WO2011151969A1 - 太陽電池用バックシートおよび太陽電池モジュール - Google Patents

太陽電池用バックシートおよび太陽電池モジュール Download PDF

Info

Publication number
WO2011151969A1
WO2011151969A1 PCT/JP2011/002471 JP2011002471W WO2011151969A1 WO 2011151969 A1 WO2011151969 A1 WO 2011151969A1 JP 2011002471 W JP2011002471 W JP 2011002471W WO 2011151969 A1 WO2011151969 A1 WO 2011151969A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
solar cell
resin
thickness
Prior art date
Application number
PCT/JP2011/002471
Other languages
English (en)
French (fr)
Inventor
田中 克幸
一仁 和田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US13/701,410 priority Critical patent/US20130092235A1/en
Priority to KR1020127033622A priority patent/KR101450572B1/ko
Priority to EP11789384.2A priority patent/EP2579330B1/en
Priority to JP2012518216A priority patent/JP5702776B2/ja
Priority to CN201180026711.0A priority patent/CN102918658B/zh
Publication of WO2011151969A1 publication Critical patent/WO2011151969A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the present invention relates to a solar cell backsheet and a solar cell module including the same.
  • solar cells There are various types of solar cells, and typical examples include amorphous silicon solar cells, crystalline silicon solar cells, and dye-sensitized solar cells.
  • Silicon-based solar cells are generally composed of a surface protective material, a silicon power generation element, a back surface sealing material, a back sheet (back surface protective sheet), and the like.
  • Amorphous silicon solar cells have the advantage that the amount of silicon used is small, but are susceptible to humidity, so that there is a problem that the output decreases due to the ingress of water vapor under high humidity.
  • a back sheet excellent in moisture resistance water vapor barrier property
  • the back sheet is required to have weather resistance, heat resistance, water resistance, insulation, and corrosion resistance in addition to the function of protecting the contents such as the silicon power generation element and the lead wire by moisture resistance.
  • Adhesiveness with an ethylene-vinyl acetate copolymer (EVA) usually used as a stopper is required.
  • PVF polyvinyl fluoride
  • Aluminum foil / PVF a back sheet having a three-layer structure of polyvinyl fluoride (PVF) / aluminum foil / PVF is known and used for many years (Patent Document 1).
  • PVF polyvinyl fluoride
  • This is a back sheet having a structure in which weather resistance and insulation are imparted by a PVF film, utilizing the high water vapor barrier property of aluminum foil.
  • PVF has a problem that it has poor adhesiveness with EVA used as a back surface sealing material, and also has a problem that it is expensive.
  • Patent Document 2 a back sheet having a laminated structure of polyethylene terephthalate (PET) film / resin film / PET film deposited with metal oxide has been proposed (Patent Document 2).
  • PET polyethylene terephthalate
  • Patent Document 2 a back sheet having a laminated structure of polyethylene terephthalate (PET) film / resin film / PET film deposited with metal oxide.
  • a dry lamination method using an adhesive such as a urethane-based adhesive is generally known.
  • the dry laminating method has a problem that the adhesive strength is lowered due to hydrolysis degradation of the used adhesive, and the manufacturing cost is increased because it takes a long time for the adhesive curing reaction to be completed after bonding. There was room for improvement.
  • Patent Document 3 a back sheet using a maleic anhydride-modified polyolefin resin as an adhesive layer has been proposed (Patent Document 3), but the modified polyolefin resin is excellent in adhesiveness to polyolefin resins such as polypropylene.
  • adhesion with EVA or vapor-deposited PET was not sufficient.
  • JP 2008-235882 A Japanese Patent Laid-Open No. 2002-100788 JP 2008-270685 A
  • the problem to be solved by the present invention is that the back sheet for a solar cell is low in manufacturing cost, excellent in adhesion between constituent members, and excellent in weather resistance and water vapor barrier properties. And a solar cell module including the same.
  • the present inventors By laminating a weather-resistant film and other layers through a polyolefin resin having a specific modification, the present inventors have a solar that is excellent in both adhesiveness and water vapor barrier property while being low in production cost. The present inventors have found that a battery back sheet can be provided and completed the present invention.
  • the present invention is a solar cell backsheet comprising a first layer, a second layer, and a third layer laminated in this order, wherein the first layer is disposed at a position farthest from the solar cell element.
  • the first layer is a weather resistant film selected from the group consisting of a weather resistant polyester resin film and a fluorine resin film
  • the second layer is made of polyethylene, polypropylene, and an ethylene-propylene copolymer.
  • the back sheet for a solar cell of the present invention further includes a fourth layer laminated on the surface of the third layer opposite to the surface on which the second layer is laminated, and the fourth layer is made of polyethylene or polypropylene.
  • a modified polyolefin resin obtained by grafting 1 to 30 parts by weight of an epoxy group-containing vinyl monomer to 100 parts by weight of one or more polyolefin resins selected from the group consisting of ethylene-propylene copolymers.
  • the polyolefin layer has a thickness of 5 to 250 ⁇ m, and the total thickness of the second layer, the third layer, and the fourth layer is preferably 100 ⁇ m or more.
  • the total thickness of the second layer and the fourth layer is greater than the thickness of the third layer.
  • the third layer is a polyester film having a vapor deposition layer on one side
  • the thickness of the second layer is different from the thickness of the fourth layer
  • the vapor deposition layer is different from the second layer and the It arrange
  • the modified polyolefin resin of the fourth layer is a modified polyolefin resin obtained by grafting 0.1 to 30 parts by weight of an aromatic vinyl monomer to 100 parts by weight of the polyolefin resin. .
  • the solar cell backsheet of the present invention further includes a fifth layer laminated on a surface of the fourth layer opposite to the surface on which the third layer is laminated, and the fifth layer is a polyester resin.
  • a film selected from the group consisting of a film and a fluororesin film is preferred.
  • the third layer is a layer containing polyester, and the thickness of the second layer is larger than the thickness of the third layer.
  • the adhesive strength between the first layer and the second layer and the adhesive strength between the second layer and the third layer are 2 (N / cm) or more, and the water vapor of the solar cell backsheet
  • the transmittance (measurement conditions: 40 ° C., 90% RH) is 0.00001 to 3.0 g / (m 2 ⁇ day).
  • it is formed by extrusion lamination by extruding the resin-containing material constituting the second layer between the first layer and the film-like third layer.
  • it is formed by extrusion lamination by extruding the resin-containing material constituting the fourth layer between the film-like third layer and the fifth layer.
  • the resin-containing material constituting the second layer, the resin-containing material constituting the third layer, and the resin-containing material constituting the fourth layer on the surface of the first layer Formed by three-layer coextrusion laminate.
  • the third layer is a polyester film having a vapor deposition layer made of an inorganic substance or an inorganic oxide, and a polymer film layer laminated on the vapor deposition layer on one side.
  • the polymer film layer is made of at least one resin selected from the group consisting of polyvinylidene chloride, polyvinyl alcohol, and ethylene-vinyl alcohol copolymer.
  • the first layer is a film containing at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polyethylene fluoride, and polyethylene difluoride.
  • the present invention also relates to a solar cell module including the solar cell element and the solar cell backsheet of the present invention, wherein the first layer is disposed at a position farthest from the solar cell element.
  • the present invention includes a solar cell element and a solar cell backsheet comprising the first layer to the fourth layer of the present invention, wherein the fourth layer is in contact with the solar cell element, and the solar cell element
  • the present invention also relates to a solar cell module.
  • the solar cell backsheet of the present invention is excellent in weather resistance and water vapor barrier property, and has high adhesion strength between the constituent members, and is excellent in adhesion durability under wet heat conditions. Furthermore, there is an advantage that the manufacturing cost is low.
  • the solar cell backsheet of the present invention comprises a laminate comprising at least a first layer, a second layer, and a third layer laminated in this order.
  • the first layer in the solar cell backsheet of the present invention is a weather resistant film selected from the group consisting of a weather resistant polyester resin film and a fluorine resin film.
  • the first layer is arranged at a position farthest from the solar cell. Since the solar cell backsheet is directly exposed to the outdoors, weather resistance (UV light resistance, moisture resistance, heat resistance, salt damage resistance, etc.) is required, but the weather resistance can be improved by using a weather resistant film as the first layer. Can be provided.
  • polyester resin constituting the weather resistant polyester resin film examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN). PET and PEN are preferable, and PET is more preferable.
  • fluorine resin constituting the fluorine resin film examples include polyethylene fluoride and polyethylene difluoride (polyvinylidene fluoride, PVDF), preferably PVDF.
  • the weather-resistant polyester-based resin film a film imparted with weather resistance by blending an ultraviolet absorber or the like with the polyester-based resin, a film imparted with weather resistance by applying a fluorine-based paint on the surface of the polyester-based resin film, A vapor-deposited polyester-based resin film or a biaxially stretched polyester-based resin film in which a vapor-deposited layer made of an inorganic substance or an inorganic oxide is laminated on the surface of the polyester-based resin film can be used.
  • vapor-deposited polyester resin film examples include those obtained by laminating a vapor-deposited layer made of an inorganic substance or an inorganic oxide on a polyester-based resin film as a base material.
  • a vapor deposition layer made of an inorganic substance or an inorganic oxide a vapor deposition layer made of aluminum oxide or silicon oxide can be used.
  • the vapor deposition layer made of aluminum oxide is considered to be made of a mixture of Al, AlO, Al 2 O 3 and the like, and the ratio of these depends on manufacturing conditions.
  • the vapor deposition layer made of silicon oxide is considered to be made of a mixture of Si, SiO, SiO 2 and the like, and the ratio thereof depends on the manufacturing conditions.
  • a mixture of aluminum oxide and silicon oxide may be used, and such a mixed vapor deposition layer is generally called binary vapor deposition.
  • a vapor deposition layer made of SiN or SiON can also be used.
  • the thickness of the vapor deposition layer made of an inorganic substance or an inorganic oxide is preferably 1 to 500 nm, more preferably 5 to 300 nm, from the viewpoint of gas barrier properties and flexibility.
  • a PVD method physical vapor deposition method
  • a vacuum vapor deposition method a sputtering method, or an ion plating method
  • a CVD method chemical vapor deposition method
  • a film in which a polymer film layer (also referred to as a resin coat layer) is further laminated on a vapor deposition layer made of an inorganic substance or an inorganic oxide can be used.
  • the polymer constituting the polymer film layer include polyvinylidene chloride, polyvinyl alcohol, and ethylene-vinyl alcohol copolymer. These may be used alone or in combination.
  • a preferred embodiment of the vapor-deposited polyester resin film has a vapor-deposited layer made of silica and / or alumina, and has a water vapor permeability (measurement conditions: 40 ° C., 90% RH) of 0.00001 to 3.0 g / (m 2 There is a vapor deposited PET film that is day).
  • a polymer film layer containing at least one selected from the group consisting of polyvinylidene chloride, polyvinyl alcohol, and ethylene-vinyl alcohol copolymer is laminated on a vapor deposition layer made of silica and / or alumina.
  • a deposited PET film is particularly excellent in water vapor barrier properties, flexibility, and heat resistance.
  • the water vapor permeability of the vapor-deposited polyester-based resin film is preferably 0.00001 to 3.0 g / (m 2 ⁇ day) from the viewpoint of suppressing moisture intrusion into the cell, and is preferably 0.00001 to 1.0 g / (M 2 ⁇ day) is more preferable, and 0.00001 to 0.1 g / (m 2 ⁇ day) is further preferable.
  • a method for measuring the water vapor transmission rate the method described in JIS K 7128 is used. If the water vapor permeability is high, water penetration into the solar cell element through the solar cell back sheet cannot be suppressed, which may cause deterioration.
  • the thickness of the vapor-deposited polyester resin film is preferably 1 to 400 ⁇ m, more preferably 5 to 200 ⁇ m, from the viewpoint of a balance between water vapor barrier properties and flexibility. If it is thinner than 1 ⁇ m, the water vapor barrier property may be insufficient, and if it is thicker than 400 ⁇ m, the flexibility may be lowered.
  • a commercially available film can be used as the vapor deposition polyester resin film.
  • silica-deposited PET product name: Tech Barrier, manufactured by Mitsubishi Chemical Corporation
  • alumina-deposited PET product name: Fine Barrier, manufactured by Reiko Co., Ltd.
  • binary-deposited PET product name: Ecosia VE500, Toyobo Co., Ltd.
  • silica vapor-deposited PET product name: KET VS-10, manufactured by Daicel Value Coating Co., Ltd. coated with polyvinylidene chloride.
  • the second layer in the solar cell backsheet of the present invention is sandwiched between the first layer and the third layer.
  • the second layer is a layer formed by extrusion laminating at the time of manufacturing the back sheet, which will be described later.
  • the back sheet can also be given a predetermined water vapor barrier property. .
  • the second layer is composed of 1 to 30 parts by weight of an epoxy group-containing vinyl monomer with respect to 100 parts by weight of one or more polyolefin resins selected from the group consisting of polyethylene, polypropylene, and ethylene-propylene copolymer, and aromatics.
  • a modified polyolefin resin obtained by grafting 0.1 to 30 parts by weight of a vinyl monomer is included.
  • the modified polyolefin resin has a layer structure in which a graft chain including an epoxy group forms a submicron-order domain in a polyolefin resin matrix, thereby exhibiting a water vapor barrier property. it can.
  • the layer which consists of the said modified polyolefin resin is excellent in the adhesiveness of a 1st layer and a 3rd layer. Therefore, it is not necessary to use an adhesive that is used in conventional solar cell backsheets for bonding the first layer and the third layer.
  • the polyolefin resin in the second layer is at least one polyolefin resin selected from the group consisting of polyethylene, polypropylene, and ethylene-propylene copolymer (EPCP), and is preferably an ethylene-propylene copolymer.
  • polyethylene examples include low-density polyethylene (LDPE), high-density polyethylene (HDPE), and linear low-density polyethylene (LLDPE).
  • LDPE low-density polyethylene
  • HDPE high-density polyethylene
  • LLDPE linear low-density polyethylene
  • LDPE is preferable because it can be produced on an industrial scale at low cost.
  • the LLDPE is a low-density polyethylene into which short-chain branches have been introduced by copolymerizing ethylene and ⁇ -olefin (propylene, butene, hexene, octene, 4-methylpentene, etc.).
  • the polypropylene is preferably a soft polypropylene resin having a heat of fusion of 10 J / g or less (for example, Versify from Dow Chemical Co.).
  • ethylene propylene rubber EPR
  • EPCP ethylene-propylene copolymer
  • the EPR refers to a mixture of polyethylene and polypropylene or the like generally called a block type (for example, Prime TPO of Prime Polymer, Catalloy which is a reactor TPO of Sun Allomer).
  • the ethylene-propylene copolymer is a random combination of ethylene, propylene, and one or more selected from the group consisting of 1-butene, 1-hexene, and 1-octene added as necessary. It is a copolymer or a block copolymer. A random copolymer consisting only of ethylene and propylene is preferred.
  • the viewpoint of ensuring the necessary softness as a solar cell backsheet from the viewpoint of ensuring the necessary softness as a solar cell backsheet, the viewpoint of ensuring the required laminate processability, the viewpoint of optimizing the temperature range suitable for adhesion, and the production of modified polyolefin resins It is more preferable to use an ethylene-propylene copolymer having an ethylene content of 5 to 15% by weight from the viewpoint of sufficiently proceeding with the modification reaction of the resin during melt kneading.
  • the modified polyolefin resin in the second layer is a graft modified product obtained by grafting an epoxy group-containing vinyl monomer and an aromatic vinyl monomer to the polyolefin resin.
  • This modified product can be produced by reacting the polyolefin resin with an epoxy group-containing vinyl monomer and an aromatic vinyl monomer in the presence of a radical polymerization initiator.
  • the adhesion between the first layer and the third layer can be improved, and further, an acidic group such as a carboxyl group or a hydroxyl group and In contrast, the water vapor barrier property of the second layer is not lowered.
  • the graft ratio of the epoxy group-containing vinyl monomer reaction rate of the epoxy group-containing vinyl monomer with the polyolefin resin
  • the advantages of introduction can be reliably achieved.
  • the graft polymerization reaction for carrying out the grafting is not particularly limited, and solution polymerization, impregnation polymerization, melt polymerization and the like can be used.
  • melt polymerization is simple and preferable.
  • a polyolefin resin may be melt-kneaded in the presence of a polymerization initiator and each monomer.
  • Epoxy group-containing vinyl monomer The epoxy group-containing vinyl monomer used in the present invention is not particularly limited. , Diglycidyl allyl succinate, glycidyl p-styrenecarboxylate, allyl glycidyl ether, methallyl glycidyl ether, styrene-p-glycidyl ether, p-glycidyl styrene, 3,4-epoxy-1-butene, 3,4-epoxy-3 -Epoxy olefins such as methyl-1-butene, vinylcyclohexene monoxide and the like. These may use only 1 type and may use 2 or more types together.
  • glycidyl methacrylate and glycidyl acrylate are preferable in terms of low cost, and glycidyl methacrylate is particularly preferable.
  • the addition amount of the epoxy group-containing vinyl monomer is preferably 1 to 30 parts by weight, more preferably 1 to 15 parts by weight, with respect to 100 parts by weight of the polyolefin resin. More preferred is 1 to 5 parts by weight. If the addition amount of the epoxy group-containing vinyl monomer is too small, the adhesiveness tends not to be sufficiently improved, and if the addition amount is too large, there is a tendency that a layer having a suitable shape and appearance cannot be formed.
  • the aromatic vinyl monomer used in the present invention is not particularly limited.
  • styrene methyl styrene such as ⁇ -methyl styrene and p-methyl styrene
  • divinylbenzene monomer or divinylbenzene isomer mixture is preferable because it is inexpensive, and styrene is particularly preferable.
  • the addition amount of the aromatic vinyl monomer is preferably 0.1 to 30 parts by weight, more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the polyolefin resin, and 1 to 15 parts by weight. More preferably it is. Particularly preferred is 3 to 5 parts by weight. If the amount of the aromatic vinyl monomer added is too small, the graft ratio of the epoxy group-containing vinyl monomer to the polyolefin resin tends to be poor. Moreover, when there is too much addition amount, since the said graft ratio tends to reach a saturation region, it is not economical.
  • Radar polymerization initiator When graft copolymerizing an epoxy group-containing vinyl monomer and an aromatic vinyl monomer to a polyolefin resin, a radical polymerization initiator is added to start a polymerization reaction.
  • the radical polymerization initiator used in the present invention includes a peroxide or an azo compound.
  • ketone peroxides such as methyl ethyl ketone peroxide and methyl acetoacetate peroxide, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t- Peroxyketals such as butylperoxy) cyclohexane, n-butyl-4,4-bis (t-butylperoxy) valerate, 2,2-bis (t-butylperoxy) butane, permethane hydroperoxide, 1 , 1,3,3-tetramethylbutyl hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, and other hydroperoxides, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butyl Peroxy) hexane, ⁇ , ⁇ '-bis (t Dialkyl such as -butylperoxy-m-isopropyl
  • the addition amount of the radical polymerization initiator is 0.01 to 100 parts by weight with respect to 100 parts by weight of the polyolefin resin from the viewpoint of sufficiently proceeding the modification reaction and securing the fluidity and mechanical properties of the resulting modified product.
  • the amount is preferably 10 parts by weight, more preferably 0.2 to 5 parts by weight.
  • thermoplastic resins for the modified polyolefin resin constituting the second layer, as additives, thermoplastic resins, elastomers, tackifiers (tackifiers), plasticizers, antioxidants, metal deactivators, phosphorus processing stabilizers , UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, antacid adsorbents, radical scavengers, moisture scavengers, crosslinkers, chain transfer agents, nucleating agents, lubricants, fillers, reinforcing Materials, pigments, dyes, flame retardants, antistatic agents and the like can be added.
  • Preferred additives are tackifiers and plasticizers, and particularly preferred are tackifiers.
  • thermoplastic resin examples include acrylonitrile-butadiene-styrene copolymer, a hydride thereof, polystyrene, polyvinyl chloride, polymethyl methacrylate, polyurethane, polyester, polylactic acid, and the like.
  • elastomer examples include styrene thermoplastic elastomer (TPS), olefin thermoplastic elastomer (TPO), butyl rubber, acrylic rubber, butadiene rubber, isoprene rubber, and styrene-butadiene rubber.
  • plasticizer examples include petroleum-based process oils such as paraffinic process oil, naphthenic process oil, aromatic process oil, low molecular weight liquid polymers such as silicone oil, liquid polybutene, and liquid polyisoprene. .
  • radical scavenger examples include a phenol scavenger, a phosphorus scavenger, a sulfur scavenger, and a HALS scavenger.
  • the radical scavenger is preferably contained in the resin constituting the second layer in an amount of 0 to 3% by mass.
  • moisture scavenger examples include alkaline earth metal oxides, sulfates and silicates. Zeolite is preferred.
  • the moisture scavenger is preferably contained in the resin constituting the second layer in an amount of 0 to 20% by mass.
  • the tackifying resin i.e., tackifier
  • rosin resin for example, rosin resin (gum rosin, tall oil rosin, wood rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, maleated rosin, rosin glycerin ester Hydrogenated rosin / glycerin ester, etc.), terpene phenol resin, hydrogenated product thereof, terpene resin (mainly ⁇ -pinene, ⁇ -pinene, dipentene, etc.), hydrogenated product thereof, aromatic hydrocarbon-modified terpene resin, Petroleum resin (aliphatic, alicyclic, aromatic, etc.), coumarone / indene resin, styrene resin (styrene, substituted styrene, etc.), phenolic resin (alkylphenol resin, rosin modified phenolic resin, etc.), Examples include xylene resins. These can be used alone or in
  • a preferred tackifying resin is a low molecular weight resin having a number average molecular weight of 300 to 3000 and a softening point of 20 to 200 ° C., more preferably 60 to 150 ° C. based on the ring and ball method defined in JISK-2207. .
  • the tackifying resin used in the present invention is preferably a terpene-based resin, and because of good compatibility and heat resistance, a group consisting of a terpene phenol resin, a hydrogenated terpene resin, and a hydrogenated terpene phenol resin. 1 or more types selected more are more preferable, and hydrogenated terpene phenol resin is still more preferable from a viewpoint of ensuring transparency.
  • a terpene phenol resin having a softening point in the range of 20 ° C. to 200 ° C. and a number average molecular weight in the range of 300 to 1200 is particularly preferable because of improved compatibility and adhesive strength.
  • hydrogenated terpene resin examples include: Clearon P type manufactured by Yasuhara Chemical Co., Ltd. (hydrogenated dipentene resin, non-polar type, Clearon P-105), K type manufactured by Yashara Chemical Co., Ltd. (hydrogenated aromatic modified terpene resin) , Polar type, Clearon K-4100).
  • hydrogenated terpene phenol resin examples include YS Polyster TH130 and UH115 manufactured by Yasuhara Chemical Co., Ltd.
  • the amount of tackifying resin that can be used in the present invention is not particularly limited, but is preferably 0.1 to 50 parts by weight, more preferably 0.1 to 30 parts by weight, and more preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the modified polyolefin resin. 3 to 20 parts by weight is more preferable, and 0.5 to 10 parts by weight is particularly preferable.
  • the above additives may be added in advance to the raw material polyolefin resin, may be added during melt-kneading to modify the polyolefin resin, or may be added after the modified polyolefin resin has been produced. Good.
  • the modified polyolefin resin-containing composition constituting the second layer does not contain a silane coupling agent. This is because the silane coupling agent has difficulty in ensuring reliability due to changes with time, and may lead to a decrease in yield. By not using a silane coupling agent, the reliability of the solar cell module using the solar cell backsheet of the present invention can be improved, and it can be produced at a high yield.
  • melt-kneading examples include an extruder, a Banbury mixer, a mill, a kneader, and a heating roll. From the viewpoint of productivity, it is preferable to use a single-screw or twin-screw extruder. Moreover, in order to mix each material sufficiently uniformly, melt-kneading may be repeated a plurality of times.
  • the order and method of adding each component during melt kneading are not particularly limited, but preferably, an epoxy group-containing vinyl monomer and an aromatic vinyl monomer are added to a mixture obtained by melt kneading a polyolefin resin and a radical polymerization initiator. In addition, it is preferable to melt knead. Thereby, the production
  • the heating temperature at the time of melt kneading is preferably 100 to 300 ° C.
  • the melt kneading time (time after mixing the radical polymerization initiator) is usually 30 seconds to 60 minutes.
  • the second layer containing the modified polyolefin resin has a thickness of 5 to 250 ⁇ m. If the thickness of the second layer is less than 5 ⁇ m, sufficient adhesion and water vapor barrier properties by the second layer cannot be realized. On the other hand, when the thickness exceeds 250 ⁇ m, the time required for vacuum lamination becomes long in the process of manufacturing the solar cell module, and therefore, it cannot be practically used for a solar cell backsheet. More preferably, it is 10 to 250 ⁇ m.
  • the adhesive strength between the first layer and the second layer is preferably 2 (N / cm) or more.
  • This adhesive strength can be achieved by extrusion lamination described later.
  • the third layer is laminated to the second layer.
  • the third layer is sandwiched between the second layer and the fourth layer.
  • the second layer is selected from the group consisting of a layer containing polyester, a layer containing polyolefin, and an aluminum foil.
  • the third layer is a layer containing polyester or a layer containing polyolefin, the third layer may be formed by extrusion lamination at the time of backsheet production described later, or may be a pre-formed resin film. Good.
  • the third layer is a layer that mainly ensures water vapor barrier properties, but is not limited to this performance.
  • aluminum foil has a possibility of corrosion due to long-term use, and it is necessary to thicken another resin layer in order to ensure a withstand voltage as a back sheet.
  • the third layer is preferably a layer containing polyester or a layer containing polyolefin.
  • the total thickness of the second layer and the third layer is configured to be 20 ⁇ m or more. Thereby, it becomes possible to ensure the withstand voltage required as a solar cell backsheet. Preferably, they are 30 micrometers or more and 300 micrometers or less.
  • a layer containing polyester which is one form of the third layer it is preferable to use a weather-resistant polyester resin film.
  • a weather-resistant polyester those described for the first layer can be used.
  • polyester resin constituting the weather resistant polyester resin film examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN). PET and PEN are preferable, and PET is more preferable.
