the step-down chopper circuit composed of the switching elements 15a and 15b, the diode elements 16a and 16b, and the second smoothing reactor (MSL) 17 and the overhead line voltage Vs. Therefore, the voltage Vchp of the step-down chopper circuit and the overhead wire voltage Vs cannot be separated only by detecting the DC part voltage Vfc, and it cannot be determined whether or not it is in a light load regenerative state. Further, in order to obtain a desired voltage by operating the step-down chopper, the voltage Vb of the power storage means 9 is necessary.
  • the current collector 1 and the grounding point 10 are connected. It is preferable to install a voltage sensor (DCPT) 7a for detecting an overhead wire voltage Vs supplied from the current collector 1 and to determine whether or not a light load regenerative state is established based on the overhead wire voltage Vs.
  • DCPT voltage sensor
  • the voltage sensor (DCPT) 7a for detecting the overhead line voltage Vs and the power storage means 9
  • At least two of the voltage sensor (DCPT) 7b for detecting the voltage Vb between the terminals and the voltage sensor (DCPT) 7c for detecting the DC voltage Vfc at both ends of the filter capacitor 3 are installed.
  • a voltage corresponding to the overhead line voltage Vs is calculated from at least two voltage values of the DC part voltage Vfc, the inter-terminal voltage Vb of the power storage means 9 and the overhead line voltage Vs, and whether or not a light load regenerative state is obtained by the overhead line voltage Vs. It is good to make a judgment.
  • the inverter device 4 and the switching elements 11a and 11b are controlled to operate the regenerative absorption function. .
  • the first smoothing reactor 13 has a function of suppressing the rate of change of the current flowing through the power storage means 9 within a predetermined value.
  • the switching element 11b When the switching element 11b is turned on for a predetermined time Ton_b, the positive electrode side and the negative electrode side of the power storage means 9 are short-circuited. At this time, the first smoothing reactor 13 suppresses the current increase rate within a certain value. At the same time, the power energy obtained by time-integrating the product of the current passed during the period Ton_b and the voltage between the terminals of the power storage unit 9 is stored. Thereafter, when the switching element 11b is turned off for a predetermined time Toff_b, the power energy stored in the first smoothing reactor 13 is released to the DC power unit between the current collector 1 and the inverter device 4 via the diode element 12a. .
  • the potential of the high potential side terminal of the inverter device 4 is equal to the overhead wire voltage Vs when the ground point 10 is considered as the reference potential. That is, the potential difference between the input / output terminals (positive electrode to negative electrode) of the inverter device 4 is the sum of the overhead wire voltage Vs and the voltage Vchp of the step-down chopper, Vchp + Vs.
  • Vchp + Vs the voltage difference between the input and output terminals of the inverter device 4 (from the positive electrode to the negative electrode) by the inter-terminal voltage Vchp of the power storage means 9
  • the power can be increased by (Vchp + Vs) / Vs.
  • the switching circuit 11a is periodically turned on / off according to the overhead line voltage obtained by the voltage sensors 7a to 7c while keeping the main circuit configuration as it is (series type).
  • the regenerative power that could not be returned to the overhead line side is charged in the power storage means 9.
  • the first smoothing reactor 13 has a function of suppressing the rate of change of the current flowing through the power storage means 9 within a predetermined value.
  • the aforementioned switching element 11a When the aforementioned switching element 11a is turned on for a predetermined time Ton_a, when the DC voltage Vfc across the current collector 1 and the filter capacitor 3 is higher than the inter-terminal voltage Vb of the power storage means 9, the DC power section A current flows in the direction of the power storage means 9. At this time, the first smoothing reactor 13 suppresses the current increase rate within a certain value, and at the same time, the power energy obtained by time-integrating the product of the current passed during the period Ton_a and the voltage between the terminals of the power storage means 9. Store.
  • the switching element 11a is turned off for a predetermined time Toff_a
  • the power energy stored in the first smoothing reactor 13 is discharged from the high potential side terminal of the power storage means 9 to the low potential side terminal, and the diode element 12b of the switching element 11b.
  • the embodiment of the present invention it is possible to simultaneously realize the high-speed electric brake function and the regenerative absorption function without switching the main circuit configuration.
  • the high-speed electric brake function is a basic operation, and the light load regenerative function is performed. Once in a state, the energy-saving effect can be maximized by seamlessly operating the regenerative absorption function.
  • FIG. 12 shows a method of determining an operation mode (high-speed electric brake function, regenerative absorption function, normal regeneration that is neither a high-speed electric brake function nor a regenerative absorption function) (hereinafter referred to as normal regenerative function) in the railway vehicle drive device of the present invention. It is a figure which shows a 1st Example.
  • a current collector 1 that obtains DC power from a DC voltage source, an LC circuit (filter circuit) composed of a filter reactor (FL) 2 and a filter capacitor (FC) 3, and DC power from AC
  • An inverter device 4 for converting into electric power, at least one AC motor 5 driven by the inverter device 4, and a power storage device 6 capable of charging and discharging on the DC power side of the inverter device 4 (for example, a storage battery or a capacitor)
  • a voltage sensor (DCPT) 7a for detecting the overhead line voltage Vs and a voltage sensor (DCPT for detecting the voltage Vb of the power storage device 6).
  • the high-speed electric brake function and the regenerative absorption function can be realized simultaneously by connecting the power storage device 6 in series or in parallel with the inverter device 4, as shown in FIG. (1) Charge amount (SOC) from the power storage device 6, (2) Voltage from the voltage sensors 7a to 7c, Speed from the speed sensor 18, (3) Operation density for each route from the driver seat 19, driving Determines the operation mode that determines the operation mode (high-speed electric brake function, regenerative absorption function, normal regeneration) based on the input information based on the information stored in the database and the travel position / travel time of the vehicle. It is good to have the part 20.
  • the high-speed electric brake function and the regenerative absorption function are switched between the series main circuit configuration and the parallel main circuit configuration. Any circuit configuration may be used as long as it can simultaneously realize the absorption function.
  • the high-speed range electric brake function, the regenerative absorption function, and the normal regenerative operation mode among the input information of the operation mode determination unit, (1) the amount of power stored in the power storage means (SOC: State of Charge), speed, and (2) voltage and speed.
  • SOC State of Charge
  • the operation mode determination unit A in FIG. 12 it is preferable to determine the operation mode based on the storage amount (SOC) and speed as shown in FIG.
  • an upper limit value of the stored amount (SOC) is set, and when the stored amount (SOC) is equal to or lower than the upper limit value, It is preferable that the charging operation by the brake function or the regenerative absorption function is permitted and the charging operation by the high-speed electric brake function or the regenerative absorption function is stopped and the normal regeneration is performed when the storage amount (SOC) exceeds the upper limit value.
  • the upper limit value of the amount of stored electricity (SOC) is preferably lowered as the speed increases as shown in FIG. This is because the regeneration time becomes longer and the amount of power charged in the power storage means becomes larger as regeneration is performed from the high speed range.
  • the operation mode determination unit B in FIG. may be determined based on the overhead line voltage and speed obtained by the voltage sensors 7a to 7c and the speed sensor 18.
  • the overhead wire voltage Vs is calculated from the voltage values from at least two of the voltage sensors (DCPT) 7c that detect the DC voltage Vfc at both ends of the capacitor 3, and it is determined that the overhead wire voltage is in a light load regenerative state.
  • the filter capacitor voltage When the voltage is lower than the applied voltage value (hereinafter referred to as light load regenerative set value (Vref [V])), the filter capacitor voltage is boosted to the target value by the high-speed electric brake function, and the overhead line voltage is reduced to the light load regenerative set value (Vref [V] V]), it is determined that the load is in the light load regeneration state, and the filter capacitor voltage is preferably lowered to the target value by the regeneration absorption function.
  • Vref [V] the applied voltage value
  • the boosting operation by the high-speed electric brake function is effective in the high-speed range (more than the constant torque end speed (Akm / h)), but in the low-speed range (below the constant torque end speed (Akm / h)), it depends on the main motor. Since the regenerative performance is not limited, there is no effect of the boost operation. Therefore, the high-speed electric brake function is activated when the speed is equal to or higher than the constant torque end speed (Akm / h). It is better to stop the operation and regenerate normally. As a result, by stopping the boosting operation in the low speed range (constant torque terminal speed (Akm / h) or less), useless charging operation to the power storage unit is eliminated, and the life of the power storage unit is increased accordingly. It becomes possible.
  • the embodiment of the present invention it is possible to appropriately manage the high-speed electric brake function, the regenerative absorption function, and the normal regenerative operation according to the overhead line voltage, the speed, and the charged amount (SOC), thereby maximizing the energy saving effect.
  • the life of the power storage means can be extended.
  • FIG. 15 shows a method of determining an operation mode (high-speed electric brake function, regenerative absorption function, normal regeneration that is neither a high-speed electric brake function nor a regenerative absorption function) (hereinafter referred to as normal regenerative function) in the railway vehicle drive device of the present invention. It is a figure which shows a 2nd Example.
  • a current collector 1 that obtains DC power from a DC voltage source, an LC circuit (filter circuit) composed of a filter reactor (FL) 2 and a filter capacitor (FC) 3, and DC power from AC
  • An inverter device 4 for converting into electric power, at least one AC motor 5 driven by the inverter device 4, and a power storage device 6 capable of charging and discharging on the DC power side of the inverter device 4 (for example, a storage battery or a capacitor)
  • a voltage sensor (DCPT) 7a for detecting the overhead line voltage Vs and a voltage sensor (DCPT for detecting the voltage Vb of the power storage device 6).
  • the high-speed electric brake function and the regenerative absorption function can be realized simultaneously by connecting the power storage device 6 in series or in parallel with the inverter device 4, as shown in FIG. (1) Charge amount (SOC) from the power storage device 6, (2) Voltage from the voltage sensors 7a to 7c, Speed from the speed sensor 18, (3) Operation density for each route from the driver seat 19, driving Determines the operation mode that determines the operation mode (high-speed electric brake function, regenerative absorption function, normal regeneration) based on the input information based on the information stored in the database and the travel position / travel time of the vehicle. It is good to have the part 20.
  • the high-speed electric brake function and the regenerative absorption function are switched between the series main circuit configuration and the parallel main circuit configuration. Any circuit configuration may be used as long as it can simultaneously realize the absorption function.
  • the high-speed electric brake function, the regenerative absorption function, and the normal regenerative operation mode among the input information of the operation mode determination unit, (1) the amount of stored power (SOC: State of Charge), speed, and (2) information on the database storing the travel density and travel time for each route (hereinafter referred to as travel density), the speed and travel speed for each route (hereinafter referred to as drive pattern), and It is selected according to the travel position and travel time of the vehicle.
  • SOC State of Charge
  • the operation mode determination unit A in FIG. 15 it is preferable to determine the operation mode based on the storage amount (SOC) and speed as shown in FIG. 13.
  • an upper limit value of the stored amount (SOC) is set, and when the stored amount (SOC) is equal to or lower than the upper limit value, It is preferable that the charging operation by the brake function or the regenerative absorption function is permitted and the charging operation by the high-speed electric brake function or the regenerative absorption function is stopped and the normal regeneration is performed when the storage amount (SOC) exceeds the upper limit value.
  • the upper limit value of the amount of stored electricity (SOC) is preferably lowered as the speed increases as shown in FIG. This is because the regeneration time becomes longer and the amount of power charged in the power storage means becomes larger as regeneration is performed from the high speed range.
  • the operation mode determination unit B in FIG. It is preferable to predetermine an operation mode for the traveling position or traveling time of the own vehicle based on the operation density for each route, the information in the database storing the driving pattern, and the traveling position and traveling time of the own vehicle.
  • a database that stores the operation density and driving pattern for each route is provided, and a function that constantly monitors the current driving position and driving time of the host vehicle is provided. Based on the operation density information on the database, a travel position and a travel time that are in a light load regeneration state (if the operation density is lower than a certain value C, it is determined that the vehicle is in a light load regeneration state) are predicted in advance. At the same time, the travel position and travel time at which the speed is equal to or lower than the constant torque end speed (A) are predicted in advance based on the operation pattern information on the database.
  • the operation density information on the database is compared with the current vehicle's own driving position / time, and the regenerative absorption function is selected as the operation mode for the driving position and time that are predicted to be in the light load regeneration state.
  • the high-speed electric brake function should be selected as the operation mode for the travel position and travel time that are not expected to be in the state.
  • the driving pattern information on the database is compared with the current vehicle's own driving position and time, and the speed is constant torque end. For the travel position and travel time expected to be below the speed, it is preferable to select normal regeneration as the operation mode.
  • the database information may be provided in the own vehicle (cab 19) as shown in FIG. 11, or may be acquired from outside the vehicle by communication.
  • the embodiment of the present invention it is possible to appropriately manage the high-speed electric brake function, the regenerative absorption function, and the normal regenerative operation according to the database, the travel position of the host vehicle, the travel time and the storage amount (SOC), and the speed. As a result, the energy saving effect can be maximized and the life of the power storage means can be extended.
  • FIG. 17 shows a method of determining an operation mode (high-speed electric brake function, regenerative absorption function, normal regeneration that is neither a high-speed electric brake function nor a regenerative absorption function) (hereinafter referred to as normal regenerative function) in the railway vehicle drive device of the present invention. It is a figure which shows the 3rd Example.
  • a current collector 1 that obtains DC power from a DC voltage source, an LC circuit (filter circuit) composed of a filter reactor (FL) 2 and a filter capacitor (FC) 3, and DC power from AC
  • An inverter device 4 for converting into electric power, at least one AC motor 5 driven by the inverter device 4, and a power storage device 6 capable of charging and discharging on the DC power side of the inverter device 4 (for example, a storage battery or a capacitor)
  • a voltage sensor (DCPT) 7a for detecting the overhead line voltage Vs and a voltage sensor (DCPT for detecting the voltage Vb of the power storage device 6).
  • the high-speed electric brake function and the regenerative absorption function can be realized simultaneously by connecting the power storage device 6 in series or in parallel with the inverter device 4, as shown in FIG. (1) Charge amount (SOC) from the power storage device 6, (2) Voltage from the voltage sensors 7a to 7c, Speed from the speed sensor 18, (3) Operation density for each route from the driver seat 19, driving Determines the operation mode that determines the operation mode (high-speed electric brake function, regenerative absorption function, normal regeneration) based on the input information based on the information stored in the database and the travel position / travel time of the vehicle. It is good to have the part 20.
  • the high-speed electric brake function and the regenerative absorption function are switched between the series main circuit configuration and the parallel main circuit configuration. Any circuit configuration may be used as long as it can simultaneously realize the absorption function.
  • the high-speed electric brake function, the regenerative absorption function, and the normal regenerative operation mode include (1) the amount of power stored in the power storage means (SOC: State of Charge), speed, and (2) voltage, speed, and (3) travel density and travel time for each route (hereinafter referred to as travel density), speed for each route and travel time (hereinafter referred to as drive pattern) ) Is stored and is selected based on the travel position and travel time of the vehicle.
  • SOC State of Charge
  • travel density travel density
  • drive pattern speed for each route and travel time
  • the operation mode determination unit A in FIG. 17 it is preferable to determine the operation mode based on the storage amount (SOC) and speed as shown in FIG.
  • an upper limit value of the stored amount (SOC) is set, and when the stored amount (SOC) is equal to or lower than the upper limit value, It is preferable that the charging operation by the brake function or the regenerative absorption function is permitted and the charging operation by the high-speed electric brake function or the regenerative absorption function is stopped and the normal regeneration is performed when the storage amount (SOC) exceeds the upper limit value.
  • the upper limit value of the amount of stored electricity (SOC) is preferably lowered as the speed increases as shown in FIG. This is because the regeneration time becomes longer and the amount of power charged in the power storage means becomes larger as regeneration is performed from the high speed range.
  • the operation mode determination unit B in FIG. The operation mode (operation mode 1) corresponding to the travel position or travel time of the host vehicle is determined in advance based on the operation density for each route, the information in the database storing the driving pattern, and the travel position / travel time of the host vehicle.
  • the operation mode (operation mode 2) is also determined from the overhead line voltage and speed obtained by the speed sensors 18a to 7c and the operation mode (operation mode 1) determined in advance based on the information in the database and the travel position and travel time of the host vehicle. ) And the operation mode (operation mode 2) determined by the overhead wire voltage and speed.
  • the selected operation mode (operation mode 2) should be selected with priority.
  • a database storing the operation density and driving pattern for each route shown in the ninth embodiment is provided, and the operation mode for the traveling position and traveling time of the own vehicle is determined in advance based on the information in the database and the traveling position and traveling time of the own vehicle. It is conceivable that the actual operation density and operation pattern may differ from those in the database, and in this case, an appropriate operation mode cannot be selected.
  • the overhead line voltage is detected by the voltage sensors 7a to 7c and the speed sensor 18 shown in the eighth embodiment.
  • the operation mode is also determined by the method of determining the operation mode based on the speed and the operation mode.
  • the operation mode (operation mode 1), the overhead line voltage and the speed (operation mode 2) determined in advance based on the information in the database and the travel position / travel time of the host vehicle.
  • the operation modes determined from the above are compared, and if the compared operation modes are different, the operation mode determined from the overhead wire voltage and speed (operation mode 2) is preferably selected.
  • the database information may be provided in the own vehicle (cab 19) as shown in FIG. 11, or may be acquired from outside the vehicle by communication.
  • the high-speed electric brake function, the regenerative absorption function, and the normal regenerative operation are appropriately performed in accordance with the overhead line voltage, the speed, the database, the traveling position of the host vehicle, the traveling time, and the storage amount (SOC). This makes it possible to manage, maximize the energy saving effect, and extend the life of the power storage means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 一般的に鉄道車両の制御装置では、フィルタコンデンサ3の両端の直流部電圧Vfcに基づいてインバータ装置4が制御される。本発明の回路構成の場合、後述のように回生時にインバータ装置4に印加される直流電圧は電力蓄積装置6の電圧Vbと架線電圧Vsの和となるため、直流部電圧Vfcを検出しただけでは電力蓄積装置6の電圧Vbと架線電圧Vsを分離することができず、軽負荷回生状態であるか否かの判別ができない。 蓄電装置がインバータ装置4に直列に接続可能な回路構成において、集電装置1と接地点の間に架線電圧Vsを検出する電圧センサを設置して、電圧センサの検出結果に基づき電力蓄積装置を制御する。