  • fluorine resin constituting the fluorine resin film examples include polyethylene fluoride and polyethylene difluoride (polyvinylidene fluoride, PVDF), preferably PVDF.
  • the weather-resistant polyester-based resin film is a film in which weather resistance is imparted by blending an ultraviolet absorber or the like with a polyester-based resin, or a vapor-deposited layer in which a vapor-deposited layer made of an inorganic substance or an inorganic oxide is laminated on the surface of the polyester-based resin film.
  • a polyester resin film (a polyester resin film having a vapor deposition layer on one side) or a biaxially stretched polyester resin film can be used.
  • vapor-deposited polyester resin film examples include those obtained by laminating a vapor-deposited layer made of an inorganic substance or an inorganic oxide on a polyester-based resin film as a base material.
  • a vapor deposition layer made of an inorganic substance or an inorganic oxide a vapor deposition layer made of aluminum oxide or silicon oxide can be used.
  • the vapor deposition layer made of aluminum oxide is considered to be made of a mixture of Al, AlO, Al 2 O 3 and the like, and the ratio of these depends on manufacturing conditions.
  • the vapor deposition layer made of silicon oxide is considered to be made of a mixture of Si, SiO, SiO 2 and the like, and the ratio thereof depends on the manufacturing conditions.
  • a mixture of aluminum oxide and silicon oxide may be used, and such a mixed vapor deposition layer is generally called binary vapor deposition.
  • a vapor deposition layer made of SiN or SiON can also be used.
  • the thickness of the vapor deposition layer made of an inorganic substance or an inorganic oxide is preferably 1 to 500 nm, more preferably 5 to 300 nm, from the viewpoint of gas barrier properties and flexibility.
  • a PVD method physical vapor deposition method
  • a vacuum vapor deposition method a sputtering method, or an ion plating method
  • a CVD method chemical vapor deposition method
  • a film in which a polymer film layer (also referred to as a resin coat layer) is further laminated on a vapor deposition layer made of an inorganic substance or an inorganic oxide can be used.
  • the polymer constituting the polymer film layer include polyvinylidene chloride, polyvinyl alcohol, and ethylene-vinyl alcohol copolymer. These may be used alone or in combination.
  • a preferred embodiment of the vapor-deposited polyester resin film has a vapor-deposited layer made of silica and / or alumina, and has a water vapor permeability (measurement conditions: 40 ° C., 90% RH) of 0.00001 to 3.0 g / (m 2 There is a vapor deposited PET film that is day).
  • a polymer film layer containing at least one selected from the group consisting of polyvinylidene chloride, polyvinyl alcohol, and ethylene-vinyl alcohol copolymer is laminated on a vapor deposition layer made of silica and / or alumina.
  • a deposited PET film is particularly excellent in water vapor barrier properties, flexibility, and heat resistance.
  • the water vapor permeability of the vapor-deposited polyester resin film (measurement conditions: 40 ° C., 90% RH) is 0.00001 to 3.0 g / (m 2 ⁇ day) from the viewpoint of preventing moisture from entering the cell. Is more preferably 0.00001 to 1.0 g / (m 2 ⁇ day), and further preferably 0.00001 to 0.1 g / (m 2 ⁇ day).
  • the method described in JIS K 7128 is used. If the water vapor permeability is high, water penetration into the solar cell element through the solar cell back sheet cannot be suppressed, which may cause deterioration.
  • the thickness of the vapor-deposited polyester resin film is preferably 1 to 400 ⁇ m, more preferably 5 to 200 ⁇ m, from the viewpoint of a balance between water vapor barrier properties and flexibility. If it is thinner than 1 ⁇ m, the water vapor barrier property may be insufficient, and if it is thicker than 400 ⁇ m, the flexibility may be lowered.
  • a commercially available film can be used as the vapor deposition polyester resin film.
  • silica-deposited PET product name: Tech Barrier, manufactured by Mitsubishi Chemical Corporation
  • alumina-deposited PET product name: Fine Barrier, manufactured by Reiko Co., Ltd.
  • binary-deposited PET product name: Ecosia VE500, Toyobo Co., Ltd.
  • silica vapor-deposited PET product name: KET VS-10, manufactured by Daicel Value Coating Co., Ltd. coated with polyvinylidene chloride.
  • the layer containing polyolefin which is another form of the third layer, can be a layer composed of the polyolefin-based resin described for the second layer.
  • the polyolefin resin layer may be a layer made of a modified polyolefin resin, like the second layer, but is preferably a layer made of an unmodified polyolefin resin. Since such a layer does not require a modification step, it is advantageous in terms of cost.
  • the polyolefin resin is at least one polyolefin resin selected from the group consisting of polyethylene, polypropylene, and ethylene-propylene copolymer (EPCP), preferably an ethylene-propylene copolymer.
  • EPCP ethylene-propylene copolymer
  • polyethylene examples include low-density polyethylene (LDPE), high-density polyethylene (HDPE), and linear low-density polyethylene (LLDPE).
  • LDPE low-density polyethylene
  • HDPE high-density polyethylene
  • LLDPE linear low-density polyethylene
  • LDPE is preferable because it can be produced on an industrial scale at low cost.
  • the LLDPE is a low-density polyethylene into which short-chain branches have been introduced by copolymerizing ethylene and ⁇ -olefin (propylene, butene, hexene, octene, 4-methylpentene, etc.).
  • the polypropylene is preferably a soft polypropylene resin having a heat of fusion of 10 J / g or less (for example, Versify from Dow Chemical Co.).
  • ethylene propylene rubber EPR
  • EPCP ethylene-propylene copolymer
  • the EPR refers to a mixture of polyethylene and polypropylene or the like generally called a block type (for example, Prime TPO of Prime Polymer, Catalloy which is a reactor TPO of Sun Allomer).
  • the ethylene-propylene copolymer is a random combination of ethylene, propylene, and one or more selected from the group consisting of 1-butene, 1-hexene, and 1-octene added as necessary. It is a copolymer or a block copolymer. A random copolymer consisting only of ethylene and propylene is preferred.
  • the ethylene content is 5 to 5 from the viewpoint of ensuring the necessary softness as the back sheet for solar cells, the viewpoint of ensuring the required laminate processability, and the temperature range suitable for adhesion. More preferably, 15% by weight of ethylene-propylene copolymer is used.
  • the thickness of the third layer containing polyolefin is preferably 30 to 600 ⁇ m. If it is thinner than 30 ⁇ m, the water vapor barrier property may be insufficient, and if it is thicker than 600 ⁇ m, the flexibility may be lowered.
  • a general soft aluminum foil can be used as the aluminum foil which is still another form of the third layer.
  • an aluminum foil having an iron content in the range of 0.1 to 9.0% by mass, preferably 0.5 to 2.0% by mass can be used. If the iron content is less than 0.1% by mass, the pinhole resistance is not sufficiently imparted, and if it exceeds 9.0% by mass, flexibility may be impaired.
  • the thickness of the aluminum foil is preferably in the range of 5 to 200 ⁇ m, preferably 15 to 100 ⁇ m in consideration of water vapor barrier properties, pinhole resistance, and workability.
  • the adhesive strength between the second layer and the third layer is preferably 2 (N / cm) or more.
  • the solar cell backsheet of the present invention may be composed of only the first layer, the second layer, and the third layer, but may further include a fourth layer.
  • the fourth layer is laminated on the surface of the third layer opposite to the surface on which the second layer is laminated, the first layer, the second layer, the third layer, and the fourth layer are They are stacked in order.
  • the fourth layer is a layer formed by extrusion laminating at the time of backsheet production described later.
  • a 4th layer is provided in order to improve the adhesiveness between a 3rd layer and a 5th layer.
  • it can also serve the role which seals a solar cell element by arrange
  • the fourth layer is composed of a modified polyolefin resin obtained by grafting an epoxy group-containing vinyl monomer to one or more polyolefin resins selected from the group consisting of polyethylene, polypropylene, and ethylene-propylene copolymers.
  • the thickness is 5 to 250 ⁇ m.
  • the material constituting the modified polyolefin resin of the fourth layer the same material as that of the modified polyolefin resin of the second layer can be used, and the description thereof is omitted.
  • the compounding amount of the aromatic vinyl monomer is 0 to 30 parts by weight with respect to 100 parts by weight of the polyolefin resin.
  • the blending amount is preferably 0.1 to 30 parts by weight.
  • the fourth layer has a thickness of 5 to 250 ⁇ m, preferably 5 to 100 ⁇ m.
  • the thickness is less than 5 ⁇ m, it becomes difficult to achieve a sufficient level of adhesion between the third layer and the fifth layer or a sealing property of the solar cell element. If it exceeds 250 ⁇ m, the flexibility may be lowered.
  • the total thickness of the second layer, the third layer, and the fourth layer is preferably 100 ⁇ m or more in order to ensure sufficient adhesion and withstand voltage. More preferably, it is 300 micrometers or more, More preferably, it is 400 micrometers or more. The upper limit of the total thickness is preferably 700 ⁇ m or less in order to ensure flexibility.
  • the total thickness of the second layer and the fourth layer is preferably larger than the thickness of the third layer. Thereby, sufficient adhesiveness between each layer is securable without using an adhesive agent separately.
  • the third layer is a polyester film having a vapor deposition layer on one side
  • the vapor deposition layer is disposed so as to face the thicker layer of the second layer and the fourth layer. It is preferable.
  • the third layer vapor deposition layer is used during the first extrusion. By coating the layer, the vapor deposition layer can be protected during the second-stage extrusion process.
  • the larger the thickness of the second layer and the fourth layer the more difficult the back sheet for solar cells is curled, and curling can be achieved by thickening the layer formed by the first-stage extrusion of the second layer and the fourth layer. It can suppress more reliably.
  • the thickness of both the second layer and the fourth layer is 90 ⁇ m
  • the thickness of the layer formed by the first-stage extrusion of the second layer and the fourth layer is 135 ⁇ m and formed by the second-stage extrusion.
  • the present inventors have found that the total thickness of the second layer and the fourth layer does not change when the thickness of the layer to be made is 45 ⁇ m, but the latter can more reliably suppress curling. . From the above, it is preferable that the third vapor deposition layer is disposed so as to face the thicker layer of the second layer and the fourth layer.
  • the solar cell backsheet of the present invention further includes a fifth layer laminated on the surface of the fourth layer opposite to the surface on which the third layer is laminated, in addition to the first layer to the fourth layer. Can be included. At this time, the first layer, the second layer, the third layer, the fourth layer, and the fifth layer are laminated in this order.
  • the fifth layer can be composed of a film selected from the group consisting of a polyester resin film and a fluorine resin film.
  • the polyester-based resin film constituting the fifth layer may be a weather-resistant polyester-based resin film similar to the first layer, or may be a normal polyester-based resin film.
  • the fifth layer is a weather resistant film, by providing this fifth layer, both sides of the solar cell back sheet are composed of weather resistant layers, so that the weather resistance of the entire back sheet can be reduced. Can be increased.
  • the fifth layer is disposed at a position close to the solar cell, it is preferable that the fifth layer be configured to reflect sunlight so that the solar cell can make maximum use of sunlight. From this viewpoint, it is preferable to add a white pigment to the weather resistant film.
  • coating, etc. are applied to the film surface for the purpose of providing adhesiveness. You may perform the process of.
  • the solar cell backsheet of the present invention has a water vapor permeability (measuring conditions: 40 ° C., 90% RH) of 0.00001 to 3.0 g / (m 2 ⁇ day) in order to achieve a high water vapor barrier property. It is preferable to show. 0.00001 to 1.0 g / (m 2 ⁇ day) is more preferable, and 0.00001 to 0.1 g / (m 2 ⁇ day) is more preferable.
  • a method for measuring the water vapor transmission rate the method described in JIS K 7128 is used.
  • method A a method for manufacturing the solar cell backsheet of the present invention using a molded film as the third layer
  • the third layer is also a molded film (resin film or aluminum foil), and the resin constituting the second layer between the first layer and the third layer
  • a solar cell backsheet is formed by extrusion lamination.
  • the resin-containing material constituting the second layer is supplied to an extruder and melted by heating.
  • the resin-containing material can be formed into a pellet or the like, and can be performed using a hot air dryer or the like.
  • the resin-containing material heated and melted in the extruder is supplied to the T die.
  • the uniformity of the extrusion amount of the material can be improved, and the thickness unevenness of the formed layer can be reduced.
  • the resin-containing material supplied to the T-die is extruded from the T-die as a sheet-like molten resin, and the sheet-like molten resin is sandwiched between the first layer and the third layer using two laminate rolls. Laminate three layers. Thereby, the first layer and the third layer are adhered by the second layer to obtain a sheet having a three-layer structure.
  • One of the two laminate rolls sandwiching the sheet-like molten resin is a rigid metal roll having a smooth surface, and the other is a flexible roll having an elastic outer cylinder having a smooth surface and capable of elastic deformation. It is preferable. With such a rigid metal roll and a flexible roll having an elastic outer cylinder, the sheet-like molten resin is sandwiched and laminated to obtain a sheet having good adhesion between each layer and surface appearance. Can do.
  • the surface temperature of the metal roll is preferably 20 ° C. or higher and more preferably 50 ° C. or higher from the viewpoint of adhesiveness.
  • the surface temperature of the metal roll is less than 20 ° C., the interlayer adhesion after lamination may be insufficient, which is not preferable. That is, the metal roll is preferably heated at the time of use.
  • the film in contact with the heated metal roll has a concern that performance (particularly, water vapor permeability) is reduced due to thermal shrinkage. Therefore, as the film that comes into contact with the metal roll, a weather-resistant film that is unlikely to deteriorate in performance due to heat shrinkage is preferable.
  • the surface temperature of the flexible roll is preferably 150 ° C. or lower, and more preferably 130 ° C. or lower.
  • the film contacting the flexible roll side is preferably a third layer.
  • the first layer or the third layer is a vapor-deposited polyester resin film
  • the vapor-deposited polyester resin film is thermally shrunk during lamination, the vapor-deposited layer may crack and the water vapor barrier property may be lowered. Accordingly, the shrinkage in the film width direction is preferably suppressed to 5% or less, and more preferably 3% or less.
  • a preferred tension is 0.01 to 100 N / m, more preferably 0.1 to 50 N / m.
  • the first layer or the third layer is a vapor-deposited polyester-based resin film
  • laminating such that the vapor-deposited layer of the film is in contact with a laminate roll or a transport roll It is desirable to handle the film so that scratches do not occur and the water vapor barrier property does not deteriorate.
  • the temperature of the resin-containing material when extruded from the T die is preferably 150 to 300 ° C, more preferably 170 to 280 ° C.
  • the temperature is lower than 150 ° C., the melt viscosity of the material is high, so that the thickness of the formed second layer may be uneven, or the interlayer adhesion after lamination may be insufficient.
  • the temperature exceeds 300 ° C., molding becomes difficult because the melt viscosity of the material is too low.
  • the laminating pressure between the metal roll and the flexible roll is not particularly limited, and can be appropriately adjusted so as to obtain a sufficient interlayer adhesion.
  • the sheet having a three-layer structure formed as described above can be used as the back sheet for a solar cell of the present invention.
  • the back extrusion sheet for a solar cell of the present invention having a five-layer structure can also be produced by subsequently repeating the same extrusion lamination and laminating the fourth layer and the fifth layer.
  • the second extrusion lamination may be performed by extruding the resin-containing material constituting the fourth layer between the fifth layer and the three-layer structure sheet formed by the first extrusion lamination described above. .
  • These two extrusion laminations can be performed continuously.
  • the conditions for the second extrusion lamination are the same as the conditions for the first extrusion lamination.
  • the above manufacturing order may be reversed. That is, a sheet having a three-layer structure composed of a third layer to a fifth layer is manufactured, and then a first layer and a second layer are further laminated to manufacture the back sheet for a solar cell of the present invention having a five-layer structure. You can also.
  • a release sheet that is used only during lamination may be used instead of the fifth layer.
  • a four-layered back sheet can be obtained by peeling off the release sheet from the obtained five-layered sheet.
  • Method B by extruding the resin-containing material constituting the second layer, the resin-containing material constituting the third layer, and the resin-containing material constituting the fourth layer on the surface of the film-like first layer, A solar cell backsheet is formed by three-layer coextrusion lamination.
  • the resin-containing material constituting the second layer, the resin-containing material constituting the third layer, and the resin-containing material constituting the fourth layer are supplied to the respective extruders, and are heated and melted.
  • the resin-containing material can be formed into a pellet or the like, and can be performed using a hot air dryer or the like.
  • each resin-containing material heated and melted in each extruder is supplied to a co-extrusion T die provided with a feed block immediately before or a multi-manifold type co-extrusion T die.
  • a gear pump is used, the uniformity of the extrusion amount of the material can be improved, and the thickness unevenness of the formed layer can be reduced.
  • the melt viscosity indicated by the three types of resin-containing materials heated and melted is set to the set temperature of the extruder so that the second layer or the fourth layer does not partially exist. It is preferable to match by such as.
  • the thickness ratio of the second layer / third layer / fourth layer is greater than 1/10/1, the thickness of the second layer and the fourth layer can be controlled in a uniform manner. It is preferable to use a manifold type coextrusion T-die.
  • each resin-containing material supplied to the co-extrusion T-die is extruded from the co-extrusion T-die as a sheet-like molten resin (three-layer co-extrusion), using two laminate rolls, the second layer to the fourth layer
  • a sheet-like molten resin having a three-layer structure composed of layers is laminated on the first layer, and four layers are laminated.
  • the first layer is disposed so as to contact the second layer.
  • a sheet having a four-layer structure in which the first to fourth layers are laminated is obtained.
  • another film can be used to obtain a sheet with a five-layer structure.
  • a sheet-like molten resin having a three-layer structure is sandwiched between the first layer and the other film, and five layers are laminated.
  • the other film may be the fifth layer described above, or may be a release sheet used only during lamination. By peeling off the release sheet after lamination, a back sheet having a four-layer structure is obtained.
  • One of the two laminate rolls sandwiching the sheet-like molten resin is a rigid metal roll having a smooth surface, and the other is a flexible roll having an elastic outer cylinder having a smooth surface and capable of elastic deformation. It is preferable. With such a rigid metal roll and a flexible roll having an elastic outer cylinder, the sheet-like molten resin is sandwiched and laminated to obtain a sheet having good adhesion between each layer and surface appearance. Can do.
  • the laminating pressure between the metal roll and the flexible roll is not particularly limited, and can be appropriately adjusted so as to obtain a sufficient interlayer adhesion.
  • the surface temperature of the metal roll is preferably 30 ° C. or higher from the viewpoint of increasing the interlayer adhesion after lamination. That is, the metal roll is preferably heated at the time of use.
  • the film in contact with the heated metal roll has a concern that the performance is deteriorated due to heat shrinkage. Therefore, as the film that comes into contact with the metal roll, a weather-resistant film that is unlikely to deteriorate in performance due to heat shrinkage is preferable.
  • the surface temperature of the flexible roll is preferably 100 ° C. or lower so that the thermal contraction of the film in contact with the roll does not become too great and the performance is deteriorated. Therefore, a weather resistant film is preferable as the film that contacts the flexible roll side.
  • the first layer is a vapor-deposited polyester-based resin film
  • the vapor-deposited layer may crack and the water vapor barrier property may be lowered. Accordingly, the shrinkage in the film width direction is preferably suppressed to 5% or less, and more preferably 3% or less.
  • a preferred tension is 0.01 to 100 N / m, more preferably 0.1 to 50 N / m.
  • the first layer is a vapor-deposited polyester resin film
  • the lamination is performed such that the vapor-deposited layer of the film is in contact with the laminate roll or the transport roll, the vapor-deposited layer is scratched by friction with the laminate roll or the like. It is desirable to handle the film so that the water vapor barrier property does not deteriorate.
  • the temperature of each resin-containing material when extruded from the T die is preferably 150 to 300 ° C., more preferably 170 to 280 ° C.
  • the temperature is lower than 150 ° C., the melt viscosity of the material is high, so that the thickness of the formed second layer may be uneven, or the interlayer adhesion after lamination may be insufficient.
  • the temperature exceeds 300 ° C., molding becomes difficult because the melt viscosity of the material is too low.
  • the solar cell backsheet of the present invention can be combined with a solar cell element to constitute a solar cell module.
  • the first layer is arranged at a position farthest from the solar cell element.
  • the layer closest to the solar cell is the third layer when the backsheet is composed of the first layer to the third layer, and is the fourth layer when the backsheet is composed of the first layer to the fourth layer. Is composed of the first layer to the fifth layer, it is the fifth layer.
  • the layer closest to the solar cell is the third layer or the fifth layer
  • the surface of the outermost layer is sealed with a separately prepared sealing material (for example, ethylene-vinyl alcohol copolymer).
  • a battery element is disposed.
  • a primer coat layer may be provided on the outer surface of the third layer or the fifth layer in order to enhance the adhesion with the sealing material.
  • the primer coat layer is not particularly limited, but may be a layer made of an ethylene-vinyl alcohol copolymer used as a sealing material, or a modified polyolefin resin used in the second layer or the fourth layer. The layer which consists of may be sufficient.
  • a solar cell element sealed with a separately prepared sealing material may be disposed on the surface of the fourth layer, as described above, but preferably
  • the fourth layer and the solar cell element are in direct contact without interposing another sealing material, and the fourth layer functions as a sealing material for the solar cell element. That is, when the back sheet is composed of the first layer to the fourth layer, the fourth layer composed of the modified polyolefin resin can also function as a sealing material for the solar cell element. There is no need to separately arrange a sealing material between the two. In this form, since the back sheet and the sealing material are integrally formed, the productivity of the solar cell module is excellent.
  • the solar cell backsheet of the present invention can be suitably used for any solar cell, but can be particularly suitably used for amorphous silicon solar cells, crystalline silicon solar cells, hybrid solar cells and the like. Moreover, although it does not specifically limit as a solar cell installation place, For example, on a roof; Rooftop or wall surfaces, such as a building, a factory, a school, a public facility, a coast, a desert area, etc. are mentioned.
  • the first embodiment of the present invention is a weather resistant polyester resin film (first layer) / modified polyolefin resin layer (second layer) / deposition polyester resin film (third layer) / modified polyolefin resin layer (first layer). It is a back sheet for solar cells having a five-layer structure comprising a (four layers) / weather-resistant polyester resin film (fifth layer). Solar cells are arranged on the fifth layer side. This form can ensure a high water vapor barrier property due to the presence of the third layer.
  • a primer coat layer may be further provided on the outer surface (surface opposite to the fourth layer) of the fifth layer of the weather-resistant polyester-based resin film in order to enhance the adhesion to the sealing material of the solar cell element. preferable.
  • the vapor deposition layer of the vapor deposition polyester-type resin film of the 3rd layer may face the 2nd layer, and may face the 4th layer.
  • the vapor deposition layer is preferably disposed so as to face the thicker layer of the second layer and the fourth layer from the viewpoint of vapor deposition layer protection and curling suppression of the backsheet.
  • aluminum foil can be used instead of the vapor-deposited polyester resin film.
  • the first embodiment can be preferably manufactured by the method A described above.
  • the second embodiment of the present invention is a three-layer solar comprising a weatherable polyester resin film (first layer) / modified polyolefin resin layer (second layer) / weather resistant polyester resin film (third layer). It is a battery backsheet. A solar cell is disposed on the third layer side.
  • Fluorine paint can be further applied to the outer surface (surface opposite to the second layer) of the weather-resistant polyester resin film of the first layer to enhance the weather resistance.
  • a primer coat layer may be further provided on the outer surface (surface opposite to the second layer) of the weather-resistant polyester-based resin film of the third layer in order to enhance the adhesion to the sealing material of the solar cell element. preferable.
  • the thickness of the second layer is preferably larger than the thickness of the third layer. This is to secure a considerable thickness as the whole back sheet in order to achieve the withstand voltage required for the back sheet for solar cells.
  • the thickness of the second layer is preferably 100 ⁇ m or more, and more preferably 150 ⁇ m or more. Moreover, since the second layer is thus thick, the water vapor barrier property required as a solar cell backsheet can be achieved.
  • the second embodiment can be suitably manufactured by the method A described above.
  • a weather resistant polyester resin film (first layer) / modified polyolefin resin layer (second layer) / resin layer in which an unmodified polyolefin constitutes a resin component (third layer) /
  • a solar cell backsheet having a four-layer structure comprising a modified polyolefin resin layer (fourth layer).
  • the second layer, the third layer, and the fourth layer are made of an olefin-based resin, it is possible to ensure the water vapor barrier property that is necessary for the solar cell backsheet.
  • the solar cell element is arranged so as to be in direct contact with the surface of the fourth layer. In this case, it is not necessary to arrange a sealing material for sealing the solar cell element between the solar cell element and the fourth layer.
  • the fourth layer functions as a sealing material for the solar cell element. That is, the solar cell backsheet of this embodiment is not a mere backsheet but also has a function as a sealing material for solar cell elements.
  • Fluorine paint can be further applied to the outer surface (surface opposite to the second layer) of the weather-resistant polyester resin film of the first layer to enhance the weather resistance.
  • the third embodiment can be preferably manufactured by the method B described above.
  • First layer Weather resistant film