Description

鉄道車両の駆動装置
 本発明は、電力蓄積手段を搭載した鉄道車両の駆動装置に関する。
 鉄道車両の分野では、ブレーキ時に主電動機を発電機として動作させて、ブレーキ力を得ると同時に車両の運動エネルギを電気エネルギに変換して架線へ戻す回生ブレーキ制御が広く用いられている。回生ブレーキ制御により架線に戻された電力は、他の車両が力行する電力として利用できるため、消費電力を低減することができる。
 しかしながら、回生ブレーキ制御には以下に示す2つの課題がある。
 1つ目の課題は、主電動機やインバータ装置の性能により高速度域(定トルク終端速度以上)では回生性能が制限され、十分なブレーキ力が得られない点である。
 主電動機の出力は主電動機に印加される電圧と主電動機に流れる電流により決定される。一般的に電圧は架線から供給される電源電圧で決定されるため、主電動機の出力を上げるには電流を増加する必要があった。しかし、電流を増加すると電動機やインバータ装置の発熱が増加するので、冷却性能を確保するために主電動機の体格を大きくしたり、インバータ装置の冷却器を大きくしたりする必要がある。また、インバータ装置の半導体素子の並列数を増やさなければならない場合もある。このように、主電動機の電流を増加して高速域の回生ブレーキ力を増大する方法は装置の大型化を伴い、重量が増加するため消費電力の低減効果を小さくしてしまっていた。
 2つ目の課題は、力行中の他車両が少ない場合は架線電圧の上昇を抑えインバータ装置を保護するために回生ブレーキ力を絞らなければならない点である。
 力行中の他車両が少ない場合、回生ブレーキにより架線に戻した電力が消費されないため架線電圧が上昇する(以下、軽負荷回生状態という)。その結果、インバータ装置に印加される電圧が許容値を超えてインバータ装置を破壊する恐れがあるため、回生ブレーキ力を絞ることで、架線電圧の上昇を抑制する必要があった。その結果、不足するブレーキ力を空気ブレーキで補足することとなり十分な消費電力の低減効果を得られなかった。
 これらの課題を解決する技術が、例えば特許文献1に記載されている。前記特許文献1に記載の鉄道車両の駆動装置は、電動機と電動機を駆動するインバータ装置と充放電可能な電力蓄積手段を備え、電力蓄積手段をインバータ装置と直列に接続する(以下、直列型)と、並列に接続する(以下、並列型)と、を切り替えるスイッチを有している。また、電力蓄積手段を充放電させるためのチョッパ回路を有している。この構成により、前述の課題1と2の解決を図っている。
 課題1の高速域での回生ブレーキ力不足に対しては、インバータ装置と電力蓄積手段を直列に接続するようにスイッチを操作して、インバータ装置の入力電圧を電力蓄積手段の電圧分だけ昇圧する。これにより電動機に印加される電圧が増加し、電動機出力を増大できるので、電動機の電流を増加することなく高速域での回生ブレーキ力を増大することができる(高速域電気ブレーキ機能)。
 課題2の軽負荷回生状態に対しては、インバータ装置と電力蓄積手段を並列に接続するようにスイッチを操作して、チョッパ回路を動作させることにより、回生電力の一部を電力蓄積手段に吸収する(回生吸収機能)。
 また、力行動作する場合はインバータ装置と電力蓄積手段を並列に接続するようにスイッチを操作して、チョッパ回路を動作させることで電力蓄積手段に吸収した電力を放出してインバータ装置に供給することができる。
特開2009-183078号公報
 上記の特許文献1に記載のように、一般的に鉄道車両の制御装置では、フィルタコンデンサ3の両端の直流部電圧Vfcに基づいてインバータ装置4が制御される。本発明の回路構成の場合、後述のように回生時にインバータ装置4に印加される直流電圧は電力蓄積装置6の電圧Vbと架線電圧Vsの和となるため、直流部電圧Vfcを検出しただけでは電力蓄積装置6の電圧Vbと架線電圧Vsを分離することができず、軽負荷回生状態であるか否かの判別ができない。軽負荷回生状態であると判別されると架線電圧の上昇を抑えインバータ装置を保護するために回生ブレーキ力が絞られるため、本来軽負荷回生状態ではないにもかかわらず、軽負荷回生状態と判別されると省エネ効果が低下する問題があった。
 そこで、蓄電装置がインバータ装置4に直列に接続可能な回路構成において、集電装置1と接地点の間に架線電圧Vsを検出する電圧センサを設置して、電圧センサの検出結果に基づき電力蓄積装置を制御する。
 本発明により、架線電圧を検出する電圧センサを設置し、架線電圧により電力蓄積装置を制御することで鉄道車両における省エネ効果の向上が図れる。
本発明の鉄道車両の駆動装置における第1の実施形態の基本構成を示す図。 本発明の鉄道車両の駆動装置における第2の実施形態の基本構成を示す図。 本発明の鉄道車両の駆動装置における第3の実施形態の基本構成を示す図。 本発明の鉄道車両の駆動装置における第4の実施形態の基本構成を示す図。 本発明の鉄道車両の駆動装置における第5の実施形態の基本構成を示す第1の図。 本発明の鉄道車両の駆動装置における第5の実施形態の基本構成を示す第2の図。 本発明の鉄道車両の駆動装置における第6の実施形態の基本構成を示す図。 本発明の鉄道車両の駆動装置における第7の実施形態の基本構成を示す第1の図。 本発明の鉄道車両の駆動装置における第7の実施形態の基本構成を示す第2の図。 本発明の鉄道車両の駆動装置における第5および第7の実施形態におけるインバータ装置に印加される電圧の説明図。 本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する動作モード決定部を示す図。 本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する方法の第1の実施形態を示す第1の図。 本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する方法の第1~第3の実施形態を示す第2の図。 本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する方法の第1の実施形態を示す第3の図。 本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する方法の第2の実施形態を示す第1の図。 本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する方法の第2の実施形態を示す第3の図。 本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する方法の第3の実施形態を示す第1の図。 本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する方法の第3の実施形態を示す第3の図。
 以下に、本発明の実施の形態について、図面を参照して説明する。
 図1は本発明の鉄道車両の駆動装置における第1の実施形態の基本構成を示す図である。
 直流電圧源から直流電力を得る集電装置1と、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)と、直流電力を交流電力に変換するインバータ装置4と、インバータ装置4により駆動される少なくとも1台以上の主電動機5a~5bと、インバータ装置4の直流電力側に充放電が可能な電力蓄積装置6(一例として、蓄電池やキャパシタ等の電力蓄積手段と昇降圧チョッパで構成)を備えた鉄道車両の駆動装置であり、集電装置1と接地点の間に集電装置1から供給される電圧(以下、架線電圧)Vsを検出する電圧センサ(DCPT)7aを設置している。ここではインバータ装置4が駆動する主電動機が2台の場合を示しているが、本発明としてはインバータ装置4が駆動する主電動機の台数は限定しない。
 一般的に鉄道車両の制御装置では、フィルタコンデンサ3の両端の直流部電圧Vfcに基づいてインバータ装置4を制御するが、本発明の回路構成の場合、後述のように回生時にインバータ装置4に印加される直流電圧は電力蓄積装置6の電圧Vbと架線電圧Vsの和となるため、直流部電圧Vfcを検出しただけでは電力蓄積装置6の電圧Vbと架線電圧Vsを分離することができず、軽負荷回生状態であるか否かの判別ができない。軽負荷回生状態であると判別されると架線電圧の上昇を抑えインバータ装置を保護するために回生ブレーキ力が絞られるため、本来軽負荷回生状態ではないにもかかわらず、軽負荷回生状態と判別されると省エネ効果が低下する。
 そこで、本発明の回路構成のようにインバータ装置4に印加される直流電圧が電力蓄積装置6の電圧Vbと架線電圧Vsの和となるような回路構成では、図1のように、集電装置1と接地点の間に架線電圧Vsを検出する電圧センサ(DCPT)7aを設置して、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行い、インバータ装置4および電力蓄積装置6を制御するのが良い。
 本発明の実施態様により、電力蓄積装置6を用いることで高速域電気ブレーキ機能および回生吸収機能を共に実現することができるようになることに加えて、架線電圧Vsを検出する電圧センサ(DCPT)7aを設置し、架線電圧Vsにより軽負荷回生状態であるか否かの判別を適切に行うことで鉄道車両における省エネ効果の向上が図れる。
 図2は本発明の鉄道車両の駆動装置における第2の実施形態の基本構成を示す図である。
 直流電圧源から直流電力を得る集電装置1と、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)と、直流電力を交流電力に変換するインバータ装置4と、インバータ装置4により駆動される少なくとも1台以上の主電動機5a~5bと、インバータ装置4の直流電力側に充放電が可能な電力蓄積装置6(一例として、蓄電池やキャパシタ等の電力蓄積手段と昇降圧チョッパで構成)を備えた鉄道車両の駆動装置であり、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置している。ここではインバータ装置4が駆動する主電動機が2台の場合を示しているが、本発明としてはインバータ装置4が駆動する主電動機の台数は限定しない。
 一般的に鉄道車両の制御装置では、フィルタコンデンサ3の両端の直流部電圧Vfcに基づいてインバータ装置4を制御するが、本発明の回路構成の場合、後述のように回生時にインバータ装置4に印加される直流電圧は電力蓄積装置6の電圧Vbと架線電圧Vsの和となるため、直流部電圧Vfcを検出しただけでは電力蓄積装置6の電圧Vbと架線電圧Vsを分離することができず、軽負荷回生状態であるか否かの判別ができない。
 そこで、フィルタコンデンサ3の両端の直流部電圧Vfcが架線電圧Vsと電力蓄積装置6の電圧Vbの和であることを鑑みて、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置して、フィルタコンデンサ3の両端の直流部電圧Vfcと電力蓄積装置6の電圧Vbと架線電圧Vsのうち少なくとも2つ以上の電圧値から架線電圧Vs相当の電圧を算出し、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行い、インバータ装置4および電力蓄積装置6を制御するのが良い。
 本発明の実施態様により、電力蓄積装置6を用いることで高速域電気ブレーキ機能および回生吸収機能を共に実現することができるようになることに加えて、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上の電圧値から架線電圧Vs相当の電圧を算出し、架線電圧Vsにより軽負荷回生状態であるか否かの判別を適切に行うことで鉄道車両における省エネ効果の向上が図れる。
 図3は本発明の鉄道車両の駆動装置における第3の実施形態の基本構成を示す図である。
 直流電圧源から直流電力を得る集電装置1と、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)と、直流電力を交流電力に変換するインバータ装置4と、インバータ装置4により駆動される少なくとも1台以上の主電動機5a~5bと、インバータ装置4の直流電力側に充放電が可能な電力蓄積装置6(一例として、蓄電池やキャパシタ等の電力蓄積手段と昇降圧チョッパで構成)を備えた鉄道車両の駆動装置であり、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置すると共に、スイッチ8a,8bをオフ、スイッチ8cをオンし、電力蓄積装置6をインバータ装置4と直列に接続することも或いはスイッチ8cをオフ、スイッチ8a,8bをオンし、電力蓄積装置6をインバータ装置4と並列に接続することも可能とすることで高速域電気ブレーキ機能と回生吸収機能を同時に実現できることを特徴としている。ここではインバータ装置4が駆動する主電動機が2台の場合を示しているが、本発明としてはインバータ装置4が駆動する主電動機の台数は限定しない。
 一般的に鉄道車両の制御装置では、フィルタコンデンサ3の両端の直流部電圧Vfcに基づいてインバータ装置4を制御するが、本発明の回路構成の場合、後述のように回生時にインバータ装置4に印加される直流電圧は電力蓄積装置6の電圧Vbと架線電圧Vsの和となるため、直流部電圧Vfcを検出しただけでは電力蓄積装置6の電圧Vbと架線電圧Vsを分離することができず、軽負荷回生状態であるか否かの判別ができない。
 そこで、本発明の回路構成のようにインバータ装置4に印加される直流電圧が電力蓄積装置6の電圧Vbと架線電圧Vsの和となるような回路構成では、集電装置1と接地点の間に集電装置1から供給される架線電圧Vsを検出する電圧センサ(DCPT)7aを設置して、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行い、インバータ装置4および電力蓄積装置6を制御するのが良い。
 または、フィルタコンデンサ3の両端の直流部電圧Vfcが架線電圧Vsと電力蓄積装置6の電圧Vbの和であることを鑑みて、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置して、フィルタコンデンサ3の両端の直流部電圧Vfcと電力蓄積装置6の電圧Vbと架線電圧Vsのうち少なくとも2つ以上の電圧値から架線電圧Vs相当の電圧を算出し、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行い、インバータ装置4および電力蓄積装置6を制御するのが良い。
 なお、図3の回路構成では、高速域電気ブレーキ機能と回生吸収機能を直列型の主回路構成とするか並列型の主回路構成とするかで切り替えているが、高速域電気ブレーキ機能と回生吸収機能を同時に実現できる回路構成であればどのような回路構成でも良い。