  • Second layer Modified polyolefin obtained by grafting 1 to 30 parts by weight of an epoxy group-containing vinyl monomer and 3 to 5 parts by weight of an aromatic vinyl monomer to 100 parts by weight of a polyolefin resin
  • Layer 3 of 5 to 100 ⁇ m thick layer made of unmodified polyolefin
  • Layer 4 of 90 to 600 ⁇ m thick layer Epoxy group-containing vinyl monomer 1 with respect to 100 parts by weight of polyolefin resin
  • the fourth layer in this embodiment uses an aromatic vinyl monomer.
  • the amount of the aromatic vinyl monomer used in the fourth layer of the third embodiment is more preferably 0 to 1 part by weight, and more preferably 0 part by weight.
  • Example 1 (Examples 1 to 9 and Comparative Example 1) The evaluation methods in Examples 1 to 9 and Comparative Example 1 are shown below.
  • Adhesive strength between all the films constituting the laminated film is 2 N / cm or more
  • X Adhesive strength between all the films constituting the laminated film is less than 2 N / cm
  • the tensile strength was also measured for the laminated film before light irradiation, the strength retention after light irradiation was calculated, and the superiority or inferiority was judged according to the following criteria.
  • Strength retention after light irradiation is 90% or more
  • Strength retention after light irradiation is 70% or more
  • Strength retention after light irradiation is less than 70%
  • JIS K7126-1 differential pressure method
  • the conditions of integral molding were 170 ° C., degassing time 3.5 minutes, press pressure 1 kg / cm 2 , and press time 3.5 minutes.
  • the obtained solar cell module was further heated in an oven at 150 ° C. for 120 minutes to crosslink EVA.
  • the produced solar cell module was irradiated with pseudo-sunlight with an irradiation intensity of 1000 mW / cm 2 by using a solar simulator whose spectrum was adjusted to AM 1.5, and the open voltage [V] of the solar cell and per 1 cm 2 .
  • the nominal maximum output operating current [A] and the nominal maximum output operating voltage [V] were measured. From these products, the initial value of the nominal maximum output [W] (JIS C8911 1998) was determined.
  • the nominal maximum output [W] was determined for the solar cell module after being left in the same manner as above, and the superiority or inferiority of the heat and humidity resistance was determined.
  • the judgment of superiority or inferiority was made according to the following criteria. ⁇ : The value obtained by dividing the nominal maximum output after the 1000 hour heat and humidity resistance test by the initial value is 0.9 or more. ⁇ : The value obtained by dividing the nominal maximum output after the 1000 hour heat and humidity resistance test by the initial value is 0.8 or more.
  • the value obtained by dividing the nominal maximum output after the 1000 hour heat and humidity resistance test by the initial value is less than 0.8.
  • evaluation of crystal module heat and humidity resistance On a 6-inch square glass plate (thickness 3.2 mm, manufactured by Nippon Sheet Glass Co., Ltd.), a commercially available EVA sheet for sealing solar cells of the same size (manufactured by Sunvic: Ultra Pearl, 0.40 mm thickness) and 5 inches Square-sized crystalline Si solar cell element, 6-inch square-size EVA sheet for solar cell sealing, and laminated film cut into 6-inch square size so that the weather-resistant film is located outside (upper side) Are listed in this order.
  • a crystalline silicon solar cell module was obtained by integral molding with a vacuum laminator (Spi-Laminator).
  • the conditions of integral molding were 170 ° C., degassing time 3.5 minutes, press pressure 1 kg / cm 2 , and press time 3.5 minutes.
  • the obtained solar cell module was further heated in an oven at 150 ° C. for 120 minutes to crosslink EVA.
  • the produced solar cell module was irradiated with pseudo-sunlight with an irradiation intensity of 1000 mW / cm 2 by using a solar simulator whose spectrum was adjusted to AM 1.5, and the open voltage [V] of the solar cell and per 1 cm 2 .
  • the nominal maximum output operating current [A] and the nominal maximum output operating voltage [V] were measured. From these products, the initial value of the nominal maximum output [W] (JIS C8911 1998) was determined.
  • the nominal maximum output [W] was determined for the solar cell module after being left in the same manner as above, and the superiority or inferiority of the heat and humidity resistance was determined.
  • the judgment of superiority or inferiority was made according to the following criteria. ⁇ : The value obtained by dividing the nominal maximum output after the 1000 hour heat and humidity resistance test by the initial value is 0.9 or more. ⁇ : The value obtained by dividing the nominal maximum output after the 1000 hour heat and humidity resistance test by the initial value is 0.8 or more.
  • the value obtained by dividing the nominal maximum output after the 1000 hour heat and humidity resistance test by the initial value is less than 0.8 (Preparation Example 1) After premixing 15 parts by weight of a curable TFE copolymer (Zeffle GK570, manufactured by Daikin Industries, Ltd.), 35 parts by weight of a white pigment (commercially available titanium oxide) and 15 parts by weight of butyl acetate, glass 50 parts by weight of the beads were added and dispersed with a pigment disperser at 1000 rpm for 3 hours.
  • a curable TFE copolymer Zeffle GK570, manufactured by Daikin Industries, Ltd.
  • a white pigment commercially available titanium oxide
  • butyl acetate glass 50 parts by weight of the beads were added and dispersed with a pigment disperser at 1000 rpm for 3 hours.
  • the glass beads were filtered through a mesh, and 30 parts by weight of a curable TFE copolymer (Zeffle GK570) and 10 parts by weight of butyl acetate were added to the solution to prepare a fluorine-based paint 1.
  • a curable TFE copolymer Zeffle GK570
  • Fluorine paint 2 was prepared by adding 15 parts by weight of a curing agent (commercial isocyanate curing agent) to 100 parts by weight of the obtained “fluorine paint 1”.
  • (Production Example 4) Apply the fluorine-based paint 2 prepared in Preparation Example 1 on one side of a transparent weather-resistant PET film (Shine Beam K1653, manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m, transparent) with a gravure coater so that the film thickness after drying is 10 ⁇ m. And dried at 120 ° C. for 3 minutes to prepare a fluorine-based paint-coated weather-resistant PET film.
  • a transparent weather-resistant PET film Shine Beam K1653, manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m, transparent
  • Example 1 The modified olefin obtained in Production Example 1 was dried at 60 ° C. for 15 hours, and then extruded at 270 ° C. using a 110 mm ⁇ single screw extruder and a 700 mm wide T-die to obtain a sheet-like molten resin having a thickness of 90 ⁇ m. .
  • a vapor-deposited PET film 1 an organic-inorganic hybrid coat layer was provided on alumina and silica binary vapor-deposited PET so that the vapor-deposited layer was in contact with the molten resin, and a special treatment was performed thereon.
  • White weather resistance which is an insulating film in which an EVA easy-adhesion layer is coated on the other side with a film, thickness of 12 ⁇ m, water vapor transmission rate (40 ° C., 90% RH) 0.07 g / (m 2 ⁇ day))
  • a PET film (Shine Beam CA004, manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m, white) is laminated while being sandwiched between a metal roll heated to 80 ° C.
  • the modified olefin dried by the above method was extruded at 270 ° C. using a 110 mm ⁇ single screw extruder and a 700 mm wide T-die to obtain a sheet-like molten resin having a thickness of 90 ⁇ m.
  • the laminated film intermediate is placed so that the PET surface of the vapor-deposited PET film is in contact with the molten resin, and on the other side, the fluorine-based paint-coated weather-resistant PET film obtained in Production Example 4 ( However, the laminated film (EVA easy adhesion layer (primer coat)) is laminated while sandwiching the weather-resistant PET surface in contact with the molten resin between a metal roll heated to 80 ° C.
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and thin film module heat and moisture resistance of the obtained laminated film.
  • Vapor-deposited PET film 1 is vapor-deposited PET film 2 (alumina, silica binary vapor-deposited PET film with an organic-inorganic hybrid coating layer, thickness 12 ⁇ m, water vapor permeability (40 ° C., 90% RH) 0.1 g / (m 2 ⁇ day)), a laminated film was obtained in the same manner as in Example 1.
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and thin film module heat and moisture resistance of the obtained laminated film.
  • Example 3 Instead of an insulating film coated with an EVA easy-adhesion layer, a white weather-resistant PET film (weather-resistant PET film, Shine Beam CA003, manufactured by Toyobo, thickness 50 ⁇ m, white) that is not coated with an EVA easy-adhesion layer is laminated. Except that the surface of the white weather-resistant PET film of the film was laminated with a 5 ⁇ m thick sheet-like molten resin obtained by extruding the modified olefin at 270 ° C. using a 110 mm ⁇ single screw extruder and a 700 mm wide T-die. A laminated film was obtained in the same manner as in Example 1. In this laminated film, the layer made of the modified olefin on the surface of the weather resistant PET film corresponds to the primer coat layer.
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and thin film module heat and moisture resistance of the obtained laminated film.
  • Example 4 A laminated film was obtained in the same manner as in Example 3 except that the vapor-deposited PET film 1 was changed to the vapor-deposited PET film 2 used in Example 2.
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and thin film module heat and moisture resistance of the obtained laminated film.
  • Example 5 The modified olefin obtained in Production Example 1 was dried at 60 ° C. for 15 hours, and then extruded at 270 ° C. using a 110 mm ⁇ single-screw extruder and a 700 mm wide T-die to obtain a sheet-like molten resin having a thickness of 200 ⁇ m. .
  • One side of this sheet-like molten resin is coated with the fluorine paint-coated weather-resistant PET film obtained in Production Example 2 so that the weather-resistant PET surface is in contact with the molten resin, and the other surface is coated with an EVA easy adhesion layer.
  • a white weather-resistant PET film (Shine Beam CA004, manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m, white) is laminated while being sandwiched between a metal roll heated to 80 ° C. and a silicon rubber film roll heated to 40 ° C.
  • a laminated film (EVA easy adhesion layer (primer coat) / white weather-resistant PET film (third layer) / modified olefin layer (second layer) / weather-resistant PET film (first layer) / fluorine-based paint) was obtained.
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and crystal module heat and moisture resistance of the obtained laminated film.
  • Example 6 The modified olefin obtained in Production Example 1 was dried at 60 ° C. for 15 hours, and then extruded at 270 ° C. using a 110 mm ⁇ single screw extruder and a 700 mm wide T-die to obtain a sheet-like molten resin having a thickness of 100 ⁇ m. .
  • One side of this sheet-like molten resin is coated with the fluorine paint-coated weather-resistant PET film obtained in Production Example 2 so that the weather-resistant PET surface is in contact with the molten resin, and the other surface is coated with an EVA easy adhesion layer.
  • a white weather-resistant PET film weather-resistant PET film, Shine Beam CA003, manufactured by Toyobo, thickness 50 ⁇ m, white
  • a metal roll heated to 80 ° C. and a silicon rubber film roll heated to 40 ° C.
  • Lamination was performed to obtain a laminated film intermediate (white weather-resistant PET film (third layer) / modified olefin layer (second layer) / weather-resistant PET film (first layer) / fluorine-based paint).
  • a sheet-like molten resin having a thickness of 100 ⁇ m obtained by extruding the modified olefin at 270 ° C. using a 110 mm ⁇ single screw extruder and a 700 mm wide T-die is laminated on the white weather-resistant PET film surface of the laminated film intermediate.
  • a laminated film modified olefin layer (fourth layer) / white weather-resistant PET film (third layer) / modified olefin (second layer) / weather-resistant PET film (first layer) / fluorine-based paint layer) was obtained.
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and crystal module heat and moisture resistance of the obtained laminated film.
  • Example 7 A laminated film was obtained in the same manner as in Example 1 except that an aluminum foil (thickness 30 ⁇ m, manufactured by Toyo Aluminum) was used instead of the vapor-deposited PET film.
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and thin film module heat and moisture resistance of the obtained laminated film.
  • Example 8 A laminated film in the same manner as in Example 1 except that a white weather-resistant PET film (weather-resistant PET film, Shine Beam CA003, manufactured by Toyobo, thickness 50 ⁇ m, white) was used instead of the fluorine-based paint-coated weather-resistant PET film.
  • a white weather-resistant PET film weather-resistant PET film, Shine Beam CA003, manufactured by Toyobo, thickness 50 ⁇ m, white
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and thin film module heat and moisture resistance of the obtained laminated film.
  • Example 9 A laminated film in the same manner as in Example 5 except that a white weather-resistant PET film (weather-resistant PET film, Shine Beam CA003, manufactured by Toyobo, thickness 50 ⁇ m, white) was used instead of the fluorine-based paint-coated weather-resistant PET film.
  • a white weather-resistant PET film weather-resistant PET film, Shine Beam CA003, manufactured by Toyobo, thickness 50 ⁇ m, white
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and crystal module heat and moisture resistance of the obtained laminated film.
  • Comparative Example 1 A laminated film in the same manner as in Example 1 except that a non-weather-resistant white PET film (PET film, Krisper K1212, manufactured by Toyobo, thickness 50 ⁇ m, white) was used instead of the fluorine-based paint-coated weather-resistant PET film. Got.
  • PET film PET film, Krisper K1212, manufactured by Toyobo, thickness 50 ⁇ m, white
  • Table 1 shows the film-to-film adhesive strength, appearance after light irradiation and strength retention, water vapor permeability, and thin film module heat and moisture resistance of the obtained laminated film.
  • Examples 1 to 9 use a weather resistant film as the first layer, the appearance and strength retention after light irradiation are superior to those of Comparative Example 1 in which no weather resistant film is used.
  • Example 11 to 16 and Comparative Examples 11 to 14 The evaluation methods in Examples 11 to 16 and Comparative Examples 11 to 14 are shown below.
  • Example 11 The modified olefin obtained in Production Example 1 was dried at 60 ° C. for 15 hours, and then extruded at 270 ° C. using a 110 mm ⁇ single screw extruder and a 700 mm wide T-die to obtain a sheet-like molten resin having a thickness of 90 ⁇ m. .
  • a vapor-deposited PET film 1 an organic-inorganic hybrid coat layer was provided on alumina and silica binary vapor-deposited PET so that the vapor-deposited layer was in contact with the molten resin, and a special treatment was performed thereon.
  • White weather resistance which is an insulating film in which an EVA easy-adhesion layer is coated on the other side with a film, thickness of 12 ⁇ m, water vapor transmission rate (40 ° C., 90% RH) 0.07 g / (m 2 ⁇ day))
  • a PET film (Shine Beam CA004, manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m, white) is laminated while sandwiched between a metal roll heated to 80 ° C. and a silicon rubber film roll heated to 40 ° C.
  • Adhesive layer (primer coat) / white weather-resistant PET film (fifth layer) / modified olefin layer (fourth layer) / deposition PET film (third layer) ) was obtained.
  • the modified olefin dried by the above method was extruded at 270 ° C. using a 110 mm ⁇ single screw extruder and a 700 mm wide T-die to obtain a sheet-like molten resin having a thickness of 90 ⁇ m.
  • a laminated film intermediate is placed on one side of this sheet-like molten resin so that the PET surface of the vapor-deposited PET film is in contact with the molten resin, and a transparent weather-resistant PET film (Shine Beam K1653, manufactured by Toyobo, 50 ⁇ m thick) on the other side. And transparent) are laminated while sandwiched between a metal roll heated to 80 ° C.
  • Table 2 shows the film-to-film adhesive strength, EVA adhesive strength, water vapor permeability, and thin film module heat and humidity resistance of the obtained laminated film.
  • Vapor-deposited PET film 1 is vapor-deposited PET film 2 (alumina, silica binary vapor-deposited PET film with an organic-inorganic hybrid coating layer, thickness 12 ⁇ m, water vapor permeability (40 ° C., 90% RH) 0.1 g / (m 2 ⁇ day)), a laminated film was obtained in the same manner as in Example 11.
  • Table 2 shows the film-to-film adhesive strength, EVA adhesive strength, water vapor permeability, and thin film module heat and humidity resistance of the obtained laminated film.
  • Example 13 A laminated film was obtained in the same manner as in Example 11 except that the transparent weather-resistant PET film was changed to a PVDF (polyvinylidene fluoride) film (Kayner film (trade name), manufactured by Arkema, thickness 30 ⁇ m).
  • PVDF polyvinylidene fluoride
  • Example 14 A laminated film was obtained in the same manner as in Example 11 except that the vapor-deposited PET film 1 was changed to the vapor-deposited PET film 2 and the transparent weather-resistant PET film was changed to a PVDF film.
  • Table 2 shows the film-to-film adhesive strength, EVA adhesive strength, water vapor permeability, and thin film module heat and humidity resistance of the obtained laminated film.
  • Example 15 Instead of an insulating film coated with an EVA easy-adhesion layer, a white weather-resistant PET film (weather-resistant PET film, Shine Beam CA003, manufactured by Toyobo, thickness 50 ⁇ m, white) that is not coated with an EVA easy-adhesion layer is laminated. Except for laminating a sheet-like molten resin having a thickness of 5 ⁇ m obtained by extruding the modified olefin at 270 ° C. using a 110 mm ⁇ single screw extruder and a 700 mm wide T-die on the surface of the white weather-resistant PET film of the film. A laminated film was obtained in the same manner as in Example 11. In this laminated film, the layer made of the modified olefin on the surface of the weather resistant PET film corresponds to the primer coat layer.
  • Table 2 shows the film-to-film adhesive strength, EVA adhesive strength, water vapor permeability, and thin film module heat and humidity resistance of the obtained laminated film.
  • Example 16 A laminated film was obtained in the same manner as in Example 15 except that the deposited PET film 1 was changed to the deposited PET film 2.
  • Table 2 shows the film-to-film adhesive strength, EVA adhesive strength, water vapor permeability, and thin film module heat and humidity resistance of the obtained laminated film.
  • Table 2 shows the film-to-film adhesive strength, EVA adhesive strength, water vapor permeability, and thin film module heat and humidity resistance of the obtained laminated film.
  • Example 12 A laminated film was obtained in the same manner as in Example 11 except that the styrene-only modified olefin obtained in Production Example 2 was used instead of the modified olefin constituting the second layer and the fourth layer.
  • Table 2 shows the film-to-film adhesive strength, EVA adhesive strength, water vapor permeability, and thin film module heat and humidity resistance of the obtained laminated film.
  • Table 2 shows the film-to-film adhesive strength, EVA adhesive strength, water vapor permeability, and thin film module heat and humidity resistance of the obtained laminated film.
  • Example 14 A laminated film was obtained in the same manner as in Example 11 except that a propylene-ethylene copolymer (Versify 3401, MFR8, manufactured by Dow Chemical) was used instead of the modified olefin constituting the second layer and the fourth layer.
  • a propylene-ethylene copolymer Versify 3401, MFR8, manufactured by Dow Chemical
  • Table 2 shows the film-to-film adhesive strength, EVA adhesive strength, water vapor permeability, and thin film module heat and humidity resistance of the obtained laminated film.
  • Example 21 to 26 The evaluation methods in Examples 21 to 26 are shown below.
  • Example 21 The modified olefin obtained in Production Example 1 was dried at 60 ° C. for 15 hours, and then extruded as a sheet-like molten resin having a thickness of 50 ⁇ m at 200 ° C. using a 40 mm ⁇ single screw extruder and a 400 mm wide T-die.
  • a vapor-deposited PET film (Ecosia VE500, manufactured by Toyobo Co., Ltd., thickness 12 ⁇ m, water vapor transmission rate (40 ° C., 90% RH) 0.6 g / (m 2 ⁇ day)
  • a weather-resistant film weather-resistant PET film, Shine Beam, manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m
  • a three-layer laminated film of weather-resistant PET film (first layer) / modified olefin layer (second layer) / deposition PET film (third layer) was obtained.
  • the vapor-deposited PET film was laminated so as to come into contact with the silicon rubber film roll.
  • Table 3 shows the interlaminar adhesive strength, water vapor transmission rate, and shrinkage rate of the deposited PET film of the obtained laminated film.
  • Example 22 A laminated film was obtained in the same manner as in Example 21 except that the T-die extrusion temperature of the modified olefin was changed to 250 ° C.
  • Table 3 shows the adhesive strength between films, the water vapor permeability, and the shrinkage rate of the deposited PET film of the obtained laminated film.
  • Example 23 A laminated film was obtained in the same manner as in Example 21 except that the T-die extrusion temperature of the modified olefin was changed to 250 ° C and the temperature of the metal roll was changed to 100 ° C.
  • Table 3 shows the adhesive strength between films, the water vapor permeability, and the shrinkage rate of the deposited PET film of the obtained laminated film.
  • Example 24 Laminated film in the same manner as in Example 21, except that the T-die extrusion temperature of the modified olefin was changed to 250 ° C. and 10 parts by weight of a tackifier (YS Polystar T130, manufactured by Yasuhara Chemical) was added to the modified olefin and extruded.
  • Table 3 shows the adhesive strength between films, the water vapor permeability, and the shrinkage rate of the deposited PET film of the obtained laminated film.
  • Example 25 A laminated film was obtained in the same manner as in Example 21 except that the T-die extrusion temperature of the modified olefin was changed to 250 ° C and the temperature of the silicon rubber film roll was changed to 120 ° C.
  • Table 3 shows the adhesive strength between films, the water vapor permeability, and the shrinkage rate of the deposited PET film of the obtained laminated film.
  • Example 26 A laminated film was obtained in the same manner as in Example 21 except that the temperature of the metal roll and the temperature of the silicon rubber film roll were changed to 20 ° C.
  • Table 3 shows the adhesive strength between films, the water vapor permeability, and the shrinkage rate of the deposited PET film of the obtained laminated film.
  • the adhesive strength is high, the thermal shrinkage of the vapor deposited PET is suppressed, and the water vapor permeability of the vapor deposited PET film before lamination is maintained.
  • Example 31 to 38 The evaluation methods in Examples 31 to 38 are shown below.
  • It is difficult to peel by hand and the sheet is integrated
  • Can be peeled by hand [Measurement of adhesive strength between sheet C and crystal cell]
  • a glass plate of 5 inch square size thickness 3.2 mm, manufactured by Nippon Sheet Glass Co., Ltd.
  • a commercially available EVA sheet for sealing solar cells of the same size manufactured by Sunvic: Ultra Pearl, 0.40 mm thickness
  • 5 inches Square crystal Si solar cell elements and laminated films cut into 5 inch square sizes were placed in this order so that the weather resistant film was located on the outside (upper side).
  • a test piece for evaluation was obtained by integral molding with a vacuum laminator (Spi-Laminator).
  • the conditions of integral molding were 170 ° C., degassing time 3.5 minutes, press pressure 1 kg / cm 2 , and press time 3.5 minutes.
  • the superiority or inferiority of the adhesive strength when the edge of the laminated film of the obtained test piece was peeled by hand was judged according to the following criteria. ⁇ : Difficult to peel by hand or crystal cell breaks ⁇ : Can be peeled by hand but has strong peeling power ⁇ : Can be peeled by hand [Measurement of water vapor permeability] The water vapor permeability was measured in the same manner as described above.
  • the conditions for integral molding were 135 ° C., degassing time 3.5 minutes, press pressure 1 kg / cm 2 , and press time 3.5 minutes.
  • the obtained solar cell module was further heated in an oven at 150 ° C. for 120 minutes to crosslink EVA.
  • the produced solar cell module was irradiated with pseudo-sunlight with an irradiation intensity of 1000 mW / cm 2 by using a solar simulator whose spectrum was adjusted to AM 1.5, and the open voltage [V] of the solar cell and per 1 cm 2 .
  • the nominal maximum output operating current [A] and the nominal maximum output operating voltage [V] were measured. From these products, the initial value of the nominal maximum output [W] (JIS C8911 1998) was determined.
  • the solar cell module is allowed to stand for 2000 hours in an environment of a temperature of 85 ° C. and a humidity of 85% RH, and a heat and humidity resistance test is performed.
  • a heat and humidity resistance test is performed.
  • the superiority or inferiority of the heat and humidity resistance was determined. The judgment of superiority or inferiority was made according to the following criteria.
  • The value obtained by dividing the nominal maximum output after the 2000 hour heat and humidity resistance test by the initial value is 0.9 or more.
  • The value obtained by dividing the nominal maximum output after the 2000 hour heat and humidity resistance test by the initial value is 0.8 or more.
  • the value obtained by dividing the nominal maximum output after the 2000 hour heat and humidity resistance test by the initial value is less than 0.8 (Example of producing modified olefin)
  • the modified olefin obtained by the method described in Production Example 1 is designated as AR1.
  • the modified olefins AR2 to AR4 and CR1 to CR4 were produced in the same manner as in Production Example 1 except that the type of resin component, the amount of polymerization initiator perbutyl P used, or the amount of each monomer used was changed. Used in examples.
  • unmodified polyolefin was used as polyolefins BR1 and BR2 in the following examples.
  • Table 4 shows the composition of each modified olefin and polyolefin.
  • EPCP is an ethylene-propylene copolymer (manufactured by Dow Chemical: Versify 3401.05)
  • Perbutyl P is a radical polymerization initiator 1,3-di (t-butylperoxyisopropyl) benzene (manufactured by NOF Corporation: perbutyl P, 1 minute half-life 175 ° C.)
  • styrene is a styrene monomer (manufactured by Nippon Oxirane)
  • GMA is glycidyl methacrylate (manufactured by NOF Corporation: Bremer G).
  • pellets of polyolefin resin composition BRC3 were produced with the compositions shown in Table 5 and used in the following examples.
  • AR1 to AR4, BR1, and CR1 to CR4 in Table 4 were used as modified polyolefin resin compositions ARC1 to ARC4, BRC1, and CRC1 to CRC4 in the following examples.
  • titanium oxide is titanium (IV) oxide (manufactured by Sakai Chemical Industry Co., Ltd .: D-918).
  • Example 31 Using an extruder corresponding to the three types of resin compositions of modified polyolefin resin compositions ARC1, CRC1 and polyolefin resin composition BRC1, a molten resin was applied to a 400 mm wide co-extrusion T-die provided with a feed block immediately before. It was supplied and extruded as a three-layer sheet-like molten resin. A laminated film was obtained by laminating a weather-resistant PET film (Shine Beam K1653, manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m) on the ARC1 side of the three-layer sheet while being sandwiched between a metal roll and a silicon rubber film roll.
  • a weather-resistant PET film Shine Beam K1653, manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m
  • Table 6 shows the evaluation results of the film-to-film adhesive strength, water vapor permeability, and crystal module heat resistance and humidity resistance of the obtained laminated film.
  • Examples 32-38 A laminated film was obtained in the same manner as in Example 31 except that the types of the modified polyolefin resin composition, the polyolefin resin composition, and the weather resistant film were changed.
  • Table 6 shows the evaluation results of the interlaminar adhesive strength, water vapor permeability, and crystal module heat resistance and humidity resistance of the obtained laminated film.
  • PVDF is a polyvinylidene fluoride film (Kiner film (trade name), manufactured by Arkema, thickness 30 ⁇ m).
  • Examples 31 to 38 are excellent in water vapor barrier properties, interlayer adhesion properties, and moisture and heat resistance.
  • the solar cell element By directly disposing the solar cell element on the fourth layer, the solar cell element can be sealed without interposing another sealing material between the fourth layer and the solar cell element.