 本発明の実施態様により、電力蓄積装置6を用いることで高速域電気ブレーキ機能および回生吸収機能を共に実現することができるようになることに加えて、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上の電圧値から架線電圧Vs相当の電圧を算出し、架線電圧Vsにより軽負荷回生状態であるか否かの判別を適切に行うことで鉄道車両における省エネ効果の向上が図れる。
 図4は本発明の鉄道車両の駆動装置における第4の実施形態の基本構成を示す図である。
 集電装置1から給電した直流電力は、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)で高周波数域の変動を除去した後、インバータ装置4に入力される。インバータ装置4は、入力された直流電力を可変電圧可変周波数(VVVF)の3相交流電力に変換して、主電動機5a,5bを駆動する。ここではインバータ装置4が駆動する主電動機が2台の場合を示しているが、本発明としてはインバータ装置4が駆動する主電動機の台数は限定しない。
 接地点10はこの回路の基準電位を決めている。
 スイッチング素子11a,11bは、半導体素子による電流遮断手段である。スイッチング素子11a,11bは、その入出力端子に、導通方向とは反対向きに、ダイオード素子12a,12bを並列に接続する。
 第1の平滑リアクトル(MSL)13は、スイッチング素子11aと11bの接続位置と、電力蓄積手段9の正極端子を結ぶ電力線の途中に配置する。なお、電力蓄積手段9の負極端子は、インバータ装置4の低電位側端子に接続する。
 スイッチ14aは接地点10と電力蓄積手段9の正極の間に配置され、スイッチ14bは接地点10と電力蓄積手段9の負極の間に配置される。スイッチ14aおよび14bは、双方向に流れる電流を導通または遮断できるものであり、機械的接点を用いた遮断器であっても良いし、半導体による電流遮断手段とダイオード素子を組み合わせたものでも良い。
 ここで、一般的に鉄道車両の制御装置では、フィルタコンデンサ3の両端の直流部電圧Vfcに基づいてインバータ装置4を制御するが、本発明の回路構成の場合、後述のように回生時にインバータ装置4に印加される直流電圧は電力蓄積手段9の端子間電圧Vbと架線電圧Vsの和となるため、直流部電圧Vfcを検出しただけでは電力蓄積手段9の端子間電圧Vbと架線電圧Vsを分離することができず、軽負荷回生状態であるか否かの判別ができない。
 そこで、本発明の回路構成のようにインバータ装置4に印加される直流電圧が電力蓄積手段9の端子間電圧Vbと架線電圧Vsの和となるような回路構成では、集電装置1と接地点10の間に集電装置1から供給される架線電圧Vsを検出する電圧センサ(DCPT)7aを設置して、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行うのが良い。
 または、フィルタコンデンサ3の両端の直流部電圧Vfcが架線電圧Vsと電力蓄積手段9の端子間電圧Vbの和であることを鑑みて、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積手段9の端子間電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置して、フィルタコンデンサ3の両端の直流部電圧Vfcと電力蓄積手段9の端子間電圧Vbと架線電圧Vsのうち少なくとも2つ以上の電圧値から架線電圧Vs相当の電圧を算出し、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行うのが良い。
 本発明の回路構成の場合は、VfcとVbとVsの値に基づいて、軽負荷回生状態であると判断すれば、インバータ装置4やスイッチング素子11a,11bを制御し、回生吸収機能を動作させる。
 本実施例における力行時の回路動作について説明する。本発明の回路構成の場合、後述のように回生時には電力蓄積手段9が充電されるため、力行時には、次の回生に備えて電力蓄積手段9の電力を積極的に放電する必要がある。本発明の回路構成の場合、力行時における電力蓄積手段9の放電は2つの方法(並列型および直列型)で実現できる。
 まず1つ目の方法について説明する。1つ目の方法では、スイッチ14aをオフ、スイッチ14bをオンする。これにより、インバータ装置4の接地点側の端子と電力蓄積手段9の負極側が接地点10に接続される。このとき、インバータ装置4に印加される電圧は概ね集電装置1から供給される電圧Vsに一致し、インバータ装置4と電力蓄積手段9は並列に接続される構成となる。
 ここで、スイッチング素子11bを周期的にオン/オフすることにより、電力蓄積手段9の電力を放出しインバータ装置4に供給することができる。ここで、第1の平滑リアクトル13は、電力蓄積手段9に通流する電流の変化率を所定値内に抑える機能を持つ。
 前述のスイッチング素子11bを所定時間Ton_bだけオンすると、電力蓄積手段9の正極側と負極側は短絡されるが、このとき、第1の平滑リアクトル13は、その電流増加率を一定値内に抑えると同時に、Ton_bの期間に通流した電流と、電力蓄積手段9の端子間電圧の積を時間積分した電力エネルギを蓄える。その後、スイッチング素子11bを所定時間Toff_bだけオフすると、第1の平滑リアクトル13に蓄えられた電力エネルギはダイオード素子12aを介して集電装置1とインバータ装置4の間の直流電力部に放出される。
 この方法によると、架線不具合(パンタ離線や架線停電)等で架線から電力供給ができなくなった緊急時において、電力蓄積手段9の電力により車両を走行させることも可能となる。
 しかしながら、力行電力量の一部または全部を電力蓄積手段9の電力により供給することで力行電力量の低減を図るという観点からは、スイッチング素子のスイッチング損失分だけ補足できる電力量が減少するため省エネ効果が低減する。
 続いて、2つ目の方法について説明する。2つ目の方法では、スイッチ14aをオン、スイッチ14bをオフする。これにより、インバータ装置4の接地点側の端子と電力蓄積手段9の正極側が接地点10に接続されるため、インバータ装置4と電力蓄積手段9は直列に接続される構成となる。
 この場合、電力蓄積手段9の端子間電圧Vbと電力蓄積手段通流電流Ib(=架線電流Is)の積、Vb×Ibに相当する電力が電力蓄積手段9から放電される。また、先述のようなスイッチング素子11bのオン/オフによる放電を行わないため、スイッチング損失が発生しない。従って、先述のスイッチング素子11bのオン/オフによる放電手法と比べて、電力蓄積手段9による力行電力量の補足を効率的に行うことが可能となる。
 次に、回生時の回路動作について説明する。回生時は、スイッチ14aをオン、スイッチ14bをオフする。これにより、インバータ装置4の低電位側端子の電圧は、接地点10を基準として、電力蓄積手段9の端子間電圧Vbだけ引き下げられる。一方、インバータ装置4の高電位側端子の電位は、接地点10を基準電位と考えると、架線電圧Vsに等しい。すなわち、インバータ装置4の入出力端子間(正極~負極)の電位差は、電力蓄積手段9の端子間電圧Vbと、架線電圧Vsの和、Vb+Vsとなる。このようにして、インバータ装置4の入出力端子間(正極から負極)の電位差を電力蓄積手段9の端子間電圧Vbだけ引き上げることにより、インバータ装置4の最大通流電流を変えることなく、最大回生電力を(Vb+Vs)/Vsだけ拡大できる。また、このとき電力蓄積手段9には、端子間電圧Vbと、電力蓄積手段通流電流Ib(=架線電流Is)の積、Vb×Ibに相当する電力が充電される。
 ここで、軽負荷回生状態となれば、主回路構成はそのまま(直列型)に、電圧センサ7a~7cにより得られた架線電圧に応じてスイッチング素子11aを周期的にオン/オフすることにより、架線側に戻せなかった回生電力を電力蓄積手段9に充電する。ここで、第1の平滑リアクトル13は、電力蓄積手段9に通流する電流の変化率を所定値内に抑える機能を持つ。
 前述のスイッチング素子11aを所定時間Ton_aだけオンすると、前述の集電装置1およびフィルタコンデンサ3の両端の直流部電圧Vfcが、電力蓄積手段9の端子間電圧Vbよりも高いとき、直流電力部から電力蓄積手段9の向きに電流が流れる。このとき、第1の平滑リアクトル13は、その電流増加率を一定値内に抑えると同時に、Ton_aの期間に通流した電流と、電力蓄積手段9の端子間電圧の積を時間積分した電力エネルギを蓄える。その後、スイッチング素子11aを所定時間Toff_aだけオフすると、第1の平滑リアクトル13に蓄えられた電力エネルギは電力蓄積手段9の高電位側端子から低電位側端子に抜け、スイッチング素子11bのダイオード素子12bを経て、第1の平滑リアクトル13に戻る一巡の回路が構成される。すなわち、スイッチング素子11aを所定時間Toff_aだけオフしている期間は、第1の平滑リアクトル13に蓄えられた電力エネルギが電力蓄積手段9に充電され続け、第1の平滑リアクトル13に蓄えられた電力エネルギが放出されるに従い、充電電流は減衰していく。これにより電力蓄積手段9から、端子間電圧Vbと、電力蓄積手段通流電流Ib(=架線電流Is)の積、Vb×Ibに相当する電力が充電される。
 本発明の実施態様により、力行時においては、直列型の回路構成とすることで電力蓄積手段9による力行電力量の補足を効率的に行うと共に、回生時においては主回路構成を切り替えることなく高速域電気ブレーキ機能と回生吸収機能を同時に実現することが可能となり、回生時においては、高速域電気ブレーキ機能を基本動作とし、軽負荷回生状態となれば、シームレスに回生吸収機能を動作させることで、省エネ効果の最大化が図れる。
 上記した従来技術では、スイッチにより主回路構成を切り替えることで高速域電気ブレーキ機能と回生吸収機能を実現する構成であるため、切り替えの際にインバータ装置の入力電圧が電力蓄積手段の電圧分だけ急激に変動してしまい、インバータ装置の入力電圧が跳ね上がって、過電圧保護機能が動作する可能性があるだけでなく、電動機のトルクが急変して乗り心地の低下にもつながる。
 従って、回生時にインバータ装置と電力蓄積手段を直列に接続して、高速域電気ブレーキ機能を動作させている状態から、軽負荷回生状態になった場合、一度インバータ装置を停止させてインバータ装置と電力蓄積手段を並列に接続するようにスイッチを切り替える必要があった。このため、連続的な回生動作を行うことができなくなり、ブレーキ力が一時的に低下し制動距離が伸びたり、ブレーキ力不足を補うために空気ブレーキを動作させることで省エネルギ効果が低下するといった問題があった。
 また、力行時においては、並列型の回路構成としてチョッパ回路により電力蓄積手段の電圧を架線電圧相当まで昇圧することで電力蓄積手段に蓄えた電力をインバータ装置に供給しているが、チョッパ回路のスイッチング素子を動作させることによる損失が生じる。そのため、従来技術の方法では、スイッチング素子の損失分だけインバータ装置に供給できる電力量が減少してしまい、省エネルギ効果が低下するといった問題があった。
 実施例4~7で説明する回路構成は、力行時に、電力蓄積手段による力行電力の供給を効率的に行う効果と、回生時に、高速域電気ブレーキ運転と回生吸収運転の切り替えの際のインバータ装置の入力電圧の変動を低減させる効果の、少なくともいずれかを達成することが可能である。
 図5は本発明の鉄道車両の駆動装置における第5の実施形態の基本構成を示す図である。
 第4の実施形態の基本構成(図4)と異なる点は、(1)電力蓄積手段9の正極側と負極側の間にスイッチング素子15a,15bを接続し、その入出力端子に、導通方向とは反対向きに、ダイオード素子16a,16bを並列に接続した点と、(2)スイッチ14aを第2の平滑リアクトル17を介して、スイッチング素子15aとスイッチング素子15bの接続位置に接続した点である。
 スイッチング素子15a,15bとダイオード素子16a,16bと第2の平滑リアクトル17は電力蓄積手段9を電源とする降圧チョッパ回路を構成している。
 第4の実施形態の基本構成(図4)では、回生時に電力蓄積手段9の電圧を直流電圧源の電圧に加算してインバータ装置4に入力するが、電力蓄積手段9の電圧は充電されている電荷によって変動するため、電力蓄積手段9の電圧は充放電の状態によって時々刻々と変化する。通常、インバータ装置4の直流側の電圧は一定であるのが望ましい。
 そこで、本実施例のように、電力蓄積手段9を電源とする降圧チョッパ回路を構成し、電力蓄積手段9からインバータ装置4に印加する電圧を一定値に制御することで、直流電圧源の電圧変動を除いて一定にすることができる。
 なお、本実施形態では、スイッチング素子15a,15bとダイオード素子16a,16bと第2の平滑リアクトル17で構成される降圧チョッパ回路を電力蓄積手段9に対して接地点10側へ配置したが、図6のように、降圧チョッパ回路を電力蓄積手段9に対してインバータ装置4側へ配置する構成であっても良い。
 集電装置1から給電した直流電力は、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)で高周波数域の変動を除去した後、インバータ装置4に入力される。インバータ装置4は、入力された直流電力を可変電圧可変周波数(VVVF)の3相交流電力に変換して、主電動機5a,5bを駆動する。ここではインバータ装置4が駆動する主電動機が2台の場合を示しているが、本発明としてはインバータ装置4が駆動する主電動機の台数は限定しない。
 接地点10はこの回路の基準電位を決めている。
 スイッチング素子11a,11bは、半導体素子による電流遮断手段である。スイッチング素子11a,11bは、その入出力端子に、導通方向とは反対向きに、ダイオード素子12a,12bを並列に接続する。
 第1の平滑リアクトル(MSL)13は、スイッチング素子11aと11bの接続位置と、電力蓄積手段9の正極端子を結ぶ電力線の途中に配置する。なお、電力蓄積手段9の負極端子は、インバータ装置4の低電位側端子に接続する。
 スイッチング素子15a,15bは、半導体素子による電流遮断手段である。スイッチング素子15a,15bは、その入出力端子に、導通方向とは反対向きに、ダイオード素子16a,16bを並列に接続する。
 第2の平滑リアクトル(MSL)17は、スイッチング素子15aと15bの接続位置と、スイッチ14aの間の電力線の途中に配置する。
 スイッチング素子15a,15bと、ダイオード素子16a,16bと、第2の平滑リアクトル(MSL)17は、電力蓄積手段9を電源とする降圧チョッパ回路を構成し、電圧をゼロから電力蓄積手段9の電圧値の間で連続的に制御する。
 スイッチ14aは接地点10と電力蓄積手段9の正極の間に配置され、スイッチ14bは接地点10と電力蓄積手段9の負極の間に配置される。スイッチ14aおよび14bは、双方向に流れる電流を導通または遮断できるものであり、機械的接点を用いた遮断器であっても良いし、半導体による電流遮断手段とダイオード素子を組み合わせたものでも良い。
 ここで、一般的に鉄道車両の制御装置では、フィルタコンデンサ3の両端の直流部電圧Vfcに基づいてインバータ装置4を制御するが、本発明の回路構成の場合、後述のように回生時にインバータ装置4に印加される直流電圧は、スイッチング素子15a,15bと、ダイオード素子16a,16bと、第2の平滑リアクトル(MSL)17で構成される降圧チョッパ回路の電圧Vchpと架線電圧Vsの和となるため、直流部電圧Vfcを検出しただけでは降圧チョッパ回路の電圧Vchpと架線電圧Vsを分離することができず、軽負荷回生状態であるか否かの判別ができない。また、降圧チョッパを動作させて所望の電圧を得るためには、電力蓄積手段9の電圧Vbが必要である。
 そこで、本発明の回路構成のようにインバータ装置4に印加される直流電圧が降圧チョッパ回路の電圧Vchpと架線電圧Vsの和となるような回路構成では、集電装置1と接地点10の間に集電装置1から供給される架線電圧Vsを検出する電圧センサ(DCPT)7aを設置して、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行うのが良い。
 または、フィルタコンデンサ3の両端の直流部電圧Vfcが架線電圧Vsと降圧チョッパ回路の電圧Vchpの和であることを鑑みて、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積手段9の端子間電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置して、フィルタコンデンサ3の両端の直流部電圧Vfcと電力蓄積手段9の端子間電圧Vbと架線電圧Vsのうち少なくとも2つ以上の電圧値から架線電圧Vs相当の電圧を算出し、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行うのが良い。
 本発明の回路構成の場合は、VfcとVbとVsの値に基づいて、軽負荷回生状態であると判断すれば、インバータ装置4やスイッチング素子11a,11bを制御し、回生吸収機能を動作させる。
 本実施例における力行時の回路動作について説明する。本発明の回路構成の場合、後述のように回生時には電力蓄積手段9が充電されるため、力行時には、次の回生に備えて電力蓄積手段9の電力を積極的に放電する必要がある。
 本発明の回路構成の場合、力行時における電力蓄積手段9の放電は2つの方法(並列型および直列型)で実現できる。
 まず1つ目の方法について説明する。1つ目の方法では、スイッチ14aをオフ、スイッチ14bをオンする。これにより、インバータ装置4の接地点側の端子と電力蓄積手段9の負極側が接地点10に接続される。このとき、インバータ装置4に印加される電圧は概ね集電装置1から供給される電圧Vsに一致し、インバータ装置4と電力蓄積手段9は並列に接続される構成となる。
 ここで、スイッチング素子11bを周期的にオン/オフすることにより、電力蓄積手段9の電力を放出しインバータ装置4に供給することができる。ここで、第1の平滑リアクトル13は、電力蓄積手段9に通流する電流の変化率を所定値内に抑える機能を持つ。
 前述のスイッチング素子11bを所定時間Ton_bだけオンすると、電力蓄積手段9の正極側と負極側は短絡されるが、このとき、第1の平滑リアクトル13は、その電流増加率を一定値内に抑えると同時に、Ton_bの期間に通流した電流と、電力蓄積手段9の端子間電圧の積を時間積分した電力エネルギを蓄える。その後、スイッチング素子11bを所定時間Toff_bだけオフすると、第1の平滑リアクトル13に蓄えられた電力エネルギはダイオード素子12aを介して集電装置1とインバータ装置4の間の直流電力部に放出される。
 この方法によると、架線不具合(パンタ離線や架線停電)等で架線から電力供給ができなくなった緊急時において、電力蓄積手段9の電力により車両を走行させることも可能となる。
 しかしながら、力行電力量の一部を電力蓄積手段9の電力により補足することで力行電力量の低減を図るという観点からは、スイッチング素子のスイッチング損失分だけ補足できる電力量が減少するため省エネ効果が低減する。
 続いて、2つ目の方法について説明する。2つ目の方法では、スイッチ14aをオン、スイッチ14bをオフする。これにより、インバータ装置4の接地点側の端子と電力蓄積手段9の正極側が接地点10に接続されるため、インバータ装置4と電力蓄積手段9は直列に接続される構成となる。
 この場合、電力蓄積手段9の端子間電圧Vbと電力蓄積手段通流電流Ib(=架線電流Is)の積、Vb×Ibに相当する電力が電力蓄積手段9から放電される。また、先述のようなスイッチング素子11bのオン/オフによる放電を行わないため、スイッチング損失が発生しない。従って、先述のスイッチング素子11bのオン/オフによる放電手法と比べて、電力蓄積手段9による力行電力量の補足を効率的に行うことが可能となる。
 次に、回生時の回路動作について説明する。回生時は、スイッチ14aをオン、スイッチ14bをオフする。これにより、インバータ装置4の低電位側端子の電圧は、図10のように、接地点10を基準として、降圧チョッパ回路の電圧Vchpだけ引き下げられる。
 一方、インバータ装置4の高電位側端子の電位は、接地点10を基準電位と考えると、架線電圧Vsに等しい。すなわち、インバータ装置4の入出力端子間(正極~負極)の電位差は、架線電圧Vsと降圧チョッパの電圧Vchpの和Vchp+Vsとなる。このようにして、インバータ装置4の入出力端子間(正極から負極)の電位差を電力蓄積手段9の端子間電圧Vchpだけ引き上げることにより、インバータ装置4の最大通流電流を変えることなく、最大回生電力を(Vchp+Vs)/Vsだけ拡大できる。また、このとき電力蓄積手段9には、降圧チョッパの電圧Vchpと、降圧チョッパの電流Ichp(=架線電流Is)の積、Vchp×Ichpに相当する電力が充電される。
 ここで、軽負荷回生状態となれば、主回路構成はそのまま(直列型)に、電圧センサ7a~7cにより得られた架線電圧に応じてスイッチング素子11aを周期的にオン/オフすることにより、架線側に戻せなかった回生電力を電力蓄積手段9に充電する。ここで、第1の平滑リアクトル13は、電力蓄積手段9に通流する電流の変化率を所定値内に抑える機能を持つ。
 前述のスイッチング素子11aを所定時間Ton_aだけオンすると、前述の集電装置1およびフィルタコンデンサ3の両端の直流部電圧Vfcが、降圧チョッパの電圧Vchpよりも高いとき、直流電力部から電力蓄積手段9の向きに電流が流れる。このとき、第1の平滑リアクトル13は、その電流増加率を一定値内に抑えると同時に、Ton_aの期間に通流した電流と、電力蓄積手段9の端子間電圧の積を時間積分した電力エネルギを蓄える。その後、スイッチング素子11aを所定時間Toff_aだけオフすると、第1の平滑リアクトル13に蓄えられた電力エネルギは電力蓄積手段9の高電位側端子から低電位側端子に抜け、スイッチング素子11bのダイオード素子12bを経て、第1の平滑リアクトル13に戻る一巡の回路が構成される。すなわち、スイッチング素子11aを所定時間Toff_aだけオフしている期間は、第1の平滑リアクトル13に蓄えられた電力エネルギが電力蓄積手段9に充電され続け、第1の平滑リアクトル13に蓄えられた電力エネルギが放出されるに従い、充電電流は減衰していく。これにより電力蓄積手段9から、降圧チョッパの電圧Vchpと、降圧チョッパの電流Ichp(=架線電流Is)の積、Vchp×Ichpに相当する電力が充電される。
 本発明の実施態様により、力行時においては、直列型の回路構成とすることで電力蓄積手段9による力行電力量の補足を効率的に行うと共に、回生時においては主回路構成を切り替えることなく高速域電気ブレーキ機能と回生吸収機能を同時に実現することが可能となり、回生時においては、高速域電気ブレーキ機能を基本動作とし、軽負荷回生状態となれば、シームレスに回生吸収機能を動作させることで、省エネ効果の最大化が図れる。
 図7は本発明の鉄道車両の駆動装置における第6の実施形態の基本構成を示す図である。
 第4の実施形態の基本構成(図4)と異なる点は、スイッチ14aを接地点10から電力蓄積手段9の方向のみ電流を導通できるダイオード素子14cで置き換えた点である。これにより、第4の実施形態の基本構成(図4)のように、力行時に電力蓄積手段9をインバータ装置4と直列に接続することはできないが、図4では図示していないスイッチ14aをオン/オフさせる回路が不要となるため、第4の実施形態の基本構成(図4)に比べて駆動装置を小型化できる。
 力行時は、電流が電力蓄積手段9の負極側から接地点10へ電流が流れるようにスイッチ14bをオンする。さらにスイッチング素子11bを周期的にオン/オフさせることで電力蓄積手段9に蓄えた電力をインバータ装置4に供給できる。
 また、回生時は電流が接地点10からダイオード素子14cを通して電力蓄積手段9の正極側へ流れるようにスイッチ14bをオフする。これにより、前述の実施形態と同じように高速域電気ブレーキ機能と回生吸収機能を同時に実現できる。
 集電装置1から給電した直流電力は、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)で高周波数域の変動を除去した後、インバータ装置4に入力される。インバータ装置4は、入力された直流電力を可変電圧可変周波数(VVVF)の3相交流電力に変換して、主電動機5a,5bを駆動する。ここではインバータ装置4が駆動する主電動機が2台の場合を示しているが、本発明としてはインバータ装置4が駆動する主電動機の台数は限定しない。
 接地点10はこの回路の基準電位を決めている。
スイッチング素子11a,11bは、半導体素子による電流遮断手段である。スイッチング素子11a,11bは、その入出力端子に、導通方向とは反対向きに、ダイオード素子12a,12bを並列に接続する。
第1の平滑リアクトル(MSL)13は、スイッチング素子11aと11bの接続位置と、電力蓄積手段9の正極端子を結ぶ電力線の途中に配置する。なお、電力蓄積手段9の負極端子は、インバータ装置4の低電位側端子に接続する。
 ダイオード素子14cは接地点10と電力蓄積手段9の正極の間に配置され、接地点10から電力蓄積手段9の正極側へ流れる電流のみ導通させる。
 スイッチ14bは接地点10と電力蓄積手段9の負極の間に配置される。スイッチ14bは、双方向に流れる電流を導通または遮断できるものであり、機械的接点を用いた遮断器であっても良いし、半導体による電流遮断手段とダイオード素子を組み合わせたものでも良い。
 ここで、一般的に鉄道車両の制御装置では、フィルタコンデンサ3の両端の直流部電圧Vfcに基づいてインバータ装置4を制御するが、本発明の回路構成の場合、後述のように回生時にインバータ装置4に印加される直流電圧は電力蓄積手段9の端子間電圧Vbと架線電圧Vsの和となるため、直流部電圧Vfcを検出しただけでは電力蓄積手段9の端子間電圧Vbと架線電圧Vsを分離することができず、軽負荷回生状態であるか否かの判別ができない。
 そこで、本発明の回路構成のようにインバータ装置4に印加される直流電圧が電力蓄積手段9の端子間電圧Vbと架線電圧Vsの和となるような回路構成では、集電装置1と接地点10の間に集電装置1から供給される架線電圧Vsを検出する電圧センサ(DCPT)7aを設置して、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行うのが良い。
 または、フィルタコンデンサ3の両端の直流部電圧Vfcが架線電圧Vsと電力蓄積手段9の端子間電圧Vbの和であることを鑑みて、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積手段9の端子間電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置して、フィルタコンデンサ3の両端の直流部電圧Vfcと電力蓄積手段9の端子間電圧Vbと架線電圧Vsのうち少なくとも2つ以上の電圧値から架線電圧Vs相当の電圧を算出し、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行うのが良い。
 本発明の回路構成の場合は、VfcとVbとVsの値に基づいて、軽負荷回生状態であると判断すれば、インバータ装置4やスイッチング素子11a,11bを制御し、回生吸収機能を動作させる。
 本実施例における力行時の回路動作について説明する。力行時はスイッチ14bをオンする。これにより、インバータ装置4の接地点側の端子と電力蓄積手段9の負極側が接地点10に接続される。このとき、インバータ装置4に印加される電圧は概ね集電装置1から供給される電圧Vsに一致し、インバータ装置4と電力蓄積手段9は並列に接続される構成となる。
 ここで、スイッチング素子11bを周期的にオン/オフすることにより、電力蓄積手段9の電力を放出しインバータ装置4に供給することができる。ここで、第1の平滑リアクトル13は、電力蓄積手段9に通流する電流の変化率を所定値内に抑える機能を持つ。
 前述のスイッチング素子11bを所定時間Ton_bだけオンすると、電力蓄積手段9の正極側と負極側は短絡されるが、このとき、第1の平滑リアクトル13は、その電流増加率を一定値内に抑えると同時に、Ton_bの期間に通流した電流と、電力蓄積手段9の端子間電圧の積を時間積分した電力エネルギを蓄える。その後、スイッチング素子11bを所定時間Toff_bだけオフすると、第1の平滑リアクトル13に蓄えられた電力エネルギはダイオード素子12aを介して集電装置1とインバータ装置4の間の直流電力部に放出される。
 続いて、回生時の回路動作について説明する。回生時はスイッチ14bをオフする。これにより、インバータ装置4の低電位側端子の電圧は、接地点10を基準として、電力蓄積手段9の端子間電圧Vbだけ引き下げられる。一方、インバータ装置4の高電位側端子の電位は、接地点10を基準電位と考えると、架線電圧Vsに等しい。すなわち、インバータ装置4の入出力端子間(正極~負極)の電位差は、電力蓄積手段9の端子間電圧Vbと、架線電圧Vsの和、Vb+Vsとなる。このようにして、インバータ装置4の入出力端子間(正極から負極)の電位差を電力蓄積手段9の端子間電圧Vbだけ引き上げることにより、インバータ装置4の最大通流電流を変えることなく、最大回生電力を(Vb+Vs)/Vsだけ拡大できる。また、このとき電力蓄積手段9には、端子間電圧Vbと、電力蓄積手段通流電流Ib(=架線電流Is)の積、Vb×Ibに相当する電力が充電される。