Abstract

製造コストが安価で、各構成部材間の接着性に優れ、かつ耐候性および水蒸気バリア性に優れた太陽電池用バックシートを提供する。少なくとも3層を含む積層構造の太陽電池用バックシートにおいて、第一層が、耐候性ポリエステル系樹脂フィルムまたはフッ素系樹脂フィルムであり、第二層が、ポリエチレン、ポリプロピレン、またはエチレン-プロピレン共重合体100重量部に対して、エポキシ基含有ビニルモノマー1~30重量部、及び芳香族ビニルモノマー0.1~30重量部をグラフト化して得られる変性ポリオレフィン系樹脂からなり、厚みが5~250μmのポリオレフィン層であり、第三層が、ポリエステル層、ポリオレフィン層、またはアルミニウム箔であり、第二層と第三層の合計の厚みが30μm以上である。

Description

太陽電池用バックシートおよび太陽電池モジュール
 本発明は、太陽電池用バックシート、及びそれを含む太陽電池モジュールに関する。
 近年、資源の有効利用や環境汚染の防止などの観点から、太陽光を電気エネルギーに直接変換する太陽電池に関する注目が高まっており、さらなる研究が進められている。
 太陽電池には種々の形態があり、代表的なものとして、アモルファスシリコン系太陽電池、結晶シリコン系太陽電池、さらには色素増感型太陽電池などがある。
 シリコン系太陽電池は、一般に、表面保護材、シリコン発電素子、裏面封止材、およびバックシート(裏面保護シート)などから構成される。
 アモルファスシリコン系太陽電池は、シリコンの使用量が少ないという利点を有するものの、湿度の影響を受けやすいため、高湿度下においては水蒸気の浸入により出力が低下するといった問題があった。この問題を解消するために、耐湿性(水蒸気バリア性)に優れたバックシートが開発されている。
 バックシートには、耐湿性によってシリコン発電素子とリード線などの内容物を保護する機能に加え、耐候性、耐熱性、耐水性、絶縁性、および耐腐食性が求められ、さらには、裏面封止材として通常使用されるエチレン-酢酸ビニル共重合体(EVA)との接着性などが求められる。
 このようなバックシートとしては、例えば、ポリフッ化ビニル(PVF)/アルミニウム箔/PVFの3層構造のバックシートが知られ、長年に渡り用いられている(特許文献1)。これは、アルミニウム箔の高い水蒸気バリア性を利用し、PVFフィルムにより耐候性および絶縁性を付与した構造のバックシートである。しかしながら、PVFは、裏面封止材として使用されるEVAとの接着性に乏しいという問題があり、さらに、高価であるという問題もあった。
 また、ポリエチレンテレフタレート(PET)フィルム/金属酸化物を蒸着した樹脂フィルム/PETフィルムの積層構造のバックシートが提案されている(特許文献2)。しかしながら、PETフィルムと蒸着樹脂フィルムを貼り合わせるために接着剤を使用する必要があり、両フィルム間の接着性が問題となる場合があった。
 積層体の各構成部材を貼り合せる方法として、ウレタン系接着剤等の接着剤を用いたドライラミネート法が一般的に知られている。しかしながら、ドライラミネート方式は使用した接着剤が加水分解劣化することで接着力が低下したり、貼り合せ後に接着剤の硬化反応が完結するまでに長時間要するため製造コストが高くなったりする問題があり、改善の余地があった。
 また、無水マレイン酸変性したポリオレフィン系樹脂を接着層として用いたバックシートが提案されている(特許文献3)が、当該変性ポリオレフィン系樹脂は、ポリプロピレンなどのポリオレフィン系樹脂との接着性には優れているものの、EVAまたは蒸着PETとの接着性が十分ではないという問題があった。
特開2008-235882号公報 特開2002-100788号公報 特開2008-270685号公報
 本発明は、上記現状に鑑み、本発明が解決しようとする課題は、製造コストが安価で、各構成部材間の接着性に優れ、かつ耐候性および水蒸気バリア性に優れた太陽電池用バックシート、及びそれを含む太陽電池モジュールを提供することを目的とする。
 本発明者らは、特定の変性を施したポリオレフィン系樹脂を介して耐候性フィルムと他の層を積層することにより、製造コストが安価でありながら、接着性と水蒸気バリア性双方に優れた太陽電池用バックシートを提供できることを見出し、本発明を完成した。
 すなわち本発明は、第一層、第二層、および第三層をこの順で積層して含み、前記第一層が太陽電池素子から最も離れた位置に配置される太陽電池用バックシートであって、前記第一層が、耐候性ポリエステル系樹脂フィルム及びフッ素系樹脂フィルムからなる群より選択される耐候性フィルムであり、前記第二層が、ポリエチレン、ポリプロピレン、及びエチレン-プロピレン共重合体からなる群より選ばれる1種以上のポリオレフィン系樹脂100重量部に対して、エポキシ基含有ビニルモノマー1~30重量部、及び芳香族ビニルモノマー0.1~30重量部をグラフト化して得られる変性ポリオレフィン系樹脂からなり、厚みが5~250μmであるポリオレフィン層であり、前記第三層が、ポリエステルを含む層、ポリオレフィンを含む層、及びアルミニウム箔からなる群より選択され、前記第二層と前記第三層の合計の厚みが20μm以上である、太陽電池用バックシートに関する。
 本発明の太陽電池用バックシートは、前記第三層の、前記第二層が積層された面とは反対の面に積層された第四層をさらに含み、前記第四層は、ポリエチレン、ポリプロピレン、及びエチレン-プロピレン共重合体からなる群より選ばれる1種以上のポリオレフィン系樹脂100重量部に対して、エポキシ基含有ビニルモノマー1~30重量部をグラフト化して得られる変性ポリオレフィン系樹脂からなり、厚みが5~250μmであるポリオレフィン層であり、前記第二層と前記第三層と前記第四層の合計の厚みが100μm以上であることが好ましい。
 好ましくは、前記第二層と前記第四層の合計の厚みが、前記第三層の厚みより大きい。
 好ましくは、前記第三層が、蒸着層を片面に有するポリエステル系フィルムであり、前記第二層の厚みと前記第四層の厚みは異なっており、前記蒸着層が、前記第二層と前記第四層のうち厚みが大きい層と対向するように配置される。
 好ましくは、前記第四層の前記変性ポリオレフィン系樹脂は、前記ポリオレフィン系樹脂100重量部に対して、さらに芳香族ビニルモノマー0.1~30重量部をグラフト化して得られる変性ポリオレフィン系樹脂である。
 本発明の太陽電池用バックシートは、前記第四層の、前記第三層が積層された面とは反対の面に積層された第五層をさらに含み、前記第五層は、ポリエステル系樹脂フィルム及びフッ素系樹脂フィルムからなる群より選択されるフィルムであることが好ましい。
 好ましくは、前記第三層が、ポリエステルを含む層であり、前記第二層の厚みが前記第三層の厚みより大きい。
 好ましくは、前記第一層と前記第二層間の接着強度、および、前記第二層と前記第三層間の接着強度が、2(N/cm)以上であり、前記太陽電池用バックシートの水蒸気透過度(測定条件:40℃、90%RH)が0.00001~3.0g/(m・day)である。
 好ましくは、前記第一層とフィルム状の前記第三層の間に、前記第二層を構成する樹脂含有材料を押し出すことで、押出ラミネートにより形成される。
 好ましくは、フィルム状の前記第三層と前記第五層の間に、前記第四層を構成する樹脂含有材料を押し出すことで、押出ラミネートにより形成される。
 好ましくは、前記第一層の表面に、前記第二層を構成する樹脂含有材料、前記第三層を構成する樹脂含有材料、および前記第四層を構成する樹脂含有材料をそれぞれ押し出すことで、三層共押出ラミネートにより形成される。
 好ましくは、前記第三層が、無機物または無機酸化物からなる蒸着層と、当該蒸着層の上に積層された高分子皮膜層と、を片面に有するポリエステル系フィルムである。
 好ましくは、前記高分子皮膜層が、ポリ塩化ビニリデン、ポリビニルアルコール、及びエチレン-ビニルアルコール共重合体からなる群より選ばれる少なくとも1種の樹脂からなる。
 好ましくは、前記第一層が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンフルオライド、及びポリエチレンジフルオライドからなる群より選ばれる少なくとも1種を含むフィルムである。
 また、本発明は、太陽電池素子と、本発明の太陽電池用バックシートとを含み、前記第一層が前記太陽電池素子から最も離れた位置に配置されている、太陽電池モジュールにも関する。
 さらに本発明は、太陽電池素子と、本発明の第一層~第四層からなる太陽電池用バックシートとを含み、前記第四層が前記太陽電池素子に接触しており、前記太陽電池素子を封止している、太陽電池モジュールにも関する。
 本発明の太陽電池用バックシートは、耐候性および水蒸気バリア性に優れており、かつ、各構成部材間の接着強度が高く、湿熱条件下での接着耐久性に優れている。さらに、製造コストが安価であるという利点を有する。
 本発明の太陽電池用バックシートは、少なくとも第一層、第二層、および第三層をこの順で積層して含む積層体からなる。
 (第一層)
 本発明の太陽電池用バックシートにおける第一層は、耐候性ポリエステル系樹脂フィルム及びフッ素系樹脂フィルムからなる群より選択される耐候性フィルムである。第一層は、太陽電池より最も離れた位置に配置される。太陽電池用バックシートは、直接屋外に暴露されるため、耐候性(耐UV光、耐湿、耐熱、耐塩害等)が要求されるが、第一層として耐候性フィルムを用いることで耐候性を備えることができる。
 前記耐候性ポリエステル系樹脂フィルムを構成するポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)が挙げられる。好ましくはPET、PENであり、より好ましくはPETである。前記フッ素系樹脂フィルムを構成するフッ素系樹脂としては、ポリエチレンフルオライド、ポリエチレンジフルオライド(ポリフッ化ビニリデン、PVDF)が挙げられ、好ましくはPVDFである。
 前記耐候性ポリエステル系樹脂フィルムとしては、ポリエステル系樹脂に紫外線吸収剤等を配合することで耐候性を付与したフィルム、ポリエステル系樹脂フィルム表面にフッ素系塗料を塗布して耐候性を付与したフィルム、ポリエステル系樹脂フィルム表面に無機物または無機酸化物からなる蒸着層が積層された蒸着ポリエステル系樹脂フィルム、二軸延伸ポリエステル系樹脂フィルムを用いることができる。
 前記蒸着ポリエステル系樹脂フィルムとしては、基材たるポリエステル系樹脂フィルムの上に無機物または無機酸化物からなる蒸着層が積層されたものが例示される。
 無機物または無機酸化物からなる蒸着層としては、酸化アルミニウム、または、酸化ケイ素からなる蒸着層を用いることができる。酸化アルミニウムからなる蒸着層は、Al、AlO、Alなどの混合物から成り立っていると考えられ、これらの比率は製造条件に依存する。酸化ケイ素からなる蒸着層は、Si、SiO、SiOなどの混合物から成り立っていると考えられ、これらの比率は製造条件に依存する。また、酸化アルミニウムと酸化ケイ素を混合して用いても良く、そのような混合蒸着層は一般に二元蒸着と呼ばれる。また、SiN、または、SiONからなる蒸着層を用いることもできる。
 無機物または無機酸化物からなる蒸着層の厚みは、ガスバリア性と可撓性の観点から、1~500nmであることが好ましく、5~300nmであることがより好ましい。蒸着層の形成には、真空蒸着法、スパッタ法、イオンプレーティング法などのPVD法(物理蒸着法)、あるいは、CVD法(化学蒸着法)などを用いることができる。
 蒸着ポリエステル系樹脂フィルムとしては、無機物または無機酸化物からなる蒸着層のさらに上に、高分子皮膜層(樹脂コート層ともいう)が積層されたものを用いることもできる。高分子皮膜層を構成する高分子としては、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体などが例示される。これらは、単独で用いても良く、混合して用いても良い。高分子皮膜層を積層することにより、蒸着層のピンホールなどを被覆することができ、より高度の水蒸気バリア性を達成することができる。
 蒸着ポリエステル系樹脂フィルムの好ましい態様としては、シリカ及び/またはアルミナからなる蒸着層を有し、水蒸気透過度(測定条件:40℃、90%RH)が0.00001~3.0g/(m・day)である蒸着PETフィルムがある。さらに好ましい態様としては、シリカ及び/またはアルミナからなる蒸着層に、ポリ塩化ビニリデン、ポリビニルアルコール、およびエチレン-ビニルアルコール共重合体からなる群より選ばれる少なくとも1種を含有する高分子皮膜層を積層してなる蒸着PETフィルムがある。このような蒸蒸着PETフィルムは、水蒸気バリア性、屈曲性、及び耐熱性に特に優れている。
 蒸着ポリエステル系樹脂フィルムの水蒸気透過度は、セルへの水分浸入を抑止する観点から、0.00001~3.0g/(m・day)であることが好ましく、0.00001~1.0g/(m・day)であることがより好ましく、0.00001~0.1g/(m・day)であることがさらに好ましい。水蒸気透過度の測定方法としては、JIS K 7128に記載の方法が用いられる。水蒸気透過度が高いと、太陽電池バックシートを通じた太陽電池素子への水分侵入を抑止できず、劣化を引き起こす可能性がある。
 蒸着ポリエステル系樹脂フィルムの厚みは、水蒸気バリア性、及び屈曲性のバランスの観点から、1~400μmであることが好ましく、5~200μmであることがより好ましい。1μmよりも薄いと、水蒸気バリア性が不足することがあり、400μmよりも厚いと、屈曲性が低下することがある。
 蒸着ポリエステル系樹脂フィルムとしては市販のものを使用することができる。例えば、シリカ蒸着PET(製品名:テックバリア、三菱化学株式会社製)、アルミナ蒸着PET(製品名:ファインバリア、株式会社麗光製)、二元蒸着PET(製品名:エコシアールVE500、東洋紡績株式会社製)、ポリ塩化ビニリデンでコートされたシリカ蒸着PET(製品名:KET VS-10、ダイセルバリューコーティング株式会社製)などが例示される。
 (第二層)
 本発明の太陽電池用バックシートにおける第二層は、第一層と第三層との間に挟まれることになる。第二層は後述するバックシート製造時の押出ラミネートにより成形される層であり、第一層と第三層を接着する役割を果たす他、バックシートに所定の水蒸気バリア性を付与することもできる。
 第二層は、ポリエチレン、ポリプロピレン、及びエチレン-プロピレン共重合体からなる群より選ばれる1種以上のポリオレフィン系樹脂100重量部に対して、エポキシ基含有ビニルモノマー1~30重量部、及び芳香族ビニルモノマー0.1~30重量部をグラフト化して得られる変性ポリオレフィン系樹脂を含む。当該変性ポリオレフィン系樹脂では、ポリオレフィン系樹脂のマトリックス中に、エポキシ基を含むグラフト鎖がサブミクロンオーダーのドメインを形成するという層構造を有しており、これにより、水蒸気バリア性を発揮することができる。また、当該変性ポリオレフィン系樹脂からなる層は、第一層と第三層との接着性に優れている。そのため、第一層と第三層との接着にあたって、従来の太陽電池用バックシートで使用されているような接着剤を使用する必要がない。
 (ポリオレフィン系樹脂)
 第二層におけるポリオレフィン系樹脂は、ポリエチレン、ポリプロピレン、及びエチレン-プロピレン共重合体(EPCP)からなる群より選ばれる1種以上のポリオレフィン系樹脂であり、好ましくはエチレン-プロピレン共重合体である。
 前記ポリエチレンとしては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)が挙げられるが、工業的規模で安価に製造できるという点でLDPEが好ましい。前記LLDPEとは、エチレンとα―オレフィン(プロピレン、ブテン、ヘキセン、オクテン、4-メチルペンテン等)とを共重合することで短鎖分岐が導入された密度の低いポリエチレンである。
 前記ポリプロピレンは、好ましくは、融解熱量が10J/g以下の軟質ポリプロピレン系樹脂(例えばダウケミカル社のVersify)である。ここで軟質ポリプロピレン系樹脂としては、後述するエチレン-プロピレン共重合体(EPCP)とは別に、エチレンプロピレンラバー(EPR)を用いてもよい。このEPRとは、一般にブロックタイプと呼ばれるポリエチレンとポリプロピレンの混合体等(例えば、プライムポリマー社のプライムTPO、サンアロマー社のリアクターTPOであるCatalloy等)を示す。
 前記エチレン-プロピレン共重合体(EPCP)とは、エチレンと、プロピレンと、必要に応じて添加される1-ブテン、1-ヘキセン、及び1-オクテンからなる群より選ばれる1種以上とのランダム共重合体またはブロック共重合体である。好ましくはエチレンとプロピレンのみからなるランダム共重合体である。本発明では、太陽電池用バックシートとして必要な柔らかさを確保する観点、必要なラミネート加工性を確保する観点、接着に適した温度領域を適正化する観点、及び、変性ポリオレフィン系樹脂製造のための溶融混練時に樹脂の変性反応を十分に進行させる観点から、エチレン含有量が5~15重量%のエチレン-プロピレン共重合体を用いることがより好ましい。
 (変性ポリオレフィン系樹脂)
 第二層における変性ポリオレフィン系樹脂は、前記ポリオレフィン系樹脂にエポキシ基含有ビニルモノマー及び芳香族ビニルモノマーをグラフト化して得られるグラフト変性体である。この変性体は、ラジカル重合開始剤の存在下、前記ポリオレフィン系樹脂に対しエポキシ基含有ビニルモノマー及び芳香族ビニルモノマーを反応させることで製造することができる。
 第二層を構成するポリオレフィン系樹脂に官能基としてエポキシ基を導入することで、第一層と第三層の接着性を改善することができ、さらに、カルボキシル基や無水酸基等の酸性基とは異なり、第二層の水蒸気バリア性を低下させることがない。また、エポキシ基含有ビニルモノマーと共に芳香族ビニルモノマーをグラフトすることで、エポキシ基含有ビニルモノマーのグラフト率(エポキシ基含有ビニルモノマーの、ポリオレフィン系樹脂との反応率)を高めることができ、エポキシ基導入による利点を確実に達成することができる。
 前記グラフト化を実施するためのグラフト重合反応としては特に制限されないが、溶液重合、含浸重合、溶融重合などを用いることができる。特に、溶融重合が簡便で好ましい。溶融重合においては、重合開始剤および各モノマーの存在下で、ポリオレフィン系樹脂の溶融混練を行なえばよい。
 (エポキシ基含有ビニルモノマー)
 本発明で使用されるエポキシ基含有ビニルモノマーとしては特に限定されないが、例えば、メタクリル酸グリシジル、アクリル酸グリシジル、マレイン酸モノグリシジル、マレイン酸ジグリシジル、イタコン酸モノグリシジル、イタコン酸ジグリシジル、アリルコハク酸モノグリシジル、アリルコハク酸ジグリシジル、p-スチレンカルボン酸グリシジル、アリルグリシジルエーテル、メタアリルグリシジルエーテル、スチレン-p-グリシジルエーテル、p-グリシジルスチレン、3,4-エポキシ-1-ブテン、3,4-エポキシ-3-メチル-1-ブテンなどのエポキシオレフィン、ビニルシクロヘキセンモノオキシドなどが挙げられる。これらは1種のみを使用してもよいし、2種類以上を併用してもよい。
 これらのうち、メタクリル酸グリシジル、アクリル酸グリシジルが安価という点で好ましく、特にメタクリル酸グリシジルが好ましい。
 前記エポキシ基含有ビニルモノマーの添加量は、ポリオレフィン系樹脂100重量部に対して1~30重量部であることが好ましく、1~15重量部であることがより好ましく、1~10重量部であることがさらに好ましく、1~5重量部であることが特に好ましい。エポキシ基含有ビニルモノマーの添加量が少なすぎると接着性が充分に改善されない傾向があり、添加量が多すぎると好適な形状や外観を有する層を形成できない傾向がある。
 (芳香族ビニルモノマー)
 本発明で使用される芳香族ビニルモノマーとしては特に限定されないが、例えば、スチレン;o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、β-メチルスチレン、ジメチルスチレン、トリメチルスチレンなどのメチルスチレン;o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、α-クロロスチレン、β-クロロスチレン、ジクロロスチレン、トリクロロスチレンなどのクロロスチレン;o-ブロモスチレン、m-ブロモスチレン、p-ブロモスチレン、ジブロモスチレン、トリブロモスチレンなどのブロモスチレン;o-フルオロスチレン、m-フルオロスチレン、p-フルオロスチレン、ジフルオロスチレン、トリフルオロスチレンなどのフルオロスチレン;o-ニトロスチレン、m-ニトロスチレン、p-ニトロスチレン、ジニトロスチレン、トリニトロスチレンなどのニトロスチレン;o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、ジヒドロキシスチレン、トリヒドロキシスチレンなどのビニルフェノール;o-ジビニルベンゼン、m-ジビニルベンゼン、p-ジビニルベンゼンなどのジビニルベンゼン;o-ジイソプロペニルベンゼン、m-ジイソプロペニルベンゼン、p-ジイソプロペニルベンゼンなどのジイソプロペニルベンゼン;などが挙げられる。これらは1種のみを使用してもよいし、2種類以上を併用してもよい。
 これらのうち、スチレン;α-メチルスチレン、p-メチルスチレンなどのメチルスチレン、ジビニルベンゼン単量体またはジビニルベンゼン異性体混合物が安価であるという点で好ましく、特にスチレンが好ましい。
 前記芳香族ビニルモノマーの添加量は、ポリオレフィン系樹脂100重量部に対して0.1~30重量部であることが好ましく、1~30重量部であることがより好ましく、1~15重量部であることがさらに好ましい。特に3~5重量部が好ましい。芳香族ビニルモノマーの添加量が少なすぎると、ポリオレフィン系樹脂に対するエポキシ基含有ビニルモノマーのグラフト率が劣る傾向がある。また、添加量が多すぎると、前記グラフト率が飽和域に達する傾向があるため経済的ではない。
 (ラジカル重合開始剤)
 ポリオレフィン系樹脂に対して、エポキシ基含有ビニルモノマー及び芳香族ビニルモノマーをグラフト共重合する際、重合反応を開始するため、ラジカル重合開始剤を添加する。
 本発明で使用されるラジカル重合開始剤としては、過酸化物またはアゾ化合物などが挙げられる。
 具体的には、メチルエチルケトンパーオキサイド、メチルアセトアセテートパーオキサイドなどのケトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(t-ブチルパーオキシ)ブタンなどのパーオキシケタール、パーメタンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイドなどのハイドロパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、α,α′-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3などのジアルキルパーオキサイド、ベンゾイルパーオキサイドなどのジアシルパーオキサイド、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、ジ-2-メトキシブチルパーオキシジカーボネートなどのパーオキシジカーボネート、t-ブチルパーオキシオクテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシイソフタレートなどのパーオキシエステルなどが挙げられる。
 中でも、水素引き抜き能が高いことから、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(t-ブチルパーオキシ)ブタンなどのパーオキシケタール、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、α,α′-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3などのジアルキルパーオキサイド、ベンゾイルパーオキサイドなどのジアシルパーオキサイド;t-ブチルパーオキシオクテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシイソフタレートなどを用いることが好ましい。上記のラジカル重合開始剤は、単独で、または2種以上を混合して用いることができる。
 ラジカル重合開始剤の添加量は、変性反応を十分に進行せしめる観点、及び得られる変性体の流動性、機械的特性を確保する観点から、ポリオレフィン系樹脂100重量部に対して、0.01~10重量部であることが好ましく、0.2~5重量部であることがより好ましい。
 (添加剤)
 第二層を構成する変性ポリオレフィン系樹脂に対しては、添加剤として、熱可塑性樹脂、エラストマー、粘着付与剤(タッキファイヤー)、可塑剤、酸化防止剤、金属不活性剤、リン系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、制酸吸着剤、ラジカル捕捉剤、水分捕捉剤などの安定剤、架橋剤、連鎖移動剤、核剤、滑剤、充填材、強化材、顔料、染料、難燃剤、帯電防止剤などを添加することができる。好ましい添加剤は、粘着付与剤(タッキファイヤー)、可塑剤であり、特に好ましくは粘着付与剤である。
 前記熱可塑性樹脂としては、例えば、アクリロニトリル-ブタジエン-スチレン共重合体、その水素化物、ポリスチレン、ポリ塩化ビニル、ポリメタクリル酸メチル、ポリウレタン、ポリエステル、ポリ乳酸などが挙げられる。
 前記エラストマーとしては、例えば、スチレン系熱可塑性エラストマー(TPS)、オレフィン系熱可塑性エラストマー(TPO)、ブチルゴム、アクリルゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴムなどが挙げられる。
 前記可塑剤としては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどの石油系プロセスオイル、シリコーン系オイル、液状ポリブテン、液状ポリイソプレンなどの低分子量液状ポリマーが例示される。
 前記ラジカル捕捉剤としては、例えば、フェノール系捕捉剤、リン系捕捉剤、イオウ系捕捉剤、HALS系捕捉剤等が挙げられる。前記ラジカル捕捉剤は、第二層を構成する樹脂に0~3質量%含有させることが好ましい。
 前記水分捕捉剤としては、アルカリ土類金属の酸化物、硫酸塩、珪酸塩等が挙げられる。好ましくはゼオライトである。前記水分捕捉剤は、第二層を構成する樹脂に0~20質量%含有させることが好ましい。
 前記粘着付与樹脂、即ちタッキファイヤーとしては特に制限はないが、例えば、ロジン系樹脂(ガムロジン、トール油ロジン、ウッドロジン、水添ロジン、不均化ロジン、重合ロジン、マレイン化ロジン、ロジン・グリセリンエステル、水添ロジン・グリセリンエステル等)、テルペンフェノール樹脂、その水添物、テルペン樹脂(α-ピネン主体、β-ピネン主体、ジペンテン主体等)、その水添物、芳香族炭化水素変性テルペン樹脂、石油樹脂(脂肪族系、脂環族系、芳香族系等)、クマロン・インデン樹脂、スチレン系樹脂(スチレン系、置換スチレン系等)、フェノール系樹脂(アルキルフェノール樹脂、ロジン変性フェノール樹脂等)、キシレン樹脂等が挙げられる。これらは単独で、または2種以上を併用して用いる事ができる。
 好ましい粘着付与樹脂としては、数平均分子量が300~3000で、JISK-2207に定められた環球法に基づく軟化点が20~200℃、より好ましくは60~150℃である低分子の樹脂である。
 本発明で使用される粘着付与樹脂としては、テルペン系樹脂であることが好ましく、相溶性、耐熱性がよいという理由により、テルペンフェノール樹脂、水添テルペン樹脂、及び水添テルペンフェノール樹脂からなる群より選ばれる1種以上がより好ましく、透明性確保の観点から水添テルペンフェノール樹脂がさらに好ましい。
 テルペンフェノール樹脂の中でも、相溶性および粘着力の向上という理由により、軟化点は20℃~200℃の範囲にあり、数平均分子量は300~1200までの範囲にあるテルペンフェノール樹脂が特に好ましい。
 前記水添テルペン樹脂の具体例としては、ヤスハラケミカル社製クリアロンPタイプ(ジペンテン樹脂の水添物、非極性タイプ、クリアロンP-105)、ヤスハラケミカル社製Kタイプ(芳香族変性テルペン樹脂の水添物、極性タイプ、クリアロンK-4100)が挙げられる。
 前記水添テルペンフェノール樹脂の具体例としては、ヤスハラケミカル社製のYSポリスターTH130、UH115が挙げられる。
 本発明で使用され得る粘着付与樹脂の配合量は特に限定されないが、変性ポリオレフィン系樹脂100重量部に対し0.1~50重量部が好ましく、0.1~30重量部がより好ましく、0.3~20重量部が更に好ましく、0.5~10重量部が特に好ましい。
 以上の添加剤は、原料のポリオレフィン系樹脂に予め添加しておいてもよく、ポリオレフィン系樹脂を変性する溶融混練時に添加してもよく、また前記変性ポリオレフィン系樹脂を製造した後に添加してもよい。
 第二層を構成する変性ポリオレフィン系樹脂含有組成物は、シランカップリング剤を含まないことが好ましい。シランカップリング剤は、経時変化のために信頼性確保に難があり、歩留まりの低下を招くことがあるためである。シランカップリング剤を使用しないことで、本発明の太陽電池用バックシートを用いた太陽電池モジュールの信頼性を向上させることができ、また、高歩留まりで製造することができる。
 (溶融混練)
 前記変性ポリオレフィン系樹脂を製造するために使用する溶融混練の装置としては、押出機、バンバリーミキサー、ミル、ニーダー、加熱ロールなどが挙げられる。生産性の面から、単軸または2軸の押出機を用いることが好ましい。また、各々の材料を充分に均一に混合するために、溶融混練を複数回繰返してもよい。
 溶融混練時の各成分の添加順序及び方法については特に限定されないが、好ましくは、ポリオレフィン系樹脂とラジカル重合開始剤を溶融混練してなる混合物に、エポキシ基含有ビニルモノマー、および芳香族ビニルモノマーを加えて溶融混練することが好ましい。これにより、グラフトに寄与しない低分子量体の生成を抑制して、グラフト率を向上させることができる。その他必要に応じ添加される材料の添加順序及び方法についても特に限定されない。溶融混練時の加熱温度は、ポリオレフィン系樹脂が充分に溶融し、かつ熱分解しないという点で、100~300℃が好ましい。より好ましくは130~250℃である。また溶融混練の時間(ラジカル重合開始剤を混合してからの時間)は、通常30秒間~60分間である。
 本発明において、前記変性ポリオレフィン系樹脂を含む第二層の厚みは5~250μmである。第二層の厚みが5μmよりも薄いと、第二層による十分な接着性および水蒸気バリア性を実現することができない。逆に250μmを超えると、太陽電池モジュールを製造する過程で、真空ラミネートに必要な時間が長くなってしまうため、太陽電池用バックシート用途では実質的に使用できないこととなる。より好ましくは10~250μmである。
 本発明において、第一層と第二層との間の接着強度は2(N/cm)以上であることが好ましい。これにより、接着剤を別途用いることなく、太陽電池用バックシートとして必要な層間の接着性を実現することができる。この接着強度は後述する押出ラミネートにより達成することができる。
 (第三層)