 ここで、軽負荷回生状態となれば、主回路構成はそのまま(直列型)に、電圧センサ7a~7cにより得られた架線電圧に応じてスイッチング素子11aを周期的にオン/オフすることにより、架線側に戻せなかった回生電力を電力蓄積手段9に充電する。ここで、第1の平滑リアクトル13は、電力蓄積手段9に通流する電流の変化率を所定値内に抑える機能を持つ。
 前述のスイッチング素子11aを所定時間Ton_aだけオンすると、前述の集電装置1およびフィルタコンデンサ3の両端の直流部電圧Vfcが、電力蓄積手段6bの端子間電圧Vbよりも高いとき、直流電力部から電力蓄積手段9の向きに電流が流れる。このとき、第1の平滑リアクトル13は、その電流増加率を一定値内に抑えると同時に、Ton_aの期間に通流した電流と、電力蓄積手段9の端子間電圧の積を時間積分した電力エネルギを蓄える。その後、スイッチング素子11aを所定時間Toff_aだけオフすると、第1の平滑リアクトル13に蓄えられた電力エネルギは電力蓄積手段9の高電位側端子から低電位側端子に抜け、スイッチング素子11bのダイオード素子12bを経て、第1の平滑リアクトル13に戻る一巡の回路が構成される。すなわち、スイッチング素子11aを所定時間Toff_aだけオフしている期間は、第1の平滑リアクトル13に蓄えられた電力エネルギが電力蓄積手段9に充電され続け、第1の平滑リアクトル13に蓄えられた電力エネルギが放出されるに従い、充電電流は減衰していく。これにより電力蓄積手段9から、端子間電圧Vbと、電力蓄積手段通流電流Ib(=架線電流Is)の積、Vb×Ibに相当する電力が充電される。
 本発明の実施態様により、主回路構成を切り替えることなく高速域電気ブレーキ機能と回生吸収機能を同時に実現することが可能となり、回生時においては、高速域電気ブレーキ機能を基本動作とし、軽負荷回生状態となれば、シームレスに回生吸収機能を動作させることで、省エネ効果の最大化が図れる。
 図8は本発明の鉄道車両の駆動装置における第7の実施形態の基本構成を示す図である。
 第6の実施形態の基本構成(図7)と異なる点は、(1)電力蓄積手段9の正極側と負極側の間にスイッチング素子15a,15bを接続し、その入出力端子に、導通方向とは反対向きに、ダイオード素子16a,16bを並列に接続した点と、(2)ダイオード素子14cを第2の平滑リアクトル17を介して、スイッチング素子15aとスイッチング素子15bの接続位置に接続した点である。
 スイッチング素子15a,15bとダイオード素子16a,16bと第2の平滑リアクトル17は電力蓄積手段9を電源とする降圧チョッパ回路を構成している。
 第6の実施形態の基本構成(図7)では、回生時に電力蓄積手段9の電圧を直流電圧源の電圧に加算してインバータ装置4に入力するが、電力蓄積手段9の電圧は充電されている電荷によって変動するため、電力蓄積手段9の電圧は充放電の状態によって時々刻々と変化する。通常、インバータ装置4の直流側の電圧は一定であるのが望ましい。
 そこで、本実施例のように、電力蓄積手段9を電源とする降圧チョッパ回路を構成し、電力蓄積手段9からインバータ装置4に印加する電圧を一定値に制御することで、直流電圧源の電圧変動を除いて一定にすることができる。
 なお、本実施形態では、スイッチング素子15a,15bとダイオード素子16a,16bと第2の平滑リアクトル17で構成される降圧チョッパ回路を電力蓄積手段9に対して接地点10側へ配置したが、図9のように、降圧チョッパ回路を電力蓄積手段9に対してインバータ装置4側へ配置する構成であっても良い。
 力行時は、電流が電力蓄積手段9の負極側から接地点10へ電流が流れるようにスイッチ14bをオンする。さらにスイッチング素子11bを周期的にオン/オフさせることで電力蓄積手段9に蓄えた電力をインバータ装置4に供給できる。
 また、回生時は、電流が接地点10からダイオード素子14cを通して第2の平滑リアクトル17へ流れるようにスイッチ14bをオフする。これにより、前述の実施形態と同じように高速域電気ブレーキ機能と回生吸収機能を同時に実現できる。
 集電装置1から給電した直流電力は、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)で高周波数域の変動を除去した後、インバータ装置4に入力される。インバータ装置4は、入力された直流電力を可変電圧可変周波数(VVVF)の3相交流電力に変換して、主電動機5a,5bを駆動する。ここではインバータ装置4が駆動する主電動機が2台の場合を示しているが、本発明としてはインバータ装置4が駆動する主電動機の台数は限定しない。
 接地点10はこの回路の基準電位を決めている。
 スイッチング素子11a,11bは、半導体素子による電流遮断手段である。スイッチング素子11a,11bは、その入出力端子に、導通方向とは反対向きに、ダイオード素子12a,12bを並列に接続する。
 第1の平滑リアクトル(MSL)13は、スイッチング素子11aと11bの接続位置と、電力蓄積手段9の正極端子を結ぶ電力線の途中に配置する。なお、電力蓄積手段9の負極端子は、インバータ装置4の低電位側端子に接続する。
 スイッチング素子15a,15bは、半導体素子による電流遮断手段である。スイッチング素子15a,15bは、その入出力端子に、導通方向とは反対向きに、ダイオード素子16a,16bを並列に接続する。
 第2の平滑リアクトル(MSL)17は、スイッチング素子15aと15bの接続位置と、ダイオード素子14cを電力線の途中に配置する。
 スイッチング素子15a,15bと、ダイオード素子16a,16bと、第2の平滑リアクトル(MSL)17は、電力蓄積手段9を電源とする降圧チョッパ回路を構成し、電圧をゼロから電力蓄積手段9の電圧値の間で連続的に制御する。
 ダイオード素子14cは接地点10と第2の平滑リアクトル17の間に配置され、接地点10から第2の平滑リアクトル17側へ流れる電流のみ導通させる。
 スイッチ14bは接地点10と電力蓄積手段9の負極の間に配置される。スイッチ14bは、双方向に流れる電流を導通または遮断できるものであり、機械的接点を用いた遮断器であっても良いし、半導体による電流遮断手段とダイオード素子を組み合わせたものでも良い。
 ここで、一般的に鉄道車両の制御装置では、フィルタコンデンサ3の両端の直流部電圧Vfcに基づいてインバータ装置4を制御するが、本発明の回路構成の場合、後述のように回生時にインバータ装置4に印加される直流電圧は、スイッチング素子15a,15bと、ダイオード素子16a,16bと、第2の平滑リアクトル(MSL)17で構成される降圧チョッパ回路の電圧Vchpと架線電圧Vsの和となるため、直流部電圧Vfcを検出しただけでは降圧チョッパ回路の電圧Vchpと架線電圧Vsを分離することができず、軽負荷回生状態であるか否かの判別ができない。また、降圧チョッパを動作させて所望の電圧を得るためには、電力蓄積手段9の電圧Vbが必要である。
 そこで、本発明の回路構成のようにインバータ装置4に印加される直流電圧が降圧チョッパ回路の電圧Vchpと架線電圧Vsの和となるような回路構成では、集電装置1と接地点10の間に集電装置1から供給される架線電圧Vsを検出する電圧センサ(DCPT)7aを設置して、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行うのが良い。
 または、フィルタコンデンサ3の両端の直流部電圧Vfcが架線電圧Vsと降圧チョッパ回路の電圧Vchpの和であることを鑑みて、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積手段9の端子間電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置して、フィルタコンデンサ3の両端の直流部電圧Vfcと電力蓄積手段9の端子間電圧Vbと架線電圧Vsのうち少なくとも2つ以上の電圧値から架線電圧Vs相当の電圧を算出し、架線電圧Vsにより軽負荷回生状態であるか否かの判別を行うのが良い。
 本発明の回路構成の場合は、VfcとVbとVsの値に基づいて、軽負荷回生状態であると判断すれば、インバータ装置4やスイッチング素子11a,11bを制御し、回生吸収機能を動作させる。
 本実施例における力行時の回路動作について説明する。力行時はスイッチ14bをオンする。これにより、インバータ装置4の接地点側の端子と電力蓄積手段9の負極側が接地点10に接続される。このとき、インバータ装置4に印加される電圧は概ね集電装置1から供給される電圧Vsに一致し、インバータ装置4と電力蓄積手段9は並列に接続される構成となる。
 ここで、スイッチング素子11bを周期的にオン/オフすることにより、電力蓄積手段9の電力を放出しインバータ装置4に供給することができる。ここで、第1の平滑リアクトル13は、電力蓄積手段9に通流する電流の変化率を所定値内に抑える機能を持つ。
 前述のスイッチング素子11bを所定時間Ton_bだけオンすると、電力蓄積手段9の正極側と負極側は短絡されるが、このとき、第1の平滑リアクトル13は、その電流増加率を一定値内に抑えると同時に、Ton_bの期間に通流した電流と、電力蓄積手段9の端子間電圧の積を時間積分した電力エネルギを蓄える。その後、スイッチング素子11bを所定時間Toff_bだけオフすると、第1の平滑リアクトル13に蓄えられた電力エネルギはダイオード素子12aを介して集電装置1とインバータ装置4の間の直流電力部に放出される。
 続いて、回生時の回路動作について説明する。回生時はスイッチ14bをオフする。これにより、インバータ装置4の低電位側端子の電圧は、図10のように、接地点10を基準として、降圧チョッパ回路の電圧Vchpだけ引き下げられる。
 一方、インバータ装置4の高電位側端子の電位は、接地点10を基準電位と考えると、架線電圧Vsに等しい。すなわち、インバータ装置4の入出力端子間(正極~負極)の電位差は、架線電圧Vsと、降圧チョッパの電圧Vchpの和、Vchp+Vsとなる。このようにして、インバータ装置4の入出力端子間(正極から負極)の電位差を電力蓄積手段9の端子間電圧Vchpだけ引き上げることにより、インバータ装置4の最大通流電流を変えることなく、最大回生電力を(Vchp+Vs)/Vsだけ拡大できる。また、このとき電力蓄積手段9には、降圧チョッパの電圧Vchpと、降圧チョッパの電流Ichp(=架線電流Is)の積、Vchp×Ichpに相当する電力が充電される。
 ここで、軽負荷回生状態となれば、主回路構成はそのまま(直列型)に、電圧センサ7a~7cにより得られた架線電圧に応じてスイッチング素子11aを周期的にオン/オフすることにより、架線側に戻せなかった回生電力を電力蓄積手段9に充電する。ここで、第1の平滑リアクトル13は、電力蓄積手段9に通流する電流の変化率を所定値内に抑える機能を持つ。
 前述のスイッチング素子11aを所定時間Ton_aだけオンすると、前述の集電装置1およびフィルタコンデンサ3の両端の直流部電圧Vfcが、電力蓄積手段9の端子間電圧Vbよりも高いとき、直流電力部から電力蓄積手段9の向きに電流が流れる。このとき、第1の平滑リアクトル13は、その電流増加率を一定値内に抑えると同時に、Ton_aの期間に通流した電流と、電力蓄積手段9の端子間電圧の積を時間積分した電力エネルギを蓄える。その後、スイッチング素子11aを所定時間Toff_aだけオフすると、第1の平滑リアクトル13に蓄えられた電力エネルギは電力蓄積手段9の高電位側端子から低電位側端子に抜け、スイッチング素子11bのダイオード素子12bを経て、第1の平滑リアクトル13に戻る一巡の回路が構成される。すなわち、スイッチング素子11aを所定時間Toff_aだけオフしている期間は、第1の平滑リアクトル13に蓄えられた電力エネルギが電力蓄積手段9に充電され続け、第1の平滑リアクトル13に蓄えられた電力エネルギが放出されるに従い、充電電流は減衰していく。これにより電力蓄積手段9から、降圧チョッパの電圧Vchpと、降圧チョッパの電流Ichp(=架線電流Is)の積、Vchp×Ichpに相当する電力が充電される。
 本発明の実施態様により、主回路構成を切り替えることなく高速域電気ブレーキ機能と回生吸収機能を同時に実現することが可能となり、回生時においては、高速域電気ブレーキ機能を基本動作とし、軽負荷回生状態となれば、シームレスに回生吸収機能を動作させることで、省エネ効果の最大化が図れる。
 図12は本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,高速域電気ブレーキ機能でも回生吸収機能でもない通常の回生(以下、通常回生))の決定方法の第1の実施例を示す図である。
 図3に示すような、直流電圧源から直流電力を得る集電装置1と、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)と、直流電力を交流電力に変換するインバータ装置4と、インバータ装置4により駆動される少なくとも1台以上の交流電動機5と、インバータ装置4の直流電力側に充放電が可能な電力蓄積装置6(一例として、蓄電池やキャパシタ等の電力蓄積手段と昇降圧チョッパで構成)を備えた鉄道車両の駆動装置であり、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置すると共に、電力蓄積装置6をインバータ装置4と直列或いは並列に接続することで高速域電気ブレーキ機能と回生吸収機能を同時に実現できることを特徴とする鉄道車両の駆動装置においては、図11に示すように、(1)電力蓄積装置6からの蓄電量(SOC)、(2)電圧センサ7a~7cからの電圧,速度センサ18からの速度、(3)運転席19からの路線毎の運行密度,運転パタンを格納したデータベースの情報および自車の走行位置・走行時間を入力情報とし、これらの入力情報に基づいて動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する動作モード決定部20を有するのが良い。
 なお、図3の回路構成では、高速域電気ブレーキ機能と回生吸収機能を直列型の主回路構成とするか並列型の主回路構成とするかで切り替えているが、高速域電気ブレーキ機能と回生吸収機能を同時に実現できる回路構成であればどのような回路構成でも良い。