 第三層は第二層に積層される。第四層を含む形態では、第三層は第二層と第四層との間に挟まれることになる。第二層は、ポリエステルを含む層、ポリオレフィンを含む層、及びアルミニウム箔からなる群より選択される。第三層がポリエステルを含む層またはポリオレフィンを含む層である場合、第三層は、後述するバックシート製造時の押出ラミネートにより成形されてもよいし、予め成形されている樹脂フィルムであってもよい。
 第三層は主に水蒸気バリア性を担保する層であるが、この性能に限定されない。これらのうち、アルミニウム箔は長期使用による腐蝕発生の懸念があり、また、バックシートとしての耐電圧を確保するために他の樹脂層を厚くする必要が生じる。従って、第三層としては、ポリエステルを含む層、または、ポリオレフィンを含む層が好ましい。
 第二層と第三層の合計の厚みは20μm以上であるように構成される。これにより、太陽電池用バックシートとして必要な耐電圧を確保することが可能になる。好ましくは、30μm以上300μm以下である。
 第三層の一形態であるポリエステルを含む層としては、耐候性ポリエステル系樹脂フィルムを用いることが好ましい。このような耐候性ポリエステル系としては第一層に関して説明したものを用いることができる。
 前記耐候性ポリエステル系樹脂フィルムを構成するポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)が挙げられる。好ましくはPET、PENであり、より好ましくはPETである。前記フッ素系樹脂フィルムを構成するフッ素系樹脂としては、ポリエチレンフルオライド、ポリエチレンジフルオライド(ポリフッ化ビニリデン、PVDF)が挙げられ、好ましくはPVDFである。
 前記耐候性ポリエステル系樹脂フィルムとしては、ポリエステル系樹脂に紫外線吸収剤等を配合することで耐候性を付与したフィルム、ポリエステル系樹脂フィルム表面に無機物または無機酸化物からなる蒸着層が積層された蒸着ポリエステル系樹脂フィルム(蒸着層を片面に有するポリエステル系樹脂フィルム)、二軸延伸ポリエステル系樹脂フィルムを用いることができる。
 前記蒸着ポリエステル系樹脂フィルムとしては、基材たるポリエステル系樹脂フィルムの上に無機物または無機酸化物からなる蒸着層が積層されたものが例示される。
 無機物または無機酸化物からなる蒸着層としては、酸化アルミニウム、または、酸化ケイ素からなる蒸着層を用いることができる。酸化アルミニウムからなる蒸着層は、Al、AlO、Alなどの混合物から成り立っていると考えられ、これらの比率は製造条件に依存する。酸化ケイ素からなる蒸着層は、Si、SiO、SiOなどの混合物から成り立っていると考えられ、これらの比率は製造条件に依存する。また、酸化アルミニウムと酸化ケイ素を混合して用いても良く、そのような混合蒸着層は一般に二元蒸着と呼ばれる。また、SiN、または、SiONからなる蒸着層を用いることもできる。
 無機物または無機酸化物からなる蒸着層の厚みは、ガスバリア性と可撓性の観点から、1~500nmであることが好ましく、5~300nmであることがより好ましい。蒸着層の形成には、真空蒸着法、スパッタ法、イオンプレーティング法などのPVD法(物理蒸着法)、あるいは、CVD法(化学蒸着法)などを用いることができる。
 蒸着ポリエステル系樹脂フィルムとしては、無機物または無機酸化物からなる蒸着層のさらに上に、高分子皮膜層(樹脂コート層ともいう)が積層されたものを用いることもできる。高分子皮膜層を構成する高分子としては、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体などが例示される。これらは、単独で用いても良く、混合して用いても良い。高分子皮膜層を積層することにより、蒸着層のピンホールなどを被覆することができ、より高度の水蒸気バリア性を達成することができる。
 蒸着ポリエステル系樹脂フィルムの好ましい態様としては、シリカ及び/またはアルミナからなる蒸着層を有し、水蒸気透過度(測定条件:40℃、90%RH)が0.00001~3.0g/(m・day)である蒸着PETフィルムがある。さらに好ましい態様としては、シリカ及び/またはアルミナからなる蒸着層に、ポリ塩化ビニリデン、ポリビニルアルコール、およびエチレン-ビニルアルコール共重合体からなる群より選ばれる少なくとも1種を含有する高分子皮膜層を積層してなる蒸着PETフィルムがある。このような蒸蒸着PETフィルムは、水蒸気バリア性、屈曲性、及び耐熱性に特に優れている。
 蒸着ポリエステル系樹脂フィルムの水蒸気透過度(測定条件:40℃、90%RH)は、セルへの水分浸入を抑止する観点から、0.00001~3.0g/(m・day)であることが好ましく、0.00001~1.0g/(m・day)であることがより好ましく、0.00001~0.1g/(m・day)であることがさらに好ましい。水蒸気透過度の測定方法としては、JIS K 7128に記載の方法が用いられる。水蒸気透過度が高いと、太陽電池バックシートを通じた太陽電池素子への水分侵入を抑止できず、劣化を引き起こす可能性がある。
 蒸着ポリエステル系樹脂フィルムの厚みは、水蒸気バリア性、及び屈曲性のバランスの観点から、1~400μmであることが好ましく、5~200μmであることがより好ましい。1μmよりも薄いと、水蒸気バリア性が不足することがあり、400μmよりも厚いと、屈曲性が低下することがある。
 蒸着ポリエステル系樹脂フィルムとしては市販のものを使用することができる。例えば、シリカ蒸着PET(製品名:テックバリア、三菱化学株式会社製)、アルミナ蒸着PET(製品名:ファインバリア、株式会社麗光製)、二元蒸着PET(製品名:エコシアールVE500、東洋紡績株式会社製)、ポリ塩化ビニリデンでコートされたシリカ蒸着PET(製品名:KET VS-10、ダイセルバリューコーティング株式会社製)などが例示される。
 第三層の別の形態であるポリオレフィンを含む層は、第二層に関して説明したポリオレフィン系樹脂から構成される層とすることができる。このポリオレフィン系樹脂層は、第二層と同様、変性ポリオレフィン系樹脂からなる層であってもよいが、好ましくは、変性されていないポリオレフィン系樹脂からなる層である。このような層は変性工程が必要でないため、コスト面で有利である。
 前記ポリオレフィン系樹脂は、ポリエチレン、ポリプロピレン、及びエチレン-プロピレン共重合体(EPCP)からなる群より選ばれる1種以上のポリオレフィン系樹脂であり、好ましくはエチレン-プロピレン共重合体である。
 前記ポリエチレンとしては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)が挙げられるが、工業的規模で安価に製造できるという点でLDPEが好ましい。前記LLDPEとは、エチレンとα―オレフィン(プロピレン、ブテン、ヘキセン、オクテン、4-メチルペンテン等)とを共重合することで短鎖分岐が導入された密度の低いポリエチレンである。
 前記ポリプロピレンは、好ましくは、融解熱量が10J/g以下の軟質ポリプロピレン系樹脂(例えばダウケミカル社のVersify)である。ここで軟質ポリプロピレン系樹脂としては、後述するエチレン-プロピレン共重合体(EPCP)とは別に、エチレンプロピレンラバー(EPR)を用いてもよい。このEPRとは、一般にブロックタイプと呼ばれるポリエチレンとポリプロピレンの混合体等(例えば、プライムポリマー社のプライムTPO、サンアロマー社のリアクターTPOであるCatalloy等)を示す。
 前記エチレン-プロピレン共重合体(EPCP)とは、エチレンと、プロピレンと、必要に応じて添加される1-ブテン、1-ヘキセン、及び1-オクテンからなる群より選ばれる1種以上とのランダム共重合体またはブロック共重合体である。好ましくはエチレンとプロピレンのみからなるランダム共重合体である。本発明では、太陽電池用バックシートとして必要な柔らかさを確保する観点、必要なラミネート加工性を確保する観点、及び、接着に適した温度領域を適正化する観点から、エチレン含有量が5~15重量%のエチレン-プロピレン共重合体を用いることがより好ましい。
 第三層であるポリオレフィンを含む層の厚みは30~600μmであることが好ましい。30μmよりも薄いと、水蒸気バリア性が不足することがあり、600μmよりも厚いと、屈曲性が低下することがある。
 第三層のさらに別の形態であるアルミニウム箔としては、一般の軟質アルミニウム箔を用いることができる。耐ピンホール性を高める目的で、鉄含有率が0.1~9.0質量%、好ましくは0.5~2.0質量%の範囲のアルミニウム箔を用いることもできる。鉄含有率が0.1質量%未満であると耐ピンホール性が十分に付与されず、9.0質量%以上を超えると、柔軟性が損なわれる可能性がある。アルミニウム箔の厚みは、水蒸気バリア性、耐ピンホール性、加工性を考慮して5~200μm、好ましくは15~100μmの範囲であることが好ましい。
 本発明において、第二層と第三層との間の接着強度は2(N/cm)以上であることが好ましい。これにより、接着剤を別途用いることなく、太陽電池用バックシートとして必要な層間の接着性を実現することができる。この接着強度は後述する押出ラミネートにより達成することができる。
 (第四層)
 本発明の太陽電池用バックシートは、第一層、第二層、および第三層のみからなるものであってもよいが、さらに第四層を含むものであってもよい。この場合、第四層は、第三層の、第二層が積層された面とは反対の面に積層されるので、第一層、第二層、第三層、および第四層がこの順で積層されている。第四層は後述するバックシート製造時の押出ラミネートにより成形される層である。第四層は、後述する第五層を設ける場合には、第三層と第五層との間の接着性を高める目的で設けられる。また、第五層を設けない場合には、第四層表面に太陽電池素子が直接接触するよう配置することで、太陽電池素子を封止する役割を果たすこともできる。
 第四層は、ポリエチレン、ポリプロピレン、及びエチレン-プロピレン共重合体からなる群より選ばれる1種以上のポリオレフィン系樹脂に対して、エポキシ基含有ビニルモノマーをグラフト化して得られる変性ポリオレフィン系樹脂からなり、厚みが5~250μmである。第四層の変性ポリオレフィン系樹脂を構成する材料としては、第二層の変性ポリオレフィン系樹脂と同様のものを使用できるので、説明を省略する。
 しかし、第四層において、芳香族ビニルモノマーによる変性は必須ではない。従って芳香族ビニルモノマーの配合量は、ポリオレフィン系樹脂100重量部に対して0~30重量部である。しかし芳香族ビニルモノマーを含有する場合には、その配合量は0.1~30重量部が好ましい。第四層のポリオレフィン系樹脂を芳香族ビニルモノマーにより変性することで、溶融混練時に前記樹脂の主鎖断裂が発生するのを防止することができ、また、シート製造時に共押出を使用する場合には第二層~第四層の樹脂粘度を一定範囲に制御することができ、共押出の実施条件幅を広げることができる。第四層におけるより好ましい芳香族ビニルモノマーの含有量は0.1~5重量部であり、さらに好ましくは2~5重量部である。
 本発明において、第四層の厚みは5~250μmであり、5~100μmであることが好ましい。5μm未満であると、第三層と第五層との間の接着性、または、太陽電池素子の封止性を十分なレベルのものとすることが困難となる。250μmを超えると、屈曲性が低下することがある。
 本発明において、第二層、第三層、第四層の合計の厚みは、十分な接着性および耐電圧を確保するため、100μm以上であることが好ましい。より好ましくは300μm以上であり、さらに好ましくは400μm以上である。また、前記合計厚みの上限は、屈曲性を確保するため700μm以下であることが好ましい。
 また、第二層と第四層の合計の厚みは、第三層の厚みより大きいことが好ましい。これにより、別途接着剤を使用することなく、各層間の十分な接着性を確保することができる。
 また、前記第三層が、蒸着層を片面に有するポリエステル系フィルムである場合には、前記蒸着層が、前記第二層と前記第四層のうち厚みが大きい層と対向するように配置されることが好ましい。第二層と第四層を構成する樹脂材料を順次、2段階で、フィルム状の第三層表面に押出すことで三層をラミネートする場合に、一段目の押出時に第三層の蒸着層を被覆しておくことで、二段目の押出工程中、蒸着層を保護することができる。また、第二層と第四層は厚みが大きいほど太陽電池用バックシートがカールしにくくなり、第二層および第四層のうち一段目の押出により形成する層をより厚くすることでカールをより確実に抑制することができる。例えば、第二層と第四層の厚みをいずれも90μmとした場合と、第二層および第四層のうち一段目の押出により形成する層の厚みを135μmとし、2段目の押出により形成する層の厚みを45μmとした場合とでは、第二層と第四層の合計厚みは変わらないものの、後者の場合のほうがより確実にカールを抑制することができることを本発明者らは見出した。以上から、第三層の蒸着層は、第二層と第四層のうち厚みが大きい層と対向するように配置されることが好ましい。
 (第五層)
 本発明の太陽電池用バックシートは、第一層~第四層に加えて、さらに、第四層の、第三層が積層された面とは反対の面に積層された第五層をさらに含むことができる。この時、第一層、第二層、第三層、第四層、および第五層がこの順で積層されている。
 第五層は、ポリエステル系樹脂フィルム及びフッ素系樹脂フィルムからなる群より選択されるフィルムにより構成することができる。第五層を構成するポリエステル系樹脂フィルムは、第一層と同様の耐候性ポリエステル系樹脂フィルムであってもよいし、通常のポリエステル系樹脂フィルムであってもよい。第五層が耐候性フィルムである場合には、この第五層を設けることで、太陽電池用バックシートの両面が耐候性の層で構成されることになるので、バックシート全体の耐候性をより高めることができる。
 第五層は、太陽電池に近い位置に配置されるので、太陽電池が太陽光を最大限利用できるよう、太陽光を反射させるように構成することが好ましい。この観点から、耐候性フィルムに白色顔料を配合することが好ましい。
 なお、本発明の太陽電池用バックシートを構成する層として、予め成形されているフィルムを使用する場合には、接着性付与を目的として、そのフィルム表面にコロナ処理、プラズマ処理、プライマーコート塗布等の処理を施しておいてもよい。
 (物性)
 本発明の太陽電池用バックシートは、高度の水蒸気バリア性を達成するため、水蒸気透過度(測定条件:40℃、90%RH)が0.00001~3.0g/(m・day)を示すことが好ましい。0.00001~1.0g/(m・day)がより好ましく、0.00001~0.1g/(m・day)がさらに好ましい。水蒸気透過度の測定方法としては、JIS K 7128に記載の方法が用いられる。
 (製法、方法A)
 次に、本発明の太陽電池用バックシートを製造する方法について説明する。しかし、本発明の太陽電池用バックシートは以下の製造方法によって限定されるものではない。
 まず、第三層として成形済みのフィルムを用いて、本発明の太陽電池用バックシートを製造する方法(以下、方法Aとする)について説明する。
 方法Aでは、第一層がフィルムであることに加え、第三層も成形済みのフィルム(樹脂フィルムまたはアルミニウム箔)であり、第一層と第三層の間に第二層を構成する樹脂含有材料を押し出すことで、押出ラミネートにより太陽電池用バックシートを形成する。
 まず、第二層を構成する樹脂含有材料を押出機に供給し、加熱溶融させる。
 当該樹脂含有材料を押出機に供給する前に、予め樹脂含有材料の予備乾燥を行なうことが好ましい。このような予備乾燥を行うことにより、押出機から押し出される材料の発泡を防ぐことができる。予備乾燥の方法は特に限定されないが、例えば、樹脂含有材料をペレット等の形態にして、熱風乾燥機等を用いて行うことができる。
 次に、押出機内で加熱溶融された樹脂含有材料を、Tダイに供給する。この時、ギアポンプを用いると、材料の押出量の均一性が向上し、形成される層の厚みムラを低減することができる。
 次に、Tダイに供給された樹脂含有材料を、シート状の溶融樹脂としてTダイから押し出し、2つのラミネートロールを用いて、該シート状の溶融樹脂を第一層と第三層で挟み込んで三層をラミネートする。これにより、第二層によって第一層と第三層を接着させて、三層構成のシートを得る。
 上記シート状の溶融樹脂を挟み込む2つのラミネートロールのうち一方は、表面が平滑な剛体性の金属ロールであり、他方は、表面が平滑で弾性変形可能な弾性外筒を備えたフレキシブルロールであることが好ましい。このような剛体性の金属ロールと弾性外筒を備えたフレキシブルロールとで、上記シート状の溶融樹脂を挟み込んでラミネートすることにより、各層間の接着性と表面外観性が良好なシートを得ることができる。
 上記金属ロールの表面温度は接着性の観点から20℃以上が好ましく、50℃以上がより好ましい。金属ロールの表面温度が20℃未満の場合、ラミネート後の層間接着力が不足することがあり、好ましくない。つまり、金属ロールは使用時に加熱することが好ましい。しかし、加熱された金属ロールに接触するフィルムは熱収縮による性能(特に水蒸気透過度)低下が生じる懸念がある。そこで、金属ロールに接触するフィルムとしては、熱収縮による性能低下が発生しにくい耐候性フィルムが好ましい。
 一方、上記フレキシブルロールの表面温度は150℃以下が好ましく、130℃以下がより好ましい。フレキシブルロールの表面温度が150℃を超える場合、当該フレキシブルロールに接触するフィルムの熱収縮が大きくなり、性能(特に水蒸気透過度)が低下することがある。そのため、フレキシブルロール側に接触するフィルムは第三層が好ましい。
 第一層または第三層が蒸着ポリエステル系樹脂フィルムである場合には、蒸着ポリエステル系樹脂フィルムがラミネート時に熱収縮すると蒸着層にクラックが生じ、水蒸気バリア性が低下することがある。従って、フィルム幅方向の収縮率を5%以下に抑えることが好ましく、3%以下に抑えることがより好ましい。
 ラミネートロールの送り時には、各送り出しフィルムに送り出し方向でのテンションをかけることで、各フィルムの収縮率を制御することが好ましい。好ましいテンションは0.01~100N/mであり、より好ましくは0.1~50N/mである。
 第一層または第三層が蒸着ポリエステル系樹脂フィルムである場合に、当該フィルムの蒸着層がラミネートロールや搬送ロールと接触するようにしてラミネートを行なう時には、ラミネートロール等との摩擦により蒸着層にキズが生じて水蒸気バリア性が低下することがないように、当該フィルムを取り扱うことが望ましい。
 Tダイより押し出される時の樹脂含有材料の温度は、150~300℃が好ましく、170~280℃がより好ましい。150℃未満の場合、材料の溶融粘度が高いため、形成される第二層に厚みムラが生じたり、ラミネート後の層間接着力が不足したりすることがある。300℃を超えた場合、材料の溶融粘度が低すぎるため成形が困難になる。
 金属ロールとフレキシブルロールとのラミネート圧力は特に限定されず、十分な層間接着力が得られるよう適宜調整することができる。
 以上により形成された三層構造のシートを本発明の太陽電池用バックシートとして使用することができる。また、引き続いて同様の押出ラミネートを再度実施して第四層と第五層を積層することで、五層構造の本発明の太陽電池用バックシートを製造することもできる。この場合、上述した1回目の押出ラミネートにより形成された三層構造のシートと第五層の間に第四層を構成する樹脂含有材料を押し出すことで、2回目の押出ラミネートを実施すればよい。これら2回の押出ラミネートは連続して行なうことができる。2回目の押出ラミネートの実施条件は一回目の押出ラミネートの実施条件と同様である。
 以上の製造順序は逆であってもよい。すなわち、第三層~第五層からなる三層構造のシートを製造した後、さらに第一層と第二層を積層することで、五層構造の本発明の太陽電池用バックシートを製造することもできる。
 また、第五層の代わりに、ラミネート時のみに使用する剥離シートを使用してもよい。この場合、得られた5層構造のシートから当該剥離シートを引き剥がすことで、4層構造のバックシートを得ることができる。
 (製法、方法B)
 次に、第三層として成形済みのフィルムを用いるのではなく、押出により第三層を形成しながら本発明の太陽電池用バックシートを製造する方法(以下、方法Bとする)について説明する。
 方法Bでは、フィルム状の第一層の表面に、第二層を構成する樹脂含有材料、第三層を構成する樹脂含有材料、および第四層を構成する樹脂含有材料をそれぞれ押し出すことで、三層共押出ラミネートにより太陽電池用バックシートを形成する。
 まず、第二層を構成する樹脂含有材料、第三層を構成する樹脂含有材料、および第四層を構成する樹脂含有材料をそれぞれの押出機に供給し、加熱溶融させる。
 これらの樹脂含有材料を各押出機に供給する前に、予め各樹脂含有材料の予備乾燥を行なうことが好ましい。このような予備乾燥を行うことにより、押出機から押し出される材料の発泡を防ぐことができる。予備乾燥の方法は特に限定されないが、例えば、樹脂含有材料をペレット等の形態にして、熱風乾燥機等を用いて行うことができる。
 次に、各押出機内で加熱溶融された各樹脂含有材料を、直前にフィードブロックを設けた共押出Tダイ、又は、マルチマニホールド方式の共押出Tダイに供給する。この時、ギアポンプを用いると、材料の押出量の均一性が向上し、形成される層の厚みムラを低減することができる。
 フィードブロック方式の共押出を実施する場合、第二層または第四層が部分的に存在しないシートとならないように、加熱溶融した3種の樹脂含有材料が示す溶融粘度を、押出機の設定温度等によって合わせることが好ましい。
 第二層/第三層/第四層の厚み比率が1/10/1よりも第三層の比率が大きくなる場合、第二層および第四層の膜厚が均一に制御できる観点でマルチマニホールド方式の共押出Tダイを用いることが好ましい。
 次に、共押出Tダイに供給された各樹脂含有材料を、シート状の溶融樹脂として共押出Tダイから押し出し(三層共押出)、2つのラミネートロールを用いて、第二層~第四層からなる三層構造のシート状溶融樹脂を、第一層に積層して4層をラミネートする。この際、第二層に第一層が接触するように配置する。これにより、第一層~第四層が積層された4層構造のシートを得る。
 ラミネート時には、第一層の他に、別のフィルムを使用して5層構造のシートを得ることもできる。この場合、三層構造のシート状溶融樹脂を、第一層と当該別のフィルムで挟み込んで5層をラミネートする。当該別のフィルムとは、上述した第五層であってもよいし、また、ラミネート時のみに使用する剥離シートであってもよい。当該剥離シートをラミネート後に引き剥がすことで、4層構造のバックシートが得られる。
 上記シート状の溶融樹脂を挟み込む2つのラミネートロールのうち一方は、表面が平滑な剛体性の金属ロールであり、他方は、表面が平滑で弾性変形可能な弾性外筒を備えたフレキシブルロールであることが好ましい。このような剛体性の金属ロールと弾性外筒を備えたフレキシブルロールとで、上記シート状の溶融樹脂を挟み込んでラミネートすることにより、各層間の接着性と表面外観性が良好なシートを得ることができる。
 金属ロールとフレキシブルロールとのラミネート圧力は特に限定されず、十分な層間接着力が得られるよう適宜調整することができる。
 上記金属ロールの表面温度は、ラミネート後の層間接着力を高める観点から30℃以上が好ましい。つまり、金属ロールは使用時に加熱することが好ましい。しかし、加熱された金属ロールに接触するフィルムは熱収縮による性能低下が生じる懸念がある。そこで、金属ロールに接触するフィルムとしては、加熱収縮による性能低下が発生しにくい耐候性フィルムが好ましい。
 一方、上記フレキシブルロールの表面温度は、当該ロールに接触するフィルムの熱収縮が大きくなり過ぎて性能が低下することがないように、100℃以下が好ましい。そのため、フレキシブルロール側に接触するフィルムとしては耐候性フィルムが好ましい。
 第一層が蒸着ポリエステル系樹脂フィルムである場合には、蒸着ポリエステル系樹脂フィルムがラミネート時に熱収縮すると蒸着層にクラックが生じ、水蒸気バリア性が低下することがある。従って、フィルム幅方向の収縮率を5%以下に抑えることが好ましく、3%以下に抑えることがより好ましい。
 ラミネートロールの送り時には、各送り出しフィルムに送り出し方向でのテンションをかけることで、各フィルムの収縮率を制御することが好ましい。好ましいテンションは0.01~100N/mであり、より好ましくは0.1~50N/mである。
 第一層が蒸着ポリエステル系樹脂フィルムである場合に、当該フィルムの蒸着層がラミネートロールや搬送ロールと接触するようにしてラミネートを行なう時には、ラミネートロール等との摩擦により蒸着層にキズが生じて水蒸気バリア性が低下することがないように、当該フィルムを取り扱うことが望ましい。
 Tダイより押し出される時の各樹脂含有材料の温度は、150~300℃が好ましく、170~280℃がより好ましい。150℃未満の場合、材料の溶融粘度が高いため、形成される第二層に厚みムラが生じたり、ラミネート後の層間接着力が不足したりすることがある。300℃を超えた場合、材料の溶融粘度が低すぎるため成形が困難になる。
 (用途)
 本発明の太陽電池用バックシートは、太陽電池素子と組み合わせて太陽電池モジュールを構成することができる。この場合、第一層が太陽電池素子から最も離れた位置に配置される。太陽電池に最も近い層は、バックシートが第一層から第三層からなる場合、第三層であり、バックシートが第一層から第四層からなる場合、第四層であり、バックシートが第一層から第五層からなる場合、第五層である。
 太陽電池に最も近い層が第三層または第五層である場合には、これら最表層の表面に、別途用意した封止材料(例えば、エチレン-ビニルアルコール共重合体)により封止された太陽電池素子が配置される。第三層または第五層の外表面には、封止材料との接着性を高めるためにプライマーコート層を設けてもよい。プライマーコート層としては特に限定されないが、封止材料として用いられているエチレン-ビニルアルコール共重合体からなる層であってもよいし、第二層または第四層で使用される変性ポリオレフィン系樹脂からなる層であってもよい。
 太陽電池に最も近い層が第四層である場合には、上記と同様、第四層の表面に、別途用意した封止材料により封止された太陽電池素子が配置されてもよいが、好ましくは、第四層と太陽電池素子が、別の封止材料を介することなく、直接接触しており、第四層が太陽電池素子の封止材料として機能する。すなわち、バックシートが第一層から第四層からなる場合、変性ポリオレフィン系樹脂からなる第四層は太陽電池素子の封止材料としても機能することができ、従って、バックシートと太陽電池素子との間に別途封止材料を配置する必要がない。この形態では、バックシートと封止材料とが一体的に形成されているため、太陽電池モジュールの生産性に優れる。
 本発明の太陽電池用バックシートは、いずれの太陽電池にも好適に使用できるが、特にアモルファスシリコン系太陽電池、結晶シリコン系太陽電池、ハイブリッド太陽電池などに好適に用いることができる。また、太陽電池の設置場所としては特に限定されないが、例えば、屋根上;ビル、工場、学校、公共施設などの屋上または壁面、海岸、砂漠地帯などが挙げられる。
 以下に本発明の太陽電池用バックシートの具体的な実施形態を説明する。
 (第一実施形態)
 本発明の第一実施形態は、耐候性ポリエステル系樹脂フィルム(第一層)/変性ポリオレフィン系樹脂層(第二層)/蒸着ポリエステル系樹脂フィルム(第三層)/変性ポリオレフィン系樹脂層(第四層)/耐候性ポリエステル系樹脂フィルム(第五層)からなる五層構造の太陽電池用バックシートである。第五層の側に、太陽電池が配置される。この形態は、第三層の存在により高度の水蒸気バリア性を確保することができる。
 第一層の耐候性ポリエステル系樹脂フィルムの外表面(第二層と逆側の表面)には、さらにフッ素系塗料を塗布して耐候性を高めることが好ましい。
 第五層の耐候性ポリエステル系樹脂フィルムの外表面(第四層と逆側の表面)には、太陽電池素子の封止材料との接着性を高めるために、さらにプライマーコート層を設けることが好ましい。
 第三層の蒸着ポリエステル系樹脂フィルムの蒸着層は、第二層と面していてもよいし、第四層と面していてもよい。しかし、上述したように、蒸着層は、第二層と第四層のうち厚みが大きい層と対向するように配置されることが、蒸着層保護およびバックシートのカール抑制の観点から好ましい。
 第三層としては、蒸着ポリエステル系樹脂フィルムの代わりに、アルミニウム箔を使用することもできる。
 太陽光を反射できるよう、第五層には、白色顔料を配合することが好ましい。
 第一実施形態は、上述した方法Aにより好適に製造することができる。
 (第二実施形態)
 本発明の第二実施形態は、耐候性ポリエステル系樹脂フィルム(第一層)/変性ポリオレフィン系樹脂層(第二層)/耐候性ポリエステル系樹脂フィルム(第三層)からなる三層構造の太陽電池用バックシートである。第三層の側に、太陽電池が配置される。
 第一層の耐候性ポリエステル系樹脂フィルムの外表面(第二層と逆側の表面)には、さらにフッ素系塗料を塗布して耐候性を高めることができる。
 第三層の耐候性ポリエステル系樹脂フィルムの外表面(第二層と逆側の表面)には、太陽電池素子の封止材料との接着性を高めるために、さらにプライマーコート層を設けることが好ましい。
 太陽光を反射できるよう、第三層には、白色顔料を配合することが好ましい。
 この実施形態では、第二層の厚みが第三層の厚みより大きいことが好ましい。これは、太陽電池用バックシートに要求される耐電圧を達成するためバックシート全体として相当の厚みを確保するためである。具体的には、第二層の厚みは100μm以上が好ましく、150μm以上がより好ましい。また、第二層がこのように厚いために、太陽電池用バックシートとして求められる水蒸気バリア性を達成することができる。
 第二実施形態は、上述した方法Aにより好適に製造することができる。
 (第三実施形態)
 本発明の第三実施形態は、耐候性ポリエステル系樹脂フィルム(第一層)/変性ポリオレフィン系樹脂層(第二層)/未変性のポリオレフィンが樹脂成分を構成する樹脂層(第三層)/変性ポリオレフィン系樹脂層(第四層)からなる四層構造の太陽電池用バックシートである。この形態は、第二層、第三層および第四層がオレフィン系樹脂からなるため、太陽電池バックシートとして必要な水蒸気バリア性を確保することができる。
 太陽電池素子は第四層の表面に直接接触するように配置される。この場合、太陽電池素子を封止するための封止材料を太陽電池素子と第四層の間に配置する必要がない。第四層が太陽電池素子の封止材料として機能する。すなわち、この形態の太陽電池用バックシートは、単なるバックシートではなく、太陽電池素子の封止材としての機能も有する。
 第一層の耐候性ポリエステル系樹脂フィルムの外表面(第二層と逆側の表面)には、さらにフッ素系塗料を塗布して耐候性を高めることができる。
 第三実施形態は、上述した方法Bにより好適に製造することができる。
 第三実施形態では、特に以下の形態が好ましい。
第一層:耐候性フィルム
第二層:ポリオレフィン系樹脂100重量部に対して、エポキシ基含有ビニルモノマー1~30重量部、及び芳香族ビニルモノマー3~5重量部をグラフト化して得られる変性ポリオレフィン系樹脂からなり、厚みが5~100μmの層
第三層:未変性のポリオレフィンからなり、厚みが90~600μmの層
第四層:ポリオレフィン系樹脂100重量部に対して、エポキシ基含有ビニルモノマー1~30重量部、及び芳香族ビニルモノマー0~5重量部をグラフト化して得られる変性ポリオレフィン系樹脂からなり、厚みが5~100μmの層
 本実施形態における第四層は、芳香族ビニルモノマーの使用量が少ないほど、太陽電池素子またはガラスに対する接着力が高くなるため、太陽電池モジュールの端面からの水分進入を防止することができる。その結果、太陽電池モジュールの耐熱耐湿性が向上するため好ましい。この観点から、第三実施形態の第四層における芳香族ビニルモノマーの使用量は0~1重量部がより好ましく、より好ましくは0重量部である。
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 (実施例1~9および比較例1)
 以下に実施例1~9および比較例1における評価方法を示す。
 〔フィルム間接着強度の評価〕
 積層フィルムを、幅方向に25mm、長手方向に200mmに切り出し、一方の端部を20mm程度、手で剥離して挟みしろを設けた。次いで、引っ張り試験機(オートグラフAG-2000A、島津製作所製)を用いて、試験温度23℃、試験スピード50mm/minでT字ピール強度[N/cm]を計測した。計測された接着強度の優劣を以下の基準に従い判断した。
○:積層フィルムを構成するすべてのフィルム間の接着強度が2N/cm以上
×:積層フィルムを構成するすべてのフィルム間の接着強度が2N/cm未満
 〔光照射後の外観観察〕
 積層フィルムを縦15cm、横5cmサイズに切り出し、キセノンウェザーメーター(X75SC、スガ試験機製)を用いて、ASTM G155に準じて積層フィルムの耐候性フィルム側に光を照射した。光照射後の外観を観察し、その優劣を以下の基準に従い判断した。
○:異常なし
△:クラック、または変色が観られる
×:著しくクラック、または変色が観られる
 〔光照射後の強度保持率の測定〕
 積層フィルムに対し〔光照射後の外観観察〕記載と同様の方法で光照射を行った。次いで、引っ張り試験機(オートグラフAG-2000A、島津製作所製)を用いて、試験温度23℃、試験スピード50mm/minで積層フィルムの引っ張り強度[MPa]を計測した。光照射前の積層フィルムについても引っ張り強度を計測して、光照射後の強度保持率を算出し、その優劣を以下の基準に従い判断した。
○:光照射後の強度保持率が90%以上
△:光照射後の強度保持率が70%以上
×:光照射後の強度保持率が70%未満
 〔水蒸気透過度の測定〕
 透過面積が15.2cmになるよう積層フィルムを切り出し、JIS K7126-1(差圧法)に従い、40℃/90%RH、圧力差75cmHgの条件で水蒸気透過度を測定した。単位はg/(m・day)で表す。
 〔薄膜モジュール耐熱耐湿性の評価〕
 5インチ角サイズの太陽電池アモルファス基板(ガラス板上にシリコン等を蒸着し、加工して太陽電池素子を形成した物)、即ち、薄膜太陽電池素子上に、6インチ角サイズの市販の太陽電池封止用EVAシート(サンビック社製:Ultra Pearl、0.40mm厚)と、耐候性フィルムが外側(上側)に位置するように6インチ角サイズに切り出した積層フィルムとを載せた。次いで、真空ラミネーター(spire社製:Spi-Laminator)で一体成形することで薄膜太陽電池モジュールを得た。一体成形の条件は170℃で脱気時間3.5分、プレス圧力1kg/cm、プレス時間3.5分であった。得られた太陽電池モジュールを更に150℃のオーブンで120分加熱してEVAを架橋させた。
 作製した太陽電池モジュールに、AM1.5にスペクトル調整したソーラーシミュレータによって、25℃、照射強度1000mW/cmの擬似太陽光を照射して、太陽電池の開放電圧[V]、および、1cm当たりの公称最大出力動作電流[A]および公称最大出力動作電圧[V]を測定した。これらの積から公称最大出力[W](JIS C8911 1998)の初期値を求めた。
 次に、太陽電池モジュールを、温度85℃、湿度85%RHの環境下に、1000時間放置し、耐熱耐湿試験を実施した。放置後の太陽電池モジュールについて上記と同様にして公称最大出力[W]を求め、耐熱耐湿性の優劣を判断した。優劣の判断は以下の基準に従い行った。
○:1000時間耐熱耐湿試験後の公称最大出力を初期値で除した値が0.9以上
△:1000時間耐熱耐湿試験後の公称最大出力を初期値で除した値が0.8以上
×:1000時間耐熱耐湿試験後の公称最大出力を初期値で除した値が0.8未満
 〔結晶モジュール耐熱耐湿性の評価〕
 6インチ角サイズのガラス板(厚み3.2mm、日本板硝子社製)上に、同サイズの市販の太陽電池封止用EVAシート(サンビック社製:Ultra Pearl、0.40mm厚)と、5インチ角サイズの結晶Si太陽電池素子と、6インチ角サイズの市販の太陽電池封止用EVAシートと、耐候性フィルムが外側(上側)に位置するように、6インチ角サイズに切り出した積層フィルムとをこの順で載せた。次いで、真空ラミネーター(spire社製:Spi-Laminator)で一体成形することで結晶シリコン太陽電池モジュールを得た。一体成形の条件は170℃で脱気時間3.5分、プレス圧力1kg/cm、プレス時間3.5分であった。得られた太陽電池モジュールを更に150℃のオーブンで120分加熱してEVAを架橋させた。
 作製した太陽電池モジュールに、AM1.5にスペクトル調整したソーラーシミュレータによって、25℃、照射強度1000mW/cmの擬似太陽光を照射して、太陽電池の開放電圧[V]、および、1cm当たりの公称最大出力動作電流[A]および公称最大出力動作電圧[V]を測定した。これらの積から公称最大出力[W](JIS C8911 1998)の初期値を求めた。
 次に、太陽電池モジュールを、温度85℃、湿度85%RHの環境下に、1000時間放置し、耐熱耐湿試験を実施した。放置後の太陽電池モジュールについて上記と同様にして公称最大出力[W]を求め、耐熱耐湿性の優劣を判断した。優劣の判断は以下の基準に従い行った。
○:1000時間耐熱耐湿試験後の公称最大出力を初期値で除した値が0.9以上
△:1000時間耐熱耐湿試験後の公称最大出力を初期値で除した値が0.8以上
×:1000時間耐熱耐湿試験後の公称最大出力を初期値で除した値が0.8未満
 (調製例1)
 硬化性TFE系共重合体(ゼッフルGK570、ダイキン工業(株)製)15重量部、白色顔料(市販の酸化チタン)35重量部、および酢酸ブチル15重量部を攪拌下に予備混合した後、ガラスビーズを50重量部添加し、顔料分散機にて1000rpmで3時間分散させた。その後、メッシュでガラスビーズをろ過し、その溶液に硬化性TFE系共重合体(ゼッフルGK570)を30重量部および酢酸ブチル10重量部を加えてフッ素系塗料1を調製した。
 得られた「フッ素系塗料1」100重量部に硬化剤(市販のイソシアネート系硬化剤)15重量部を加えてフッ素系塗料2を調製した。
 (製造例1)ポリオレフィン系樹脂グラフト変性体の製造方法
 プロピレン-エチレン共重合体(バーシファイ3401、MFR8、ダウ・ケミカル製)100重量部、1,3-ジ(t-ブチルパーオキシイソプロピル)ベンゼン(日本油脂株式会社製:パーブチルP、1分間半減期175℃)0.5重量部を、シリンダー温度200℃に設定したベント付き噛合い型同方向回転式2軸押出機(TEX44、L/D=38、日本製鋼所製)に供給して溶融混練した後、次いで、シリンダー途中よりメタクリル酸グリシジル(日油社製:ブレンマーG)5重量部、およびスチレン(日本オキシラン社製)5重量部をノズルから加え、ポリオレフィン系樹脂グラフト変性体(以下、変性オレフィンと記載)のペレットを得た。変性後のMFRは5であった。
 (製造例2)
 メタクリル酸グリシジル(日油社製:ブレンマーG)を使用しなかった以外は製造例1と同様にしてスチレン単独変性オレフィンのペレットを得た。変性後のMFRは3であった。
 (製造例3)
 スチレン(日本オキシラン社製)を使用しなかった以外は製造例1と同様にしてメタクリル酸グリシジル単独変性オレフィンのペレットを得た。変性後のMFRは55であった。
 (製造例4)
 透明耐候PETフィルム(シャインビームK1653、東洋紡績製、厚み50μm、透明)の片面に、調製例1で調製したフッ素系塗料2を、乾燥後膜厚が10μmとなるようにグラビアコーターにて塗工し、120℃で3分間乾燥してフッ素系塗料コート耐候PETフィルムを作製した。
 (実施例1)
 製造例1で得られた変性オレフィンを60℃で15時間乾燥後、110mmφ単軸押出機と700mm幅のTダイとを用いて270℃で押し出すことにより厚み90μmのシート状の溶融樹脂を得た。このシート状の溶融樹脂の片面に、蒸着層が溶融樹脂と接するように蒸着PETフィルム1(アルミナ、シリカ二元蒸着PET上に有機無機ハイブリッドコート層を設け、さらにその上に特殊処理を施したフィルム、厚み12μm、水蒸気透過度(40℃、90%RH)0.07g/(m・day))を、もう一方の面に、EVA易接着層がコートされた絶縁フィルムである白色耐候性PETフィルム(シャインビームCA004、東洋紡績製、厚み50μm、白色)を、80℃に加温した金属ロールと40℃に加温したシリコンゴム皮膜ロールとで挟み込みながらラミネートし、積層フィルム中間体(EVA易接着層(プライマーコート)/白色耐候PETフィルム(第五層)/変性オレフィン層(第四層)/蒸着PETフィルム(第三層))を得た。
 次いで、上記方法で乾燥された変性オレフィンを110mmφ単軸押出機と700mm幅のTダイとを用いて270℃で押し出すことにより厚み90μmのシート状の溶融樹脂を得た。このシート状の溶融樹脂の片面に、蒸着PETフィルムのPET面が溶融樹脂と接するように積層フィルム中間体を、もう一方の面に、製造例4で得られたフッ素系塗料コート耐候PETフィルム(ただし、耐候PET面が溶融樹脂と接する)を、80℃に加温した金属ロールと40℃に加温したシリコンゴム皮膜ロールとで挟み込みながらラミネートし、積層フィルム(EVA易接着層(プライマーコート)/白色耐候PETフィルム(第五層)/変性オレフィン層(第四層)/蒸着PETフィルム(第三層)/変性オレフィン層(第二層)/耐候PETフィルム(第一層)/フッ素系塗料)を得た。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、薄膜モジュール耐熱耐湿性を表1に示す。
 (実施例2)
 蒸着PETフィルム1を、蒸着PETフィルム2(アルミナ、シリカ二元蒸着PET上に有機無機ハイブリッドコート層を設けたフィルム、厚み12μm、水蒸気透過度(40℃、90%RH)0.1g/(m・day))に変更した以外は実施例1と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、薄膜モジュール耐熱耐湿性を表1に示す。
 (実施例3)
 EVA易接着層がコートされた絶縁フィルムの代わりに、EVA易接着層がコートされていない白色耐候性PETフィルム(耐候PETフィルム、シャインビームCA003、東洋紡績製、厚み50μm、白色)を用い、積層フィルムの前記白色耐候性PETフィルム表面に、変性オレフィンを110mmφ単軸押出機と700mm幅のTダイとを用いて270℃で押し出して得られる厚み5μmのシート状の溶融樹脂を積層した以外は実施例1と同様にして積層フィルムを得た。この積層フィルムでは、耐候性PETフィルム表面の前記変性オレフィンからなる層がプライマーコート層に相当する。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、薄膜モジュール耐熱耐湿性を表1に示す。
 (実施例4)
 蒸着PETフィルム1を、実施例2で使用した蒸着PETフィルム2に変更した以外は実施例3と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、薄膜モジュール耐熱耐湿性を表1に示す。
 (実施例5)
 製造例1で得られた変性オレフィンを60℃で15時間乾燥後、110mmφ単軸押出機と700mm幅のTダイとを用いて270℃で押し出すことにより厚み200μmのシート状の溶融樹脂を得た。このシート状の溶融樹脂の片面に、耐候PET面が溶融樹脂と接するように、製造例2で得られたフッ素系塗料コート耐候PETフィルムを、もう一方の面に、EVA易接着層がコートされた絶縁フィルムである白色耐候性PETフィルム(シャインビームCA004、東洋紡績製、厚み50μm、白色)を、80℃に加温した金属ロールと40℃に加温したシリコンゴム皮膜ロールとで挟み込みながらラミネートし、積層フィルム(EVA易接着層(プライマーコート)/白色耐候PETフィルム(第三層)/変性オレフィン層(第二層)/耐候PETフィルム(第一層)/フッ素系塗料)を得た。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、結晶モジュール耐熱耐湿性を表1に示す。
 (実施例6)
 製造例1で得られた変性オレフィンを60℃で15時間乾燥後、110mmφ単軸押出機と700mm幅のTダイとを用いて270℃で押し出すことにより厚み100μmのシート状の溶融樹脂を得た。このシート状の溶融樹脂の片面に、耐候PET面が溶融樹脂と接するように、製造例2で得られたフッ素系塗料コート耐候PETフィルムを、もう一方の面に、EVA易接着層がコートされていない白色耐候性PETフィルム(耐候PETフィルム、シャインビームCA003、東洋紡績製、厚み50μm、白色)を、80℃に加温した金属ロールと40℃に加温したシリコンゴム皮膜ロールとで挟み込みながらラミネートし、積層フィルム中間体(白色耐候PETフィルム(第三層)/変性オレフィン層(第二層)/耐候PETフィルム(第一層)/フッ素系塗料)を得た。
 次いで、積層フィルム中間体の白色耐候PETフィルム面に、変性オレフィンを110mmφ単軸押出機と700mm幅のTダイとを用いて270℃で押し出して得られる厚み100μmのシート状の溶融樹脂を積層し、積層フィルム(変性オレフィン層(第四層)/白色耐候PETフィルム(第三層)/変性オレフィン(第二層)/耐候PETフィルム(第一層)/フッ素系塗料層)を得た。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、結晶モジュール耐熱耐湿性を表1に示す。
 (実施例7)
 蒸着PETフィルムの代わりにアルミ箔(厚み30μm、東洋アルミ製)を用いた以外は実施例1と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、薄膜モジュール耐熱耐湿性を表1に示す。
 (実施例8)
 フッ素系塗料コート耐候PETフィルムの代わりに、白色耐候性PETフィルム(耐候PETフィルム、シャインビームCA003、東洋紡績製、厚み50μm、白色)を使用したこと以外は、実施例1と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、薄膜モジュール耐熱耐湿性を表1に示す。
 (実施例9)
 フッ素系塗料コート耐候PETフィルムの代わりに、白色耐候性PETフィルム(耐候PETフィルム、シャインビームCA003、東洋紡績製、厚み50μm、白色)を使用したこと以外は、実施例5と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、結晶モジュール耐熱耐湿性を表1に示す。
 (比較例1)
 フッ素系塗料コート耐候PETフィルムの代わりに、耐候性ではない白色PETフィルム(PETフィルム、クリスパーK1212、東洋紡績製、厚み50μm、白色)を使用したこと以外は、実施例1と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、光照射後外観および強度保持率、水蒸気透過度、並びに、薄膜モジュール耐熱耐湿性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 実施例1~9は、第一層として耐候性フィルムを用いているため、耐候性フィルムを用いていない比較例1に比べて、光照射後の外観および強度保持率が優れている。
 (実施例11~16および比較例11~14)
 以下に実施例11~16および比較例11~14における評価方法を示す。
 〔フィルム間接着強度の測定〕
 上記と同様に接着強度の優劣を判断した。
 〔EVA接着強度の測定〕
 縦15cm、横5cmサイズのガラス板(厚み3.2mm、日本板硝子社製)上に、ガラスと同サイズの市販の太陽電池封止用EVAシート(サンビック社製:Ultra Pearl、0.40mm厚)を載せ、縦3cm、横5cmの離型紙を端部に載せ、さらにガラスと同サイズに切り出した積層フィルムを耐候性フィルムが外側(上側)に位置するように載せた。次いで、真空ラミネーター(spire社製:Spi-Laminator)で一体成形した。一体成形では、135℃で脱気時間3.5分、プレス圧力1kg/cm、プレス時間3.5分で加熱圧着し、さらに150℃のオーブンで120分加熱してEVAを架橋させた。得られた成形品の端部に挟んだ離型紙を取り除き、挟みしろを設けた。
 次いで、引っ張り試験機(オートグラフAG-2000A、島津製作所製)を用いて、試験温度23℃、試験スピード50mm/minで180°ピール強度[N/cm]を計測した。EVAシートと積層フィルムとの接着強度の優劣を以下の基準に従い判断した。
○:接着強度が50N/cm以上
×:接着強度が50N/cm未満
 〔水蒸気透過度の測定〕
 上記と同様に水蒸気透過度を測定した。
 〔薄膜モジュール耐熱耐湿性の評価〕
 上記と同様に薄膜モジュール耐熱耐湿性を評価した。
 (実施例11)
 製造例1で得られた変性オレフィンを60℃で15時間乾燥後、110mmφ単軸押出機と700mm幅のTダイとを用いて270℃で押し出すことにより厚み90μmのシート状の溶融樹脂を得た。このシート状の溶融樹脂の片面に、蒸着層が溶融樹脂と接するように蒸着PETフィルム1(アルミナ、シリカ二元蒸着PET上に有機無機ハイブリッドコート層を設け、さらにその上に特殊処理を施したフィルム、厚み12μm、水蒸気透過度(40℃、90%RH)0.07g/(m・day))を、もう一方の面に、EVA易接着層がコートされた絶縁フィルムである白色耐候性PETフィルム(シャインビームCA004、東洋紡績製、厚み50μm、白色)を80℃に加温した金属ロールと40℃に加温したシリコンゴム皮膜ロールとで挟み込みながらラミネートし、積層フィルム中間体(EVA易接着層(プライマーコート)/白色耐候PETフィルム(第五層)/変性オレフィン層(第四層)/蒸着PETフィルム(第三層))を得た。
 次いで、上記方法で乾燥された変性オレフィンを110mmφ単軸押出機と700mm幅のTダイとを用いて270℃で押し出すことにより厚み90μmのシート状の溶融樹脂を得た。このシート状の溶融樹脂の片面に、蒸着PETフィルムのPET面が溶融樹脂と接するように積層フィルム中間体を、もう一方の面に、透明耐候PETフィルム(シャインビームK1653、東洋紡績製、厚み50μm、透明)を、80℃に加温した金属ロールと40℃に加温したシリコンゴム皮膜ロールとで挟み込みながらラミネートし、積層フィルム(EVA易接着層(プライマーコート)/白色耐候PETフィルム(第五層)/変性オレフィン層(第四層)/蒸着PETフィルム(第三層)/変性オレフィン層(第二層)/透明耐候PETフィルム(第一層))の積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
 (実施例12)
 蒸着PETフィルム1を、蒸着PETフィルム2(アルミナ、シリカ二元蒸着PET上に有機無機ハイブリッドコート層を設けたフィルム、厚み12μm、水蒸気透過度(40℃、90%RH)0.1g/(m・day))に変更した以外は実施例11と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
 (実施例13)
 透明耐候PETフィルムを、PVDF(ポリフッ化ビニリデン)フィルム(カイナーフィルム(商品名)、アルケマ製、厚み30μm)に変更した以外は実施例11と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
 (実施例14)
 蒸着PETフィルム1を蒸着PETフィルム2に変更し、透明耐候PETフィルムをPVDFフィルムに変更した以外は実施例11と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
 (実施例15)
 EVA易接着層がコートされた絶縁フィルムの代わりに、EVA易接着層がコートされていない白色耐候性PETフィルム(耐候PETフィルム、シャインビームCA003、東洋紡績製、厚み50μm、白色)を用い、積層フィルムの前記白色耐候性PETフィルム表面に、変性オレフィンを110mmφ単軸押出機と700mm幅のTダイとを用いて270℃で押し出すことにより得られる厚み5μmのシート状の溶融樹脂を積層した以外は実施例11と同様にして積層フィルムを得た。この積層フィルムでは、耐候性PETフィルム表面の前記変性オレフィンからなる層がプライマーコート層に相当する。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
 (実施例16)
 蒸着PETフィルム1を蒸着PETフィルム2に変更した以外は実施例15と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
 (比較例11)
 第二層および第四層を構成する変性オレフィンの代わりにポリエチレン(低密度ポリエチレン、三井・デュポンポリケミカル社製ミラソン、MRF=4.8)を用いた以外は実施例15と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
 (比較例12)
 第二層および第四層を構成する変性オレフィンの代わりに製造例2で得たスチレン単独変性オレフィンを用いた以外は実施例11と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
 (比較例13)
 第二層および第四層を構成する変性オレフィンの代わりに製造例3で得たメタクリル酸グリシジル単独変性オレフィンを用いた以外は実施例11と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
 (比較例14)
 第二層および第四層を構成する変性オレフィンの代わりにプロピレン-エチレン共重合体(バーシファイ3401、MFR8、ダウ・ケミカル製)を用いた以外は実施例11と同様にして積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、EVA接着強度、水蒸気透過度および薄膜モジュール耐熱耐湿性を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 実施例11~16は、第二層および第四層が特定モノマーをグラフト化して得られる変性ポリオレフィン系樹脂からなるので、第二層および第四層でこのような変性ポリオレフィン系樹脂を使用していない比較例11~14に比べて、層間接着性が優れている。
 (実施例21~26)
 以下に実施例21~26における評価方法を示す。
 〔フィルム間接着強度の測定〕
 上記と同様の方法により、接着強度としてT字ピール強度[N/cm]を計測した。なお、積層フィルムの蒸着PET面から剥離したピール強度を「蒸着PET面」接着強度とし、耐候性フィルム面から剥離したピール強度を「耐候性フィルム面」接着強度とした。計測された接着強度の優劣を以下の基準に従い判断した。
○:フィルム間の接着強度が2N/cm以上
×:フィルム間の接着強度が2N/cm未満
 〔水蒸気透過度の測定〕
 上記と同様に水蒸気透過度を測定した。
 〔蒸着PETフィルム収縮率の測定〕
 積層された蒸着PETフィルムの幅方向の長さを計測し、事前に測定しておいた積層前の幅方向の長さと比較して、収縮率を算出した。
 (実施例21)
 製造例1で得られた変性オレフィンを60℃で15時間乾燥後、40mmφ単軸押出機と400mm幅のTダイとを用いて200℃で厚み50μmのシート状の溶融樹脂として押し出した。このシート状の溶融樹脂の片面に、蒸着PETフィルム(エコシアールVE500、東洋紡績株式会社製、厚み12μm、水蒸気透過度(40℃、90%RH)0.6g/(m・day))、もう一方の面に、耐候性フィルム(耐候PETフィルム、シャインビーム、東洋紡績製、厚み50μm)を、85℃に加温した金属ロールと35℃に加温したシリコンゴム皮膜ロールとで挟み込みながらラミネートし、耐候PETフィルム(第一層)/変性オレフィン層(第二層)/蒸着PETフィルム(第三層)の三層積層フィルムを得た。尚、蒸着PETフィルムがシリコンゴム皮膜ロールと接触するようにラミネートした。
 得られた積層フィルムのフィルム間接着強度、水蒸気透過度および蒸着PETフィルムの収縮率を表3に示す。
 (実施例22)
 変性オレフィンのTダイ押出温度を250℃に変更した以外は実施例21と同様にして積層フィルムを得た。得られた積層フィルムのフィルム間接着強度、水蒸気透過度および蒸着PETフィルムの収縮率を表3に示す。
 (実施例23)
 変性オレフィンのTダイ押出温度を250℃に変更し、金属ロールの温度を100℃に変更した以外は実施例21と同様にして積層フィルムを得た。得られた積層フィルムのフィルム間接着強度、水蒸気透過度および蒸着PETフィルムの収縮率を表3に示す。
 (実施例24)
 変性オレフィンのTダイ押出温度を250℃に変更し、変性オレフィンに粘着付与剤(YSポリスターT130、ヤスハラケミカル製)を10重量部添加して押し出しを行なった以外は実施例21と同様にして積層フィルムを得た。得られた積層フィルムのフィルム間接着強度、水蒸気透過度および蒸着PETフィルムの収縮率を表3に示す。
 (実施例25)
 変性オレフィンのTダイ押出温度を250℃に変更し、シリコンゴム皮膜ロールの温度を120℃に変更した以外は実施例21と同様にして積層フィルムを得た。得られた積層フィルムのフィルム間接着強度、水蒸気透過度および蒸着PETフィルムの収縮率を表3に示す。
 (実施例26)
 金属ロールの温度およびシリコンゴム皮膜ロールの温度を20℃に変更した以外は実施例21と同様にして積層フィルムを得た。得られた積層フィルムのフィルム間接着強度、水蒸気透過度および蒸着PETフィルムの収縮率を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 実施例21~26は、接着強度が高く、蒸着PETの熱収縮が抑えられており、積層前の蒸着PETフィルムの水蒸気透過度を保持している。
 (実施例31~38)
 以下に実施例31~38における評価方法を示す。
 〔耐候性フィルムとシートAとの接着強度の測定〕
 上記と同様の方法により、接着強度としてT字ピール強度[N/cm]を計測した。
 〔シート間接着強度の測定〕
 積層フィルムを、幅方向に25mm、長手方向に100mmに切り出し、一方の端部のシート間を手で剥離したときの、接着強度の優劣を以下の基準に従い判断した。
○:手で剥離することが困難でシートが一体化している
×:手で剥離することができる
 〔シートCと結晶セルとの接着強度の測定〕
 5インチ角サイズのガラス板(厚み3.2mm、日本板硝子社製)上に、同サイズの市販の太陽電池封止用EVAシート(サンビック社製:Ultra Pearl、0.40mm厚)と、5インチ角サイズの結晶Si太陽電池素子と、5インチ角サイズに切り出した積層フィルムを耐候性フィルムが外側(上側)に位置するように、この順に載せた。次いで、真空ラミネーター(spire社製:Spi-Laminator)で一体成形することで評価用試験片を得た。一体成形の条件は170℃で脱気時間3.5分、プレス圧力1kg/cm、プレス時間3.5分であった。得られた試験片の積層フィルムの端部を手で剥離したときの、接着強度の優劣を以下の基準に従い判断した。
○:手で剥離することが困難、または結晶セルが割れる
△:手で剥離することができるが、剥離力が強い
×:手で剥離することができる
 〔水蒸気透過度の測定〕
 上記と同様に水蒸気透過度を測定した。
 〔結晶モジュール耐熱耐湿性の評価〕
 5インチ角サイズのガラス板(厚み3.2mm、日本板硝子社製)上に、6インチ角サイズの市販の太陽電池封止用EVAシート(サンビック社製:Ultra Pearl、0.40mm厚)と、結晶Si太陽電池素子とをこの順で載せて、さらにその上に、耐候性フィルムが外側(上側)に位置するように、6インチ角サイズに切り出した積層フィルムを載せた。次いで、真空ラミネーター(spire社製:Spi-Laminator)で一体成形することで結晶シリコン太陽電池モジュールを得た。一体成形の条件は135℃で脱気時間3.5分、プレス圧力1kg/cm、プレス時間3.5分であった。得られた太陽電池モジュールを更に150℃のオーブンで120分加熱してEVAを架橋させた。
 作製した太陽電池モジュールに、AM1.5にスペクトル調整したソーラーシミュレータによって、25℃、照射強度1000mW/cmの擬似太陽光を照射して、太陽電池の開放電圧[V]、および、1cm当たりの公称最大出力動作電流[A]および公称最大出力動作電圧[V]を測定した。これらの積から公称最大出力[W](JIS C8911 1998)の初期値を求めた。
 次に、太陽電池モジュールを、温度85℃、湿度85%RHの環境下に、2000時間放置し、耐熱耐湿試験を実施し、放置後の太陽電池モジュールについて上記と同様にして公称最大出力[W]を求め、耐熱耐湿性の優劣を判断した。優劣の判断は以下の基準に従い行った。
○:2000時間耐熱耐湿試験後の公称最大出力を初期値で除した値が0.9以上
△:2000時間耐熱耐湿試験後の公称最大出力を初期値で除した値が0.8以上
×:2000時間耐熱耐湿試験後の公称最大出力を初期値で除した値が0.8未満
 (変性オレフィンの製造例)
 製造例1に記載の手法により得た変性オレフィンをAR1とする。
 樹脂成分の種類、重合開始剤パーブチルPの使用量、または、各モノマーの使用量を変更した以外は製造例1と同様の手法で変性オレフィンAR2~AR4およびCR1~CR4を製造し、以下の実施例で使用した。
 また、未変性のポリオレフィンをポリオレフィンBR1およびBR2として以下の実施例で使用した。
 各変性オレフィンおよびポリオレフィンの組成を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
 なお、表4において、EPCPはエチレン-プロピレン共重合体(ダウ・ケミカル製:バーシファイ3401.05)、LDPEは低密度ポリエチレン(三井・デュポンポリケミカル社製:ミラソン403P、MFR=4.8)、パーブチルPはラジカル重合開始剤である1,3-ジ(t-ブチルパーオキシイソプロピル)ベンゼン(日油社製:パーブチルP、1分間半減期175℃)、スチレンはスチレンモノマー(日本オキシラン社製)、GMAはメタクリル酸グリシジル(日油社製:ブレンマーG)である。
 (製造例3)ポリオレフィン系樹脂組成物BRCの製造方法
 表4中のBR2 100重量部、及び酸化チタン5重量部を、200℃に設定した2軸押出機(TEX44:L/D=38、日本製鋼所製)に供給して溶融混練し、ポリオレフィン系樹脂組成物BRC2のペレットを得た。
 同様にして、表5記載の組成でポリオレフィン系樹脂組成物BRC3のペレットを製造し、以下の実施例で使用した。
 また、表4のAR1~AR4、BR1、及びCR1~CR4を変性ポリオレフィン系樹脂組成物ARC1~ARC4、BRC1、及びCRC1~CRC4として、以下の実施例で使用した。
Figure JPOXMLDOC01-appb-T000005
 