 本実施例では、高速域電気ブレーキ機能,回生吸収機能,通常回生の動作モードを図12に示すように動作モード決定部の入力情報のうち、(1)電力蓄積手段の蓄電量(SOC:State of Charge),速度および(2)電圧,速度により選択している。
 まず、図12中の動作モード決定部Aにおいて、図13に示すように蓄電量(SOC),速度により動作モードを決定するのが良い。
 具体的には、電力蓄積手段の過充電を防ぎ安全性に配慮するためにも、蓄電量(SOC)の上限値を設定し、蓄電量(SOC)が上限値以下の場合には高速域電気ブレーキ機能或いは回生吸収機能による充電動作を許可し、蓄電量(SOC)が上限値を超えると高速域電気ブレーキ機能或いは回生吸収機能による充電動作を停止し、通常回生とするのが良い。これは、高速域電気ブレーキ機能或いは回生吸収機能による充電動作が長い間続くと、電力蓄積手段の蓄電量(SOC)が上昇し、やがて過充電状態となり電力蓄積手段の発火・破損につながる恐れがあるためである。このとき、蓄電量(SOC)の上限値は図13に示すように速度が高くなるのに伴い上限値を下げるのが良い。これは、高速度域から回生するほど回生時間が長くなり電力蓄積手段に充電される電力量が大きくなるためである。
 次に、前記方法で蓄電量(SOC),速度により高速域電気ブレーキ機能或いは回生吸収機能による充電動作が許可された場合には、図12中の動作モード決定部Bにおいて、図14に示すように電圧センサ7a~7cおよび速度センサ18により得られた架線電圧および速度により動作モードを決定するのが良い。
 具体的には、架線電圧Vsを検出する電圧センサ(DCPT)7a或いは、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上の電圧センサからの電圧値により架線電圧Vsを算出し、架線電圧が軽負荷回生状態であると判断される電圧値(以下、軽負荷回生セット値(Vref[V]))より低いときは高速域電気ブレーキ機能によりフィルタコンデンサ電圧を目標値まで昇圧し、架線電圧が軽負荷回生セット値(Vref[V])より高いときは軽負荷回生状態であると判別し、回生吸収機能によりフィルタコンデンサ電圧を目標値まで降圧するのが良い。
 また、高速域電気ブレーキ機能による昇圧動作は高速域(定トルク終端速度(Akm/h)以上)では効果を発揮するが、低速域(定トルク終端速度(Akm/h)以下)では主電動機による回生性能の制限は起こらないため昇圧動作による効果はない。従って、高速域電気ブレーキ機能を動作させるのは、速度が定トルク終端速度(Akm/h)以上の場合とし、速度が定トルク終端速度(Akm/h)以下になると高速域電気ブレーキ機能による昇圧動作を停止し、通常回生とするのが良い。これにより、低速域(定トルク終端速度(Akm/h)以下)における昇圧動作を停止することで、電力蓄積手段への無駄な充電動作をなくし、その分、電力蓄積手段の長寿命化を図ることが可能となる。
 本発明の実施態様により、架線電圧,速度,蓄電量(SOC)に応じて、高速域電気ブレーキ機能,回生吸収機能,通常回生の動作を適切に管理することが可能となり、省エネ効果の最大化が図れると共に、電力蓄積手段の長寿命化も図れる。
 図15は本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,高速域電気ブレーキ機能でも回生吸収機能でもない通常の回生(以下、通常回生))の決定方法の第2の実施例を示す図である。
 図3に示すような、直流電圧源から直流電力を得る集電装置1と、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)と、直流電力を交流電力に変換するインバータ装置4と、インバータ装置4により駆動される少なくとも1台以上の交流電動機5と、インバータ装置4の直流電力側に充放電が可能な電力蓄積装置6(一例として、蓄電池やキャパシタ等の電力蓄積手段と昇降圧チョッパで構成)を備えた鉄道車両の駆動装置であり、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置すると共に、電力蓄積装置6をインバータ装置4と直列或いは並列に接続することで高速域電気ブレーキ機能と回生吸収機能を同時に実現できることを特徴とする鉄道車両の駆動装置においては、図11に示すように、(1)電力蓄積装置6からの蓄電量(SOC)、(2)電圧センサ7a~7cからの電圧,速度センサ18からの速度、(3)運転席19からの路線毎の運行密度,運転パタンを格納したデータベースの情報および自車の走行位置・走行時間を入力情報とし、これらの入力情報に基づいて動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する動作モード決定部20を有するのが良い。
 なお、図3の回路構成では、高速域電気ブレーキ機能と回生吸収機能を直列型の主回路構成とするか並列型の主回路構成とするかで切り替えているが、高速域電気ブレーキ機能と回生吸収機能を同時に実現できる回路構成であればどのような回路構成でも良い。
 本実施例では、高速域電気ブレーキ機能,回生吸収機能,通常回生の動作モードを図15に示すように動作モード決定部の入力情報のうち、(1)電力蓄積手段の蓄電量(SOC:State of Charge),速度および(2)路線毎の走行位置および走行時間に対する運行密度(以下、運行密度),路線毎の走行位置および走行時間に対する速度(以下、運転パタン)を格納したデータベースの情報および自車の走行位置・走行時間により選択している。
 まず、図15中の動作モード決定部Aにおいて、図13に示すように蓄電量(SOC),速度により動作モードを決定するのが良い。
 具体的には、電力蓄積手段の過充電を防ぎ安全性に配慮するためにも、蓄電量(SOC)の上限値を設定し、蓄電量(SOC)が上限値以下の場合には高速域電気ブレーキ機能或いは回生吸収機能による充電動作を許可し、蓄電量(SOC)が上限値を超えると高速域電気ブレーキ機能或いは回生吸収機能による充電動作を停止し、通常回生とするのが良い。これは、高速域電気ブレーキ機能或いは回生吸収機能による充電動作が長い間続くと、電力蓄積手段の蓄電量(SOC)が上昇し、やがて過充電状態となり電力蓄積手段の発火・破損につながる恐れがあるためである。このとき、蓄電量(SOC)の上限値は図13に示すように速度が高くなるのに伴い上限値を下げるのが良い。これは、高速度域から回生するほど回生時間が長くなり電力蓄積手段に充電される電力量が大きくなるためである。
 次に、前記方法で蓄電量(SOC),速度により高速域電気ブレーキ機能或いは回生吸収機能による充電動作が許可された場合には、図15中の動作モード決定部Bにおいて、図16に示すように路線毎の運行密度,運転パタンを格納したデータベースの情報および自車の走行位置・走行時間により、自車の走行位置或いは走行時間に対する動作モードを予め決定するのが良い。
 具体的には、路線毎の運行密度と、運転パタンを格納したデータベースを設けると共に、現在の自車の走行位置・走行時間を常時監視する機能を設ける。データベース上の運行密度情報により軽負荷回生状態(運行密度がある値Cより低ければ軽負荷回生状態であると判断)となる走行位置および走行時間を予め予測する。同時に、データベース上の運転パタン情報により速度が定トルク終端速度(A)以下になる走行位置および走行時間を予め予測する。データベース上の運行密度情報と現車の自社の走行位置・走行時間を照合して、軽負荷回生状態となると予測される走行位置および走行時間では動作モードとして回生吸収機能を選択し、軽負荷回生状態ではないと予想される走行位置および走行時間では動作モードとして高速域電気ブレーキ機能を選択するのが良い。また、データベース上の運行密度情報から動作モードとして高速域電気ブレーキ機能を選択する場合において、データベース上の運転パタン情報と現車の自社の走行位置・走行時間を照合して、速度が定トルク終端速度以下になると予想される走行位置および走行時間では動作モードとして通常回生を選択するのが良い。
 なお、データベースの情報は図11のように自車(運転台19)で設けても良いし、車外から通信により取得しても良い。
 本発明の実施態様により、データベース、自車の走行位置、走行時間および蓄電量(SOC),速度に応じて、高速域電気ブレーキ機能,回生吸収機能,通常回生の動作を適切に管理することが可能となり、省エネ効果の最大化が図れると共に、電力蓄積手段の長寿命化も図れる。
 図17は本発明の鉄道車両の駆動装置における動作モード(高速域電気ブレーキ機能,回生吸収機能,高速域電気ブレーキ機能でも回生吸収機能でもない通常の回生(以下、通常回生))の決定方法の第3の実施例を示す図である。
 図3に示すような、直流電圧源から直流電力を得る集電装置1と、フィルタリアクトル(FL)2、およびフィルタコンデンサ(FC)3で構成するLC回路(フィルタ回路)と、直流電力を交流電力に変換するインバータ装置4と、インバータ装置4により駆動される少なくとも1台以上の交流電動機5と、インバータ装置4の直流電力側に充放電が可能な電力蓄積装置6(一例として、蓄電池やキャパシタ等の電力蓄積手段と昇降圧チョッパで構成)を備えた鉄道車両の駆動装置であり、架線電圧Vsを検出する電圧センサ(DCPT)7a,電力蓄積装置6の電圧Vbを検出する電圧センサ(DCPT)7b,フィルタコンデンサ3の両端の直流部電圧Vfcを検出する電圧センサ(DCPT)7cのうち少なくとも2つ以上を設置すると共に、電力蓄積装置6をインバータ装置4と直列或いは並列に接続することで高速域電気ブレーキ機能と回生吸収機能を同時に実現できることを特徴とする鉄道車両の駆動装置においては、図11に示すように、(1)電力蓄積装置6からの蓄電量(SOC)、(2)電圧センサ7a~7cからの電圧,速度センサ18からの速度、(3)運転席19からの路線毎の運行密度,運転パタンを格納したデータベースの情報および自車の走行位置・走行時間を入力情報とし、これらの入力情報に基づいて動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する動作モード決定部20を有するのが良い。
 なお、図3の回路構成では、高速域電気ブレーキ機能と回生吸収機能を直列型の主回路構成とするか並列型の主回路構成とするかで切り替えているが、高速域電気ブレーキ機能と回生吸収機能を同時に実現できる回路構成であればどのような回路構成でも良い。
 本実施例では、高速域電気ブレーキ機能,回生吸収機能,通常回生の動作モードを図17に示すように動作モード決定部の入力情報のうち、(1)電力蓄積手段の蓄電量(SOC:State of Charge),速度および、(2)電圧,速度および(3)路線毎の走行位置および走行時間に対する運行密度(以下、運行密度),路線毎の走行位置および走行時間に対する速度(以下、運転パタン)を格納したデータベースの情報および自車の走行位置・走行時間により選択している。
 まず、図17中の動作モード決定部Aにおいて、図13に示すように蓄電量(SOC),速度により動作モードを決定するのが良い。
 具体的には、電力蓄積手段の過充電を防ぎ安全性に配慮するためにも、蓄電量(SOC)の上限値を設定し、蓄電量(SOC)が上限値以下の場合には高速域電気ブレーキ機能或いは回生吸収機能による充電動作を許可し、蓄電量(SOC)が上限値を超えると高速域電気ブレーキ機能或いは回生吸収機能による充電動作を停止し、通常回生とするのが良い。これは、高速域電気ブレーキ機能或いは回生吸収機能による充電動作が長い間続くと、電力蓄積手段の蓄電量(SOC)が上昇し、やがて過充電状態となり電力蓄積手段の発火・破損につながる恐れがあるためである。このとき、蓄電量(SOC)の上限値は図13に示すように速度が高くなるのに伴い上限値を下げるのが良い。これは、高速度域から回生するほど回生時間が長くなり電力蓄積手段に充電される電力量が大きくなるためである。
 次に、前記方法で蓄電量(SOC),速度により高速域電気ブレーキ機能或いは回生吸収機能による充電動作が許可された場合には、図17中の動作モード決定部Bにおいて、図18に示すように路線毎の運行密度、運転パタンを格納したデータベースの情報および自車の走行位置・走行時間により、自車の走行位置或いは走行時間に対する動作モード(動作モード1)を予め決定すると共に、電圧センサ7a~7cおよび速度センサ18により得られた架線電圧と速度からも動作モード(動作モード2)を決定し、データベースの情報および自車の走行位置・走行時間により予め決定した動作モード(動作モード1)と架線電圧と速度により決定された動作モード(動作モード2)を比較し、異なっている場合は架線電圧と速度により決定した動作モード(動作モード2)を優先して選択するのが良い。
 実施例9で示した路線毎の運行密度,運転パタンを格納したデータベースを設け、データベースの情報および自車の走行位置・走行時間により、自車の走行位置および走行時間に対する動作モードを予め決定する方法は実際の運行密度や運転パタンがデータベース上のものと違う場合も考えられ、この場合、適切な動作モードの選択ができない。
 そこで、実施例9で示したデータベースの情報および自車の走行位置・走行時間により動作モードを予め決定する手法のほかに、実施例8で示した電圧センサ7a~7cおよび速度センサ18により架線電圧および速度により動作モードを決定する手法でも動作モードの判別を行い、データベースの情報および自車の走行位置・走行時間により予め決定した動作モード(動作モード1)と架線電圧および速度(動作モード2)から決定される動作モードを比較し、比較した動作モードが異なっていれば、架線電圧および速度から決定される動作モード(動作モード2)を優先した選択するのが良い。
 なお、データベースの情報は図11のように自車(運転台19)で設けても良いし、車外から通信により取得しても良い。
 本発明の実施態様により、架線電圧,速度、およびデータベース、自車の走行位置、走行時間および蓄電量(SOC)に応じて、高速域電気ブレーキ機能,回生吸収機能,通常回生の動作を適切に管理することが可能となり、省エネ効果の最大化が図れると共に、電力蓄積手段の長寿命化も図れる。
1 集電装置
2 フィルタリアクトル
3 フィルタコンデンサ
4 インバータ装置
5a~5b 主電動機
6 電力蓄積装置
7a~7c 電圧センサ
8a~8c,14a~14b スイッチ
9 電力蓄積手段
10 接地点
11a~11b,15a~15b スイッチング素子
12a~12b,14c,16a~16b ダイオード素子
13 第1の平滑リアクトル
17 第2の平滑リアクトル
18 速度センサ
19 運転席
20 動作モード決定部

Claims (18)

  1.  直流電圧源から直流電力を得る手段と、直流電力を交流電力に変換するインバータ装置と、前記インバータ装置により駆動される少なくとも1台以上の交流電動機と、前記インバータ装置の直流電力側に電力蓄積手段及び昇降圧チョッパを有する電力蓄積装置を備えた鉄道車両の駆動装置において、
     前記電力蓄積手段は前記インバータ装置と直列接続可能に前記インバータ装置と接続されており、前記直流電圧源の電圧を得る手段を有し、前記直流電圧源の電圧を得る手段から得られた電圧値に基づいて、前記電力蓄積装置を制御することを特徴とする鉄道車両の駆動装置。
  2.  直流電圧源から直流電力を得る手段と、直流電力を交流電力に変換するインバータ装置と、前記インバータ装置により駆動される少なくとも1台以上の交流電動機と、前記インバータ装置の直流電力側に充放電が可能な電力蓄積手段を有する電力蓄積装置を備えた鉄道車両の駆動装置において、
     前記電力蓄積手段は前記インバータ装置と直列接続可能に前記インバータ装置と接続されており、前記直流電圧源の電圧を得る手段と、前記電力蓄積装置の電圧を得る手段と、前記インバータ装置の直流側の電圧を得る手段のうち少なくとも2つを有し、各々の電圧を得る手段から得られた電圧値に基づいて、前記電力蓄積装置を制御することを特徴とする鉄道車両の駆動装置。
  3.  請求項1又は請求項2に記載の鉄道車両の駆動装置において、
     前記電力蓄積手段を前記インバータ装置と直列に接続することも並列に接続することもできることを特徴とする鉄道車両の駆動装置。
  4.  直流電圧源から直流電力を得る手段と、直流電力を交流電力に変換するインバータ装置と、前記インバータ装置により駆動される少なくとも1台以上の交流電動機と、前記インバータ装置の直流電力側に充放電が可能な電力蓄積手段を有する電力蓄積装置を備えた鉄道車両の駆動装置において、
     前記電力蓄積手段は前記インバータ装置と直列接続可能に前記インバータ装置と接続されており、前記直流電圧源の電圧を得る手段と、前記電力蓄積装置の電圧を得る手段と、前記インバータ装置の直流側の電圧を得る手段のうち少なくとも2つを有し、各々の電圧を得る手段から得られた電圧値に基づいて、前記電力蓄積装置を制御する手段を備え、
     前記電力蓄積装置は、電力蓄積手段の正極側と前記直流電圧源の接地点の間に設置された第1の電流制御手段と、前記電力蓄積手段の負極側と前記直流電圧源の接地点の間に設置された第2の電流制御手段と、前記直流電力を得る手段と前記インバータ装置の正極側とを結ぶ電力線と前記電力蓄積手段の正極側の間に接続された第3の電流制御手段と、前記電力蓄積手段の負極側と前記インバータ装置の負極側とを結ぶ電力線と前記電力蓄積手段の正極側の間に前記第3の電流制御手段と直列になるように設置された第4の電流制御手段と、前記第3の電流制御手段と前記第4の電流制御手段の接続位置と前記電力蓄積手段の正極側の間に第1のリアクトルで構成されることを特徴とする鉄道車両の駆動装置。
  5.  直流電圧源から直流電力を得る手段と、直流電力を交流電力に変換するインバータ装置と、前記インバータ装置により駆動される少なくとも1台以上の交流電動機と、前記インバータ装置の直流電力側に充放電が可能な電力蓄積手段を有する電力蓄積装置を備えた鉄道車両の駆動装置において、
     前記電力蓄積手段は前記インバータ装置と直列接続可能に前記インバータ装置と接続されており、前記直流電圧源の電圧を得る手段と、前記電力蓄積装置の電圧を得る手段と、前記インバータ装置の直流側の電圧を得る手段のうち少なくとも2つを有し、各々の電圧を得る手段から得られた電圧値に基づいて、前記電力蓄積装置を制御する手段を備え、
     前記電力蓄積装置は、電力蓄積手段の正極側と負極側の間に相対して接続された第5の電流制御手段と第6の電流制御手段を有すると共に、前記第5の電流制御手段と前記第6の電流制御手段の接続位置から第2のリアクトルを介して前記直流電圧源の接地点の間に設置された第1の電流制御手段と、前記電力蓄積手段の負極側と前記直流電圧源の接地点の間に設置された第2の電流制御手段と、前記直流電力を得る手段と前記インバータ装置の正極側とを結ぶ電力線と前記電力蓄積手段の負極側と前記インバータ装置の負極側を結ぶ電力線の間に相対して接続された第3の電流制御手段と第4の電流制御手段と、前記第3の電流制御手段と前記第4の電流制御手段の接続位置と前記電力蓄積手段の正極側の間に接続された第1のリアクトルで構成されることを特徴とする鉄道車両の駆動装置。
  6.  直流電圧源から直流電力を得る手段と、直流電力を交流電力に変換するインバータ装置と、前記インバータ装置により駆動される少なくとも1台以上の交流電動機と、前記インバータ装置の直流電力側に充放電が可能な電力蓄積手段を有する電力蓄積装置を備えた鉄道車両の駆動装置において、
     前記電力蓄積手段は前記インバータ装置と直列接続可能に前記インバータ装置と接続されており、前記直流電圧源の電圧を得る手段と、前記電力蓄積装置の電圧を得る手段と、前記インバータ装置の直流側の電圧を得る手段のうち少なくとも2つを有し、各々の電圧を得る手段から得られた電圧値に基づいて、前記電力蓄積装置を制御する手段を備え、
     前記電力蓄積装置は、電力蓄積手段の正極側と負極側の間に相対して接続された第5の電流制御手段と第6の電流制御手段を有すると共に、前記電力蓄積手段の正極側と前記直流電圧源の接地点の間に設置された第1の電流制御手段と、前記電力蓄積手段の負極側と前記直流電圧源の接地点の間に設置された第2の電流制御手段と、前記直流電力を得る手段と前記インバータ装置の正極側とを結ぶ電力線と前記電力蓄積手段の負極側と前記インバータ装置の負極側を結ぶ電力線の間に相対して接続された第3の電流制御手段と第4の電流制御手段と、前記蓄電装置の正極側と前記第3の電流制御手段と前記第4の電流制御手段の接続位置の間に接続された第1のリアクトルと、前記第5の電流制御手段と前記第6の電流制御手段の接続位置と前記電力蓄積手段の負極側と前記インバータ装置の負極側を結ぶ電力線の間に接続された第2のリアクトルで構成されることを特徴とする鉄道車両の駆動装置。
  7.  請求項4乃至請求項6のいずれかに記載の鉄道車両の駆動装置において、前記第1の電流制御手段と前記第2の電流制御手段は、機械接点により構成される電流遮断手段であることを特徴とする鉄道車両の駆動装置。
  8.  請求項4乃至請求項6のいずれかに記載の鉄道車両の駆動装置において、前記第1の電流制御手段は、前記直流電圧源の接地点から前記電力蓄積手段の正極側の方向への電流を導通または遮断できる半導体素子で構成される電流遮断手段と、前記電流遮断手段と逆方向にのみ電流を導通できる電流方向制御手段を並列接続した構成であると共に、前記第2の電流制御手段は、前記直流電圧源の接地点から前記電力蓄積手段の負極側の方向への電流を導通または遮断できる半導体素子で構成される電流遮断手段と、前記電流遮断手段と逆方向にのみ電流を導通できる電流方向制御手段を並列接続した構成であることを特徴とする鉄道車両の駆動装置。
  9.  請求項4乃至請求項6のいずれかに記載の鉄道車両の駆動装置において、前記第1の電流制御手段は、前記直流電圧源の接地点から前記電力蓄積手段の正極側の方向にのみ電流を導通できる半導体素子で構成される電流方向制御手段であると共に、第2の電流制御手段は、機械接点により構成される電流遮断手段であることを特徴とする鉄道車両の駆動装置。
  10.  請求項4乃至請求項6のいずれかに記載の鉄道車両の駆動装置において、前記第1の電流制御手段は、前記直流電圧源の接地点から前記電力蓄積手段の正極側の方向にのみ電流を導通できる半導体素子で構成される電流方向制御手段であると共に、第2の電流制御手段は、前記直流電圧源の接地点から前記電力蓄積手段の負極側の方向への電流を導通または遮断できる半導体素子で構成される電流遮断手段と、前記電流遮断手段と逆方向にのみ電流を導通できる電流方向制御手段を並列接続した構成であることを特徴とする鉄道車両の駆動装置。
  11.  請求項4乃至請求項6のいずれかに記載の鉄道車両の駆動装置において、前記第3の電流制御手段と前記第4の電流制御手段は、前記直流電圧源から前記直流電圧源の接地点の方向への電流を導通または遮断できる半導体素子で構成される電流遮断手段と、前記電流遮断手段と逆方向にのみ電流を導通できる電流方向制御手段を並列接続した構成であることを特徴とする鉄道車両の駆動装置。
  12.  請求項4乃至請求項6のいずれかに記載の鉄道車両の駆動装置において、
     力行時は、前記電力蓄積手段を前記インバータ装置と並列に挿入し前記電力蓄積手段の放電を行うことも、前記電力蓄積手段を前記インバータ装置と直列に挿入し前記電力蓄積手段の放電を行うこともできることを特徴とする鉄道車両の駆動装置。
  13.  請求項4乃至請求項6のいずれかに記載の鉄道車両の駆動装置において、
     回生時は、前記電力蓄積手段を前記インバータ装置と直列に挿入したまま、前記インバータ装置の入力電圧を架線電圧と前記電力蓄積手段の端子間電圧分の和として回生ブレーキ力を増大する機能(以下、高速域電気ブレーキ機能)と力行する他車両が少ない状況において架線に戻せない回生電力を前記電力蓄積手段に吸収する機能(以下、回生吸収機能)を同時に実現できることを特徴とする鉄道車両の駆動装置。
  14.  請求項3に記載の鉄道車両の駆動装置において、
     前記電力蓄積手段の蓄電量(SOC)および架線電圧・速度および路線毎の運行密度,運転パタンを格納したデータベースの情報と自車の走行位置・走行時間のうちいずれかによって動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生)を決定する動作モード決定部を有することを特徴とする鉄道車両の駆動装置。
  15.  請求項14に記載の鉄道車両の駆動装置において、
     架線電圧と速度により動作モード(高速域電気ブレーキ機能,回生吸収機能,通常回生(高速域電気ブレーキ機能でも回生吸収機能でもない通常の回生))の決定を行うことを特徴とする鉄道車両の駆動装置。
  16.  請求項14に記載の鉄道車両の駆動装置において、
     路線毎の運行密度,運転パタンを格納したデータベースを設け、前記データベースの情報により、自車の走行位置或いは走行時間に対する動作モードが予め決定されていることを特徴とする鉄道車両の駆動装置。
  17.  請求項14に記載の鉄道車両の駆動装置において、
     路線毎の運行密度,運転パタンを格納したデータベースを設け、前記データベースの情報により、自車の走行位置或いは走行時間に対する動作モードを予め決定すると共に、架線電圧と速度からも動作モードを決定し、前記データベースの情報により予め決定した動作モードと架線電圧と速度により決定した動作モードを比較し、異なっている場合は架線電圧と速度により決定した動作モードを優先して選択することを特徴とする鉄道車両の駆動装置。
  18.  請求項3に記載の鉄道車両の駆動装置において、
     前記電力蓄積手段の蓄電量(SOC)が充電上限値以下では、高速域電気ブレーキ機能或いは回生吸収機能を動作可能とし、前記電力蓄積手段の蓄電量(SOC)が充電上限値を超えると高速域電気ブレーキ機能或いは回生吸収機能の動作を停止することを特徴とする鉄道車両の駆動装置。
PCT/JP2011/062454 2010-06-01 2011-05-31 鉄道車両の駆動装置 WO2011152383A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180025631.3A CN103097172B (zh) 2010-06-01 2011-05-31 铁道车辆的驱动装置
KR1020127031390A KR101434772B1 (ko) 2010-06-01 2011-05-31 철도 차량의 구동 장치
EP11789786.8A EP2578436A1 (en) 2010-06-01 2011-05-31 Drive device for railway vehicle
US13/701,053 US8924051B2 (en) 2010-06-01 2011-05-31 Drive device for railway vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-125440 2010-06-01
JP2010125440A JP5452371B2 (ja) 2010-06-01 2010-06-01 鉄道車両の駆動装置