 なお、表5において、酸化チタンは酸化チタン(IV)(堺化学工業社製:D-918)である。
 (実施例31)
 変性ポリオレフィン系樹脂組成物ARC1、CRC1、およびポリオレフィン系樹脂組成物BRC1の3種の樹脂組成物に対応した押出機を用いて、直前にフィードブロックを設けた400mm幅共押出Tダイに溶融樹脂を供給し、三層のシート状溶融樹脂として押し出した。この三層シート状のARC1側に耐候PETフィルム(シャインビームK1653、東洋紡績株式会社製、厚み50μm)を金属ロールとシリコンゴム皮膜ロールとで挟み込みながらラミネートし、積層フィルムを得た。
 得られた積層フィルムのフィルム間接着強度、水蒸気透過度、および結晶モジュール耐熱耐湿性の評価結果を表6に示す。
 (実施例32~38)
 変性ポリオレフィン系樹脂組成物、ポリオレフィン系樹脂組成物および耐候性フィルムの種類を変更した以外は実施例31と同様にして積層フィルムを得た。得られた積層フィルムのフィルム間接着強度、水蒸気透過度、および結晶モジュール耐熱耐湿性の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 
 表6中、PVDFは、ポリフッ化ビニリデンフィルム(カイナーフィルム(商品名)、アルケマ製、厚み30μm)である。
 実施例31~38は、水蒸気バリア性、層間接着性、および耐湿耐熱性に優れている。第四層上に太陽電池素子を直接配置することで、別の封止材料を第四層と太陽電池素子との間に介在させることなく、太陽電池素子の封止が可能となっている。

Claims (16)

  1.  第一層、第二層、および第三層をこの順で積層して含み、前記第一層が太陽電池素子から最も離れた位置に配置される太陽電池用バックシートであって、
     前記第一層が、耐候性ポリエステル系樹脂フィルム及びフッ素系樹脂フィルムからなる群より選択される耐候性フィルムであり、
     前記第二層が、ポリエチレン、ポリプロピレン、及びエチレン-プロピレン共重合体からなる群より選ばれる1種以上のポリオレフィン系樹脂100重量部に対して、エポキシ基含有ビニルモノマー1~30重量部、及び芳香族ビニルモノマー0.1~30重量部をグラフト化して得られる変性ポリオレフィン系樹脂からなり、厚みが5~250μmであるポリオレフィン層であり、
     前記第三層が、ポリエステルを含む層、ポリオレフィンを含む層、及びアルミニウム箔からなる群より選択され、
     前記第二層と前記第三層の合計の厚みが20μm以上である、太陽電池用バックシート。
  2.  前記第三層の、前記第二層が積層された面とは反対の面に積層された第四層をさらに含み、
     前記第四層は、ポリエチレン、ポリプロピレン、及びエチレン-プロピレン共重合体からなる群より選ばれる1種以上のポリオレフィン系樹脂100重量部に対して、エポキシ基含有ビニルモノマー1~30重量部をグラフト化して得られる変性ポリオレフィン系樹脂からなり、厚みが5~250μmであるポリオレフィン層であり、
     前記第二層と前記第三層と前記第四層の合計の厚みが100μm以上である、請求項1に記載の太陽電池バックシート。
  3.  前記第二層と前記第四層の合計の厚みが、前記第三層の厚みより大きい、請求項2に記載の太陽電池用バックシート。
  4.  前記第三層が、蒸着層を片面に有するポリエステル系フィルムであり、
     前記第二層の厚みと前記第四層の厚みは異なっており、
     前記蒸着層が、前記第二層と前記第四層のうち厚みが大きい層と対向するように配置される、請求項2又は3記載の太陽電池用バックシート。
  5.  前記第四層の前記変性ポリオレフィン系樹脂は、前記ポリオレフィン系樹脂100重量部に対して、さらに芳香族ビニルモノマー0.1~30重量部をグラフト化して得られる変性ポリオレフィン系樹脂である、請求項2~4いずれか1項に記載の太陽電池用バックシート。
  6.  前記第四層の、前記第三層が積層された面とは反対の面に積層された第五層をさらに含み、
     前記第五層は、ポリエステル系樹脂フィルム及びフッ素系樹脂フィルムからなる群より選択されるフィルムである、請求項2~4いずれかに記載の太陽電池用バックシート。
  7.  前記第三層が、ポリエステルを含む層であり、
     前記第二層の厚みが前記第三層の厚みより大きい、請求項1記載の太陽電池用バックシート。
  8.  前記第一層と前記第二層間の接着強度、および、前記第二層と前記第三層間の接着強度が、2(N/cm)以上であり、
     前記太陽電池用バックシートの水蒸気透過度(測定条件:40℃、90%RH)が0.00001~3.0g/(m・day)である、請求項1~7のいずれかに記載の太陽電池用バックシート。
  9.  前記第一層とフィルム状の前記第三層の間に、前記第二層を構成する樹脂含有材料を押し出すことで、押出ラミネートにより形成される、請求項1~8のいずれかに記載の太陽電池用バックシート。
  10.  フィルム状の前記第三層と前記第五層の間に、前記第四層を構成する樹脂含有材料を押し出すことで、押出ラミネートにより形成される、請求項6、8又は9に記載の太陽電池用バックシート。
  11.  前記第一層の表面に、前記第二層を構成する樹脂含有材料、前記第三層を構成する樹脂含有材料、および前記第四層を構成する樹脂含有材料をそれぞれ押し出すことで、三層共押出ラミネートにより形成される、請求項2に記載の太陽電池バックシート。
  12.  前記第三層が、無機物または無機酸化物からなる蒸着層と、当該蒸着層の上に積層された高分子皮膜層と、を片面に有するポリエステル系フィルムである、請求項1~11のいずれかに記載の太陽電池用バックシート。
  13.  前記高分子皮膜層が、ポリ塩化ビニリデン、ポリビニルアルコール、及びエチレン-ビニルアルコール共重合体からなる群より選ばれる少なくとも1種の樹脂からなる、請求項12記載の太陽電池用バックシート。
  14.  前記第一層が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンフルオライド、及びポリエチレンジフルオライドからなる群より選ばれる少なくとも1種を含むフィルムである、請求項1~13のいずれかに記載の太陽電池用バックシート。
  15.  太陽電池素子と、請求項1~14のいずれかに記載の太陽電池用バックシートとを含み、前記第一層が前記太陽電池素子から最も離れた位置に配置されている、太陽電池モジュール。
  16.  太陽電池素子と、請求項2に記載の太陽電池用バックシートとを含み、前記第四層が前記太陽電池素子に接触しており、前記太陽電池素子を封止している、太陽電池モジュール。
PCT/JP2011/002471 2010-06-03 2011-04-27 太陽電池用バックシートおよび太陽電池モジュール WO2011151969A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/701,410 US20130092235A1 (en) 2010-06-03 2011-04-27 Back sheet for solar battery and solar battery module
KR1020127033622A KR101450572B1 (ko) 2010-06-03 2011-04-27 태양 전지용 백시트 및 태양 전지 모듈
EP11789384.2A EP2579330B1 (en) 2010-06-03 2011-04-27 Solar-cell backsheet and solar-cell module
JP2012518216A JP5702776B2 (ja) 2010-06-03 2011-04-27 太陽電池用バックシートおよび太陽電池モジュール
CN201180026711.0A CN102918658B (zh) 2010-06-03 2011-04-27 太阳能电池用背板以及太阳能电池模块

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-128211 2010-06-03
JP2010128211 2010-06-03
JP2011-031301 2011-02-16
JP2011031301 2011-02-16

Publications (1)

Publication Number Publication Date
WO2011151969A1 true WO2011151969A1 (ja) 2011-12-08

Family

ID=45066362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002471 WO2011151969A1 (ja) 2010-06-03 2011-04-27 太陽電池用バックシートおよび太陽電池モジュール

Country Status (6)

Country Link
US (1) US20130092235A1 (ja)
EP (1) EP2579330B1 (ja)
JP (1) JP5702776B2 (ja)
KR (1) KR101450572B1 (ja)
CN (1) CN102918658B (ja)
WO (1) WO2011151969A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187469A (zh) * 2011-12-30 2013-07-03 苏州中来光伏新材股份有限公司 一种聚烯烃改性太阳电池背板及其加工工艺
JP2013161824A (ja) * 2012-02-01 2013-08-19 Kaneka Corp 太陽電池用バックシート、及びその製造方法
WO2014156494A1 (ja) * 2013-03-29 2014-10-02 共同印刷株式会社 吸湿層を有する太陽電池用バックシート及びそれを用いた太陽電池
JP2015191944A (ja) * 2014-03-27 2015-11-02 大日本印刷株式会社 裏面保護シート及びそれを用いた太陽電池モジュール
CN107819050A (zh) * 2017-11-10 2018-03-20 扬州鑫晶光伏科技有限公司 一种太阳能电池散热背板结构及其加工工艺
WO2018181426A1 (ja) * 2017-03-29 2018-10-04 味の素株式会社 封止用シート
JP2022541719A (ja) * 2020-06-15 2022-09-27 杭州福斯特応用材料股▲分▼有限公司 接着フィルム及びこれを備えた電子デバイス

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8887981B2 (en) * 2013-03-15 2014-11-18 Raytheon Company Temporary adhesive for component bonding
CN103311344B (zh) * 2013-06-14 2015-10-14 南京理工大学 一种用于太阳能电池背板的材料及其制备方法
KR20160060041A (ko) * 2013-09-24 2016-05-27 도레이 카부시키가이샤 태양 전지용 다층 시트, 태양 전지용 밀봉재 일체형 이면 보호 시트 및 태양 전지 모듈
CN104934494A (zh) * 2014-03-21 2015-09-23 3M创新有限公司 太阳能电池用复合背板和包含它的太阳能电池组件
CN110256746A (zh) * 2014-03-31 2019-09-20 积水化学工业株式会社 聚烯烃系发泡片及粘合胶带
KR101717330B1 (ko) 2014-08-27 2017-03-16 주식회사 엘지화학 백시트
KR101727366B1 (ko) 2014-09-03 2017-04-14 주식회사 엘지화학 백시트
KR101658184B1 (ko) * 2015-04-23 2016-09-30 에스케이씨 주식회사 폴리머 필름, 태양 전지 패널 보호 필름 및 이를 포함하는 태양광 발전 장치
KR20170009292A (ko) * 2015-07-16 2017-01-25 주식회사 엘지화학 이면 시트 및 그 제조방법
CN110254007B (zh) * 2019-05-27 2021-05-14 四川东方绝缘材料股份有限公司 一种高局放电压光伏背板基膜及其制备方法
CN112802916B (zh) * 2021-01-12 2023-09-22 浙江中聚材料有限公司 一种高水汽阻隔性太阳能光伏背板及其制备工艺和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2008098592A (ja) * 2006-09-15 2008-04-24 Toyo Ink Mfg Co Ltd 太陽電池バックシート及びそれを用いてなる太陽電池モジュール
JP2008235882A (ja) 2007-02-23 2008-10-02 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池
JP2008270685A (ja) 2007-04-25 2008-11-06 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2009119864A (ja) * 2007-10-25 2009-06-04 Techno Polymer Co Ltd 赤外線反射性積層体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290856A (en) * 1992-04-16 1994-03-01 Himont Incorporated Engineering resin-propylene polymer graft composition
TW394731B (en) * 1995-03-29 2000-06-21 Toray Industries Polyolefin-based laminate film
CA2413759A1 (en) * 2000-06-28 2002-12-20 Shigeki Naitoh Resin composition for insulation material, resin composition for adhesive and adhesion sheet
US20060201544A1 (en) * 2002-12-16 2006-09-14 Isao Inoue Filler sheet for solar cell module, and solar cell module using the same
DE112004000919T5 (de) * 2003-06-03 2006-06-29 Dai Nippon Printing Co., Ltd. Zwischenschicht für ein Solarzellenmodul und Solarzellenmodul, bei dem die Zwischenschicht eingesetzt wird
JP2008546557A (ja) * 2005-06-13 2008-12-25 スリーエム イノベイティブ プロパティズ カンパニー 積層体を含有するフルオロポリマー
JP5023449B2 (ja) * 2005-08-08 2012-09-12 日油株式会社 熱可塑性エラストマー組成物
WO2007061030A1 (ja) * 2005-11-25 2007-05-31 Mitsui Chemicals, Inc. 太陽電池封止材、太陽電池封止用シートおよびそれらを用いた太陽電池モジュール
JP2007150084A (ja) * 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
US20090246518A1 (en) * 2006-04-25 2009-10-01 Denki Kagaku Kogyo Kabushiki Kaisha Cover film
ATE518255T1 (de) * 2006-08-30 2011-08-15 Keiwa Inc Benutzung einer rückplatte für photovoltaikmodule und photovoltaikmodule damit
WO2008143719A2 (en) * 2007-02-16 2008-11-27 Madico, Inc. Backing sheet for photovoltaic modules and method for repairing same
WO2008157159A1 (en) * 2007-06-15 2008-12-24 Arkema Inc. Photovoltaic modules having a polyvinylidene fluoride backsheet
EP2232563A1 (en) * 2008-01-03 2010-09-29 Madico, Inc. Photoluminescent backing sheet for photovoltaic modules
US8545971B2 (en) * 2008-06-30 2013-10-01 Fina Technology, Inc. Polymeric compositions comprising polylactic acid and methods of making and using same
CN101359695A (zh) * 2008-09-02 2009-02-04 中国乐凯胶片集团公司 一种太阳能电池背板
CN101645465A (zh) * 2009-08-31 2010-02-10 苏州福斯特光伏材料有限公司 一种太阳能电池组件背板材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2008098592A (ja) * 2006-09-15 2008-04-24 Toyo Ink Mfg Co Ltd 太陽電池バックシート及びそれを用いてなる太陽電池モジュール
JP2008235882A (ja) 2007-02-23 2008-10-02 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池
JP2008270685A (ja) 2007-04-25 2008-11-06 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2009119864A (ja) * 2007-10-25 2009-06-04 Techno Polymer Co Ltd 赤外線反射性積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579330A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187469A (zh) * 2011-12-30 2013-07-03 苏州中来光伏新材股份有限公司 一种聚烯烃改性太阳电池背板及其加工工艺
JP2013161824A (ja) * 2012-02-01 2013-08-19 Kaneka Corp 太陽電池用バックシート、及びその製造方法
WO2014156494A1 (ja) * 2013-03-29 2014-10-02 共同印刷株式会社 吸湿層を有する太陽電池用バックシート及びそれを用いた太陽電池
JP2015191944A (ja) * 2014-03-27 2015-11-02 大日本印刷株式会社 裏面保護シート及びそれを用いた太陽電池モジュール
WO2018181426A1 (ja) * 2017-03-29 2018-10-04 味の素株式会社 封止用シート
JPWO2018181426A1 (ja) * 2017-03-29 2020-02-06 味の素株式会社 封止用シート
JP7283381B2 (ja) 2017-03-29 2023-05-30 味の素株式会社 封止用シート
CN107819050A (zh) * 2017-11-10 2018-03-20 扬州鑫晶光伏科技有限公司 一种太阳能电池散热背板结构及其加工工艺
JP2022541719A (ja) * 2020-06-15 2022-09-27 杭州福斯特応用材料股▲分▼有限公司 接着フィルム及びこれを備えた電子デバイス
JP7375051B2 (ja) 2020-06-15 2023-11-07 杭州福斯特応用材料股▲分▼有限公司 接着フィルム及びこれを備えた電子デバイス
US11905398B2 (en) 2020-06-15 2024-02-20 Hangzhou First Applied Material Co., Ltd. Film and electronic device comprising same

Also Published As

Publication number Publication date
EP2579330A4 (en) 2015-09-02
US20130092235A1 (en) 2013-04-18
EP2579330A1 (en) 2013-04-10
JPWO2011151969A1 (ja) 2013-07-25
KR20130047696A (ko) 2013-05-08
KR101450572B1 (ko) 2014-10-15
JP5702776B2 (ja) 2015-04-15
EP2579330B1 (en) 2017-10-11
CN102918658A (zh) 2013-02-06
CN102918658B (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5702776B2 (ja) 太陽電池用バックシートおよび太陽電池モジュール
JP6059721B2 (ja) 結晶性ブロックコポリマー複合体又はブロックコポリマー複合体を含む層を含む、一体化バックシート及び封入性能を有する多層化ポリオレフィン系フィルム
JP5735225B2 (ja) 太陽電池用積層シート及び太陽電池モジュール
EP2498298B1 (en) Solar cell module
WO2012029466A1 (ja) 太陽電池用カバーフィルム及びそれを用いて作製された太陽電池モジュール
WO2011118727A1 (ja) 太陽電池モジュール用保護シートおよび太陽電池モジュール
TW201316535A (zh) 邊緣經保護之阻障總成
WO2013118570A1 (ja) 太陽電池用保護シートおよび太陽電池モジュール
TWI583556B (zh) 連續邊緣經保護之阻隔組件
US20140283910A1 (en) Edge protected barrier assemblies
JP2012222247A (ja) 太陽電池封止材料およびこれを用いた太陽電池モジュール
JP2010278428A (ja) 太陽電池用シート及び太陽電池モジュール
JP2011254022A (ja) 太陽電池封止材料およびこれを用いた太陽電池モジュール
TWI581446B (zh) 製造抗分層組件之方法
JP2014165389A (ja) 光透過型太陽電池モジュール
TWI583557B (zh) 邊緣經保護之阻障總成
JP5590859B2 (ja) 太陽電池用バックシート、太陽電池モジュールおよび太陽電池用バックシートの製造方法
JP2011139022A (ja) 太陽電池用バックシートおよび太陽電池モジュール
JP2014170907A (ja) 太陽電池用バックシート及び太陽電池モジュール
JP2014120613A (ja) 太陽電池モジュール
JP2014019063A (ja) 太陽電池用バックシートおよび太陽電池モジュール
JP2013258276A (ja) 太陽電池用バックシート及びこれを用いた太陽電池モジュール
JP2011124458A (ja) 太陽電池封止材料および太陽電池モジュール
JP2013161824A (ja) 太陽電池用バックシート、及びその製造方法
JP5639798B2 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026711.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518216

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011789384

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011789384

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13701410

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127033622

Country of ref document: KR

Kind code of ref document: A