Publications (1)

Publication Number Publication Date
WO2011152383A1 true WO2011152383A1 (ja) 2011-12-08

Family

ID=45066748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062454 WO2011152383A1 (ja) 2010-06-01 2011-05-31 鉄道車両の駆動装置

Country Status (6)

Country Link
US (1) US8924051B2 (ja)
EP (1) EP2578436A1 (ja)
JP (1) JP5452371B2 (ja)
KR (1) KR101434772B1 (ja)
CN (1) CN103097172B (ja)
WO (1) WO2011152383A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497200B1 (ko) * 2010-07-30 2015-02-27 미츠비시 쥬고교 가부시키가이샤 가선 교통 시스템 및 그 제어 방법
JP5401486B2 (ja) * 2011-02-22 2014-01-29 株式会社日立製作所 鉄道車両の駆動装置
KR101471321B1 (ko) * 2011-03-28 2014-12-09 미쓰비시덴키 가부시키가이샤 교류 모터 구동 장치
US10259444B2 (en) * 2011-06-13 2019-04-16 Ge Global Sourcing Llc Vehicle control system and method
JP5766640B2 (ja) * 2012-03-16 2015-08-19 株式会社東芝 電気車制御装置
JP5851589B2 (ja) * 2012-03-27 2016-02-03 三菱電機株式会社 蓄電デバイスの寿命診断方法
JP5452782B1 (ja) * 2013-04-09 2014-03-26 三菱電機株式会社 駆動装置
JP6122356B2 (ja) * 2013-06-27 2017-04-26 株式会社日立製作所 コンバータ制御装置
JP5905166B2 (ja) 2013-08-05 2016-04-20 三菱電機株式会社 電気車制御システムおよび電力変換装置
JP6259778B2 (ja) * 2014-02-13 2018-01-10 株式会社日立製作所 鉄道車両用駆動装置
US9446768B2 (en) * 2014-03-26 2016-09-20 Ford Global Technologies, Llc System and method for energy optimization in autonomous vehicle operation
JP6642974B2 (ja) * 2015-03-27 2020-02-12 株式会社東芝 電気車制御装置
JP6417297B2 (ja) * 2015-08-27 2018-11-07 株式会社日立製作所 鉄道車両用の電力変換装置
DE102015221266A1 (de) 2015-10-30 2017-05-04 Siemens Aktiengesellschaft Energieumwandlungseinrichtung
US10457296B2 (en) * 2016-06-03 2019-10-29 Ge Global Sourcing Llc Vehicle propulsion system and method
CN108092563B (zh) * 2016-11-21 2021-07-27 德昌电机(深圳)有限公司 电机驱动装置及应用设备
DE102017106619A1 (de) * 2017-03-28 2018-10-04 Ghh Fahrzeuge Gmbh Elektrisch angetriebenes Untertagefahrzeug, insbesondere Fahrlader
CN110014864B (zh) * 2017-12-20 2021-02-09 中车长春轨道客车股份有限公司 一种列车牵引救援方法及系统
KR102129132B1 (ko) * 2018-07-11 2020-07-01 효성중공업 주식회사 Ess 충방전 운전 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278269A (ja) * 2004-03-24 2005-10-06 Railway Technical Res Inst 車両用駆動制御装置
JP2006094613A (ja) * 2004-09-22 2006-04-06 Railway Technical Res Inst 鉄道車両システム
JP2008228359A (ja) * 2007-03-08 2008-09-25 Railway Technical Res Inst 電気車両の蓄電装置及び蓄電装置システム
JP2008228451A (ja) * 2007-03-13 2008-09-25 Hitachi Ltd 鉄道車両の駆動システム
JP2009183079A (ja) * 2008-01-31 2009-08-13 Hitachi Ltd 鉄道車両駆動装置
JP2009183078A (ja) 2008-01-31 2009-08-13 Hitachi Ltd 電気車の駆動システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502224C1 (de) * 1995-01-25 1996-02-15 Daimler Benz Ag Serieller Hybridantrieb, insbesondere für ein Kraftfahrzeug
US6612245B2 (en) * 2001-03-27 2003-09-02 General Electric Company Locomotive energy tender
US20060005736A1 (en) * 2001-03-27 2006-01-12 General Electric Company Hybrid energy off highway vehicle electric power management system and method
US7185591B2 (en) * 2001-03-27 2007-03-06 General Electric Company Hybrid energy off highway vehicle propulsion circuit
US20060005739A1 (en) * 2001-03-27 2006-01-12 Kumar Ajith K Railroad system comprising railroad vehicle with energy regeneration
US6591758B2 (en) * 2001-03-27 2003-07-15 General Electric Company Hybrid energy locomotive electrical power storage system
US20060005738A1 (en) * 2001-03-27 2006-01-12 Kumar Ajith K Railroad vehicle with energy regeneration
US6615118B2 (en) * 2001-03-27 2003-09-02 General Electric Company Hybrid energy power management system and method
US9193268B2 (en) * 2001-03-27 2015-11-24 General Electric Company Hybrid energy power management system and method
KR20030094002A (ko) * 2002-05-30 2003-12-11 엔이씨 도낀 가부시끼가이샤 하이브리드형 전원 시스템
JP4760246B2 (ja) * 2004-09-30 2011-08-31 トヨタ自動車株式会社 液圧ブレーキ装置
JP4546988B2 (ja) * 2007-04-27 2010-09-22 株式会社日立製作所 電力変換器の制御装置
US20100070117A1 (en) * 2008-09-09 2010-03-18 Industrial Railway Switching & Services, Inc. Method and Apparatus for Locomotive Apparatus
JP5425849B2 (ja) * 2011-09-14 2014-02-26 株式会社日立製作所 鉄道車両の駆動制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278269A (ja) * 2004-03-24 2005-10-06 Railway Technical Res Inst 車両用駆動制御装置
JP2006094613A (ja) * 2004-09-22 2006-04-06 Railway Technical Res Inst 鉄道車両システム
JP2008228359A (ja) * 2007-03-08 2008-09-25 Railway Technical Res Inst 電気車両の蓄電装置及び蓄電装置システム
JP2008228451A (ja) * 2007-03-13 2008-09-25 Hitachi Ltd 鉄道車両の駆動システム
JP2009183079A (ja) * 2008-01-31 2009-08-13 Hitachi Ltd 鉄道車両駆動装置
JP2009183078A (ja) 2008-01-31 2009-08-13 Hitachi Ltd 電気車の駆動システム

Also Published As

Publication number Publication date
US8924051B2 (en) 2014-12-30
US20130073125A1 (en) 2013-03-21
CN103097172A (zh) 2013-05-08
EP2578436A1 (en) 2013-04-10
KR101434772B1 (ko) 2014-08-27
KR20130014593A (ko) 2013-02-07
JP2011254594A (ja) 2011-12-15
JP5452371B2 (ja) 2014-03-26
CN103097172B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5452371B2 (ja) 鉄道車両の駆動装置
JP5558022B2 (ja) 電気車の蓄電制御装置及び蓄電制御方法
CA2740979C (en) Propulsion control apparatus for electric vehicle
CN110014836B (zh) 一种用于车辆的电气系统
US9371005B2 (en) Battery management apparatus for an electric vehicle, and method for managing same
JP4476918B2 (ja) バッテリ駆動の鉄道列車
KR101419203B1 (ko) 전기차 추진용 전력 변환 장치
KR100991460B1 (ko) 직류 전력 저장 장치
JP5902534B2 (ja) 鉄道車両の駆動装置
WO2008010281A1 (en) Controller of electric vehicle
JP2009072003A5 (ja)
CN112721958B (zh) 适合过断电区的牵引辅助系统、方法及车辆
JP2012161240A (ja) 電池駆動車両のパワーフロー制御方法および制御装置
JP2008263741A (ja) 鉄道車両におけるバッテリ用充電装置
JP6055258B2 (ja) 鉄道車両
JP2012039867A (ja) 電気車の制御装置
JP4772718B2 (ja) 鉄道車両の駆動システム
JP2001260719A (ja) 電鉄用直流き電システム
JP2009183078A (ja) 電気車の駆動システム
JP2006014489A (ja) 電気車の電力変換装置
JP5777669B2 (ja) 電気車用制御装置
JP2001320831A (ja) 電鉄用電気車
KR102512649B1 (ko) 소비전력 개선을 위한 전동차용 회생전력 저장시스템
WO2022208569A1 (ja) 電気車および電気車システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180025631.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789786

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20127031390

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011789786

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13701053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE